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Preface

ICITS 2015, the 8th International Conference on Information-Theoretic Security, was
held in Lugano, Ticino, Switzerland, during May 2–5, 2015. The conference took place
on the campus of Università della Svizzera italiana (USI) in Molino Nuovo, Lugano.
The General and Program Co-chairs were Anja Lehmann (IBM Research – Zurich) and
Stefan Wolf (USI Lugano).

The scope of ICITS connects the fields of cryptography, information theory, and
quantum physics. More specifically, methods are studied that achieve cryptographic
security without computational assumptions, or as “post-quantum schemes" which em-
ploy techniques from information theory, e.g., coding.

ICITS 2015 had two tracks, a conference and a workshop track: Conference-track
articles also appear in the proceedings, whereas workshop-track contributions were only
presented on-site with a talk. This two-track format, which was started with ICITS 2012,
has the advantage to promote bringing together researchers from various areas, such as
information theory, cryptography, and quantum computing, which have different publi-
cation traditions.

There were 57 submitted papers, 48 to the conference track and 9 to the workshop
track. In total, 23 submissions were accepted, 17 for the conference track and 6 for the
workshop track. All submissions were reviewed by at least 3 (conference track) or 2
(workshop track) members of the Program Committee, who sometimes were assisted
by external reviewers. These proceedings contain the accepted papers for the confer-
ence track. A full list of the workshop-track papers is given before the table of contents.

The conference program also featured five invited talks:

– “New Developments in Relativistic Quantum Cryptography” by Adrian Kent, Uni-
versity of Cambridge, UK

– “Tamper and Leakage Resilient von Neumann Architectures from Continuous Non-
Malleable Codes” by Jesper Buus Nielsen, Aarhus University, Denmark. (Abstract
included in this volume.)

– “Classical Uses of Quantum Complementarity: Leakage Resilient Computation and
Semantically-Secure Communication” by Joseph Renes, ETH Zurich, Switzerland.

– “Tamper-Detection and Non-Malleable Codes” by Daniel Wichs, Northeastern Uni-
versity, USA.

– “Reflections on Quantum Data Hiding” by Andreas Winter, Universitat Autònoma
de Barcelona, Spain.

First of all, we thank the Steering Committee of ICITS, and in particular Yvo
Desmedt as well as Rei Safavi-Naini, for their trust and support. We would like to
thank all the people who have contributed to the success of ICITS 2015. First, we thank
the authors for submitting their work to our conference. It was a great pleasure to work
with such a motivated and professional Program Committee. We would like to thank all
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PC members for their contribution, and also thank the external reviewers who assisted
the Program Committee during the reviewing process. We are grateful to the General
and Program Chairs of previous editions of ICITS for their advice and assistance, in
particular Frédérique Oggier, Carles Padro, Adam Smith, and Jürg Wullschleger. We
also thank Jan Camenisch for his advice on various questions on how to run a confer-
ence. We are indebted to Ämin Baumeler for his most generous support, for instance,
in producing these proceedings. Diana Corica was helping us with various administra-
tive matters that pop-up in the organization of such an event; grazie mille! We thank a
very motivated and competent Local Organization Committee for their precious help,
namely Ämin Baumeler, Diana Corica, Helen Ebbe, Arne Hansen, Elisa Larghi, and
Benno Salwey. Finally, ICITS 2015 would not have been possible without the generous
financial support we received. In particular, we are most grateful to Albino Zgraggen
and Klaus Ensslin. Our sponsors were the Università della Svizzera italiana (USI), the
NCCR “Quantum Science and Technology” (QSIT), and the City of Lugano.

February 2015 Anja Lehmann
Stefan Wolf
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Tamper and Leakage Resilient
von Neumann Architectures

from Continuous Non-Malleable Codes

Invited Talk

Jesper Buus Nielsen

Department of Computer Science
Aarhus University

Abstract. We present the notion of continuous non-malleable codes along with
an instantiation and we show how to use them to securely compute any keyed
cryptographic primitive on a computational architecture with a single constant
size untamperable CPU and a tamperable and leaky memory in which both the
secret key and the program of the cryptographic primitive is located.

1 Introduction

The notion of non-malleable codes introduced by Dziembowski, Pietrzak and Wichs in
[2] is a relaxation of the notions of error correcting and error detecting codes. Infor-
mally, a code is non-malleable if an adversary trying to tamper with an encoding of a
given message can only leave it unchanged or modify it to the encoding of a completely
unrelated value.

Continuous non-malleable codes (CNMC) is an extension of the standard non-
malleability security notion, where we allow the adversary to tamper with an encoding
several times and use its knowledge of the observed effects of the tampering in the sub-
sequent tampering attacks. This is in contrast to the standard notion of non-malleable
codes where the adversary is only allowed to tamper a single time with an encoding.

The notion of continuous non-malleable codes was introduced by Faust, Mukherjee,
Nielsen and Venturi in [3] where also the first such code was constructed. We present
the code from [3]. The code is based on the inner-product function, collision-resistant
hashing and non-interactive zero-knowledge proofs of knowledge. We also touch on
later work by Coretti, Maurer, Tackmann and Venturi[1,5] and Jafargholi and Wichs[5]
constructing information-theoretically secure continuous non-malleable codes.

We then present how to use continuous non-malleable codes to protect arbitrary
cryptographic primitives against tampering attacks. Previous applications of
non-malleable codes to this problem required to perfectly erase the entire memory of
the computational architecture after each execution. This of course makes it impossible
to have the program of the primitive sit in the memory of the computational architecture
and forces the program to be hardcoded into the architecture itself, forcing essentially a
circuit model of computation. In practice this would mean producing a specialised piece
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of hardware for each primitive that we would like to compute in a tamper-resilient man-
ner. Continuous non-malleable codes were introduced exactly to avoid this limitation.

We present the tamper and leakage-resilient random-access memory architecture
from [4]. The architecture has one CPU that accesses a memory. The memory is subject
to leakage and tampering. So is the bus connecting the CPU to the memory. We assume
that the computation of the CPU is leakage and tamper free. For a fixed value of the
security parameter, the CPU has constant size. Furthermore, the design of the CPU is
completely independent of the program to be run and its internal registers are non-
persistent, i.e., all secret registers are reset between invocations. The most prominent
consequence of having a constant size CPU with no persistent secret memory is that the
code of the program must be stored in the memory and so must all secrets. Therefore
both program and secrets will be subject to tampering and leakage.

We construct a compiler for this architecture which transforms any keyed
cryptographic primitive into a program where the key is encoded and stored in the
memory along with the program to evaluate the primitive on that key. This result re-
duces the problem of shielding arbitrarily complex computations to protecting a single,
constant-size component. The compiler only assumes the existence of a continuous
non-malleable code and is therefore information-theoretically secure if based on an
information-theoretically secure continuous non-malleable code.

References

1. S. Coretti, U. Maurer, B. Tackmann, and D. Venturi. From single-bit to multi-bit public-
key encryption via non-malleable codes. In Y. Dodis and J. B. Nielsen, editors, Theory of
Cryptography - 12th Theory of Cryptography Conference, TCC 2014. Proceedings, Lecture
Notes in Computer Science. Springer, 2015.

2. S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In A. C. Yao, editor, Inno-
vations in Computer Science - ICS 2010. Proceedings, pages 434–452. Tsinghua University
Press, 2010.
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5. Z. Jafargholi and D. Wichs. Tamper detection and continuous non-malleable codes. In
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Practical Sharing of Quantum Secrets

over Untrusted Channels

Damian Markham and Anne Marin

CNRS LTCI, Département Informatique et Réseaux, Telecom ParisTech,
23 avenue d’Italie, 75013 Paris, France

Abstract. In this work we address the issue of sharing a quantum se-
cret over untrusted channels between the dealer and players. Existing
solutions require entanglement over a number of systems which scales
with the security parameter, quickly becoming impractical. We present
protocols (interactive and a non-interactive) where single copy encodings
are sufficient. Our protocols work for all quantum secret sharing schemes
and access structures, and are implementable with current experimental
set ups. For a single authorised player, our protocols act as quantum
authentication protocols.

1 Introduction

In secret sharing a dealer wishes to distribute a secret to a network of players such
that only authorised sets of players can access the secret, and unauthorised sets
of players cannot. After the initial protocols for sharing classical secrets [1, 2],
ones for sharing quantum secrets were later developed [3, 4], and have found uses
including secure multiparty computation [5]. However, these protocols rely on
trusted channels between the dealer and the players. In practice, channels may
be corrupted either by unavoidable noise, or malicious attacks.

One way to resolve this situation would be to use the quantum authentication
protocol [6] to check the channel. However this is highly impractical in that it
uses error correcting codes and which requires encoding each qubit sent from the
dealer into a highly entangled state (or perform entangling measurements, which
would allow the generation of large entangled states), the size of which scale with
the security parameter (this is also true of all other authentication protocols
known to the authors, including the encode-encrypt and trap schemes in [7]).
This difficulty, on a par with the coherences needed for quantum computing,
renders this approach infeasible with current or near future technology.

In this work we present a protocol which is universal (it works for all quan-
tum secret sharing protocols and access structures) and is implementable with
current experimental setups, for example by using graph states. This is possible
because our protocol uses only single copy encodings. As in the authentication
scheme [6], our protocol uses an initial shared secret classical key between the
dealer and receivers. Our protocol is secure against any cheating parties including
unauthorised players and external eavesdroppers. We begin by introducing an

c© Springer International Publishing Switzerland 2015
A. Lehmann and S. Wolf (Eds.): ICITS 2015, LNCS 9063, pp. 1–14, 2015.
DOI: 10.1007/978-3-319-17470-9_1



2 D. Markham and A. Marin

interactive protocol, which will serve as a basis for the non-interactive protocol
which follows. We then give an example of an explicit graph state implemen-
tation for sharing a secret between five players such that any three can access
the secret and fewer cannot. We finish with a discussion on possible variants
of the protocol including the possibility of abort, and the merits of graph state
implementations [8–11]. One of these was recently implemented experimentally
using graph states [12].

2 Protocols

In quantum secret sharing, a secret |ψ〉 = α|0〉+ β|1〉 is encoded by the dealer d
into some logical basis |ψL〉P = α|0L〉P +β|1L〉P on |P | systems, and distributed
to the players P . A set of players B ⊂ P are authorised if they can access the
secret. This is equivalent to there existing a pair of logical operators XL,B, ZL,B

which are nontrivial only over the systems B, and act over the logical basis in the
appropriate way XL,B|iL〉 = |i⊕ 1L〉, ZL,B|iL〉 = (−1)i|iL〉 (where ⊕ symbolises
sum modulo two) [10]. These logical operators are used by authorised set B to
access the secret, for example by performing a logical swap onto an ancilla held
by B. A set of players B ⊂ P are unauthorised if they can get no information
at all about the quantum secret state. The choice of the logical basis determines
the authorised and unauthorised sets. Our protocols are built on the existence
of these schemes (which exist for all access structures [4]), and we will use this
notation in our protocols.

For our first protocol, we use a general entangled based picture of secret
sharing [10]. In this picture the dealer and the players share an entangled EPR
state

|Φ〉dP =
|0〉d|0L〉P + |1〉d|1L〉P√

2
, (1)

which is then used to teleport the secret to the players. The interactive protocol
presented below essentially verifies that the dealer and any given set of authorised
players B share this state (or the associated reduced state), in which case the
teleportation will be successful. More explicitly, the dealer generates many (S)
copies of the entangled EPR state (1) and uses all but one to test the state
(steps 3 and 4 in the protocol below), and one to teleport (step 5). By randomly
choosing when to test and when to use the state for teleportation any malicious
actions cannot help but be detected. We will see after that this can be translated
to a non-interactive protocol by replacing communication by a shared random
key in a standard way [13, 6].

When analysing these protocols, several subtleties must be addressed arising
from the secret sharing requirements. Firstly it is important that the dealer’s
behaviour be independent of which authorised set of players wish to access the
secret (if the dealer knew before hand which set would access, she could just
send directly to them - so there would be no need for secret sharing). Secondly
the protocol should be defined for all authorised sets of players. Finally the com-
munication should be in such a way that any unauthorised parties, including
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cheating players and eavesdroppers, do not get information compromising secu-
rity. We will see that this can be achieved below, where we define the protocol
for all authorsed sets B.

Interactive Protocol

1. Dealer d generates S EPR states, |Φ〉⊗S
dP , and sends the shares of each one

to P .
2. After P received all their parts, d chooses r ∈ [1, ...S] at random and sends

r to P .
3. For EPR pairs i �= r, d chooses ti ∈ [0, 1] and measures Xd if ti = 0 or

measures Zd if ti = 1, and denotes the result yi, and sends ti and yi to P .
4. For EPR pairs i �= r, accessing set B measure XL,B if ti = 0 or measures

ZL,B if ti = 1. Denoting result by y′i if yi = y′i ACCEPT, if yi �= y′i REJECT.
5. For i = r, d uses EPR pair r to teleport the secret state onto the logical

basis, denoting the bell basis measurements x, and sends x to all P . Upon
receiving x, B decodes using XL,B and ZL,B.

This protocol is effectively a quantum authentication protocol from the dealer
to authorised set B, with the additional constraints regarding secret sharing
mentioned above. In [6] a framework for quantum authentication is laid out,
along with definitions of completeness, soundness and security, which we will
adopt here. A general quantum authentication scheme for sending messages from
A to B is described by a randomly chosen classical key k ∈ K that is shared by A
and B, and associated encoding and decoding operations Ak and Bk respectively.
At the end of the protocol B has a system which encodes the message, and
a classical register which encodes the decision whether to accept or reject in
orthogonal states |ACC〉 and |REJ〉. A quantum authentication scheme is ε-
secure if for all states |ψ〉 it satisfies the two conditions.

– Completeness. For all keys k ∈ K

Bk(Ak(|ψ〉〈ψ|)) = |ψ〉〈ψ| ⊗ |ACC〉〈ACC|. (2)

– Soundness. For all (possibly malicious) channels O, describing the expected
state on Bob’s side after the protocol as ρB = 1

|K|
∑

k∈K Bk(O(Ak(|ψ〉〈ψ|))),
and denoting the two projections P

|ψ〉
fail := (I −|ψ〉〈ψ|)⊗|ACC〉〈ACC|, then

Tr
(
P

|ψ〉
failρB

)
≤ ε. (3)

We say that our secret sharing protocols are ε-secure if all authorised sets B
can authenticate the secret with ε-security, and unauthorised sets of players
get no information. The latter is guarenteed by the use of the original secret
sharing logical operators in our protocol, as is the completeness, we will prove
the soundness now.
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The left hand side of equation (3) is equal to the probability of accepting
multiplied by the fidelity to B’s resulting state (averaged over keys) to the space
orthogonal to the ideal state |ψ〉. That is, it represents a failing in the protocol,
so we want to make it arbitrarily small (with some security parameter S). In
order to prove soundness, we will bound this by considering statements about
the entangled states themselves, before the teleportation.

We first introduce the operator ΠdB := 1/4(Id ⊗ IB +Xd ⊗XL,B + ZdXd ⊗
ZL,BXL,B + Zd ⊗ ZL,B), which is a projector onto a space where all states
are maximally entangled between d and B. More specifically every state in this

subspace can be expressed in the form
|0〉d|0L(i)〉B+|1〉d|1L(i)〉B√

2
, where {|0L(i)〉B ,

|1L(i)〉B} are some basis of B such that i represents a possible logical bases,
XL,B|jL(i)〉B = |j ⊕ 1L(i)〉B, ZL,B|jL(i)〉B = (−1)j |jL(i)〉B and we will use many
such bases in (4) such that 〈jL(i)|kL(m)〉B = δj,kδi,m.

Consider the state ρrdB which is used to teleport in protocol step 5 (conditioned
on accepting on all other pairs, see (6)). Any such state can be purified to |Ψ〉dBE ,
which can be expanded

|Ψ〉dBE = (ΠdB ⊗ IE + (IdB −ΠAB)⊗ IE))|Ψ〉dBE

=
√
F

(
∑

i

αi(|0〉d|0L(i)〉B + |1〉d|1L(i)〉B)|ψi〉E

)

+
√
1− F |ξ〉dBE , (4)

where F = Tr(ΠdBρ
r
dB). If this state is then used to teleport a state |ψ〉 from d

to B, followed by B doing a logical decoding to ancilla system B′ (for example
B performs a logical swap onto B′) the state recovered ρB′ has fidelity f :=
〈ψ|ρB′ |ψ〉 with the original state satisfying f ≥ F . Furthermore,

Tr
(
P

|ψ〉
failρB

)
= Tr (((I − |ψ〉〈ψ|)⊗ |ACC〉〈ACC|)ρB )

≤ Tr
(
Π⊥

dB ⊗ |ACC〉〈ACC|ρdBAR

)
, (5)

where Π⊥
dB is the projector onto the space orthogonal to ΠdB and ρdBAR =

1/S
∑S

r=1 p
r
ACCρ

r
dB ⊗ |ACC〉〈ACC| + prREJρ

r,REJ
dB ⊗ |REJ〉〈REJ |, prACC and

prREJ are the probability of accepting and rejecting respectively when using r,

and ρr,REJ
dB is the state conditioned on rejecting.

Denoting the POVM element associated to accepting the test step 4 for pair
i as

MACCi = 1/2

(
Idi ⊗ IBi +Xdi ⊗XL,Bi

2
+

Idi ⊗ IBi + Zdi ⊗ ZL,Bi

2

)

,

we have MACCi ≤
(Idi⊗IBi

+Πdi,Bi)
2 . Then, if we call the total state shared over

all copies of the dealer and the players B, ρd1,B1,...dS,BS , it follows that

ρrdB =
1

prACC

Trrc

⎛

⎝
⊗

i	=r

MACCiρd1,B1,...dS,BS

⎞

⎠ , (6)
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where Trrc indicates trace over all systems but r. Putting this together we have,

Tr
(
Π⊥

dBρdB
)
=

1

S

S∑

r=1

Tr
(
Π⊥

dr,Br
⊗i	=r MACCiρd1,B1,...dS,BS

)

≤ Tr (Qρd1,B1,...dS,BS ) , (7)

where Q =
∑S

r=1 Π
⊥
dr,Br

⊗i	=r
(Idi⊗IBi

+Πdi,Bi)
2 . It can easily be seen that Q has

maximum eigenvalues of 1/S, reached by projection Π⊥
dj,Bj

⊗i	=j Πdi,Bi for any
j. With this, we arrive at the following theorem.

Theorem 1. The interactive protocol defined above is ε-secure, with scaling ε =
1/S.

Note here that the scaling of the protocol is inverse linear, as compared to
exponential in [6]. This can be understood as the cost of making the protocol
practical. To get the exponential scaling in [6] they require entangled measure-
ments or encodings over S systems (which quickly becomes infeasible). This is
indeed true for any protocol which uses quantum error correcting codes where
the size of the code scales with the security parameter, as for example in the
trap codes and indeed all encode-encrypt codes in [7]. On the other hand our
protocol requires S copies of the single round encodings, which adds no diffi-
culty in standard optical implementations, and is implementable with current
technology.

The protocol above suffers from two main issues. Firstly, interaction is needed
between the dealer and the players. Although this could be allowed in principle,
it is more interesting if limited or no interaction is needed. Second, largely due
to the interaction, a quantum memory is required by the dealer and players
B between steps 1 and 5. The dealer must keep their part of the EPR pairs
until the players have recieved their shares, and B must keep their shares until
r is announced by the dealer and further until d announces their result x for
the teleportation. This is challenging experimentally. These problems can be
overcome by replacing communication and the entanglement between the dealer
and players with shared random keys, as was done in [6], but with an extra twist -
they should be shared using a classical secret sharing protocol, so that the access
structure is maintained. In this way, the protocol below requires no interaction
after the initial sharing of a random key and the dealer’s use of the channel,
and similarly no quantum memory is required by B or d and no entanglement
is needed between d and P (it is of the ‘prepare and measure’ type). To encode
the randomly chosen r, we define string q = (q1, ...qS) such that qi = 0 if i �= r,
qi = 1 if i = r, where r is randomly chosen in [1, ..S].

Non-interactive Protocol

1. d and P share random strings q, t, y, x via a classical secret sharing scheme
over P (i.e. d knows each string, but it is shared via a classical secret sharing
scheme with the relevant access structure over P so that only authorised sets
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can access it, and only when they collaborate to do so, and unauthorised sets
get no information at all).

2. Going through round by round i = 1...S. If qi = 0 the dealer proceeds to
step 3, if qi = 1 the dealer proceeds to step 4.

3. For qi = 0

(a) Dealer prepares and distributes state Hti
LZyi

L
|0L〉P+|1L〉P√

2
.

(b) After receiving the state from the dealer, authorised set B collaborate
to find qi (which is 0), ti, and yi.

(c) Authorised set B measures XL,B if ti = 0 or measures ZL,B if ti = 1 .
The result is denoted y′i.
If yi �= y′i REJECT. If yi = y′i ACCEPT.

(d) If i = S, END, otherwise return to step 2.
4. For qi = 1

(a) d encodes and distrubutes the state Xx0

L Zx1

L |ψL〉P .
(b) After recieving the state from the dealer, authorised set B collaborate

to find qi (which is 1), ti, yi and x.
(c) B decodes using XL,B, ZL,B.
(d) If i = S, END, otherwise return to step 2

Replacing the communication by shared random strings in this way does not
effect the security [6, 13], and we have the following theorem.

Theorem 2. The non-interactive protocol defined above is ε-secure, with ε =
1/S.

3 Example

In recent years graph states have emerged as a useful framework in which to do
secret sharing [8, 9, 11, 10]. As an example, we now illustrate how secret sharing
over untrusted channels works for the case of five players, such that any set of
three or more players can access the secret and any fewer have none (the so
called (3, 5) threshold secret sharing scheme of [8]). To begin, we introduce some
notation. A graph state |G〉1,...,n is a state on n qubits which is associated to
graph G through graph state stabiliser operators Ki := Xi⊗j∈N(i) Zj where i is
associated to a vertex in the graph and N(i) are the set of its neighbours, and
the eigenequations Ki|G〉1,...n = |G〉1,...n ∀i.

In our example the logical states are given by |0L〉P = |GP 〉P for the graph
GP in Fig. 1a), and |1L〉P = Z1Z2Z3Z4Z5|GP 〉P with P = {1, 2, 3, 4, 5}. The
entangled state used in the interactive protocol step 1 is

|Φ〉dP =
|0〉d|0L〉P + |1〉d|1L〉P√

2
. (8)
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4 3
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1
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1

4 3

Fig. 1. Graphs for sharing a secret amongst five players such that any majority can
access the secret [8]. a) Graph GP associated to logical encoding. b) Graph GdP for
the entangled state between d and P used in step 1 of the protocol. c) Graph GdB

associated to the test for players B = {1, 2, 3}. d) Graph GdB associated to the test
for players B = {1, 3, 4}.

It is not difficult to see that this is itself a graph state associated to the graph
in Fig. 1b), |Φ〉dP = |GdP 〉dP .

The choice of logical operators depends on the set B ⊂ P who are trying to
access the secret. Notice that during the protocol the dealers’ action does not
require knowledge of B - this is essential to secret sharing, so that the players
can decide for themselves who access the secret.

If players B = {1, 2, 3} wish to act as the authorised set, they can use logical
operators XL = X1Z2X3 and ZL = Z1X2Z3. The logical operators measured
in the test step of the protocol (step 4 for the interactive and step 3 for the
non-interactive) are graph state stabilisers of the graph GdB given in Fig. 1c),
Xd⊗XL,B = KdK1K3, Zd⊗ZL,B = K2. This is no coincidence, and is a general
feature of graph state protocols, which gives a simple decomposition of states
into the graph state basis as the natural expansion for (4). To decode the secret
after teleportation, players 1 and 3 measure in the Bell basis, and the secret is
passed onto the qubit of player 2. This is the same decoding procedure for the
standard secret sharing protocol [8].

If players B = {1, 3, 4} wish to act as the authorised set, they can use
logical operators XL = Z1X3X4 and ZL = X1X3X4. The logical operators
measured in the test step of the protocol (4 for the interactive and 3 for the
non-interactive) are graph state stabilisers of the graph GdB given in Fig. 1d),
Xd⊗XL,B = KdK3K4, Zd⊗ZL,B = K1K3K4. In this case, to decode the secret
after teleportation, players 3 and 4 measure in the Bell basis, and the secret is
passed onto the qubit of player 1.

Logical operators can similarly be defined for all sets of three players, and it
is easy to see that any two players cannot access the secret by themselves [8].
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4 Conclusions

Several variations of these protocols are also possible. In particular, if the quan-
tum secret is precious, the dealer may not want to send the information when
the channel is not trusted - i.e. when it fails the test part of the protocols above.
To address this one can adapt the protocol to allow for the players to announce
abort when they fail the test. It is possible to show an adapted theorem for
security, which is only slightly modified. We present the protocol and the theo-
rem in the appendix A. One subtle issue with how this may be used however, is
that the protocol is now interactive (albeit limited to when the players announce
abort). When the accessing set B announce abort they declare themselves, which
may be an issue in some uses of secret sharing as a primitive (one may try to
develop ways to overcome this for example using an anonymous announcement
of abort). Another alternative protocol with abort can be found if, instead of
randomly choosing in a fixed number (S) of rounds, at each round we randomly
choose to test or use the channel. This allows for slightly different security state-
ments, as used in [14] for entanglement verification. We consider this simplified
unbounded aborting protocol in appendix A.

Note that in all the schemes presented here the entanglement used is only that
required for the secret sharing part of the encoding, so that this remains fixed by
the demanded access structure. The independence of the the size of entanglement
from the security with respect to untrusted dealer to player channels is the main
contribution of our protocols.

Using graph state schemes as in the example shown here has several advan-
tages. Firstly they are a common framework for many quantum information
processing tasks, including measurement based quantum computation and error
correction. This allows these protocols to naturally fit into more general and
elaborate network scenarios integrating several of these tasks. Furthermore, this
relationship allows us to understand the connection between different protocols.
The measurements used for the test part of our protocol are exactly those used
for the CQ protocols to establish secure key between the dealer and authorised
players [10]. This relationship is general - whenever complementary bases are
used to establish a secure key, successful key generation implies the channel
works [15, 10].

Secondly graph states are very well suited to implementation. Many schemes
exist for the generation and manipulation of graph states in different technologies
including linear optics [16], continuous variables [17, 18] and ion traps [24, 25].
Optical implementations of graph states are ideal for the secret sharing protocols
presented here, and experiments in this direction are well advanced and optics
has been used to implement sophisticated quantum information processing tasks
including measurement based quantum computing [19], blind quantum compu-
tation [20], and error correction [21]. Indeed a proof of principle experiment
implementing our protocol has recently been carried out in the optical setting
[12].

All of the results here easily extend to the qudit case, including use for qudit
graph state secret sharing [9, 10], which allows our scheme to be used to cover all
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access structures. One simply extends the states and operators to their natural
qudit versions. This is done explicitly in the appendix B. Furthermore, the proofs
also follow through for secret sharing protocols using mixed state encodings, as
well as the hybrid protocols of [22],[23] where classical secret sharing is used in
addition to allow for access structures otherwise forbidden, in this case however
authenticated classical channels between the dealer and the players must also be
secure.

Quantum secret sharing is one of the underlying sub protocols for secure
multiparty quantum computation (as is authentication) [5]. There too large,
and scaling (with security parameters), entanglement is required. However, all
these schemes can be phrased in the language of graph states. The techniques
developed here may be applied to other protocols to make them within reach
sooner.

Acknowledgement. We thank Anthony Leverrier, Eleni Diamanti and André
Chailloux for many useful discussions and helpful comments. This work was
supported by the Ville de Paris Emergences program, project CiQWii.
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A Aborting Protocols

We first present an adaptation of the non-interactive protocol to include abort.

Protocol with Abort

1. d and P share random strings q, t, y, x via a classical secret sharing scheme
over P.

2. Going through round by round i = 1...S. Authorised set B collaborate to
find qi. If qi = 0 all proceed to step 3, if qi = 1 all proceed to step 4.

3. For qi = 0

(a) Dealer prepares and distributes state Hti
LZyi

L
|0L〉P+|1L〉P√

2
.

(b) For authorised set B, if ti = 0, B measures ZL, if ti = 1, B measures
XL. The result is denoted y′i.
If yi �= y′i B announces ABORT, all abort.

(c) If yi = y′i ACCEPT, and return to step 2.

4. For qi = 1

(a) d encodes and distributes the state Xx0

L Zx1

L |ψL〉P .
(b) B decode.

(c) END

Theorem 3. The aborting protocol defined above is ε-secure, with ε < 2/S.

http://arxiv.org/abs/1109.1487
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The proof follows the same argumentation as before, but in this case the
testing stops at round r. This gives a different Q operator (applied as in equation
(7)),

Q =
1

S

S∑

r=1

Π⊥
dr,Br

⊗

i<r

(Idi ⊗ IBi +Πdi,Bi)

2

⊗

i>r

(Idi ⊗ IBi). (9)

To find the greatest eigenvalue we can decompose into the {Πdi,Bi , Π
⊥
di,Bi

} ba-
sis. Then we have a sum with all strings of products, where each string x, in

which Πdi,Bi appears |x| times, occurs with weight 1/S
∑|x|−1

a=0 1/2a. Thus, the

greatest eigenvalue of Q is 1/S
∑S−1

a=0 1/2a = 2−2−S

S < 2/S, given by the string
Π⊥

d1,B1
⊗ Π⊥

d2,B2
⊗ ...Π⊥

dS,BS
. In this case we see that the optimal cheat (in

terms of maximising the failure of the protocol) is given by the dishonest parties
preparing many copies of states all outside the ideal space.

We also present an aborting protocol where the randomness (over whether to
test the channel or use it) is inserted each round.

Aborting Protocol, Indefinite Length

1. Dealer d generates EPR state |Φ〉dP and sends the shares to P .
2. After P received all their parts, d chooses r ∈ [0, ...S − 1] at random and

sends r to P . If r �= 0, continue to step 3, otherwise move to step 4.
3. TEST

(a) d chooses t ∈ {0, 1}. If t = 0, d measures Zd, if t = 1 d measures Xd.
The result is denoted y. d sends t and y to P .

(b) If t = 0, B measures ZL,B, if t = 1, B measures XL,B. The result is
denoted y′. If yi �= y′i B announces ABORT, all abort.

(c) If yi = y′i ACCEPT, and return to step 1.
4. USE CHANNEL

(a) d uses EPR pair to teleport the secret state onto the logical basis, denot-
ing the bell basis measurements x, and sends x to all P . Upon receiving
x, B decodes.

This protocol is similar to the use of the verification of GHZ states in [14], and
we can present a similar security statement as there. Let Cf be the event that
the state is teleported, and that the fidelity of any teleported state ρ and the
sent state |ψ〉 is bounded by 〈ψ|ρ|ψ〉 ≤ f , then we have the following theorem.

Theorem 4. For all f, the probability of event Cf is bounded

P (Cf )) ≤
2

S(1− f)
. (10)

To prove this, call CN
f the event that at round N +1 the state is used (which

means that all previous rounds have returned accept) and that the fidelity of
all states sent satisfies 〈ψ|ρ|ψ〉 ≤ f . The probability of this event is given by
the probability of using the N + 1th round state, times the probability of hav-
ing tested the previous rounds times the probability of passing all the previous
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rounds.

P (CN
f ) =

1

S

(

1− 1

S

)N N∏

i=1

pi (11)

where pi is the probability that round i is accepted. This is given by

pi = Tr(ρdi,BiMACCi)

≤ 1 + Tr(ρdi,BiΠdi,Bi)

2

≤ 1 + f

2
. (12)

The probability of event Cf is then given by taking the limit of the sum over
N , which is bounded by taking the integral.

P (CF ) ≤
1

S

∞∑

0

(

1− 1

S

)N (
1 + f

2

)N

≤ 1

S

∫ ∞

N=0

(

1−
(
1− f

2

))N

dN

=
1

S

−1

log
(
1−

(
1−f
2

))

≤ 2

S(1− f)
. (13)

The last protocol was implemented recently using graph states [12].

B Qudit Protocols

The qudit versions work in the same way, by simply replacing states and oper-
ators by their generalised high dimensional versions. For simplicity we consider
prime dimension q (this is sufficient for allowing for all access structures [6]).
Paulis and the computational basis are replaced by their qudit extensions, X ,
Z, X |i〉 = |i ⊕ 1〉 (where now ⊕ denotes sum modulo q) and Z|i〉 = ωi|i〉,
ω = ei2π/q (analogously for all the possible sets of logical operators and basis
states), and the EPR state by its qudit version

|Φ〉dP =
1
√
q

q−1∑

i=0

|i〉d|iL〉P . (14)

We similarly define the projection operator on d and subset of players B ⊂ P ,

ΠdB =
∑

t∈F 2
q

Zt1

d Xt2

d ⊗ Zt1

L,BX
t2

L,B, (15)
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where t = {t1, t2}, ti ∈ Fq. This again defines a space of maximally entangled
states between the dealer and players B.

For simplicity we present a qudit protocol which includes all the measurements
in this projection. This is not necessary for our results, indeed for the qubit case
we had fewer and similar results follow using fewer measurements as in the qubit
version - it is mostly a matter of taste if one chooses the full set or fewer (similar
to the situation for qudit versions of QKD [26]). We adopt it here for its simpler
presentation. It allows for analagous statement of Theorems 1, 2 following the
same logic as for the qubit version.

Interactive Protocol (qudit)

1. Dealer d generates S qudit EPR states, |Φ〉⊗S
dP , and sends the shares of each

one to P .
2. After P received all their parts, d chooses r ∈ [1, ...S] at random and sends

r to P .
3. For qudit EPR pairs i �= r, d chooses ti ∈ F 2

q , and measures Z
t1i
d X

t2i
d , and

denotes the result yi, and sends ti and yi to P .

4. For qudit EPR pairs i �= r, accessing set B measure Z
t1i
L,BX

t2i
L,B . Denoting

result by y′i if yi = y′i ACCEPT, if yi �= y′i REJECT.
5. For i = r, d uses qudit EPR pair r to teleport the secret state onto the

logical basis, denoting the qudit bell basis measurements x, and sends x to
all P . Upon receiving x, B decodes.

Theorem 5. Any state ρdB with fidelity F = Tr(ΠdBρdB) to projector ΠdB

accepts at step 4 of the qudit interactive protocol with probability Pr =
1 + F

2
.

Theorem 6. The interactive qudit protocol defined above is ε-secure, with ε =
1/S.

The non-interactive version follows similarly, as does the Theorem. The state

|Ψ t,y〉P denotes the eigenstate of the operator Z
t1i
L X

t2i
L with eigenvalue ωy.

Non-interactive Protocol (qudit)

1. d and P share random strings r, t, y, x via a classical secret sharing scheme
over P (i.e. d knows the string, but it is shared via a classical secret sharing
scheme with the relevant access structure over P so that only authorised sets
can access it, and only when they collaborate to do so, and unauthorised sets
get no information at all).

2. Going through round by round i = 1...S. If qi = 0 the dealer proceeds to
step 3, if qi = 1 the dealer proceeds to step 4.

3. For qi = 0
(a) Dealer prepares and distributes state |Ψ t,y〉P .
(b) After receiving the state from the dealer, authorised set B collaborate

to find qi (which is 0), ti and yi.

(c) Authorised set B measures Z
t1i
L,BX

t2i
L,B . The result is denoted y′i.

If yi �= y′i REJECT. If yi = y′i ACCEPT.
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(d) If i = S, END, otherwise return to step 2.
4. For qi = 1

(a) d encodes and distrubutes the state Xx0

L Zx1

L |ψL〉P .
(b) After recieving the state from the dealer, authorised set B collaborate

to find qi, which is 1.
(c) B decodes.
(d) If i = S, END, otherwise return to step 2

Theorem 7. The non-interactive qudit protocol defined above is ε-secure, with
ε = 1/S.

The aborting protocol follows similarly.
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Abstract. We focus on generalizing constructions of Batch Single-
Choice Cut-And-Choose Oblivious Transfer and Multi-sender k-out-of-n
Oblivious Transfer, which are at the core of efficient secure computa-
tion constructions proposed by Lindell et al. and the IPS compiler. Our
approach consists in showing that such primitives can be based on a
much weaker and simpler primitive called Verifiable Oblivious Transfer
(VOT) with low overhead. As an intermediate step we construct Gen-
eralized Oblivious Transfer from VOT. Finally, we show that Verifiable
Oblivious Transfer can be obtained from a structure preserving oblivious
transfer protocol (SPOT) through an efficient transformation that uses
Groth-Sahai proofs and structure preserving commitments.

1 Introduction

Secure multiparty computation (MPC) allows mutually distrustful parties to
compute functions on private data that they hold, without revealing their data
to each other. Obtaining efficient multiparty computation is a highly sought after
goal of cryptography since it can be employed in a multitude of practical appli-
cations, such as auctions, electronic voting and privacy preserving data analysis.
Notably, it is known that secure two-party computation can be achieved from
the garbled circuits technique first proposed by Yao [Yao86] and that general
MPC can be obtained from a basic primitive called oblivious transfer (OT),
which was introduced in [Rab81, EGL85]. The basic one-out-of-two oblivious
transfer (OT 2

1 ) is a two-party primitive where a sender inputs two messages
m0,m1 and a receiver inputs a bit c, referred to as the choice bit. The receiver
learns mc but not m1−c and the sender learns nothing about the receiver’s
choice (i.e. c). This primitive was proven to be sufficient for achieving MPC in
[Kil88, GMW87, CvdGT95].
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Even though many approaches for constructing MPC exist, only recently
methods that can be efficiently instantiated have been proposed. Among these
methods, the IPS compiler [IPS08] stands out as an important construction,
achieving MPC without honest majority in the OT-hybrid model. In this work,
we will focus on the cut-and-choose OT based construction and the improvement
of the IPS compiler introduced by Lindell et al. [LP11, LP12, LOP11, Lin13].

In the approaches for obtaining efficient MPC presented in [LP11, Lin13], the
authors employ cut-and-choose OT, where the sender inputs s pairs of messages
and the receiver can choose to learn both messages b0, b1 from s

2 input pairs,
while he only learns one of the messages in the remaining pairs. A batch version
of this primitive is then combined with Yao’s protocol to achieve efficient MPC.
In the improvement of the IPS compiler, the authors employ Multi-sender k-out-
of-n OT, where j senders input a set of n messages out of which a receiver can
choose to receive k messages. These complex primitives are usually constructed
from specific number-theoretic and algebraic assumptions yielding little insight
to their relationship with other generic and potentially simpler primitives.

In parallel to the efforts for obtaining efficient MPC, research has been devoted
to obtaining constructions of basic primitives that can be efficiently combined be-
tween themselves in order to obtain more complex primitives and protocols. One
of the main approach taken towards this goal has been called structure preserv-
ing cryptography, which aims at constructing primitives where basically all the
public information (e.g. signatures, public keys, ciphertexts and commitments)
are solely composed of bilinear group elements. This allows for the application
of efficient Groth-Sahai non-interactive zero knowledge (NIZK) proof systems
[GS08] (GS-Proofs) and efficient composition of primitives. Until now, the main
results in this area have been structure preserving signature and commitment
schemes [AFG+10, AGHO11] and encryption [CHK+11].

Our Contributions: The central goal of this paper is to present general con-
structions of the primitives used as the main building blocks in the frameworks
of [LP11, LOP11, LP12, Lin13] in the universal composability model [Can01].
In contrast to previous works, we present general reductions from such complex
primitives to simpler variants of OT without relying on specific number theoretic
assumptions. We present three main results:

– General Constructions of Multi-sender k-out-of-n OT (MSOT) and
Batch Single Choice Cut-and-Choose OT (CACOT) from Gener-
alized OT (GOT): We show that MSOT and CACOT can be obtained
GOT [IK97] combined with proper access structures. Differently from the
original constructions of [LP11, LP12, LOP11, Lin13], our constructions are
based on a simple generic primitive, not requiring Committed OT or spe-
cific computational assumptions. These constructions can be readily used to
instantiate the MPC frameworks presented in [LP11, LP12, LOP11, Lin13].

– Generalized Oblivious Transfer Based on Verifiable Oblivious
Transfer: Verifiable Oblivious Transfer (VOT) [CC00, JS07, KSV07] is a
flavor of 1-out-of-2 OT where the sender can reveal one of his messages at
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any point during the protocol execution allowing the receiver to verify that
this message is indeed one of the original sender’s inputs. We show that
GOT can be obtained from VOT, generalizing even more the constructions
described before. Our generic construction of GOT may be of independent
interest.

– Structure Preserving Oblivious Transfer (SPOT) and a Generic
Composable Constructions of Verifiable Oblivious Transfer: We
introduce SPOT, which is basically a 1-out-of-2 OT compatible with GS-
Proofs. We then build on this characteristic to provide a generic (non black-
box) construction of VOT from any SPOT protocol combined with structure
preserving extractable or equivocable commitments and Groth-Sahai NIZKs.
Differently from the VOT protocols of [CC00, JS07, KSV07], our construc-
tions are modular and independent of specific assumptions. Moreover, we
provide a concrete round optimal SPOT protocol based on a framework by
Peikert et al. [PVW08] and observe that the protocols in [CKWZ13] fit our
definitions. This notion is also of independent interest in other scenarios
besides general MPC.

1.1 Efficiency

Our constructions are as efficient as the underlying NIZK proof system, struc-
ture preserving commitment and SPOT. Hence, they can easily take advantage
of more efficient constructions of these primitives. In Table 1, we present an
estimate of the concrete complexity of our protocols when instantiated with
GS-Proofs and commitments [GS08] and our structure preserving variant of the
DDH based UC secure OT of [PVW08]. Our general constructions achieve es-
sentially the same round complexity as the previous DDH based constructions
of the same funtionalities. Our constructions incur higher communication and
computational overheads, which is expected since we do not optimize our pro-
tocols for an specific number theoretic assumptions as in previous works. We
remark that independently of their concrete efficiency, our protocols are the first
to realize MSOT and CACOT from generic primitives without relying on specific
number theoretic assumptions.

2 Preliminaries

Notations and Conventions. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}.
When D is a random variable or distribution, y

R← D denotes that y is randomly

selected from D according to its distribution. If S is a set, then x
U← S denotes

that x is uniformly selected from S. y := z denotes that y is set, defined or
substituted by z. When b is a fixed value, A(x) → b (e.g., A(x) → 1) denotes
the event that machine (or algorithm) A outputs b on input x. We say that a
function f : N → R is negligible in λ ∈ N if for every constant c ∈ N there exists
kc ∈ N such that f(λ) < λ−c for any λ > kc. Hereafter, we use f < negl(λ) to

mean that f is negligible in λ. We write X c≈ Y to denote that X and Y are
computationally indistinguishable.
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Table 1. Efficiency of our protocols compared to previous constructions based on DDH.
The column VOTs shows the number of VOTs needed in our general constructions,
“-” marks the previous protocols that do not enjoy general constructions. Exp. stands
for exponentiations and Pair. stands for bilinear pairings. n and s express the number
of inputs according to each protocol (explained in the respective sections), p is the
number of senders in MSOT and k is the number of messages transferred to the receiver.
Communication complexity is stated in terms of number of group elements exchanged.

Protocol VOTs Rounds
Computational
Complexity

Communication
Complexity

GOT Sec. 4 n 6
23n Exp.
+28 Pair.

24n+ k + 4

CACOT
Sec. 5 2ns 6

46ns Exp.
+56ns Pair.

48.5ns
+n+ 4

[LP11] - 6
11.5ns + 19n
+9s+ 5 Exp.

5ns + 11n
+5s+ 5

Modified
CACOT

Sec. 6 4ns+ s 6
92ns + 23s Exp.
112ns + 28s Pair.

16ns + 16s
+k + 4

[Lin13] - 21
10.5ns + 20.5ns
+n+ 26 Exp.

5ns + n
+11s + 15

MSOT
Sec. 7 pn 8

23pn Exp.
+28pn Pair.

24pn+ 4p+ k
p!/(p− 3)! + 4

[LOP11] - 7
4n+ 11(p− 1)n
+k(p− 1) Exp.

12pn+ 1

Bilinear Groups. Let G be a bilinear group generator that takes security parame-
ter 1λ as input and outputs a description of bilinear groupsΛ := (p,G,H,GT , e, g,
ĝ) where G, H and GT are groups of prime order p, g and ĝ are generators in G

and H, respectively, e is an efficient and non-degenerate map e : G×H → GT . If
G = H, then we call it the symmetric setting. If G �= H and there is no efficient
mapping between the groups, then we call it the asymmetric setting.

Symmetric External Decisional Diffie-Hellman Assumption. Intuitively, SXDH
is the assumption that the DDH assumption holds for both groups G and H

in a bilinear group Λ. Let GDDH1(1λ) be an algorithm that on input security

parameter λ, generates parameters Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ) (where G

is the bilinear group generator introduced in the previous paragraph.), chooses

exponents x, y, z
U← Zp, and outputs I := (Λ, gx, gy) and (x, y, z). When an

adversary is given I
R← GDDH1(1λ) and T ∈ G, it attempts to distinguish whether

T = gxy or T = gz. This is called the DDH1 problem. The advantage AdvDDH1
A (λ)

is defined as follows:

AdvDDH1
A (λ) :=

∣
∣
∣Pr

[
A(I, gxy) → 1

∣
∣
∣(I, x, y, z)

R← GDDH1(1λ);
]

− Pr
[
A(I, gz) → 1

∣
∣
∣(I, x, y, z)

R← GDDH1(1λ);
]∣
∣
∣
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Definition 1 (DDH1 Assumption).We say that the DDH1 assumption holds
if for all PPT (Probabilistic Polynomial Time) adversaries A, AdvDDH1

A (λ) <
negl(λ).

The DDH2 assumption is similarly defined in terms of group H. If both DDH1
and DDH2 assumptions hold simultaneously, then we say that the symmetric
external Diffie-Hellman (SXDH) assumption holds.

Universal Composability. The Universal Composability framework was intro-
duced by Canetti in [Can01] to analyse the security of cryptographic protocols
and primitives under arbitrary composition. In this framework, protocol security
is analysed by comparing an ideal world execution and a real world execution
under the supervision of an environment Z, which is represented by a PPT ma-
chine and has access to all communication between individual parties. In the
ideal world execution, dummy parties (possibly controlled by a PPT simulator)
interact directly with the ideal functionality F , which works as a fully secure
third party that computes the desired function or primitive. In the real world
execution, several PPT parties (possibly corrupted by a real world adversary A)
interact with each other by means of a protocol π that realizes the ideal function-
ality. The real world execution is represented by the ensemble EXECπ,A,Z , while
the ideal execution is represented by the IDEALF ,S,Z . The rationale behind
this framework lies in showing that the environment Z is not able to efficiently
distinguish between EXECπ,A,Z and IDEALF ,S,Z , thus implying that the real
world protocol is as secure as the ideal functionality. It is known that a setup
assumption is needed for UC realizing oblivious transfer as well as most “in-
teresting” ideal functionalities [CF01]. In this work we consider security against
static adversaries, i.e. the adversary can only corrupt parties before the protocol
execution starts. We consider malicious adversaries that may deviate from the
protocol in any arbitrary way. See [Can01] for further details.

Definition 2. A protocol π is said to UC-realize an ideal functionality F if, for
every adversary A, there exists a simulator S such that, for every environment
Z, the following holds:

EXECπ,A,Z
c≈ IDEALF ,S,Z

We present oblivious transfer (FOT ), commitment (FCOM ), and common ref-
erence string (FD

CRS) ideal functionalities in the full version of this paper.

3 Generic Construction of Verifiable OT from Structure
Preserving OT

In this section, we introduce Structure Preserving Oblivious Transfer (SPOT)
and use it to construct verifiable oblivious transfer (VOT).
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Structure Preserving Oblivious Transfer

Basically we require all the SPOT protocol messages (i.e. the protocol tran-
script) and inputs to be composed solely of group elements and the transcript to
be generated from the inputs by pairing product equations or multi exponenti-
ation equations, which allows us to apply GS proofs to prove relations between
the parties’ inputs and the protocol transcript. Further on, our general transfor-
mation will rely on GS proofs to show that a given sender input is associated
with a specific protocol transcript.

Definition 3 (Structure Preserving Oblivious Transfer). A structure pre-
serving oblivious transfer protocol taking inputs m0,m1 from the sender and c
from the receiver defined over a bilinear group Λ := (p,G,H,GT , e, g, ĝ) must
have the following properties:

1. Each of the sender’s input messages m0,m1 consists of elements of G or H.
2. All the messages exchanged between S and R (i.e. the protocol transcript)

consist of elements of G and H.
3. The relation between the protocol inputs m0,m1, c and a given protocol tran-

script is expressed by a set of pairing product equations or multi exponenti-
ation equations.

Notice that our general transformations can be applied to any OT protocol
in a bit by bit approach, by mapping the binary representation of each ele-
ment in a given protocol to specific group elements representing 0 and 1 and
applying GS proofs individually to each of those elements. However, this trivial
approach is extremely inefficient. The number of GS proofs and group elements
exchanged between parties would grow polynomially. The first OT protocol to
fit this definition was proposed in [GH08], but it relies simultaneously on the
SXDH, the DLIN and the q-hidden LSRW assumptions. A recent result by Choi
et. al. [CKWZ13] also introduced OT protocols based on DLIN and SXDH that
match out definition of SPOT. However, these protocols already require a GS
proof themselves, introducing extra overhead in applications that combine SPOT
with GS proofs.

Obtaining SPOT from Dual-Mode Cryptosystems

The starting point for constructing SPOT is the general framework for univer-
sally composable oblivious transfer protocols proposed by Peikert et al. [PVW08]
(hanceforth called PVW). The PVW framework provides a black-box construc-
tion of UC secure OT from dual-mode cryptosystems, which were initially instan-
tiated under the DDH, QR and LWE assumptions. Essentially, this framework
relies on an information theoretical reduction from UC secure OT to dual-mode
cryptosystems in the CRS model, such that the resulting OT protocol inher-
its the characteristics of the underlying dual-mode cryptosystem. In order to
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obtain an OT protocol compatible with GS-proofs, we convert the DDH based
dual-mode cryptosystem construction of [PVW08] into a scheme secure under
the SXDH assumption (which can also be used to instantiate GS proofs). This
scheme is then plugged in the PVW framework to obtain a UC secure OT pro-
tocol. Note that, in the resulting protocol, the CRS, all protocol messages and
inputs are composed solely by group elements. Moreover, all the protocol mes-
sages are generated by pairing product equations. Therefore, we obtain a SPOT
protocol whose security follows from the PVW framework. Our SXDH dual-mode
cryptosystem is constructed as follows:

– SetupMessy(1λ) Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ), g0, g1

U← G, x0, x1
U← Zp

where x0 �= x1. Let hb := gxb

b for b ∈ {0, 1}, crs := (g0, h0, g1, h1), and
t := (x0, x1). It outputs (crs, t).

– SetupDec(1λ) Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ), g0 U← G, y

U← Z
∗
p, g1 := gy0 ,

x
U← Zp, hb := gxb for b ∈ {0, 1}, crs := (g0, h0, g1, h1), and t := y. It outputs

(crs, t).

– Gen(σ) r
U← Zp, g := grσ, h := hr

σ, pk := (g, h) ∈ G
2, sk := r. It outputs

(pk, sk).

– Enc(pk, b,m) For pk = (g, h) and message m ∈ G, reads (gb, hb) from crs =

(g0, h0, g1, h1), chooses s, t
U← Zp, and computes u = gsbh

t
b, v = gsht. It

outputs ciphertext (u, v ·m) ∈ G
2.

– Dec(sk, c) c = (c0, c1), It outputs c1/c
sk
0 .

– FindMessy(t, pk) For input t = (x0, x1) where x0 �= x1, pk = (g, h), if h �= gx0 ,
then it outputs b = 0 as a messy branch. Otherwise, we have h = gx0 �= gx1 ,
so it outputs b = 1 as a messy branch.

– TrapGen(t) For input t = y, it chooses r
U← Zp, computes pk := (gr0 , h

r
0) and

outputs (pk, sk := r, sk1 := r/y).

Theorem 1. The cryptosystem described above is a Dual-Mode Cryptosystem
according to the definition of [PVW08] under the SXDH Assumption.

The proof of this theorem and details of the PVW framework can be found
in the full version of this paper, where we also describe how to use GS-proofs to
prove relations between protocol inputs and transcripts.

Obtaining VOT

Verifiable oblivious transfer is basically a 1-out-of-2 oblivious transfer where the
sender may choose to open one of its input messages mb where b ∈ {0, 1} at
any time, in such a way that the receiver is able to verify that this message had
indeed been provided as input. This notion is formalized by the following ideal
functionality:



22 B.M. David et al.

Functionality FV OT

FV OT interacts with a sender S a receiver R and an adversary S.

– Upon receiving (Send, sid, ssid, x0, x1) from the S, if the pair sid, ssid
has not been used, store (sid, ssid, x0, x1) and send (Receipt, sid, ssid)
to S,R and S .

– Upon receiving (Transfer, sid, ssid, c) from R, check if a (Transfer, sid,
ssid) message has already been sent, if not, send (transferred, sid, ssid,
xc) to the receiver and (transferred, sid, ssid,) to S, otherwise ignore the
message.

– Upon receiving (Open, sid, ssid, b) from the sender, send (reveal, sid,
ssid, b, xb) to the receiver.

We will construct a general protocol πV OT that realizes FV OT from any uni-
versally composable SPOT protocol πSPOT by combining it with a structure
preserving commitment πCOM (such as the schemes in [GS08][AFG+10]) and
Groth-Sahai NIZK proofs. An interesting property of this generic protocol is
that even though it was designed for an underlying structure preserving proto-
col that realizes the 1-out-of-2 OT functionality FOT , it can be applied multiple
times to the individual transfers of an adaptive OT protocol in order to obtain
verifiable adaptive OT. In this case, the same CRS can be reused for all the in-
dividual transfers. Notice that this is the first generic construction of universally
composable VOT.

We assume that both parties are running the underlying universally compos-
able structure preserving oblivious transfer protocol SPOT and describe the
extra steps needed to obtain VOT. In the context of πCOM , we denote commit-
ment to a message m by Com(m) and the opening of such a commitment by
Open(m).

Protocol πV OT : S inputs two messages m0,m1 and R inputs a choice bit c.

– Setup: A common reference string is generated containing the following
information:

• The description of a bilinear group Λ := (p,G,H,GT , e, g, ĝ).
• The public parameters for an instance of a Groth-Sahai non-interactive
zero knowledge proof system.

• The CRS for the underlying structure preserving commitment scheme
πCOM .

• The CRS for the underlying UC structure preserving OT πSPOT .

– Commitment Phase: Before starting πSPOT , S commits to m0 and m1

by sending (sid, ssid,Com(m0),Com(m1)) to R, where m0,m1 ∈ {0, 1}n
(Notice that it is possible to efficiently map the messages into corresponding
group elements that will serve as inputs to πSPOT [GH08]).
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– πSPOT protocol Execution: S and R run πSPOT storing all the messages
exchanged during the protocol execution up to the end of πSPOT with S’s
input (m0,m1) and R’s input c or until S decides to reveal one of its mes-
sages.

– Reveal Phase: If S decides to reveal one of its messagesmb where b ∈ {0, 1}
at any point of the protocol execution it sends a decommitment to mb and a
GS-proof ψ that the messages exchanged up to that point of the execution
contain a valid transfer of message mb, sending (sid, ssid, b,Open(mb), ψ) to
R.

– Verification Phase: After receiving the decommitment and the GS-proof,
R verifies ψ and the decommitment validity. If both are valid, it accepts the
revealed bit, otherwise it detects that S is cheating. If the protocol πSPOT

did not reach its end yet, S and R continue by executing the next steps,
otherwise they halt.

Theorem 2. For every universally composable structure preserving oblivious
transfer protocol πSPOT and every universally composable structure preserv-
ing commitment scheme πCom, Protocol πV OT securely realizes the functionality
FV OT in the FCRS hybrid model under the assumption that Groth-Sahai proof
systems are Zero Knowledge Proofs of Knowledge.

Before proceeding to the security proof we show that the protocol works cor-
rectly. First of all, notice that since πSPOT is a structure preserving oblivious
transfer protocol it is possible to prove statements about the sender’s input
messages and the protocol transcript using Groth-Sahai NIZK proof systems.
Correctness of Protocol πV OT in the case that no Reveal phase happens follows
from the correctness of protocol πSPOT . The correctness of the Reveal phase
follows from the commitment scheme’s security and the GS-proof completeness
and soundness. When S opens the commitment, R is able to check whether the
revealed message is indeed one of the messages that S used as input in the be-
ginning of the protocol and by verifying the GS-proof, R is able to check that
the input message mb is contained in the messages exchanged by both parties
meaning that this message is indeed used in the protocol execution. The full
proof is presented in the full version of this paper.

4 Generalized Oblivious Transfer

Generalized Oblivious Transfer is an interesting application of Verifiable Oblivi-
ous Transfer. An interesting way of describing an OT is by describing the groups
of messages that the receiver can get as sets in a collection. In the case of a sim-
ple OT, he can learn the values indexed by one of the sets in the collection
{{1}, {2}}. The k-out-of-n OT is an OT with a collection that contains all the
sets of index of k or less elements. This mindset allows us to present a very gen-
eral form of oblivious transfer. There is an important link between generalized
oblivious transfer and general access structures. The notation FGOT (I) denotes
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the instance of generalized oblivious transfer associated with the enclosed1 col-
lection I.

Definition 4. We define the following basic facts about enclosed collections:

– Let I = {1, 2, ..., n} be a set of indices. A collection A ⊆ P(I) is monotone
if the fact that B ∈ A and B ⊆ C implies that C ∈ A.

– An access structure is a monotone collection A of non-empty sets of I.
A set S is authorized if S ∈ A and a set S′ is minimal if there exists no
strict subset S′′ of S′ such that S′′ ∈ A.

– The complement of a collection C is defined as C∗ = {B ⊆ I | ∃ C ∈
C, B = I − C}.

– We define Closure(C) = {C ⊆ C′ | C′ ∈ C}.
– A collection C is enclosed if C = Closure(C).
– An element C ∈ C is maximal if there exists no C′ ∈ C such that C ⊆ C′

and C �= C′.

Theorem 3. For every enclosed collection C, there exists a unique access struc-
ture A such that C∗ = A

See [SSR08] for a full proof.

Definition 5. A secret sharing scheme is a triplet of randomized algorithms
(Share, Reconstruct, Check) over a message space M with an access structure
A. ShareA(s) always output shares (s1, . . . , sn) such that:
(1) for all A ∈ A, ReconstructA({(i, si) | i ∈ A}) = s,
(2) for any A′ �∈ A, {(i, si) | i ∈ A′} gives no information about s.
CheckA(s1, . . . , sn) = 1 if and only if for all A ∈ A, ReconstructA({(i, si) | i ∈
A}) = s.

Definition 6. We say that shares (s1, . . . , sn) are consistent if CheckA(s1,
. . . , sn) = 1.

Functionality FGOT (I)
FGOT (I) interacts with a sender S, a receiver R and an adversary S and is
parametrized by an enclosed collection I.

– Upon receiving (Send, sid, ssid,m1, . . . ,mn) from the S, if the pair
sid, ssid has not already been used, store (sid, ssid,m1, . . . ,mn) and
send (receipt, sid, ssid) to S and R.

– Upon receiving (Choice, sid, ssid, I) where I is a set of indices, if no
(Choice, sid, ssid) message was previously sent and I is in I, then for
each i ∈ I, send (Reveal, sid, ssid, i,mi) to R and (Reveal, sid, ssid) to
the adversary S.

1 See definition 1.
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4.1 Protocol

In this section, we will present a protocol that implements FGOT in the FV OT ,
FCOM − hybrid model with the aid of secret sharing. The protocol is inspired
by [SSR08] but is secure against a stronger adversary. The fact that every en-
closed collection is the complement of an access structure will be key to this
construction. The protocol requires n instances of FV OT . The selection of the
secret sharing scheme is dictated by the security parameter. Namely, for secu-
rity parameter s, we require that the message space of the secret sharing scheme
must have cardinality greater or equal to 2s. The size of the elements transferred
in the FV OT is the maximum between the length of the messages and the size
of the shares which depends on the underlying access structure. Let I be the
enclosed collection that defines the subsets of messages that are accessible to the
receiver.

Protocol: πGOT (I) (The sender has input (m1, . . . ,mn) and the receiver has
input I ∈ I.)

1. The sender selects k1, ..., kn
U← {0, 1}l (one-time pads)

2. Let A = I∗, the sender selects s
U← M and (s1, ..., sn) = ShareA(s).

3. The sender selects a set of n unused ssids, denote these ids as (ssid1, . . . , ssidn)
and sends (Ids, sid, ssid, ssid1, . . . , ssidn) to the receiver. For each i ∈ [n],
the sender sends (send, ki, si, sid, ssidi) to FV OT .

4. The receiver awaits (Ids, sid, ssid, ssid1, . . . , ssidn) from the sender. He aborts
if any of the ssid are not unused. Let I ∈ I be the set of messages that the
receiver wishes to receive. He sets bi = 0 when i ∈ I otherwise he sets bi = 1.
For each i ∈ [n], the receiver sends (Transfer, bi, sid, ssidi) to FV OT and
records the result.

5. The receiver executes the recover algorithm with the shares he received and
obtains S. If the reconstruction failed, he chooses an arbitrary value for S
instead. The receiver sends (commit, sid, ssid, S) to FCOM .

6. The sender awaits (committed, sid, ssid) from FCOM . Then, for each i ∈ [n],
the sender sends (open, 1, sid, ssidi) to FV OT .

7. The receiver awaits for each i ∈ [n], the message (reveal, 1, si, sid, ssidi) from
FV OT . The receiver aborts if CheckA(s1, ..., sn) �= 1.

8. The receiver sends (open, sid, ssid) to FCOM . The sender on receipt of
(reveal, sid, ssid, S) verifies that S = s and if not, he aborts the protocol.

9. The sender sends zi = mi ⊕ ki to the receiver. ({mi | i ∈ [n]} is the set of
messages)

10. The receiver for each i ∈ I, outputs (i,mi) where mi = zi ⊕ ki.

Theorem 4. πGOT securely realizes FGOT in the FV OT , FCOM hybrid model.

The proof of this theorem is presented in the full version of this paper.
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4.2 Insecurity of Previously Published GOT Protocols

The GOT protocol presented in this article improves on the one from [SSR08]
and [Tas11] significantly. We believe that their protocols are secure against semi-
honest adversaries but unfortunately, a malicious sender can easily break the
privacy of both schemes.

The protocol of [SSR08] works as follows: first the dealer generates shares for
a randomly chosen secret, then the sender and receiver execute n instances of
oblivious transfer where the receiver can learn either a share or a key chosen
uniformly at random. The receiver then reconstructs the secret and sends it
back to the sender. On receipt of a value, the sender checks that it is indeed the
secret that he generated shares for. The sender can thus use the keys to encrypt
messages and he is guaranteed that the receiver cannot learn a set of messages
that is not within the enclosed collection.

However, it is possible for a malicious sender to determine if a specific message
was chosen by the receiver. We will now proceed to demonstrate an attack on
[SSR08]. An adversary wishes to learn if a receiver learns the message mc. He
selects a secret s and executes the share algorithm resulting in shares {si}. He
replaces sc by s′c and executes the GOT protocol with those shares. As a result,
if the receiver chooses to learn mc, he will reconstruct s correctly otherwise he
will reconstruct an s′ �= s. The attack breaks the privacy of the receiver. The
same idea can be applied to attack the protocol from [Tas11].

5 Batch Single-Choice Cut-and-Choose OT

The Batch Single-Choice Cut-and-Choose OT (FCACOT ) is an an instantiation
of FGOT for a specific enclosed collection. The procedure was introduced in
[LP11] and it was used to implement constant round secure function evaluation.

Definition 7 makes formal the enclose collection used FCACOT . Informally, the
data that will be transferred has a three dimensional structure; a table of pairs.
Each row is composed of s pairs and each column is composed of n pairs. The
receiver can learn two categories of element of the table. First he can learn exactly
all the pairs for a subset of half the columns. In addition to that, independently
for each line, he can either learn the first element of every pair or the second
element of every pair.

Definition 7. Let Ti,j,k, where i ∈ [n], j ∈ [s] and k ∈ {0, 1}. Let A(J, σ) where
J ⊆ [s], σ ∈ {0, 1}n be the following subset of T : for all i and for all j if j ∈ J
both Ti,j,0 and Ti,j,1 are in the set otherwise only Ti,j,σ(i) belongs to the set.
Let C′ =

⋃
|J|=s/2,σ A(J, σ) then we define C =Closure(C′). Furthermore any

maximal element of C can be uniquely specified by some J and σ as defined
previously.

We can now formally define the Batch Single-Choice Cut-and-Choose OT.

Definition 8. FCACOT = FGOT (C).
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Theorem 5. Any FCACOT can be implemented with 2ns calls to FV OT where
the elements transferred by FV OT are the maximum between twice the size of the
secret and the value of the messages transferred.

The proof of this theorem is presented in the full version of this paper.

6 Modified Cut-and-Choose from [Lin13]

The Cut-and-Choose OT from [Lin13] is very similar to the one in [LP11] but
there are two important differences. First, the set of indices in J is no longer size
restricted (instead of size s/2). In addition, for each j �∈ J , the receiver receives
a special string vj which will allow the receiver to prove that j �∈ J . Although,
we could still use the protocol for generalized oblivious transfer defined above,
the complement access structure is very complicated. Instead, we will present a
hybrid of the protocols from [Tas11] and [SSR08] to realize this functionality.

The protocol follow the same basic structure as the previous protocol: (1)
sharing of a secret, (2) verifiable oblivious transfer, (3) commitment, (4) proof
of share validity and finally (5) the message encryption and transmission. Note
that the input selection for each row i is still denoted as σi.

Construction

Essentially, by reconstructing the secret which has been shared with the secret
sharing scheme below, the prover will be able to prove two statements. First, it
will show that, for each column, the receiver either didn’t learn the verification
string or one element from each pair. Second, it demonstrates that for each row,
the receiver either learned the first element of all pairs, or the second element
of all pairs. The first statement which can be thought of as a proof of ignorance
reflects the approach of [SSR08], while the second one, which can be thought as
a proof of knowledge, reflects the approach of [Tas11]. The protocol that follows
is thus a hybrid of [Tas11] and [SSR08]. Since the protocol is very similar to
the GOT protocol, we will only describe how shares are constructed and what
is transferred by the verifiable oblivious transfer.

Sharing

This part describes how a sender will generate shares of a secret. The reconstruct
procedure of this secret sharing naturally follows from its description. This secret
will then be used as in the previous protocols to ensure that the receiver does
not learn keys for a set of indices which is not within the enclosed collection. The
sharing will first split the secret into two shares, sc and sr. The receiver will be
able to extract sc only if for each column, he either did not learn the verification
string, or he did not learn one element from each pair. The purpose of sr is
to ensure that for each row, for all pairs within that row he learned the first
element, or he learned for all pairs the second element. The notation k-n is used
as shorthand for {S ⊂ {1, . . . , n} | |S| ≤ k}. In particular, the notation Sharek-n
denotes the sharing of a secret using a k-out-of-n secret sharing.
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(sc, sr) = share2-2(s)

(sr1, . . . , srn) = sharen-n(sr)

(sri10, . . . , srin0) = shares-s(sri)

(sri11, . . . , srin1) = shares-s(sri)

(sc1, . . . , scs) = shares-s(sc)

(sc1j , . . . , scnj) = sharen-n(scj)

(sc0ij0, sc
1
ij0) = share2-2(scij)

(sc0ij1, sc
1
ij1) = share2-2(scij)

Sender’s Input to VOT

This part describes which messages will be sent by the sender to FV OT . We will
use vidj , kidi,j,k, sridi,j,k indexed by variable i, j, k to denote distinct ssids.

(Send, sid, vidj , vj , scj)

(Send, sid, kidi,j,k, kijk , sc
0
ijk)

(Send, sid, sridi,j,k, srijk, sc
1
ijk)

Receiver’s Input to VOT

These are the messages that the receiver will send to FV OT . We also add next to
them a description of the values learned by the receiver. Note that these values
allow the sender to reconstruct both sc and sr as well as get the keys for a set
of indices within the enclosed collection.

For each j ∈ J , the receiver sends (Transfer, sid, vidj , 1) to FV OT , he learns
{scj | j ∈ J}.
For each j �∈ J , the receiver sends (Transfer, sid, vidj , 0) to FV OT , he learns
{vj | j �∈ J}.
For each j ∈ J, i ∈ [n], k ∈ {0, 1}, the receiver sends to FV OT

(Transfer, sid, kidi,j,k, 0), he learns {(kijk) | j ∈ J, i ∈ [n], k ∈ {0, 1}}.
(Transfer, sid, sridi,j,k, 0), he learns {(srijk) | j ∈ J, i ∈ [n], k ∈ {0, 1}}.

For each j �∈ J, i ∈ [n], the receiver sends to FV OT

(Transfer, sid, kidi,j,σi , 0), he learns {(kijσi ) | j �∈ J, i ∈ [n]}.
(Transfer, sid, sridi,j,σi , 0), he learns {(srijσi ) | j �∈ J, i ∈ [n]}.
(Transfer, sid, kidi,j,1−σi , 1), he learns {sc0ij(1−σi)

| j �∈ J, i ∈ [n]}
(Transfer, sid, sridi,j,1−σi , 1), he learns {sc1ij(1−σi)

| j �∈ J, i ∈ [n]}

Share Reconstruction and Commitment

In this phase, the receiver reconstructs a secret using the reconstruction
algorithm for the secret sharing described in 6. He then commits to that value.
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Proof of Share Validity

The sender sends the messages described below to FV OT . This allows the receiver
to check that the shares are consistent relative to the secret sharing defined in 6.
If the shares are not consistent, the receiver aborts.

– for each j ∈ J ,
(Reveal, sid, vidj , 1), the receiver learns scj .

– for each i ∈ [n], j ∈ J, k ∈ {0, 1}
(Reveal, sid, kidi,j,k, 1), the receiver learns sc0i,j,k.
(Reveal, sid, sridi,j,k, 0), the receiver learns sri,j,k.
(Reveal, sid, sridi,j,k, 1) the receiver learns sc1i,j,k.

Message Encryption and Transmission

For each i ∈ [n], j ∈ [s], k ∈ {0, 1}, the sender encrypts the message mijk using
kijk resulting in zi,j,k. He then sends zi,j,k to the receiver. For each i ∈ [n], j �∈ J ,
the receiver can decrypt mi,j,σi since he knows ki,k,σi . For each i ∈ [m], j ∈ J ,
the receiver can decrypt mi,j,0,mi,j,1 since he knows ki,j,0 and ki,j,1

7 Multi-sender k-Out-of-n OT

The Multi-sender k-out-of-n OT functionality was defined in [LOP11] where it
was used to optimize the IPS compiler. The functionality involves p senders and
one receiver. It is essentially many k-out-of-n OT executed in parallel with the
same choice made by the receiver in each execution. This OT primitive can be
implemented using ideas similar to the ones we presented to implement GOT in
conjunction with the appropriate use of linear secret sharing.

The protocol is divided in four phases. In the first phases, the senders will
construct/distribute the shares of a special secret sharing with value S. They
must commit to this information. In the VOT phase, each sender will transfer
a key for each message along with the associated share. The receiver will read
the key associated with the messages he wishes to learn and otherwise he will
obtain a share. The next phase is a verification phase, the receiver will commit
to S which he could only obtain if he was requesting the same k messages from
each sender. The senders will open all their commitment so that the shares are
validated by the receiver. If the verification phase succeeds, the receiver opens S
which proved he only read a legal set of key. In the last phase, the senders will
transmit all the messages encrypted with the appropriate key.

The following functionality and protocol involves p senders with n messages
of length r each and one receiver. We denote the shares of a a-out-of-b linear
secret sharing as {B}a-b.

Functionality FMSOT

FMSOT interacts with senders P1, . . . , Pp and receiver Pr
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– Inputs: For j = 1, . . . , p, upon receiving message (Send, sid, ssid,
x1j , . . . , xnj) from a sender Pj , record all xij .

– Outputs: Upon receiving message (Transfer, sid, ssid, I ⊂ [n]), check if
|I| = k, if not abort. Send to receiver Pr, for each j = 1, . . . , p and i ∈ I,
the message (Receipt, sid, ssid, i, j, xij).

Protocol: (πMSOT )

– Preparation

1. Each sender a selects a random secret Sa and broadcasts a non-interactive
commitment to Sa. We define S =

∑
a Sa.

2. Each sender a reshares Sa to obtain {Sab}(n−k)-n.
3. Each sender a reshares each Sab to obtain {Sabc}p-p.
4. For each j, b and c, sender j sends share Sjbc to sender c.

5. Each sender c computes for each b, S′
bc =

∑

a

sabc.

We have that S′′
b = {S′

bc}p-p and
∑

S′′
b = S.

– VOT’s

1. Each sender j selects uniformly at random a set of n keys kij of length
r (one-time pads). He also selects n unused ids denoted by ssidij and
sends them to the receiver.

2. Each sender j, for each i ∈ [n] sends FV OT the message
(Send, sid, ssidij , kij , S

′
ij).

3. Let I ∈ I be the set of messages that the receiver wishes to receive, he
sets bi = 0 if i ∈ I otherwise he sets bi = 1. For each i, for each sender,
the receiver sends FV OT the message (Transfer, sid, ssidij , bi) and records
the result.

– Verification

1. Receiver computes S′′
b = {S′

bc}p-p then S =
∑

S′′
b and broadcasts a non-

interactive commitment to S. The receiver commits to a random S if he
cannot reconstruct S.

2. Each sender j, for each i, player j sends (open, sid, ssidij , 1) to FV OT ,
thus revealing his shares to the receiver.

3. Receiver verifies that the shares are consistent with a legal preparation
phase and aborts otherwise.

4. Receiver reveals S and if the secret is invalid, the senders abort the
protocol.

– Transfer

1. Each sender sends mij ⊕ kij to the receiver who can now calculate mij

for all i ∈ I.

Theorem 6. πMSOT securely realizes FMSOT .

The proof of this theorem is presented in the full version of this paper.
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Abstract. Consider an arbitrary network of n nodes, up to any t of which
are eavesdropped on by an adversary. A sender S wishes to send a message
m to a receiver R such that the adversary learns nothing about m (unless
it eavesdrops on one among {S,R}). We prove a necessary and sufficient
condition on the (synchronous) network for the existence of r-round proto-
cols for perfect communication, for any given r > 0. Our results/protocols
are easily adapted to asynchronous networks too and are shown to be opti-
mal in asynchronous “rounds”. Further, we show that round-optimality is
achieved without trading-off the communication complexity; specifically,
our protocols have an overall message complexity of O(n) elements of a fi-
nite field to perfectly transmit one field element. Interestingly, optimality
(of protocols) also implies: (a) when the shortest path between S and R
has Ω(n) nodes, perfect secrecy is achieved for “free”, because any (inse-
cure routing) protocol would also take O(n) rounds and send O(n) mes-
sages (one message along each edge in the shortest path) for transmission
and (b) it is well-known that (t+ 1) vertex disjoint paths from S to R are
necessary for a protocol to exist; a consequent folklore is that the length
of the (t + 1)th ranked (disjoint shortest) path would dictate the round
complexity of protocols; we show that the folklore is false; round-optimal
protocols can be substantially faster than the aforementioned length.

1 Introduction

We address the problem of Perfectly Secret Message Transmission(PSMT),1 de-
fined as follows: A sender S wishes to send a message m to a receiver R such that
an adversary, that eavesdrops on no more than t out of the n nodes, learns noth-
ing about m. Our inquiry includes (a) characterization: under what conditions is

� Financial support from TCS is acknowledged.
1 In this work, we interchangeably use PSMT to mean both Perfectly Secret Message
Transmission as well as Perfectly Secure Message Transmission; the former when the
adversary is passive and the latter when the adversary is Byzantine. At any rate,
our technical contributions are only in the passive adversarial case.
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DOI: 10.1007/978-3-319-17470-9_3
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a solution possible? (b) feasibility: is the characterization efficiently testable and
is there an efficient protocol? (c) round complexity: what is the fastest solution?
and (d) communication complexity: what is the cheapest solution? Intuitively,
the above questions are in increasing order of difficulty. Consequently, question
‘(a)’ has been answered in settings that are far more general than those where
optimal solutions are, as yet, known.

Although literature on information theoretically secure message transmission
is rich, there are settings where answers to none of the aforementioned four ques-
tions are, yet, known. For instance, we do not know of a necessary and sufficient
condition on digraphs influenced by a Byzantine adversary corrupting up to any
t nodes, for the existence of protocols for perfectly secure message transmis-
sion from S to R; not to mention, design of optimal protocols for the same are
still far-fetched. Researchers have therefore attacked the problem in scenarios
that are not as general as mentioned above – harder the inquiry, more specific
the chosen setting. Notwithstanding, researchers have also worked on interest-
ing generalizations in some dimensions (while, of course, being more specific
in other parameters so that the problem is tractable using contemporary tech-
niques), including hyper-graphs [1], non-threshold adversaries [2], mobile faults
[3,4], mixed/hybrid faults [5,6], asynchronous networks [7], to name a few.

The PSMT problem was conceived and first solved by Dolev et. al [8]. They
assume that the graph is undirected. It is proved that PSMT is possible if and

only if there are at least (2t + 1) vertex disjoint paths between S and R.
Further, the protocols designed in [8] are efficient too. However, designing round
optimal protocols for PSMT (even in undirected graphs) still remains a hard open
problem. Consequently, results are known only with further restrictions.

A setting where round-optimal protocols have been designed (on arbitrary
digraphs) is when a small probability of error is permitted [9] (that is, perfectness
is negligibly traded-off). However the design of communication optimal solutions
are still open.

A particular setting where communication optimum protocol for PSMT are
designed is the following: applying Menger’s theorem [10], the undirected graph
can be abstracted as a collection of wires (vertex-disjoint paths) between S and
R, up to t among which are corrupted by the adversary. In this setting, a two
phase protocol for PSMT that is optimal in communication complexity is known
[11]. While the notion of phase complexity has been studied [12,11,13], we stress
that round complexity is markedly different from phase complexity, even in the
case of undirected networks (as illustrated in Section 2.1).

Recently, restricting to passive adversaries, Renault et. al [14] characterize
the digraphs that enable PSMT. In fact they use a more general non-threshold
adversary model, characterized via an adversary structure, which is a collec-
tion of subsets of nodes in the graph, where in the adversary may choose to
corrupt (passively in this case) the nodes in any one subset among the collec-
tion. The protocols of [14] are therefore not always efficient (that is, may be
super-polynomial in n).
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Fig. 1. Restriction based solutions

In summary, as depicted in the Fig. 1, all the four questions in our inquiry,
with respect to the problem of PSMT, have remained open in the general case
of digraphs influenced by a Byzantine adversary characterized via an adversary
structure A. However, (im)possibility results are known if one restricts the set-
ting to either undirected graphs [15] or passive adversary or security with error
[14,9]. Nevertheless, efficient protocols are still elusive. To design efficient pro-
tocols using contemporary techniques, further restriction (apart from moving to
undirected graphs) is required, namely, threshold adversary. For instance, Dolev
et. al [8] give one such efficient protocol, which, however, is neither round optimal
nor bit-optimal.

Round-optimal protocols are known only in the case of weaker (not perfect)
security models like statistical [9] or computational security [16]. Bit-optimal
protocols have been designed in the wires-based abstraction of the undirected
graph [11]. While a similar wires-based approach has been used for digraphs too
[17], it is known to be inadequate to capture all digraphs on which protocols
exists [18].

2 Our Contributions

As depicted in Fig. 1, we ask: does restricting to the setting of passive thresh-
old adversaries lead to the design of efficient and round-optimal and/or bit-
optimal protocols? (or, are further restrictions like wires-based abstractions still
required?)

Interestingly, we design efficient round/bit optimal protocols, with no fur-
ther restrictions beyond assuming that the adversary passively corrupt up to t
nodes in the digraph. Incidentally, it turns out that our techniques for designing
round-optimal protocols are orthogonal to those that entail linear communica-
tion complexity – therefore, when applied together, we obtain protocols that
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are simultaneously round optimal as well as bit-optimal.2 Further, the simplicity
of our protocol ensures the implementability of highly scalable perfectly secret
message transmission.

In a nutshell, we address the PSMT problem in such a way that all the four
questions, namely, characterization, feasibility, round and bit optimality, are
answered in one-shot. In the subsections below, we briefly describe our results
and their significance.

2.1 Complete Characterization of Networks Wherein an r-round
Secure Communication is Possible

It is well-known that, for passive threshold adversaries, (t + 1)-vertex disjoint
paths are necessary and sufficient for PSMT from S to R in undirected graphs
[8]. Consequently, as noted in [8] too, without loss of generality, any network
(undirected graph) may be abstracted as a set of wires (vertex disjoint paths)
between S and R. However, in the design of round optimal PSMT protocols,
such an abstraction is inadequate, even if the length of the wires is recorded.
Specifically, using the edges across these wires (or practically every edge in the
network) it is possible to design faster protocols. For example, consider the
graph in Fig. 2, the two wires corresponding to two vertex disjoint paths 〈S, v,R〉
and 〈S(= v0), v1, v2, v3, . . . vn−1, R(= vn)〉 have length of 2 and n respectively.
Following Dolev’s protocol, S sends two points on a linear polynomial whose
constant term is the secret m, individually through these two wires. R gets the
two points and hence the message after n rounds. Can a faster protocol exist?
Our answer: Yes. In fact, a 3-round protocol exists, irrespective of how large n is!
Perhaps it is not conspicuous at first glance and certainly not if we continue to
use the wires-based abstraction of the network. As a corollary to our Theorem 3
we know that 3 rounds are necessary and sufficient for PSMT in the graph in
Fig. 2. Thus, extant techniques are insufficient to design round optimal protocols
and new techniques are necessary to design and more importantly prove round
optimality. To summarize, the problem of characterizing round optimal protocols
in directed networks is a non-trivial and an interesting problem.

A Remark on Extending to Asynchronous “Rounds”. Due to the ab-
sence of fail-stop and/or Byzantine corrupt nodes in our setting, it is fairly
straight-forward to adapt all our protocols (and hence our characterizations) to
the asynchronous setting too. Indeed, several of our protocols are directly de-
signed assuming that the network is asynchronous; this is the reason that com-
mands like wait appear in our algorithms (these can be safely ignored in case of
full-fledged synchrony). On the other hand in asynchronous networks, there is
no formal notion of global round, and therefore our claims of round-optimality
have to be understood accordingly. Specifically, we define an asynchronous ‘hop’

2 Linear communication complexity is equivalent to bit-optimality only when we con-
sider optimally fault-tolerant protocols, that is, using the maximum t-adversary that
is tolerable. Otherwise, sub-linear communication complexity is achieved by trading-
off fault-tolerance using multi-secret sharing (analogous to [19]).
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S

v1 v2 v3 vn−1

R

v

Fig. 2. An undirected graph tolerating one passive fault

as a round with an in-built wait-for-the-message. Though, these hops are not
globally in lock-step, we may easily use it as a measure of asynchronous round-
complexity of a protocol – the length of longest nested hop sequence. We see
that our protocol are hop-optimal, and we can derive the same using the same
algorithms used for deriving the round optimal protocols.

2.2 Linear Communication Complexity

Folklore suggests that optimizing the number of rounds for a distributed pro-
tocol, typically increases the communication complexity (total numbers of bits
transferred across all edges in the network during the execution of protocol).
In rare cases, round optimality can co-exist with bit-optimality – PSMT is in-
deed one such case! Specifically, we prove that the number of edges used by our
protocol can be brought down to linear in the number of nodes (Section 4.2).
We also ensure that an edge is used to send at most one field element (or in
general, bits equivalent to the size of the message). At any rate, each of these
edges is critical, in the sense that, if deleted, PSMT is rendered impossible – hence
they need to be used at least once. Thus, we arrive at a surprising protocol for
secure communication which is round optimal and at the same time has linear
communication complexity. Even more interesting is the case when the shortest
path from S to R has Ω(n) nodes. In such cases, perfect secrecy is achieved
for “free”, because any (insecure routing) protocol would also take O(n) rounds
and send O(n) messages (one message along each edge in the shortest path) for
transmission.

2.3 Efficient Discriminant Algorithms

Specifying the necessary and sufficient condition does not imply that there exists
an efficient algorithm for checking the same. Indeed, the literature (on possibility
of protocols in directed graphs) is replete with several problem specific charac-
terizations, none of which are known to be efficiently testable. For instance, the
possibility of reliable/secure message transmission in Byzantine adversarial set-
ting in digraphs is characterized in [18,9]. However, no efficient algorithms to
test these conditions are known; in fact they may be NP-hard too, though no
such study has been carried out. In contrast, for each of the results in this paper,
we have a polynomial time algorithm for testing the same. Algorithm 5.3 is a
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polynomial-time algorithm for testing the existence of an r-round secure com-
munication protocol in a given network (and if yes, obtaining a round optimal
one). All the reductions mentioned in the paper can be easily done in polynomial
time, as all of them involve creation of a sub-graph of the given graph.

3 Network Model and Definitions

Definition 1. Passive Corruption: Following [12], a node v is said to be pas-
sively corrupted if the adversary has full access to the information and internal
state of v. But v will honestly follow the protocol execution.

Definition 2. Following [12], define the VIEW of a node v ∈ V at any point of
the execution of a protocol Π, to be the information the node can get from its local
input (if any) to the protocol, all the messages that it had earlier sent or received,
the protocol code executed by the node and its random coins. VIEW of a set of
nodes W (⊆ V ) is the information that the nodes in W can get together from
their individual VIEWS and is denoted by VIEWΠG (W ). The VIEW of an adversary
A is the VIEW of the set of nodes controlled by adversary, denoted by VIEWΠG (A).

Definition 3. Perfect Security: Following [12], a message transmission pro-
tocol Π for sending message m from sender S to receiver R is said to be perfectly
secure if it satisfies the following two conditions:

1. Perfect Reliability: At the end of the protocol Π receiver should learn the
correct message m.

2. Perfect Secrecy: Adversary should not learn any information about the mes-
sage m(i.e. adversary should not be able to distinguish whether S sent mes-
sage m or m′ for any two messages m and m′).

Definition 4. The underlying undirected graph of a directed graph G(V,E) is
denoted by Gu(V,Eu), where Eu = {(u, v) | (u, v) ∈ E or (v, u) ∈ E}.

Definition 5. A sequence of nodes p : 〈v0(= u), v1, v2, . . . , vk, vk+1(= v)〉 is said
to be a weak path from u to v in a directed graph G(V,E), if ∀j ∈ {0, 1, . . . , k},
either (vj , vj+1) ∈ E or (vj+1, vj) ∈ E.
We say that path p′ : 〈v0(= u), v1, v2, . . . , vk, vk+1(= v)〉 in Gu, is the corre-
sponding path of a weak path p : 〈v0(= u), v1, v2, . . . , vk, vk+1(= v)〉.

Notations:

1. In a directed graph G(V,E)
(a) The set of all corrupted nodes is denoted by VC ⊆ V and V \VC denotes

the set of honest nodes. We also have |VC | ≤ t.
(b) G[V

′
] denotes the induced sub graph of G induced by the vertex set V

′
.

(c) Vv denotes the set of vertices from which vertex v is reachable.
2. dv denotes the length of a shortest path from v(∈ VR) to receiver R.
3. [l, u] = {m ∈ Z | l ≤ m ≤ u}.
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We model our communication network as a directed graph G(V,E), |V | = n,
where each edge is a private, authentic and reliable channel. Our network is syn-
chronous and every node knows the topology of the network. Communication
happens in a sequence of rounds. In any round, a player can receive the messages
sent to it by its in-neighbours in the previous round, perform some computation
and finally send a message to its out-neighbours. The set of faults in the net-
work is characterized by a central (fictitious) adversary who can eavesdrop or
passively corrupt no more than t nodes in the network. Throughout this paper,
by a “faulty node” we mean that the node is “passively corrupted by the ad-
versary” and by “secure” we mean “perfectly secure”. For brevity, by “PSMT is

possible”, we mean “PSMT tolerating t-threshold passive adversary is

possible”. By “a number r is chosen randomly” we mean “r is chosen uniformly
at random from field F”. Our message space is a large enough field 〈F,+, �〉 and
all the calculations are done in this field F only.

4 Communication Efficient PSMT Protocol in G

In any protocol Π , if there is no path from a node v to receiver R, then v can’t
convey any information to R. Therefore with out loss of generality we can assume
that from every node to R there is at least one path. Once this assumption is
made, in this section we present a communication efficient protocol ΠEff in G
with communication complexity of O(n2) whenever PSMT is possible in Gu. First
we present a protocol ΠSim, which simulates the corresponding path p′ of a weak
path p. Then we run protocol ΠSim for simulating the corresponding path of
each such weak path, to get protocol ΠEff . We show that if every node in a
weak path p is an honest node then protocol ΠSim, securely transmits message
m from S to R in G. Thus, executing ΠSim for t+ 1 (or more) times results in
a PSMT protocol.

4.1 Protocol ΠSim

Let p : 〈S(= u0), u1, . . . , ul, ul+1(= R)〉 be a weak path in G and m be the
message S wants to send to R using the corresponding path p′.

1. if weak path p is a path in G then S simply sends message m using path p.
2. otherwise let {ui1 , ui2 , . . . , uik} be the set of all nodes in the weak path p

such that (uij , uij+1) /∈ E for j ∈ [1, k] and without loss of generality assume
that im < in for m < n.
(a) As (uij , uij+1) /∈ E, we have (i) (uij+1, uij ) ∈ E and (ii) a subpath pij+1

from uij+1 to uij+1 in G having only nodes of weak path p.
(b) uij+1 chooses a random number rij+1 and sends to uij+1 using path pij+1

and to uij using edge (uij+1, uij ).
(c) uij (j �= 1) calculates rij−1+1 + rij+1 and sends to R using some path as

there exists at least one path.
3. S will send m to ui1 and ui1 sends m+ ri1+1 to R.
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4. for j = k − 1, k − 2, . . . , 1; R computes rij+1 = (rij+1 + rij+1+1)− rij+1+1.
5. Once R gets ri1+1 for j = 1, it finally computes m = (m+ ri1+1)− ri1+1.

Lemma 1. In graph G, for three honest nodes u, v, w; if PSMT is possible from
w to u and w to v then PSMT is possible from u to v if there is a path p from u
to v(i.e. u ∈ Vv).

Proof. Let m be the message that u wants to communicate to v secretly. First w
chooses a random number r and sends the same to both u and v secretly. Now
u masks the message m with r as m+ r and sends to v using path p. Finally v
unmasks the message m by subtracting r from m+ r. This protocol is perfectly
secure even if path p contains malicious nodes, since in a field 〈F,+, ∗〉; for given
x, z ∈ F, ∃ unique y ∈ F such that x+ y = z.

Corollary 1. Protocol ΠSim for simulating the corresponding path p′ of a weak
path p : 〈S(= u0), u1, . . . , ul, ul+1(= R)〉, securely transmits a message m from
S to R if every node ui in p is an honest node.

Proof. As ik is maximum, uik is the last node in p such that (uik , uik+1) /∈ E,
we have (i) Secure edge (uik+1, uik) ∈ E and (ii) secure path from uik+1 to R
containing only nodes of weak path p, which implies PSMT from uik+1 to R is
possible in G. Therefore, from Lemma 1, PSMT is possible from uik to R.

1. for j = k − 1, k − 2, . . . , 1 we have:
(a) a secure path pij+1 from uij+1 to uij+1 in G containing only nodes of

weak path p.
(b) PSMT is possible from uij+1 to R.
(c) Above two steps together gives, PSMT is possible from uij+1 to R.
(d) Secure edge (uij+1, uij ) ∈ E.
(e) From Lemma 1, we get, PSMT is possible from uij to R.

2. In particular when j = 1 we get, PSMT is possible from ui1 to R in G.
3. We have a secure path from S to ui1 containing only nodes of weak path p.
4. From the above two steps we get, PSMT is possible from S to R.

4.2 Efficient Protocol

We now present a PSMT protocol ΠEff in G whenever PSMT is possible in Gu.
Dolev et. al [8] show that PSMT is possible in Gu if and only if there exists
(t+1) vertex disjoint paths from S to R in Gu. Let p

′
i be a vertex disjoint path

in Gu corresponding to weak path pi, for each i ∈ [1, t+ 1].

Protocol ΠEff :

1. S chooses a random t-degree polynomial p(x) and replaces constant term
p(0) with the message m.

2. S sends p(i) to R by simulating the corresponding path p′i of a weak path
pi using protocol ΠSim.

3. R reconstructs p(x) once it receives all (t+ 1) points to get message m.
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Lemma 2. The protocol ΠEff is reliable and secure.

Proof. Protocol ΠEff is reliable since the protocol ΠSim is reliable. Protocol
ΠEff is secure since there exists at least one secure weak path pi for some
i ∈ [1, t + 1], so p(i) is secure by Corollary 1. On a t-degree polynomial, t or
fewer points reveals nothing about constant term [20], which is the message m.

The communication complexity of the above protocol ΠEff is O(n2) since these
(t+ 1) paths may contain all the n nodes and each node may need to send the
masked value to the receiver R using some path which in turn can contain O(n)
nodes.

Now we will give one example for the simulation of a corresponding of a
weak path using the protocol ΠSim. Consider the graph G in the Fig. 3 which
has three disjoint weak paths namely p1 : 〈S, v1, v2, R〉, p2 : 〈S, v3, v4, R〉 and
p3 : 〈S, v5, v6, R〉. Therefore it can tolerate up to two faulty nodes. Due to space
constraints, we only give the simulation of the corresponding path of weak path
p3, which is as follows:

1. R chooses a random number r8 and sends to v6.
2. v5 chooses a random number r5 and sends to both S and v6.
3. v6 masks r5 with r8 as r5+r8 and sends to R using the path 〈v6, v4, v1, v2, R〉.
4. S sends the masked value p(3) + r5 to R using the path 〈S, v3, v1, v2, R〉.
5. R first unmasks r5 by just subtracting r8 from r5 + r8 and gets r5 and then

R similarly unmasks p(3).

S

v1 v2

v3 v4

v5 v6

R S v5 v6 R

v3 v1 v2

r5 r5 r8

v4 v1 v2

p(3) + r5 p(3) + r5

r5 + r8 r5 + r8

p(
3)
+
r5

p(3)
+
r
5

r5 +
r8

r5 + r8

Fig. 3. An example graph G with simulation of the corresponding path of p3

Theorem 1. PSMT from S to R is possible in G if and only if in Gu.

Proof. Run the protocol ΠEff for PSMT in G if PSMT is possible in Gu.

4.3 Polynomial Time Algorithm for Verifying PSMT Possibility in G

1. Compute VR using Breadth First Search from R, using opposite direction of
edges.

2. if edge (S,R) ∈ E or (R,S) ∈ E then return true.
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3. else create auxiliary graph Gaux(V aux, Eaux) of G as follows :
(a) split each vertex vi ∈ V except S and R, into two vertices vi1 and vi2

and add an edge from vi1 to vi2. V
aux = {S,R} ∪n

i=1 {vi1, vi2}.
(b) point all incoming edges of vi to vi1 as incoming edges of vi1.
(c) point all out going edges of vi as out going edges of vi2.
(d) for every edge add uniform edge capacity of 1.

4. Run Max flow algorithm to find Max flow in Gaux
u .

5. If Max flow ≥ t+ 1 then return true else false.
6. Note that (t+ 1) Vertex disjoint paths also can be found easily.

This is a polynomial time algorithm as breadth first search takes in worst case
O(n2) time [21], construction of graph Gaux takes O(n2) time and max flow
takes O(n3) time [22,23].

5 Round Optimality

In first subsection, we present a generic round efficient PSMT protocol in
G. In later subsection we bring the notion of round evolution graph, a sub-
graph of G which evolves as number of rounds increases. We show that if PSMT is
possible in round evolution graph then we can simulate the generic round

efficient PSMT protocol in that round evolution graph. Finally we give a
polynomial time algorithm for identifying the optimal rounds number. Combing
all together, we obtain round optimal protocol as well as the optimal rounds
number.

5.1 Round Efficient Protocol

In this section we present a round efficient protocolΠRnd Eff whenever PSMT
is possible in Gu. The main idea is every node v in G, will start its computation
and/or communication from first round itself and if anything needs to be sent
to R directly it will send using a shortest path, so that it conveys the required
information to R possibly in least number of rounds. In the first round, for an
edge (u, v) ∈ Eu, both nodes u and v chooses random numbers ru, rv respectively
such that:

1. if (u, v) ∈ E (forward edge with respect to u) then u sends ru to v and
initializes its Right Value, R[u] = ru and v initializes its Left Value,
L[v] = ru once it receives ru from u.

2. else if(i.e. there is no forward edge) v sends rv to u and initializes its Left
Value, L[v] = rv, this is possible since (u, v) ∈ Eu and (u, v) /∈ E; edge (v, u)
must be in E(backward edge with respect to u). Node u initializes its Right
Value, R[u] = rv once it receives rv from v.

3. It is clear that in both the cases R[u] = L[v].
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Protocol ΠRnd Eff :

1. Since PSMT is possible inGu, there exists (t+1) vertex disjoint paths from S to
R in Gu namely pi : 〈ui0(= S), ui1, . . . , uiki , ui(ki+1)(= R)〉, for i ∈ [1, t+ 1].
As uij ∈ VR, there exists at least one path from uij to R, for j ∈ [0, ki] and
let puij be a shortest path from uij to R. Note that for i ∈ [1, t+1], ui0 = S
and ui(ki+1) = R.

2. Let m be the message S wants to send to R securely.
3. S chooses a random t degree polynomial p(x) and replaces constant term

p(0) with m.
4. For each path pi, i ∈ [1, t+ 1]:

(a) Every node uij(�= ui0), chooses a random number rij , for j ∈ [1, ki + 1].
(b) S(= ui0) initializes ri0 = p(i) and also initializes L[ui0] = p(i).
(c) For j ∈ [1, ki + 1], if (ui(j−1), uij) ∈ E then ui(j−1) sends ri(j−1) to

uij and initializes R[ui(j−1)] = ri(j−1). uij waits to receive ri(j−1) and
initializes L[uij] = ri(j−1) once it is received.

(d) For j ∈ [1, ki + 1], if (ui(j−1), uij) /∈ E then uij sends rij to ui(j−1)

and initializes L[uij] = rij . ui(j−1) waits to receive rij and initializes
R[ui(j−1)] = rij once it is received.

(e) Observe that in both cases R[ui(j−1)] = L[uij], for j ∈ [1, ki + 1].
(f) For j ∈ [0, ki] every node uij calculates its Value, V al[uij ] = L[uij] −

R[uij ] and if it is non-zero(i.e. L[uij ] �= R[uij ]) then it sends V al[uij ] to
receiver R using shortest a path puij . R waits till it receives V al[uij].

5. R computes p(i) =
ki∑

j=0

V al[uij ] + L[ui(ki+1)]. This is possible for R to com-

pute since R knows L[ui(ki+1)] as ui(ki+1) = R.

Protocol ΠRnd Eff runs in maximum of |V | rounds. This is because, in first
round nodes share their random numbers with neighbours as explained in pro-
tocol and then each node uij sends V al[uij] to R using shortest path puij , if
required. Sending V al[uij] can take in worst case(when every node in V appears
in path puij for some values of i, j) |V |-1 rounds. Therefore protocol ΠRnd Eff ,
achieves PSMT in a total of |V | or fewer rounds.

Lemma 3. Protocol ΠRnd Eff for sending message m from S to R is reliable.

Proof. For each uij , (j �= ki + 1) in path pi, we have R[uij] = L[ui(j+1)]

Let Sum =
ki∑

j=0

V al[uij] + L[ui(ki+1)]. Now we will show that Sum = p(i).

Sum =

ki∑

j=0

(L[uij ]−R[uij]) + L[ui(ki+1)]

=

ki∑

j=0

(L[uij ]− L[ui(j+1)]) + L[ui(ki+1)]

= L[ui0]− L[ui(ki+1)] + L[ui(ki+1)] = L[ui0] = p(i)
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Lemma 4. Protocol ΠRnd Eff for sending message m from S to R is secure.

Proof. As the adversary can corrupt at most t nodes, there exists a path pi
from S to R in Gu[V \ VC ] for some i ∈ [1, t + 1](i.e. path pi is not under the
control of adversary). Each uij in path pi except ui(ki+1) sends V al[uij] to R
using path puij if required, which may be under the control of adversary. For
j ∈ [0, ki], even if adversary gets V al[uij], in a field F, ∃ unique x such that
ki∑

j=0

(λj ∗ V al[uij ]) + x = p(i), for any λj ∈ F. Alternatively we can think as

adversary gets ki + 1 system of linear independent equations in ki + 2 variables
namely for each j ∈ [0, ki], V al[uij] = L[uij ] − R[uij ] = L[uij] − L[ui(j+1)].
Therefore the adversary learns nothing about p(i) and so nothing about m as
well [20].

5.2 PSMT in Round Evolution Graphs

Graphs have been used as a very powerful abstraction of the network by mod-
elling the physical link from one player to another as a directed edge between
the corresponding vertices of the graph. However in this kind of modelling of
the network, the edges of the graph only indicate the link between two spatial
locations. It does not contain any temporal information. To incorporate the no-
tion of time (rounds) in our graph, we propose a representation named round

evolution graph, that contains both spatial and temporal information.

Definition 6. Given the round number r, and a network represented by a di-
rected graph G(V,E), with receiver R, the round evolution graph of order r,
G(r)(V,E(r)) is defined as subgraph of G, where E(r) = E \{(u, v) ∈ E | dv ≥ r}.
i.e. Remove edges from which R can’t receive information in r rounds.

Theorem 2. PSMT is possible in G(r) ⇐⇒ r-round PSMT protocol exists in
G(r).

Proof. Sufficiency: It is clear that if r-round protocol exists then PSMT is trivially
possible in G(r).
Necessity: Suppose PSMT is possible in G(r), then we show that in r-rounds we can
simulate the protocol ΠRnd Eff given in Section 5.1. Observe that in protocol
ΠRnd Eff , every node uij in path pi, in first round sends the chosen random
number rij to its neighbour(s) if required. We have three cases for each uij :

1. (ui(j−1), uij) ∈ E(r). By our construction of G(r), duij ≤ r − 1, therefore
even if in first round uij waits to receive random numbers from neighbours,
it can send V al[uij] in total of r-rounds.

2. (uij , ui(j+1)) /∈ E(r) which implies (ui(j+1), uij) ∈ E(r). By our construction

of G(r), duij ≤ r − 1. Rest follows as in case(1).

3. (ui(j−1), uij) /∈ E(r) and (uij , ui(j+1)) ∈ E(r), In this case uij is not required
to send its value to receiverR, since V al[uij] = L[uij ]−R[uij] = rij−rij = 0.
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Theorem 3. r-round PSMT protocol exists in G ⇐⇒ PSMT is possible in G(r).

Proof. Sufficiency: Suppose PSMT is possible in G(r), from Theorem 2 we know
that r-round protocol exists in G(r) and so r-round protocol exists in G since
G(r) is a sub graph of G.
Necessity: Suppose r-round protocols exists for G. Note that any node v with
dv > r, never conveys any information to R in an r-round protocol(Since it needs
at least r + 1 send commands to send to R). Therefore in r-round protocol, an
edge (u, v) in E but not in E(r), ∀v ∈ V can be safely ignored when dv ≥ r.
In other words, at the end of the r-round protocol Π , VIEWΠ

G ({R}) does not
change whether these edges are present or not.
Therefore round optimal protocol in G is a protocol in G(r), where r is the
minimum number of rounds required for PSMT in G.

5.3 Polynomial Time Algorithm for Identifying the Optimal
Number of Rounds

We will find minimum r for which PSMT is possible in G(r) by doing binary search
on r for r ∈ [1, |V |]. This can be done in polynomial time since in each iteration:

1. We are constructing sub graph G(r) of G, this can be done in polynomial
time.

2. We are checking whether PSMT is possible or not in G(r), this also can be
done in polynomial time as explained in Section 4.3.

5.4 An Example of Round Optimal Protocol

In this section we give a round optimal protocol for the graph G given in Fig. 3.
In Fig. 4 we can see a shortest path from each node to R and its distance. Fig. 5
represents the round evolution graphs G(3) and G(4) corresponding to the same
graph in Fig. 3. Now in graph G we show that 4 is the optimal number of rounds
by showing that PSMT is not possible in G(3) but possible in G(4).

Node Shortest path to R Shortest distance

S pS : 〈S, v3, v2, R〉 3

v1 pv1 : 〈v1, v2, R〉 2

v2 pv2 : 〈v2, R〉 1

v3 pv3 : 〈v3, v2, R〉 2

v4 pv4 : 〈v4, v3, v2, R〉 3

v5 pv5 : 〈v5, v4, v3, v2, R〉 4

v6 pv6 : 〈v6, v3, v2, R〉 3

Fig. 4. A shortest path from each node to receiver R in graph G

As shortest distance from S to R is 3, any protocol will take at least three
rounds. Clearly PSMT is not possible in G(3) tolerating 2-adversary as there is
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S

v1 v2

v3 v4

v5 v6

R S

v1 v2

v3 v4

v5 v6

R

Fig. 5. An example of round evolution graphs G(3) and G(4)

only one vertex disjoint path from S to R in G
(3)
u . In G

(4)
u there are 3 vertex

disjoint paths from S to R, also R is reachable from each of the nodes in these
paths, so by Theorem 1, PSMT is possible in G. Now we present a 4 round protocol
in the graph G as an example.

1. Round 1:

(a) Node S chooses a random two degree polynomial p(x) and replaces con-
stant term p(0) with m.

(b) Every node v except S and R chooses a random number rv. R chooses
three random numbers rR1 , rR2 , rR3 .

(c) Node v1 sends rv1 to v2 and S(= S1); node v2 sends rv2 to R.
(d) Node S(= S2) sends p(2) to v3; node v4 sends rv4 to v3; node R sends

rR2 to v4.
(e) Node v5 sends rv5 to v6 and S(= S3); node R sends rR3 to v6.

2. Round 2, Round 3 and Round 4:

(a) Every node v calculates its value V al[v]: V al[S1] = p(1)−rv1 , V al[v1] =
rv1 −rv1 , V al[v2] = rv1 −rv2 , V al[S2] = p(2)−p(2), V al[v3] = p(2)−rv4 ,
V al[v4] = rv4 − rR2 , V al[S3] = p(3)− rv5 , V al[v5] = rv5 − rv5 , V al[v6] =
rv5 − rR3

(b) Every node v /∈ {v1, S2, v5, R}, sends its value V al[v] to R using shortest
path pv from v to R, this is possible since the distance of shortest path
pv is less than or equal to 3.

3. R calculates p(1) = V al[S1] + V al[v1] + V al[v2] + rv2 = p(1) − rv1 + 0 +
rv1 − rv2 + rv2 = p(1), p(2) = V al[S2] +V al[v3] +V al[v4] + rR2 = 0+ p(2)−
rv4 + rv4 − rR2 + rR2 = p(2) and p(3) = V al[S3] +V al[v5] + V al[v6] + rR3 =
p(3)− rv5 + 0 + rv5 − rR3 + rR3 = p(3)

All the nodes whose shortest distance to receiver R, is less than or equal to 3
can send their values to R in less than or equal to 4 rounds by simply forwarding
via shortest path(they may wait in first round for receiving the random numbers
from neighbour). Every node except v5 is at a distance of less than or equal to
3 so they can send their values to R in 4 rounds if required. Since, for node v5,
V al[v5] = 0, it is not required to send any value to R. Therefore, this protocol
runs in a total of 4 rounds.
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6 Linear Communication Complexity

In Section. 4.2, it has already been noted that, communication complexity of
protocol ΠEff is O(n2). Now we modify our protocol to get a generic O(n)
communication protocol. We achieve this by ensuring that PSMT is possible in a
sub-graph of G, which has only O(n) edges and no edge is used more than once,
for transmitting a single field element. As this is a generic protocol, when we
apply in Grmin(rmin is the minimum number of rounds required for PSMT) we
get a round optimal linear communication protocol.

Definition 7. Spanning tree of a graph Gu is denoted by T = (V,ET ) is defined
as a tree with R as its root(which is at 0th level) and node v ∈ VR is at ith

level(in any order) if dv = i(distance from v to R in digraph). Note that each

node in ith level points to only one node in the (i− 1)
th

level, else we get cycles.

Definition 8. Suppose if we have k-vertex disjoint weak paths from S to R in G,
namely pi for i ∈ [1, k]. Communication graph of the graph G(V,E) of order k is

denoted by Gk(V, E) and is defined as E = E ∩ (Ep ∪ ET ). Where Ep =
k⋃

i=1

E(pi)

and Epi is the set of edges in weak path pi.

Theorem 4. PSMT from S to R is possible in G if and only if it is possible
in G(t+1).

Proof. Sufficiency: Suppose PSMT is possible from S to R in G then from The-
orem 1, we have (t + 1)-vertex disjoint weak paths from S to R in G. By con-
struction of graph G(t+1), every edge in these paths present in G(t+1). We now
show that we can simulate the protocol ΠRnd Eff given in Section 5.1. By using
the edges in these t+1 paths, if required nodes can share their random numbers
with neighbours. Also every node v ∈ VR is at ith level in spanning tree T for
some i ∈ [1, n− 1] and so has a shortest path to R for sending V al[uij] to R.
Necessity: Suppose PSMT is not possible in G then clearly PSMT is not possible in
sub graph G(t+1) of G.

6.1 Round Optimal Protocol with Linear Communication
Complexity ΠRnd Opt Lin:

1. Every node uij except u(t+1)0, in these (t+1) paths pick a number rij ∈R F,

for i ∈ [1, t+1] and j ∈ [0, ki+1]. S(= u(t+1)0) computes r(t+1)0 = m−
t∑

i=1

ri0,

this is possible for S to compute since ri0 is chosen by ui0 which is S itself.
2. For i ∈ [1, t+ 1], S(= ui0) initializes L[ui0] = ri0.

3. S computes V al[S] =
t+1∑

i=1

V al[ui0].

4. Let the height of the spanning tree T of Gu is h with root R is at 0th level.
5. For each uij in path pi, follow the protocol ΠRnd Eff exactly as in

Section 5.1, except that instead of sending V al[uij] to R using path puij

separately:
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(a) If uij is at h
th level(leaf node), uij sends V al[uij ] to its parent at (h−1)th

level.
(b) Else each uij which is in kth(k ∈ [1, h − 1]) level waits till it receives

Values V al[uij] from its children in (k + 1)th level if required. Once uij

receives Values from its children it adds all the received values to its
Value V al[uij] and sends to its parent which is at (k − 1)th level.

6. In last round, R adds all the values received from its children which are at

level one with its sum of Left Values(i.e.
t+1∑

i=1

L[ui(ki+1)]) to get message m.

Lemma 5. The protocol ΠRnd Opt Lin is reliable.

Proof. For each uij , (j �= ki + 1) in path pi, we have R[uij] = L[ui(j+1)]

Let Sum =
t+1∑

i=1

ki∑

j=0

V al[uij] +
t+1∑

i=1

L[ui(ki+1)]. Now we show that Sum = m

Sum =

t+1∑

i=1

ki∑

j=0

(L[uij ]−R[uij]) +

t+1∑

i=1

L[ui(ki+1)]

=

t+1∑

i=1

ki∑

j=0

(L[uij ]− L[ui(j+1)]) +

t+1∑

i=1

L[ui(ki+1)]

=
t+1∑

i=1

(L[ui0]− L[ui(ki+1)]) +
t+1∑

i=1

L[ui(ki+1)]

=
t+1∑

i=1

L[ui0] =
t+1∑

i=1

ri0 = m.

Lemma 6. The protocol ΠRnd Opt Lin is secure.

Proof. Proof is analogous to the proof in Lemma 4. We shown that, in Lemma 4,
protocol ΠEff simulates the corresponding path p′i of a secure weak path pi, to
securely transmit p(i). In protocol ΠRnd Opt Lin, p(i) is replaced with ri0 and so

ri0 is secure. This implies m is secure, since m = ri0 +
t+1∑

j( �=i)=1

rj0 and such ri0 is

unique in any field F.

The communication complexity of the above protocol ΠRnd Opt Lin is linear.
Since, in first round as every node uij sends rij to its neighbours if require,
which is O(n) and each edge in spanning tree T is used only once to send a value
from child to parent. We know that in a spanning tree with n nodes can not
have more than n-1 edges, therefore total communication complexity is O(n).
Suppose shortest distance dS from S to R is Ω(n) then we achieve security

for free since the reliable communication itself requires O(n) communication.
We give an example of the protocol ΠRnd Opt Lin in graph G given in Fig. 3.
Tree constructed based on the shortest distances from each node to R is given in
Fig. 6. S chooses two random numbers r1, r2 and initializes r3 = m− (r1 + r2).
S replaces p(i) with ri, for i ∈ [1, 3].
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R

v2

v1 v3

v6 v4 S

v5

1. Round 1: Every node shares their random
numbers, exactly as in examle given in
section 5.4, except that p(i) is replaced with ri.

2. Round 2: Every node v calculates its value V al[v].
Nodes v4, v6, S will send V al[v4], V al[v6], V al[S]
to v3 respectively.

3. Round 3: Node v3 calculates the sum,
Sum(v3) = V al[v3] + V al[v4] + V al[v6] + V al[S]
and sends to v2.

4. Round 4: Node v2 calculates
sum(v2) = Sum(v3) + V al[v2] and sends to R.
Finally R computes
m = sum(v2) + rv2 + rR2 + rR3

Fig. 6. An example of protocol ΠRnd Opt Lin in graph G of Fig. 3

7 Conclusions and Open Problems

We have completely characterized the feasibility and optimality of PSMT in arbi-
trary networks under the influence of passive adversary. Similar characterization
for the case of Byzantine and/or Mobile adversary has been left as an interesting
open problem.
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Abstract. This paper investigates the exact round complexity of zero-
knowledge arguments of knowledge (ZKAOK) with strict-polynomial-
time simulation and extraction. Previously, Barak and Lindell
[STOC 02] presented a constant-round such ZKAOK. With the par-
allel technique by Ostrovsky and Visconti [ECCC 12] for implement-
ing Barak’s zero-knowledge [FOCS 01] in 6 rounds, the Barak-Lindell
ZKAOK can be implemented in, we believe, 7 rounds, which achieves
the best exact round complexity for such ZKAOK from reasonable as-
sumptions.

Recently, Pandey et al. [ePrint 13] proposed a 4-round (concurrent)
ZK with strict-polynomial-time simulation based on differing-input obfus-
cation for machines. Based on their construction, Ding [ISC 14] presented
a 4-round ZKAOK with strict-polynomial-time simulation and extrac-
tion. However, the known construction of differing-input obfuscation for
machines uses knowledge assumptions which are too strong. So an inter-
esting question is whether we can reduce the round complexity of such
ZKAOK without using differing-input obfuscation for machines.

In this paper we show that based on differing-input obfuscation for some
circuit samplers and other reasonable assumptions, there exists a 6-round
ZKAOK for NP with strict-polynomial-time simulation and extraction.
Importantly, the assumption of differing-input obfuscation for circuits does
not use any knowledge assumption and thus ismild.Moreover, we note that
the auxiliary inputs output by the circuit samplers in our construction are
public coins and perfectly-hiding commitments, which is quite natural. So
this assumption, in our view, could be considered reasonable.

Keywords: Zero Knowledge, Argument of Knowledge, Differing-Input
Obfuscation for Circuits.

1 Introduction

Zero-knowledge (ZK) proof systems, introduced by Goldwasser, Micali and Rack-
off [23], are a fundamental notion in cryptography. Later Brassard et al. [9]
suggested the notion of interactive arguments. Since their introduction, there
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are many works constructing ZK protocols that satisfy various properties such
as constant rounds, proof of knowledge [12,5,23,32] and strict-polynomial-time
simulation and extraction etc. We sketch these results as follows.

Positive Results. Goldreich et al. [21] shows that every language in NP has
a ZK proof. Goldreich and Kahan [19] presented a 5-round ZK proof. Lindell
[29] presented a 5-round ZK proof of knowledge. Feige and Shamir [13] gave a
4-round ZKAOK. The simulators (resp. extractor if there is) of these protocols
use a verifier’s code (resp. prover’s code) in a black-box way and run in expected-
polynomial-time. Hada and Tanaka [24] presented a 3-round ZK argument based
on two knowledge-exponent assumptions.

Barak [2] presented a constant-round public-coin non-black-box ZK argument.
This is the first construction achieving constant-round and strict-polynomial-
time simulation properties from reasonable assumptions. Ostrovsky and Visconti
[30] showed a 6-round implementation for this protocol, achieving the best round
complexity ever known for it. Although this protocol also admits an extractor,
the extractor runs in expected-polynomial-time. Barak and Lindell [4] presented
a construction with simultaneous strict-polynomial-time simulation and extrac-
tion, which can be implemented in 7 rounds via the technique in [30] as well as
some other round parallel techniques (this 7-round conclusion did not appear in
literature to the best of our knowledge but we find it doable).

Pandey et al. [31] presented a 4-round (concurrent) ZK argument with strict-
polynomial-time simulation from differing-input obfuscators diO for machines [1].
Also based on diO for machines, Ding [11] presented a 4-round zero-knowledge ar-
gument of knowledge with strict polynomial-time simulation and extraction. Cur-
rently, diO for machines is based on diO for circuits (a candidate shown in [16]),
fully homomorphic encryption and SNARKs [6] that require knowledge assump-
tions. So the assumption is very strong. Note that the usage of diO for machines in
[31,11] cannot be replaced by diO for circuits because the programs in [31,11] that
should be obfuscated have unbounded running-time and cannot be implemented
by fixed-size circuits.

Negative Results. Goldreich and Oren [22] showed there is no 1-round or
2-round (auxiliary-input) ZK protocols for any language outside BPP. Then
Goldreich and Krawczyk [20] showed that 3-round black-box ZK proofs exist only
for languages in BPP and Katz [26] showed that 4-round black-box ZK proofs
exist only for languages whose complement is in MA. Barak and Lindell [4]
showed that black-box simulators and extractors cannot run in strict-polynomial-
time if the protocols are constant-round.

To summarize, now we have 6-round ZKAOK with strict-polynomial-time
simulation but expected-polynomial-time extraction and 7-round ZKAOK with
strict-polynomial-time simulation and extraction from reasonable assumptions,
and 4-round ZKAOKwith strict-polynomial-time simulation and extraction from
diO for machines. The current state of the art leaves an interesting question, i.e.,
does there exist a 6-round ZKAOK for NP with strict-polynomial-time simulation
and extraction without using diO for machines or knowledge assumptions?



On Zero-Knowledge with Strict Polynomial-Time Simulation and Extraction 53

1.1 Our Results

This paper provides an affirmative answer to the above question by making use
of diO for circuits which is not based on knowledge assumptions1 and thus is
more reasonable than diO for machines.

Generally, an obfuscator is a compiler that on input a circuit outputs a new
program of same functionality with some security. Specifically, a diO for circuits
is associated with a randomized sampling algorithm Sampler, which samples
(C0, C1, z) where C0, C1 are two circuits of same size and z is an auxiliary in-
put. We say diO is a differing-input obfuscator for Sampler as long as if it is
hard for any polynomial-size algorithm to find an input x from (C0, C1, z) sat-
isfying C0(x) �= C1(x), then diO(C0) and diO(C1) are indistinguishable for any
distinguisher that has z.

Garg et al. [17] investigated the plausibility of general diO and showed that
the existence of general diO conflicts with some special obfuscation. They con-
structed a contrived sampler that outputs two circuits Cb, b = 0, 1 each of which
has the verification key vk and outputs b on receiving a message-signature pair
(outputs 0 otherwise) and a contrived auxiliary input z that is the specially
obfuscated program which has the signing key sk and on input any circuit C
outputs C(h(C), σ) where h is a hash function and σ is a signature of h(C).
Thus z on input any obfuscation of Cb outputs b and thus can distinguish the
obfuscation of C0, C1. So if z is well specially obfuscated in hiding sk, there is
no diO for this sampler. However, the auxiliary inputs randomly generated by
the samplers in this paper are public coins and perfectly-hiding commitments.
As suggested in [25] that diO is plausible for samplers which auxiliary-input
outputs are public coins, we take diO in [1] as a candidate obfuscator for our
samplers and achieve the following result.

Theorem 1. (Informal) Assuming the existence of diO for some circuit sam-
plers and other reasonable assumptions, there exists a 6-round ZKAOK for NP
with strict polynomial-time simulation and extraction.

Our Techniques. In a high level, our construction is divided to two steps.
First, we construct a 8-round statistically ZKAOK with strict-polynomial-time
simulation and extraction. Second, we modify the protocol by additionally in
Step 6 letting the prover obfuscate its original next-message function of Step 8
with diO and send the obfuscated program as well as the original message of

1 We do not treat diO for circuits itself as a real knowledge assumption. Typically a
knowledge assumption says for an algorithm A computing some task, there is another
algorithm A′ that given A’s coins can extract some secret from A’s computation
which will be used explicitly later. This extraction is specific to A. So we call this
a knowledge assumption since A′ has some knowledge of A. As for diO if there
is a distinguisher D for the obfuscation of two circuits, there is an algorithm A′

that can find a differing-input from the two unobfuscated circuits and the auxiliary
input (without knowing the coins of D or the coins of the sampler). This extraction
manifests some inherence of A′. So we do not think A′ has some knowledge in the
computation of some algorithm e.g. the sampler or D.
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Step 6 to the verifier, which then finishes the interaction with the obfuscated
program locally. Thus the modified protocol uses 6 rounds.

Recall that Barak and Lindell [4] proposed such a constant-round ZKAOK,
which essentially makes use of Barak’s non-black-box ZK [2] twice in reverse di-
rections, of which one is for simulation and the other is for extraction. Since the
best round complexity ever known for implementing Barak’s ZK uses 6 rounds
[30], Barak-Lindell’s protocol uses at least 7 rounds with deliberate parallel tech-
niques. We note that we cannot construct a desired 6-round ZKAOK based on
the Barak-Lindell’s protocol with diO. The main difficulty for this is that the
Barak-Lindell’s protocol is computational zero-knowledge and we have no idea
on how to design a sampler that outputs the prover’s next-message function and
simulator’s of last step as well as an auxiliary input such that it is hard to find a
differing-input from the output of the sampler. Due to the high level description
in the previous paragraph, the auxiliary input is probably the view except for
the message of last step. Since the protocol is computational zero-knowledge,
there may not exist a common such view with which both the two next-message
functions are consistent. So it may not be hard to find a differing-input from the
output by the sampler. However, to apply diO, the two functions/circuits being
obfuscated, sampled by the sampler, should be able of fooling all polynomial-size
algorithms having the view that they were of same functionality.

Moreover, in the 7-round Barak-Lindell’s protocol, the prover’s next-message
function can be represented by a fixed polynomial-size circuit, while the simula-
tor’s cannot (depending on verifier’s size). Thus we cannot use diO to obfuscate
the two circuits. One more difficulty is that to use diO, the prover’s strategy
of last step should typically first verify if the latest verifier’s message is valid
and then proceed ordinarily if yes and abort otherwise, while the 7-round imple-
mentation does not admit this typicalness. Though we believe these two minor
difficulties can be bypassed in a 8-round implementation, the above main diffi-
culty is essentially unavoidable.

Our 8-round ZKAOK also uses Barak’s ZK twice in the reverse directions for
simulation and extraction respectively, but the prover’s messages and simulator’s
output except for the message of last step are identically distributed (when
considering the last message, the protocol is statistical zero-knowledge). Thus
for a common view except for the last message, there are coins such that the two
next-message functions, when having the coins hardwired, are consistent with
the view and of same functionality to polynomial-size algorithms, which lets us
bypass the main difficulty above.

The protocol basically runs as follows. The prover proves to the verifier in
the first Barak’s ZK that x ∈ L using witness w. Recall that Barak’s protocol
consists of a preamble and a WI universal argument of knowledge (WIUA). The
original simulator in [2] can obtain a trapdoor in the preamble and use it as
witness in the WIUA and thus achieve the zero-knowledge property. To further
achieve strict-polynomial-time extraction, we adopt the following idea. Note that
the WIUA consists of an “encrypted” universal argument of knowledge and a 3-
roundWIAOK and the verifier accepts x if the messages ofWIAOK are convincing.
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Thus if we can obtain two different transcripts of form (α, β, γ) and (α, β′, γ′)
of the WIAOK, then we can extract a witness. So instead of sending β we let
the verifier encrypt (β, β) with a fully homomorphic encryption scheme and
send the encryption to the prover, and further provide a proof that what is
encrypted is indeed (β, β). The prover computes the encryption of (γ, γ) with
the homomorphism property and sends it back to the verifier, and provides
a final proof that the responding encryption is honestly generated. Then the
verifier accepts the public input if the final proof is convincing.

In extraction the extractor samples two different β, β′ and encrypts (β, β′)
and sends the encryption to the prover. Then we let the extractor cheat the
prover that what is encrypted is (β, β) in the following proof. Actually this can
be realized through the second Barak’s ZK, in which the verifier proves to the
prover that either it knows the trapdoor of the preamble (of this Barak’s ZK)
or what is encrypted is of form (β, β). Note that the extractor has the trapdoor
(which is the prover’s code), so it can accomplish the proof by using the trapdoor.
Since the messages in extraction are indistinguishable from those in the ordinary
interaction, the prover cannot be aware of this. Due to the soundness of the final
proof what the prover responds with is an encryption of the answers to (β, β′),
denoted (γ, γ′). Thus the extractor can decrypt it to obtain γ, γ′ and recover a
witness from the two transcripts of WIAOK.

Note that the simulator and extractor both run in non-black-box ways and
in strict polynomial-time. By adopting some parallel techniques, we can indeed
arrange the protocol in eight rounds. We note the protocol can also bypass the
two minor difficulties that arise in directly compressing the rounds of 7-round
Barak-Lindell’s protocol mentioned above. First the prover’s and simulator’s
next-message functions of last step have had all required information and are
fixed polynomial-size. So they can be represented by two circuits of same size.
Second the functionality of the two next-message functions is to output an en-
cryption, followed by a proof for its honesty when the verifier’s proof is sound
for the honesty of the encryption of (β, β). If what the verifier encrypts is in-
deed (β, β), we can show the two circuits are of same functionality for rightly
chosen coins. In the oppositive case, any polynomial-size verifier cannot find a
valid proof for the cheating encryption except for negligible probability. That
means no polynomial-size algorithm given the view as auxiliary input can find
a differing-input for the two circuits with noticeable probability. Thus we can
employ diO to obfuscate them and the two obfuscated circuits are indistinguish-
able. So let the prover/simulator directly send the obfuscation to the verifier as
well as the original message of Step 6, which can reduce the round number of
the protocol to six finally.

Organizations. The rest of the paper is arranged as follows. For lack of space we
only present the notion of differing-input obfuscation for circuits in Appendix A.
In Section 2 we present the 8-round statistically ZKAOK. In Section 3 we present
an analysis of the prover’s and simulator’s next-message functions of last step and
their obfuscation. In Section 4 we present the 6-round ZKAOK with obfuscation.
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2 A Eight-Round Statistically Zero-Knowledge Argument
of Knowledge

In this section we present the 8-round statistically ZKAOK. In Section 2.1 we
present the primitives that will be used in the protocol. In Section 2.2 we present
an overview of the protocol. In Section 2.3 we present its actual construction.

2.1 The Primitives in Use

Our construction will employ the following primitives.

1. Commitment Schemes. Let HCom denote a 2-round trapdoor perfectly-
hiding computationally-binding commitment scheme, of which the binding prop-
erty holds against nO(log log n)-size algorithms, referred to [14]. Let Com denote
a non-interactive perfectly-binding computationally-hiding commitment scheme
from any one-permutation [7]. Let (msg,HCom) denote the two messages of
HCom and Trapdoor denote the trapdoor corresponding to msg.

Note that here we require HCom and the following {Hn} are secure against
nO(log logn)-size adversaries. In this paper to claim some properties using the
primitives, we will show if the properties cannot be achieved then there are
adversaries that can break the security of these primitives. Since the adver-
saries need to run the extractors of the following WIUA or UA which run within
nO(log logn)-time, these primitives should be secure against nO(log logn)-time ad-
versaries.

2. Hash Functions. Let {Hn} denote a collision-resistent hash function family
and each h ∈ Hn maps arbitrarily polynomially long strings to n-bit strings. We
assume the collision resistance of Hn holds against nO(log log n)-size algorithms.

3. Lapidot-Shamir 3-Round Perfectly WIAOK. Let LS denote this prim-
itive due to Lapidot and Shamir [28], which is a variant of the 3-round Blum’s
protocol [8] and still public-coin. LS enjoys a key property that the first two
messages are independent of the witness and the public input, noted in [30] and
also used in [27,10]. In this paper we instantiate LS with HCom, which is thus
perfectly WI. If ignoring the first message msg of HCom, LS uses 3 rounds and
let (LS1, LS2, LS3) denote the 3 messages.

Let PLS be the algorithm that has coins s and |y| and outputs LS1 where
y is a public input and then later on receiving y and witness W for y (in a
specified language) and any two same/different challenges (LS2, LS

′
2) outputs

the corresponding (LS3, LS
′
3). We denote the two-step computation by LS1 ←

PLS(|y|; s) and (LS3, LS
′
3) ← PLS(y,W, s, (LS2, LS

′
2)).

Moreover, let LS∗ denote another running of the LS system for a different
public input. We still instantiate LS∗ with HCom andmsg, so LS∗ is also perfectly
WI. If ignoring the first message msg of HCom, let (LS∗1, LS

∗
2, LS

∗
3) denote the 3

messages of LS∗.

4. 4-Round Public-Coin Universal Arguments of Knowledge. Let UA
denote this primitive shown in [3] constructed from {Hn}. It consists of 4 mes-
sages and let (UA1,UA2,UA3,UA4) denote the 4 messages of UA.
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5. 4-Round Public-Coin WI Universal Arguments of Knowledge. Let
WIUA denote this primitive shown in [3] constructed from {Hn} and Com. In this
paper, WIUA is used to prove a combined statement from an NP statement and
an Ntime(nO(log logn)) statement. Note that WIUA consists of an “encrypted”
UA for the Ntime(nO(log logn)) statement and a WIPOK for that either the plain
UA is valid or the NP statement is true.

As shown in [30], WIUA can be implemented in 4 rounds and accordingly
let (WIUA1,WIUA2,WIUA3,WIUA4) denote the 4 messages of WIUA. The NP
statement can be determined after WIUA1 is sampled and if the prover uses a
witness for it in (the WIPOK of) WIUA, the witness can be extracted in expected-
polynomial-time, or else a witness for the Ntime(nO(log logn)) statement can be
extracted in nO(log logn)-time.

6. Fully Homomorphic Encryption. Let FHE = (KeyGen,Enc,Dec,Evaluate)
denote a fully homomorphic encryption scheme in e.g. [18].

2.2 Overview

Recall that Barak’s preamble consists of three messages in which the verifier
first samples a random hash function h and then the prover responds with a
commitment Z and lastly the verifier sends a random r. Let L be in NP and
(x,w) is an instance-witness pair of L. Our protocol for L basically runs as
follows.

1. P and V interact of the first Barak’s preamble to generate λ1 = (h1, Z1, r1),
where Z1 is computed with HCom. Then the two parties interact of the sec-
ond preamble of reverse direction to generate λ2 = (h2, Z2, r2). Let Trapdoor
be the trapdoor of HCom corresponding to msg.

2. P interacts with V in the “encrypted” UA for proving that there are a
program Π of size less than nlog logn and some coins such that h1(Π) and
the coins are an opening of Z1 and Π (on input some message) outputs r1
in nlog logn steps.

3. Then P proves to V in LS that either there is w for x ∈ L or the committed
messages in the “encrypted” UA are a valid proof of UA. In the execution
of LS, P first sends LS1. Then V samples LS2 and encrypts (LS2, LS2) with
FHE and sends the encryption to P . Then prove to P in WIUA that either
there are a program Π ′ of size less than nlog logn and some coins such that
h2(Π

′) and the coins are the opening of Z2 and Π ′ (on input some message)
outputs r2 in nlog logn steps, or the encryption is generated as specified and
there is Trapdoor that is the trapdoor to msg. Lastly, P responds with the
encryption of (LS3, LS3) honestly generated using algorithm Evaluate and
witness w.

4. P proves to V in LS∗ using witness w that its responding encryption is
generated honestly. V accepts x if LS∗ is convincing.

We sketch the intuition of the zero-knowledge and argument of knowledge
properties as follows.
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Statistical Zero-Knowledge.We present a simulator S for any verifier V ∗ and
x ∈ L. Like Barak’s simulator in [2], S knows V ∗’s code and thus computes Z1

as HCom(h1(Π)) in the first preamble where Π denotes V ∗’s remainder strategy
at this step. Then Π is a witness for λ1 in UA, which means S can use it as
witness to accomplish the UA, LS and LS∗.

Notice that all primitives used by P or S achieve some perfect security, i.e. the
perfectly-hiding property of HCom and the perfectly WI properties of LS, LS∗.
So basically, S’s output is identically distributed to a real view of V ∗. But the
perfectly WI property of LS does not hold if the encryption sent by V ∗ is not
as specified but V ∗ can send valid messages of WIUA. This is so because in this
case V ∗ can receive P/S’s responding encryption and thus gain two different
transcripts of LS and recover a witness, which can distinguish the ordinary in-
teraction from simulation. However, for such invalid encryption, V ∗ can convince
P/S in WIUA only with negligible probability, since otherwise we can come up
with an algorithm to break the collision-resistance of h2. Therefore, we conclude
that S’s output is actually statistically close to a real view of V ∗. In particular,
if ignoring the message of last step, the output of S is identically distributed to
a real view of V ∗.

Argument of Knowledge. We show there is an extractor E such that if P ′ is
a prover that can convince V of x ∈ L with noticeable probability ε, E(P ′, x)
outputs a witness for x with probability ε − neg(n). E basically follows V ’s
strategy to interact with P ′. Notice that E can obtain a trapdoor in the second
preamble i.e. P ′’s code, that is a witness for λ2 in WIUA. Then it samples two
different LS2, LS

′
2 and sends the encryption of (LS2, LS

′
2). Then E can send a

valid proof in WIUA using P ′’s code as witness. Due to the hiding property of
Com, the encryption indistinguishability of FHE and the WI property of WIUA,
P ′ can still output valid messages in the remainder interaction. Thus due to
the soundness of LS∗, P ′’s responding encryption is generated as specified. So E
can decrypt it to gain two answers, denoted LS3, LS

′
3 and extract a witness from

the two transcripts (LS1, LS2, LS3) and (LS1, LS
′
2, LS

′
3). Lastly, we show what is

extracted must be w since otherwise we can come up with an algorithm either
to break the collision resistance of h1 or to break the binding property of HCom.

2.3 Actual Construction

The actual construction of the protocol follows the overview in the previous
subsection but with intensive parallel implementations of different phases, shown
in Protocol 1. We present the detailed specification as follows.

1. V → P : Sample h1 ∈ Hn and (msg,Trapdoor) of HCom where Trapdoor is
the trapdoor of HCom corresponding to msg. Send h1,msg to P .

2. P → V : Sample h2 ∈ Hn and compute Z1 ← HCom(h1(0
n)). Send Z1, h2 to

V .

3. V → P : Sample r1 ∈ {0, 1}n,UA1. Compute Z2 ← Com(h2(0
n)). Send them

to P .
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Public input: x (statement to be proved is “x ∈ L”);
Prover’s auxiliary input: w, (a witness for x ∈ L).

1. V → P : Send h1 ∈ Hn, msg.
2. P → V : Send Z1 ← HCom(h1(0

n)), h2 ∈ Hn.
3. V → P : Send r1 ∈ {0, 1}n, Z2 ← Com(h2(0

n)), UA1.
4. P → V : Send r2 ∈ {0, 1}n, C1 ← HCom(0|UA2|), LS1, WIUA1, LS

∗
1.

5. V → P : Send UA3, WIUA2, LS
∗
2, pk,X1 ← Enc(pk, LS2, LS2).

6. P → V : Send C2 ← HCom(0|UA4|), WIUA3.
7. V → P : Send WIUA4.
8. P → V : Send X2 (imagine it is of form Enc(pk,LS3, LS3)), LS

∗
3.

Protocol 1. The zero-knowledge argument of knowledge (P, V ) for L

– The UA system is to prove that there are a program Π of size less than
nlog logn and some coins such that h1(Π) and the coins are an opening
of Z1 and Π on input the message of Step 2 outputs r1 in nlog logn steps.

4. P → V : Sample r2 ∈ {0, 1}n, WIUA1. Generate LS1 ← PLS(|y|; s) where y
denotes the public input that LS is proving and s is the coins, and C1 ←
Com(0|UA2|) and LS∗1 (which is the first message of LS∗ interpreted below).
Send them to P .

– The LS system is to prove that either there is w for x ∈ L or there are
openings of C1, C2, in which let UA2,UA4 denote the committed messages
and then (UA1,UA2,UA3,UA4) is a valid transcript of UA. Note that at
this step UA3, C2 have not been generated yet, but their lengths are
known and thus LS1 can be computed.

– The WIUA system is to prove that either there are LS2, coins s′ and
Trapdoor such that X1 = Encs′(pk, LS2, LS2) and Trapdoor is the trap-
door to msg, or there are a program Π ′ of size less than nlog logn and
some coins such that h2(Π

′) and the coins are the opening of Z2 and Π ′

on input the message of Step 3 outputs r2 in nlog logn steps.
Note that at this step X1 has not been generated yet, but the first
statement of WIUA is of NP type and thus it can be determined after
WIUA1 is sampled.

5. V → P : Sample UA3, LS
∗
2, LS2 and (pk, sk) ← KeyGen(1n). Compute X1 ←

Enc(pk, LS2, LS2), and WIUA2 using witness LS2,Trapdoor (and the coins).
Send them (excluding sk) to P .

– The LS∗ system is to prove that there are a witness W for y (where
y denotes the public input that LS is proving) and coins s such that
LS1 = PLS(|y|; s) and X2 = Evaluate(pk, PLS, y,W, s,X1). Note that at
Step 4 although some messages involved in LS∗ have not been generated
yet, their lengths are known and thus LS∗1 can be computed at Step 4
(and in Step 8 P will generate LS∗3 using witness w).

6. P → V : Compute C2 ← Com(0|UA4|). Sample WIUA3. Send them to V .
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7. V → P : Compute WIUA4 (still using witness LS2,Trapdoor). Send it to P .
8. P → V : Compute X2 ← Evaluate(pk, PLS, y, w, s,X1). Also compute LS∗

3

with witness w. Send them to V . V accepts x if (LS∗1, LS
∗
2, LS

∗
3) is convincing.

Claim 1. Protocol 1 is an interactive argument for L.

Proof. It can be seen that the honest prover can always use witness w to con-
vince the honest verifier and thus the completeness holds. The computational
soundness follows from Claim 3. ��

Claim 2. Assuming the existence of Hn,Com,HCom, Protocol 1 is statistical
zero-knowledge. (In particular, when ignoring the message of Step 8, Protocol 1
is perfect zero-knowledge.)

Proof. (Sketch.) We construct a simulator S for any polynomial-size verifier V ∗

and x ∈ L. S(x, V ∗) works as follows.

1. Emulate V ∗ to send out h1,msg. Then sample h2 and compute Z1 ←
HCom(h1(Π)) where Π denotes the remainder strategy of V ∗. Send Z1, h2

to V ∗.
2. Emulate V ∗ to send out r1, Z2,UA1. Sample r2,WIUA1. Compute LS1, LS

∗
1

honestly. Compute UA2 with witness Π (and the coins) and further C1 ←
HCom(UA2). Send them to V ∗.

3. Emulate V ∗ to send out UA3,WIUA2, LS
∗
2, pk,X1. Compute UA4 still with

Π and C2 ← HCom(UA4). Lastly, sample WIUA3. Send them to V ∗.
4. Emulate V ∗ to send out WIUA4. Adopt P ’s strategy to compute X2 but with

witness (UA2,UA4) (and some coins) with algorithm Evaluate. Compute LS∗
3

with witness (UA2,UA4).

Since Π is a witness for the public input to UA, S can use it to finish the inter-
action and run in polynomial-time. We now show S’s output is statistically close
to V ∗’s real view interacting with P (w). Briefly, the statistical indistinguisha-
bility follows from the perfectly-hiding property of HCom and the perfectly WI
properties of LS, LS∗. Actually, the output of S is identically distributed to a real
view of V ∗ if ignoring the message of Step 8. It can be seen that in Step 7, V ∗ may
send a valid WIUA4 even when X1 is not as specified. If this happens, S’s mes-
sage of Step 8 differs from P ’s. Otherwise, they are also identically distributed.
In the following we show this bad event occurs with negligible probability. Thus
S’s message and P ’s are statistically close.

Suppose, on the contrary, V ∗ can send a valid proof with noticeable probability
for an invalid X1. Then by running the extractor of WIUA we can generate a
witness for the public input of WIUA. Since X1 is not as specified, this witness
must be a program for λ2, denoted Π ′

1. Then with a similar argument in [2], we
can re-execute the above process independently one more time by rewinding V ∗

to Step 4, and also extract a witness for λ2, denoted Π ′
2. Note that the extraction

of Π ′
1, Π

′
2 costs nO(log logn)-time with noticeable probability.

Since on input a same message of Step 3, Π ′
1 and Π ′

2 both outputs r2 but the
two r2 are different with probability 1− 2−n, Π ′

1 and Π ′
2 are different programs.
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Due to the perfectly-binding property of Com, h2(Π
′
1) = h2(Π

′
2), which means

we find a collision of h2. It is impossible. So X1 is indeed as specified except for
an negligible probability. Thus the statistical zero-knowledge property holds. ��

Claim 3. Assuming the existence of Hn,FHE,Com, Protocol 1 is an argument
of knowledge.

Proof. (Sketch.) We show there is an extractor E such that if P ′ is a polynomial-
size prover that can convince V of x ∈ L with noticeable probability ε, E(P ′, x)
outputs a witness for x in polynomial-time with probability ε− neg(n). E works
as follows.

1. Sample h1,msg. Send them to P ′. Then emulate P ′ to send out Z1, h2.
2. Sample r1,UA1, but compute Z2 ← Com(h2(Π

′)), where Π ′ denotes the
remainder strategy of P ′. Send them to P ′ and emulate it to send out
r2, C1, LS1,WIUA1, LS

∗
1.

3. Sample UA3 and LS∗2. Compute WIUA2 using witness Π ′ (and the coins).
Sample (pk, sk) ← KeyGen(1n). Sample LS2, LS

′
2 and compute X1 ← Enc(pk,

LS2, LS
′
2). Send them to P ′ and emulate it to output C2,WIUA3.

4. Compute WIUA4 still using witness Π ′. Send it to P ′ and emulate it to
output X2, LS

∗
3.

5. If LS∗3 is invalid or LS2 = LS′2 output nothing. Otherwise, decrypt X2 with sk
to gain LS3, LS

′
3. Compute a witness from (LS1, LS2, LS3) and (LS1, LS

′
2, LS

′
3)

and output it.

Note that Π ′ is a witness for the public input to WIUA and E can use it to
finish the interaction. Note that the difference between the ordinary interaction
and extraction is the message committed in Z2, the message encrypted in X1 and
the witness used in WIUA. So due to the hiding property of Com, the encryption
indistinguishability of FHE and the WI property of WIUA, Z2, X1 and the mes-
sages of WIUA in extraction and the ordinary interaction are indistinguishable.
Thus P ′’s messages are still convincing except for an negligible probability. Thus
E can extract a witness from (LS1, LS2, LS3) and (LS1, LS

′
2, LS

′
3).

We claim the output by E is w for x ∈ L except for negligible probability.
Suppose, on the contrary, what is extracted is (UA2,UA4) with non-negligible
probability. Then there is a prover P ∗ of UA such that when having λ1 as public
input (precisely it is (λ1, h2) since h2 is a message in Step 2) it can convince the
honest verifier of UA with noticeable probability.

We sketch P ∗ as follows. It plays as verifier of Protocol 1 to interact with P ′

of the first three steps (excluding UA1) and also invokes an interaction with the
honest verifier VUA of UA, in which P ∗ tries to convince VUA of the knowledge
of Π for λ1. On receiving UA1 from VUA, P

∗ transfers UA1 to P ′ and finishes
the remainder interaction with E’s strategy to extract UA2 (as well as some
UA4 corresponding to UA3 it samples). Then P ∗ sends UA2 to VUA. On receiving
the real UA3 from VUA, P

∗ rewinds P ′ to Step 5 and sends the UA3 as well as
other messages to P ′ and then extracts (UA2,UA4). Note that the UA2 must
be identical to that one extracted previously due to the binding property of
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HCom (note that E does not use Trapdoor as part of the witness, so the binding
property of HCom is not compromised at all). Then P ∗ sends the UA4 to VUA.

The above means by running the extractor of UA, we can generate a program
Π for λ1 in nO(log logn)-time.

Then with a similar argument in [2], we can run the extraction process twice
from Step 3 in which the two r1 are different and obtain two programs, denoted
Π1, Π2, with noticeable probability. This costs nO(log logn)-time. Since the two
r1 are different, Π1 �= Π2, which either breaks the collision-resistance of h1 or
breaks the binding property of HCom. This is impossible. So we conclude what
is extracted is indeed w for x ∈ L. ��

So combining the three claims, we have proved the following proposition.

Proposition 1. Assuming all the underlying primitives, Protocol 1 is a 8-round
statistically ZKAOK for NP with strict-polynomial-time simulation and extrac-
tion.

3 Differing-Input Obfuscation of P/S’s Next-Message
Functions

In this section we investigate the functionalities of the next-message functions
of the honest prover P and S of last step of Protocol 1. The result is that
when having independently random coins, the differing-input obfuscation of the
circuits of the two next-message functions are indistinguishable, which will be
used to compress the last three rounds to one round in the next section.

Let Px,w,u denote the honest prover P (x,w) with randomness u hardwired
and Sx,V ∗,v denote S(x, V ∗) with randomness v hardwired. For each u used by
the prover, parse u = (u1, u2), where u1 is used for computing the messages of
Steps 2, 4, 6 and u2 is used for Step 8. Similarly, for each v used by S, parse
v = (v1, v2), where v1 is used for Steps 2, 4, 6 and v2 is used for Step 8. Then
we divide a view of V ∗ to two parts view1 ◦ view2, where view1 denotes V ∗’s view
up to Step 6 (excluding x) and view2 denotes its view of Step 8. Thus view1 is
determined by u1 for P or by v1 for S and view2 is determined by u2 for P or
by v2 for S. W.l.o.g. assume |u| = |v|.

Due to Claim 2, for each fixed view1 P and S have the equal-probability to
generate it. Thus each u1 corresponds to a v1 such that both Px,w,u and Sx,V ∗,v
generate a same view1. Moreover, since Protocol 1 is statistical zero-knowledge,
for each fixed view1, if X1 is as specified, each u2 corresponds to a v2 such that
Px,w,u and Sx,V ∗,v generate a same view2. That is, let Pview1,u2 be Px,w,u’s next-
message function of last step and Sview1,v2 be Sx,V ∗,v’s next-message function of
last step. When X1 is as specified, for each corresponding pair (u, v), two view1

generated in the ordinary interaction and simulation are same and Pview1,u2 and
Sview1,v2 are of same functionality.

Let us then consider the size of Pview1,u2 and Sview1,v2 . Notice that at Step
5 where V ∗ interacts with SV ∗,x,v, the challenge UA3 is chosen and then fixed.
So UA2,UA4 are fixed. Then Sview1,v2 can be represented by a circuit of fixed
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polynomial-size. The circuit has the public inputs and the existing transcripts
of the WIUA, LS∗, and UA2,UA4 and some coins hardwired. On input WIUA4,
the circuit adopts S’s strategy of Step 8 to output X2, LS

∗
3. We use Qview1,v2 to

denote this circuit. So Qview1,v2 has the same functionality as Sview1,v2 . (Qview1,v2

does not store those leaves of the PCP witness of UA which are not related to
UA3 and thus is fixed polynomial-size.)

Therefore, we can implement Pview1,u2 and Qview1,v2 with circuits of same poly-
nomial size. So we conclude that if X1 is as specified, the two circuits are not
only of same functionality, but also of same size. In the following we summarize
this by presenting explicitly a sampler Sampler.

Algorithm 2. The circuit sampler Sampler(1n) which has V ∗’s code and (x,w)
hardwired.

Input: the system parameter n.
Output: (Pview1

, Qview1
, view1).

– Sample u and invokes an interaction between Px,w,u and V ∗ through the first
six steps. Let view1 denote the current view to V ∗. Let Pview1,u2 denote the
circuit of P ’s next-message function of last step.

– Run the extractor of WIUA to extract a witness for the public input for WIUA.
Due to the collision-resistance of h2, the witness cannot be a desired program
Π ′. So it must be (LS2, s

′,Trapdoor), extracted in expected polynomial-time.

– Follow S’s strategy to compute all right messages that should be committed
in all prover’s commitments (i.e. Π,UA2,UA4, LS

∗
1) in simulation. Find v =

v(u) corresponding to u using Trapdoor such that Px,w,u and Sx,V ∗,v result in
the same view1 and Pview1,u2 , Qview1,v2 are of same functionality (supposing
X1 is as specified). Lastly, output (Pview1,u2 , Qview1,v2 , view1).

Let diO be the differing-input obfuscator for circuits in [1] and we assume it
works for Sampler with any (V ∗, x, w). Then we have the following result.

Claim 4. Let (Pview1,u2 , Qview1,v2 , view1) ← Sampler(1n), Pview1,u2 ←
diO(Pview1,u2), Qview1,v2 ← diO(Qview1,v2). Then Pview1,u2 and Qview1,v2 are in-
distinguishable for any polynomial-size distinguisher even having view1.

Proof. If we can show no polynomial-size algorithm given (Pview1,u2 , Qview1,v2 ,
view1) can with noticeable probability output a differing-input input for Pview1,u2

and Qview1,v2 , then the claim holds. So in the following we show this.
First consider the caseX1 in view1 is as specified, according toSampler’s strategy,

Pview1,u2 andQview1,v2 are of same functionality. Second consider the caseX1 is not
as specified. In this case, if there is a polynomial-size algorithm A that can find a
convincingWIUA4 with noticeable probability as input to the two circuits, the two
circuits are not of same functionality. However, as we showed in Claim 3 that the
existence of A implies the collision-resistance of h2 can be broken. For any invalid
WIUA4, the two circuits both abort. This shows except for negligible probability,
A cannot find a differing-input. Thus the claim holds. ��
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Note that the indistinguishability in Claim 4 holds when the two circuits as
well as view1 are sampled by Sampler. In the following, we show for independent
running of P and S, the indistinguishability also holds (remark that we do not
need to truly run Sampler in the protocol).

Proposition 2. For any V ∗, x ∈ L, for any polynomial-size distinguisher D, for
independently random u, v, |Pr[D(view1,Pview1,u2) = 1]−Pr[D(view1,Qview1,v2) =
1]| = neg(n), where the probabilities are taken over all values of u, v and diO’s
independent coins in generating Pview1,u2 and Qview1,v2 (note that the two view1

are independently generated).

Proof. For random u, let v(u) denote the v corresponding to u such that the
view1 in the ordinary interaction and simulation are same, and the tripe of
(Pview1,u2 , Qview1,v2 , view1) is identically distributed to the output of Sampler(1n).
For this triple, Claim 4 shows

| Pr
u,diO′s coins

[D(view1,Pview1,u2) = 1]

− Pr
v(u),diO′s coins

[D(view1,Qview1,v2) = 1]| = neg(n)

Thus

| Pr
u,diO′s coins

[D(view1,Pview1,u2) = 1]− Pr
v,diO′s coins

[D(view1,Qview1,v2) = 1]|

=| Pr
u,diO′s coins

[D(view1,Pview1,u2) = 1]− Pr
v(u),diO′s coins

[D(view1,Qview1,v2) = 1]|

=neg(n)
��

4 The Six-Round Zero-Knowledge Argument of
Knowledge

In this section we present the 6-round ZKAOK for any NP language L. In
Section 4.1, we present the construction idea. In Section 4.2 we present the
protocol and show it satisfies all the properties claimed in the main theorem.

4.1 Construction Idea

Our idea of constructing the 6-round protocol is to compress the last three rounds
of Protocol 1 to one round. Notice that in the previous section we show that Pro-
tocol 1 is statistical zero-knowledge with strict polynomial-time simulation and
extraction. With the notations used in the previous section, let Pview1,u2 (resp.
Qview1,v2) denote the prover’s (resp. simulator’s) next-message function of last
step, Pview1,u2 and Qview1,v2 be their differing-input obfuscation with diO. Our
idea to compress the last three rounds is to let P (resp. S) send Pview1,u2 (resp.
Qview1,v2) in Step 6 with the original message. Then the verifier on receiving
the message can adopt the original honest verifier’s algorithm to interact with



On Zero-Knowledge with Strict Polynomial-Time Simulation and Extraction 65

Public input: x (statement to be proved is “x ∈ L”);
Prover’s auxiliary input: w, (a witness for x ∈ L).

1. V → P : Send h1 ∈ Hn, msg.
2. P → V : Send Z1 ← HCom(h1(0

n)), h2 ∈ Hn.
3. V → P : Send r1 ∈ {0, 1}n, Z2 ← Com(h2(0

n)), UA1.
4. P → V : Send r2 ∈ {0, 1}n, C1 ← HCom(0|UA2|), LS1, WIUA1 and LS∗

1.
5. V → P : Send UA3, WIUA2, LS

∗
2, pk,X1 ← Enc(pk, LS2, LS2).

6. P → V : Send C2 ← HCom(0|UA4|), WIUA3, Pview1,u2 .

Protocol 2. The 6-round zero-knowledge argument of knowledge for L

the obfuscated program locally to make a decision. Then due to Proposition 2,
(view1,Pview1,u2) and (view1,Qview1,v2) are indistinguishable for all polynomial-
size distinguisher (that can have x), where the two random elements are inde-
pendently generated, which ensures the modified protocol is zero-knowledge.

4.2 The Protocol

Let diO be the differing-input obfuscator for Sampler. Our 6-round ZKAOK for L
is shown in Protocol 2, in which P and V follow the honest prover’s and verifier’s
strategies of Protocol 1. The exception is that in the sixth step P additionally
computes Pview1,u2 ← diO(Pview1,u2) for random u2 and sends V this obfuscation
as well as the original message of Step 6. When V receives the last message,
it adopts the honest verifier’s strategy of Step 7 of Protocol 1 to send WIUA4

to Pview1,u2 and runs the program. When Pview1,u2 sends out X2, LS
∗
3, V adopts

the honest verifier’s strategy to make the decision. Then we have the following
claims.

Claim 5. Protocol 2 is an interactive argument for L.

Proof. The completeness is straightforward and the computational soundness
follows from Claim 7. ��

Claim 6. Assuming the existence of Hn,Com,HCom, diO, Protocol 2 is zero-
knowledge.

Proof. Now we construct a polynomial-time simulator Sim for Protocol 2 for
any polynomial-size verifier V ∗ and x ∈ L. Sim adopts the simulator’s strategy
of Protocol 1 in the first fix steps. Let view1 be the view up to Step 6. Then Sim
samples random coins v2. Let Qview1,v2 be S’s strategy at Step 8 of Protocol 1.
Then compute Qview1,v2 ← diO(Qview1,v2). Output (view1,Qview1,v2).

For each V ∗ and each x ∈ L, Proposition 2 ensures that (view1,Pview1,u2) and
(view1,Qview1,v2) are indistinguishable for any polynomial-size distinguisher that
has x. So the zero-knowledge property holds. ��
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Claim 7. Assuming the existence of Hn,FHE,Com, Protocol 2 admits a knowl-
edge extractor.

Proof. We show there is an extractorE such that if P ′ is a polynomial-size prover
that can convince V of x ∈ L with probability ε, E(P ′, x) outputs a witness for x
in polynomial-time with probability ε−neg(n). Actually, E’s strategy is identical
to that of Protocol 1 except that in the last step on receiving the obfuscated
program, denoted Q, E interacts with Q and extracts a witness similarly.

It can be seen that if Q can output X2 and a valid LS∗3, what E obtains
and decrypts from X2 is indeed (LS3, LS

′
3). Then it can recover a witness from

(LS1, LS2, LS3) and (LS1, LS
′
2, LS

′
3), which is either w for x ∈ L or (UA2,UA4).

For a similar reason shown in the proof of Claim 3, what E extracts is indeed w
except for negligible probability. ��

Combining these claims, we have the following formal restatement of the main
theorem.

Theorem 3. Assuming the existence of HCom, diO,Hn,FHE,Com, Protocol 2
is a 6-round ZKAOK for NP with strict polynomial-time simulation and
extraction.
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A Preliminaries

A.1 Differing-Input Obfuscation for Circuits

Recall the notion of differing-input obfuscation for circuits in [1].

Definition 1. A circuit family C associated with a PPT (or expected PPT) sam-
pler Sampler is said to be a differing-input circuit family if for every polynomial-
size adversary A such that:

Pr[C0(x)�=C1(x) : (C0, C1, aux)←Sampler(1n), x←A(1n;C0, C1, aux]=neg(n)

Definition 2. (Differing-input Obfuscators for Circuits) A uniform PPT ma-
chine diO is called a differing-input Obfuscator for a differing-input circuit fam-
ily C, if the following conditions are satisfied:

– Correctness. for every input x and all C ∈ C, C(x) = diO(C).
– Polynomial slowdown. There exists a universal polynomial p such that for

any circuit C, we have |C′| ≤ p(|C|), where C ′ ← diO(C).
– Differing-input: For any (not necessarily uniform) PPT distinguisher D

such that the following holds: For all security parameters n ∈ N , for
(C0, C1, aux) ← Sampler(1n), we have that

|Pr[D(diO(C0), aux) = 1]− Pr[D(diO(C1), aux) = 1] = neg(n)

A candidate construction for this primitive appears in the work of [1]. We note
that this primitive does not use any knowledge assumption, while a generalized
notion of differing-input obfuscation for machines needs knowledge assumptions.

http://eprint.iacr.org/
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Abstract. Leakage resilient cryptography designs systems to withstand
partial adversary knowledge of secret state. Ideally, leakage-resilient sys-
tems withstand current and future attacks; restoring confidence in the
security of implemented cryptographic systems. Understanding the rela-
tion between classes of leakage functions is an important aspect.

In this work, we consider the memory leakage model, where the leakage
class contains functions over the system’s entire secret state. Standard
limitations include functions with bounded output length, functions that
retain (pseudo) entropy in the secret, and functions that leave the secret
computationally unpredictable.

Standaert, Pereira, and Yu (Crypto, 2013) introduced a new class of
leakage functions they call simulatable leakage. A leakage function is
simulatable if a simulator can produce indistinguishable leakage without
access to the true secret state. We extend their notion to general appli-
cations and consider two versions. For weak simulatability: the simulated
leakage must be indistinguishable from the true leakage in the presence
of public information. For strong simulatability, this requirement must
also hold when the distinguisher has access to the true secret state. We
show the following:

– Weakly simulatable functions retain computational unpredictability.
– Strongly simulatability functions retain pseudoentropy.
– There are bounded length functions that are not weakly simulatable.
– There are weakly simulatable functions that remove pseudoentropy.
– There are leakage functions that retain computational unpredictabil-

ity are not weakly simulatable.

1 Introduction

Cryptography relies on secret randomness, such as keys. It is crucial to prop-
erly model how an adversary can interact with and observe this secret state. As
an example, when defining security of a block cipher, an adversary may ask for
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encryption of arbitrary plaintexts and see the corresponding ciphertext. The se-
cret key and randomness used by the algorithm are assumed to be hidden from
the adversary.

Unfortunately, the adversary rarely uses cryptographic systems as black-boxes,
exploiting side-channel information when possible. As many works have shown,
side-channel attacks have been devastating to existing deployed cryptosystems
[Koc96,KJJ99,BB05,BM06,OST06,TOS10,GST13].

Completely eliminating side-channel attacks seems hopeless. The cryptographic
community began designing systems that remain secure in the presence of side-
channel attacks. In the theoretical community, the work of Ishai, Sahai, and
Wagner [ISW03] showed how to transform any circuit into one that withstood ad-
versarial knowledge of some constant fraction of the wire values. The work of Mi-
cali and Reyzin [MR04] considered arbitrary leakage functions of bounded output
length.

There are two crucial aspects to defining a leakage function: what the function
computes on, and what type of computations the function can perform. We refer
to these aspects as the leakage model and leakage class respectively.

Leakage Models. There are two commons models: circuit leakage assumes the
leakage function operates on a particular circuit implementation of a computa-
tion. The leakage function is allowed (with restrictions) to compute on individual
gates and wires in the circuit. Memory leakage allows the leakage function to
leak on secret state and ignores the intermediate states of computation specific
to the implementation of the algorithm.1 Circuit leakage is used in conjunction
with leakage classes restricted to local computations. Memory leakage is used in
conjunction with functions that access all state simultaneously (but with some
restriction on the output). Results in these models are not easily compared. We
focus on the memory leakage model but briefly discuss simulatable leakage in
the context of circuit leakage in Appendix A.

Leakage Classes. We now describe common leakage classes in the memory leak-
age model.

– Bounded Length [MR04]. The leakage function is an arbitrary function L
of input, secret state and randomness. The only limitation on the function
is a bounded output length. A natural broadening of this class is the set of
all functions that preserve min-entropy of the secret state.2 We denote this
class of leakage functions by bLEN.

– Indistinguishable [DP08]. Bounded length leakage is easy to reason about
because secret state has entropy conditioned on the output of the leak-
age function. Unfortunately, many leakage functions (such as the power

1 If the leakage class is sufficiently powerful, the particular implementation of an algo-
rithm is irrelevant. The leakage function can recompute a given implementation of
the functionality. This is the case for all leakage classes we consider in the memory
leakage model.

2 If the output length of the leakage function is significantly less than the entropy of
the secret state, then bounded length leakage functions retain average min-entropy.
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trace of computation) are quite long. Furthermore, in many applications
the secret key does not have information-theoretic entropy (for example, a
Diffie-Hellman key conditioned on the public transcript). A leakage function
L is an indistinguishable leakage function if the secret state looks like it
has entropy conditioned on L (we use HILL entropy [HILL99]). Note this
class contains bounded length functions. We denote this class of leakage
functions by Indist. We also use a weaker notion of pseudoentropy called
relaxed HILL entropy [Rey11] and denote the class of leakage functions that
preserve relaxed HILL entropy as rIndist.

– Hard-to-invert [DKL09]. The indistinguishable leakage model is too re-
strictive for many applications. As an example, a symmetric cipher key is
often uniquely determined conditioned on a few plaintext/ciphertext pairs.
It is usually possible to verify a guess for the key and thus, it is not indistin-
guishable from any high entropy distribution. A minimum condition is that
secret state is hard to guess given leakage. This is known as hard-to-invert
leakage. We denote this class of functions as hINV.

– Simulatable [SPY13]. Standaert, Pereira, and Yu recently introduced simu-
latable leakage. Consider some private state K with some public information
Y (such as a public key or plaintext/ciphertex pairs). A leakage function is
simulatable if a simulator S can create a random variable S(Y ) that is indis-
tinguishable from L(K). Simulatable leakage is a combination of ideas from
practice and theory. It allows simulators to be proposed for actual leakage
functions. Then practitioners can try and distinguish simulator output from
the true leakage. Indeed, the simulator proposed by Standaert et al. was sub-
sequently broken [LMO+14]. The work of Standaert, Pereira, and Yu also
shows how to construct a stream cipher that withstands simulatable leakage
from a pseudorandom generator that withstands simulatable leakage.

Containments between the first three leakage classes are understood. (bLEN ⊂
Indist ⊂ hINV.) Simulatable leakage is a natural definition. Ideally, simulat-
able leakage would preserve security as an adversary could use the simulated
leakage (and execute their attack with similar success probability) and therefore
leakage would not harm application security. The goal of this work is to clarify
this intuition.

We consider two versions of simulatable leakage: first where the simulated
leakage must be consistent with only the public system state, and second where
the simulated leakage must be consistent with both the public and private sys-
tem state. We call these classes weakly simulatable (wSIM) and strongly simu-
latable (sSIM) respectively.

Meaningfulness of Weakly Simulatable Leakage Weakly simulatable leakage is
not always meaningful. As example, consider an adversary trying to guess a
private key K with no public information. The identity function is a weakly
simulatable. A simulator for the leakage can sample a uniform random key K ′.
We call this situation leak-and-resample. To prevent this, we assume it is difficult
to sample a key that is consistent with the public information (Definition 12).
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Fig. 1. Containment between difference leakage notions. The relations between sim-
ulatable leakage are shown in this work. Arrows imply containment and arrows with
slashes imply there is a function in one class not contained in the other class.

This is the case in many applications but not all. We call this setting—borrowing
terminology from zero knowledge—witness hiding.

Our contribution: We connect the notion of simulatable leakage to standard
leakage models. A graphical description of our results is in Figure 1. We show
five results:

– Lemma 4: Strong simulatability implies relaxed HILL entropy. That is,
sSIM ⊆ rIndist.

– Lemma 5: There are simulatable leakage functions that remove all pseudoen-
tropy from private state. That is, wSIM �⊆ rIndist.

– Lemma 8: There are bounded-length leakage functions that are not simulat-
able. bLEN �⊆ wSIM.

– Lemma 9: Simulatable leakage preserves unpredictability. wSIM ⊂ hINV.

– Lemma 10: There are hard-to-invert leakage functions that are not simulat-
able. hINV �⊆ wSIM.
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Discussion: These results show that weakly simulatable leakage is properly con-
tained in hard-to-invert leakage. This suggests it may be possible to build crypto-
graphic primitives for weakly simulatable leakage that have eluded hard-to-invert
leakage. Building crypto systems secure against hard-to-invert leakage been dif-
ficult, suggesting that simulatable leakage is a promising alternative.

This work places simulatable leakage in the context of other memory leakage
classes. The complementary question is how simulatable leakage fits with pre-
viously considered leakage classes in the circuit model. We discuss definitional
considerations for simulatable leakage in the circuit model in Appendix A. Pro-
viding results in the circuit model is more complicated as one must consider the
implementation of a functionality. We leave this an open problem.

In this work we show that sSIM is contained in rIndist. It seems natural
that simulatable leakage is related to indistinguishability (since it is an indis-
tinguishability based definition). Settling the containment with Indist is an
interesting question.

Organization: The remainder of the paper is organized as follows. We begin by
covering preliminaries and definitions of memory leakage classes in Section 2.
In Section 3, we define simulatable leakage and extend it to general applica-
tions (the definition of [SPY13] is specific to symmetric ciphers). In Section 4,
we discuss strong simulatability and pseudoentropy. In Sections 5 and 6, we con-
nect weakly simulatable leakage to indistinguishable and hard-to-invert leakage
respectively.

2 Preliminaries

We usually use upper case letters for random variables and lower case letters for
particular outcomes. Un denotes the uniformly distributed random variable on
{0, 1}n. Unless otherwise noted logarithms are base 2.

Entropy Notions. The min-entropy of X is H∞(X) = − log(maxx Pr[X = x]).
Let |W | be the size of the support of W that is |W | = |{w|Pr[W = w] > 0}|.

Definition 1. [DORS08, Section 2.4] The average (conditional) min-entropy
of X given Y is

H̃∞(X |Y ) = − log( E
y∈Y

max
x

Pr[X = x|Y = y]).

Distance Notions. The statistical distance between random variables X and Y
with the same domain is Δ(X,Y ) = 1

2

∑
x |Pr[X = x] − Pr[Y = x]|. For a dis-

tinguisher D (or a class of distinguishers D) we write the computational distance
between X and Y as δD(X,Y ) = |E[D(X)]− E[D(Y )]|. We denote by Dssec the
class of randomized circuits which output a single bit and have size at most ssec.

We use a slightly nonstandard notion of a one-way function is hard on a
particular input distribution (instead of the uniform distribution).
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Definition 2. Let K be a distribution over space M and let f : M → {0, 1}∗.
We say that f is (s, ε,K)-one-way if for all A of size at most s,

Pr
x←K

[f(A(f(x))) = f(x)] ≤ ε.

2.1 Pseudoentropy

In this section, we present notions of pseudoentropy that are used to describe
leakage classes. Pseudoentropy is the computational analogue of min-entropy. In
general, a pseudoentropy notion describes how much entropy a random variable
has to computationally bounded adversaries. The most common notions of pseu-
doentropy consider indistinguishability from a high entropy random variable and
unpredictability.3

Indistinguishability. We use the common notion of HILL entropy [HILL99] ex-
tended to the conditional setting [HLR07].

Definition 3. [HLR07] Let (K,Y ) be a pair of random variables. K has relaxed
HILL entropy at least k conditioned on Y , denoted HHILL

εent,sent
(K|Y ) ≥ k if for

each y ∈ Y there exists distributions Zy giving rise to a joint distribution (Z, Y ),

such that H̃∞(Z|Y ) ≥ k and δDsent (K,Y ), (Z, Y )) ≤ εent.

One of the primary uses of HILL entropy is that applying a randomness ex-
tractor [NZ93] yields pseudorandom bits [BSW03, Lemma 4.2]. There are many
notions of indistinguishability based pseudoentropy [BSW03,Sko14]. One sig-
nificant drawback of conditional HILL entropy is that revealing one bit can
significantly decrease HILL entropy [KPW13]. Relaxed HILL entropy allows re-
placement of the condition as well in the indistinguishability game.

Definition 4. [GW11,Rey11] Let (K,Y ) be a pair of random variables. K has
relaxed HILL entropy at least k conditioned on Y , denoted HHILL-rlx

εent,sent
(K|Y ) ≥

k if there exists a joint distribution (K ′, Y ′) such that H̃∞(K ′|Y ′) ≥ k and
δDsent (K,Y ), (K ′, Y ′)) ≤ εent.

Relaxed HILL entropy is a weaker notion than HILL entropy (by restricting to
the joint distributions (K ′, Y ′) where Y ′ = Y ).

Proposition 1. HHILL-rlx
εent,sent

(K|Y ) ≥ HHILL
εent,sent

(K|Y ).

However, it is still useful as applying a randomness extractor still yields a pseu-
dorandom output [Ful15, Theorem 2.2.4]. Furthermore, relaxed HILL entropy
obeys a chain rule unlike traditional HILL entropy [GW11,Rey11].

3 There are also notions of pseudoentropy that consider compressibility of a random
variable. We do not discuss this notion in this work. See [Yao82,BSW03,HLR07].
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Unpredictability. One can also consider the unpredictability of a random vari-
able by computationally bounded adversaries. This is captured by the following
definition [HLR07]:

Definition 5. Let (K,Y ) be a pair of random variables. We say that K has un-
predictability entropy at least k conditioned on Y, denoted by H

unp
εunp,sunp(K|Y ) ≥

k, if for all joint distributions (Z, Y ) such that δDsunp ((K,Y ), (Z, Y )) ≤ εunp,
and for all circuits I of size sunp,

Pr[I(Y ) = Z] ≤ 2−k.

HILL entropy is at least as large as unpredictability entropy.

Proposition 2. [HLR07, Lemma 8] HHILL
ε,s (K|Y ) ≥ H

unp
ε,s (K|Y ).

The work of Hsiao, Lu, and Reyzin shows they can be separated by an arbitrary
polynomial case in the conditional case [HLR07, Lemmas 2 and 3]. However, it
is possible extract from unpredictability entropy using a randomness extractor
with a reconstruction procedure [HLR07, Lemma 6].

In our results, we use of the fact that HILL and unpredictability entropy
are unchanged if a polynomial size circuit is applied to the condition. In the
information theoretic setting this is known as the data processing inequality.

Lemma 1. Let S be a circuit of size ssim. Then

HHILL
εent,sent−ssim(K|S(Y )) ≥ HHILL

εent,sent
(K|Y ).

Proof. Let HHILL
εent,sent

(K|Y ) = k. Suppose for the sake of contradiction that for all

joint distributions Z, S(Y ) such that H̃∞(Z|Y ) ≥ k there exists D ∈ Dsent−ssim

such that
D((Z, S(Y )), (K,S(Y ))) > εent.

Let Z ′, Y be a distribution such that H̃∞(Z ′|Y ) ≥ k. By the information-
theoretic data-processing inequality, H̃∞(Z ′|S(Y )) ≥ k. Thus, there exists a
D ∈ Dsent−ssim such that D((Z, S(Y )), (K,S(Y ))) > εent. Fix one such D.
Consider the distinguisher D′(z, y) = D(z, S(y)) (of size at most sent). Then
D′((K,Y ), (Z ′, Y )) ≥ D((K,S(Y )), (Z ′, S(Y )) ≥ εent. This is a contradiction
and completes the proof.

This fact also holds for relaxed HILL entropy and unpredictability entropy.
We present these lemmas without proof.

Lemma 2. Let S be a circuit of size ssim. Then

HHILL-rlx
εent,sent−ssim(K|S(Y )) ≥ HHILL-rlx

εent,sent
(K|Y ).

Lemma 3. Let S be a circuit of size ssim. Then

H
unp
εent,sent−ssim(K|S(Y )) ≥ Hunp

εent,sent
(K|Y ).
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2.2 Leakage Models

In this section we focus on memory leakage models – the models in which our
results focus. We briefly review circuit leakage models in Appendix A.

Bounded Leakage: This leakage class allows an arbitrary L with limited output
length [DP08].

Definition 6. Let K be a discrete random variable over space χ1. The random-
ized map L : χ1 → {0, 1}∗ is an �-bounded leakage function if for L(x) takes at
most 2� values for any choice x ∈ χ1 and any choice of random coins of L.

For convenience, we refer to this class of leakage as bLEN. Bounded leakage is
a natural definition. If a random variables starts with min-entropy k, we know
that after � bits of leakage it has remaining min-entropy k− � [DORS08, Lemma
2.2]. That is, if H∞(K) ≥ k, then H̃∞(K|L(K)) ≥ k−�. Unfortunately, bounded
length leakage is not representative of reality. Many side channels take values in
a universe larger than the key itself.

Indistinguishable Leakage. In many applications, the secret state has no true in-
formation conditioned on the public state of the algorithm. For example, the se-
cret key of a symmetric cipher has little entropy after a few plaintext/ciphertext
pairs. However, it often has pseudoentropy. Dziembowski and Pietrzak construct
a pseudorandom generator secure against this type of leakage [DP08]. Indistin-
guishability leakage retains high entropy (we refer to this class of functions as
Indist):

Definition 7. Let K be a random variable and let L be a randomized map. L
is a (k, εent, sent)-indistinguishable leakage function if HHILL

εent,sent
(K|L(K)) ≥ k.

We refer to leakage functions that retain relaxed HILL entropy as rIndist.

Hard to invert leakage. For a scheme with secret key K, the minimal notion
of security is that an adversary should not be able to predict the value of K.
This is model is known as the auxiliary input [DKL09] or hard-to-invert leak-
age [FHN+12]. We refer to this class of functions as hINV:

Definition 8. Let K be a random variable over space χ1. The randomized map
L is a (k, εunp, sunp)-hard-to-invert leakage if Hunp

εunp,sunp(K|L(K)) ≥ k.

We make no condition in the above definition about K unconditionally. For K
to be unpredictable with L(K) it must have unconditional unpredictability at
least k.4 Hard-to-invert leakage seems like the weakest leakage class for which
applications can retain security.

4 In the unconditional setting, there is a polynomial time circuit that predicts K with
probability 2−H∞(K). That is, H∞(W ) = Hunp

εunp,sunp(K).
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3 Simulatable Leakage

Standaert, Pereira, and Yu [SPY13] introduce a new leakage class designed to
be achievable and verifiable. Simulatable leakage is leakage that can be simu-
lated without access to the true secret state. We first present the definition of
Standaert, Pereira, and Yu [SPY13]. This definition is specific to the setting of
a block cipher (denoted BC) in the presence of leakage function L. For more
information on block ciphers and the definition see [SPY13].

Game sim(q,D,BC,L, S, b).
The challenger selects two random keys k and k∗ in {0, 1}n. The output of
the game is a bit b′ computed by D based on the challenger responses
to a total of at most q adversarial queries of the following type:

Query Response if b = 0 Response if b = 1

Enc(x) BCk(x),L(k, x) BCk(x), S(k
∗, x,BCk(x))

and one query of the following type:

Query Response if b = 0 Response if b = 1
Gen(z, x) S(z, x, k) S(z, x, k∗)

Definition 9. [SPY13, Definition 1] A block cipher BC with leakage function
L has (ε, ssim, ssec) q-simulatable leakages if there is a simulator S, of size ssim,
for every D, of size ssec, , we have:

δ(sim(q,D,BC,L, S, 1), sim(q,D,BC,L, S, 0)) ≤ ε.

3.1 Extending Simulatable Leakage to General Applications

Definition 9 is specialized to the setting of symmetric-key cryptography. In par-
ticular, the second type of query exists because the authors argue that symmetric
keys are often derived from sources that themselves have leakage. It is not clear
how to generalize this type of query to arbitrary leakage settings. In addition,
providing a single key to S as consistent state is limiting, it is not clear why the
simulator should not be allowed to keep state between leakage queries. Further-
more, the fact that leakage is provided with each output of the block cipher is
not a necessary requirement. There may multiple leakage queries for each block
cipher output or vice versa. Furthermore, the distinguisher does not have any
access to k when trying to decide if the leakage is legitimate. In different ap-
plications, the distinguisher may have partial access to the secret state k. We
present two definitions modeling the two extremes, one where the distinguisher
has full access to the secret and one the secret is completely hidden. Our defi-
nitions consider two random variables K and Y that represent the private and
public state of the cryptosystem (but we do not include this distinction in the
definitions).
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Definition 10. Let (K,Y ) be a pair of random variables over χ1 × χ2. The
randomized map L is an (ε, ssim, ssec)-weakly simulatable leakage function if
there exists a simulator S of size at most ssim such that

δDssec ((Y,L(K)), (Y, S(Y ))) ≤ ε.

Definition 11. Let (K,Y ) be a pair of random variables over χ1 × χ2. The
randomized map L is an (ε, ssim, ssec)-strongly simulatable leakage function if
there exists a simulator S of size at most ssim such that

δDssec ((K,Y,L(K)), (K,Y, S(Y ))) ≤ ε.

We use wSIM and sSIM as shorthand for weakly and strongly simulatable
classes respectively.

Proposition 3. If L is (ε, ssim, ssec)-strongly simulatable leakage function, then
L is a (ε, ssim, ssec)-weakly simulatable. That is, wSIM ⊆ sSIM.

Notes: These definitions do not model secret key updates. We assume a single
leakage query. Alternatively, we can think of an adversary that prepares all of
their multiple leakage queries simultaneously. This is slightly weaker than the
definition of Standaert et al.

We also assume that Y incorporates all public values of the scheme. This may
include a public-key, ciphertexts, signatures, etc. In the work of Standaert et al.,
this is assumed to be the input and output of the block cipher with the true key.

Meaningfulness of Weakly Simulatable Leakage. Some restriction on Y
is necessary to make weakly simulatable leakage meaningful. If Y is empty, the
leakage L(K) = K is simulatable by sampling a fresh secret key K ′. However,
there is no security remaining in the system. In particular, in this setting, there
is no min-entropy, HILL entropy, or unpredictability entropy remaining in the
key. Indeed, when there is no public Y , any polynomial time function is sim-
ulatable (by sampling a fresh k ← K and outputting f(k)). This gives us the
following proposition:

Proposition 4. Let K be a random variable over χ1 samplable by procedure
Sample of size ssam and let Y be empty. Let f : χ1 → {0, 1}∗ be a function
computable by a circuit of size |f |. Then f is a (0, ssim,∞)-weakly simulatable
leakage if ssim ≥ |f |+ ssam.

It is not just empty Y that presents a problem to weakly simulatable leak-
age. It may be possible to leak the entire secret even when it is information-
theoretically determined by the condition Y . For example, if the public state is
a Diffie-Hellman exchange ga, gb, then the key gab can be leaked (since a fresh
gc is indistinguishable).

To prevent these leak-and-resample simulators, we assume it is hard to find
k values consistent with the public information. We use the notation of witness
hiding from zero-knowledge.



Unifying Leakage Classes: Simulatable Leakage and Pseudoentropy 79

Definition 12. Let K,Y be random variables and let R be a relation (com-
putable by a circuit of size srel) where Pr[R(K,Y ) = 1] = 1. The public state
Y is a (srel, sinv, εrel)-witness hiding relation if for all I of size at most sinv,
Pr[R(I(Y ), Y ) = 1] ≤ εrel.

Note: If it is hard to find keys that are consistent with plaintext/ciphertext
pairs, then the definition of Standaert et al. also has a witness hiding condition.

When discussing weakly simulatable leakage, we consider public information
that is witness hiding of the secret stateK. Witness hiding implies unpredictabil-
ity of H

unp
0,sinv

(K|Y ) ≥ − log(εrel). We first discuss strongly simulatable leakage
and then weakly simulatable leakage. We discuss how to apply simulatable leak-
age to the circuit leakage model in Appendix A.

4 Strongly Simulatable Leakage

In this section, we show that all strongly simulatable leakages preserve in-
distinguishability. We use the relaxed notion of HILL entropy. We show that
sSIM ⊆ rIndist. In the next section, we show that bLEN �⊆ wSIM which implies
that bLEN (and thus rIndist)) are not contained in sSIM.

Lemma 4 (sSIM ⇒ rIndist). Let K be a distribution over χ and let Y be some
public information. Let HHILL-rlx

εent,sent
(K|Y ) ≥ k and let L be a (εsim, ssim, ssec)-

strongly simulatable leakage function. Then HHILL-rlx
ε′,s′ (K|Y,L(K)) ≥ k for ε′ =

εent + εsim, s′ = min{ssec, sent − ssim}.

Proof. Fix L and let S be a simulator of size at most sent. Define the circuit
S′ that on input y outputs y, S(y) and note that S′ is of size ssim. Then by
Lemma 2 the simulator does not decrease relaxed HILL entropy,

HHILL-rlx
εent,sent−ssim(K|Y, S(Y )) = HHILL-rlx

εent,sent−ssim(K|S′(Y )) ≥ k.

Thus, there exists some K ′, Y ′, Z ′ where H̃∞(K ′|S′, Y ′) ≥ k such that

δDsent−ssim ((K,Y, S(Y )), (K ′, Y ′, Z ′))) ≤ εent.

By simulatability, we have that

δDssec ((K,Y,L(K)), (K,Y, S(Y ))) ≤ εsim.

Finally, by the triangle inequality,

δDmin{ssec,sent−ssim}((K,Y,L(K)), (K ′, Y ′, Z ′))) ≤ εsim + εent.

5 wSIM and rIndist

In the previous section, we showed that strong simulatability of a leakage function
implied relaxed HILL entropy. However, this does not carry over to the setting of
weak simulatability. In this section we show that simulatable leakage is
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incomparablewith indistinguishable leakage functions.We showabounded leakage
function that is not simulatable (bLEN �⊆ wSIM) and a simulatable leakage function
that removes all relaxed pseudoentropy from the secret (rIndist �⊆ wSIM). Since
bounded length leakage functions are contained in Indist (and rIndist) this also
shows that rIndist �⊆ wSIM. In this section, we assume that the public information
is witness hiding of the secret state (Definition 12).

5.1 wSIM �⊆ rIndist

There are simulatable leakage functions that remove all HILL-rlx.

Lemma 5 (wSIM �⊆ rIndist). Let K = (K1,K2) where K1 ∈ {0, 1}�1 and
K2 ∈ {0, 1}�2 be uniformly distributed. Let f be an (εowp, sowp)-injective one-
way function from {0, 1}�1 → {0, 1}�3 computable in size |f |. Let Y = f(K1).
Then H∞(K|Y ) = �2. The function L(K) = K2 is (0, �2,∞)-weakly simulatable
and HHILL-rlx

ε,ssec (K|Y,L(K)) ≤ − log(1− ε) if ssec ≥ sowf + �1 + �2.

Proof. We first prove that for K,Y where Y = f(K) and f is a function com-
putable in size |f |, K|Y has almost no min-entropy remaining. We first show
that Y,L(K) removes all HILL-rlx from K.

Lemma 6. Let K be a random variable over {0, 1}�, {0, 1}�2 and let f : {0, 1}�1
→ {0, 1}�2 be an injective function computable by a circuit of size |f |. Then

HHILL-rlx
ε,|f |+�1+�2

(K|f(K)) ≤ − log(1− ε).

Proof. Let K ′, Z ′ be a distribution

δD
ssec

((K, f(K)), (K ′, Z ′)) ≤ ε.

Consider the distinguisher

D(k, z) = 1 if and only if f(k) = z).

Clearly E[D(K, f(K))] = 1. By indistinguishability, E[D(K ′, Z ′)] ≥ 1 − ε. This
means that

E
z←Z′

D(K ′|Z ′ = z, z) ≥ 1− ε.

For all z there is a unique k ∈ {0, 1}�1 such that D(k, z) = 1, denote this value
by kz . This means that Ez←Z′ Pr[K ′ = kz|Z ′ = z] ≥ 1 − ε. We then have the
following:

E
z←Z′

max
k

Pr[K ′ = k′|Z ′ = z] ≥ E
z←Z′

Pr[K = kz|Z ′ = z] ≥ 1− ε.

Taking the negative logarithm of each side yields that H̃∞(K ′|Z ′) ≤ − log(1−ε).
This completes the proof of Lemma 6.

Lemma 6 implies that HHILL-rlx
ε,ssec (K|Y,L(K)) ≤ − log(1− ε).

Y is a (|f |, sowp, εowp), witness hiding relation of K where the relation is

R(k1, k2, y) = (f(k1)
?
= y). The simulator S for L computes a uniform sample

from {0, 1}�2. This is identically distributed to L(K) and takes �2 size to com-
pute. Since there is a unique k1 for each y, H̃∞(K|Y ) = H̃∞(K2|Y ) = H∞(K2).
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5.2 bLEN �⊆ wSIM

We now show a leakage function of bounded length that cannot be simulated.5

We will use a secure signature scheme and leak a valid signature. This leakage
function has been used previously to demonstrate the difficult of constructing
leakage resilient signature schemes [FHN+12]. We need a signature scheme that
is hard to forge and a signature does not determine the secret key completely. We
begin by describing the EU-RMA notion of signatures from Goldwasser, Micali,
and Rivest [GMR88].

Definition 13 (EU-RMA). A signature scheme Σ = (Gen, Sig,Ver) is
(q, ssec, ε)-existential unforgeable against random message attacks if for all cir-
cuits A of size ssec the following holds:

Pr
(pk,sk)←Gen(·)

[m1, ...,mq ← M∧ σi ← Sig(mi, sk)∧

(m∗, σ∗) ← A(m1, ...,mq, σ1, ..., σq, pk)

∧m∗ �= mi ∧ Ver(pk,m∗, σ∗) = 1] < ε

Under this definition a signature must not be simulatable. To ensure that the
secret key still has high entropy we need a signature scheme where multiple
private keys exist for each public key. We use a scheme where it is hard to find a
candidate private key for each public key (making the public key witness hiding).
We use Lamport’s one-time secure signature scheme [Lam79].6

Construction 1. Let f be a (εowf , sowf)-one-way function mapping {0, 1}kc →
{0, 1}k for c > 1:

Key Generation: Choose random xi,0, xi,1 ← {0, 1}kc

for i = 1, ..., �. Compute
yi,b ← f(xi,b) for i ∈ {1, ..., �} and b ∈ {0, 1}. The public key is pk = {yi,b}
and the secret key is {xi,b}.

Signing: The signature on a k-bit message m = m1, ...,mk consists of the k
values x1,m1 , ..., xk,mk

.
Verification: Given x1, ..., xk and m = m1, ..,mk and pk = (s, {yi,b}), output

1 iff yi,mi

?
= f(xi) for all i.

Lemma 7. Construction 1 is a (1, εowf , sowf)-secure signature scheme. Fur-

thermore H̃∞(SK|PK) ≥ 2�kc − 2�k. Furthermore for any message m,

H̃∞(SK|PK, SigPK(m)) ≥ �kc − 2�k.

5 This also shows that Indist �⊆ wSIM and rIndist �⊆ wSIM.
6 This scheme was used in the setting of leakage-resilient cryptography by Katz and
Vaikunatanathan [KV09]. They extend Lamport’s scheme making the function col-
lision resistant and using error correcting codes. Lamport’s original scheme suffices
for our purposes.
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Proof. We omit the proof that the scheme is secure (and that Y = PK is witness
hiding of X). We have the following for the entropy calculations by [DORS08,
Lemma 2.2], H̃∞(SK|PK) ≥ 2�kc − 2�k. Similarly, for any m H̃∞(SK|PK,
SigPK(m)) ≥ 2�kc − 2�k − �kc ≥ �kc − 2�k.

Lemma 8. Let (Gen, Sig,Ver) be as above for some c > 1, let K = SK, Y =
PK. Then for any message m the function L(K) = SigSK(m) is not simulatable
by any S of size ssec ≤ sowf with ε ≤ εowf . Furthermore, H̃∞(SK|PK,L(K)) ≥
�kc − 2�k (and thus, HHILL

0,∞ (SK|PK,L(K)) ≥ �kc − 2�k).

Proof. The lack of a simulator follows from the one-time security of the signature
scheme. The remaining entropy follows from Lemma 7.

6 wSIM � hINV

In the previous section, we showed that weakly simulatable leakage and indis-
tinguishable leakage are incomparable. In this section, we turn to hard-to-invert
leakage. We show that weakly simulatable leakage preserves unpredictability but
there are leakage functions that preserve unpredictability that are not simulat-
able. Our results assume Y is witness hiding.

6.1 wSIM ⊆ hINV

We show the ability to predict K given both Y and L(K) is not significantly
different than the ability to predict the witness given just Y .

Lemma 9. Let K,Y be a pair of random variables. Let R be a (srel, sinv, εrel)-
witness hiding relation on K,Y . If L be a (εsim, ssim, ssec)-weakly simulatable
leakage for (K,Y ). Then Hunp

0,s′inv
(K|Y,L(K)) ≥ − log(εrel + εsim) for s′inv =

min{ssec − srel, sinv − srel}.

Proof. Let S be a simulator of size ssim for L. Suppose there exists an inverter
I of size s′inv such that Pr[I(Y,L(K)) = K] > εrel + εsim. To arrive at a
contradiction it suffices to show there exists an inverter I ′(Y ) of size s′inv+ssim ≤
sinv and succeeds with probability > εrel. Define I ′(y) = I(y, S(y)).

Claim. Pr[R(I(Y, S(Y )), Y ) = 1] ≥ Pr[R(I(Y,L(K)),K) = 1]− εsim ≥ εrel.

Proof. Recall that δDssec ((Y,L(K)), (Y, S(Y ))) ≤ εsim. Suppose for contradic-
tion that

Pr[R(I ′(Y, S(Y )),K) = 1] < Pr[R(I ′(Y,L(K)),K) = 1]− εsim.

We present a distinguisher D of size s′inv + srel ≤ ssec:

– On input y, z.
– Run x ← I ′(y, z).
– Output 1 if and only if R(x, y) = 1.
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Then

Pr[D(Y,L(K)) = 1]− Pr[D(Y, S(Y )) = 1]

= Pr[R(I(Y,L(K)),K) = 1]− Pr[R(I(Y, S(Y )),K) = 1] > εsim.

This is a contradiction. This completes the proof of the claim and the proof of
the lemma.

6.2 hINV �⊆ wSIM

In the previous section, we saw that simulatable leakage preserves unpredictabil-
ity. In this section, we show this containment is tight.

Lemma 10. Let f1 : {0, 1}�1 → {0, 1}�2 be (s1, ε1, U�1)-one way and let f2 :
{0, 1}�2 → {0, 1}�3 be s2, ε2, f(U�1)-one way. Then for K = U�1 , Y = f2(f1(K)),
L(K) = f1(K) the following hold:

1. H
unp

0,s1−|f2|(K|Y,L(K)) ≥ − log (εowf,1).

2. L is not (|f2|, s2, 1− ε2)-weakly simulatable.

Proof. We prove each statement in turn. Suppose Statement 1 is not true, that
is, there exists an inverter I ′ of size s1 − |f1| that inverts f2 ◦ f1|f1. Then
I(y) = I ′(y, f2(y)) is an inverter for f1.

Now suppose that Statement 2 is not true. Then there exists a simulator S
of size s2 that simulates f1(K). That is, δDssec ((Y,L(K)), (Y, S(Y )) < 1 − ε2.
Consider the following distinguisher D (of size |f2|):

– Input y, z.
– Output 1 if and only if y = f2(z).

Clearly, E[D(Y,L(K))] = 1. Thus, by indistinguishability, E[D(Y, S(K))] ≥ 1−
(1− ε2) ≥ ε2, this is a contradiction.
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A Extending Simulatable Leakage to the Circuit Model

A.1 Leakage Classes in the Circuit Model

In this section we provide a brief introduction to the circuit leakage model and
discuss the applicability of simulatable leakage to the circuit leakage model. The
main difference between the circuit and memory leakage model is that the leakage
function leaks on a particular implementation of a cryptographic primitive. (In
the memory leakage model, leakage is only on the private state.) Most circuit
leakage classes assume leakage is “local” to the computation. This makes the
leakage class sensitive to the implementation. C represent a circuit with wires
C1, ..., Ck (with the first wires representing the inputs and final wires representing
the outputs).

– Probing [ISW03]. Let The adversary specifies a subset L ⊂ C1, ..., Ck (of
bounded size) and sees the values of all wires in L. L may include some
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of the secret input, intermediate values, and output values. However, the
leakage function is not allowed to compute on parts of the computation
simultaneously, the leakage function can only learn the value of individual
wires.

– Computationally Bounded [FRR+10]. Faust et al. [FRR+10] hypothesize
that leakage can be modeled by low complexity circuits. As an example, they
show how to protect circuits against leakage in AC0. They secret share state,
security critically relies on the inability of AC0 circuits to compute parity.

– Noisy [CJRR99,FRR+10]. It is not clear how to precisely determine the
computational complexity of a side-channel attack. However, most side-
channel attacks are known to contain significant noise. The work of Faust
et al. [FRR+10] also proposed modeling leakage function as an arbitrary
function L applied to the secret state with an additive noise term N .

Recent work of Duc, Dziembowski, and Faust [DDF14] shows how to simulate a
noisy leakage function using a probing leakage function.

A.2 Adapting Simulatable Leakage to the Circuit Model

We now provide a definition of simulatable leakage that can be used in either
the memory or circuit leakage models. As before, we can define both a weak and
strong version. We present only a weak version for simplicity.

Definition 14. Let (K,Y ) be a pair of random variables over χ1 × χ2 and C
be a encoding function such that C : χ1 → ζ. The randomized map L is an
(ε, ssim, ssec, C)-weakly simulatable leakage function if there exists a simulator
S of size at most ssim such that

δDssec ((Y,L(C(K))), (Y, S(Y ))) ≤ ε.

Notes: Taking the encoding function to be the identity function yields the mem-
ory leakage model. The above definition depends on the encoding function and
the leakage class. As an example, for a fixed leakage function, there may be
a simulator for only some encoding functions. The work of Ishai, Sahai, and
Wagner [ISW03] builds an encoding function where the probing side-channel is
simulatable (security of the encoded circuit is shown through simulation).
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classical communication. However, we show that an implementation us-
ing quantum communication does exist. In particular, we propose a simple
“prepare-and-measure” typeprotocolwhichwe showsecure using anew re-
sult on sampling from a quantum population. Although the protocol may
produce a small number of incorrect pairs, this is sufficient for leakage re-
silient computation by our other results. To the best of our knowledge, this
is the first time a quantum protocol is used constructively for leakage re-
silience.

Note that the full version of this paper is available at [6].

1 Introduction

In this paper, we consider secure leakage-resilient computation, more precisely
solutions to two different types of problems, known as leakage resilient two-party
computation (LR2PC) and leakage resilient circuit compilation (LRCC).

In LR2PC, two parties A and B want to compute a (possibly probabilistic)
function securely on private inputs. Both parties are assumed to follow the pro-
tocol. There is an adversary who may obtain leakage from the internal state
of the players, say by some side channel attack, but we still want to keep the
private inputs and outputs “as private as possible”.

In the closely related problem of LRCC, there is only a single device that
carries out a computation (usually given as a Boolean circuit) on public input
and output. The goal is to make sure that an adversary who gets to choose the
input and is given the output, will learn nothing more than the input/output
behaviour, even if he can leak from the internal state of the device. The compu-
tation may in addition depend on some secret data that should be completely
protected. Think, for instance, of a device that uses a secret key to decrypt or
sign data: we are fine with revealing the output but want to hide the secret key.

We need, of course, a meaningful notion of security for protocols claiming to
solve such problems. For this, we clearly need to somehow limit the leakage that
the adversary can get, and there is a lot of previous work considering various
types of restrictions. In this paper we consider a new and enhanced version of
the “only computation leaks” model proposed by Micalin and Reyzin in [11].
They assume that the computation of a party under attack is split into several
smaller parts. The adversary may submit one or more leakage functions, where
each function must address a certain part of the computation. The function is
applied to only the data that is actually used during this part of the computation,
and the result is returned to the adversary. It is assumed that only some bounded
number of bits can leak from each part of the computation.

Our enhancement to the model is to allow not only leakage from sub-
computations, but also a bounded amount of leakage from the global state of
the party under attack. Typically, the allowed amount of global leakage will be
comparable to what is allowed from a single part of the computation. This clearly
makes the adversary stronger, but also more realistic: in a real life, an adversary
might use a combination of several side channel attacks, and completely avoiding
global leakage in such a case may be extremely difficult.
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Security for LR2PC now means that the leakage obtained by the adversary
can be (efficiently) simulated, however, when the adversary leaks from a part
where private inputs or outputs are touched, the simulator is allowed to leak the
same number of bits from those inputs/outputs. For LRCC, we require that the
leakage can be simulated given only the public inputs and outputs. We empha-
size that we consider throughout unbounded adversaries and leakage functions,
nevertheless we demand that all simulators and honest parties be efficient.

For LR2PC, a UC based definition of leakage resilience was given in [2]. Also
a few examples were given of two party protocols for specific functionalities
(based on various computational assumptions). In [3], generic leakage resilient
multiparty computation protocols were constructed, again under a computa-
tional assumption.

For LRCC, Dziembowski and Faust in [8] (see also [7]) have shown a general
unconditionally secure method. As they explain in their paper, their construction
can be interpreted in a natural way as being derived from a two-party protocol
for parties A and B in the only-computation-leaks model (where two physically
separated parts of the device plays the parts of A and B). They assume that so-
called leak-free gates are available, or equivalently, parties are given access to an
ideal functionality fOrt which will on request produce a random pair of vectors
u,v over some finite field, subject to u · v = 0 and give u to A and v to B. It is
assumed that nothing about the internal computation of fOrt leaks to the adver-
sary. The idea is to use the vectors from the leak-free gates to refresh the state
in between different parts of the computation, such that leakage from different
parts will become (essentially) uncorrelated. The drawback of this solution is
that an implementation will require secure hardware components, even if these
are much simpler than the device we want to protect. Goldwasser and Rothblum
[9] improve this using a different method that does not use leak-free gates during
the computation, but instead assumes that the device initially has a randomised
state, a so-called ciphertext bank. They then use this as well as fresh randomness
as a source for refreshing. Also this construction is in the only-computation-leaks
model. The adversary does not get leakage from the computation that generates
the ciphertext bank, so one can think of this as allowing access once and for
all to a leak-free component (with output size depending only on the security
parameter) before the computation starts.

It is of course natural to ask if we can make do with no leak-free components
at all? In particular, can we securely implement fOrt by a two-party leakage
resilient protocol?

Our Contribution. In this paper, we make the following contributions:

– We generalise the protocol in [8] to show that we can do, not just LRCC, but
general LR2PC given access to fOrt. To the best of our knowledge, this is the
first result of its kind. On the way, we propose a new framework for defining
security of LR2PC where global leakage from the entire view of the party
under attack is (also) allowed. This is a strictly stronger leakage model than



90 I. Damg̊ard, F. Dupuis, and J.B. Nielsen

that of [8, 9]. The definition is much simpler than the UC based definition
of [2] while still supporting modular composition.

– Our construction works even given a partially corrupted version of fOrt

where the adversary is allowed to corrupt a constant fraction of the calls
to fOrt and choose the output vectors himself. The result improves on [8]
and is incomparable to [9]: we need a (partially) leak-free source during the
computation but on the other hand we allow active corruption of it under a
stronger leakage model.

– We show that general LR2PC is impossible in the plain version of our model,
where no auxiliary functionalities are assumed.

– We show that also general LRCC is impossible in the plain model. For this
result, we need a computational assumption to exhibit a function that can-
not be computed securely. The result rules out only protocols with perfect
correctness. On the other hand, impossibility holds even if the simulation for
the protocol is only computationally close to the real view. All constructions
we are aware of have perfect correctness.

– From the results mentioned, it follows easily that there is no unconditionally
secure and leakage-resilient implementation of fOrt, not even for a somewhat
unreliable version. It also follows that the ciphertext bank of [9] cannot be se-
curely created, starting from scratch (except if the implementation produces
incorrect output with non-zero probability).

– We show that the orthogonal vector problem does have an unconditional so-
lution using quantum communication, in particular we provide a relatively
simple “prepare-and-measure” type protocol. We show security using a new
technical result of independent interest on sampling from a quantum popu-
lation. This gives us LR2PC for an adversary whose quantum memory lasts
only a bounded amount of time, and we get LRCC for a completely un-
bounded quantum adversary. To the best of our knowledge, this is the first
time a quantum protocol is used constructively for leakage resilience.

It should be noted that the impossibility of LR2PC from scratch follows be-
cause a secure protocol in our model is also passively secure in the standard
(non-leakage) model (see the following section for details). Not only does this
show that correlated randomness is necessary, it also follows that the amount
of such randomness must depend on the size of the secure computation: if we
had a generic two-party computation protocol using a fixed amount of random-
ness, we could use it to implement any number of oblivious transfers from such
fixed-size randomness, and this is well known to be impossible. In our protocol,
the number of calls we make to fOrt is proportional to the circuit size of the
function we compute, so the argument we just gave says that this is in some
sense necessary. Note that the result of [9] does not contradict this as it is does
only circuit compilation in a weaker leakage model.
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2 Techniques and Ideas

In this section, we explain the techniques used in the paper and how they fit
together.

The classical results. In Section 3, we define a framework for secure LR2PC. In
order to support modular composition we require so-called full-view simulation.
This is a notion inspired by leakage oblivious simulation as defined in [2], and it
means that the simulator must produce a full simulated view for a given player,
and leakage is then simulated by applying the adversary’s function to that view1.

An important observation is then that a secure protocol for general LR2PC
in our model is also a passively secure general protocol for 2-party computation
in the standard model [4]. We prove this in Lemma 1 of the full version. This is
because the computation of a passive adversary D can be emulated by a leakage
adversary: it can hardwire D’s algorithm into a leakage function that will be
applied to the full view of the player under attack. This works because we allow
a small amount of global leakage, and here we just need to get one bit back,
namely D’s guess at whether it looks at a real or a simulated view. It follows
that this leakage adversary together with the leakage simulator can act as an
ideal model adversary in the model from [4].

This observation is important because it immediately implies that uncondi-
tionally secure LR2PC in the plain model (with no auxiliary functionalities) is
impossible, and this paves the way for our negative result: in Sections 2.2–2.4
of the full version, we extend the LRCC protocol from [8] to a protocol for gen-
eral LR2PC, assuming access to fOrt. This construction allows us to conclude
that an unconditionally secure implementation of fOrt is impossible: any such
implementation could be plugged into our LR2PC protocol and would result in
secure LR2PC from scratch which is impossible. The technical contribution is to
modify the protocol and proof of [8] to ensure that the simulator does not need
to leak from a party unless the adversary does so. In particular, the simulator in
[8] uses one bit of leakage when simulating the so-called refresh protocol, even
if the adversary requests no leakage. This is fine for LRCC but will not work
for LR2PC. For instance, it might force the simulator to leak from the inputs of
both parties even if the adversary only asked for leakage from one party.

In Section 3.1, we show that unconditionally secure LRCC is also impossible
in general without set-up assumptions, assuming the protocol always outputs
correct results. The idea is to show that we cannot have an LRCC protocol for
computing a pseudorandom generator on a secret key. For this, we consider an
LRCC protocol as a multi-player protocol where we think of each unit of com-
putation that can be leaked from as a player, and where the data that is passed
between units is thought of as messages sent between players. The technical idea
is to define a leakage adversary in a clever way: once the computation is done,
it will first force the simulator S to commit to all the communication between

1 We argue in Section 2.6 of the full version that this is in some sense the right
simulation notion and is anyway often implied by seemingly weaker requirements.
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players by leaking from each player Pi a set of hash values, namely for each Pj

the hash of messages exchanged between Pi and Pj (of course the same hash-
value must be output from Pj). Finally, the adversary will leak from each Pi a
succinct proof of knowledge that it knows a complete view for Pi (input, random
coins and messages) that is consistent with the hash values and the public out-
put y. Say y is good if it is a possible output from the PRG. Now, in real life y is
always good and acceptable proofs would always be produced, so for a good y,
S must succeed in giving acceptable proofs with overwhelming probability. But
for a bad y, S has to fail: if it succeeds, we could extract from S a complete view
of the entire computation resulting in y being output, but no such view exists
for a bad y, by perfect correctness. It follows that S is breaking the security of
the PRG. Note that this argument works, even if S produces output that is only
computationally close to real leakage, so it is only correctness that needs to be
perfect. All protocols we are aware of are perfectly correct.

Section 4 shows that we can have unconditionally secure LR2PC even given
an unreliable version of fOrt, where the adversary has corrupted a constant
fraction of the calls. This is motivated by the fact that our quantum protocol
can only emulate such an unreliable functionality. The main technical idea of
the construction is to not compute directly a circuit C for the desired function,
but instead a fault tolerant circuit C′ computing the some result. We start from
a perfectly secure MPC protocol that computes securely the same function as
C. The protocol should have 3k + 1 players and be secure against corruption of
k players, for instance [1]. Write down the computation done by the protocol as
a circuit C′. There will be a sub-circuit corresponding to the local computation
done by each player and wires between sub-circuits for the messages exchanged.
We now use our LR2PC protocol to compute C′, and we show that if we apply
some extra tests to the output from the unreliable fOrt and do some extra
refreshing, the adversary can effectively only corrupt or leak from at most k of
the sub-circuits of C′. Security then follows from security of the MPC protocol.

The quantum result. For the quantum part of our results, our basic observation
is as follows: if we consider two (physically separated) sets of particles, quan-
tum mechanics allows the entire system to be in an entangled state, and this
means that if we give one set to A and the other to B and ask them both do
a measurement on what they received, then the results they get will be highly
correlated. In particular, if we put 2n particles in the right state and give A and
B n particles each, then the measurements are guaranteed to output 2 orthogo-
nal n-vectors u,v. Moreover, the mere fact that the particles of A and B are in
a pure entangled state implies that no third party can obtain any information
on the measurement results. Therefore, to solve our problem, we “only” need to
design a protocol that can supply A and B with enough copies of the right state.
As we explain shortly, this can be done using known methods, but this imposes
rather unrealistic demands on the technology A and B must use. We therefore
suggest a different protocol that is simpler to implement but technically much
more challenging to prove secure.
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In more detail, the quantum result works as follows: we introduce an extra
component Q that one may think of as a replacement for fOrt. Q will prepare
quantum states and send them to A and B. However, we do not assume secure
hardware so we allow the (unbounded) adversary to remove Q and instead pre-
pare himself the states to be sent2. We must therefore allow for the possibility
that the protocol terminates with no output. Finally, all random choices by A
or B during the protocol are leaked to the adversary as soon as they are made 3.
In this model, we obtain solutions that leak no information on the output u,v.

One such solution can be designed as follows: one can use a quantum key
distribution protocol to generate a set of essentially perfect EPR pairs shared
by A and B, where in particular the adversary is essentially unentangled with
the state held by A and B. We then ask A to prepare a bipartite state that is a
superposition over all pairs of orthogonal vectors. Then we use the EPR pairs to
teleport one part of this state to B, which only requires local quantum operations
and classical communication. Finally, measuring the state on both sides will
produce exactly the output we need. However, this is not a satisfactory solution:
it requires quantum storage and computation, and so is very far from what
current technology allows. Also, if A and B store and compute on a quantum
state for some time, it makes sense to ask what happens if the adversary can
leak from the quantum state. It is not entirely clear what this should mean and
how to protect against it.

In Section 5.1, we therefore propose a new protocol in which A and B measure
immediately the states they receive. Although the required states may be non-
trivial to prepare, this is certainly much closer to current technology than the
first solution. Note that in this case, the only edge we have on the adversary is
that he must choose the states to send before seeing the random choices A and
B use later. This is a minimal assumption: if the adversary knows all random
choices in advance, A and B have no chance to verify the states they receive.

Similarly to QKDprotocols,what we need tomake this idea work is a test thatA
andB can use to make sure that they have copies of the right state. The test we use
is not surprising: A and B measure some of the copies in the computational basis,
others in the Hadamard basis. If the results match the statistics we expect from
the right state(s), we would like to conclude that the untested states are (mostly)
correct. In QKD we typically use EPR pairs,, and then A and B can expect to
always get the same measurement results if they have correct states. However, for
our states, the measurement results that we expect from the correct states are
probabilitistic mixtures (i.e. we do not expect to always get the same answer even
if the adversary is not cheating), and henceA andB can only compare their results
in a probabilistic sense. This means that known results on quantum sampling are
not sufficient. So the main technical challenge we solve here is to obtain a new and

2 Equivalently, we could let A prepare the states and send them to B, but allow the
adversary to tamper arbitrarily with the quantum communication.

3 This is similar to the standard model for quantum key distribution, where these
choices are sent on a classical channel that the adversary can observe but not tamper
with.
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more general sampling result, see Theorem 5. We strongly believe that this result
is of independent interest.

By combining this with our classical results, we immediately obtain general
LR2PC for a quantum adversary whose quantum memory “dies” after a certain
time, and with additional work, we obtain LRCC for a completely unbounded
quantum adversary, in Section 5.

To summarise, this gives us a way to do LRCC even if Q is replaced by an
arbitrary adversarial (quantum) component, assuming (as usual) that the adver-
sary can only leak independently from different parts of the actual computation.
Of course, we do not mean to suggest that this is more practical than using
leak-free classical gates or ciphertext banks, but we do claim that the solution
is fundamentally different since we need no leak-free components at all. Finally
we also want to emphasise that by showing that the orthogonal vector problem
has a quantum solution but no classical solution, we enhance our understanding
of which extra power quantum communication can buy us. We believe this is of
fundamental interest, independently of leakage resilience.

3 Leakage-Resilient Two-Party Computation from
Orthogonal Vectors

Due to space restrictions, we cannot give the detailed description here, of our
model for leakage resilient 2-party computation. All details and proofs of results
can be found in Section 2 of the full version.

An adversary attacking the protocol may submit leakage functions that will
be applied to a designated part of the view of one of the parties. It is assumed
that at most a bounded number of bits leak from each part.

The security definition follows the real/ideal world paradigm and negl(k)-
leakage resilience means that the simulation has statistical distance negl(k) to
the real view, where negl() is a negligible function and k is the security parameter.
We require separate simulators (sharing a source of randomness) for simulating
the view of each party. In the ideal process, the leakage functions submitted by
the adversary are then applied to these views. We call this full-view simulation.
We require this in order to be able to prove (in Theorem 1 of the full version)
that our security notion composes sequentially. We also prove (in Lemma 1 of
the full version), that a protocol computing a function f securely in our model is
also a semi-honestly secure implementation of f in the standard sense according
to the definition from [4].

When we construct concrete protocols, we will consider what we call a λ/2-
adversary, who is allowed to leak at most λ/2 bits from each part of a player’s
view. A similar amount of global leakage is also allowed. The parameter λ comes
from the way our protocols represent secret bits, namely each party holds a
binary vector such that the inner product is the bit in question. By choosing
long enough vectors, λ can be linear in the security parameter.

Our first main positive result is that there exist leakage resilient 2-party pro-
tocol for computing any function f if the parties are given oracle access to a
function fOrt that outputs a pair of orthogonal vectors, one to each party.
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Theorem 1. There exists a protocol πfOrt

f that is a full-view negl(k)-leakage
resilient implementation of f against the λ/2-class of adversaries in the fOrt-
hybrid model.

We can then consider replacing the calls to fOrt in πfOrt

f by calls to a full-
view leakage-resilient implementation πOrt, resulting in a protocol we will call
πf . This is mainly for later proving certain such implementations impossible.

Theorem 2. If πOrt is a full-view negl(k)-leakage resilient implementation of
fOrt secure against an adversary leaking at most λ(n)/2 bits on each share,
then πf is a full-view negl(k)-leakage-resilient implementation of f against the
λ/2-class of adversaries.

3.1 Negative Results

It follows directly from the above theorem and Lemma 1 of the full version that
there exists no full-view negl-leakage resilient implementation πOrt of fOrt, as
we would have for all f a protocol π securely realizing f in the sense of [4] against
a computationally unbounded adversary corrupting any one party in the model
with secure communication. It is well known that we cannot have such a thing.

We now prove that also unconditionally secure circuit compilation is impos-
sible in the plain model with only secure communication. In circuit compilation
there are no secret inputs or outputs, so the output is known to all parties, but
there might be a hidden secret state, like a key. To simplify matters, consider
a function gPRG which ignores the inputs from the parties and the state, it is
only a function of the first k bits of its own random tape, r say. Furthermore, it
gives no secret outputs. It gives a public output y = f(r) for a pseudo-random
generator f . We show that it is impossible to securely compute this function in
the plain model with an implementation which is perfectly correct.

When we prove impossibility of circuit compilation, it seems we have to give
up on getting an unconditional result. Instead, we show impossibility under
reasonable computational assumptions, namely those used in [10]. We assume
there exists a collision resistant hash function and a succinct proof of knowledge
with soundness 1/2, where the communication is Õ(k), see e.g. [10]. It might seem
odd that we need computational assumptions to prove that an unconditionally
secure protocol is impossible. However, for an intuition why this might be needed,
consider the case where P=NP. In that case it might be possible to compute all
functions with no secret inputs and outputs in a leakage resilient manner,4

Theorem 3. Under the computational assumptions in [10], there exists no per-
fectly correct and negl-leakage-resilient implementation of gPRG against an ad-
versary class allowing global leakage of Õ(k) bits, in the plain model with only
secure communication.
4 Consider, e.g., a function like gPRG but for an easy to invert f . If one can compute
r from s = f(r) efficiently, then one might just implement this function by letting
party 1 sample r uniformly at random and send s = f(r) to party 2 – technically
this is leakage resilient. If, on the other hand, f is a one-way function, then sampling
s in a leakage resilient manner appears much harder.
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Proof. We can assume that the length of the output of the collision resistant
hash function H plus the communication of the succinct proof of knowledge is
within the leakage-bound by setting n high enough. We prove that πgPRG has the
property that there exist an expected poly-time extractor X which given just
the output s = f(r) will produce, except with negligible probability, randomness
r1 and r2 for parties 1 and 2, such that running πgPRG with this randomness will
result in output s. Since our protocol is perfectly correct, it follows that s then
is also an output of f . Hence X is an almost perfect distinguisher of outputs
from f from random strings, which breaks the pseudo-randomness.

We conclude by sketching how X works. It starts with a leakage adversary,
and it works as follows: Given leakage access to πgPRG it will ask each party
to leak a hash h = H(M) of the transcript M of all messages exchanged with
the other party. These hashes will of course be the same, as we assume the
parties have noiseless communication and thus the same transcripts. Then it
will ask party i to leak a proof of knowledge of a string ri and a communication
transcript M ′ with the properties that H(M ′) = h and that if party i runs the
protocol with random string ri and the incoming message in M ′ it will produce
the outgoing messages in M ′. The proof might be interactive, but this is not a
problem as it can be simulated by one leakage query per round in the protocol.
The communication of the proof is within the leakage bound, so by assumption
we can simulate the view of X given just s. Call the simulator P . We can assume
we have P . By assumption the simulation cannot be distinguished from the real
execution, so in particular the proof will be accepting except with negligible
probability, which is bounded far away from the knowledge error of 1/2. So,
from black-box access to P (s) we can extract the proofs in poly-time. So, from
the soundness of the proofs we can extract r1,M

′
1 from party 1 and r2,M

′
2

from party 2. By the soundness of the proof and collision resistance, we have
that H(M ′

1) = h = H(M ′
2) except with negligible probability. By soundness we

have except with negligible probability that r1 and r2 are consistent with M ′
1

respectively M ′
2. So, we can let the output of X be (r1, r2).

Note that the same proof technique can be applied to show impossibility
of protocols satisfying the standard only-computation-leaks definition, i.e., only
independent leakage from each unit is allowed (and the protocol is not necessarily
derived from a 2-party protocol).

More specifically, we assume that: 1) Each unit which exchanges data with
c other units should allow adaptive leakage of O(c)Õ(k) bits. Furthermore, 2)
the protocol should be perfectly correct. Finally, 3) the protocol should allow to
compute a PRG on a secret state and give the expanded string as public output
and 4) the leakage should be efficiently simulatable given just this output.

In that case we build an adversary that leaks from each unit a hash of the
communication with each of the units with which it communicates, plus a suc-
cinct proof of knowledge of the hashed transcripts and a proof of knowledge of
a random tape consistent with the hashed transcripts. Since these leaked values
can be simulated given just the public inputs and outputs, we can turn the ef-
ficient simulator into an efficient and successful prover in the argument system.
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Then we can extract all the proofs, and we will get a consistent run of the pro-
tocol as in the above argument, which in particular will allow to verify that the
output is a pseudo-randomly generated string. So we have

Corollary 1. There exists no protocol for computing gPRG satisfying conditions
1–4 above.

The protocol from [9] does allow leakage of Õ(k) bits from each unit but is
not of the specified form because it assumes that the ciphertext bank is already
given. However, the above corollary rules out implementing the ciphertext bank
perfectly correctly from scratch in a way suitable for plugging into [9], as this
would result in a protocol contradicting the corollary5.

4 Leakage Resilient Computation from an Imperfect
Source of Orthogonal Vectors

In this section we consider again a Boolean circuit C that computes a two-party
function (y1, y2) = fC(x1, x2). We first show how to compile C into a new circuit
C′ that computes the same function but is more resilient to errors and specific
forms of information leakage. We then show how to use a partial corrupted source
of orthogonal vectors together with the previous construction applied to C′ to
get full leakage resilience against an adversary who may both leak information
and corrupt some of the pairs received from fOrt.

Securing against Faults and Some Leakage. We now compile C into a
circuit C′. The compilation takes the security parameter k as input and the size
of C′ will be polynomial in the size of C and in k.

It is well known that there exists a perfectly secure MPC protocol, computing
any function for 3k+1 players tolerating k actively corrupted players. We might
take the protocol from [1], for instance which is based on Shamir secret sharing.
More precisely, we will use a protocol σC that takes as input Shamir shares of
x1, x2 and computes securely Shamir-shares of the output (y1, y2) = C(x1, x2)
for all players, that is, each player gets as input a share of each of the bits
in x1, x2 and will output a share of each of the bits in y1 and y2. The total
computational complexity of σC is polynomial in k and the size of C. We let C′

be the circuit we get by specifying the internal computation of each player as a
circuit, and putting wires between players at each point where a message is to be
sent. Since in σC each player outputs a share of each bit in the result y1, y2, C

′

will output all such shares. We specify all wires carrying a share of y1 as output
wires for player 1 and wires carrying a share of y2 as output for player 2.

5 Note that it does not matter how many units communicate in the construction of
[9]: we could choose the security parameter for gPRG and the hash function so small
(but polynomially related to k) such that even if all units communicate, we can still
leak enough for the proof to go through.
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Let N be the number of players in σC , and let C′
i denote that part of C

′ that
corresponds to the i’th player in σC .

Note that, by security of σC , the outputs of corrupt players reveal nothing
beyond C(x1, x2). In fact, much more is true: even if the parts of C′ correspond-
ing to at most k players malfunction and/or leak information, we would still get
the correct result and nothing beyond C(x, y) would be revealed.

Getting Full Leakage Resilience. We now show how we can compile C′ into a
fully leakage resilient computation, however, we now consider a more adversarial
setting than in the previous section. Namely, we still assume access to fOrt, but
we allow the adversary to initially point out a set D of the calls to fOrt. For
these calls, he will be allowed to choose the output vectors in any way he wants.
Assuming there are m calls in total, the set D can be of size at most εm for a
constant 0 ≤ ε < 1. In addition, he may leak η bits in each leakage query. Such
an adversary is called a (η, ε)-adversary.

Our protocol works as follows:

Leakage Resilient Protocol for C: ΠC

1. Invoke fOrt m = 2|C′|k times, where |C′| is the size of C′. The output
vectors are stored by A and B.

2. A chooses a random test subset of the pairs of size m/2 and sends it to
B. The parties exchange the vectors in the test set and check that they are
orthogonal. If a non-orthogonal pair is found, the protocol aborts. Otherwise
the pairs in the test set are discarded.

3. A chooses a random permutation ξ on m/2 = k|C′| elements and sends it to
B. We think of ξ as defining a random division of the remaining pairs into
|C| groups of k pairs each. Starting indices from 0, group j consists of pairs
number ξ(jk), ξ(jk + 1), ..., ξ(jk + k − 1).

4. We now start the actual computation: party i secret-shares the bits in his
input xi and uses the shares as input in the protocol we run in the following
step.

5. Run the protocol πfOrt

fC′ , where fC′ is the function computed by C′, with
the following modification: Recall that the protocol runs in the fOrt-hybrid
model. When the protocol makes call number j to do a refresh operations
(which happens once for every gate) we will instead do k refresh operations
sequentially using each pair in group j as input.

6. For each bit in yi, party i receives 3k + 1 shares from the protocol in the
previous step. He considers these shares as a Reed-Solomon codeword with
at most k errors, decodes and outputs the result.

Theorem 4. ΠC is a negl(k)-leakage resilient implementation of the function
computed by C, against the (λ/4, ε)-class of adversaries, where negl() is a negli-
gible function.

The proof of this theorem can be found in the full version (labelled Theorem 6).
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5 A Quantum Solution for the Orthogonal Vector
Problem

In this section, we present a quantum protocol that allows us to generate pairs
of random orthogonal vectors, with the guarantee that a malicious adversary
cannot succeed in introducing more than a small fraction of bad pairs except
with negligible probability. Intuitively, this is possible essentially for the same
reason that quantum key distribution is possible: by conducting checks on a joint
quantum state in two different bases, A and B can test not only the correctness
(which they could also do classically), but also the privacy of their state. The
privacy is guaranteed by the principle of “monogamy of entanglement”: if a state
has a certain amount of entanglement between A and B, then it can only have
a limited amount of entanglement with any other party.

As a warm-up, we first argue that a solution to the orthogonal vector problem
can be constructed from standard results if one neglects efficiency issues: One can
use a quantum key distribution protocol to generate a set of essentially perfect
EPR pairs shared by A and B, where in particular the adversary is essentially
unentangled with the state held by A and B. We then askA to prepare a bipartite
state that is a superposition over all pairs of orthogonal vectors. Then we use
the EPR pairs to teleport one part of this state to B, this only requires local
quantum operations and classical communication. A and B now hold the state

|ψ〉AB :=
1√
K

∑

u,v∈Fn,u·v=0

|u〉A � |v〉B
(
where K = (|F|n − 1)|F|n−1 + |F|n

)
,

(1)

where A and B are Hilbert spaces of dimension |F|n. This state contains a super-
position of all pairs of orthogonal vectors, so measuring on both sides produces
the result we want.

5.1 A Simple Quantum Protocol

While the protocol described above will work, it would require A and B to
perform rather complex quantum operations: already the entanglement-based
quantum key distribution part (to generate the EPR pairs) requires full-scale
quantum error correction and storage. It would therefore be desirable to come up
with a protocol that limits the amount of quantum processing required. Ideally,
one would want a prepare-and-measure protocol, in the spirit of quantum key
distribution, which would only require A and B to prepare individual qubits,
send them to the other side, and then measure the received qubits immediately
upon reception. While we will not quite achieve this level of simplicity, we can
get much closer to this ideal than the protocol from the last section.

Basic Protocol. Like the EPR-based protocol outlined above, this protocol
works by trying to get A and B to share multiple copies of the state |ψ〉AB
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(see Equation 1). In this protocol, however, instead of starting with EPR pairs,
A and B receive their respective shares of this state directly from an untrusted
source. After A and B get their possibly corrupted copies of |ψ〉, they sample
some of them using a checking procedure that will ensure that the error rate
is sufficiently low. Once this is done, A and B measure the remaining states in
the computational basis and use the measurement results as their orthogonal
vectors. The checking procedure ensures that the vast majority of the vectors
they have are indeed orthogonal and secret.

The protocol for distributing and checking copies of |ψ〉 is described in Fig. 1.

Generate-Pairs:
1. A and B receive a state ρA�m+2�B�m+2� from an untrusted adversary.
2. A and B choose two disjoint random subsets T1, T2 ⊆ {1, . . . ,m+2�}, each of

size �, to test.
3. (Test 1) For all states in T1, A and B measure them in the computational

basis and reject if any of the results are not orthogonal vectors.
4. (Test 2) For all states in T2, A and B measure them in the Hadamard basis,

and accept only if at least �K
|F|2n (1− δ) measurement results are |0tn〉|0tn〉.

5. If both tests succeed, then output the remaining m states.

Fig. 1. A simpler quantum protocol

In the protocol, Test 1 ensures that the input is supported on a subspace
which contains very few non-orthogonal pairs, and Test 2 ensures that the state
contains coherent superpositions of at least a roughly 1/|F| fraction of all possible
pairs of vectors. Since only about a fraction 1/|F| of the pairs are orthogonal,
the only states that can pass both tests with non-negligible probability are those
that contain the state |ψ〉 in most positions. In the next section, we analyze the
sampling procedure being used here, and then apply the results to our specific
protocol in Section 5.3 of the full version.

A Quantum Sampling Theorem. To analyze the protocol, we will first
rephrase it in more general language as a type of sampling procedure that may be
of independent interest. We describe the procedure in Fig.2. Like our protocol,
this procedure takes an arbitrary state as input, and the goal is to accept if it
contains a large fraction of some pure state |ϕ〉. To ensure this, we again perform
two tests: the first test ensures that the vast majority of the positions are in the
support of some projector M , and the second test ensures that if we measure the
POVM {|θ〉〈θ|, id− |θ〉〈θ|} for some pure state |θ〉 such that M |θ〉 = √

γ|ϕ〉, then
roughly a fraction γ of the sample comes out as |θ〉. Our goal will be to show
that if the input has a non-negligible probability of passing both tests, then the
output will with high probability contain at least m(1 − ε) copies of the state
|ϕ〉, for an appropriate choice of ε.

To formalize this statement, we will view the whole sampling procedure as
a completely positive, trace-preserving map S from the Hilbert space H�m+2�
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Sampling operation S:
1. Input: An unknown state ρ on H�m+2�.
2. Choose two disjoint random subsets T1, T2 ⊆ {1, . . . ,m + 2�}, each of size �,

to test.
3. (Test 1) For all states in T1, measure them with the POVM {M, id − M},

accept only if the result is M for all of them.
4. (Test 2) For all states in T2, measure them using POVM {|θ〉〈θ|, id − |θ〉〈θ|},

and accept only if at least γ� (1− δ) measurement results are |θ〉〈θ|, where γ
is such that M |θ〉 = √

γ|ϕ〉.
5. If both tests succeed, then output the remaining m states.

Fig. 2. The sampling operation analyzed in Section 5.1

to H�m ⊕ span{|fail〉}, the |fail〉 flag being used to denote the case when the
sampling procedure aborts due to a failed test. We also define the projector
Πε,good, which projects onto the subspace of H�m spanned by vectors containing
at least m(1− ε) copies of |ϕ〉, along with |fail〉:

Πε,good := |fail〉〈fail|+
∑

x∈{0,1}m,|x|�εm

Πx1 � · · · � Πxm ,

where Π0 = |ϕ〉〈ϕ|, Π1 = id − Π0, and |x| denotes the Hamming weight of x.
The statement we will prove will be that the sampling procedure S is almost in-
distinguishable from an “ideal” procedure Sideal that can never output anything
outside of the support of Πε,good. This ideal procedure is defined as

Sideal(ρ) := Πε,goodS(ρ)Πε,good + tr[Π⊥
ε,goodρ]|fail〉〈fail|,

where Π⊥
ε,good := id−Πε,good In other words, the ideal procedure first applies S

and then measures whether the output is in the support of Πε,good or not; if it
is, then it outputs the result as usual, and otherwise it simply outputs the |fail〉
flag, as if the test had failed. It is clear that this procedure can never output a
state with less than m(1− ε) copies of |ϕ〉.

The theorem we will use is the following; its proof can be found in the full
version (labelled Theorem 7), along with the details of how to apply it to the
situation at hand:

Theorem 5. Let Sideal be defined as above, and let ε = 4δ+8γ−1
√
δ. Then, we

have that
‖S − Sideal‖� � exp(−Ω(min(�,m))). (2)

Furthermore, if we run on the protocol on the honest input |ϕ〉�m+2�
, then the

probability of outputting |fail〉 is at most � exp(−�γ2δ2).

Note that the diamond norm ‖ · ‖� can be interpreted as follows: if we are
given a box that implements either E or F and we must distinguish which of
the two using the box only once, the probability that we will guess correctly
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using the best strategy is given by 1
2 + 1

4‖E − F‖�. Hence, the above theorem
means that one cannot distinguish the real sampling protocol from the “ideal”
protocol that never outputs something outside of the support of Πε,good except
with negligible probability. The proof strategy will be as follows: we will first
show that it is sufficient to consider inputs of the form ρH�m+2� = σ�m+2�

H using
a variant of the “postselection” technique from [5], and we then show that the
only σ’s that survive both tests have a high fidelity with |ϕ〉.

5.2 Leakage Resilience against a Quantum Adversary

Security for Bounded-Time Quantum Memory. It might seem natural to
expect that we could immediately get leakage resilience for a quantum adversary
by using the protocol from the previous section as an implementation of a source
of orthogonal pairs, and then run our classical protocol ΠC from Theorem 4,
which was designed to tolerate a constant fraction of corrupted pairs. Indeed,
the parameters of the quantum protocol can be chosen such that the state created
is very close to an ideal state where at most a constant fraction of the pairs come
from measuring an incorrect state.

However, the problem is that the adversary may be in superposition of having
corrupted several different sets of pairs, and therefore we cannot assume that
one single set of pairs is bad, as we did in the proof of Theorem 46.

On the other hand, if the adversary cannot keep a coherent state alive until
the computation is done, his superposition will collapse, and then Theorem 4
can indeed be applied. The only price we pay is an added term in the statistical
distance between simulation and real execution that comes from the distance
between real and ideal state in the quantum protocol. Since long-term quantum
memory is well beyond current technology, and we don’t assume quantum mem-
ory for honest parties, limiting the adversary’s memory in this way can be a
reasonable assumption.

Security against Unbounded Quantum Adversaries. In this section, we
show that by designing the protocol slightly differently, we can prove security
against an unbounded adversary. For this case, we will only be able to get a
circuit compilation type of result, rather than a 2-party computation protocol.

We recall informally the notion of leakage resilient circuit compilation: here a
Boolean circuit C is given that takes a secret input y and a public input x chosen
by the adversary. The output C(x, y) is given to the adversary. The goal is now
to compile C into a leakage resilient computation that is split in several parts
where the adversary is allowed to leak independently from each parts, as well
as a small amount of global leakage, as defined in our model. The secret input y is
assumed to be given in some specially encoded form. A simulator must exist that
simulates the adversary’s view given only x,C(x, y), i.e., a public-input-output
simulator as described earlier. This is a special case of our model of two-party

6 Of course, each pair we generate is either orthogonal or not, but we cannot point
out a single set of pairs that are known to the adversary.
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computation, namely we will give x as input to both parties and both parties get
C(x, y) as output. Furthermore, we assume that the protocol is given access to
an oracle function gy() that takes no input, and outputs y to the parties encoded
in some form that is suitable for the protocol. In an implementation there would
be a single device executing all parts of the computation, but here we will stick
to the interpretation as a two-player protocol for consistency with the rest of the
paper.

We now define an oracle function gy(), which will fit into the way our protocol
ΠC represents data. It will make 3k + 1 Shamir secret shares of each bit in y
and output leakage resilient encodings of these shares to the two parties.

We can then construct a protocol called ΠC,y which we define to be our
protocol ΠC (which will compute C(x, y)), except that instead of getting an
encoding of shares of y from the parties, it calls gy() initially and otherwise
evaluates C as usual, assuming access to fOrt. While ΠC,y is only secure against
a classical adversary, we can still use it to construct a protocol that is secure
against a quantum adversary.

The idea is as follows: we build from C a new circuit C̄ taking inputs x, ȳ,
which works as follows: It parses ȳ as the concatenation of a bit b and a string
y. If b = 0, it outputs C(x, y), while if b = 1 it outputs y. One may think of C̄
as being like C but with a built-in trapdoor: it “usually” works like C, but if
you can choose the secret input, you can force the output value. The idea is now
to run ΠC̄,ȳ instead of ΠC,y. That is, the same protocol is run, but we replace
C by C̄. This also means that the protocol will call initially an oracle function
gȳ() that will produce leakage resilient encodings of Shamir shares in ȳ. Finally,
note that the protocol will construct a new circuit C̄′ from C̄, just as we built C′

from C earlier, based on an MPC protocol secure against k corrupted players.
Our protocol will be used only with secret inputs of form ȳ = (0, y). The other

option is something we only need for the proof. Our leakage resilient protocol
now works as follows:

Quantum Leakage Resilient Protocol for C: QC,ȳ

1. Invoke the quantum protocol to obtain m = 2|C̄′|k pairs of (hopefully)
orthogonal vectors. For each pair, the process of measuring and storing the
pair is defined to be a separate part of the computation from which the
adversary can leak a bounded amount of information.

2. Run ΠC̄,ȳ based on the list of pairs of vectors from the quantum protocol
(instead of getting the list from fOrt). Output whatever ΠC̄,ȳ outputs.

Definition 1. Consider a protocol π for computing circuit C on public input x
chosen by adversary E and secret input y. The adversary may issue a leakage
query for every separate part of the computation. Let Φreal

E be the state of the
adversary after executing π. We say that π is leakage resilient against an adver-
sary E if there exists a simulator S that interacts with E (where, after E sends
the public input x, S is given C(x, y)). This interaction results in state Φsim

E for
E. We require that the trace norm distance between Φreal

E and Φsim
E be negligible

in the security parameter.
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The proof of the following theorem can be found in the full version (labelled
Theorem 8).

Theorem 6. QfC ,ȳ is leakage resilient against a quantum unbounded λ/4-
adversary.
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Abstract. Metric entropy is a computational variant of entropy,
often used as a convenient substitute of HILL Entropy which is the stan-
dard notion of entropy in many cryptographic applications, like leakage-
resilient cryptography, deterministic encryption or memory delegation.
In this paper we develop a general method to characterize metric-type
computational variants of entropy, in a way depending only on properties
of a chosen class of test functions (adversaries). As a consequence, we
obtain a nice and elegant geometric interpretation of metric entropy. We
apply these characterizations to simplify and modularize proofs of some
important results, in particular: (a) computational dense model theorem
(FOCS’08), (b) a variant of the Leftover Hash Lemma with improve-
ments for square-friendly applications (CRYPTO’11) and (c) equivalence
between unpredictability entropy and HILL entropy over small domains
(STOC’12). We also give a new tight transformation between HILL and
metric pseudoentropy, which implies the dense model theorem with best
possible parameters.

1 Introduction

1.1 Computational Entropy

Entropy. Entropy, as a measure of uncertainty or randomness, is a fundamen-
tal notion in information-theory. The most known metric of entropy is Shannon
Entropy [Sha48]. For cryptographic applications such as extracting randomness,
it is more convenient to work with so called min-entropy, which gives an up-
per bound on the probability that computationally unbounded adversary can
guess a value sampled according to a given distribution. A slightly weaker but
also very useful, especially in the context of hashing, is the notion of collision
entropy which upperbounds the probability that two independent samples of a
given distribution collide.

Computational Variants of Entropy. The motivation for computational
analogues of entropy is the fact that in cryptographic applications we often

� Preliminary versions of this work appeared in the Proceedings of Student Research
Forum Papers and Posters at SOFSEM 2015.

�� This work was partly supported by the WELCOME/2010-4/2 grant founded within
the framework of the EU Innovative Economy Operational Programme.

c© Springer International Publishing Switzerland 2015
A. Lehmann and S. Wolf (Eds.): ICITS 2015, LNCS 9063, pp. 105–122, 2015.
DOI: 10.1007/978-3-319-17470-9_7



106 M. Skorski

consider only computationally bounded attackers. Computational variants of
entropy found many important applications, like leakage-resilient cryptogra-
phy [DP08], deterministic encryption [FOR12], memory-delegation [CKLR11],
computational complexity [RTTV] and foundations of cryptography [HRV10].
Computational variants can be defined in different ways. In any case, we need
to formalize what it means that a distribution behaves, from a computational
point of view, like a distribution having “true” information-theoretic entropy.
This might be based on hardness of compressing-decompressing, hardness of
unpredictability or hardness of distinguishing. In this paper we follow the last
approach, which is most widely used. A good survey of different entropy notions
and their properties can be found in [BSW03] and [Rey11]. We stress that, con-
trarily to the information-theoretic case, for computational entropy it’s not only
the amount of entropy that matters but also its quality is important.

Computational Indistinguishability. Indistinguishability is a fundamental
concept in computational complexity and cryptography. For two distributions
X,Y taking values in the same space, a class D of [0, 1]-valued functions (ref-
ereed to as the “attacker’s class”) and a parameter ε (refereed to as the “dis-
tinguishing advantage”), we say that X and Y are (D, ε)-indistinguishable if for
all D ∈ D we have |ED(X) − ED(Y )| � ε. An attacker D can distinguish
X and Y if ED(X) − ED(Y ) > 0 or ED(X) − ED(Y ) < 0; the bigger the
gap from 0 is, the better “advantage” he achieves. Sometimes we want to define
indistinguishability between two sets X and Y of probability distributions. We
can formalize this by saying that no single adversary D can achieve bigger than
ε advantage for every pair (X,Y ) where X comes from X and Y comes from
Y. Since the expectation ED(X) can be thought as the scalar product of the
vectors representing D and the distribution of X , the concept of indistinguisha-
bility is exactly the same concept as the idea of separating hyperplanes.

Defining Computational Entropy. Having formalized the concept of “com-
putational closeness”, one can define the “computational” entropy, called also
pseudoentropy, of a distribution X by one of the following ways:

(a) (stronger) X is computationally indistinguishable from a single distribu-
tion having required amount of information-theoretic entropy (min-entropy,
Shannon Entropy etc.)

(b) (weaker) is computationally indistinguishable from a set of all distributions
having required amount of information-theoretic entropy.

Both approaches turn out to be useful. Setting the underlying information-
theoretic entropy measure to be the min-entropy, for case (a) we obtain the
notion of HILL entropy [HILL99] which directly generalizes the notion of pseu-
dorandomness, whereas for case (b) we get the notion of the so called Metric
Entropy [BSW03]. Roughly speaking, with HILL entropy one generalizes most of
information-theoretic facts about entropy, into the computational setting. Met-
ric entropy is commonly thought as a less intuitive and understood notion than
HILL entropy. Surprisingly, it is quite often more convenient to work with.
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Advantages of metric entropy and applications. There are very good
reasons to introduce and study metric entropy: quite often it is much easier
to prove a statement for metric-entropy and then pass to the HILL version.
Actually, this strategy is unavoidable for the standard proof technique which
uses the min-max theorem to switch the order of players in a game. There-
fore, many facts about HILL entropy use metric entropy explicitly or implic-
itly [VZ12,FOR12,CKLR11,RTTV,DP08,BSW03]. Perhaps the most spectacu-
lar example is the efficient version of the Dense Model Theorem [RTTV,DP08],
being the key ingredient of the famous result of Tao and Ziegler on primes in
arithmetic progressions [TZ08]. The efficient version, which found many interest-
ing applications in complexity theory and cryptography, was originally proved
using the idea of metric computational entropy in [RTTV] and independently
in [DP08]. A much simpler proof with significant improvements in quality was
given later in [FOR12]. It uses only very basic properties of Metric entropy!

Conversions between HILL and metric entropy. The following result,
due to Barak, Shaltiel and Widgerson, states that metric and HILL computa-
tional entropy are equivalent up to some loss in quality.

Theorem 1 (From Metric to HILL Entropy [BSW03]). Let X and Z be,
respectively, n-bit and m-bit correlated random variables. Then

HHILL,(s′,ε′) (X |Z) � HM,det[0,1],(s,ε) (X |Z)

where s′ = O
(
s · δ2/(n+m)

)
and ε′ = ε+ δ for arbitrary δ ∈ (0, 1).

Remark 1. The conversion in the other direction is lossless.

Worst Case Distributions. In problems which involve computational indis-
tinguishability it is often convenient to know the distributions which makes the
attacker’s advantage minimal. This distribution is typically subjected to some
entropy restrictions. In particular, one might ask the following question

Given D and X , what is the best (minimal) attacker advantage |ΔD| =
|ED(X)−ED(Y )| over all distributions Y of entropy as least k?

An answer to this question yields a bound on how (computationaly) close is X
to the set of all distributions of entropy k. Such problems arises where one uses
HILL and Metric entropy, see for instance [BSW03,CKLR11,FOR12,RTTV].

1.2 Our Contribution

Improved Transformations. We improve Theorem 1 in the following way:

Theorem 2 (From Metric to HILL Entropy, tight bounds). For any n-
bit random variable X and a correlated random variable Z we have

HHILL,(s′,ε′) (X |Z) � HM,det[0,1],(s,ε) (X |Z)

where δ ∈ (0, 1) is arbitrary, s′ = O
(
s · δ2/(Δ+ 1)

)
, ε′ = ε + δ and Δ =

n−HM,det[0,1],(s,ε) (X |Z).
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In comparison to Theorem 1 we replace the factor n+m by Δ+ 1. Hence, the
conversion does not depended on the dimension of the domain of X and Z but
only on the entropy deficiency Δ. The proof technique, based on approximating
convex hulls in Lp-norms, might be of independent interests. There is a lot of
research focused on achieving better rates of convex approximations in Lp-spaces
for some restricted class of functions. In case of metric-to-HILL transformations
(or similar results) it might be possible to obtain some further improvements for
restricted classes of adversaries.

Application: Dense Model Theorem Our transformation implies the ef-
ficient dense model theorem with the best possible parameters due to Zhang
[Zha11], which is not the case of the bound in Theorem 1.

Minimizing Attacker’s Advantage. As mentioned, the concept of charac-
terizing the “worst case” distribution which optimizes the attacker advantage
is very common, thought not always explicitly stated. In this paper we give a
uniform treatment of this idea, in terms of convex optimization, and use it to
obtain characterizations for pseudoentropy and other interesting corollaries.

Characterizing Metric Pseudoentropy via Optimizing Attacker’s

Advantage. Using standard constrained optimization techniques, we develop
a general method to characterize metric-type pseudoentropy. A characterization
is based on explicitly building the distribution which minimizes the attacker’s
advantage, subject to entropy constraints. These characterizations could be used
in studying properties of variants of pseudoentropy based on different notions
than min-entropy. In particular, they could be applied in studying the problem
of comparing the amount of metric pseudoentropy against deterministic and
randomized adversaries, or verifying the so called “chain rule”. Our characteri-
zations unify the definitions of metric and HILL entropy in a geometric way.

Application: the power of pseudoentropy characterizations. Our
technique leads to interesting corollaries besides the basic properties of pseu-
doentropy. From the characterization of metric pseudo-entropy we immediately
obtain the computational Dense Model Theorem [RTTV, DP08, FOR12] Ex-
tending our characterization into the conditional case when side information
is available to the attacker, we reprove equivalence between unpredictability and
indistinguishability based definition of pseudoentropy for short strings [VZ12].
Finally, from the characterization of collision-pseudoentropy we derive the im-
proved Leftover Hash Lemma [BDK+11] for square-friendly applications. This
shows that metric entropy is a powerful tool which deserves a systematic study.

1.3 Organization of the Paper

In Section 2 we explain basic notions and definitions. The proofs of our main
technical results appear in Section 3 and Section 4. In Section 5 we discuss some
applications. The conclusion in Section 6 contains some ideas for future research.
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2 Preliminaries

Probabilities, measures and integrals. By μX or PX we denote the prob-
ability mass function (distribution) of X . A measure ν on a finite set Ω is a
function μ : Ω → R

+∪{0}. For notational convenience, we use the signs of sums
and integrals interchangeably. The integral of a function D on E with respect to
a measure ν is defined as

∫
E Ddν =

∑
x∈E D(x)ν(x). For the integral over the

entire domain we omit the subscript E.

Entropy notions. The min-entropy of a distribution X equals H∞(X) = −
log(maxx Pr[X = x]). The collision entropy of X is H2(X) = − log(

∑
x Pr[X =

x]2). If there is side information Z, we define the average conditional min-entropy

[DORS08] of X given Z by H̃∞(X |Z) = − log(Ez←Z maxx Pr[X = x|Z = z]).

Computational advantage. The advantage of an attackerD in distinugishing
random variables X and Y , equals ΔD(X ;Y ) = ED(X)−ED(Y ).

Computational Entropy. Often we assume that information Z correlated to
X might be available to an adversary. That’s why we work with the notion of
conditional pseudoentropy. The unconditional case is simply Z = const.

Definition 1 (Conditional HILL Pseudoentropy [HLR07]). Let X,Z be
a joint distribution with the following property: there exists Y of average condi-
tional min-entropy at least k given Z such that for all circuits D of size at most
s we have |ΔD(X,Z;Y, Z)| � ε. Then we say that X given Z has k bits of HILL

min-entropy of quality (s, ε) and denote by H
HILL,(s,ε)
∞ (X |Z) � k.

Remark 2 (HILL entropy against different circuits classes). For HILL entropy all
kinds of circuits: deterministic boolean, deterministic real valued and randomized
boolean, are equivalent (for the same size s).

Definition 2 (Conditional Metric Pseudoentropy [FOR12]). Let X,Z be
a joint distribution with the following property: for every deterministic boolean
(respectively: deterministic real valued or boolean randomized) circuit D of size
at most s there exists Y of average conditional min-entropy at least k given Z
such that |ΔD(X,Z;Y, Z)| � ε. Then we say that X given Z has k bits of deter-
ministic (respectively: deterministic real valued or boolean randomized) metric

min-entropy of quality (s, ε) and denote by H
M,det{0,1},(s,ε)
∞ (X |Z) (respectively:

H
M,det[0,1],(s,ε)
∞ (X |Z) and H

M,rand{0,1},(s,ε)
∞ (X |Z)).

Remark 3. For unconditional metric min-entropy, it doesn’t matter if the de-
terministic circuits are boolean or real valued (see [RTTV] and the errata of
[BSW03]). This is not true for the conditional case.

There is a variant of conditional pseudoentropy where (X,Z) is required to be
computationally close to (Y, Z ′) but Z ′ is not necessarily the same as Z. This
notion is called the “relaxed” HILL entropy [Rey11] Typically we want Z to be
the same as Z ′1 but this relaxed notion is also useful [GW11a,Rey11,KPW13].

1 For instance, when Z represents information that adversary might have learned.
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Lp
spaces. Given a finite set Ω and a measure μ on Ω one defines the p-th norm

of a real-valued function D defined on Ω as ‖D‖p =
∫
Ω
Ddμ

Convex combinations. Given a set of real-valued functions C defined on the
same domain, by convt(C) we denote the set of all convex combinations of length
at most t of members of C.

3 Transformations

In this section we prove our main technical result which inmediately implies
Theorem 2. It is a constrained version of the standard approximation result.

Lemma 1 (Approximating Long Convex Combinations with Respect
to All High-min-entropy Distributions). Let X be an n-bit random variable,
be Z be a correlated m-bit random variable, and let C be a class of [0, 1]-valued
function on {0, 1}n × {0, 1}m. Let D ∈ conv(C). Then for � = 49(n+ 1− k)/δ2

there exists D� ∈ conv�(C) such that

E |D(X)−D�(X)| � δ (1)

and simultaneously

E |D(X)−D�(Y )| � δ (2)

for every distribution Y jointly distributed with Z such that H∞(Y |Z) � k.

Corollary 1. Lemma 1 implies Theorem 2

Proof (of Corollary 1). If H
HILL,(s′,ε′)
∞ (X |Z) < k then for every Y satisfying

H̃∞ (Y |Z) � k we find D of size at most s′ such that |ED(X,Z)−ED(Y, Z)| �
ε′. Replacing D by D

c of necessary we can assume that ED(X,Z)−ED(Y, Z) �
ε for some D of size s′ +1. By applying the min-max theorem we get that there
exists a convex combination D′ of circuits of size at most s′ + 1 such that

ED(X,Z)−ED(Y, Z) � ε′ ∀Y : H̃∞ (Y |Z) � k

That combination might be very long. But applying Lemma 1 we can approxi-
mate it by a combination D′ of at most O

(
(n+ 1− k)/δ2

)
circuits of size s′+1

in such a way that the expectations with respect to X,Z and Y, Z differs at most
by δ/2. This way we obtain

ED
′(X,Z)−ED

′(Y, Z) � ε′ − 2 · δ/2 ∀Y : H̃∞ (Y |Z) � k

which finishes the proof. ��

Now we prove our main approximation result

Proof (of Lemma 1). Consider the space of all functions on {0, 1}n+m. We start
by the following trivial observation
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Claim 1. It suffices to show that for some D′ ∈ conv�(C) we have
∫
|D −D′| ·

d(μX + μY ) � δ for all Y such that H̃∞ (Y |Z) � k.

By applying the Hölder Inequality, we immediately get

Claim 2. For every functions D,D′ and every p, q > 1 such that 1
p + 1

q = 1 we
have

∫

|D −D′| · d(μX + μY ) � ‖D −D′‖p ·
∥
∥
∥
∥
μX,Z + μY,Z

μ

∥
∥
∥
∥
q

(3)

Now we give estimates on both factors on the right hand side of Equation (3).

Claim 3. If q ∈ [1, 2] then for any Y such that H̃∞ (Y |Z) � k we have
∥
∥
∥
∥
μX,Z + μY,Z

μ

∥
∥
∥
∥
q

�
(
2q + 2(q−1)(n+1−k)

)1/q

(4)

Proof (Of Claim 3). Recall the well-known inequality

Proposition 1. If a, b > 0and q � 1 then (a+ b)q � 2q−1(aq + bq).

From Proposition 1 it follows now that

∥
∥
∥
∥
μX,Z + μY,Z

μ

∥
∥
∥
∥
q

� 2q−1

(∥
∥
∥
∥
μX,Z

μ

∥
∥
∥
∥
q

+

∥
∥
∥
∥
μY,Z

μ

∥
∥
∥
∥
q

)

(5)

We shall estimate two terms in Equation (4) separately. Since μX,Z(x, z) <
μX,Z(x, z) + μU,Z(x, z) = μ(x, z) for all x, z we have

∥
∥
∥
∥
μX,Z

μ

∥
∥
∥
∥
q

<

∫

1dμ = 2 (6)

To bound the second term note that the functional μY,Z →
∥
∥
∥
μX,Z+μY,Z

μ

∥
∥
∥
q
is

convex as a function of μY,Z (being a composition of an affine function and
the p-th norm). Therefore, the maximum over the convex set of distributions

Y, Z satisfying H̃∞ (Y |Z) � k is attained at an extreme point. This means that
the maximum is attained for a distribution (Y ∗, Z) such that the distribution
Y ∗|Z=z is flat for every z and the conditional min-entropy of Y given Z is exactly
k. Since μ(x, z) = μU (x)μZ(z) and μY ∗,Z(x, z) = μY ∗|Z=z

(x)μZ (z) we obtain

∥
∥
∥
∥
μY,Z

μ

∥
∥
∥
∥

q

q

�
∫ (

μY ∗,Z

μ

)q

dμ

=

∫ (∫ (
μY ∗

Z=z

μU

)q

dμU

)

dμZ

=

∫ (
2(q−1)(n−H∞ (Y ∗|Z=z)

)
dμZ

= 2(q−1)n

∫

2−(q−1)H∞ (Y ∗|Z=z)dμZ
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By applying the Jensen Inequality to the function u → uq−1 (which is concave
by the assumption on q) we get

∥
∥
∥
∥
μY,Z

μ

∥
∥
∥
∥

q

q

� 2(q−1)n

(∫

2−H∞ (Y ∗|Z=z)dμZ

)q−1

� 2(q−1)n
(
2− ˜H∞ (Y |Z)

)q−1

= 2(q−1)(n−k) (7)

Plugin Equation (7) and Equation (6) into Equation (5) yields
∥
∥
∥
∥
μX,Z + μY,Z

μ

∥
∥
∥
∥

q

q

� 2q−1
(
2 + 2(q−1)(n−k)

)
= 2q + 2(q−1)(n+1−k).

and Equation (4) follows. ��

Claim 4. Suppose that p � 2. Then for any D ∈ conv(C) and � � 1 there exists
D� ∈ conv�(D) such that ‖D −D�‖p < 1.74

√
p/�.

Proof. The proof relies on the following approximation result on rates of convex
approximation, which generalizes the famous Maurey-Johnes-Barron Theorem.

Lemma 2 (Convex Approximation in Lp Spaces [DDGS97]). Let E be
an Lp space with 1 � p < +∞. Suppose that S ⊂ E, f ∈ conv(S) and let K > 0
be such that for all g ∈ S we have ‖g − f‖p � K. Then for any � we have

min
s∈conv�(S)

‖f − s‖p � KCp

�1−
1
t

where t = min(2, p) and Cp = 1 if 1 � p � 2, Cp =
√
2[Γ ((p+ 1)/2)/

√
π]1/p for

2 < p < +∞.

Remark 4. The constant Cp can be estimated using the following approximation
for the gamma function [Mor11], valid for x � 1:

√
π(x/e)x

√
2x+ 0.33 < Γ (x+ 1) <

√
π(x/e)x

√
2x+ 0.36

From this we find that Cp < 0.87
√
p for all p > 2.

The claim follows by setting E to be the space of [0, 1]-valued functions on
{0, 1}n × {0, 1}m and K =

∫
1dμ = 2. ��

By Claim 3 and Claim 4 combined with Claim 2 and Claim 1 it suffices to find
p � 2 (which automatically ensures q ∈ [1, 2]) and � such that

1.74
√
p/� ·

(
2q + 2(q−1)(n+1−k)

)1/q

� δ.

If k � n−1 then we put p = q = 2. Then it suffices to ensure that 1.74
√
2/�(22+

22)1/2 � δ which is equivalent to 6.96
√
� � δ. Suppose that k � n − 1. By the

inequality (a+b)r � ar+br valid for a, b > 0 and 0 < r � 1, we see that it suffices
if 1.74

√
p/�

(
2 + 2(n+1−k)/p)

)
� δ. For p = n+1−k we obtain 6.96

√
� � δ. ��
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4 Characterizing Metric Pseudoentropy

In what follows we assume thatH is a concave entropy notion (like min-entropy or
collision entropy), and that all distributions and distinguishers are over {0, 1}n.

4.1 Connections to Separating Hyperplanes

We start with the following simple observation, which gives a nice geometrical
formulation of the definition of pseudo-entropy. We say that the sets X and Y of
probability distributions are (D, ε)-indistinguishable if there exists no adversary
D such that |ED(X)− ED(Y )| � ε for all X ∈ X and all Y ∈ Y. It is easy to
see that if X and Y are convex and if D is closed under complements (that is
D ∈ D implies 1−D ∈ D) then this is equivalent to

There is no D ∈ D such that: ED(X)−ED(Y ) � ε for all X ∈ X, Y ∈ Y.

We can interpret the expectation ED(X) as the scalar product 〈D,PX〉 by
identifying D and distributions of X with the vectors in R

2n . Hence we can
write the above condition as

There is no D ∈ D such that: 〈D,PX −PY 〉 � ε for all X ∈ X, Y ∈ Y,

which means that the distinguisher D is precisely a separating hyperplane. If D
is a circuit class, X = {X} and Y = {Y : H(Y ) � k} we obtain2

Corollary 2 (Geometric Definitions of Metric and HILL Entropy). Let
X be an n-bit random variable and let H be a concave entropy notion. Then

(a) HHILL,(s,ε) (X) � k iff X is (D, ε)-indistinguishable from some Y of entropy
H at least k, where D is the class of boolean circuits3 of size s with n-inputs.

(b) HM,det{0,1},(s,ε) (X) � k iff X is (D, ε)-indistinguishable from the set of all
Y of entropy H at least k,

where D is the class of all deterministic boolean circuits of size s with n-inputs
(analogously for randomized and deterministic real valued circuits).

4.2 Reduction to Constrained Optimization

By the “geometric” view on pseudoentropy, given in Corollary 2, we obtain the
following characterization of pseudoentropy.

2 We can assume that the class circuits of size at most s is closed under complements
because every complement is of size at most s + 1. Formally we need to start with
size s′ = s+ 1 but we omit this negligible difference.

3 Randomized or deterministic- it makes no difference.
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Lemma 3 (Characterization of Metric Pseudoentropy). Let X andH be
as inCorollary 2.ThenHM,det{0,1},(s,ε) (X) � k, respectivelyHM,det[0,1],(s,ε) (X) �
k if and only if for every boolean (respectively real valued) deterministic circuit D
of size at most s we have

ED(X) � ED(Y ∗) + ε,

where Y ∗ is optimal to the following optimization problem

maximize
Y

ED(Y )

s.t. H(Y ) � k
. (8)

This results is useful if we can solve the optimization problem in Equation (8).
In the next subsections we explain how to solve it in general and discuss the two
concrete and simple cases: min-entropy and collision entropy.

4.3 Maximizing Expectations Under Convex Constraints

We can characterize optimal solutions of (8) in terms of Lagrange multipliers.
Due to convexity, the characterization is both: necessary and sufficient.

Lemma 4 (Maximizing Expectation Under Convex Constraints). Let f
be a differentiable convex real-valued function on R

d. Assume that a is a number
such that minp f(p) < a where the minimum is over all probability vectors, and
consider the following optimization program

maximize
(pi)i

∑

i

Dipi

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(p) � a

−pi � 0
∑

i

pi = 1

. (9)

Then a feasible point p = p∗ is optimal to (9) if and only if there exist λ1 �
0, λ2 � 0 and λ3i ∈ R for i = 1, . . . ,m such that the following relations hold

Di = λ1(∇f(p∗))i − λ3i + λ2 for i = 1, . . . ,m (10)

and the following complementary condition is satisfied:

pi · λ3i = 0 (11)

Proof. The Slater Constraint Qualification holds, by the assumption on a, and
we have strong duality. In other words, the first order Karush-Kuhn-Tucker
condition is sufficient and necessary [BV04]. The numbers λ1, λ2, λ3i are exactly
KKT multipliers for the convex program in Equation (9), and Equation (10)
states that the gradient of the objective function is a combination of gradients
of constraints. The condition in Equation (11) means that we take only active
constraints into account. Finally, to the inequality constraints we assign non-
negative multipliers which explains the requirement λ1 � 0 and λ3i � 0. ��
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Remark 5. If f is not differentiable, we replace the gradient of f in optimality
conditions by the subdifferential of f , which always exists for a convex function.

4.4 Characterization of Metric Min Entropy

For H = H∞ we obtain from Lemma 4 the following simple characterization of
pseudoentropy based on min-entropy (see [BSW03] for a restricted variant)

Theorem 3 (Characterization of Metric Min-entropy). Let X be an n-bit

r.v.. Then H
M,det{0,1},(s,ε)
∞ (X) � k, respectively H

M,det[0,1],(s,ε)
∞ (X) � k if and

only if for every boolean (respectively real valued) deterministic circuit D of size
at most s with n inputs we have

ED(X) � ED(Y ∗) + ε,

where Y ∗ is uniform over 2k values x corresponding to the biggest values of D(x).

Extending Lemma 4 by adding additional constraints, to cover the case of side
information, we can obtain the characterization of conditional metric entropy

Theorem 4 (Characterization of Conditional Metric Min-entropy). Let

X andZ be, respectively,nandm-bit randomvariables.ThenH
M,det{0,1},(s,ε)
∞ (X |Z)

� k (respectivelyH
M,det[0,1],(s,ε)
∞ (X |Z) � k) iff for every boolean (respectively real

valued) deterministic circuit D of size at most s on {0, 1}n+m we have

ED(X,Z) � ED(Y ∗, Z) + ε,

for Y ∗ such that Y ∗|Z = z is uniform over the set {D(x, z) � t(z)} for every z,
where the thresholds t(z) satisfy the following two conditions

E
x←Un

max(D(x, z)− t(z), 0) = const for every z

E
z←Z

[1/# {x : D(x, z) � t(z)}] � 2−k � E [1/# {x : D(x, z) > t(z)}] .

4.5 Characterization of Metric Collision Entropy

The characterization of the worst-case collision entropy distribution is slightly
different. It is proportional to a distinguisher, after taking a threshold.

Theorem 5 (Characterization of Metric Collision Entropy). Let X be

an n-bit r.v.. Then H
M,det{0,1},(s,ε)
2 (X) � k, respectively H

M,det[0,1],(s,ε)
2 (X) � k

if and only if for every boolean (respectively real valued) deterministic circuit D
of size at most s with n inputs we have

ED(X) � ED(Y ∗) + ε,

where Y ∗ satisfies λ ·PY ∗(x) = max(D(x)− t, 0) for some t ∈ R and λ � 0.

Remark 6. Note that t is a solution of ED
′(U)2 = 2n−k

(
ED

′(U)
)2

where
D

′(x) = max(D(x) − t, 0) and λ = 2n ED
′(U). It follows that ED

′(Y ∗) =

2n−k ED
′(U) = ED

′(U) +
√
VarD′(U) ·

√
2n−k − 1.
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5 Applications

5.1 A Short Proof of the Efficient Dense Model Theorem

Dense Model Theorem and its applications. Given a pair of two distri-
butions W and V over the same finite domain we say that W is δ-dense in V
if and only if Pr[W = x] � Pr[V = x]/δ4. The dense model theorem [TZ08],
specialized to the boolean case, can be formulated as follows:

Theorem 6 (Dense Model Theorem). Let D′ be a class of n-bit boolean
functions, R be uniform over {0, 1}n, X be an n-bit random variable and let X ′ be
δ-dense in X. If X and R are (D, ε)-indistinguishable then there exists a distribu-
tion R′ which is δ-dense in R such that X ′ and R′ are (D′, ε′)-indistinguishable,
where ε′ = (ε/δ)O(1) and D consists of all functions of the form g(D1, . . . , D�)
where Di ∈ D′, � = poly(1/δ, 1/ε) and g is some’ function.

Informally, this statement reads as follows: if a distribution X ′ is dense in a
pseudorandom distribution X , then X ′ must be indistinguishable from a dis-
tribution dense in the uniform distribution. Note that the indistinguishability
parameters for X ′ are worse than for X : to achieve (D′, ε′)-indistinguishably we
need to start with ε smaller than ε′ and a class D sufficiently more complicated
than D′. Note also that for this statement to be computationally meaningful we
need g to be efficient. Efficient versions of the Dense Model Theorem have found
applications in differential privacy [MPRV], pseudoentropy and leakage-resilient
cryptography [DP08,CKLR11], graph decompositions [RTTV], and further ap-
plications in additive combinatorics [GW11b]. We refer the reader to [Tre11] for
a survey. In Table 1 below we give a brief overview of different bounds.

A super-simple proof. The dense model theorem is in fact a statement about
HILL entropy with “leakage”. This follows from the following observation

Claim 5. X ′ is δ-dense in X if and only if X ′ can be written as X |A for some
event A of probability δ.

Now we see that the following “leakage lemma” is a version of the dense model
theorem, stated in language of pseudoentropy.

Theorem 7 (Leakage Lemma [DP08,FOR12]). Let X be an n-bit random

variable such that H
HILL,(s,ε)
∞ (X) � k and let Z be correlated with X. Then

we have H
HILL,(s′,ε′)
∞ (X |Z=z) � k′ where k′ = k − log(1/Pr[Z = z]), s′ =

O
(
s · δ2/n

)
and ε′ = ε/Pr[Z = z] + δ, for any δ ∈ (0, 1).

The lemma states that the amount of pseudoentropy due to leakage of t bits
of information decreases roughly by t, hence its name. The original proof was
simplified by the use of metric entropy [FOR12]. We show how it can be simplified
even further: just few lines using the basic facts about metric entropy!

4 The term “δ-dense” comes from the fact that V can be written as a convex combi-
nation of W with weight δ and some other distribution with weight 1− δ.
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Table 1. Different versions of the Dense Model Theorem

Author Technique Function g � as complexity of D′ w.r.t D ε′ vs ε
[TZ08] Complicated Inefficient � = poly(1/(ε/δ), log(1/δ)) ε′ = O(ε/δ)

[RTTV,Gow08] Min-Max Theorem Linear threshold poly(1/(ε/δ), log(1/δ)) ε′ = O(ε/δ)

[FOR12], [DP08] Metric Entropy Linear threshold � = O(n/(ε/δ)2) ε′ = O(ε/δ)

[Zha11] Boosting Linear threshold � = O(log(1/δ)/(ε/δ)2 ε′ = O(ε/δ)

This paper Metric Entropy Linear threshold � = O(log(1/δ)/(ε/δ)2 ε′ = O(ε/δ)

Proof. If we can prove that

HM,det{0,1},(s,ε/Pr[Z=z]))
∞ (X |Z=z) � HM,det{0,1},(s,ε)

∞ (X)− log(1/Pr[Z = z])

then the result will follow by Theorem 1 and Remark 3. Note that by Theorem 3

for any X we have H
M,det{0,1},(s,ε)
∞ (X) � k if and only if ED(X) � |D|

2k + ε for
all boolean D of size at most s. From this we get

ED(X |Z=z) � ED(X)/Pr[Z = z] � |D|/2k Pr[Z = z] + ε/Pr[Z = z]

for any D. Since the characterization is also sufficient, the results follows. ��

5.2 The Optimal Efficient Dense Model Theorem

The Dense Model Theorem with Optimal Parameters. Below we derive
from our Lemma 1 the optimal Dense Model Theorem due to Zhang [Zha11].

Corollary 3. Dense Model Theorem (Theorem 6) holds with ε′ = O(ε/δ), g
being a linear threshold and � = O(log(1/δ)/(ε/δ)2.

Proof. We need Claim 5 and the following version of the leakage lemma

Lemma 5 ( [FOR12], Reformulated). Let X be a random variable and A be
an event of probability δ. Suppose that there exists D such that ED(X |A) −
ED(Y ) � ε′ for all Y of min-entropy at least k − log(1/Pr[A]) and ε′ =
ε/Pr[A] > 0. Then there exists a a function D

′ being a threshold of D such
that ED

′(X)−ED
′(Y ) � ε for all Y of min-entropy at least k.

The name “leakage lemma” is because for s′ ≈ s the lemma implies

HM,det[0,1],s,ε)
∞ (X |A) � HM,D,s′ε/Pr[A])

∞ (X)− log(1/Pr[A]).

Now we are ready to give the proof. Suppose that the Dense Model Theorem
is not true with the claimed parameters. Then for some event A of probability
δ, some ε′ and every distribution Y of min-entropy n − log(1/δ) (equivalently:
δ-dense in the uniform distribution) there exists D ∈ D or D ∈ 1−D such that

ED(X |A)−ED(Y ) � ε′

By applying the min-max theorem we get that there exists a long convex
combination D̄ of functions from D ∪ (1−D) such that

E D̄(X |A)−E D̄(Y ) � ε′ ∀Y : H∞ (Y ) � n− log(1/δ).
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We apply Lemma 1, to the classD∪(1−D) and δ replaced by ε′/3, approximating
D̄ by a convex combination D

′ of length � = O
(
log(1/δ)/ε′2

)
. We get

ED
′(X |A)−ED

′(Y ) � ε′/3 ∀Y : H∞ (Y ) � n− log(1/δ).

Note that D′ is a linear threshold of � functions from D. By Lemma 5 we replace
D

′ by D
′′ which is again a linear threshold of � functions from D and satisfies

ED
′′(X)−ED

′′(Y ) � ε′δ/3 ∀Y : H∞ (Y ) � n.

Hence, with any ε′ > 3ε/δ we get a contradiction. ��

5.3 Equivalence of HILL Entropy and Unpredictability Entropy for
Short Strings

Unpredictability entropy. The notion of unpredictability entropy is based
on the (assumed) hardness of guessing X given auxiliary information Z. More
formally, we have HUnp,s(X |Z) � k if and only if no adversary of size at most s
can predict X given Z better than with probability 2−k. For Z independent of
X or of the relatively short length, this reduces to the min-entropy of X5.

Seperation from HILL entropy. If f is a one-way function, U is the uniform
distribution and X = U,Z = f(U) then we see that X |Z has large amount of
unpredictability. It is also easy to see that X |Z has almost no HILL entropy.

Equivalence for short strings. On the positive side, using metric entropy
and the characterization in Theorem 4, we reprove the following result of Vadhan
and Zheng who established the equivalence when X is short6

Theorem 8 ( [VZ12]). Suppose that X and Z are, respectively, n and m-bit

random variables. Then H
HILL,(s′,ε)
∞ (X |Z) � HUnp,s(X |Z) with s′ = s

poly(2n,1/ε) .

The original proof is based on a result similar to Theorem 4 proved in a much
more complicated way. We note that this part is a trivial consequence of KKT
optimality conditions and also simplify the rest of the proof.

Proof (Sketch). Weprove thatH
M,det[0,1],(s′,ε)
∞ (X |Z) < k impliesHUnp,s(X |Z) <

k. Suppose not, then we have ED(X,Z) − ED(Y, Z) � ε for all Y such that

H̃∞(X |Z) � k. Let Y ∗ be the distribution which minimizes this expression, that
is which maximizes ED(Y, Z). Let t(z) be as in Theorem 4 and denoteD′(x, z) =
max(D(x, z)− t(z), 0) and let λ =

∑
xD

′(x, z) (according to Theorem 4 this sum
does not depend on z). Consider the following predictor A:

On input z sample x according to the probability Pr[A(z) = x] = D
′(x, z)/λ

Note that Y ∗|Z=z is uniform over the set {x : D′(x, z) > 0}. By Theorem 4 (the
sufficiency part) it follows that Y ∗ is also maximal for D. For every z we have

5 Provided that s > 2mn so that the adversary can hardcore his best guess.
6 Logarithmically in the security parameter.
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ED
′(Y ∗|Z=z, z) = ED(Y ∗|Z = z, z) − t(z). We have also ED

′(X |Z=z, z) �
ED(X |Z=z, z)− t(z) by the definition of D′. This proves

ED
′(X,Z)−ED

′(Y, Z) � ε for all Y such that H̃∞(X |Z) � k.

It is easy to observe that

Pr
z←Z

[A(Z) = X ] =
ED

′(X,Z)

λ
> E

z←

[
ED

′(Y |Z=z, z)
∑

xD
′(x, z)

]

� E
z←Z

2−H∞(Y ∗|Z=z)

which is at least 2−k. The circuit D′(x, z) is of complexity 2m · size(D), which is
too big. However, if the domain of x is small, we can approximate the numbers
t(z) given λ from relations in Theorem 4 (and even λ, from the second relation,
for the uniform setting). Indeed, knowing that Emax(D(U, z) − t(z)) = λ, we
estimate Emax(D(U, z) − t) for fixed t and then find a “right” value t = t(z)
by the binary search. This way for every z we can approximate D

′(·, z), and
hence the distribution Pr[A(z) = x], up to a maximal error δ � 2−k and with
overwhelming probability 1 − exp(−poly(1/δ)), using poly(1/δ) samples of D.
On average over z we predict X with probability 2−k − δ ≈ 2−k. ��

5.4 Improved Leftover Hash Lemma for Square-Secure Applications

In the key derivation problem we want to derive a secure m-bit key for some ap-
plication P from an imperfect source of randomness X . The generic approach is
to use a randomness extractor. However, as implied by the RT-bounds [RTS00],
the min-entropy in X needs to be at least m + 2 log(1/ε) if we want the de-
rived key to be ε-secure. Fortunately, as shown by Barak et. al [BDK+11], for
many cryptographic applications, one can reduce this loss by half, that is to
L = log(1/ε). To this end, they introduce the class of square-secure applica-
tions, where the squared advantage, over the uniform choice of keys, of every
bounded attacker is small7. This class contains for example all unpredictabil-
ity applications, stateless chosen plaintext attack secure encryption and weak
pseudo-random functions. The reduction of entropy loss follows by combining
universal hashing with the following lemma

Lemma 6 ([BDK+11]). For a function D : {0, 1}� → [−1, 1] and X ∈ {0, 1}�
of collision entropy k we have

ED(X) � ED(U�) +
√
VarD(U�) ·

√
2�−k − 1.

To see this, let WinA(r, h), for arbitrary attacker A ∈ A, be the probability that
A breaks the key r given in addition8 h and let DA(r, h) = WinA(r, h)− 1

2 be its
advantage. Let X be any n-bit random variable of min-entropy m+log(1/ε). We

7 Essentially the probability that an attacker break the key is concentrated over keys.
8 For the uniform key this doesn’t help the adversary, at least in the nonuniform
model.



120 M. Skorski

apply a randomly chosen universal hash function9 H from n to m bits. It is easy
to see thatH(X), H is a distribution with collision entropym+log |H|−log(1+ε).
From the lemma it follows now that

EDA(H(X), H) � EDA(U,H) +
√
VarDA(U,H) ·

√
ε

If we assume that maxhEDA(U, h) � ε (which means ε-security against A with
the uniform key) and that maxh EDA(U, h)

2 � σ with σ = O (ε) (which means
σ-square-security against A with the uniform key) then we achieve O(ε) security
for the extracted key, with entropy loss only log(1/ε).

An alternative proof. We show that Theorem 5 implies Lemma 6. Indeed,
set k = � and ε = 0 in Theorem 5. Let Y ∗ be the distribution of collision
entropy at least k = � which maximizes ED(Y ), and let t, λ and D

′ be as in the
characterization. Denote S = {x : D(x) � t} and let D|S be the restriction of

D to the set S. Note that Y ∗|S d
= Y ∗ maximizes D|S and D|S(x) = D

′|S(X)+ t
for every x ∈ S. By Remark 6 we get

ED(X) � ED(Y ∗) = ED|S(Y ∗|S) = ED|S(US) +
√

VarDS(US) ·
√

|S|2−k − 1.

We can replace S by the {0, 1}�. This follows by the following general lemma

Lemma 7. Let X be a random variable, c > 1 be a constant and S be an event
of probability P(S) > c−1. Then

E[X |S] +
√
Var[X |S] ·

√
cP(S)− 1 � E[X ] +

√
Var[X ] ·

√
c− 1 (12)

The proof follows by a few algebraic manipulations and is given in Appendix A.

5.5 Some Further Applications

Lower bounds on square security. Using Theorem 5 one can derive some
non-trivial lower bounds on square-security needed for key derivation. We discuss
this problem in a separate paper (see also a full version of this paper on ePrint).

6 Conclusion

In this paper we develop a general tool to characterize metric-type pseudoentropy
and prove a tight transformation between conditional Metric and HILL entropy.
A question we want to address in our future work is to find more applications
of metric pseudoentropy characterizations, especially for key derivation.

Acknowledgments. The author would like to thank Krzysztof Pietrzak for
helpful discussions.

9 A family H functions from n to m bits is universal if Prh←H[h(x) = h(x′)] = 2−m

for x �= x′.
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A Proof of Lemma 7

Proof (Proof ofLemma 7). Denote p = P(S), q = 1 − p and a = E[X |S], b =
E[X |Sc], v = Var[X |S]. Applying the Jensen’s Inequality we obtain

VarX = E (X − EX)
2

= P(S)E
[
(X −EX)2

∣
∣
∣X ∈ S

]
+P(Sc)E

[
(X −EX)2

∣
∣
∣X ∈ Sc

]

� P(S)E
[
(X −EX)

2 |X ∈ S
]
+P(Sc) (E[X |Sc]− EX)

2

Observe that

E
[
(X −EX)

2 |X ∈ S
]
= E

[
((X −E[X |S]) + (E[X |S]−EX))

2 |X ∈ S
]

= E
[
(X −E[X |S])2

∣
∣
∣X ∈ S

]
+ (E[X |S]−EX)

2

= Var[X |S] + (E[X |S]−EX)
2

By the total probability law we obtain

E[X |S]−EX = P(Sc)(E[X |S]−E[X |Sc]

E[X |Sc]−EX = P(S)(E[X |Sc]−E[X |S].
Putting this all together we see that it is enough to prove the following inequality

a+
√
v ·

√
cp− 1 � pa+ (1 − p)b+

√
c− 1 ·

√
√
√
√ pv + p(1− p)2(a− b)2+

(1 − p)2p(a− b)2

which after introducing u = a− b ∈ (−1, 1) becomes

(1 − p)u+
√
v ·

√
cp− 1 �

√
v + (1− p)u2 ·

√
cp− p

Setting A = v, B = cp− 1, C = u2 and D = 1− p we rewrite it as

D
√
C +

√
AB �

√
A+ CD ·

√
B +D

(where we assume A,B,C ∈ [0, 1] and B � 0). This inequality, by taking the
squares of both side, is equivalent to 0 � (

√
BC−

√
A)2, which finishes the proof.

��
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Abstract. Hardcore lemmas are results in complexity theory which
state that average-case hardness must have a very hard “kernel”, that is
a subset of instances where the given problem is extremely hard. They
find important applications in hardness amplification. In this paper we
revisit the following two fundamental results:
(a) The hardcore lemma for unpredictability, due to Impagliazzo (FOCS

’95). It states that if a boolean function f is “moderately” hard to
predict on average, then there must be a set of noticeable size on
which f is “extremely” hard to predict.

(b) The hardcore lemma for indistinguishability, proved by Maurer and
Tesaro (TCC’10), states that for two random variables X and Y
which are ε-computationally close, there are events A and B of
probability 1 − ε such that the distributions of X|A and Y |B are
“computationally” identical.

Using only the standard min-max theorem and some basic facts about
convex approximations in Lp spaces, we provide alternative modular
proofs and some generalizations of these results in the nonuniform set-
ting, achieving best possible bounds for (a) and slightly improving the
known bounds for (b). As an interesting application, we show a strength-
ening of the transformation between two most popular pseudoentropy
variants: HILL and Metric Entropy, and apply it to show how to ex-
tract pseudorandomness from a sequence of metric-entropy sources of
poor quality. In this case we significantly improve security parameters,
comparing to the best known techniques.

1 Introduction

1.1 Hardcore Lemmas and Their Applications

Unpredictability Hardcore Lemma. Suppose that we have a function f :
{0, 1}n → {0, 1} that is mildly hard to predict by a class of circuits; for every
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circuit D from our class, D(x) and f(x) agree on at most, say, a 0.99 fraction
of inputs x. One of the reasons for that, which could intuitively explain this
behavior, is the existence of a “kernel” for this hardness: a set of noticeable
size on which f is extremely hard to predict, meaning that there is (almost)
no advantage over a random guess. How big this set should be? The intuitive
answer is a 0.02 = 2(1 − 0.99) fraction of input. Indeed, if f cannot be guessed
better than with probability 1

2 on this set, then the probability that D agrees
with f is at most 0.02 · 1

2 + 0.98 · 1 = 0.99, by the total probability law.
Quite surprisingly, this intuitive characterization is true. The first such result

was proved by Impagliazzo [Imp95]. An improved version with the optimal den-
sity of the hardcore set was found by Holenstein [Hol05]. Below we present the
best possible result due to Klivans and Servedio.

Theorem 1 (Nonuniform Unpredictability Hardcore Lemma [KS03]).
Let f : {0, 1}n → {0, 1} be ε-unpredictable by circuits of size s, that is

Pr
x←{0,1}n

[D(x) = f(x)] � 1− ε

2

holds for all boolean circuits D over n bits of size at most s. Then for any
δ ∈ (0, 1) there exists a “hardcore” set S of size ε2n such that f on S is 1 − δ
unpredictable by circuits of size s′ = O

(
sδ2/ log(1/ε)

)
, that is

Pr
x←S

[D(x) = f(x)] � 1 + δ

2
, for every D of size at most s′.

Remark 1 (Conventions). Some authors define ε-unpredictability in a different
manner. We follow the approach of [Hol05]. The definition above is quite intu-
itive, since 1-unpredictability means that f is totally unpredictable.

Remark 2 (Trade-off between the Loss in Complexity and Quality of the Hard-
core Set). Ideally we want δ = 0 but then we get nothing nontrivial about
the indistnguishability. In fact, we cannot guarantee that f on the hardcore is
perfectly unpredictable. The loss of δ2/ log(1/ε) in complexity is necessary (the
matching lower bound is due to Lu, Tsai, and Wu [LTW07]).

Remark 3 (Hardcore for any Sampling Distribution). KlivansandServedioproved
in fact a more general result, where one samples x from arbitrary distribution V .
The hardcore set is replaced then by a distribution “dense” in V . See Theorem 3.

Note that the size of the hardcore set, guaranteed to be at least 2nε, is tight. In-
deed, if the second part of the theorem is satisfied, i.e. f is almost unpredictable
on a set of size ε, it implies that f , on average over the whole domain, cannot
be predicted better than 1 − ε+δ

2 ≈ 1 − ε
2 (provided that δ � ε). A uniform

version, with the tight hardcore density, is given also in [Hol05] and [VZ12].
Constructive versions of the hardcore lemma can be obtained by any boosting
algorithm [KS99,BHK09], however such results are not necessarily tight without
additional optimization.
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Indistinguishability Hardcore Lemma. It is well known that if two distri-
butions X1, X2 have the statistical distance at most ε, then there exist events
A1, A2 of probability at least 1− ε such that the distributions X1|A1 and X2|A2

are identical. Based on the reduction to the unpredictability hardcore lemma,
Maurer and Tessaro proved the following computational generalization of this
fact in the nonuniform setting.

Theorem 2 (Indistinguishability Hardcore Lemma [MT10]). Let X1 and
X2 be distributions on {0, 1}n, with the computational distance ε against circuits
of size s, that is

|ED(X1)−ED(X2)| < ε for all D of size s.

Then there exist events A1 and A2 of probability 1− ε such that A1 and A2 are
computationally indistinguishable, that is

|ED(X1|A1)−ED(X2|A2)| � δ for every D of size s = sδ2/128n.

which states that if two distributions are (computationally) not too far away
from each other, then after conditioning on an event of noticeable probability
they are almost completely indistinguishable. Since the lower bound 1 − ε on
the probabilities of hardcore events is tight1, this theorem can be viewed as a
characterization of computational indistinguishability.

Applications of hardcore lemmas. Hardcore lemmas are fundamental re-
sult in complexity theory and find applications in cryptography and learning
theory. They are particularly important in the context of hardness amplifica-
tion, i.e. transforming somewhat hard problems into hard problems. See for
instance [LT13,GNW11,MT10,Hol05, Imp95].

1.2 Our Results

An unpredictability hardcore lemma from standard min-max theo-

rem. We reprove Theorem 1 in its full generality developing a few new ideas.
Our approach has the following advantages:

(a) A new modular proof technique. Our approach is very simple and natural.
We observe that it is straightforward to construct a hardcore for any fixed
circuit of size s. Then we show that this is possible for any real-valued circuit
of the same size. The third step (the only one which loses in complexity)
is an approximation argument which shows that there exists a hardcore for
any convex combination of circuits of size s. Finally we trivially“switch” the
quantifiers by the standard min-max theorem. See Figure 1 for an overview.

(b) Tight bounds from the standard min-max theorem. In our proof the weight
of the hardcore event2 for ε-unpredictability is guaranteed to be ε and

1 By the similar reasoning as in the unpredictability case.
2 The hardcore is then understood as the sampling distribution conditioned on an
appropriate event of sufficiently big probability.
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we loss a factor of O
(
log(1/ε)/δ2

)
in complexity for the hardcore to be

1− δ unpredictable, which matches the lower bound [LTW07]. The previous
proofs which achieve optimal parameters required involved iterative argu-
ments [KS03] or dedicated versions of the min-max theorem [VZ12]. Some
authors even suggested that it might be impossible to get the tight param-
eters using the standard min-max theorem [VZ12].

(c) New ideas of independent interests. The only technical difficulties in our
proof are steps 2 and 3. The tools we have developed to overcome them allows
us to give a direct proof (without reduction!) of the indistinguishability
hardcore lemma and a variant of the indistinguishability hardcore lemma
dedicated for computational entropy.

Below, in Figure 1, we sketch our proof strategy. We have managed to separate
a lossless use of the min-max theorem from a standard approximaiton argument
which is responsible for the only loss in complexity.

D ∈ D
{0,1},s

(D is fixed)
D ∈ D

[0,1],s

(D is fixed)
D ∈ conv

(
D

[0,1],s
)

(D is fixed)

D ∈ conv
(
D

[0,1],s
)

(D is arbitrary)easy

no loss

tricky
(optimization)

no loss

appropriate L
p

approximation

lossy step

trivial
(min-max thm.)

no loss

Fig. 1. An overview of our proof technique

A quantitative comparison with versions of Theorem 1 is given in Table 1.

Table 1. Our unpredictability hardcore lemma compared to previous works

Result Author Proof technique Complexity loss
Sampling

distribution

Unpredictability
Hardcore

[Hol05]
standard min-max theorem

hardcore density optimization O(n/δ2) Uniform

[KS03] boosting O
(

log(1/ε)

δ2

)
Arbitrary

[VZ12]
dedicated min-max theorem
hardcore density optimization O

(
log(1/ε)

δ2

)
Arbitrary

This paper
Theorem 3

standard min-max theorem
convex approximation O

(
min

(
n
δ2
, log(1/ε)

δ2

))
Arbitrary

A simplified and improved reduction from to unpredictability hard-

cores.We show an alternative proof for the indistinguishability hardcore lemma
of Maurer and Tessaro. In [MT10] the non-trivial reduction goes from the in-
distinguishablity hardcore lemma to the “standard” unpredictability hardcore
lemma, that is where inputs are sampled from the uniform distribution. On the
contrary, we find it much easier and natural to reduce it to unpredictability of
some predicate which explicitly depends on the distributions X1, X2 (it is sim-
ply equal to the sign of the difference between probability mass functions). In
our reduction we achieve better numerical constants and improve the factor de-
pending on the dimension, replacing n by Δ2 log(1/δ) where Δ is the statistical
distance of X1 and X2. The comparison with Theorem 2 is given in Table 2.
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Table 2. Our indistinguishability hardcore lemma compared to previous works

Result Author Proof technique Complexity loss

Indistinguishability
Hardcore

[MT10]
Reduction

(to unpredictability hardcore) O(n/δ2)
This paper
Theorem 4

Simpler Reduction

(general unpredictability hardcore) O
(
min

(
Δ2n
δ2

, Δ2 log(Δ/ε)

δ2

))

A direct proof of the Indistinguishability Hardcore Lemma. Adapt-
ing the proof given for the unpredictability case, we derive the (nonuniform)
Indistinguishability Hardcore Lemma of Maurer and Tessaro directly, that is
without reducing it to unpredictability hardcore lemmas. This might be impor-
tant for lower bounds. Indeed, lower bounds on unpredictability hardcore lem-
mas do not imply lower bounds for the indistinguishability. For more details, see
Corollary 3 in Section 4.

An Indistinguishability Hardcore Lemma for Pseudoentropy. In some
situations, for instance in extracting entropy, we do not really need our distri-
bution X to be indistinguishable from a particular Y but rather from a class
of distributions Y (which is a weaker requirement). In particular, consider the
following alternatives to formalize the statement “X almost has min-entropy k”:

(i) X is (s, δ)-close to having property P , if there exists a distribution Y with
min-entropy k such that for every circuitD of size s, we haveΔD(X ;Y ) � δ

(ii) X is (s, δ)-close to having property P , if for every D of size s there exists
a distribution Y with min-entropy k such that we have ΔD(X ;Y ) � δ.

where ΔD(X ;Y ) = ED(X) − ED(Y ) is the advantage of the attacker D. For
case (i), we obtain the notion of the HILL entropy [HILL99]. In case (ii) we
obtain a relaxed notion called metric pseudoentropy [BSW03]. Metric pseudoen-
tropy is widely used as a convenient substitute of HILL entropy and find many
application in studying pseudorandomness [VZ12, FOR12,DP08, BSW03]. It is
known [BSW03] that metric entropy with parameters (s, ε) can be converted
into HILL entropy with no loss in the amount and the parameters (s′, ε′) =
(O

(
s · δ2/n

)
, ε + δ) for any δ. We obtain a nice and much stronger version of

this transformation: if X has metric entropy of quality (s, ε) (even against weak-
est deterministic circuits) then after conditioning on an event of probability 1−ε,
it has the same amount of HILL entropy of quality (O

(
s · δ2/n

)
, δ).

Application: extracting pseudorandomness from pseudoentropy of

poor quality. Using our generalized indistinguishability hardcore lemma, we
prove that for a sequence of independent distributions X1, . . . , X�, each having
metric-entropy k with parameters (s, ε) for some large ε and against deterministic
circuits of size s, the concatenated string X = X1, X2, . . . , X� has HILL entropy
roughly (1 − ε)�k with parameters (s′, δ′) = (δ, sδ2�−2/n). In other words, for a
metric pseudoentropy source of quality (s, ε) we achieve, sampling many times,
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the entropy extraction rate α = 1 − ε3 with good security. Comparing to the
state of art we save a quite large factor δ2 in security4.

1.3 Outline of the Paper

Section 2 provides necessary definitions for hardness of unpredictability, compu-
tational indistinguishabilty and computational entropy. In Section 3 we present
a generalization of the unpredictability hardcore lemma and a slightly simplified
proof of the indistinguishability hardcore lemma. A hardcore lemma dedicated
for pseudoentropy is given in Section 4. An application to the problem of extract-
ing from a pseudoentropy source of very bad quality is discussed in Section 5.

2 Preliminaries

Computational and Statistical Indistinguishability. Let X and Y be
two random variables taking values in the same space. The advantage of D in
distinguishing between X and Y is defined to be ΔD(X ;Y ) = ED(X)−ED(Y ).
The statistical distance between two random variables X and Y , is defined as
Δ(X ;Y ) = 1

2

∑
x |Pr[X = x] − Pr[Y = x]| and is equal to the maximum of

ΔD(X ;Y ) over all [0, 1]-valued functions D. The computational distance be-
tween X and Y is defined as maxD∈D |ΔD(X ;Y )| where D is a fixed class of
boolean functions. We say thatX and Y are (s, ε)-close or (s, ε)-indistinguishable
if ΔD(X ;Y ) � ε for all D of size at most s.

Hardness of Unpredictability. A boolean funciton f : {0, 1}n → {0, 1} is
said to be (s, δ)-unpredictable if Prx←{0,1}n [D(x) = f(x)] � 1− δ/2 for all D of
size at most s. We also say that f is δ-hard against circuits of size s. We say that
that f is (s, δ)-unpredictable under the distribution V if Prx←V [D(x) = f(x)] �
1− δ/2 for all D of size at most s.

Measures and Dense Distributions. X is δ-dense in Y if Pr[X = x] �
Pr[Y = x]/δ for all x.

Circuits. By D{0,1},s and D[0,1],s we denote the set of boolean and, respectively,
real-valued circuits of size at most s.

Computational Entropy. There are many ways to define computational ana-
logues of entropy. We follow the most popular approach, which is based on the
concept of computational indistinguishability.

Definition 1 (HILL Pseudoentropy [HILL99]). Let X be a distribution
with the following property: there exists Y of min-entropy at least k such that
for all circuits D of size at most s we have |ΔD(X ;Y )| � ε. Then we say that
X has k bits of HILL entropy of quality (s, ε) and denote by HHILL

s,ε (X) � k.

3 Understood as the ratio of the number of extracted bit to the length of the input.
4 We note that the following issues makes this problem challenging: (a) since ε is
large, no hybrid technique can be applied and (b) pseudoentropy is only against
deterministic adversaries so no extractor can be directly applied.
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It is known that for HILL Entropy all kind of circuits: deterministic boolean,
deterministic real valued and randomized boolean, are equivalent (with the same
size s). The following definition differs in the order of quantifiers

Definition 2 (Metric Pseudoentropy [BSW03]). Let X be a distribution
with the following property: for every deterministic boolean (respectively: deter-
ministic real valued or boolean randomized) circuit D of size at most s there exists
Y of min-entropy at least k such that |ΔD(X ;Y )| � ε. Then we say that X has
k bits of deterministic (respectively: deterministic real valued or boolean ran-

domized) metric entropy of quality (s, ε) and denote by H
Metric,det{0,1}
s,ε (X) � k

(respectively: H
Metric,det[0,1]
s,ε (X) and HMetric,rand

s,ε (X)).

Approximating convex hulls. The following facts are useful when we want
to approximate possibly long convex combinations of functions by a combination
of few functions; in particular, when we use the min-max theorem and need to
approximate any mixed strategy by an efficient strategy.

Lemma 1 ( [BSW03]). Let X be a finite domain, ν be a distribution on X and
let G be any set of functions g : X → [−1, 1] and let g be a convex combinations

of functions from G. Then for any ε ∈ (0, 1) and for some k � log |X |
2ε2 , there exist

functions g1, . . . , gk such that

max
x∈X

∣
∣
∣
∣
∣
g(x) −

(
1

k

k∑

i=1

gi(x)

)∣
∣
∣
∣
∣
� ε

Lemma 2 (Convex approximation in Lp spaces [DDGS97]). Let X be a
finite domain, ν be a distribution on X . Fix a number 1 � p < +∞ and for

any function f on X define ‖f‖p = (Ex←ν |f(x)|p)
1
p . Let G be any set of real

functions on X , let g be a convex combinations of functions from G and K > 0
be such that for all g ∈ G we have ‖g− g‖p � K. Then for any � > 0 there exists

a convex combination g′ =
∑�

i=1 αigi of functions g1, . . . , gk ∈ G such that

‖g − g′‖p � KCp

�1−
1
t

where t = min(2, p) and Cp = 1 if 1 � p � 2, Cp =
√
2[Γ ((p+ 1)/2)/

√
π]1/p for

2 < p < +∞.

3 Hardcore Lemmas

3.1 Hardcore Lemma for Unpredictability

Below we prove a general hardcore lemma for unpredictability.

Theorem 3 (Unpredictability Hardcore Lemma for arbitrary distribu-
tions). Let V be an arbitrary distribution on {0, 1}n and suppose that an n-bit
boolean function f is (s, ε)-unpredictable under V . Then for any δ there exists
an event A of probability at least 2ε such that f is (s′, 1− δ)-unpredictable under
V |A, where s′ = O

(
sδ2 ·max (1/n, 1/ log(1/ε))

)
.
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Note that f is essentially almost unbiased under V |A: by applying trivial dis-
tinuguishers D ≡ 1 and D ≡ 0 we get 1

2 − δ � Pr[f(V |A) = 1] � 1
2 + δ. For

some technical reasons we need the following observation, which states that the
hardcore event “preserves” unbiased predicates.

Corollary 1 (Unpredictability Hardcore Lemma for Unbiased Predi-
cates). Suppose that Theorem 3 holds for f and V such that P (f(V ) = −1) =
1
2 = P (f(V ) = 1). Then the hardcore event A can be chosen in such a way that
P (f(V |A) = −1) = P (f(V |A) = 1) = 1

2 , with the additional loss of a factor
O(1) in circuit size.

The proof of Corollary 1 appears in Appendix A. It is relatively simple and uses
the idea of “mass-shifting”. The proof of Theorem 3 appears in Appendix B.

3.2 Hardcore Lemma for Indistinguishability - Reduction to
Unpredictability Case

The following lemma shows that indistinguishability of two distributions is equiv-
alent to the hardness of predicting some boolean function, which explicitly de-
pends on these distributions. This function is quite natural: it equals the sign of
the difference between the probability mass functions.

Lemma 3. Let D be a class of boolean functions, X,Y ∈ {0, 1}n be random
variables, and let Δ = Δ(X,Y ) be different than 0. Then the following are
equivalent:

(a) X and Y are (D, ε)-indistinguishable
(b) f(x) is (D, 1 − ε/Δ)-unpredictable under V , where f(x) is the indicator of

the set {x : PX(x) > PY (x)} and the distribution of V is given by PV (x) =
|PX(x)−PY (x)| /2Δ.

Proof. For any boolean D we obtain

ED(X)−ED(Y ) =
∑

x

(PX(x) −PY (x))D(x)

= 2Δ (Pr[f(V ) = 1]E[D(V )|f(V ) = 1]

−Pr[f(V ) = 0]E[D(V )|f(V ) = 0])

Observe that Pr[f(V ) = 1] = Pr[f(V ) = 0] = 1
2 . Therefore

ED(X)−ED(Y )=2Δ

(

−1

2
+
1

2
E[D(V )|f(V )=1]+

1

2
E[(1−D(V ))|f(V )=0]

)

.

Since D is boolean, the last equation is equivalent to

ED(X)−ED(Y ) = 2Δ

(

Pr[D(V ) = f(V )]− 1

2

)

,

which finishes the proof. 
�
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Based on Lemma 3 we prove the following result

Theorem 4 (Indistinguishability Hardcore Lemma). Suppose that X and
Y are distributions (s, ε)-indistinguishable by boolean circuits Then for any δ > 0
there exist events A(X), A(Y ), both of equal probability at least 1− ε, such that
X |A(X) and Y |A(Y ) are (O

(
s · δ2/ log(Δ(X ;Y )/ε)

)
, Δ(X ;Y )·δ) indistinguish-

able.

Proof. From the construction of V , we obtain that f is (s, 1 − ε/Δ(X,Y ))-
unpredictable under V . From Theorem 3 we obtain that there exists a hardcoreA
with probability at least 1 − ε/Δ(X,Y ) such that f is extremely
unpredictable under V |A. This hardcore event can be described as follows:
there exists a measure M = MA that satisfies M(x) � PV (x) and P(A) =
μ(M) � 1 − ε/Δ(X,Y ) and such that f(x) is unpredictable for sampling ac-
cording to M , i.e. Px←M (D(x) = f(x)) < 1/2 + δ. The distribution V |A is
then defined by PV |A = PM . Consider the events S− = {x : f(x) = 0} and
S+ = {x : f(x) = 1}. From the definition of V and f it follows that PV (S−) =
PV (S+) = 1

2 . As shown in Corollary 1, the sets S+, S− can be assumed to be
perfectly unbiased also under V |A. Define now two measures M0 = MX and
M1 = MY as follows:

M0(x) =

{
PX(x)− 2Δ(X,Y ) (PV (x)−M ′(x)) if PX(x) > PY (x)
PX(x) otherwise

(1)

and similarly,

M1(x) =

{
PY (x)− 2Δ(X,Y ) (PV (x)−M ′(x)) if PX(x) < PY (x)
PY (x) otherwise

(2)

Note that both measures are well defined since PV (x) = |PX(x) −PY (x)| /2Δ
(X,Y ) and M ′(x) � PV (x). Then from the definition of (V,A) and the definition
of f it follows that

μ (M0) = 1− 2Δ(X,Y )
∑

x: f(x)=1

PV (x) + 2Δ(X,Y )
∑

x: f(x)=1

M ′(x)

= 1−Δ(X,Y ) + 2Δ(X,Y )P(A) ·PV |A
(
S+

)

= 1−Δ(X,Y )P(Ac)

� 1− ε (3)

and similarly that the same estimate holds for μ (M1). Observe also that since S+

and S− are perfectly unbiased with respect to M ′, and since the same holds for
V , we have μ (M0) = μ (M1). These measures give rise to the joint distributions
X,A(X) and Y,A(Y ) for some events A(X), A(Y ) with probabilities at least
μ (M0) = μ (M1). It remains to calculate the advantage in distinguishing. Let V ′

and f ′ be a distribution and a predicate corresponding to X |A(X) and Y |A(Y )
according to the statement of Lemma 3. Observe thatM0(x) > M1(x) if and only
if f(x) = 1, hence f ′(x) = f(x). Since |M0(x) −M1(x)| = 2Δ(X,Y )M ′(x) for
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every x, we get PV (x) = M ′(x)/μ(M ′) = PV |A(x) and Δ(X |A(X), Y |A(Y )) =
Δ(X,Y ). Therefore

ΔD(X |A(X), Y |A(Y )) = Δ(X,Y ) · (2Px←V ′ (D(x) = f ′(x))− 1)

= Δ(X,Y ) ·
(
2Px←V |A′ (D(x) = f(x))− 1

)

< Δ(X,Y ) · δ, (4)

and we have finished the proof. 
�

Remark 4. We note that without Corollary 1 we would obtain a slightly weaker
version of the indistinguishability hardcore lemma where the probability of the
hardcore events is guaranteed to be at least 1− ε− δ, which is very close to the
optimal 1− ε and equally good in applications.

4 Indistinguishability Hardcore Lemma for
Pseudoentropy

In this section we prove the following theorem, which gives the existence of a
“HILL-entropy-hardcore” for metric pseudoentropy.

Theorem 5 (IndistinguishabilityHardcore Lemma forPseudoentropy).

Suppose that H
Metric,det{0,1}
s,ε (X) � k. Then for any δ and s′ = O

(
s · δ2/n

)
there

exists an event A of probability 1− ε such thatHHILL
s′,δ (X |A) � k − log(1/(1− ε)).

This theorem shows that metric entropy not only can be converted to HILL
entropy with the loss of factor δ in advantage and δ2 in circuit size; It has a
hardcore of HILL entropy with the same quality parameters. Before we give the
proof, let us observe that this result implies the transformation between metric
and HILL entropy (up to the lose of at most one bit)

Corollary 2 (MetricEntropy-HILLEntropyTransformation [BSW03]).

Suppose thatH
Metric,det{0,1}
s,ε (X) � k. ThenHHILL

s′,ε′ (X) � kwhere s′ = O
(
s · δ2/n

)

and ε′ = ε+ δ.

Proof (Proof of Corollary 2). We apply Theorem 5 obtaining a distribution Y |A
which is (s′, δ)-indistinguishable from X |A, and then we define Pr[Y ′ = x] =
Pr[A] ·Pr[Y = x|A]+2−n Pr[Ac]. Note that H∞(Y ′) � k−1 and Y ′ is (s′, ε+δ)-
indistinguishable from X . We remark that one can actually show without the
loss of 1 bit, because Theorem 5 actually is slightly stronger that stated, namely
HHILL

s′,δ (X |A) � k− log(1/(1−ε)) can be replaced by the following: X |A is (s′, δ)-
indistinguishable from Y |A where Y has k bits of min-entropy. 
�

Theproof strategy forTheorem 5 is exactly the same as in the case ofTheorem 3.
The full proof is given in Appendix C. Note that the result inTheorem 5 withmuch
worse parameters follows by converting metric-entropy into HILL entropy using
Corollary 2 and then applying Theorem 2. This way we lose δ4 in circuit size.
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Corollary 3 (DirectProofof the IndistinguishabilityHardcoreLemma).
The proof of Theorem 5 can be easily adapted to give a direct proof of Theorem 4
without reducing it to Theorem 3. Namely, in the proof we replace the condition
M2 � 2−k byM2 � PY .

5 Applications: Extracting from Metric Pseudoentropy
of Poor Quality

Suppose that we have a source of metric pseudoentropy that produces samples
secure against deterministic adversaries of high complexity but only with a very
big advantage ε (for instance, ε = 0.25). Since the metric entropy is only against
deterministic adversaries, for which it is not known [FOR12] if we can extract
pseudorandomness directly5, one needs to convert in into the HILL entropy.
However, it still does not solve the problem of large ε. In the next step one can
use Theorem 2 to prove that a concatenated sequence of many samples has large
HILL entropy6., with the rate of roughly 1 − ε. This approach loses O

(
δ4
)
in

security. Below we show that these two steps can be done at the same time which
allows us to save a factor of O

(
δ2
)
in security.

Theorem 6. Suppose that Xi, for i = 1, . . . , �, are independent n-bit random

variables such that H
Metric,det{0,1}
s,ε (X) � k. Then for any γ > 0 we have

HHILL
s′,δ′ (X) � (1 − ε− γ)� (k − log(1/(1− ε))) ,

where s′ = O
(
s · δ2/n�2

)
and δ′ = δ + 2 exp(−2�γ2)

Proof. Fix δ and let s′ = O
(
s · δ2/n

)
. We apply Theorem 5 to Xi, for i =

1, , . . . , �, obtaining hardcore events Ai of probability at least 1 − ε such that
HHILL

s′,δ (Xi|Ai) � k − log(1/(1 − ε)). By the Chernoff Bound we know that the
probability that m = �(1 − ε − γ) of them happen simultaneously, is at least
1− 2 exp(−2�γ2). The result follows now by the observation that concatenating
� random variables Y1, . . . , Y� of HILL entropy k1, . . . , k� with parameters (s′, δ)
yields a distribution of HILL entropy k1 + k2 + . . .+ k� with parameters (s′, �δ)
(the proof follows by a standard hybrid argument). 
�

6 Conclusion

An interesting open problem is to check if the indistinguishability hardcore
lemma can be derived from the unpredictability hardcore lemma, that is show
the reduction in other direction than in [MT10] and this paper. Another problem
worth of mentioning is the question about lower bounds on the necessary loss in
security for indistinguishability hardcore lemma.

5 The problem of randomized vs deterministic adversaries is the matter of metric
entropy only; for the HILL entropy all kind of circuits are equivalent.

6 Maurer and Tessaro construct in the same way a PRG from a weak PRG.
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2007. LNCS, vol. 4596, pp. 183–194. Springer, Heidelberg (2007)

MT10. Maurer, U., Tessaro, S.: A hardcore lemma for computational indistinguisha-
bility. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 237–254.
Springer, Heidelberg (2010)

VZ12. Vadhan, S., Zheng, C.J.: Characterizing pseudoentropy and simplifying
pseudorandom generator constructions. In: STOC 2012, pp. 817–836. ACM
(2012)



Nonuniform Indistinguishability and Unpredictability Hardcore Lemmas 135

A Proof of Corollary 1

Proof (Proof of Corollary 1). Let M(x) = Pr[V = x,A]. Since M(x) � PV (x)
and we have M (S−) ,M (S+) � 1

2 . Suppose that M (S+)−M (S−) = 2δ0. Then

M (S−) = μ(M)
2 − δ0 and M (S+) = μ(M)

2 + δ0. Suppose δ0 > 0. Since M (S−) �
P (S−) − δ0 and M (S+) � δ0, we can define the measure M ′ by decreasing
the mass of S+ by δ0 and moving it to S− in such a way that M ′(x) � PV (x)
still holds on S−. For the case δ0 < 0 observe that M (S+) � P (S+) − (−δ0)
and M (S−) � −δ0 thus we proceed similarly by decreasing the mass of S− by
(−δ0) and moving it to S+ in such a way that M ′(x) � PV (x) holds on S+.
Therefore, in both cases we have M ′(x) � PV (x). Clearly M ′ (S+) = M ′ (S−).
Thus the measure M ′ gives rise to a distribution V,A′. While constructing M ′

from M we only shift a mass between disjoint sets, hence μ(M) = μ(M ′) and
P(A) = P(A′). It remains to show, that under distribution V |A′ the function
f is still unpredictable. Applying trivial distinguishers D = 1 and D = −1 to
unpredictability under V |A, we get M (S+) ,M (S−) � (1/2 + δ)P(A). Since
M (S+) + M (S−) = P(A) it follows then that 2 |δ0| = |M (S+)−M (S−)| �
2δP(A). Since the total mass that of M that is shifted to M ′ is equal to δ0, we
have ‖M ′ −M‖1 =

∑

x
|M ′(x)−M(x)| � 2 |δ0| � 2δP(A). Since P(A′) = P(A),

this implies Δ (V |A, V |A′) � 2δ. Therefore, for every D of size s′ we obtain
Px←V |A′ (D(x) = f(x)) < 1

2 + δ + 2δ. Replacing δ with δ/3 changes the circuit
size only by a (small) constant factor. 
�

B Proof of Theorem 3

Proof. In this proof, for convenience, we assume that boolean functions take
values in {−1, 1}.
Step 1. We extended the concept of unpredictability to all real-valued functions.
The following straightforward but very useful property is easy to check:

Lemma 4. Let f and D be boolean. Then f is ε-unpredictable by D under V if
and only if Ex←V D(x)f(x) � 1− ε.

Step 2. We show how to construct a hardcore for a single boolean attackerD. For
some technical reasons, we need actually a slightly stronger statement, namely
a construction for a function D which takes values −1, 0, 1.

Lemma 5. Suppose that for a distribution V , a function D with values in
{−1, 0, 1} and a boolean function f we have Ex←V D(x)f(x) = ±δ. Then there is
a measure M such that M(x) � PV (x), μ(M) � 1− δ and Ex←MD(x)f(x) = 0.

Proof. By replacing D by −D we can assume that Ex←V D(x)f(x) = δ > 0. Let
S1 = {x : D(x)f(x) > 0}. If follows that Pr[V ∈ S1] =

∑
x∈S1

PV (x)D(x) � δ.

Now we define M(x) = PV (x) · (Pr[V ∈ S1] − δ)/Pr[V ∈ S1] for x ∈ S1 and
M(x) = PV (x) otherwise. M satisfies the required properties. 
�

Step 3. We argue that the same is true for real-valued functions D.
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Lemma 6. Suppose that f is ε-unpredictable by boolean circuits of size s under a
distribution V . Then for every real-valued D of size s′ ≈ s there exists a measure
M such that M(x) � PV (x) for every x, μ(M) � ε and Ex←MD(x)f(x) = 0.

Proof. Suppose not. Since the set of feasible measures M is convex, this is we
must have either Ex←MD(x)f(x) > 0 for all M or Ex←MD(x)f(x) < 0 for all
M . By eventually replacing D with −D we obtain that there exists a real-valued
circuit D of size s such that for all measures M satisfying the constraints

∑

x

D(x)f(x)M(x) > 0.

Now we give a characterization of the measure that minimizes the left-hand side
in the inequality above.

Claim 1. Let M0 be an optimal solution of the following problem

minimize
M

∑

x

D(x)f(x)M(x)

s.t.

{
M(x) � PV (x)

μ(M) � ε

Define S = {x : sgnD(x) = f(x)} and let p = P(V ∈ S). Let xi for i = 1, . . . ,M
be the elements of S, enumerated in such a way that |D(xi)| � |D(xi+1)|. Let

N be the maximal number such that N � M and
N∑

i=1

PV (xi) � min (1− ε, p).

Then the measure M0 defined by M0(x) = 0 if x = xi for some i ∈ [1, N ] and
M0(x) = PV (x) otherwise, is the minimizer.

Proof. It is clear that for the optimal measure M0, the mass of PV (x) is de-
creased only if f(x)D(x) > 0 and keeps unchanged if f(x)D(x) < 0. Thus, the
total mass we cut is equal to at most

∑

x: D(x)f(x)>0

PV (x) = p

In the other hand, it is bounded from above by 1 − ε due to the constraint
μ(M) � ε. The last observation is that if D(x)f(x) > 0, the greater the absolute
value of D(x) is, the more mass we cut. 
�

As a conclusion from Claim 1 we get that μ(M0) = max(ε, 1 − p). From the
definition of M0 we have that

min
M :

M�PV

μ(M)�ε

∑

x

D(x)f(x)M(x) =
∑

x

D(x)f(x)M0(x)

Let D1(x) := D(x) · 1{f>0} and D2(x) := D(x) · 1{f<0}. Then we have

Ex←M0D(x)f(x) = Ex←M0D
+
1 (x) −Ex←M0D

−
1 (x) −Ex←M0D

+
2 (x)

+Ex←M0D
−
2 (x)
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By applying the formula EY =
∫

t∈[0,1]

P(Y > t) dt (valid for any random variable

Y ∈ [0, 1]) to Y = PM0 we obtain that for some t = t0 ∈ (0, 1) and D
′ defined

by D
′(x) = sgnD(x) · 1|D(x)|>t0 we get

Pr[D+
1 (Y ) > t0]− Pr[D−

1 (Y ) > t0]− Pr[D+
2 (Y ) > t0] + Pr[D−

2 (Y ) > t0] > 0,

which is equivalent to

Ex←M0D
′(x)f(x) > 0.

Observe that, by the construction, sgnD′ = sgnD and |D(x1)| � |D(x2)| is
equivalent to |D′(x1)| � |D′(x2)|. Therefore, applying the characterization given
by Claim 1 to the two cases:D,M0 andD

′,M0, we obtain thatM0 is a minimizer
for both circuits. Therefore

min
M :

M�PV

μ(M)�ε

∑

x

D
′(x)f(x)M(x) =

∑

x

D
′(x)f(x)M0(x) > 0

which gives us a contraddiction to Lemma 5. 
�

Step 4. We argue that Lemma 6 holds approximately for all convex combinations

of circuits of size comparable to s. Let D′′ be a convex combination of real-valued
circuits of size s′′ = O

(
sδ2/ log(1/ε)

)
. From Lemma 2 applied to D

′′, we obtain
that for some real-valued circuit D′ of size s′ ≈ s we have

(
E

x←V

∣
∣D′′(x)−D

′(x)
∣
∣p
) 1

p

= O
(
δ ·

√
p/ log(1/ε)

)
(5)

Let M be the “hardcore” measure corresponding to D
′ according to Lemma 6.

Since |f | = 1 and Ex←M D
′(x)f(x) = 0, we obtain

E
x←M

D
′′(x)f(x) � E

x←M

∣
∣D′′(x)−D

′(x)
∣
∣ (6)

By the Hölder Inequality we obtain

E
x←M

∣
∣D′′(x)−D

′(x)
∣
∣ �

(

E
x←V

(
PM (x)

PV (x)

)q) 1
q

·
(

E
x←V

∣
∣D′′(x)−D

′(x)
∣
∣p
) 1

p

(7)

We will show that

(
E

x←V
(PM (x)/PV (x))

q
) 1

q � (1/ε)
1
p (8)

Indeed, consider the set M of all distributions ε-dense in V . By definition, we
have PM ∈ M. Since the expression on the left-hand side of Equation (8) is
convex with respect to PM , its maximum over M is achieved on one of extreme
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points of the set M. It is easy to check that the extreme points P of M satisfy
P(x) = PV (x)/ε for all but at most one x ∈ supp(P)7. For any such P we have

E
x←V

(
P(x)

PV (x)

)q

� 1

εq
· ε · (1−P(x′)) +

(
P(x′)
PV (x′)

)q

·PV (x
′)

wherex′ is thepoint such that 0 < P(x′) � PV (x)/ε. Since the right-hand is convex
with respect toP(x′), it is maximized either forP(x′) = 0 orP(x′) = PV (x)/ε. In
any case, it is at most ε1−q. Let p = 2 log(1/ε). Combining Equation (6),
Equation (7), Equation (8) and Equation (5) we get

E
x←M

D
′′(x)f(x) � δ. (9)

Alternatively, we can use of Lemma 1, with s′′ = O
(
sδ2/n

)
.

Step 5. By applying the min-max theorem we reverse the order of quantifiers:
we obtain that there exists a measure M satisfying μ(M) � ε and M(x) �
PV (x) such that Equation (9) hold for all circuits D

′′ of size s. By replacing
D

′′ with −D
′′ we see that these inequalities hold in absolute values. It remains

to observe that the measure M gives rise to a joint distribution (V,A) where
M(x) = Pr[V = x,A = 1]. In particular, Pr[A = 1] = μ(M) � ε. 
�

C Proof of Theorem 5

Proof (Proof of Theorem 5). By considering the functions P(X = x,A1) and
P(Y = x,A2) for some events A1, A2, it is easy to see that, equivalently, we
need to find measures M1,M2 which satisfy the following conditions:

(a) M1 � PX(x) and M2 � 2−k

(b) μ(M1) = μ(M2) � 1− ε
(c) ΔD (PM1 ,PM2) � δ for every D of size s′.

First, we show how to construct measures satisfying these conditions only for
one fixed boolean circuit D

Claim 2. Let X be a finite domain. Suppose that we are given a boolean function
D and two probability distributions μ1, μ2 on X , such that ΔD(μ1, μ2) = ε. Then
there exist measures M1,M2 such that:

(a) Mi(x) � μi(x) for every x and i,
(b) μ(M1) = μ (M2) = 1− ε,
(c)

∑

x
D(x)M1(x) =

∑

x
D(x)M2(x).

Proof. Assume
∑

x
D(x)μ1(x)−

∑

x
D(x)μ2(x) = ε (the other case is symmetric).

By decreasing the measure μ1 on the set {x : D(x) = 1} we define a measure M1

such that M1(x) � μ1(x) and μ(M1) = 1−ε and
∑

x
D(x)M1(x) =

∑

x
D(x)μ2(x).

Now consider {x : D(x) = 0} and proceed similarly to obtain M2 from μ2. 
�
7 This observation can be viewed as a generalization of the well-known fact that the
extreme points for the set of all high min-entropy distributions are flat distributions.
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Next we argue that the same is also possible for a real-valued circuit. This is the
main technical difficulty in the proof.

Claim 3. Suppose that for any boolean D of size s there exist measures M1,M2

such that M1(x) � PX(x) and M2(x) � 2−k for every x and μ(M1) = μ (M2) �
1 − ε and

∣
∣
∣
∣
∑

x
D(x)M1(x)−

∑

x
D(x)M2(x)

∣
∣
∣
∣ � δ. Then the same is true for real-

valued circuits of size D.

Proof. Suppose not. Since feasible measure M1,M2 form convex sets, we have
either

∑

x
D(x)M1(x) −

∑

x
D(x)M2(x) < −δ for all feasible M1,M2 or

∑

x
D(x)

M1(x)−
∑

x
D(x)M2(x) > δ for all feasible M1,M2. Replacing D with D

c if nec-

essary we can assume that for all measures M1,M2 satisfying the corresponding
constraints, the following inequality holds

∑

x

D(x)M1(x) −
∑

x

D(x)M2(x) > δ. (10)

We will characterize the measures M1 = M+
1 ,M2 = M+

2 which maximize the
left-hand side of Equation (10), similarly as in Claim 1 in the proof of Theorem 3.

Claim 4. Suppose that the measures M1 = M+
1 ,M2 = M+

2 minimize

∑

x

D(x)M1(x) −
∑

x

D(x)M2(x) > δ,

subject to constraints M1(x) � 0 and M2(x) � 0 for all x,
∑

xM1(x) = 1− ε =∑
xM2(x), M1(x) � PX(x) and M2(x) � a for all x. Let x1, . . . , xN , where N =

2n, be all the elements of {0, 1}n sorted such that D(xi) � D(xi+1) and let T be

the maximal number such that
∑T

i=1 PX(x) � ε. The optimal measuresM+
1 ,M+

2

can be characterized as follows: M+
1 (xi) = 0 for i = 1, 2 . . . , T , M+

1 (xT+1) =

ε −
∑T

i=1 PX(x), and M+
1 (xi) = PX(xi) for i > T + 1; M+

2 (xi) = a for i =
1, . . . , �(1− ε)/a, M+

2 (x2k+1) = (1− ε)/a− a�(1− ε)/a.

Proof (Proof of Claim). The characterization of M+
1 follows from the simple ob-

servation that if we have D(x′) � D(x), 0 < M(x′) and M(x) < PX(x), then we
can decrease M(x′) by δ and increase M(x) by δ = min (M(x′),PX(x) −M(x))
decreasing (or at least not increasing) the value of

∑
x M(x)D(x). Consider now

M+
2 . Suppose that D(x′) � D(x), M(x′) < a and 0 < M(x). Then we increase

M on x′ by δ and decrease M on x by δ, where δ = min(a−M(x′),M(x)), and
increasing (or at least not decreasing) the value of

∑
x D(x)M(x). 
�

Since for every x we have D(x) =
1∫

0

[D(x) � t]dt, for some positive number t0

and D
′(x) = [D(x) > t0] we obtain

∑

x

D
′(x)M+

1 (x) −
∑

x

D
′(x)M+

2 (x) � δ.
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The circuit D′ is comparable in size to D and is boolean. Observe now that M+
1

and M−
2 are also minimizers for D′. This follows by Claim 4 since the extreme

measures depends only on the ordering of the values {D(x)}x and D
′, as a

threshold, is a monotone transform of D. 
�

Finally, by an approximation argument, we show that suitable measures exist
for every D being a convex combination of circuit of size s′.

Claim 5. For any D ∈ conv
(
Ddet,{0,1},s′

)
there exist measures M1,M2 such

that M1(x) � PX(x) and M2(x) � 2−k for every x and μ(M1) = μ (M2) � 1− ε

and

∣
∣
∣
∣
∑

x
D(x)M1(x) −

∑

x
D(x)M2(x)

∣
∣
∣
∣ � δ.

Proof (Proof of Claim). We know by Lemma 1 that any convex combination of
circuits of size at most s′ can be approximated up to the error δ by a convex

combination of � = O
(
n/δ2

)
of them. Let D

′ =
m∑

i=1

aiDi be such a convex

combination approximating D. Define M1,M2 as a measures corresponding to
the real-valued circuit D′. 
�

Claim 6. There exist measures M1 and M2 such that M1(x) � PX(x) and
M2(x) � 2−k for every x and μ(M1) = μ(M2) � 1 − ε and such that for every

D of size at most s′ we have

∣
∣
∣
∣
∑

x
D(x)M1(x)−

∑

x
D(x)M2(x)

∣
∣
∣
∣ � δ.

Proof. Consider a game where one player choses a cricuit D of size at most
s′ and the second choses a pair of measures (M1,M2) where M1,M2 satisfy
Mi(x) � PXi(x) for every x and μ(M1) = μ (M2) � 1− ε. Let the payoff matrix
be given by

∑

x
D(x)M1(x) −

∑

x
D(x)M2(x). By combining the claim with the

min-max theorem we get measures M1,M2 satisfying the same conditions and
such that for every D of size at most s′ we have

∑

x

D(x)M1(x) −
∑

x

D(x)M2(x) � δ. (11)

Applying this to Dc and using μ(M1) = μ (M2) we get also

∑

x

D(x)M1(x) −
∑

x

D(x)M2(x) � −δ. (12)

for all circuits of size at most s′ − 1. Thus the proof is finished. 
�

Define P (Xi = x,Ai) = Mi(x). Since Mi(x) � P (Xi = x) the events Ai are well
defined. We haveP (Ai) = μ(Mi) � 1−ε. Finally note that since μ(M1) = μ(M2)

we haveED(X1|A1)−ED(X2|A2) =

(
∑

x
D(x)M1(x)−

∑

x
D(x)M2(x)

)

/μ(M1).

Therefore, the result follows. 
�
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Abstract. We revisit the question, originally posed by Yao (1982), of
whether encryption security may be characterized using computational
information. Yao provided an affirmative answer, using a compression-
based notion of computational information to give a characterization
equivalent to the standard computational notion of semantic security.
We give two other equivalent characterizations. The first uses a compu-
tational formulation of Kelly’s (1957) model for “gambling with inside in-
formation”, leading to an encryption notion which is similar to Yao’s but
where encrypted data is used by an adversary to place bets maximizing
the rate of growth of total wealth over a sequence of independent, iden-
tically distributed events. The difficulty of this gambling task is closely
related to Vadhan and Zheng’s (2011) notion of KL-hardness, which in
certain cases is equivalent to a conditional form of the pseudoentropy in-
troduced by Hastad et. al. (1999). Using techniques introduced to prove
this equivalence, we are also able to give a characterization of encryption
security in terms of conditional pseudoentropy. Finally, we will recon-
sider the gambling model with respect to “risk-neutral” adversaries in
an attempt to understand whether assumptions about the rationality of
adversaries may impact the level of security achieved by an encryption
scheme.

Keywords: Kelly criterion, KL-hardness, computational entropy,
semantic security, rational adversaries.

1 Introduction

The first rigorous characterization of encryption security was given by Shan-
non in [14], using a formulation based on probability and information theory.
The space of plaintexts is equipped with a probability distribution, which along
with a distribution on keys induces a distribution on ciphertexts. An encryption
scheme is said to be secure if the mutual information between plaintexts and
ciphertexts is zero, capturing the intution that ciphertexts should not “leak in-
formation” about plaintexts. A drawback of Shannon’s approach is that it does
not account for the computational difficulty of extracting information, and so
it sets a very high bar [4]. It took a quarter of a century before a definition of
encryption security which accounts for computation was given by Goldwasser

c© Springer International Publishing Switzerland 2015
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and Micali [8], where a scheme is proposed which has that property that “what-
ever is efficiently computable about the cleartext given the ciphertext, is also
efficiently computable without the ciphertext.” This notion, dubbed semantic
security, may be viewed as a computational version of Shannon’s definition, at
least in an intuitive sense where computational information is identified with
“whatever is efficiently computable about the plaintext”. Nevertheless, Shannon
uses a specific entropy-based notion of mutual information, and it is natural to
ask whether one could formulate a notion of encryption security by first formulat-
ing a computational version of mutual information. In fact, such a question was
posed, and answered by Yao [16,17], who gave definitions of computational en-
tropy and computational mutual information, based on the relationship between
entropy and compressibility, and used this to characterize encryption security.
In particular, an encryption scheme is secure if no efficient compression scheme
in which the decoding function has access to an encryption of the corresponding
message can achieve an expected length more than negligibly better than the
optimal that can be achieved by any efficient scheme without such access. Yao
[17] and Micali, Rackoff and Sloan [12] show that this notion is equivalent to
semantic security.

This paper presents a new approach to characterizing encryption security via
computational information. Rather than relying on the machinery of data com-
pression, our approach uses a characterization of mutual information given by
Kelly in [11], which considers the optimal rate of return for a gambler who has
noisy inside information on the outcome of an event. When we take the very
natural steps of replacing “noisy” with “encrypted” and considering a computa-
tionally bounded gambler, we are led immediately to a definition of encryption
security which we dub gambling security. We then show (Theorem 1)

An encryption scheme is semantically secure iff it is gambling secure

While Yao’s characterization of encryption security using computational infor-
mation is not widely used, his introduction of a notion of computational entropy
based on compression is one foundation of computational information theory.
Another important contribution in this direction was made by H̊astad et. al. in
[9], which introduces the notion of pseudoentropy. Unfortunately, the relation-
ship between various forms of computational entropy is not well understood. In
some cases (e.g. with respect to conditional distributions), Yao’s entropy and
HILL entropy are not equivalent [10].1 We may wonder what this means in the
setting of encryption security. Do these different notions of computational infor-
mation lead to different forms of encryption security? We show that this is not
the case (Theorem 2)

An encryption scheme is semantically secure iff access to the ciphertext does
not reduce the pseudoentropy of the plaintext.

The gambling framework allows us to consider gamblers with different util-
ities. We also consider security against gamblers who are trying to maximize

1 The cited result considers versions based on min-entropy rather than Shannon
entropy.
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a one-shot payout. Perhaps not surprisingly, in this setting we obtain a much
tighter equivalence with semantic security. But this does raise an interesting
question. Namely, what can we say about the relationship between security and
assumptions about an adversary’s rationality?

2 Preliminaries

We assume standard facts and definitions about discrete probability spaces, but
we will begin by clarifying our notational conventions and use of terminology. A
probability distribution on a finite set X is specified by a probability mass function
X : X → [0, 1] which satisfies

∑
x∈X X(x) = 1. We will abuse terminology

and use the term random variable as a synonym for distribution, so that for a
distribution with mass function X we have Pr[X = x] = X(x). In general, we
follow the convention of [7] regarding random variables, i.e., multiple occurrences
of a variable in a probability expression denote multiple occurrences of a single
sampled value. If X is distributed jointly with Y , we write X |Y to denote the
corresponding conditional distribution, andX,Y to denote the joint distribution.
We write log and ln, respectively, for logarithm base 2 and base e.

Definition 1. Suppose that X and Y are jointly distributed random variables
on X and Y, respectively. The entropy H(X) of X is defined by

H(X) = −
∑

x

Pr[X = x] log Pr[X = x].

The conditional entropy H(X |Y ) of X given Y is defined by

H(X |Y ) = −
∑

y,x

Pr[Y = y ∧X = x] log Pr[X = x|Y = y]

The mutual information I(X ;Y ) between X and Y is defined by

I(X ;Y ) =
∑

y,x

Pr[Y = y ∧X = x] log
Pr[Y = y ∧X = x]

Pr[Y = y] Pr[X = x]

Note that I(X ;Y ) = H(X)−H(X |Y ). For a random variable X ′, the KL diver-
gence from X to X ′ is defined by

KL(X ||X ′) =
∑

m

Pr[X = x] log
Pr[X = x]

Pr[X ′ = x]

If X ′ jointly distributed with Y ′. The conditional KL divergence from X |Y to
X ′|Y ′ is defined by

KL(X |Y ||X ′|Y ′) =
∑

y,x

Pr[Y = y ∧X = x] log
Pr[X = x|Y = y]

Pr[X ′ = x|Y ′ = y]
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We recall the following facts:

Proposition 1 (Chain Rule for KL-divergence)

KL(Y,X||Y ′, X ′) = KL(Y ||Y ′) + KL(X |Y ||X ′|Y ′).

In particular KL(X |Y ||X ′|Y ) = KL(Y,X||Y,X ′).

Proposition 2 (Gibb’s Inequality). KL(X ||X ′) ≥ 0, with equality when X ′

is distributed identically to X.

3 Proportional Betting with Noisy Inside Information

We begin by recalling the model of Kelly, proposed in his seminal paper [11].
Kelly considers the problem of maximizing the expected rate at which a gambler
can accumulate wealth over repeated independent, identically-distributed plays
of a game such as a coin flip, or horse race. In this scenario each play of the
game results in an outcome from a fixed set of outcomes, according to an a
priori fixed probability distribution known to the gambler. In particular, Kelly
considers the advantage that an eavesdropping gambler who is given access to
a channel providing a “noisy” version of the outcome of each event has over
an honest gambler, who may only use a priori probabilities when placing bets.
Kelly shows that the eavesdropping gambler’s optimal strategy is proportional
betting conditioned on the outcome observed on the noisy channel, and that the
advantage of the best eavesdropping gambler over the best honest gambler is
equal to the mutual information between the event and its noisy version.

Definition 2. Let X be a distribution over a set X of outcomes, i.e., the out-
come of each play of the game is independently determined according to X. An
honest gambler is given by a betting function b : X → [0, 1] which satisfies∑

x∈X b(x) = 1.

The value b(x) is the fraction of total wealth that the gambler bets on outcome
x. Note that we are assuming that the gambler distributes all his wealth over the
possible outcomes. The amount paid on a given outcome is determined by an
odds function o. In particular, with an odds function o, and a betting function b,
after outcome x the gambler’s new wealth is o(x)b(x) times his current wealth.
In this paper, we will only consider odds functions which satisfy

∑
x∈X

1
o(x) = 1,

in which case the assumption that the gambler bets all his wealth in each race is
without loss of generality, because withholding can be simulated by spreading the
witheld amount across outcomes in inverse proportion to o. While is it natural
to consider more general odds functions, the analysis in this setting is much less
tractable, and moreover it is not clear how to interpret such a setting from a
security perspective.

Notation. A betting function b : X → [0, 1] may be viewed as the mass function
of a distribution on X . We will abuse notation somewhat and write b to also
denote the random variable corresponding to the distribution with this mass
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function and also writing b(X) for the value of b on x chosen randomly according
to X .

Kelly considers a gambler who is trying to maximize the expected rate at
which his wealth grows over a sequence of identically distributed independent
random events. Asymptotically, this is equivalent to maximizing E[log o(X)b(X)]
(see [3], Theorem 6.1.1.) In this setting, for an honest gambler we have:

Proposition 3. The maximum over all betting functions b of E[log o(X)b(X)]
is E[log o(X)]−H(X), and is achieved by b∗ where b∗(x) = Pr[X = x].

Note that E[log o(X)] is the theoretical maximum, achieved by a “clairvoyant”
gambler who always has all wealth placed on the winning outcome.

Proof. For any b we have

E[log o(X)b(X)] = E[log o(X)] + E[log b(X)] = E[log o(X)]−H(X)−KL(X ||b)

Now recall by Proposition 2 that KL(X ||b) ≥ 0, with equality when b = X . ��
An eavesdropping gambler has access to the outcome of each race before bet-

ting takes place, but the access is noisy. This “noisy inside knowledge” is modeled
by a random variable Y , jointly distributed with X .

Definition 3. An eavesdropping gambler is given by a conditional betting func-
tion, where b(x|y) is the fraction of wealth bet on outcome x when y is observed.

We will write Y, b for the joint random variable induced by the conditional bet-
ting function b and distribution Y on observations, and b|Y for the corresponding
conditional random variable.

Definition 4. For any honest gambler b′ the advantage over b′ of an eavesdrop-
ping gambler b is equal to

E[log o(X)b(X |Y )]− E[log o(X)b′(X)],

The eavesdropper’s advantage is its advantage over the best honest gambler b∗.

By the preceding Proposition, an eavesdropping gambler’s advantage is equal to

E[log o(X)] + E[log b(X |Y )]− (E[log o(X)]−H(X)) = H(X) + E[log b(X |Y )]

Proposition 4. An eavesdropping gambler’s maximum advantage is I(X ;Y )

and is achieved by b̂ where b̂(x|y) = Pr[X = x|Y = y]

Proof. For any eavesdropping b we have

H(X) + E[log b(X |Y )] = H(X)−H(X |Y )−KL(X |Y ||b|Y )

= I(X ;Y )−KL(X |Y ||b|Y )

We now use the properties of KL-divergence to obtain the optimal strategy and
value. ��
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Relation to Information-theoretic Security. While Kelly did not explicitly con-
sider an encrypted channel, it is clear that with this approach, we obtain an
alternate characterization of perfect secrecy. In particular suppose that Y is just
E(K,X) where (E ,D) is an encryption scheme (and K denotes a distribution
over keys.) According to Shannon’s definition, this encryption scheme has per-
fect secrecy exactly when I(X ;Y ) = 0. In other words, any eavesdropping gam-
bler using inside information encrypted by E has at best zero advantage. One
advantage of this characterization of encryption security, as opposed to Shan-
non’s characterization in [14] is the explicit introduction of an adversary (i.e.
the eavesdropping gambler.) By considering resource bounded adversaries, we
are led naturally to a version of Shannon security in the computational setting.

4 Computational Setting

We have seen that Kelly’s model of gambling with inside information may be used
to give a characterization of information-theoretic encryption security which is
equivalent to Shannon’s. Our goal now is to use Kelly’s model to give a compu-
tational defintion of encryption security by considering computationally limited
gamblers. We begin by reviewing some basic definitions regarding private-key
encryption and security in the computational setting.

Definition 5. A private-key encryption scheme 〈E ,D〉 is a probabilistic poly-
time function ensemble 〈En,Dn〉 satisfying the following properties, for every
n:

1. En : {0, 1}n × {0, 1}�(n) → {0, 1}q(n)
2. Dn : {0, 1}n × {0, 1}q(n) → {0, 1}�(n)
3. For any k ∈ {0, 1}n and m ∈ {0, 1}�(n), Dn(k, En(k,m)) = m,

where �, q are poly-bounded functions such that q(n) ≥ �(n) ≥ n. The value n is
the securty parameter of the scheme.

Without loss of generality, we have dispensed with the specification of a key gen-
eration function. We may assume that keys are just uniformly generated random
strings, as such strings could indeed be viewed as the randomness used in key
generation. In what follows, we will write Un to denote the uniform distribution
over keys of length n. We will typically write Mn for an arbitrary distribution
over messages of length �(n).

In this paper, we limit our attention to single message security, that is, defini-
tions of security in which an attacker has only has access to a single ciphertext c
drawn from En(Un,Mn). While it is possible to adapt some of our results to more
comprehensive notions of security (e.g. CPA security) we will focus on the con-
ceptual foundations of the notion of attacker success rather than attack models.
We will consider the possibility of more “intrinsic” notions of multiple message
security in Section 7. We will also only consider non-uniform definitions of se-
curity. That is, efficient adversaries will be modeled as poly-bounded families of
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circuits. While most of our results may be transferred to the uniform setting we
will retain a non-uniform approach for the sake of conceptual clarity.

We now introduce a notion of encryption security using a resource-bounded
formulation of Kelly’s model. In this setting, we consider betting functions which
are computed by poly-size families of circuits (which are defined in the obvious
way.)

Definition 6 (Gambling Security). An encryption scheme (E ,D) is gam-
bling secure if for every k, every distribution ensemble {Mn}, where Mn is a
distribution over {0, 1}�(n), every poly-size family of betting circuits {bn}, and
all sufficiently large n

H(Mn) + E[log bn(Mn|En(Un,Mn))] ≤
1

nk
.

Note: Our definition of gambling security measures the advantage of a computa-
tionally bounded eavesdropping gambler versus the best honest gambler. This is
without loss of generality for our results, unless we do not admit honest gamblers
whose complexity is polynomial in that of the eavesdropping gambler.

We would like to compare gambling security to the more familiar notion of
message indistinguishability. To do so, we first recall some definitions.

Definition 7. A distinguisher is a function D : {0, 1}� → {0, 1}. If X, X ′ are
distributions defined on {0, 1}�, the advantage of D in distinguishing between X
and X ′, denoted AdvD(X,X ′), is defined by

AdvD(X,X ′) = Pr[D(X) = 1]− Pr[D(X ′) = 1]

We will also consider generalized distinguishers which take values in [0, 1].2 For
such a D, AdvD is defined by

AdvD(X,X ′) = E[D(X)]− E[D(X ′)]

We say that a (generalized) distinguisher is size t if it is computed by a circuit
of size t.

In the case of size-bounded generalized distinguishers, the circuit D outputs the
binary representation of a (rational) value in [0, 1]. Note that the size restric-
tion means that the actual range of D’s output is contained in {0} ∪ [2−d, 1].
Using standard techniques, with polynomial overhead and at most d bits of ran-
domness, we may transform a generalized distinguisher D into a distinguisher
D′ such that E[D(X)] = E[D′(X)] = Pr[D′(X) = 1], so that AdvD′(X,X ′) =
AdvD(X,X ′) for any X and X ′. In particular, on input x, D′ flips t coins and
interprets the result as a value δ in {0}∪ [2−t, 1). If δ < D(x) then D′(x) returns
1. Otherwise it returns 0. We also recall the following.

2 We use the same terminology here as [15], but note that in their setting, generalized
distinguishers take values in R

+.
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Proposition 5. For any distinguisher D and distributions X0, X1,

AdvD(X0, X1) ≤ ε iff Pr[D(Xz) = z] ≤ 1

2
+

ε

2

where z is selected uniformly at random from {0, 1}.

Definition 8. Let � be a poly-bounded function. A distribution ensemble is a
sequence X = {Xn} of distributions, where Xn is a distribution on {0, 1}�(n). A
poly-size family of distinguishing circuits is a sequence {Dn} of circuits, where
Dn : {0, 1}�(n) → {0, 1} has size nO(1). Distribution ensembles {Xn} and {Yn}
are computationally indistinguishable if for every k, poly-size family {Dn} of
distinguishing circuits, and sufficiently large n,

AdvDn(Xn, Yn) ≤
1

nk

We recall the following standard definition of encryption security (equivalent to
semantic security [8]):

Definition 9 (Message Indistinguishability). An encryption scheme (E ,D)
has indistinguishable messages if for any k and poly-size family of distinguishing
circuits {Dn}, for all sufficiently large n and pair of messages m0,m1 ∈ {0, 1}�(n)

AdvDn(En(Un,m1)), En(Un,m0)) ≤
1

nk

Let 〈E ,D〉 be an encryption scheme. The equivalence of message indistinguisha-
bility and gambling security for 〈E ,D〉 is established using the following two
lemmas

Lemma 1. For any n, 0 < δ < 1
2 , size t distinguishing circuit D, and mes-

sages m0,m1 ∈ {0, 1}�(n), such that AdvD(En(Un,m0), En(Un,m1)) > 2δ, there
is a size poly(t, log(1/δ), �(n), q(n)) betting circuit b and a distribution M on
{0, 1}�(n) such that

H(M) + E[log b(M |En(Un,M))] >
2

ln 2
δ2

Proof. By assumption and Proposition 5, for uniformly chosen z ∈ {0, 1},

Pr[D(En(Un,mz)) = z] > 1
2 + δ

Define b with size t+ poly(log(1/δ), �(n), q(n)) as follows

b(m|c) =

⎧
⎨

⎩

0 if m /∈ {m0,m1};
1
2 + δ if m = mz and D(c) = z;
1
2 − δ otherwise.

Let M be the distribution which assigns m0 and m1 probability 1
2 and all other

messages probability 0. Then H(M) = 1, while

E[log b(M |En(Un,M))] > (12 + δ) log(12 + δ) + (12 − δ) log(12 − δ)
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which is just −h(12 + δ), where h is the binary entropy function. So it suffices to
show that for 0 ≤ δ < 1

2

1− h

(
1

2
+ δ

)

≥ 2

ln 2
δ2

Using a Taylor series expansion we have

1− h

(
1

2
+ δ

)

= 1−
(

1− 1

2 ln 2

∞∑

t=1

(2δ)2t

t(2t− 1)

)

=
1

2 ln 2

∞∑

t=1

(2δ)2t

t(2t− 1)
≥ 1

2 ln 2
4δ2 =

2

ln 2
δ2.

��

Lemma 2. For any n, any δ ≥ 0, any size t betting circuit b and distribution
M on {0, 1}�(n), such that H(M) + E[log b(M |En(Un,M))] > δ, there is a size
poly(t, log(1/δ), �(n), q(n)) distinguishing circuit D and and messages m0,m1 ∈
{0, 1}�(n) such that

AdvD(En(Un,m0), En(Un,m1)) >
δ

2t

Proof. By Proposition 3, we have E[log b′(M)] ≤ −H(M) for any betting func-
tion b′, so that

E[log b(M |En(Un,M))]−max
b′

E[log b′(M)] > δ

In particular, define b′ by b′(m) = b(m|En(Un,m0)) for some fixed message m0

(note that b′’s complexity is polynomial in b’s, assuming E is poly-time.) Then we
have E[log b(M |En(Un,M))]−E[log b(M |En(Un,m0))] > δ. By averaging, we con-
clude that that there must be some fixed m1 for which E[log b(m1|En(Un,m1))]−
E[log b(m1|En(Un,m0))] > δ. Define D′ as follows

D′(c) =
{ 1

t (log b(m1, c) + t) if b(m1|c) > 0;

0 otherwise.

Then D′(c) ∈ [0, 1], and

AdvD′(En(Un,m1), En(Un,m0)) >
δ

t
.

As shown in [15] (Theorem 3.22), D′ may be approximated using a Taylor series
to precision δ

2 by a circuit D of size poly(t, log(1/δ), �(n), q(n)) such that

AdvD(En(Un,m1), En(Un,m0)) >
δ − δ/2

t
=

δ

2t

As discussed previously, we may assume that, with polynomial overhead, instead
of outputting a value p ∈ [0, 1], D outputs 1 with probability p and 0 with
probability 1− p, so that D is a distinguisher. ��
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We may combine the preceding results to obtain the desired equivalence be-
tween gambling security and semantic security in the asymptotic setting. Note
this is simply a matter of applying the appropriate lemma at every n at which the
corresponding security property fails, and then “stitching together” the results.

Theorem 1. (E ,D) is gambling secure iff it has indistinguishable messages.

We conclude by noting that the concrete reductions given by the lemmas are
quite far from being tight, but are adequate to obtain polynomial equivalence.

5 A Characterization Based on Pseudoentropy

The notion of KL-hardness, introduced by Vadhan and Zheng in [15], character-
izes the difficulty of approximating a distribution with respect to KL-divergence.
In the nonuniform setting, they show that a conditional distribution is KL-hard
if and only if it has high conditional pseudoentropy.3 KL-hardness is closely re-
lated to gambling security: as we have already seen in the information-theoretic
setting, an eavesdropping gambler b maximizes its advantage by minimizing
KL(M |C||b|C). Moving to the computational setting, things are less straight-
forward. In particular, the definition of KL-hardness given in [15] depends on
the notion of a KL-predictor, which does not correspond exactly to a betting
function. A KL-predictor is obtained by normalizing a measure, which is a func-
tion from the space of outcomes to (0,+∞). Nevertheless, the results of [15] and
the preceding section suggest that we should be able to give a characterization of
encryption security based on conditional pseudoentropy. We will do this directly,
relying heavily on techniques introduced in [15]. We could also first establish an
equivalence between KL-hardness for gambling functions and KL-hardness for
normalized measures and then appeal directly to the main result of Vadhan and
Zheng; this approach is discussed in Appendix A.

Definition 10. Suppose X = {Xn}, Y = {Yn} are distribution ensembles. X
has conditional pseudoentropy at least k given Y, written H̃(X|Y) ≥ k, if there
is a distribution ensemble {X ′

n} such that {(Yn, Xn)}) and {(Yn, X
′
n)} are com-

putationally indistinguishable and for all c and sufficiently large n H(X ′
n|Yn) ≥

k − 1
nc .

We recall that according to Shannon [14], an encryption scheme is perfectly
secure if I(M ;C) = H(M)−H(M |C) = 0. In our setting, then, it seems natural to
characterize an adversary’s advantage as H(M)− H̃(M |C). Before showing that
the corresponding security notion corresponds to message indistinguishability,
we must consider a general relationship between conditional betting functions
and distinguishers, required in the proof of Lemma 5 below. We will limit our
attention to betting functions which are nonzero, taking values in [2−t, 1] (any
nonzero size t betting function will take values in this range.) Any such function
b determines a generalized distinguisher Db, which we now define.

3 Results are obtained in the uniform setting as well, but only for joint distributions
of the form X,B over {0, 1}n × [q], where q is poly(n).
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Definition 11. Suppose b is a conditional betting function taking values in
[2−t, 1]. Define the generalized distinguisher Db, taking values in [0, 1], as follows:

Db(y, x) =
1

t
(log b(x|y) + t)

Note that log b(x|y) = tDb(y, x) − t. We have the following (information theo-
retic) relationships between b and Db.

Lemma 3. Suppose b is a conditional betting function taking values in [2−t, 1].
Then for any distribution X on X and Y on Y,

KL((Y,X)||(Y, b)) = H(b|Y )−H(X |Y )− tAdvDb
((Y,X), (Y, b))

Proof. This is just a reformulation of [15], Lemma 3.13 in our setting.

KL((Y,X)||(Y, b))

= EY

[
∑

x

X(x|Y ) log
X(x|Y )

b(x|Y )

]

= H(b|Y )−H(X |Y ) + EY

[
∑

x

(X(x|Y )− b(x|Y )) log
1

b(x|y)

]

= H(b|Y )−H(X |Y ) + EY

[
∑

x

(X(x|Y )− b(x|Y )(t− tDb(Y, x))

]

= H(b|Y )−H(X |Y ) + tEY

[

(1 − 1)−
∑

x

Db(Y, x)(X(x|Y )− b(x|Y ))

]

= H(b|Y )−H(X |Y )− tAdvDb
((Y,X), (Y, b))

��

Lemma 4. Suppose b is a conditional betting function taking values in [2−t, 1].
Then for all distributions X,X ′ on X and Y on Y,

AdvDb
((Y,X), (Y,X ′)) ≥ (H(X ′|Y ) + E[log b(X |Y )])/t

Proof. By Lemma 3 we have

H(b|Y )−H(X ′|Y )− tAdvDb
((Y,X ′), (Y, b)) = KL((Y,X ′)||(Y, b))

since KL((Y,X ′)||(Y, b)) ≥ 0, it follows that

AdvDb
((Y,X ′), (Y, b)) ≤ H(b|Y )−H(X ′|Y )

t
(†)

Applying Lemma 3 again, we obtain

H(b|Y )−H(X |Y )− tAdvDb
((Y,X), (Y, b)) = KL((Y,X)||(Y, b))
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But

KL((Y,X)||(Y, b)) = I(X ;Y )−H(X)− E[log b(X |Y )]

= −H(X |Y )− E[log b(X |Y )]

so that

AdvDb
((Y,X), (Y, b)) =

H(b|Y ) + E[log b(X |Y )]

t
(††)

But then

AdvDb
((Y,X), (Y,X ′)) = AdvDb

((Y,X), (Y, b))−AdvDb
((Y,X ′), (Y, b))

≥ (H(X ′|Y ) + E[log b(X |Y )])/t by (†) and (††)
��

Lemma 5. For any n, 0 ≤ δ < 1
4 , size t distinguishing circuit D, and messages

m0,m1 ∈ {0, 1}�(n), such that AdvD(En(Un,m0), En(Un,m1)) > 2δ, there is a
distinguishing circuit Db of size poly(t, log(1/δ), �(n), q(n)) and distribution M
on {0, 1}�(n) such that for any γ ≥ 0 and any M ′ such that H(M ′|En(Un,M)) ≥
H(M)− γ

AdvDb
((En(Un,M),M), (En(Un,M),M ′)) >

δ2

t ln 2
− γ

t

Proof. By Proposition 5, for uniformly chosen z ∈ {0, 1},
Pr[D(En(Un,mz)) = z] > 1

2 + δ

Let M be the distribution which assigns m0 and m1 probability 1
2 and all other

messages probability 0. We now define a betting function b such that Db is a
distinguisher between M and any M ′ such that H(M ′|En(Un,M)) > H(M)− γ.
For any σ > 0, we define b as follows:

b(m|c) =

⎧
⎨

⎩

σ
2�(n)−2

if m /∈ {m0,m1};
1/2 + δ if m = mz and D(c) = z;
1/2− δ − σ otherwise.

Let Db(y, x) = 1
t (log b(x|y) + t) be the associated distinguisher given in Def-

inition 11. Let C denote En(Un,M). Consider any M ′ for which H(M ′|C) ≥
H(M)− γ. By Lemma 4

AdvDb
((C,M), (C,M ′)) ≥ (H(M ′|C) + E[log b(M |C)])/t

≥ (H(M) + E[log b(M |C)]− γ)/t

Now H(M) = 1, while we have, assuming δ < 1
4 and σ < 2

9 ,

E[log b(M |En(Un,M))] > (12 + δ) log(12 + δ) + (12 − δ) log(12 − δ − σ)

= −h(12 + δ)− 1
ln 2

∑∞
j=1

2j−1δj

j(1−2γ)j−1

≥ −h(12 + δ)− 1
4 ln 2

∑∞
s=1 4

jσj

= −h(12 + δ)− 4σ
(4 ln 2)(1−4σ)

≥ −h(12 + δ)− 2
ln 2σ
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As demonstrated previously, 1− h(12 + δ) ≥ 2
ln 2δ

2, so that, setting σ = δ2/2 we
have

H(M) + E[log b(M |En(Un,M))] ≥ δ2

ln 2

and
AdvDb

((En(Un,M),M), (En(Un,M),M ′)) > δ2

t ln 2 − γ
t

Finally, we note that Db has size poly(t, log(1/δ), �(n), q(n)) ��

Lemma 6. For any n, δ ≥ 0, and distribution M on {0, 1}�(n) which has the
property that for any distribution M ′ on {0, 1}�(n) with H(M ′|En(Un,M)) ≥
H(M), there is a size t distinguishing circuit D such that

Pr[D(En(Un,M),M ′)) = 1]− Pr[D(En(Un,M),M) = 1] > δ,

there is a size t distinguisher D′ and messages m0,m1 ∈ {0, 1}�(n) such that

AdvD(En(Un,m0), En(Un,m1)) > δ.

Proof. Take M ′ which is independent of M but identically distributed. Then

H(M ′|En(Un,M)) = H(M ′) = H(M)

and so by assumption there is a size t distinguisher D such that

Pr[D(En(Un,M),M ′)) = 1]− Pr[D(En(Un,M),M) = 1] > δ

But then there are messages m0,m1 such that

Pr[D(En(Un,m0),m1) = 1]− Pr[D(En(Un,m1),m1) = 1] > δ (†)

Defining D′(c) = D(c,m1) completes the proof. To obtain the required m0,m1,
we apply an averaging argument twice. The first application allows us to conclude
that

Pr[D(En(Un,M),m1) = 1]− Pr[D(En(Un,m1),m1) = 1] > δ.

We then average again to obtain (†). ��

From the preceding lemmas, we immediately obtain

Theorem 2. (E ,D) has indistinguishable messages iff for any message distri-
bution ensemble M = {Mn}, H̃(M|C) ≥ H(M), where C = {Cn} is the distri-
bution ensemble such that for each n, Cn = En(Un,Mn).

6 Risk-Neutral Adversaries

We now revisit the model proposed by Kelly. Kelly’s gambler may be viewed
as trying to maximize the rate of return over repeated plays or, alternately, as
just having a logarithmic utility for total wealth. What happens if we consider
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gamblers with different utility functions? We will now consider the case of lin-
ear utility. Such gamblers are typically referred to as being risk-neutral. Clearly,
in this case, if no inside information is available the optimal strategy is to bet
everything on the outcome which gives the maximum expected payout. An im-
portant difference in this setting is that the odds now make a difference, and the
advantage of an eavesdropping gambler over the best honest gambler will be

E[o(X)b(X |Y )]−max
x∈X

(o(x) Pr[X = x])

While in a more realistic setting we would want to take the odds function into
account, as a first step we just assume constant odds, say o(x) = 1

|X | for all x. In
this way we remove consideration of odds from the gambler’s strategy, leading
to the following

Definition 12 (Risk-Neutral Gambling Security). An encryption scheme
(E ,D) is gambling secure against risk-neutral adversaries if for every k, every
distribution ensemble {Mn}, where Mn is a distribution over {0, 1}�(n), and every
poly-size family of betting circuits {bn}, for all sufficiently large n

E[bn(Mn|En(Un,Mn))]− max
m∈{0,1}�(n)

Pr[Mn = m] ≤ 1

nk
.

Lemma 7. For any n, 0 ≤ δ < 1
2 , size t distinguishing circuit D, and messages

m0,m1 ∈ {0, 1}�(n), such that AdvD(En(Un,m0), En(Un,m1)) > 2δ, there is a
size poly(t, log(1/δ), �(n)) betting circuit b and a distribution M on {0, 1}�(n)
such that

E[log b(M |En(Un,M))]− max
m∈{0,1}�(n)

Pr[M = m] > δ

Proof. By Proposition 5, for uniformly chosen z ∈ {0, 1}

Pr[D(En(Un,mz)) = z] > 1
2 + δ

Define b with size t+ poly(�(n), q(n)) as follows

b(m|c) =
{
1 if m = mz and D(c) = z;
0 otherwise.

Let M be the distribution which assigns m0 and m1 probability 1
2 and all other

messages probability 0. Clearly,

E[b(M |En(Un,M))] > (12 + δ) · 1 + (12 − δ) · 0 = 1
2 + δ

The result follows by observing that maxm∈{0,1}�(n) Pr[Mn = m] = 1
2 . ��
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Lemma 8. For any n, any δ ≥ 0, any size t betting circuit b and distribution
M on {0, 1}�(n), such that E[b(M |En(Un,M))] −maxm∈{0,1}�(n) Pr[Mn = m] >
δ, there is a size poly(t, log(1/δ), �(n), q(n)) circuit D and messages m0,m1 ∈
{0, 1}�(n) such that AdvD(En(Un,m0), En(Un,m1)) > δ.

Proof. As we have argued above, for any honest b′, E[b(Mn|En(Un,Mn))] −
E[b′(Mn)] > δ. In particular, define b′ by b′(m) = b(m, En(Un,m0)) for some
fixed message m0. Then E[b(Mn|En(Un,M))]−E[b(Mn|En(Un,m0))] > δ, and so
there is some m1 such that

E[b(m1|En(Un,m1))]− E[b(m1|En(Un,m0))] > δ

Define the generalized distinguisher D′ by D′(c) = b(m1|c) and use D′ to obtain
a distinguisher D for which

AdvD(En(Un,m0), En(Un,m1)) > δ ��

Theorem 3. (E ,D) is gambling secure against risk-neutral adversaries iff it has
indistinguishable messages.

7 Conclusions and Future Work

We have revisited Yao’a program of characterizing encryption security via com-
putational information, providing two new equivalent characterizations based on
different approaches to computational entropy. In some sense this is more of a
contribution to computational information theory than to cryptography, as we
have shown that, at least in the setting of encryption security, various notions co-
incide. This of course raises the question of how these notions are related in more
general settings. We now have another notion of computational entropy, based
on Kelly’s model, although this is closely related to Vadhan and Zheng’s notion
of KL-hardness, which in turn is closely related to pseudoentropy. Indeed, in a
general setting, KL-hardness and pseudoentropy coincide for nonuniform adver-
saries ([15], Corollary 3.10.) There are still numerous open questions regarding
the relationship Yao and HILL entropy; a broader view involving notions such
as KL-hardness and gambling entropy may be useful here. We can also look at
relationships to other notions such as the unpredictability entropy of [10], and
also consider the relationship between computational entropy and Kolmogorov
complexity [13].

In the information-theoretic setting, gambling and data compression are equiv-
alent. In [3], Section 6.5, a reduction from compression to gambling is given, using
the gambling function to construct a cumulative distribution function which is
then used in an arithmetic coding scheme, but this reduction is not efficient. We
conjecture that under an appropriate complexity-theoretic assumption, no such
efficient reduction is possible.

Our results only concern single-message security. We could easily give a version
of CPA security, by considering the usual CPA-game, but replacing the challenge
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phase with one in which the adversary is a gambler rather than a distinguisher.
On the other hand, Kelly’s model suggests forms of multiple-message security
which are ostensibly weaker than CPA, but stronger than standard multiple-
message security. In particular, we could consider a situation in which the same
key is used to encrypt the results of multiple races in an on-line fashion, and
where the gambler is able to use information about his success in each round to
place future bets. This is very similar to the setting of on-line prediction (see,
e.g. [2]). We would like to consider adversaries performing this sort of on-line
prediction task, or on-line game playing as introduced in [5].

Our results imply that ε-gambling security implies
√
ε-gambling security against

riskneutral adversaries (or, equivalently,
√
ε-message indistinguishability.)Wemay

ask whether there is an inherent loss of security entailed by assuming adversaries
have logarithmic utility, i.e., are there encryption schemes which are ε-gambling
secure, but not ε′-message indistinguishable for some ε′ ≥ ε? In general, we would
like to understand how assumptions about an adversary’s utility impact security.
This has the potential to contribute to a decision-theoretic approach to security
(cf. rational protocol design as presented in [6].)

Finally, we note that our work may be viewed as complementary to re-
cent work by Bellare et. al. [1], which considers a version of message indis-
tinguishability and its relationship with entropy-based definitions of security
in the information-theoretic setting. Dodis ([4], Lemma 2) states upper and
lower bounds on mutual-information-based security in terms of message indis-
tinguishability which are implicit in [1]. Our Lemmas 1 and 2 may be viewed as
computational versions of Dodis’ bounds.

Acknowledgements. We would like to thank Salil Vadhan and Colin Jia Zheng
for their suggestions, and John Mitchell for asking the questions that led to this
work.
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A An Alternate Proof of Lemma 5

Here we outline an alternate approach to proving a version of Lemma 5, using
one of the main results of [15].

Suppose X ,Y are finite sets. A measure is a mapping P : Y × X → (0,+∞).
Associated with P is a conditional mass function CP defined by CP (x|y) =
P (y, x)/

∑
z∈X P (y, z). Suppose X,Y respectively are distributions on X ,Y. X

is (t, δ) KL-hard given Y if for any measure P computed by a circuit of size t,
KL(Y,X ||Y,CP ) > δ.

Theorem 4 ([15], Theorem 3.8(2)). Let (Y,X) be a Y × X -valued random
variable, δ, ε > 0. If X has nonuniform (t, ε) conditional pseudoentropy at least
H(X |Y ) + δ given Y , then for every σ > 0, X is (t′, δ − σ) KL-hard given Y ,
for t′ = min{tΩ(1)/polylog(1/σ), Ω(σ/ε)}

We now note that the betting function b defined in the proof of Lemma 5 is
strictly positive, so it is a measure. Moreover Cb = b. We have

H(M) + E[log b(M |En(Un,M))] ≥ δ2

ln 2

Now

H(M) + E[log b(M |En(Un,M))] =

H(M)−H(M |En(Un,M))−KL(M |En(Un,M)||b|En(Un,M)))
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so that

KL(M |En(Un,M)||b|En(Un,M))) ≤ H(M)−H(M |En(Un,M))− δ2

ln 2

Applying the above-cited result, we can conclude that given En(Un,M), M does
not have conditional pseudoentropy at least H(M), as required for the “if” di-
rection of Theorem 2.

By appealing to the result of [15], we have made Lemmas 3 and 4 redun-
dant. On the other hand, the work of Vadhan and Zheng involves considerable
machinery beyond what is needed for Lemma 5.
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Abstract. Increasing the computational complexity of evaluating a hash
function, both for the honest users as well as for an adversary, is a useful
technique employed for example in password-based cryptographic schemes
to impede brute-force attacks, and also in so-called proofs of work (used in
protocols like Bitcoin) to show that a certain amount of computation was
performed by a legitimate user. A natural approach to adjust the complex-
ity of a hash function is to iterate it c times, for some parameter c, in the
hope that any query to the scheme requires c evaluations of the underly-
ing hash function. However, results by Dodis et al. (Crypto 2012) imply
that plain iteration falls short of achieving this goal, and designing schemes
which provably have such a desirable property remained an open problem.

This paper formalizes explicitly what it means for a given scheme to
amplify the query complexity of a hash function. In the random oracle
model, the goal of a secure query-complexity amplifier (QCA) scheme
is captured as transforming, in the sense of indifferentiability, a random
oracle allowing R queries (for the adversary) into one provably allowing
only r < R queries. Turned around, this means that making r queries to
the scheme requires at least R queries to the actual random oracle. Sec-
ond, a new scheme, called collision-free iteration, is proposed and proven
to achieve c-fold QCA for both the honest parties and the adversary, for
any fixed parameter c.

Keywords: hash functions, random oracle, indifferentiability, moder-
ately hard functions.

1 Introduction

1.1 Motivation of This Work

Moderately Hard Hashing. Hash functions are one of the most basic and
widely used building blocks in practically deployed cryptographic protocols.
Their use in different contexts puts diverse requirements on their properties.
� Work partially done while author was at ETH Zürich.
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There is a vast body of literature exploring various desirable properties of cryp-
tographic hash functions such as collision resistance, (second-) preimage resis-
tance, indifferentiability from a random oracle, and several others.

A seemingly orthogonal property of a hash function is its efficiency—the
amount of computational resources that is required to evaluate it. Naturally,
the typical design goal is to provide hash functions that are as efficient as possi-
ble, while still maintaining the desired security requirements mentioned above.
As a result of the long-term design effort with this motivation, the currently
standardized and used cryptographic hash functions such as SHA-1, SHA-2 [25]
and SHA-3 [26] are extremely efficient: for example, a software implementation
of SHA-2 can process data at (very roughly) about 100 MB/s on a typical PC.

However, in several application scenarios the efficiency of the hash function
actually has serious security implications, and these motivate design efforts go-
ing in the opposite direction. Namely, sometimes hash functions are used to
perform computation by the honest parties that would need to be repeated on
a significantly higher scale by an adversary trying to compromise the security
of the system. One example of such a setting is any non-interactive password-
based scheme where the hash function is used to, say, derive a key from this
password. Here, increasing the complexity of the hash-function evaluation, while
slightly increasing the computational burden for the honest user, also signif-
icantly increases the cost of a brute-force and password-guessing (dictionary)
attack. Another setting that could benefit from an adjustable complexity of a
hash function is a proof of work [9] where a legitimate protocol participant shows
that he performed a certain amount of computation. This concept was proposed,
among other uses, as a countermeasure against denial-of-service attacks or junk
mail. Similar ideas are used in the now widely used Bitcoin system [21] and other
cryptocurrencies basing their security on proofs of work.

The common denominator of all the settings mentioned above is that it would
be desirable to employ hash functions that are, loosely speaking, moderately hard
to compute [22]. While the occasional evaluation of such a function by an honest
user needs to still remain feasible, at the same time the scaling resulting from a
brute-force attack must be prohibitive for any adversary.

Complexity Amplification. Since designing new cryptographic hash func-
tions from scratch is a long and intricate process (e.g., the SHA-3 competition
spanned over almost 5 years), to answer the above-described demand it would
be preferable to give generic schemes that would instead turn an existing hash
function h into a new function H with moderately increased evaluation com-
plexity. A natural first candidate for such a scheme is the simple c-iteration (or
plain iteration), i.e., letting

H(·) := hc(·) := h(. . . h(·) . . .)
︸ ︷︷ ︸

c times

for some integer c > 1.
Indeed, many password-hashing schemes are based on some form of iteration.

Historically, the earliest implementations of crypt(3) used several iterations of
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(a variant of) the block cipher DES to hash users’ passwords on Unix sys-
tems [20], the more recent bcrypt [23] iterates the block cipher Blowfish instead.
Iteration is also used in the password-based key derivation function PBKDF2
standardized in PKCS#5 [12] and recommended by NIST [28].

However, when it comes to assessing the security of any such generic scheme
for increasing evaluation complexity (for example to justify the choice of plain
iteration), it turns out that merely defining the security requirement formally is
a surprisingly subtle task. This is especially true if one asks for a composable def-
inition that then allows every scheme secure under this definition to be plugged
into any possible application, so that proving a scheme secure according to this
single definition immediately implies that it can be used in, e.g., key derivation,
proofs of work, or other applications that make use of the query complexity.
One of our main contributions will be to give such a composable definition by
modeling the underlying hash function h as a random oracle and exploiting the
power of the well-established concept of indifferentiability. Before inspecting it
in greater detail, let us first mention a surprising observation given in recent
work that is very relevant in our context.

The Caveats of Plain Iteration. Dodis et al. [8] studied the structural dif-
ferences between a random oracle and its second iterate: more precisely, they
investigated the indifferentiability of the 2-iteration of a random oracle from a
plain random oracle. Interestingly, they showed that such indifferentiability does
hold, but only with poor parameters. Namely (and very roughly), any simulator
in this indifferentiability statement, if asked r queries during the distinguishing
experiment, would itself have to issue a large number of queries Ω(�r) to the
underlying random oracle in order to succeed in simulation, where � denotes (an
upper bound on) the number of honest queries. (We show in Section 4 that the
result extends to higher-order iterates.) On a high level, this large number of
simulator queries means that if one uses the c-iterate of a hash function in some
application, then the concrete security statement obtained through the composi-
tion theorem of indifferentiability is weaker than intuitively expected. Therefore,
any strong security guarantee could only be obtained through an ad-hoc secu-
rity analysis depending on the particular scenario considered, as done by Bellare
et al. [1].

Let us recall an example of Dodis et al. [8] to illustrate this last point. In the
hash-then-sign paradigm, a signature scheme SSn signing n-bit messages and a
hash function h : {0, 1}∗ → {0, 1}n are combined into a signature scheme SS∗ (h)
for arbitrary length messages by signing the hash h(m) of the message instead
of the message m itself. Forging a signature for the extended scheme SS∗ (h) re-
quires either to find a collision for the hash function h or to find a forgery for the
original fixed-length signature scheme SSn. If the hash function h is modelled as
a random oracle, then its second iterate h2 is indifferentiable from h [8, Thm. 2],
and the composition theorem of indifferentiability [18,24] implies that the secu-
rity of SS∗

(

h2)

can be reduced to that of SS∗ (h). However, such a reductionist
argument, which is standard in any composable cryptographic framework such
as indifferentiability, consists of obtaining an adversary against SS∗ (h) from an
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adversary against SS∗
(

h2)

which additionally performs the job of the simulator
given in the indifferentiability statement. Due to the blow-up in simulator queries
mentioned above, this concretely means that one relates an adversary trying to
forge a signature for SS∗

(

h2)

with at most � signing queries and r random or-
acle queries, to an adversary trying to forge a signature for SS∗ (h) also with �
signing queries, but with � · r random oracle queries. Thus, although SS∗ (h) is
secure as long as the collision probability (�+r)2/2n is sufficiently small (assum-
ing that the original length-restricted signature scheme SSn is secure within �
queries), the security of SS∗

(

h2)

derived through composition depends instead
on the much higher collision probability (� · r)2/2n, corresponding roughly to a
quadratic decrease of security.

1.2 Contributions of This Paper

In this work, we develop a new formal framework for treating the amplification
of the evaluation complexity for random oracles (which are often used to model
hash functions in practical scenarios). We first develop a security definition that
tightly captures how well a given scheme increases the computational burden for
an adversary in evaluating the function. Being based on indifferentiability, our
definition is naturally composable and hence guarantees the desired universal
applicability of any scheme meeting it. Secondly, guided by the observations of
Dodis et al. [8] about the second iterate, we show that plain iteration, regardless
of the number of iterations employed, fails to achieve the amplification of the
hash-function complexity in the above sense. In response, we develop a mod-
ification of the plain-iteration scheme, called collision-free iteration, that does
provably and generically achieve the desired amplification. Let us now discuss
the details of each of these contributions.

Composable Security for Hash-Complexity Amplification. Employing
the random oracle model (ROM) [2], we model hash functions as random oracles.
A random oracle can be viewed as a resource that is available to all parties in a
given setting, and allows each of them to evaluate the oracle by querying it—this
corresponds to the party internally computing the output of the hash function.
A restriction on the computational resources of the adversary hence naturally
translates to a restriction on the number of queries it is allowed to ask the random
oracle. In a typical security proof in the ROM, one establishes that the scheme in
question is secure unless the ROM-adversary performs a huge number of queries
to the random oracle. This then suggests that the adversary against the real
implementation has to evaluate the hash function on a prohibitive number of
inputs. Following this intuition, we model the increase in evaluation complexity
of a hash function by a decrease in the number of queries that the adversary
is allowed to issue to the random oracle (before its computational resources are
exhausted).

As a starting point, we make explicit the number of queries that such an oracle
allows to each party: for two integers L and R, a random oracle that allows up
to L queries at the left (honest user’s) interface and up to R queries at the
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right (adversary’s) interface formalizes the guarantee that the honest user has
sufficient resources to evaluate the hash function (at least) L times, whereas the
resources of the adversary are bounded to (at most) R evaluations. Naturally, a
desirable guarantee for the honest user is that the number L is large enough to
execute higher-level protocols, whereas the number R must be small enough to
prevent the adversary from attacking those protocols with significant probability.
The goal of a protocol for the amplification of query complexity is hence to reduce
the number R, while at the same time not affecting the number L more than
necessary.

Following the paradigm of constructive cryptography [17], we understand a
cryptographic protocol or scheme as a way to construct, in a well-defined sense,
a certain desired resource from one or more assumed resources. In the context of
query-complexity amplification (QCA), this means that the goal is to construct,
from a random oracle that allows the adversary to do some number R of queries,
a random oracle that allows the adversary only a smaller number r < R of
queries. Intuitively, such a construction means that an adversary with the same
computational resources can evaluate the random oracle less often, which will
generally reduce his success in attacking higher-level protocols.

This constructive way of stating security definitions comes with a natural
notion of composition. Denoting the statement that a protocol π constructs the
desired resource S from the assumed resource R as R π S, any two such
construction steps that “syntactically” match can be composed: If we consider
another protocol ψ that assumes the resource S and constructs a resource T,
the composition theorem immediately implies that

R π S ∧ S ψ T =⇒ R ψ ◦ π T,

where ψ ◦ π denotes the composed protocol. For example, let π in the above
represent a protocol for hash-complexity amplification that is capable of trans-
forming a random oracle R that can be evaluated R times within the adversary’s
resources into a (“much harder”) random oracle S that the adversary can only
evaluate r � R times. Then, for any higher-level construction ψ of some useful
resource T that uses an underlying random oracle S and guarantees that T will
be secure as long as the adversary is not capable of evaluating S more than r
times, we can instead start from the oracle R and amplify its complexity using
π before using it to construct T. The security will not be compromised by this
as long as the adversary cannot evaluate R more than R times; and this guaran-
tee then heuristically translates into the setting where we use an efficient hash
function instead of R.

Finally, while aiming for a formalization of hash-complexity amplification,
we also arrive at a new formalism of parameterized construction statements, as
detailed in Section 3. We believe that this formalism will be useful also in many
other settings, such as secure communication as discussed in [27], and consider
it an additional contribution of this paper of independent interest.
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A Scheme for Hash-Complexity Amplification. As our second contribution,
we present a simple scheme, called collision-free iteration, that achieves query-
complexity amplification in the sense of our new definition discussed above.

One would naturally expect that the c-iteration of a random oracle for some
c ≥ 2 would lead to a reduction of adversary queries from R to R/c, at the cost
of simultaneously reducing the honest party’s queries from L to L/c. However,
we show in Section 4 that c-iteration, much like the second iterate studied by
Dodis et al. [8], suffers from the blow-up in the number of simulator queries and
therefore falls short of achieving this goal.

We show that modifying the c-iterate of a random oracle by a proper encoding
of the queries will indeed lead to the desired (and expected) result. The high-
level idea is to make sure that each query will access a distinct part of the
random oracle and hence the “shifted chains” of queries that caused problems
for the plain iteration will not occur. In greater detail, collision-free iteration
works almost like the plain iteration, but each query to the underlying function
h(·) during the computation of H(x) is prefixed by a prefix-free encoding �x	 of
the original query x, as well as the sequence number within the iterative process.
Formally, we define W0(x) to be the empty string and

Wj (x) := h(�x	 ‖〈j〉 ‖ Wj−1 (x)) for all j ∈ {1, . . . , c} ,

where �·	 and 〈·〉 denote a prefix-free encoding and an injective encoding of an
integer over �log c	 bits, respectively. Finally, we simply let H(x) := Wc(x). We
prove in Section 5 that this construction reduces the number of adversary queries
from R to R/c, at the cost of simultaneously reducing the honest party’s queries
from L to L/c.
Towards proving optimality. In the full version of this paper we study
whether this simultaneous reduction of the honest-party queries is inherent to
any query-complexity amplification scheme. Based on the observation that the
adversary can always choose to evaluate the honest scheme, we can show that
our construction, which reduces the adversary’s queries exactly as much as the
honest party’s queries, is optimal with respect to a natural, albeit restricted,
class of simulators.

We aimed for simplicity in the design of our construction and did not tailor
it to minimize query lengths. In particular, extending the length of each sub-
query by the length of �x	 is most likely not necessary. We leave the question of
improving the lengths of the honest-user queries open for future work.

2 Preliminaries

2.1 Basic Notation

We denote sets by calligraphic letters or capital Greek letters (e.g., X , Σ).
Throughout this paper, we consider only discrete random variables. A discrete
random variable will be denoted by an upper-case letter X , its range by the
corresponding calligraphic letter X , and a realization of the random variable X
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will be denoted by the corresponding lower-case letter x. Unless stated otherwise,
X $← X denotes a random variable X selected independently and uniformly at
random in X . A tuple of n random variables (X1, . . . , Xn) is denoted by Xn.
Similarly, xn denotes a tuple of n values (x1, . . . , xn). The set of bit strings of
finite length is denoted {0, 1}∗ and λ denotes the empty bit string.

2.2 Random Systems

Many cryptographic primitives like block ciphers, MAC schemes, random func-
tions, etc., can be described as (X , Y)-random systems [14] taking inputs X1,
X2, . . . ∈ X and generating for each input Xk an output Yk ∈ Y. In full gen-
erality, such an output Yk depends probabilistically on all the previous inputs
Xk as well as all the previous outputs Y k−1. For an (X , Y)-random system S,
such a dependency is captured by a (possibly infinite) sequence of functions
pSYk|XkY k−1 : Y × X k × Yk−1 → [0, 1] such that for all choices of the arguments
xk and yk−1 the sum of the function values over the choices of yk equals 1, and
where the superscript indicates the considered system. Random systems are usu-
ally denoted by upper-case boldface letters such as R or S. An (X , Y)-random
system S considered in isolation does not define a random experiment since the
distribution of the inputs to the system S is not defined. For this reason, the
function pSYk|XkY k−1 , which is called a conditional probability distribution, is
denoted by a lower-case letter p instead of an upper-case letter P, which we use
for probability distributions in a fully specified random experiment.

A random system S can alternatively be described by the sequence of con-
ditional distributions pSY k|Xk , where pSY k|Xk :=

∏k
j=1 pSYj |XjY j−1 . Note that

the conditional distribution pSY k|Xk contains the conditional distribution pSY j |Xj

for all j < k and hence the above description of a system is redundant. The
conditional distribution pSY k|Xk must satisfy a consistency condition which en-
sures that Yj does not depend on Xj+1, . . . , Xk. Two random systems R and
S are said to be equivalent, denoted R ≡ S, if they behave identically, i.e.,
pRY k|Xk = pSY k|Xk , for all k ≥ 1.

Distinguishers and a Distance Measure on Random Systems. A natural
notion of similarity for random systems can be based on the concept of distin-
guishers. Intuitively, a distinguisher can be viewed as a system that connects
to a random system, interacts with this system, and at some point outputs a
single bit. In the case of (X , Y)-random systems, a distinguisher D that makes
some arbitrary but fixed number q ∈ N of queries corresponds to a finite (Y, X )-
random system which is one query ahead [16], i.e., distributions pDXi|Y i−1Xi−1

for i ∈ {1, . . . , q}, and an additional distribution pDZ|Y qXq . The distinguisher in-
teracts with an (X , Y)-random system R by providing inputs X1, X2, . . . ∈ X
to R and by receiving its corresponding outputs Y1, Y2, . . . ∈ Y. Connecting a
distinguisher D to an (X , Y)-random system R defines a binary random variable
(the output bit Z of the distinguisher), denoted DR. For two (X , Y)-random
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systems R and S, the distinguishing advantage of a distinguisher D in telling
apart R from S is then defined as

ΔD (R, S) := |P (DR = 1) − P (DS = 1)| .

For a class D of distinguishers, we define ΔD (R, S) := supD∈D ΔD (R, S). (The
only classes we are interested in are the class of all distinguishers, in which case
we omit the superscript and write Δ (R, S), and the class NA of all non-adaptive
distinguishers.)

Games. A central tool in deriving an indistinguishability proof between two sys-
tems is to characterize both systems as being equivalent until a certain condition
arises [14,3]. Thus, being able to distinguish both systems requires to provoke
this condition, and one is then interested in upper-bounding the probability of
this event. Interacting with a random system in order to provoke a certain con-
dition is naturally modeled by defining an additional monotone binary output
(MBO) on the original system, where the binary output is monotone in the
sense that it is initially set to 0 and that, once it has turned to 1, it can not
turn back to 0. An (X , Y × {0, 1})-system where the second output component
is monotone is often indicated by using a system symbol with a hat, such as ̂R.

For an (X , Y × {0, 1})-system ̂R with an MBO, we consider two particular
(X , Y)-systems which are derived from ̂R, following Maurer et al. [16]:

1. ̂R− is the (X , Y)-system obtained from ̂R by ignoring the MBO, we usually
refer to this system as R (i.e., we simply omit the hat);

2. ̂R� is the (X , Y∪{�})-system which masks the Y-output to a dummy symbol
� �∈ Y as soon as the MBO turns 1, and in addition, it does not output the
MBO itself.1

We will alternatively refer to an (X , Y × {0, 1})-random system ̂R with an
MBO as an (X , Y)-game, in particular if we are interested in the probability
with which the MBO can be provoked. More formally, we are then interested in
the probability that some (X , Y)-game winner W (which, like a distinguisher,
can be viewed as a finite (Y, X )-random system that is one query ahead) pro-
vokes the MBO of a game ̂R to be 1. As in a distinguishing experiment, the
game winner W and the game ̂R define a binary random variable, the value of
the MBO of ̂R after W stops, which we denote as W ̂R. Hence, the winning
probability of W in the game ̂R is defined as

ΓW( ̂R) := Pr[W ̂R = 1] .

Similarly to ΔD, the supremum of ΓD( ̂R) over D is denoted ΓD( ̂R).

1 This definition deviates from the one used by Maurer et al. [16], where the MBO is
still output by ̂R�. The difference between the definitions is irrelevant because the
output is � if and only if the MBO is 1.
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Restricted Systems and Games. The concept of a blocked system ̂R�, de-
rived from a given system ̂R with MBO, is particularly useful if ̂R is in turn
derived from some underlying system R (i.e., ̂R− = R, where R is of interest
to us) by adding an MBO representing some restriction on R (e.g., an upper
bound on the number of queries than can be made to this system). In this case,
the restricted distinguishing advantage of a distinguisher D in distinguishing the
two systems with MBO ̂R and ̂S is defined as

̂ΔD( ̂R, ̂S) := ΔD( ̂R�, ̂S�) . (1)

The concept of restricting a system via an additional MBO can also be applied
to the case of games and game winning. In such a case, we consider a system re-
stricted by some MBO A1, A2, . . . with an additional MBO B1, B2, . . . specifying
when the game is won. Formally, this is an (X , Y × {0, 1} × {0, 1})-random sys-
tem R, where the outputs are triples (Yj , Aj , Bj) and the latter two components
are monotone. Then, we can consider the task of winning the restricted game,
i.e., provoking the event modelled by the MBO B1, B2, . . . before violating the
restriction modelled by the MBO A1, A2, . . ., as the task of winning the game
with the MBO C1, C2, . . . with Cj = Cj−1 ∨ (¬Aj ∧ Bj). Denoting the system
with the single MBO C1, C2, . . . as R<, we define the restricted game-winning
advantage as

̂ΓW (R) := ΓW (

R<
)

.

Conditional Equivalence. The notion of conditional equivalence has been
introduced by Maurer [14,13] and is a useful tool in deriving indistinguishability
proofs. An (X , Y)-game ̂R with MBO B1, B2, . . . is said to be conditionally
equivalent to an (X , Y)-random system S, denoted ̂R S, if pR̂Y j |XjBj=0 =

pSY j |Xj , for all j ≥ 1 and for all arguments for which pR̂Y j |XjBj=0 is defined.
If a game ̂R is conditionally equivalent to a system S, then the distinguishing
advantage between the systems R and S is upper bounded by the probability
of winning the game ̂R in a non-adaptive manner, a statement which was first
presented by Maurer [14] and was studied more extensively later by Jetchev et
al. [11] and Maurer [13].

2.3 Two-Interface Systems and Converters

Two-Interface Systems. Systems that can be accessed by multiple parties can
be viewed as systems with multiple interfaces and formalized as random systems
by making the interface identifier an explicit part of the input (or output) of
the system. In this work, we focus on systems with two interfaces, which we
naturally label by elements of the set I := {left, right}.

We restrict our considerations to the particular class of two-interface systems
that only produce an output (from some set Y) in response to an input (from
X ) and on the same interface where the input was received, and hence we omit
the interface label from the output. Then, such a two-interface system S takes
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as input a pair (Ik, Xk) ∈ I × X , where the kth query Xk was input at the
Ik-interface, and produces as output Yk ∈ Y, where it is understood that the
response Yk of the system S is output at the same interface Ik that the query
Xk was input. In other words, a two-interface system corresponds (due to our
restrictions) to an (I × X , Y)-random system and can be described by a sequence
of conditional probability distributions pSYk|IkXkY k−1 , k ≥ 1. Moreover, we will
usually consider two-interface systems which have an additional MBO, this is
defined exactly as above and will be used to restrict the access of the distinguisher
as in equation (1).

In this work, we focus on variants of the arbitrary input-length random oracle
RO with output length n, which we understand as two-interface systems with
one interface for the honest party and one interface for the adversary, and which
are thus formally seen as

(I × {0, 1}∗
, {0, 1}n)

-random systems.

Converters. Strategies employed locally by a party are modeled by a con-
verter2, which can also be viewed as a system with two interfaces: an inside
interface and an outside interface, denoted by in and out, respectively. In this
view, the inside interface is attached to the i-interface of a resource and mod-
els how the scheme makes use of this resource, where i ∈ I, while the outside
interface of the converter becomes the i-interface of the composite system and
models how the scheme can be used in applications and higher-level protocols.

We consider that a converter is always invoked by queries X1, X2, . . . ∈ X at
the out-interface. For each such query, it (adaptively) makes zero or more3 queries
X ′

1, . . . , X ′
j1

(resp., X ′
j1+1, . . . , X ′

j2
etc.) at the inside interface, i.e., to the two-

interface system whose i-interface is attached to the in-interface of the converter.
After having received the corresponding answers Y ′

1 , . . . , Y ′
j1 (resp., Y ′

j1+1, . . . , Y ′
j2

etc.), it finally produces an output Y1 ∈ Y (resp., Y2 etc.) at the out-interface.
As it is always clear at which interface the input to the converter is obtained
(it is the same interface where the converter produced the last output), it
need not be explicitly specified. Finally, we will usually consider converters
which have an additional MBO, also for the purpose of restricting the distin-
guisher’s access. Summarizing the above, such a converter can be formalized as
a (X ∪ Y, (({out} × Y) ∪ ({in} × X )) × {0, 1})-random system.

Attaching a converter to the i-interface of a two-interface system with label
set I, where i ∈ I, results in a two-interface system that can be described as
follows.4 Inputs to interfaces i′ �= i are processed by the system as before. When-
ever an input is given to the i-interface of the combined system, the converter is
evaluated on this input. If the output of the converter (without the MBO) is of
the form (in, x) for some x ∈ X , the resource is evaluated on (i, x) and provides

2 We use the term converter here although it is only fully appropriate once we consider
the object within a cryptographic algebra [17].

3 We assume that, for each converter, there is some (constant) upper bound on the
number of inside queries it makes per outside query.

4 The described process can be written as a closed formula to formally obtain a random
system.
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an output y ∈ Y (and an MBO). Then, the converter is evaluated on y. This pro-
cess continues until the output of the converter is of the form (out, y′) for some
y′ ∈ Y, and this value y′ is then considered the output of the composed system.
This process leads to a well-defined random system because the number of inside
queries is bounded for each query to the random system. The MBO of the overall
system is defined to be the disjunction of the MBOs of the two-interface system
and the converter.

Converters are denoted by lower-case Greek letters (e.g., α, π, σ) or by sans-
serif fonts (e.g., ampc). The set of all converters is denoted as Σ. To denote the
composition of converters and two-interface systems, we will understand the left
and the right side of the symbol R as representing the left- and right-interface of
the system R, respectively. Hence, attaching a converter π to the left-interface
of a two-interface system R results in a two-interface system πR while attaching
a converter σ to the right-interface of a two-interface system S results in a two-
interface system Sσ.

2.4 Indifferentiability

Indifferentiability was introduced by Maurer et al. [18] as a generalization of
indistinguishability for settings where some access to the internal state of the
considered resources is available publicly, within reach of any potential adver-
sary. In such a scenario, the left-interface of a two-interface system R models
interaction with honest users and is referred to as the “private” interface, while
the right-interface formalizes adversarial access and is referred to as the “pub-
lic” interface. For a protocol π ∈ Σ and ε ∈ [0, 1], the system πR is said to be
(strongly) ε-indifferentiable from the system S if there exists a converter σ ∈ Σ
such that ΔD (πR, Sσ) ≤ ε for all distinguishers D ∈ D. We usually refer to
the converter σ as the simulator. Indifferentiability has been widely applied, es-
pecially in the context of hash functions [6,4] and reductions among idealized
primitives [10].

3 Parameterized Constructions and QCA

As outlined in Section 1, we formalize query-complexity amplification as a con-
struction of random oracles which only allow for a limited number of queries
from random oracles which allow more queries, both at the (honest user’s) left
and at the (adversary’s) right interface. That is, we consider a random oracle as
a resource, and the “quality” of a certain QCA scheme will be captured by the
translation of restrictions (in the numbers of queries) that it achieves at both
the honest and the adversarial interface. In this section we formalize the above
intuition.

Query-Restricted Systems. We are interested in two-interface systems that
only allow a certain number of queries that can be made to their left- or right-
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interface.5 This is formalized by extending the considered system R with an
MBO that captures when the system is exhausted. Notationally, for some integers
L, R ∈ N, we denote by S|R the system S with an MBO that becomes 1 as soon
as more than R queries have been made at the right-interface of the system S,
and similarly SL| denotes the system S with an MBO that becomes 1 as soon
as more than L queries have been made at the left-interface of S. If a system
has both types of restrictions, we consider the MBO which is the disjunction
of the two individual MBOs described above, i.e., SL| |R denotes the restricted
system allowing at most L queries at the left-interface and at most R queries
at the right-interface. We use the same notation for restricting the number of
queries at the outside interface of a converter (i.e., we write αL| for α ∈ Σ and
L ∈ N), and it is easy to see that for a converter α and a system S we have

(αS)L| ≡ ( αL| )S and hence we typically drop the parentheses.

Parameterized Families of Construction Statements. We recall the
definition of a construction statement for the case where there is only a sin-
gle (external) adversary as described originally by Maurer et al. [17,15,19].6
This construction notion, specialized to two-interface resources, is equivalent
to (strong) indifferentiability as described in Section 2.4.7 The described con-
struction notion is composable if the pseudo-metric on the set of resources (i.e.,
the distinguishing advantage) is non-expanding. We defer the simple proof that
̂Δ(·, ·) is non-expanding to the full version of this paper.

Definition 1. A protocol π ∈ Σ constructs a restricted resource S from an
assumed restricted resource R relative to a simulator σ ∈ Σ and within ε ∈ [0, 1],
denoted R (π, σ, ε) S, if

R (π, σ, ε) S :⇐⇒ ̂Δ (πR, Sσ) ≤ ε .

In the distinguishing advantage ̂Δ(·, ·) that we consider, the outputs of a system
are blocked once the MBO of the system becomes 1. In the particular case of
query-restricted systems this means that the distinguisher does not obtain fur-
ther outputs from the system once the specified number of queries is exhausted.

We extend the “arrow notation” from Definition 1 to the case where we con-
sider parameterized families of construction statements, where we require that
all of the individual statements must hold. More formally, given a space K of
parameters, a family of protocols π := {πk}k∈K constructs a family of restricted
5 In contrast to most other definitional approaches, we restrict the number of queries

in a distinguishing experiment by restricting the system, not the distinguisher.
6 The exact form we describe here, which considers the simulator to be an explicit

parameter of the construction, has appeared in the work of Coretti et al. [5]. How-
ever, we formalize the definition only for the information-theoretic case where ε is a
constant.

7 The statement that πR is indifferentiable from S corresponds to the statement that
π constructs S from R.
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resources {Sk}k∈K from an assumed family of restricted resources {Rk}k∈K, rel-
ative to a family of simulators σ := {σk}k∈K and within ε : K → [0, 1], denoted

{Rk}k∈K
(π, σ, ε) {Sk}k∈K, if

{Rk}k∈K
(π, σ, ε) {Sk}k∈K :⇐⇒ ∀k ∈ K : Rk

(πk, σk, ε (k)) Sk .

Uniform Protocols. A family of converters α = {αk}k∈K is said to be uniform
if all the converters in the family are identical without their MBO, i.e., α−

k = α−
k′ ,

for all k, k′ ∈ K. Thus, in a uniform parameterized family of converters, the
parameter can only influence the MBO of each converter in the family and can
therefore only influence the end of a random experiment (and not the values
of the random variables). The reason to consider uniform families of converters
is that (semantically) a protocol shall not depend on the number of queries
that are made to it, since the restriction is a parameter of the environment in
which the protocol is used (and not of the protocol itself). We often denote
uniform families of converters only by a symbol that denotes a single converter
which has no specified MBO, with the implicit understanding that for each single
instance of the construction statement, the converter is amended by an MBO
that formalizes the suitable restriction of queries.

Query-Complexity Amplifiers. The construction notion in Definition 1 in-
duces a definition of ε-security for protocols, with respect to a given simulator,
if one considers a specific assumed resource R and a specific desired resource S.
In our case, both resources R and S will be variants of the random oracle RO.

Definition 2. Consider two functions ϕ : N×N → N×N and ε : N×N → [0, 1].
Then, a uniform family of protocols {πL,R}L,R∈N

, where π−
L,R = π for all L, R ∈

N and for some protocol π ∈ Σ, is said to be a (ϕ, ε)-query-complexity amplifier,
with respect to a family of simulators σ := {σL,R}L,R∈N

, if
{

ROL| |R
}

L,R∈N

(π, σ, ε)
{

RO�| |r
}

L,R∈N

,

where (�, r) := ϕ (L, R) and r < R, for all L, R ∈ N.

Thus, proving that a protocol π is a (ϕ, ε)-query-complexity amplifier requires
in particular to show that the system π ROL| |R is within ε (L, R) from the
system RO�| |r σL,R, and where (�, r) := ϕ (L, R) quantifies the exact amplifi-
cation achieved for all L, R ∈ N. Both resources are depicted in Fig. 1. Since
schemes for query-complexity amplification are often used in contexts where they
are evaluated independently by several parties, we will restrict ourselves to the
case of deterministic and stateless protocols8 to assure that the results remain
consistent for all parties.
8 A converter is said to be stateless if it does not keep a state between answering outer

queries, i.e., its behavior for a particular outer query depends only on the query itself
and the ongoing interaction at the inside interface. We refer to [7, Def. 1] for a more
formal treatment.
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π ROL| |R

(a) Assumed world

RO�| |r σL,R

(b) Desired world

Fig. 1. A (ϕ, ε)-query-complexity amplifier π: For any number of queries L, R, the
resource on the left is within ε (L, R) from the resource on the right and the simulator
σL,R does at most r < R inner queries, where (�, r) := ϕ (L, R)

4 The Caveats of Plain Iterated Hashing

We show in this section that the protocol consisting of iterating c times a random
oracle, denoted iterc, is not a query-complexity amplifier, for any number c ≥ 2
of iteration. To do so, we generalize some of the results of Dodis et al [8], who
specifically focused on the case c = 2, to deal with a higher number of iterations.
The next theorem shows that if one assumes a random oracle with only 2 ad-
versarial queries, then the random oracle constructed by the c-iteration protocol
iterc must allow at least � adversarial queries, where � roughly corresponds to the
number of honest queries in the constructed random oracle. For example, this
implies that the c-iteration protocol iterc cannot construct the random oracle

RO4| |1 from RO4c| |2 (unless the distinguishing advantage becomes trivial), and
therefore iterc is not a query-complexity amplifier according to Definition 2.

To give some intuition behind this result, consider the c-iteration of a random
oracle iterc RO and a chain

(

y(0), y(c), . . . , y(c�)) of � hashes, where y(cj) denotes
the output of the c-iteration protocol iterc when queried on the previous chain
element y(c(j−1)). The key observation here is that y(c�+1), the output of the
random oracle RO when queried on the last chain element y(c�), forms the end
of another chain of � hashes starting with y(1), the output of RO when queried
on the first element y(0) of the previous chain, and that both chains do not
have any element in common (with overwhelming probability). In contrast, such
shifted chains of queries cannot occur in the system RO σ, unless the simulator
σ does at least � inner queries to its underlying random oracle.

Note that if the assumed random oracle in Theorem 3 had more adversarial
queries, say R instead of 2, then one could force the simulator to make in total
in the order of Ω(�R) queries to the underlying random oracle by “hiding” the
query on the last chain element y(c�) among R − 2 random queries. A similar
technique was used in [8, Th. 1]. The proof of Theorem 3 appears in the full
version of this work.

Theorem 3. The protocol iterc, consisting of iterating c times a random oracle,
where c ≥ 2, is such that for any number � of queries and any simulator σ,

RO2c�| |2 (iterc, σ, ε) RO2�| |r =⇒ r ≥ � ∨ ε ≥ 1 − μ,

where μ := 2−n · f (c, �) and f ∈ O((c�)2).
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A Vulnerable Application. There are concrete applications where the fact
that the plain iteration protocol iterc fails to be a query-complexity amplifier is
problematic. One example of such a vulnerable application is the setting of mu-
tual proofs of work, introduced by Dodis et al. [8], which is secure if a monolithic
random oracle RO is employed, but becomes insecure if the c-iterate iterc RO
is used instead, for any c ≥ 2. This fact was already known for the special case
c = 2 [8] and it is easy to show, with the same kind of arguments as used to
prove Theorem 3, that it generalizes to higher iteration counts.

Recall that in mutual proofs of work, two parties aim at proving to each
other that they did a certain amount of computation. In the protocol proposed
by Dodis et al. [8], both parties exchange in the first round a nonce and then
compute a chain of hashes of a certain length (chosen by the computing party)
starting with the received nonce. In the second round, both parties exchange the
length and the last element of their computed chain. Then, each party checks
that the other party actually did the claimed amount of computation by first
computing a chain of hashes of the asserted length starting with the nonce that
was originally sent, and second, by checking that both computed chains do not
have any common element.

Note that such a scheme is insecure if the parties use iterc RO to compute their
chain of hashes. Indeed, a malicious party can simply “shift” the chain of hashes
computed by the honest party and needs therefore only two hash evaluations
to compute the beginning and the end of a valid chain of hashes (which with
overwhelming probability has no common element with the chain computed by
the honest party). In contrast, this protocol for mutual proofs of work is secure
if the parties use the monolithic random oracle RO to compute their chain of
hashes. We refer to the full version of this paper for more details.

5 Complexity Amplification via Collision-Free Iteration

The main result of this section is to present the collision-free iteration protocol,
denoted ampc, for amplifying the query complexity of a random oracle by a
constant factor c, for some fixed parameter c ∈ N. We present the (uniform)
protocol ampc and the corresponding (uniform) simulator sim in Section 5.1 and
prove the actual construction stated below in Section 5.2.

Theorem 4. The collision-free iteration protocol ampc described in Fig. 2 is an
(

(L, R) �→ (� L
c �, � R

c �)

, δ
)

-query-complexity amplifier with respect to the simula-
tor sim described below in Alg. 1, i.e.,

{

ROL| |R
}

L,R∈N

(ampc, sim, δ)
{

RO� L
c 	| |� R

c 	
}

L,R∈N

,

where δ (L, R) := R · 2−n and n is the output length of the random oracle RO,
for all L, R ∈ N.

Notice that the upper bound δ on the distinguishing advantage in the previous the-
orem is independent of the number L of queries made to the left-interface and also
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ampc ROL| |R

x

y := Wc (x)

V1 (x) := �x� ‖〈1〉
W1 (x)

Vc (x) := �x� ‖〈c〉 ‖ Wc−1 (x)

Wc (x)

Fig. 2. Protocol ampc for amplifying the complexity of a random oracle by a factor
c. A prefix-free encoding of a bit-string x is denoted by �x�, and an encoding of an
integer j over �log2 c�-bit strings is denoted by 〈j〉.

of the factor c, which also corresponds to the number of iterations in the protocol
ampc given in Fig. 2 above. Throughout this section, we will denote by � and r the
two integers corresponding to � L

c � and � R
c �, respectively, for all L, R ∈ N.

5.1 The Protocol and the Simulator

Protocol ampc. Consider the collision-free iteration protocol ampc attached to
the left-interface of a random oracle as described in Fig. 2. When queried on
an input x ∈ {0, 1}∗ (at its outside interface), the protocol ampc does c queries
V1 (x) , . . . , Vc (x) to the random oracle, where the query Vj (x) contains the
answer of the random oracle on the previous query Vj−1 (x). In addition, ampc

uses prefixing to ensure that there is no collision among the queries asked, i.e.,
Vj (x) �= Vj′ (x′) whenever (j, x) �= (j′, x′). Namely, ampc prefixes each query
Vj (x) with a prefix-free encoding �x	 of x and with an iteration counter 〈j〉
where 〈·〉 : {1, . . . , c} → {0, 1}
log2 c� denotes an arbitrary injective function
from {1, . . . , c} to the set of �log2 c	-bit strings. The former guarantees no overlap
between the queries for two different inputs x and x′, while the second prevents
collisions within the sequence of queries for the same input x. More generally,
letting W0 (x) be the empty bit string and Wj (x) be the inner response of the
connected resource to the inner query Vj (x), we then define iteratively

Vj (x) := �x	 ‖〈j〉 ‖ Wj−1 (x)
Wj (x) := result of querying Vj (x) at the in-interface,

for all j ∈ {1, . . . , c}. Finally, we simply let Wc (x), the response of the connected
resource to the final query, be the output of the protocol.
Prefix-Free Encodings. A prefix-free encoding function �·	 : {0, 1}∗ →
{0, 1}∗ is a function ensuring that �x̃	 is not a prefix of �x	 whenever x �= x̃.
We also assume it can be easily decided whether a bit string y ∈ {0, 1}∗ is in
the range of �·	, and in that case the (unique) pre-image of y can be efficiently
recovered. Our results are independent of which such prefix-free encoding func-
tion is used. A simple example of such a prefix-free encoding is the function
� 	 : {0, 1}∗ → {0, 1}∗ ; (b1, . . . , bn) �→ (1, b1, 1, b2, . . . , 1, bn, 0). Many other
(more efficient) examples exist, such as those described by Coron et al. [6].
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Simulator sim. Before describing the behavior of the simulator sim defined in
Alg. 1, let us first characterize more precisely the different types of queries we
will consider. A query v is said to be well-formed, denoted isWellFormed(v), if
it contains the prefixes as used by the protocol ampc, i.e., v ∈ V ⊆ {0, 1}∗, where
V :=

⋃

x∈{0,1}∗

j∈{1,...,c}
Vj (x), with

V1 (x) := {�x	 ‖〈1〉} and Vj (x) := {�x	 ‖〈j〉 ‖ z : z ∈ {0, 1}n} for j ≥ 2 .

An element of Vj (x) will be called a well-formed query of level j with prefix x.
We denote by parse (·) : V → {0, 1}∗ × {1, . . . , c} the function which, given
a well-formed query v, returns the pair (x, j) corresponding to the prefix and
level associated with this query, respectively. Given an arbitrary subset of well-
formed queries Ṽ ⊆ V , a prefix x ∈ {0, 1}∗ is declared to be “fresh”, denoted
isPrefixFresh(x, Ṽ), if it was never encountered, i.e.,

isPrefixFresh(x, Ṽ) :⇐⇒ ∀v ∈ Ṽ ∀j ∈ {1, . . . , c} : (x, j) �= parse (v) .

The simulator sim works as follows: whenever it receives a well-formed query
v ∈ {0, 1}∗ of some level j ∈ {1, . . . , c} with a “fresh” prefix x ∈ {0, 1}∗, it emu-
lates the behavior of the protocol ampc on input x by generating a “fake” chain
of queries Ṽ1 (x), W̃1 (x), . . . , Ṽc−1 (x), W̃c−1 (x), Ṽc (x), where the emulated an-
swers W̃k (x) are simply uniform n-bit strings locally sampled by the simulator.
Then, the simulator sim returns the answer of the random oracle RO�| |r when
queried on the prefix x, only if the outer query v matches the last chain element
Ṽc (x) and all previous chain elements Ṽ1 (x) , . . . , Ṽc−1 (x) were already queried.
On the other hand, if the query v matches one of the lower-level chain elements,
i.e., v = Ṽj (x) with j < c and all previous chain elements were already queried,
then the simulator sim replies with the answer W̃j (x) that was already chosen
earlier (when generating the chain for the prefix x). In the (unlikely) case where
a distinguisher happens to have guessed the value of Ṽj (x), i.e., v = Ṽj (x) but
the previous chain element Ṽj−1 (x) was never queried, the simulator sim gives
up on simulation by outputting the all zero bit string 0n and setting internally
the event hit to 1 in order to prevent any further inner query to the random
oracle. Finally, if the query v considered is not well-formed, then the simulator
sim replies with a fresh uniform n-bit string. We refer to Alg. 1 for a precise
description of the simulator sim. Note that it maintains a state over all invo-
cations, keeping track of the set Ṽ of well-formed queries received, the values
Ṽj (x) and W̃j (x) corresponding to the locally generated chains of queries, and
the mapping g to be able to reply consistently to any repeated query.

5.2 Indistinguishability Proof

Recall that the statement of Theorem 4 considers a construction between an
assumed random oracle ROL| |R and a desired random oracle RO�| |r, for all in-
tegers L, R. If the number of queries that can be made to the left-interface of the
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Algorithm 1. Simulator sim
g(v) := λ, for all v ∈ {0, 1}∗ // λ denotes the empty bit string
Ṽ = ∅ and hit := 0
on input v ∈ {0, 1}∗ at the out-interface
if g(v) = λ then // v was never queried before
if isWellFormed (v) then

(x, j) := parse (v)
if isPrefixFresh(x, Ṽ) then // generate a “fake” chain of queries

(Ṽ1 (x) , W̃1 (x) , . . . , Ṽc−1 (x) , W̃c−1 (x)) := GenerateChain(x, c − 1)
Ṽc (x) := �x� ‖〈c〉 ‖ W̃c−1 (x)

if v = Ṽj (x) then
if j > 1 ∧ g(Ṽj−1 (x)) = λ then // previous chain element was
not queried
hit := 1
Ỹ := 0n

else if j = c ∧ hit = 0 then
Ỹ := result of querying x at the in-interface

else if j = c ∧ hit = 1 then
Ỹ := 0n

else Ỹ := W̃j (x)
else Ỹ $← {0, 1}n

Ṽ ← Ṽ ∪ {v}
else Ỹ $← {0, 1}n

g(v) := Ỹ

output: g(v) at the out-interface

Procedure GenerateChain(x, m)
W̃0 (x) := λ
for j = 1 to m do

Ṽk (x) := �x� ‖〈k〉 ‖ W̃k−1 (x)
W̃k (x) $← {0, 1}n

return (Ṽ1 (x) , W̃1 (x) , . . . , Ṽm (x) , W̃m (x))

desired random oracle is limited to �, then so should also be restricted the num-
ber of queries that can be made to the outside interface of the protocol. Similarly,
restricting the assumed random oracle to at most R queries at its right-interface
implies the same restriction on the number of queries that can be made to the
outside interface of the simulator. Thus, we will prove Theorem 4 for the uni-
form family of protocols

{

ampc
�| }

L,R∈N
and for the uniform family of simulators

{

sim|R
}

L,R∈N

. We therefore need to upper bound the distinguishing advantage

between the query-restricted systems ampc
�| ROL| |R and RO�| |r sim|R, for all

L, R ∈ N. The idea for upper bounding this distinguishing advantage is to first
transform the system RO sim into a game RO sim , where the latter is defined to
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be won if the event hit is provoked in the simulator sim described in Alg. 1; and
second, to show that this game RO sim is conditionally equivalent to the system
ampc RO. Before proving the corresponding conditional equivalence statement
in Lemma 5 below, we start by describing informally how it implies Theorem 4.
A more formal treatment appears in the full version.

Query Complexity. The protocol ampc makes exactly c inner queries for every
query it receives at its outside interface. Consequently, the protocol ampc does
in total at most L inner queries if it is queried at most � times at its outside
interface. The simulator sim makes a query x at its inside interface only if it
receives a chain of c (distinct) queries Ṽ1 (x) , . . . , Ṽc (x). The simulator sim keeps
in memory the previous interaction, so that when such a chain of c queries is
received, at most one query is made to the inside interface of sim. Furthermore,
the prefix scheme employed prevents any form of collision among the queries so
that making multiple, say k, such chains of c queries requires at least k ·c queries.
Hence, any tuple of R queries contains at most r such chains of c queries, and
thus the simulator does in total at most r inner queries if it is queried at most
R times at its outside interface. Thus, the protocol ampc and the simulator sim
are such that
[

ampc RO�| |R
]�

≡
[

ampc
�| ROL| |R

]�
and

[

RO sim�| |R
]�

≡
[

RO�| |r sim|R
]�

.

It is therefore sufficient to upper bound the restricted distinguishing advan-
tage between the query-restricted systems ampc RO�| |R and RO sim�| |R. To do
so, we consider two games RO sim and RO sim�| |R , where both games are
won if and only if the event hit in the simulator sim is provoked. We show in
Lemma 5 below that the game RO sim is conditionally equivalent to the system
ampc RO, which then implies that the restricted game RO sim�| |R is condition-
ally equivalent to the restricted system ampc RO�| |R, since the added MBO,
corresponding to a restriction on the number of queries, is simply a determinis-
tic function of the inputs. Similarly to [13, Th. 3], this conditional equivalence
statement between query-restricted systems implies that the restricted distin-
guishing advantage between ampc RO�| |R and RO�| sim|R is upper bounded by
the probability for non-adaptive game winners to win the query-restricted game

RO sim�| |R . Such a game can only be won if the event hit in the simulator sim
is provoked within R (well-formed) queries. Any well-formed query has a certain
prefix x and level j, where x ∈ {0, 1}∗ and j ∈ {1, . . . , c}, and the probability
for such a query to win the game is therefore at most 2−n since it requires to
guess the value of W̃j−1 (x), an independent and uniformly distributed n-bit
string. By applying the union bound it follows that the probability of winning
the query-restricted game RO sim�| |R is at most R · 2−n. Overall, we thus have
for all integers L, R ∈ N that
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̂Δ
(

ampc
�| ROL| |R, RO�| |r sim|R

)

= ̂Δ
(

ampc RO�| |R, RO sim�| |R
)

≤ ̂ΓNA
(

RO sim�| |R
)

≤ R · 2−n .

The proof of the following lemma completes the proof of Theorem 4.

Lemma 5. Consider the protocol ampc and the simulator sim defined in Fig. 2
and Alg. 1, respectively. Let RO sim denote the game which is won if and only
if the event hit in sim is provoked. Then,

RO sim ampc RO .

Proof. Let us denote by R and ̂S the systems ampc RO and RO sim , respec-
tively (where ̂S is actually a game). We need to show that ̂S R. We are going
to argue that as long as the game ̂S is not won, the probability distribution of
the response to any possible query is the same in both R and ̂S�. Both systems
reply consistently to any repeated queries, let us hence without loss of generality
only consider fresh queries. To analyze the sampling process of responses, note
that we can see both R and ̂S� as generating the responses to all possible queries
in advance (according to distributions described below) and then using the pre-
generated responses to answer all actual queries. To describe these distributions,
let us denote by Left (x) and Right (v) the responses of the system in question
(either R or ̂S�) to queries (left, x) and (right, v), respectively. The (inefficient)
sampling processes for the systems R and ̂S� (as long as the game is not won)
are described in Alg. 2 and 3, respectively. It is now easy to see that these two
sampling processes result in the same distribution of all the random variables
Left (x) and Right (v). ��

Algorithm 2. Sampling for R
1. foreach x ∈ {0, 1}∗ do

U1, . . . , Uc
$← {0, 1}n

Right (�x	 ‖〈1〉) := U1
Right (�x	 ‖〈j〉 ‖ Uj−1) := Uj ,
for all j ∈ {1, . . . , c}
Left (x) := Uc

2. Sample all remaining values
Right (v) $← {0, 1}n

Algorithm 3. Sampling for ̂S�

1. foreach x ∈ {0, 1}∗ do
Left (x) $← {0, 1}n

U1, . . . , Uc−1
$← {0, 1}n

Right (�x	 ‖〈1〉) := U1
Right (�x	 ‖〈j〉 ‖ Uj−1) := Uj ,
for all j ∈ {1, . . . , c − 1}
Right (�x	 ‖〈c〉 ‖ Uc−1) :=
Left (x)

2. Sample all remaining values
Right (v) $← {0, 1}n
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Abstract. We present a new information-theoretic result which we call
the Chaining Lemma. It considers a so-called “chain” of random vari-
ables, defined by a source distribution X(0) with high min-entropy and a
number (say, t in total) of arbitrary functions (T1, . . . , Tt) which are ap-

plied in succession to that source to generate the chainX(0) T1−→ X(1) T2−→
X(2) · · · Tt−→ X(t). Intuitively, the Chaining Lemma guarantees that, if
the chain is not too long, then either (i) the entire chain is “highly ran-
dom”, in that every variable has high min-entropy; or (ii) it is possible
to find a point j (1 ≤ j ≤ t) in the chain such that, conditioned on the

end of the chain i.e. X(j) Tj+1−→ X(j+1) · · · Tt−→ X(t), the preceding part

X(0) T1−→ X(1) · · · Tj−→ X(j) remains highly random. We think this is an
interesting information-theoretic result which is intuitive but neverthe-
less requires rigorous case-analysis to prove.

We believe that the above lemma will find applications in cryptogra-
phy. We give an example of this, namely we show an application of the
lemma to protect essentially any cryptographic scheme against memory-
tampering attacks. We allow several tampering requests, the tampering
functions can be arbitrary, however, they must be chosen from a bounded
size set of functions that is fixed a priori.

1 Introduction

Assume that we have a uniform random distribution over some finite set X ,
represented by a discrete random variable X . Let us now apply an arbitrary
(deterministic) function T to X and denote the output random variable by
X ′ = T (X). Since T is an arbitrary function, the variable X ′ can also be ar-
bitrarily distributed. Consider now the case where X ′ is “easy to predict”, or
more concretely where X ′ has “low” min-entropy. A natural question, in this
case, is how much information can X ′ reveal about X? or more formally, how
much min-entropy can X have if we condition on X ′?
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Intuitively, one might expect that since X ′ has low entropy, it cannot tell us
much about X , so X should still be “close to random” and hence have high
entropy. While this would be true for Shannon entropy, it turns out to be com-
pletely false for min-entropy. This may seem a bit counter-intuitive at first, but
is actually easy to see from an example: Let T be the function which maps
half of the elements in X to one “heavy” point but is injective on all the other
elements. For this T , the variable X ′ has very small min-entropy (namely 1)
because the heavy point occurs with probability 1/2. But on the other hand,
X ′ reveals everything about X half the time, and so the entropy of X in fact
decreases very significantly (on average) when X ′ is given. So despite having
very low min-entropy, X ′ = T (X) does reveal a lot about X .

There is, however, a more refined statement that will be true for min-entropy:
Let E be the event that X takes one of the values that are not mapped to
the “heavy point” by T , while Ē is the event that X is mapped to the heavy
point. Now, conditioned on E , both X|E and X ′

|E have high min-entropy. On the

other hand, conditioned on Ē , X|Ē will clearly have the same (high) min-entropy
whether we are given X ′

|E or not.
This simple observation leads to the following conjecture: there always exists

an event E such that: (i) Conditioned on E , both X and X ′ have “high” min-
entropy, (ii) conditioned on Ē , X ′ reveals “little” about X . In this paper, from a
very high-level, we mainly focus into settling (a generalization of) this conjecture,
which results in our main contribution: the information-theoretic lemma which
we call the Chaining Lemma.

Main Question. Towards generalizing the above setting let us rename, for no-
tational convenience, the above symbols as follows: X(0) ≡ X , T1 ≡ T and
X(1) ≡ X ′. We consider t (deterministic) functions T1, T2, . . . , Tt which are ap-
plied to the the variables sequentially starting from X(0). In particular, each Ti is
applied to X(i−1) to produce a new variableX(i) = Ti(X

(i−1)) for i ∈ [t]. We call
the sequence of variables (X(0), . . . , X(t)) a “chain” which is completely defined
by the “source” distribution X(0) and the sequence of t functions (T1, . . . , Tt). It

can be presented more vividly as follows: X(0) T1−→ X(1) T2−→ X(2) · · · Tt−→ X(t).
We are now interested in the min-entropy of X(1), . . . , X(t). Of course, each

variable X(i) has min-entropy less than (or equal to) the preceding variable
X(i−1) (as a deterministic function can not generate randomness). Assume now
that we fix some threshold value u and consider any value of min-entropy less
than u to be “low”. Assume further that the source has min-entropy much larger
than u. As a motivation, one may think of a setting where each X(i) is used as
key in some cryptographic application, where, as long X(i) has high min-entropy
we are fine and the adversary will not learn something he should not. But if X(i)

has low min-entropy, things might go wrong and the adversary might learn X(i).
Now, there are two possible scenarios for the above chain: either (i) all the

variables (hence the last variable X(t)) in the chain have high min-entropy; or
(ii) one or more variable (obviously including the last variableX(t)) has low min-
entropy. In case (i), everything is fine. But in case (ii), things might go wrong
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at a certain point. We now want to ask if we can at least “save” some part of
the chain, i.e., can we find a point in the chain such that if we condition on all
the variables after that point, all the preceding variables (obviously including the
source X(0)) would still have high min-entropy? This hope might be justified if t
is small enough compared to the entropy of X(0): since the entropy drops below
u after a small number of steps, there must be a point (say j) where the entropy
falls “sharply”, i.e.,X(j) has much smaller min-entropy thanX(j−1). However, as
the above example shows, even if there is a large gap in min-entropy between two
successive variables (X(j) and X(j−1) in this case), the succeeding one (X(j))
might actually reveal a lot about the preceding one (X(j−1)) on average. So
it is not clear that we can use j as the point we are looking for. However,
one could hope that a generalised version of the above conjecture might be
true, namely there might exist some event, further conditioning on which, all
variables would have high min-entropy, and on the other hand, conditioning
on the complement, X(j−1) (and hence the entire preceding chain) would have
high min-entropy. Essentially that is what our Chaining Lemma says, which we
present next although in an informal way. We give the formal statement and
proof of the lemma in Section 3.

Lemma 1 (The Chaining Lemma, Informal). Let X(0) be a uniform ran-
dom variable over X and (T0, . . . , Tt) be arbitrary functions mapping X → X
and defining a chain X(0) T1−→ X(1) T2−→ X(2) · · · Tt−→ X(t). If the chain is “suf-
ficiently short”, there exists an event E such that (i) if E happens, then all the
variables (X(0), . . . , X(t)) (conditioned on E) have “high” min-entropy; other-
wise (ii) if E does not happen there is an index j such that conditioning on X(j)

(and also on Ē) all the previous variables namely X(0), . . . , X(j−1) have “high”
min-entropy.

Application to Tamper-resilient Cryptography. Although we think that the Chain-
ing Lemma is interesting in its own right, in this paper we provide an application in
cryptography, precisely in tamper-resilient cryptography. In tamper-resilient cryp-
tography themain goal is to “theoretically” protect cryptographic schemes against
so-called fault attacks which are found to be devastating (as shown by [5,12] and
many more). In this model, the adversary, in addition to standard black-box ac-
cess to a primitive, is allowed to change its secret state [9,28,23,32,8], or its inter-
nals [30,27,18,19], and observes the effect of such changes at the output. In this
paper we restrict ourselves to the model where the adversary is not allowed to alter
the computation, but only the secret state (i.e. only the memory of the device, but
not the circuitry, is subject to tampering).

To illustrate such memory tampering, consider a digital signature scheme
Sign with public/secret key pair (pk , sk). The tampering adversary obtains pk
and can replace sk with T (sk) for arbitrary tampering function T . Then, the
adversary gets access to an oracle Sign(T (sk), ·), i.e., to a signing oracle run-
ning with the tampered key T (sk). As usual the adversary wins the game by
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outputting a valid forgery with respect to the original public key pk .1 In the
most general setting, the adversary is allowed to ask an arbitrary polynomial
number of tampering queries. However, a general impossibility result by Gen-
naro et al. [28] shows that the above flavour of tamper resistance is unachievable
without further assumptions. To overcome this impossibility one usually relies
on self-destruct (e.g., [23,15,1,14,13,24,25,26,17,2,3,4,16,31]), or limits the power
of the tampering function (e.g., [9,33,7,6,29,34,36,10,11,31,35]).

Recently Damg̊ard et al. [20] proposed a different approach where, instead
of limiting the type of allowed modifications, one assumes an upper bound on
the number of tampering queries that the adversary can ask, so that now the
attacker can issue some a-priori fixed number t of arbitrary tampering queries.
As argued by [20], this limitation is more likely to capture realistic tampering
attacks. They also show how to construct public key encryption and identification
schemes secure against bounded leakage2 and tampering (BLT) attacks.

The above model fits perfectly with the setting of the Chaining Lemma, as
we consider a limited number of tampering functions (T1, . . . , Tt), for some fixed
bound t, applied on a uniform (or close to uniform) secret-state X(0). Now recall
that Lemma 1 guarantees that, for “small enough” t, the source distribution
stays unpredictable in essentially “any” case. Therefore, the source can be used
as a “highly unpredictable” secret-key resisting t arbitrary tampering attacks.
As a basic application of the Chaining Lemma, we show in Section 4 that any
cryptographic scheme can be made secure in the BLT model. To the best of our
knowledge, this is the first such general result that holds for arbitrary tampering
functions and multiple tampering queries. The price we pay for this is that the
tampering functions must be chosen from a bounded-size set that is fixed a
priori.

Previous work by Faust et al. [26], shows how to protect generically against
tampering using a new primitive called non-malleable key-derivation. This result
also works for arbitrary tampering functions, does not require that a small set
of functions is fixed in advance, but works only for one-time tampering.

2 Preliminaries

2.1 Notation

For n ∈ N, we write [n] := {1, . . . , n}. Given a set S, we write s ← S to denote
that element s is sampled uniformly from S. If A is an algorithm, y ← A(x)
denotes an execution of A with input x and output y; if A is randomized, then
y is a random variable.

We denote with k the security parameter. A machine A is called probabilistic
polynomial time (PPT) if for any input x ∈ {0, 1}∗ the computation of A(x) ter-
minates in at most poly(|x|) steps and A is probabilistic (i.e., it uses randomness

1 Notice that T may be the identity function, in which case we get the standard
security notion of digital signature scheme as a special case.

2 The adversary is also allowed to leak a bounded—yet arbitrary—amount of infor-
mation on the secret key; we refer the reader to Section 4 for the details.
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as part of its logic). Random variables are usually denoted by capital letters.
We sometimes abuse notation and denote a distribution and the corresponding
random variable with the same capital letter, sayX . We write sup(X) for the sup-
port of X . Given an event E, we let X|E be the conditional distribution of X con-
ditioned on E happening. The statistical distance of two random variablesX and
Y , defined over a common set S is Δ(X ;Y ) = 1

2

∑
s∈S |Pr [X = s]−Pr [Y = s]|.

Given a random variable Z, the statistical distance of X and Y conditioned on
Z is defined as Δ(X ;Y |Z) = Δ((X,Z); (Y, Z)).

2.2 Information Theory Basics

The min-entropy of a random variable X over a set X is defined as H∞(X) :=
− logmaxx Pr [X = x], and measures how X can be predicted by the best (un-
bounded) predictor. The conditional average min-entropy [22] of X given a ran-
dom variable Z (over a set Z) possibly dependent on X , is defined as

H̃∞(X |Z) := − logEz←Z [2
−H∞(X|Z=z)] = − log

∑

z∈Z
Pr [Z = z] · 2−H∞(X|Z=z).

We say that a distribution X over a set X of size |X | = 2n is (α, n)-good if
H∞(X) ≥ α and Pr [X = x] ≥ 2−n for all x ∈ sup(X).

We will rely on the following basic property (see [22, Lemma 2.2]).

Lemma 2. For all random variables X,Z and Λ over sets X , Z and {0, 1}λ
such that H̃∞(X |Z) ≥ α, we have that

H̃∞(X |Z,Λ) ≥ H̃∞(X |Z)− λ ≥ α− λ.

The above lemma can be easily extended to the case of random variables Λ with
bounded support, i.e., H̃∞(X |Z,Λ) ≥ H̃∞(X |Z)− log |sup(Λ)|.

3 The Chaining Lemma

Before presenting the statement and proof of the Chaining Lemma, we state and
prove two sub-lemmas. We do not provide any intuitions at this point regarding
the whole proof of the Chaining Lemma due to involvement of rigorous case-
analysis. Instead, we take a modular approach presenting intuitions step-by-step
for each of the sub-lemmas and finally providing an intuition of the Chaining
Lemma after the proof of these sub-lemmas.

The first lemma states that if the support of a distribution is sufficiently large
then there always exists an event E such that, conditioned on E, the conditional
distribution has high min-entropy.

Lemma 3. For n ∈ N>1 let c be some parameter such that
√
n < c < n. Let

X be a set of size 2n = |X | and X be a distribution over X with |sup(X)| > 2c

such that for all x ∈ sup(X) we have Pr[X = x] ≥ 1
2n . There exists an event E

such that:
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(i) H∞(X|E) > c− 2
√
n, and

(ii) |sup(X|E)| < |sup(X)|.
Proof. Intuitively, the lemma is proven by showing that if a distribution has
sufficiently large support, then over a large subset of the support the distribution
must be “almost” flat. We will describe below what it means for a distribution
to be “almost flat”. We then define an event E that occurs when X takes some
value in the almost flat area. Clearly, X conditioned on E must be “almost”
uniformly distributed, and if furthermore the support of X conditioned on E is
still sufficiently large, we get that H∞(X|E) must be large. We proceed with the
formal proof.

We introduce a parameter b which is a positive integer such that c > n/b. We
explain how to set the value of b later. For ease of description we assume that n
is a multiple of b. We start by defining what it means for an area to be flat. For
some probability distribution X we define k ∈ [2n/b − 1] sets as follows:

– Ik :=
{
x ∈ sup(X) : kb

2n ≤ Pr[X = x] < (k+1)b

2n

}
, for k ∈ [2n/b − 1] and

– I2n/b := {x ∈ sup(X) : Pr[X = x] = 1}.
These sets characterize the (potential) flat areas in the distribution X as the
probability of all values in some set Ik lies in a certain range that is bounded from
below and above. Clearly, the sets Ik are pairwise disjoint and cover the whole
space between 1/2n and 1. Therefore, each x ∈ sup(X) with some probability
Pr[X = x] must fall into some unique set Ik.

We denote by Im the set that contains the most elements among all sets Ik,
and define the event E as the event that occurs when x ∈ sup(X) falls into Im,
i.e., X takes a value that falls in the largest set Im. We now lower bound the
probability that E occurs.

Pr[E] ≥ |Im|m
b

2n
(1)

≥ 2c−n/bm
b

2n
. (2)

Inequality (1) holds as for all x ∈ Im we have Pr[X = x] ≥ mb

2n . (2) follows from

the fact that Im must have size at least 2c−n/b, as there are 2n/b sets and there
are at least 2c elements in the support of X .

As H∞(X|E) = − logmaxx Pr[X = x|E], we can give a lower bound for the
min entropy of X|E by upper bounding Pr[X = x|E]. More precisely,

Pr[X = x|E] =
Pr[X = x ∧ E]

Pr[E]

<
(m+ 1)b/2n

2(c−n/b)mb/2n
(3)

=

(

1 +
1

m

)b

2−c+n/b

≤ 2b−c+n/b. (4)
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Inequality (3) uses (2) and the fact that Pr[X = x ∧ E] < (m+1)b

2n by definition
of Im. (4) follows from m ≥ 1. This implies that H∞(X|E) > c− n/b− b. Now
we observe that the loss in min-entropy, given by (b + n/b) is minimum when
b =

√
n. Since b is a free parameter, we fix b :=

√
n (note that, since c >

√
n,

the constraint c > n/b holds) to get H∞(X|E) > n− 2
√
n as stated in part (i)

of the lemma.
For part (ii), it is easy to see from the definition of E that the support of the

conditional probability distribution X|E decreases by at least 2(c−n/b) points (as

these points belong to E). Clearly, |sup(X|E)| ≤ |sup(X)| − 2c−n/b < |sup(X)|
as stated in the lemma. 
�

In the following lemma we consider an arbitrary distribution X with suffi-
ciently high min-entropy and some arbitrary function T . We show that if the
support of Y = T (X) is sufficiently large, then there exists an event E such that
one of the following happens:

(i) The min-entropy of Y conditioned on the event E is high, i.e., Y condi-
tioned on E has an almost flat area with large support;

(ii) If E happens, then the average min-entropy of X given Y is high. Intu-
itively, this means that Y conditioned on E has small support as then it
does not “reveal” too much about X .

We formalize this statement in the lemma below.

Lemma 4. For n ∈ N>1 let c, α be some parameters such that
√
n < c < α ≤ n.

Let X be some set of size 2n = |X | and X be an (α, n)-good distribution over X .
For any function T : X → X , let Y = T (X) be such that |sup(Y )| > 2c. There
exists an event E such that the following holds:

(i) H∞(Y|E) > c− 2
√
n.

(ii) H̃∞(X|E |Y|E) ≥ α− c− log 1
1−Pr[E] .

Proof. Intuitively, in the proof below we apply Lemma 3 iteratively to the dis-
tribution Y to find flat areas in Y . We “cut off” these flat areas until we have a
distribution (derived from Y ) which has sufficiently small support. Clearly such
restricted Y cannot reveal too much information about X . To formalize this ap-
proach, we construct iteratively an event E by combining the events Ei obtained
by applying Lemma 3 to Y . If E happens then Y takes values that lie in a large
flat area. On the other hand E characterizes only a relatively small support, and
hence giving such Y does not reveal much information (on average) about X .
The formal proof with an explicit calculation of the parameters follows.

We will define the event E depending on events {Ei, E
′
i, E

′′
i }i∈{0,...,m−1} (for

some integer m) which we will specify later. These events partition the proba-
bility space as follows (cf. Figure 1):

E′
i :=

i∧

j=0

Ej = Ei ∧ E′
i−1 E′′

i := Ei ∧

⎛

⎝
i−1∧

j=0

Ej

⎞

⎠ = Ei ∧ E′
i−1. (5)
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Ω

E′
1 E′′

1

E′
2 E′′

2

E′
3 E′′

3

Ω

E′′
1E′

3

E′′
2E′′

3

Fig. 1. Events covering the probability space in the proof of Lemma 4 and Lemma 5

We will rely on some properties of the above partition. In particular, note that
for all i ∈ {0, . . . ,m− 1} we have

E′
i ∨E′′

i = E′
i−1 E′

i ∧ E′′
i = ∅. (6)

We start by constructing the events {Ei, E
′
i, E

′′
i } and conditional probability

distributions Y (i) that are derived from Y by applying Lemma 3. Lemma 3
requires the following two conditions:

– |sup(Y (i))| > 2c, and
– Pr[Y (i) = y] ≥ 2−n, for all y ∈ sup(Y (i)).

Clearly these two conditions are satisfied by Y (0) = Y , since Y (0) is computed
from X by applying a function T and for all x ∈ sup(X) the statement assumes
Pr[X = x] ≥ 2−n. Hence, Lemma 3 gives us an event E0. We set and we define

Y (1) = Y
(0)

|E0
. For all i ≥ 1 we proceed to construct events Ei and conditional

distributions Y (i+1) = Y
(i)

|Ei
as long as the requirements from above are satisfied.

Notice that by applying Lemma 3 to distribution Y (i) we get for each event Ei:

– H∞(Y
(i)
|Ei

) > c− 2
√
n, and

– |sup(Y (i+1))| < |sup(Y (i))|.

Clearly, there are only finitely many (say m) events before we stop the itera-
tion as the size of the support is strictly decreasing. At the stopping point we have
|sup(Y (m−1))| > 2c and |sup(Y (m))| ≤ 2c. We define E =

∨m−1
i=0 Ei =

∨m−1
i=0 E′′

i

and E =
∧m−1

i=0 Ei = E′
m−1 and show in the claims below that they satisfy

conditions (i) and (ii) of the lemma.

Claim. H∞(Y|E) > c− 2
√
n.

Proof. Recall that for each 0 ≤ i ≤ m− 1 we have

Y
(i)
|Ei

= Y|Ei∧Ei−1...∧E0
(7)

= Y|E′′
i

(8)
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Eq. (7) follows from the definition of the conditional probability distribution

Y
(i)
|Ei

. Eq. (8) from the definition of the constructed events. From Eq. (8) and

Lemma 3 we have for each 0 ≤ i ≤ m−1 that H∞(Y|E′′
i
) > c−2

√
n. As for each

0 ≤ i ≤ m−1 we have |sup(Y|E)| ≥ |sup(Y|E′′
i
)| we get that H∞(Y|E) > c−2

√
n.

This concludes the proof of this claim. 
�

Claim. H̃∞(X|E |Y|E) ≥ α− c− log 1
1−Pr[E] .

Proof. We first lower bound H∞(X|E).

H∞(X|E) = − log

(

max
x

Pr[X = x ∧ E]

Pr[E]

)

(9)

≥ − log

(
1

Pr[E]
max
x

Pr[X = x]

)

(10)

= H∞(X)− log
1

Pr[E]
≥ α− log

1

1− Pr[E]
. (11)

Eq. (9) follows from the definition of min-entropy and the definition of condi-
tional probability. Eq. (10) follows from the basic fact that for any two events
Pr[E∧E′] ≤ Pr[E]. Finally, we get Eq. (11) from our assumption that H∞(X) ≥
α. To conclude the claim we compute:

H̃∞(X|E |Y|E) ≥ H∞(X|E , Y|E)− log |sup(Y|E)| (12)

= H∞(X|E)− log |sup(Y|E)| (13)

≥ α− log
1

1− Pr[E]
− c = α− c− log

1

1− Pr[E]
. (14)

Eq. (12) follows from Lemma 2 and (13) from the fact that Y|E is computed as

a function from X|E . Inequality (14) follows from (11) and the fact that the size

of sup(Y|E) is at most c. The latter follows from the definition of the event E =

E′
m−1 which in turn implies that |sup(Y|E)| = |sup(Y|E′

m−1
)| = |sup(Y (m−1)

|Em−1
)| =

|sup(Y (m))| ≤ 2c, which concludes the proof. 
�

The above two claims finish the proof. 
�

We now turn to state and prove the Chaining Lemma.

Lemma 5 (The Chaining Lemma). For n ∈ N>1 let α, β, t, ε be some pa-
rameters where t ∈ N, 0 < α ≤ n, β > 0, ε ∈ (0, 1] and t ≤ α−β

β+2
√
n
. Let X be

some set of size |X | = 2n and let X(0) be a (α, n)-good distribution over X . For
i ∈ [t] let Ti : X → X be arbitrary functions and X(i) = Ti(X

(i−1)). There exists
an event E such that:
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(i) If Pr [E] > 0, for all i ∈ [t], H∞(X
(i)
|E ) ≥ β.

(ii) If Pr
[
E
]
≥ ε there exists an index j ∈ [t] such that

H̃∞(X
(j−1)

|E |X(j)

|E ) ≥ β − log
t

ε
.

Proof. Consider the chain of random variables X(0) T1−→ X(1) T2−→ . . .
Tt−→ X(t).

Given a pair of random variables in the chain, we refer to X(i−1) as the “source
distribution” and to X(i) as the “target distribution”. The main idea is to con-
sider different cases depending on the characteristics of the target distribution.
In case the min-entropy of X(i) is high enough to start with, we get immediately
property (i) of the statement and we can immediately move to the next pair
of random variables in the chain. In case the min-entropy of X(i) is small, we
further consider two different sub-cases depending on some bound on the sup-
port of the variable. If the support of X(i) happens to be “small”, intuitively we
can condition on the target distribution since this cannot reveal much about the
source; roughly this implies property (ii) of the statement. On the other hand,
if the support happens to be not small enough, we are not in a position which
allows us to condition on X(i).

In the latter case, we will invoke Lemma 4. Roughly this guarantees that there
exists some event such that, conditioned on this event happening, the target lies
in a large “flat” area and the conditional distribution has high min-entropy; this
yields property (i) of the statement. If instead the event does not happen, then
conditioning on the event not happening we get a “restricted” distribution with
small enough support which leads again to property (ii) of the statement.

Whenever we are in those cases where (possibly conditioning on some event)
the target distribution has high min-entropy, we move forward in the chain
by considering X(i) as the source and X(i+1) as the target. However, when
we reach a situation where we can “reveal” the target distribution we do not
proceed further, since the remaining values can be computed as a deterministic
function of the revealed distribution and, as such, do not constrain the min-
entropy further. We now proceed with the formal proof.

Similar to Lemma 4, we will define the event E depending on events {Ei, E
′
i,

E′′
i }i∈[t] which we will specify later. These events partition the probability space

as follows (cf. Figure 1):

E′
i :=

i∧

j=1

Ej = Ei ∧ E′
i−1 E′′

i := Ei ∧

⎛

⎝
i−1∧

j=1

Ej

⎞

⎠ = Ei ∧ E′
i−1. (15)

We will rely on some properties of the above partition. In particular, note that
for all i ∈ [t] we have

E′
i ∨E′′

i = E′
i−1 E′

i ∧ E′′
i = ∅. (16)

For all i ∈ [t+ 1], define the following parameters:

si = (t− i+ 1)(β + 2
√
n) (17)

αi−1 = β + si. (18)
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Note that using the bound on t from the statement of the lemma, we get α ≥ α0;
moreover, it is easy to verify that αi−1 > si >

√
n for all i ∈ [t].

In the next claim we construct the events {Ei, E
′
i, E

′′
i }i∈[t].

Claim. For all i = 0, . . . , t − 1, there exist events E′
i+1 and E′′

i+1 (as given in
Eq. (16)) such that the following hold:

(*) If Pr
[
E′

i+1

]
> 0, H∞(X

(i+1)
|E′

i+1
) ≥ αi+1.

(**) If Pr
[
E′′

i+1

]
≥ ε′, H̃∞(X

(i)
|E′′

i+1
|X(i+1)

|E′′
i+1

) ≥ β − log 1
ε′ . where 0 < ε′ ≤ 1.

Proof. We prove the claim by induction.

Base Case: In this case we let E0 denote the whole probability space and thus

Pr [E0] = 1. Note that H∞(X
(0)
|E0

) = H∞(X(0)) = α ≥ α0. The rest of the proof

for the base case is almost the same to that of the inductive step except the use
of the above property instead of the induction hypothesis. Therefore we only
prove the induction step in detail here. The proof details for the base case are a
straightforward adaptation, with some notational changes.

Induction Step: The following holds by the induction hypothesis :

(*) If Pr [E′
i] > 0, then H∞(X

(i)
|E′

i
) ≥ αi.

(**) If Pr [E′′
i ] ≥ ε′ then, H̃∞(X

(i−1)
|E′′

i
|X(i)

|E′′
i
) ≥ β − log 1

ε′ where 0 < ε′ ≤ 1.

By construction of the events, E′
i is partitioned into two sub-events E′

i+1 and
E′′

i+1 (cf. Eq. 16). From the statement of the claim we observe that, since we
are assuming Pr

[
E′

i+1

]
> 0 in (*) and Pr

[
E′′

i+1

]
≥ ε′ > 0 in (**), in both cases

we have Pr [E′
i] > 0. Hence, property (*) from the induction hypothesis holds:

H∞(X
(i)
|E′

i
) ≥ αi, which we use to prove the inductive step. We will define the

events E′
i+1 and E′′

i+1 differently depending on several (complete) cases. For each
of these cases we will show that property (*) and (**) hold.

Suppose first that H∞(X
(i+1)
|E′

i
) ≥ αi+1. In this case we define E′

i+1 to be

E′
i, which implies E′′

i+1 = ∅ by Eq. (16). Moreover property (*) holds since, if

Pr
[
E′

i+1

]
> 0, then Pr [E′

i] > 0 and H∞(X
(i+1)
|E′

i+1
) = H∞(X

(i+1)
|E′

i
) ≥ αi+1; as for

property (**) there is nothing to prove, since Pr
[
E′′

i+1

]
= 0 in this case.

Consider now the case that H∞(X
(i+1)
|E′

i
) < αi+1. Here we consider two sub-

cases, depending on the support size of X(i+1).

1. |sup(X(i+1)
|E′

i
)| ≤ 2si+1 . We define E′′

i+1 = E′
i, which implies E′

i+1 = ∅ by

Eq. (16). As for property (*) there is nothing to prove, since Pr
[
E′

i+1

]
=

0. To prove property (**) we observe that if Pr
[
E′′

i+1

]
≥ ε′ > 0, then
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Pr [E′
i] > 0. Hence,

H̃∞(X
(i)
|E′′

i+1
|X(i+1)

|E′′
i+1

) = H̃∞(X
(i)
|E′

i
|X(i+1)

|E′
i

) (19)

≥ H∞(X
(i)
|E′

i
, X

(i+1)
|E′

i
)− log(|sup(X(i+1)

|E′
i

)|) (20)

≥ αi − si+1 (21)

= β + si+1 − si+1 = β.

Eq. (19) follows as E′′
i+1 = E′

i. Eq. (20) follows from Lemma 2. Eq. (21)

follows from two facts: (i) X(i+1) is a deterministic function of X(i), which

means H∞(X
(i)
|E′

i
, X

(i+1)
|E′

i
) = H∞(X

(i)
|E′

i
) ≥ αi (plugging-in the value from

induction hypothesis), and (ii) |sup(X(i+1)
|E′

i
)| ≤ 2si+1 .

2. |sup(X(i+1)
|E′

i
)| > 2si+1 . By the induction hypothesis H∞(X

(i)
|E′

i
) ≥ αi; we now

invoke Lemma 4 on the distribution X
(i+1)
|E′

i
(recall that αi > si+1 >

√
n), to

obtain the event Ei+1 such that:

H∞(X
(i+1)
|E′

i∧Ei+1
) > si+1 − 2

√
n (22)

H̃∞(X
(i)

|E′
i∧Ei+1

|X(i+1)

|E′
i∧Ei+1

) > αi − si+1 − log
1

1− Pr [Ei+1]
. (23)

Note that by our definitions of the events E′
i, E

′′
i (cf. Eq. (15)), we have

E′
i ∧ Ei+1 = E′

i+1 and E′
i ∧ Ei+1 = E′′

i+1.
To prove (*) we consider that if Pr

[
E′

i+1

]
> 0, then Pr [E′

i] > 0 and
Pr [Ei+1] > 0. Plugging the values of αi and si+1 from Eq. (18) and (17)
into Eq. (22), we get

H∞(X
(i+1)
|E′

i+1
) > si+1 − 2

√
n

= (t− i)(β + 2
√
n)− 2

√
n

= β + (t− i− 1)(β + 2
√
n)

= β + si+2 = αi+1,

Similarly, to prove (**), we consider that if Pr
[
E′′

i+1

]
≥ ε′, then Pr [E′

i] ≥
ε′ > 0 and Pr

[
Ei+1

]
≥ ε′. Using Eq. (23), we obtain:

H̃∞(X
(i)
|E′′

i+1
|X(i+1)

|E′′
i+1

) > αi − si+1 − log
1

Pr
[
Ei+1

]

= β − log
1

Pr
[
Ei+1

]

≥ β − log
1

ε′
,

This concludes the proof of the claim. 
�
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We define the event E to be E = E′
t =

∧t
i=1 Ei =

∧t
i=1 E

′
i. It is easy to verify

that this implies E =
∨t

i=1 E
′′
i . We distinguish two cases:

– If Pr [E] > 0, by definition of E we get that Pr [E′
i] > 0 for all i ∈ [t]. In

particular, Pr [E′
t] > 0. Hence, H∞(X

(t)
|E ) = H∞(X

(t)
|E′

t
) ≥ αt = β, where the

last inequality follows from property (*) of the above Claim, using i = t− 1.

Also, we observe that for all i ∈ [t], H∞(X
(i−1)
|E ) ≥ H∞(X

(i)
|E ). This proves

property (i) of the lemma.
– If Pr

[
E
]
≥ ε, then we get

Pr

[
t∨

i=1

E′′
i

]

≥ ε. (24)

t∑

i=1

Pr [E′′
i ] ≥ ε. (25)

Eq. (24) follows from the definition of E and Eq. (25) follows applying union
bound. Clearly, from Eq. (25), there must exists some j such that Pr

[
E′′

j

]
≥

ε/t.
Hence, putting i = j − 1 and ε′ = ε/t in property (**) of the above Claim,
we get:

H̃∞(X
(j−1)
|E′′

j
|X(j)

|E′′
j
) ≥ β − log

t

ε
.

From the definition of E, E′′
j implies E and hence property (ii) of the lemma

follows.

�

4 Application to Tamper-Resilient Cryptography

We show that any cryptographic primitive where the secret key can be chosen
as a uniformly random string can be made secure in the BLT model of [20] by
a simple and efficient transformation. Our result therefore covers pseudorandom
functions, block ciphers, and many encryption and signature schemes. However,
the result holds in a restricted model of tampering: the adversary first selects an
arbitrary set of tampering functions of bounded size and, as he interacts with the
scheme, he must choose every tampering function from the set that was specified
initially. We call this the semi-adaptive BLT model. Our result holds only when
the set of functions is “small enough”.3

The basic intuition behind the construction using the Chaining Lemma is easy
to explain. We use a random stringX0 as secret key, and a universal hash function
h as public (and tamper proof) parameter. The construction then computes

3 In particular, the adversary can choose a “short enough” sequence of tampering
functions, from a set containing polynomially many such sequences.
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K0 = h(X0), and uses K0 as secret key for the original primitive. The intuitive
reason why one might hope this would work is as follows: each tampering query
changes the key, so we get a chain of keys X0, X1, . . . , Xt where Xi = Ti(Xi−1)
for some tampering function Ti. Recall that the chaining lemma guarantees that
for such a chain, there exists an event E such that: (i) when E takes place then
all Xi have high min-entropy, and, by a suitable choice of h, all the hash values
K0 = h(X0),K1 = h(X1), . . . ,Kt = h(Xt) are statistically close to uniformly
and independently chosen keys; (ii) when E does not happen, for some index
j ∈ [t] we are able to reveal the value of Xj to the adversary as the Xi’s with
i < j still have high entropy, and hence hash to independent values. On the
other hand the Xi’s with i ≥ j are a deterministic function of Xj and hence the
tampering queries corresponding to any subsequent key can be simulated easily.

Due to its generality the above result suffers from two limitations. First, as
already mentioned above, the tampering has to satisfy a somewhat limited form
of adaptivity. Second, the number of tampering queries one can tolerate is up-
per bounded by the length n of the secret key. While this is true in general
for schemes without key update, for our general result the limitation is rather
strong. More concretely, with appropriately chosen parameters our transforma-
tion yields schemes that can tolerate up to O( 3

√
n) tampering queries. We discuss

the application in full detail in the full version of this paper [21].

Comparison with Faust et al. [26]. Very recently, Faust et al. [26] introduced
the concept of non-malleable key derivation which is similar in spirit to our
application of the Chaining Lemma. Intuitively a function h is a non-malleable
key derivation function if h(X) is close to uniform even given the output of h
applied to a related input T (X), as long as T (X) �= X . They show that a random
t-wise independent hash function already meets this property, and moreover that
such a function can be used to protect arbitrary cryptographic schemes (with a
uniform key) against “one-time” tampering attacks (i.e., the adversary is allowed
a single tampering query) albeit against a much bigger class of functions.4

We stress that the novelty of our result is in discovering the Chaining Lemma
rather than this application, which can be instead thought of as a new technique,
fundamentally different from that of [26], to achieve security in the BLT model.
We believe that the Chaining Lemma is interesting in its own right, and might
find more applications in cryptography in the future.
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Abstract. Recent results have shown the usefulness of tamper-proof
hardware tokens as a setup assumption for building UC-secure two-party
computation protocols, thus providing broad security guarantees and al-
lowing the use of such protocols as buildings blocks in the modular design
of complex cryptography protocols. All these works have in common that
they assume the tokens to be completely isolated from their creator, but
this is a strong assumption. In this work we investigate the feasibility of
cryptographic protocols in the setting where the isolation of the hardware
token is weakened.

We consider two cases: (1) the token can relay messages to its cre-
ator, or (2) the creator can send messages to the token after it is sent
to the receiver. We provide a detailed characterization for both settings,
presenting both impossibilities and information-theoretically secure so-
lutions.

Keywords: Hardware Tokens, Isolation Assumption, UC security, One-
Time Memory, Oblivious Transfer.

1 Introduction

Tamper-proof hardware tokens are a valuable resource for designing crypto-
graphic protocols. It was shown in a series of recent papers that tamper-proof
hardware tokens can be used as a cryptographic setup assumption to obtain Uni-
versally Composable (UC) [5] secure two-party computation protocols
[20,22,18,17,13], thus achieving solutions that are secure according to one of
the most stringent cryptographic models and can be used as buildings blocks
in the modular design of complex cryptography protocols. Döttling et al. [13]
showed that even a single tamper-proof hardware token generated by one of the
mutually distrusting parties is enough to obtain information-theoretical security
in the UC framework.

All these works have in common that the tokens are assumed to be completely
isolated from their creator. In light of recent events this assumption becomes
questionable at the least, apart from the fact that the tokens could contain
internal clocks, which can be exploited in conjunction with the activation time to
send information into the device (or to make the abort behavior dependent on the

c© Springer International Publishing Switzerland 2015
A. Lehmann and S. Wolf (Eds.): ICITS 2015, LNCS 9063, pp. 197–213, 2015.
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activation time, which is not modeled in the UC framework). We highlight that
this problem lies skew to leakage and side-channel attacks, e.g. [2,26], where a
malicious token receiver tries to extract some of the contents of the token, i.e. the
tamper-resilience assumption is weakened. In contrast, we consider a weakened
isolation assumption. A similar scenario was studied by Damg̊ard et al. [11],
but only for a bandwidth-restricted channel and computational security. They
showed that a partial physical separation of parties, e.g. in a token with a low-
bandwidth covert channel, allows to perform UC-secure multiparty computation
under standard cryptographic assumptions.

We consider an unrestricted channel and information-theoretical security.
In this scenario, communication in both directions between the token and its
creator without any restriction obviously renders the token useless as a setup
assumption. Thus, there remain two different kinds of communication that can
be considered to weaken the isolation assumption: either the tokens’ creator can
send messages to the tokens, or the tokens can send messages to their creator.
While we deem the first case to be more realistic, we consider both cases. We
emphasize that these one-way channels are available only for malicious parties
and thus are not used by the honest parties during the protocol execution. This
scenario is not directly comparable with the one by Damg̊ard et al. [11], since
here a broadband communication channel is available, but it is only one-way.
This leads to the following question:

Is it possible to obtain UC-secure protocols even if there exists a broadband
one-way communication channel between the tokens and their creator?

In this work, we provide a broad characterization from a feasibility standpoint
for both malicious incoming and outgoing communication between the tokens
and their creator. For our solutions, we only require that one party can create
hardware tokens. We thus call this party Goliath, while the receiver of the token
is called David and cannot create tokens of its own.

In more detail, we show that with one-way channels into the tokens, it is
possible to basically use the One-TimeMemory (OTM) protocol using two tokens
of Döttling et al. [13] to obtain an information-theoretically UC-secure OTM
with aborts (i.e., a malicious token creator can change the abort behavior of the
token at runtime, which is unavoidable if one-way channels into the tokens are
available) and we also provide a computationally UC-secure OTM protocol from
a single token. Additionally, it is possible to obtain information-theoretically
UC-secure Oblivious Transfer (OT) from a single hardware token. We prove an
impossibility result for unconditionally secure OTM with a single token.

Concerning one-way channels from the tokens to their creator, we show that
it is impossible to obtain even information-theoretically secure OT. We provide
an information-theoretically UC-secure commitment scheme, which can then be
used to obtain a computationally UC-secure OTM protocol with known tech-
niques [25].

Further Related Work. Apart from the model of tamper-proof hardware as
formalized by Katz [20], also weaker models such as resettable hardware tokens
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were proposed, e.g. [18]. With resettable hardware, it is not possible to obtain
information-theoretically secure oblivious transfer [17], while commitments are
still possible [17,12]. Thus, the main focus of this research direction are efficient
protocols based on computational assumptions while minimizing the amount
of communication and tokens [6,18,21,2,14,8]. Further results about hardware
tokens can be founded in [7,3,9,19,15,1].

Another UC hardware setup assumption are physically uncloneable functions
(PUFs) [24,4,23], which have recently gained increasing interest. It was shown
that PUFs can be used to achieve oblivious transfer [27] and UC-secure commit-
ments [12]. However, if the PUFs can be created maliciously, oblivious transfer
is impossible [10].

2 Preliminaries

2.1 Notation

We use standard information-theoretic measures: by H(·) we denote Shannon
entropy, H(·|·) denotes conditional entropy and I(·; ·) denotes the mutual infor-
mation. Let in the following λ denote a security parameter. We use the cryp-
tographic standard notions of negligible functions, as well as computational/
statistical/perfect indistinguishability.

2.2 Model

We state and prove our results in the Universal Composability (UC) framework of
Canetti [5] that allows for arbitrary composition of protocols. In this framework
an ideal functionality F that captures the desired security requirements has to be
modeled. A protocol Π that is supposed to instantiate F runs in the real world,
where an adversary A can corrupt protocol parties. To prove the UC-security of
Π , it has to be shown that there exists a simulator S that only interacts with
the ideal functionality and simulates the behavior of any A in such a way that
any environment Z that is plugged either into the real protocol or the simulated
protocol cannot distinguish the real protocol run of Π from a simulated one.1

For our results we assume static corruption, i.e. the adversary cannot adaptively
corrupt protocol parties.

Target Functionalities. Ideally one would like to use tamper-proof hardware
tokens to realize One-Time Memory (OTM) [16], as in the case where the token
is modeled as being completely isolated from its creator [13]. See Fig. 1 for the
OTM functionality definition. This primitive resembles oblivious transfer, but
the receiver can make his choice at any point in time and the sender is not
notified about this event. OTM allows to build One-Time Programs [16,18].

1 In the case of computational security we allow the simulator to be expected polyno-
mial time.
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Functionality FOTM

Parametrized by a security parameter λ. The variable Fstate is initialized with wait.

Creation. Upon receiving a message (create, sid, G,D, s0, s1) from G verify if Fstate =
wait and s0, s1 ∈ {0, 1}λ; else abort. Next, set Fstate ← sent, store (sid,G,D, s0, s1) and
send the message (created, sid, G,D) to the adversary.

Deliver. Upon receiving a message (deliver, sid, G,D) from the adversary, verify that
Fstate = sent; else abort. Next, set Fstate ← ready, and send (ready, sid, G,D) to D.

Choice. Upon receiving a message (choice, sid, G,D, c) from D check if Fstate = ready;
else abort. Next, set Fstate ← dead and send (output, sid, G,D, sc) to D.

Fig. 1. The One-Time Memory functionality

Impossibility of Realizing OTMs. Note that in the hybrid execution with a token
and a channel into the token, a dishonest sender G has the ability to send an
abortion message to T at any time, thus changing its abort behavior. In the ideal
execution on the other hand, once the OTM functionality goes to the ready state,
it is not possible to change its output/abort behavior anymore. Therefore it is
not possible to realize the OTM functionality based on tokens that can receive
communication from a malicious G.

OTM with Abort. Given the above fact that online changes in the abort behav-
ior are inherent in the setting with one-way communication into the token, we
introduce an OTM functionality with abort, see Fig. 2. For such a functionality,
there is an initial delivering phase after which the adversary can only let the
execution proceed correctly or switch off the functionality whenever he wants
(independent of David inputs); but he cannot change the values stored in the
functionality.

3 The Case of Incoming Communication

We first show that the existing solution of Döttling, Kraschewski and Müller-
Quade [13] for OTM with 2 tokens can be modified to UC-realize OTM with
abort. Then we show that using a single token, it is impossible to obtain an
information-theoretically secure OTM protocol, if Goliath can send messages to
the token. We sketch how a information-theoretically UC-secure OT protocol
from a single token can be obtained and give a construction of a compuationally
UC-secure OTM protocol from a single hardware token.

The formalization of the ideal functionality for stateful tamper-proof hard-
ware tokens in this section uses a wrapper functionality as in the previous
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Functionality FOTM-with-Abort

Parametrized by a security parameter λ. The variable Fstate is initialized with wait
and Fabort with �. If any message other than (switch on, sid, G,D) is received while
Fabort = ⊥, the functionality aborts.

Creation. Upon receiving a message (create, sid, G,D, s0, s1) from G verify if Fstate =
wait and s0, s1 ∈ {0, 1}λ; else abort. Next, set Fstate ← sent, store (sid,G,D, s0, s1)
and send the message (created, sid, G,D) to the adversary.

Overwrite. Upon receiving a message (overwrite, sid, G,D, s′0, s
′
1) from A verify if

Fstate = sent and s′0, s
′
1 ∈ {0, 1}λ; else abort. Set s0 ← s′0 ; s1 ← s′1.

Deliver. Upon receiving a message (deliver, sid, G,D) from the adversary, verify that
Fstate = sent; else abort. Next, set Fstate ← ready, and send (ready, sid, G,D) to D.

Choice. Upon receiving a message (choice, sid, G,D, c) from D check if Fstate = ready;
else abort. Next, set Fstate ← dead and send (output, sid, G,D, sc) to D.

Switch Off. Upon receiving a message (switch off, sid, G,D) from A set Fabort ← ⊥.

Switch On. Upon receiving a message (switch on, sid, G,D) from A, set Fabort ← �.

Fig. 2. The One-Time Memory with Abort functionality

works [20,22,13], but as one-way communication from the token issuer to the
token is now allowed, the wrapper functionality needs to be modified to capture
this fact. A sender G (Goliath) provides as input to F stateful

wrap-owc a deterministic
Turing machine T (the token). Note that stateful tokens can be hard-coded with
sufficiently long randomness tapes. The receiver D (David) can query F stateful

wrap-owc

to run T with inputs of his choice and receives the output produced by the token.
The current state of T is stored between consecutive queries. In addition, and
in order to capture the one-way communication property, we add the possibility
of Goliath sending messages to the token, in which case T is run on the received
string and changes to a new state. The complete description of the functionality
is shown in Fig. 3. This model captures the fact that on the one hand the token
cannot send messages to its creator, and on the other hand David cannot access
the code or the internal state of T .

3.1 Unconditionally Secure OTM with Two Tokens

Our solution is to use the non-interactive version of the protocol due to Döttling,
Kraschewski and Müller-Quade [13]. The only function of Goliath in this protocol
is creating the two tokens and sending them to David. David, on the other
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Functionality Fstateful
wrap-owc

Parametrized by a security parameter λ and a polynomial upper bound on the runtime
t(·). The variable Fstate is initialized with wait.

Creation. Upon receiving a message (create, sid, G,D, T ) from G where T is a deter-
ministic Turing machine, verify if Fstate = wait; else ignore the input. Next, store (sid,
G, D, T ,Tstate) where Tstate is the initial state of T , set Fstate ← sent and send the
message (created, sid, G,D) to the adversary.

Deliver. Upon receiving a message (deliver, sid, G,D) from the adversary, verify that
Fstate = sent; else ignore the input. Next, set Fstate ← ready, and send (ready, sid,
G,D) to D.

Execution. Upon receiving a message (execute, sid, G,D, x) from D where x is an
input, check if Fstate = ready and if it is, then run T (Tstate, x) for at most t(λ) steps.
Save the new state of T in Tstate, read the output y from its output tape and send
(output, sid, G,D, y) to D.

Incoming Communication. Upon receiving a message (communication, sid, G,D,m)
from A, run T (Tstate,m) for at most t(λ) steps. Save the new state of T .

Fig. 3. The wrapper functionality allowing one-way communication

hand, interacts with both tokens in order to obtain his output and to check
the correctness of the protocol execution. Intuitively, one of the tokens is used
to generate a commitment to the input values and to send the input values
encrypted using one-time pads. The second token only contains a random affine
function which can be evaluated only a single time and allows David to recover
the one-time pad key corresponding to one of the inputs. The specifications of the
tokens can be found in Fig. 4 and Fig. 5. In the protocol David initially interacts
with the token which has the inputs in order to obtain the commitments and
the ciphertexts. After this point David considers the OTM as delivered. Then,
whenever he wants to choose the input to be received, he simply queries the
token that has the affine function on the appropriate input and obtains the one-
time pad that he needs in order to recover his desired value. The description of
the protocol is presented in Fig. 6.

The fact that the protocol securely realizes FOTM-with-Abort follows from a
straightforward modification of the original security proof by Döttling et al. [13],
which considered the same protocol but with isolated tokens and proved that it
realizes FOTM (i.e., without aborts) in such scenario.

Theorem 1. In the model where a malicious Goliath is allowed to send mes-
sages to the token, the protocol presented in Fig. 6 UC-realizes the functionality
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Token - Random Values TRandom

Parametrized by a security parameter λ. The token is hardwired with a random vector

a
$← F

2λ
2 and a random matrix B

$← F
2λ×2λ
2 . It is initialized with state Tstate = ready.

Output. Upon receiving a message (choice, z) from D check if Tstate = ready; else
abort. Next, set Tstate ← dead, compute V ← a⊗z+B and send the message (output,
V ) to D.

Fig. 4. The first token, which only contains random values

FOTM-with-Abort with statistical security against a corrupted Goliath and perfect
security against a corrupted David.

Proof. (Sketch) The correctness as well as the security against a corrupted David
follow directly from Döttling’s et al. proof of security. In the case of the security
against a corrupted Goliath, note that the OTM is considered delivered at the
point in which David has received (G, ã, B̃, s̃0, s̃1) from TInputs. From that point
on, TInputs does not participate in the protocol anymore and it cannot send mes-
sages to the outside world. Hence neither Goliath nor TRandom know the matrix C
which is used for the commitments, so they can cheat in the commitment’s opening
phase only with negligible probability. Both of them also do not know the value h,
which is necessary together with z in order to determine David’s input x. So the
proof proceeds as in [13], the only difference here is that Goliath can still sendmes-
sages to TRandom at any point, and thus he can modify the abort behavior. This
can be dealt with by running Döttling’s et al. procedure to verify whether the to-
ken is going to abort or not (i.e., running a copy of the token in its current state
with random inputs) after each incoming message from Goliath to the token. If
the simulator notices that the abort behavior changed, he can make the appropri-
ate change in FOTM-with-Abort by using the Switch Off/Switch On commands.

Sequential OTM with Abort. As done by Döttling et al. [13] for the OTM func-
tionality, it is also possible to define a sequential version of the OTM-with-Abort
functionality where there are many pairs of Goliath’s inputs (i.e., there are mul-
tiple stages) which can only be queried sequentially by David. The function-
ality only needs to be modified to take pairs of inputs which can be queried
sequentially by David and to allow an adversary to specify which stages are
active/inactive at any time (if an inactive stage is queried by David, then the
functionality aborts). In this case the two token solution of Döttling et al. [13]
for sequential OTMs can be used. The security proof would be a straightforward
modification of Döttling et al.’s proof in the same line as done above.
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Token - Inputs TInputs

Parametrized by a security parameter λ. The token is initialized with Goliath’s inputs
s0, s1, and the vector a and matrix B that are used by TRandom. It is initialized in
state Tstate = ready.

Matrix Choice. Upon receiving a message (matrix choice, C) from D check if
Tstate = ready and C ∈ F

λ×2λ
2 ; else abort. Next, compute a matrix G ∈ F

λ×2λ
2 that is

complementary to C (i.e., G is determined by λ vectors of length 2λ which are linearly
independent and G spans a subspace of the kernel of C), and also compute ã ← Ca,
B̃ ← CB. Set Tstate ← committed and send the message (commitment, G, ã, B̃) to D.

Ciphertexts. Upon receiving a message (vector choice, h) from D check if Tstate =
committed and h ∈ F

2λ
2 \ {0}; else abort. Next, compute s̃0 ← s0 + GBh and s̃1 ←

s1 +GBh+Ga, set Tstate ← dead and send the message (output, s̃0, s̃1) to D.

Fig. 5. The second token, which stores Goliath’s inputs

3.2 Impossibility of Unconditionally Secure OTM from a Single
Token

Lemma 2. Assume that there is only one token and that a malicious token is
not computationally bounded. If a malicious Goliath is allowed to send messages
to the token, then there is no protocol Π that realizes OTM with information-
theoretic security from this single token.

Proof. For the sake of contradiction assume that a correct and information-
theoretically secure OTM protocol Π from a single stateful token exists. Assume

that the parties’ inputs are chosen as s0, s1
$← {0, 1}λ and c

$← {0, 1}. The
sender’s privacy of the OTM protocol should hold, i.e.

I(viewD; s1−c) ≤ ε ⇔ H(s1−c)−H(s1−c |viewD) ≤ ε

⇔ H(s1−c |viewD) ≥ λ− ε,

where viewD is David’s view of the protocol execution and ε is a function that
is negligible in the security parameter.

By definition of the OTM functionality David can choose his input c at any
time after he receives the token and Goliath should not learn when David queried
the OTM functionality. So David can choose his input c at a point in the future
far after receiving the token, when all initial communication between the parties
is already finished, and then he interacts with the token to receive sc. But then,
at the moment right before David’s choice c is made, its entropy is still 1 from
the point of view of all parties. Therefore, due to the sender’s privacy, at this
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Protocol

Parametrized by a security parameter λ.

Deliver. D waits until G send the tokens TRandom and TInputs. Then he chooses a
random matrix C ∈ F

λ×2λ
2 and sends the message (matrix choice, C) to TInputs in

order to get the answer (commitment, G, ã, B̃). After that, D picks a random vector
h ∈ F

2λ
2 \ {0} and sends the message (vector choice, h) to TInputs in order to get the

output (output, s̃0, s̃1).

Choice Phase. When D gets his input c ∈ F2, he chooses z
$← F

2λ
2 such that zTh = c

and sends the message (choice, z) to TRandom to get the output (output, V ). Then D
checks if CV = ãzT + B̃. If it is not, D aborts; otherwise, he outputs sc = s̃c +GV h.

Fig. 6. The unconditionally secure protocol that realizes FOTM-with-Abort

point it should hold that

H(s0 |view′
D) ≥ λ− ε

and
H(s1 |view′

D) ≥ λ− ε,

where view′
D is David’s view of the protocol execution until this point. But if a

malicious Goliath is allowed to send messages to the token, he can forward his
complete view to the token. The token then gets to know all protocol interactions
so far and due to the correctness of the OTM protocol (i.e., it should work for
any pair of inputs in {0, 1}λ) he is able, for almost any s′c ∈ {0, 1}λ, to find a
strategy to follow for the rest of the protocol that makes David accept s′c. Hence
the values s0 and s1 are not fixed up to the point when David inputs c. But in
the OTM functionality the values s0 and s1 are fixed once it is sent, and thus
we get a contradiction.

3.3 Unconditionally Secure OT with a Single Token

Döttling et al. [13] also presented an unconditionally secure solution with one
token only, in which the interactions which are performed between David and
TInputs in the previously described protocol are instead performed between David
and Goliath in an initial interactive phase that is used to send the commitments
and the ciphertexts. Note that such a version of the protocol would not be
secure in the setting where one-way communication is allowed into the token
since Goliath could simply forward the matrix C to TRandom, which would then
be able to open the commitments to any value and thus be able to change the
outputs at any time. But we should mention that it is possible to obtain an



206 R. Dowsley, J. Müller-Quade, and T. Nilges

Token T

Parametrized by a security parameter λ. The token is hardwired with the shares
(vi,0, vi,1) for i = 1, . . . , λ, the inputs s0, s1 and Goliath’s public key pk. It is initialized
with state Tstate = ready and j = 0.

Message Commitment. Upon receiving a message (challenge, kj) from D check if
Tstate = ready and kj is a bit; else abort Set j ← j + 1. If j = λ, then set Tstate ←
message committed. Send the message (message commitment, vj,kj ) to D.

Inputs Commitment. Upon receiving a message (commit, crs, σ) from D check if
Tstate = message committed and if σ is a valid signature of G on crs; else abort. Set
Tstate ← inputs committed. Commit to the values s0, s1 using a computationally UC-
secure commitment protocol that uses the common reference string crs and send the
commitments to D. Let d0, d1 denote the information to open the commitments.

Output. Upon receiving the message output from D check if Tstate =
inputs committed; else abort. Next, set Tstate ← dead and execute with D a com-
putationally UC-secure oblivious transfer protocol using the common reference string
crs and with inputs (s0‖d0, s1‖d1).

Fig. 7. The token for a computationally secure OTM protocol with a single token

oblivious transfer protocol with only one token by letting the single token act
like TInputs in the above protocol and letting the interactions between David and
TRandom be replaced by identical interactions between David and Goliath. The
proof of security would follow in the same line as before since Goliath would
never get to know C and h. Note that the drawback of having to know the OT
inputs before sending the token can be easily overcome by performing the OTs
with random inputs and derandomizing them afterwards.

3.4 Computationally Secure OTM from a Single Token

If one considers the scenario where only one token is available, it is possible
to obtain a protocol that realizes FOTM-with-Abort with computational security.
The idea is to compute as an initial step (i.e. during the delivery phase) the
commitment functionality by using the token and interactions between Goliath
and David. With access to this commitment functionality it is possible to obtain
a common reference string between David and the token2, which in turn allows to
run a computationally secure UC-commitment protocol between them in order

2 The common reference string is actually obtained by Goliath and David, but can be
forwarded from Goliath to the token via David by using a digital signature to ensure
that the value that the token obtains is exactly the same one that Goliath sent.
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Protocol

Parametrized by a security parameter λ.

Deliver. G generates a pair of signing sk and public pk keys for a signature scheme.

Then he picks a random message m′ $← F
λ
2 and random vectors vi,0

$← F
λ
2 for i =

1, . . . , λ and sets vi,1 = m′ − vi,0. He creates the token T (described in Fig. 7) with
the hardwired vectors (vi,0, vi,1), s0, s1 and pk, and sends it to D. Upon receiving the
token T , D queries it with random bits ki for i = 1, . . . , λ in order to get vi,ki . D picks

a random message m′′ $← F
λ
2 and sends it to G. Then G opens the commitment to m′ by

sending all the shares (vi,0, vi,1) to D. D checks if m′ = vi,0 + vi,1 for all i = 1, . . . , λ,
aborting the protocol if this is not the case. Both G and D use m = m′ + m′′ to
generate a common reference string crs. G signs crs with his signing key sk and sends
the signature σ to D. D sends crs and σ to T in order to receive the commitments to
s0 and s1.

Choice Phase. When D gets his input c ∈ F2, he sends the message output to T and
executes a computationally UC-secure oblivious transfer protocol with the token using
the common reference string crs and with input c in order to get the output sc‖dc,
where ‖ denotes concatenation. D checks the correctness of sc using the commitment
that he received previously and the opening information dc.

Fig. 8. The computationally secure OTM protocol using one token

to commit to the input values. After receiving from the token the commitments
to the input values, David considers the delivery complete, and whenever he
wants to get his output he just executes an oblivious transfer protocol with
the token with his desired choice bit as input. He checks the correctness of the
output using the commitment. The crucial point for the simulation to go through
is that the simulator should be able to extract the first commitment before its
opening, so that he can choose the common reference string as he wishes. In
order to accomplish that in face of a potentially malicious token which possibly
only correctly answers queries to certain values, we will commit to a message m
by using λ pairs of random shares (vi,0, vi,1) where for each pair vi,0 + vi,1 = m.
During the committing phase, D interacts with the token and can choose to
receive either vi,0 or vi,1 for each pair. To open the commitment, G reveals all
the shares. The specification of the token can be found in Fig. 7 and of the
protocol in Fig. 8.

Theorem 3. In the model where a malicious Goliath is allowed to send mes-
sages to the token, the protocol presented in Fig. 8 UC-realizes the functionality
FOTM-with-Abort with computational security.
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Proof. The correctness of the protocol can be trivially verified. The simulation
for the cases that both parties are corrupted or no parties are corrupted are
trivial. We describe below how the simulation proceeds in the other cases.

Corrupted Sender: If Goliath is corrupted (and thus also the token), the simu-
lator will simulate an interaction of the protocol with the adversary and has to
extract both s0 and s1 from this interaction in order to give them as input for
the OTM functionality. The main reason to do this is that the simulator should
be able to extract the value m′ before sending m′′, so that he can choose the
common reference string crs as he wishes, thus being able to create a trapdoor
to extract s0 and s1 from the committed values.

We have that only Goliath can program the token, so the environment ma-
chine will provide the code to Goliath (and hence to the simulator). To extract
the value m′ the simulator does the following. When the commitment step hap-
pens, whenever David sends a valid message (challenge, kj) to receive a share
ṽj,kj , the simulator first executes the token with the input 1− kj , obtaining an
answer ṽj,1−kj , and then resets the token to the point before this query and
executes the token with input kj to obtain ṽj,kj and forward it to David. Let
m̃′

j = ṽj,0 + ṽj,1. After all the λ challenges are done, the simulator fixes m̃′ as
the value that appeared more often in the tuple (m̃′

1, . . . , m̃
′
λ). He then chooses

m′′ = m− m̃′ for any m he wants. Lets now analyze this extraction procedure.
Let (v̂j,0, v̂j,1) denote the values that Goliath reveals in the opening phase. Note
that the protocol will be aborted unless v̂j,0 + v̂j,1 = m̂′ for all j and some fixed
message m̂′. For any j, if v̂j,0 �= ṽj,0 and v̂j,1 �= ṽj,1 then the protocol will be
aborted anyway and we do not need to worry about the extracted value. If for
the majority of the j’s it holds that v̂j,0 = ṽj,0 and v̂j,1 = ṽj,1, then m̃′ = m̂′ and
thus the extraction procedure works properly. The remaining case is the one in
which at least half of the j’s are such that either v̂j,0 = ṽj,0 or v̂j,1 = ṽj,1, but
not both equalities hold. For each such j the probability that the opening check
succeeds for this pair of vectors is 1/2 since Goliath cannot get any information
from the token. Therefore if half or more of the j’s are in this condition, the
protocol will abort with overwhelming probability in the security parameter λ.

Given that the extraction worked properly, the simulator can create the com-
mon reference string as he wishes and so he is able to have a trapdoor to extract
the values s0 and s1 from the commitments and give them as input to the OTM
functionality. To learn the abort behavior, the simulator simulates, at onset and
also after each incoming message from Goliath to the token, a choice phase ex-
ecution between David and the token. The simulator can then use the Switch
Off/Switch On commands to adapt FOTM-with-Abort’s abort behavior properly.

Corrupted Receiver: If David is corrupted, the simulator gets to know all David’s
challenges kj in the first commitment. Hence, after seeing m′′, he can choose any
m′ he wants (and thus any resultingm and crs) and appropriate shares (v̂j,0, v̂j,1)
that are correct from David’s point of view. By picking a common reference
string together with an appropriate trapdoor, the simulator can learn the choice
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bit c and query it to the functionality FOTM-with-Abort to learn sc. Using the
equivocability of the UC-commitment the simulator can find an appropriate
opening information dc and feed sc‖dc to David in the OT protocol.

Note that the above protocol can be trivially extended to the case of sequen-
tial OTMs.

4 The Case of Outgoing Communication

In the complementary problem, we consider tokens which have a one-way channel
that allow them to send messages to Goliath, but which cannot receive any
information from Goliath. In this scenario we would like to implement FOTM.
Note that in this case Goliath cannot control online the abort behavior of the
token. We first show an impossibility result for unconditionally secure protocols
and then present a computationally secure protocol using a single token.

4.1 Impossibility of Information-Theoretically Secure OT(M)

Lemma 4. If the tokens can send messages to Goliath, then there is no proto-
col Π that realizes OTM, or even oblivious transfer, with information-theoretic
security.

Proof. (Sketch) The basic idea is that the malicious tokens send their com-
plete view to Goliath after each interaction with David. Thus, independently
of whether Goliath or some token receive the last protocol message, the com-
bined view of Goliath and the tokens is available to a malicious Goliath. This
directly implies that an OT protocol with information-theoretical security is not
possible, because the whole model collapses to the two-party case in the stand-
alone setting. Either the complete transcript of the exchanged messages (which
is available to a malicious Goliath) uniquely determines the choice-bit c of David
or a malicious David can obtain both input bits (s0, s1), and in both cases the
oblivious transfer security is broken.

We remark that the crucial point here is that for oblivious transfer, it does
not matter at which time Goliath gets the complete view, i.e. it does not matter
whether some token or Goliath receive the last message. As soon as he learns
the choice bit, the protocol is broken. This argumentation, however, does not
rule out information-theoretically UC-secure commitments.

4.2 Unconditionally Secure Commitment with a Single Token

The idea here is to commit to a message m by using pairs of random shares
(vi,0, vi,1) such that for each pair vi,0 + vi,1 = m, the shares are known to both
the token and Goliath. The commitment phase is done by interactions between
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Token T

Parametrized by a security parameter λ. The token is hardwired with the shares
(vn,i,0, vn,i,1) for i = 1, . . . , 2λ, n = 1, . . . , λ and an opening key cok ∈ {0, 1}λ. It is
initialized with state Tstate = ready.

Shares Opening. Upon receiving a message (challenge, n1, . . . , nλ/2) from D check
if Tstate = ready and {n1, . . . , nλ/2} ⊂ {1, . . . , λ} are the specifications of the shares D
wants to be revealed; else abort. Set Tstate ← message committed. Send the message
(shares opening, (vnj ,i,0, vnj ,i,1)j=1,...,λ/2,i=1,...,2λ) to D.

Message Opening. Upon receiving a message (reveal message, cok) from D check if
Tstate = message committed and cok = cok; else abort. Set Tstate ← message opened.
Send the message (opening, (vn,i,0, vn,i,1)n=1,...,λ,i=1,...,2λ) to D.

Fig. 9. The token for the commitment protocol with outgoing communication

David and Goliath, where for each pair David can choose to receive either vi,0 or
vi,1. In order to guarantee the binding property, the opening phase is executed
between David and the token: David receives an opening key from Goliath and
forwards it to the token, who checks it and reveals all the shares to David. To
guarantee that on the one hand David cannot guess the opening key correctly
(and thus open the commitment whenever he wants), but on the other hand
the opening key does not contain enough information to allow the token to
learn David’s choices during the commitment phase (and thus successfully open
the commitment to any value), we have opening keys that are random λ-bit
strings and we use 2λ pairs of random shares. This commitment scheme is secure,
but not yet extractable. In order to get extractability, instead of committing to
the message itself, we first use the (λ, λ/2 + 1)-Shamir’s secret share scheme to
create λ shares (m1, . . . ,mλ) of the message, then commit to each share using the
above scheme (in the opening phase a single opening key of λ-bits is given to the
token in order to open all the commitments), but we additionally make David ask
the token to open λ/2 shares mn1 , . . .mnλ/2

(without sending the opening key)
already in the commitment phase, which do not reveal any information about
m. The specification of the token can be found in Fig. 9 and of the protocol in
Fig. 10.

Theorem 5. In the model where malicious tokens are allowed to send messages
to Goliath, the protocol presented in Fig. 10 UC-realizes the commitment func-
tionality FCOM with unconditional security.

The proof will be included in the full version.
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Commitment Protocol

Parametrized by a security parameter λ.

Commitment Phase. G generates an opening key cok
$← F

λ
2 . Then he generates λ

shares (m1, . . . ,mλ) of the message m using Shamir’s secret sharing scheme. For each

share mn, G picks random vectors vn,i,0
$← F

λ
2 for i = 1, . . . , 2λ and sets vn,i,1 =

mn − vn,i,0. He creates the token T (described in Fig. 9) with the hardwired cok and
vectors (vn,i,0, vn,i,1) for n = 1, . . . , λ, i = 1, . . . , 2λ, and sends it to D. Upon receiving
the token T , D queries G with random bits kn,i for n = 1, . . . , λ, i = 1, . . . , 2λ in order
to get vn,i,kn,i . Then D picks a random subset {n1, . . . , nλ/2} ⊂ {1, . . . , λ} and asks
the token to reveal (vnj ,i,0, vnj ,i,1) for j = 1, . . . , λ/2, i = 1, . . . , 2λ, which he checks
against the information he received from G; aborting if they do not match.

Opening Phase. G sends to D the message shares (m1, . . . ,mλ) and also the com-
mitment opening key cok, which D forwards to T in order to get all the shares
(vn,i,0, vn,i,1). D checks if mn = vn,i,0 + vn,i,1 for all i and n, aborting the proto-
col if this is not the case. Then he reconstructs m from the shares; aborting if m is
not uniquely determined by the shares.

Fig. 10. The unconditionally secure commitment protocol using one token for the case
of outgoing communication

4.3 Computationally Secure OTM with a Single Token

For the case of computational security, it is possible to obtain an OTM proto-
col which uses only one token. The approach is briefly described below. Using
the ideas from the previous section the parties can compute the commitment
functionality, which can then be used to establish a common reference string
between David and the token. The common reference string in turn can be used
to run computationally UC-secure commitments and OT protocols between the
token and David. The token commits to the input values using the computation-
ally UC-secure commitment protocol, at which point David considers the deliver
complete. Afterwards, whenever David wants to obtain his output, he engages
in a computationally UC-secure OT protocol with the token in order to get the
desired output and the commitment verification information.

Theorem 6. In the model where malicious tokens are allowed to send messages
to Goliath, there is a protocol using a single token which UC-realizes the func-
tionality FOTM with computational security.

The description of the token and the protocol, as well as the security proof
will be included in the full version.
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5 Conclusion

In this work we investigated a weaker isolation model for tamper-proof hardware,
namely one-way (broadband) communication channels are allowed either for
the token creator to the tokens or in the opposite direction. In the case that
the tokens can receive incoming communication from their creators we showed
the following: (1) there is an unconditionally secure One-Time Memory (OTM)
protocol using two tokens, (2) it is impossible to realize OTM with unconditional
security from a single token, (3) there is an unconditionally secure oblivious
transfer protocol using a single token, (4) there is a computationally secure
OTM protocol using a single token. In the case that the tokens can send outgoing
communication to their creator we showed the following: (1) it is impossible to
realize OTM or oblivious transfer with unconditional security, (2) there is an
unconditionally secure commitment protocol using a single token, (3) there is a
computationally secure OTM protocol using a single token.
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Feasibility and infeasibility of secure computation with malicious PUFs. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 405–420.
Springer, Heidelberg (2014)



Weakening the Isolation Assumption of Tamper-Proof Hardware Tokens 213

11. Damg̊ard, I., Nielsen, J.B., Wichs, D.: Universally composable multiparty com-
putation with partially isolated parties. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 315–331. Springer, Heidelberg (2009)

12. Damg̊ard, I., Scafuro, A.: Unconditionally secure and universally composable com-
mitments from physical assumptions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part II. LNCS, vol. 8270, pp. 100–119. Springer, Heidelberg (2013)
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Abstract. Limited View Adversary Codes (LV codes) provide protec-
tion against an adversary who has partial view of the communication
channel and can use this view to corrupt the sent codeword by con-
structing an adversarial error vector that will be added to the codeword.
For a codeword of length N , the adversary sees a subset of ρrN of the
codeword components and adds an adversarial error vector of weight
ρwN to the codeword. A δ-LV code ensures correct recovery of the sent
message with probability at least 1−δ. The motivation for studying these
codes is modelling adversarial corruptions in wireless communications as
well as networks that are partially controlled by an adversary, with the
aim of providing reliable communication.

This paper makes the following contributions. First we prove an up-
per bound on the rate of LV codes and extend it to a bound on the
rate of a code family. Second, we give an explicit construction of an LV
code family that achieves the bound (over large alphabets) for certain
range of ρr, and hence obtain the capacity of LV adversarial channels for
that range of ρr. The construction has efficient encoding and decoding.
Finally we show the relationship between LV codes and a cryptographic
primitive known as Reliable Message Transmission (RMT), and use this
relation to obtain a new bound on the transmission rate of 1-round δ-
RMT protocols, and construct an optimal 1-round RMT protocol family.
We discuss our results, give their relations to other works and primitives
including list decodable codes, and suggest directions for future research.

1 Introduction

Reliable communication in presence of adversarial error has been first considered
in Hamming model [14] of error where the adversary sees the whole codeword
and arbitrarily corrupts ρN symbols, where N is the length of the codeword and
ρ is a constant. More recently weaker adversarial models have been introduced
to capture real-life communication scenarios where the adversary’s access to
the codeword (read, write or both) is limited because of reasons such as their
inadequate transceiver in capturing and corrupting wireless communications [15],
or that the channel observation and corruption must be is realtime [5,17]. A
different line of work [13,19,25] models adversarial channels where the error is
generated by a computationally bounded process.

We consider a model of adversarial channel, called Limited View Adversary
Channel (LVAC), that was introduced in [23]. In this model the adversary is
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computationally unlimited but their access to the channel (codeword) is limited
as follows: for a codeword of length N , the adversary can adaptively choose ρrN
components to “see” and ρwN components to modify, and the modification is by
“adding” to the codeword an error vector of weight at most ρwN . Here (ρr, ρw)
is the pair of constants that specify the channel. A Limited View Adversary
Codes (LV code) provides reliable communication over an LVAC. There is no
shared secret key between the communicants.

The Hamming error model with error fraction ρ can be seen as an LVAC with
ρr = 11 and ρw = ρ. It is known that perfect (no error) unique decoding in
Hamming model is only possible when ρ ≤ 1−R

2 . Using Hamming error model
and allowing list decoding where the decoder outputs a list of possible codewords,
one can increase the fraction of correctable errors to ρ ≤ 1−R. LVAC can provide
unique decoding for error rate ρ ≤ 1−R as long as the fraction of the codeword
seen by the adversary is bounded. That is, by limiting the view of the adversary
the fraction of uniquely decodable error increases to the list decoding capacity
of the channel.

1.1 Motivations for This Work and Previous Results

A wireless adversary with a typical transceiver may not be able to “see” (cor-
rectly receive) the whole codeword or “write” (introduce strong noise) over the
whole codeword. Moreover, the adversary’s goal may in fact be to partially cor-
rupt the codeword so that the decoder outputs a different message. This would
be feasible by targeting and changing specific symbols in a codeword. By decou-
pling the read and the write sets of the adversary, one allows the adversary to
use powerful strategies for modifying codewords. Compared with the models in
[5,17], LV codes do not require causality and allow the adversary to select its read
and write sets freely subject to the bound on their sizes. LV adversary channels
and LV codes with deterministic and probabilistic encoding have been defined in
[23]. Decoding in both cases was deterministic. Two constructions have also been
presented: a deterministic construction with ρr = ρw = min(R− 1

2N , 1−R− 1
2N ),

and a probabilistic one with Sw = Sr and ρr = ρw < 1/2, where Sw and Sr are
the adversary’s write and read sets, respectively. These showed that unique de-
codability for ρw > 1−R

2 is possible if the view of the adversary (ρr) is limited.
However no upper bound on the rate of LV code was given and the relation
between ρr and ρw was left open. A motivation of this work is to study how the
adversary’s limited view of the codeword can affect its corruption power.

A second motivation for the study of LV codes is to establish a relationship be-
tween adversarial channels and RMT protocols. Reliable Message Transmission
(RMT) [9] is a well studied cryptographic primitives for reliable communication
in networks. In RMT setting Alice is connected to Bob through a set of N node
disjoint paths (wires) in a network such that a subset of paths is controlled by a
computationally unlimited adversary. RMT protocols provide reliability for com-
munication in the above setting. A δ-RMT protocol ensures that the probability

1 As we point out in Section 6 when ρr = 1, any general corruption can be modelled
as an additive error.
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that the receiver receives a message different from the sent one is bounded by δ.
In threshold RMT the adversary controls a subset of size t of the N wires. In the
rest of this paper we consider threshold RMT only and refer to it as simply RMT.
The relation between LV codes and 1-round RMT allows a unified treatment of
these two apparently different problems and relates and enriches the results in
the two settings.

1.2 Our Results

In this paper we consider (ρr, ρw)-LVACs and δ-LV codes that guarantee reliable
message transmission over these channels with probability at least 1− δ. We use
a definition of reliability that allows the decoder to output an incorrect message.
This is a weaker definition of reliability compared to the definition used in [23,24],
where the decoder only outputs a correct message or outputs an error symbol.
We have the following results.

1) Upper bound on the code rate. For an LV code for a (ρr, ρw)-LVAC and an
arbitrary message distribution Pr(M), we derive an upper bound on H(M) (See
Eq. (9)), and use it to obtain an upper bound on the rate of LV codes. Using
this bound for a code family results in an upper bound on the rate of a code
families, and so the the following bound on the capacity of (ρr, ρw)-LVACs,

C ≤ 1− ρw. (1)

The bound is similar to the list decoding capacity of codes in Hamming error
model. In LVAC model however, the decoder outputs a single codeword and
not a list of codewords. The bound holds independent of the value of ρr and
(intuitively) is the maximum possible rate because the corrupted fraction (ρw)
of a codeword is not recoverable.

2) An efficient LV code family that achieves the bound for ρr < 1 − ρw. We
construct an efficient probabilistic LV code family whose rate R achieves the
bound (Eq. 1) with equality, R = 1 − ρw, as the code length N approaches
infinity, assuming ρr + ρw < 1. The construction thus achieves the channel
capacity for ρr < 1− ρw. The capacity of (ρr, ρw)-LVAC for higher values of ρr
remains an open question.

The decoding algorithm of the code always outputs a correct message, or
outputs ⊥ and satisfies the stronger definition of reliability. The construction of
the efficient LV code family uses three building blocks: a list decodable code [7],
a message authentication code (referred to as authentication code) [26,10] and
a (0, δ)-Adversarial Wiretap Code ((0, δ)-AWTP code)[28].

A MAC is a symmetric key cryptographic primitive that allows detection
of message tampering. A MAC algorithm appends a cryptographic checksum
(tag) to the message. The verifier checks if a message and its appended tag are
consistent under the shared key.

To correct the ρw fraction of adversarial error, the message must be encoded
using a capacity achieving (ρw, �)- list decodable code. The decoder of this code
will output a list of possible codewords that will also include the codeword
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corresponding to the message. To be able to identify the correct codeword in the
output list, a MAC algorithm is used to generate a tag that will be appended to
the message before it is encoded using the list decodable code. The decoder can
check the message part of every codeword in the decoded list to see if it satisfies
the required structure. This however needs the key for the MAC algorithm to
be sent securely and reliably over the LVAC. This is done by encoding the key
using the AWTP code in [28]. A (0, δ)-AWTP code is a code that provides
perfect secrecy and δ-reliability for communication over LV adversary channels,
guaranteeing that the probability of decoding error is bounded by δ. The code
family that is used in our construction achieves the secrecy capacity of the AWTP
channel.

In summary, to encode a message block m, Alice (Sender) first authenticates
the message m using a random key block r to generate a tagged message (m, t),
which is then encoded using a list decodable code. The key block r is encoded by
an AWTP code. Finally the ith component of the LV code will consist of the ith

component of the AWTP code concatenated with the ith component of the list
decodable code. The receiver decodes the corrupted list decodable codeword and
generates a list of possible codewords; it also decodes the corrupted codeword of
the AWTP code to find the MAC key and uses it to identify the sent codeword
in the list. Details of the construction is in Section 5.

Note that the requirement ρr < 1−ρw is because of using a capacity achieving
(0, δ)-AWTP code. In [29] it is proved that non-zero rate for these codes implies
ρr + ρw < 1 and so for this construction we will have ρr < 1− ρw. It is however
an open question to find capacity of the channel when ρr > 1− ρw.

3) Relation with RMT. We show a one-to-one correspondence between sym-
metric 1-round RMTs and LV codes: a construction of an LV code gives a
construction of a symmetric 1-round RMT with the same δ, and vice versa.
Symmetric RMTs are RMTs with the added requirement that the set of trans-
missions on each wire is the same for all wires. All known RMTs are symmetric
and so we simply refer to these protocols as RMT protocols. Efficiency of RMT
protocols is measured by their transmission rate which is the number of transmit-
ted bits for a single message bit. We give a new lower bound on the transmission
rate of RMTs that holds for the more relaxed definition of reliability that is used
in this paper and allows the decoder to output incorrect messages also. Previous
lower bound on transmission rate of RMT was for the stronger definition of re-
liability where the decoder outputs only correct messages. The relation between
the bounds are discussed in Section 6.2.

We will also use the LV code construction in Section 5 to construct a family
of 1-RMT protocols when N = (2 + c)t, for which error probability δ decreases
exponentially with the number of wires. A comparison between this construction
and the only other existing construction of 1-round RMT protocol for N =
(2 + c)t is given in Table 2. The field size in the two constructions satisfy the
requirements of the underlying FRS codes and are of similar size.
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1.3 Related Work

Previous constructions of LV adversary channels and LV code are [23,24]. In
these constructions the decoder outputs either the correct message or an error
symbol. The probabilistic LV code construction in [24] is for restricted LV codes
where the set of components that the adversary reads is the same as the set that
they write to (modify); that is Sr = Sw. The deterministic LV code in [23] does
not have this restriction but the decoding algorithm is exponential in the code
length N . No rate bound was known for LV codes.

Adversarial channels have been widely studied in the literature [4], [18]. Our
model of adversarial channel has similarity with the model of binary oblivi-
ous channels in [16]. In oblivious channels the adversary sees the codeword and
depending on the level of obliviousness denoted by γ, uses a probability distribu-
tion, from a set π of 2(1−γ)n distributions, on possible error vectors e ∈ {0, 1}N .
Obliviousness in effect makes the errors less dependent on the sent codeword. A
similar effect is created in LV adversary channels where the adversary’s limited
view of a codeword prevents the adversary from distinguishing between code-
words that have the same values on the read set Sr.

Error detection against additive tampering has been considered in [3,1]. Using
LV adversary channel notations, the adversary’s capabilities in [3] is given by
ρr = 0, and ρw = 1. In [1] again ρr = 0 but some leakage is allowed. However
the amount of leakage is in terms of the randomness of encoding and so cannot
be described in terms of the ρr parameter. In both cases the goal is detection of
tampering. In LV codes however the goal is recovery of the message.

1.4 Organization

In Section 2, we recall list decodable codes, adversarial wiretap codes and mes-
sage authentication codes that provide the necessary building blocks of our con-
struction. In Section 3, we introduce LV adversary codes with the new definition
of reliability that allows decoder to output incorrect messages. In Section 4, we
give an upper bound on rate of limited view adversary codes and in Section 5,
describe a construction of LV adversary code family that achieves the bound for
a specific range of ρr. In section 6, we show the relation between limited view
adversary code and RMT and in Section 7, discuss our results, open problems
and future works.

2 Preliminaries

Notions. We use calligraphic symbols X to denote sets, Pr(X) to denote a prob-
ability distribution over X , and X to denote a random variable that takes val-
ues from X with probability Pr(X). The conditional probability of X given Y
is denote by Pr(X = x|Y = y). We use log(·) to show logarithm in base two.
Shannon entropy of a random variable X is H(X) = −

∑
x Pr(x) logPr(x), and

conditional entropy of X given a second random variable Y , and the mutual in-
formation between the two, are given by H(X |Y ) = −

∑
x,y Pr(x, y) logPr(x|y)
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and I(X,Y ) = H(X)−H(X |Y ), respectively. For a vector e, Hamming weight
of a vector e is denoted by be wt(e).

2.1 List Decodable Codes

A code CN of length N and rate R is (ρ, �List)-list decodable if the number
of codewords within distance ρN from a received word is at most �List. It is
assumed that �List is a polynomial function of the code length. It can be proved
[8,30] that for list decodable codes, ρ ≤ 1 − R. The limit 1 − R on the number
of correctable errors for a list decodable code, is twice the unique decoding
capability of the code (using Singleton bound) and is equal to the absolute limit
of reliable communication when R is the information rate.

Folded Reed-Solomon (FRS) codes are proposed by Guruswami et al. [12,11]
with explicit construction and forming a subset of Reed-Solomon codes that
achieve the list decoding capacity. FRS codes have efficient polynomial time
encoding and decoding algorithms. The list size of FRS codes however is expo-
nential in the code length N . A construction of FRS codes that uses subspace
evasive sets [7] has constant list size while maintaining efficient encoding and
decoding.

Lemma 1. (Theorem 2 [7]) There exists an explicit family of codes {CN ⊂
ΣN}N∈N such that for every ξ there exists N0 and codes of length N > N0

and rate R(CN ) over alphabet Σ = F

1
ξ2

q , that can list decode a fraction ρ =
1−R(CN)− ξ of errors in quadratic time. The list size is at most O((1/ξ)1/ξ).

2.2 Adversarial Wiretap Code (AWTP Code)

Adversarial wiretap codes [27] provide secure and reliable transmission from
Alice to Bob over a (ρr, ρw)-adversarial wiretap channel. The adversary in an
adversarial wiretap channel can read a fraction ρr of a codeword components,
and add error to a fraction ρw of the components. This adversary has the same
reading and writing capability of the adversary in LV adversarial channels, how-
ever the goal of the communicants in adversarial wiretap channel is to achieve
secure and reliable transmission, while in LV channels only reliability is required.
It is proved that capacity of these channels is 1− ρr − ρw. Wang et al. [27] gave
an explicit construction of a capacity achieving code for adversarial wiretap
channels with polynomial time encoding and decoding time. This AWTP code
achieves perfect security and bounds decoding error probability to δ.

Theorem 1. (Theorem 3 [27]) For any sufficient small ξ > 0, there is a per-
fectly secure adversarial wiretap code CN with length N over a (ρr, ρw) adver-
sarial wiretap channel, such that the informant rate is R(CN) = 1− ρr − ρw − ξ,

the alphabet is Σ = F

1
ξ2

q , and the decoding error satisfies δ ≤ (1/ξ)D/ξ log log(1/ξ)

qN .
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2.3 Message Authentication Code (MAC)

A message authentication code (MAC)[26] is a cryptographic primitive that
allows a sender who shares a secret key with the receiver to construct authenti-
cated messages to be sent over a channel that is tampered by an adversary, and
the receiver to be able to verify the integrity of the received message.

Definition 1. A message authentication code consists of two algorithms (MAC,
Ver) that are used for authetication and verification, respectively. For a message
m an authentication tag, or simply a tag, is computed,

t = MAC(m, r),

and a tagged message (m, t) is constructed. The verifier accepts a tagged pair
(m, t) if Ver((m, t), r)) = 1. Security of a one-time MAC is defined as,

Pr[(m′, t′),Ver((m′, t′), r) = 1|(m, t), t = MAC(m, r)] ≤ δ

We use a MAC construction that uses polynomials over Fq. Let m be a vector
of length �N , and r, t be vectors of length N over Fq. Let φ be a bijection
between vectors of length N over Fq, and elements of FqN . Define the MAC
generation function MAC : F�N

q × F
N
q → F

N
q , where MAC(m, r) = t as,

t = MAC(m, r) = φ−1(
�−1∑

i=0

φ(xi)φ(r)
i).

Lemma 2. For the MAC construction above, the success probability of the ad-
versary in forging a tagged message (m′, r′) that pass MAC verification is no
more than �

qN .

The proof is a direct extension of the proof in [20].

3 Model and Definitions

3.1 Limited View Adversarial Channels

Let [N ] = {1, · · · , N}, andSr = {i1, · · · , iρrN} ⊂ [N ] andSw = {j1, · · · , jρwN} ⊂
[N ] denote two subsets of [N ], and SUPP(x) of vector x ∈ ΣN be the set of positions
where the component xi �= 0.

Definition 2. A (ρr, ρw)-LimitedViewAdversarial channel (or a (ρr, ρw)-LVAC),
is a communication channel between Alice and Bob, that is partially controlled by
Eve with two capabilities: Reading andWriting. For a codeword c ∈ ΣN whereΣ is
an additive group, the capabilities of Eve are,

– Reading: Eve can select a subset Sr ⊆ [N ] of size at most ρrN and read the
components of the codeword c on positions associated with Sr. Eve’s view
of the codeword is given by, ViewA(LVACenc(m), rA) = {ci1 , · · · , ciρrN}, and
consists of all the components that are read (observed).
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– Writing: Eve can choose a subset Sw ⊆ [N ] of size at most ρwN , for “writ-
ing”. This is by adding an error vector e to the codeword c, where the addition
is component-wise over Σ and SUPP(e) ⊆ Sw. The corrupted components of
c are {yj1 , · · · , yjρwN } and yj� = cj� +ej� . The error e is generated according
to Eve’s best strategy for making Bob’s decoder to output in error.

We assume the adversary is adaptive and can select the components for reading
and writing one by one, at each step using their knowledge of the codeword at
that time.

The LVAC is called restricted if the reading and writing sets of the adversary
are same, that is Sr = Sw. For a restricted ρ-LV adversary channel the reading
and writing parameters satisfy ρ = ρr = ρw.

3.2 Limited View Adversary Code

Alice and Bob will use a limited view adversary code to provide reliability for
communication.

Definition 3. A Limited View Adversary Code (or LV code) for a (ρr, ρw)-LV
adversary channel ((ρr, ρw)-LVAC) consists of an encoding LVACenc : M → CN

from the message space M to the codeword space CN ⊂ ΣN , and a deterministic
decoding algorithm LVACdec : ΣN → M. For a message m that is encoded to c
by the sender and corrupted to y = c + e by the (ρr, ρw)-LVAC, the probability
that the receiver outputs the message m′ �= m with probability is no more than
δ. That is for any m ∈ M, and adversary’s observation z we have,

Pr(LVACdec(LVACenc(m) + Adv(z)) �= m) ≤ δ.

The above definition of reliability is for strong LV codes. In weak LV codes the
decoding error probability is averaged over all messages in the message space,
and the reliability requirement is,

Pr(MS �= MR) ≤ δ.

In other words the reliability requirement is for a random message m ∈ M.

The above definition of reliability allows the decoder to output incorrect mes-
sages and is weaker than the one in [24]. More specifically, a decoder that bounds
error probability to δ using the definition in [24] will also have the same bound on
decoding error using the above definition, but the inverse is not true in general.

An LV code is deterministic if the LVACenc(·) is deterministic, and LV code is
probabilistic if the LVACenc(·) is probabilistic. A LV code family C = {CN}N∈N

for (ρr, ρw)-LVAC is a family of LV codes indexed by the code length N ∈ N.

Definition 4. The rate R(C) is achievable by a code family C if for any ξ > 0
there exists N0 such that for any N > N0, we have 1

N log|Σ| |M| ≥ R(C) − ξ,
and the probability of decoding error satisfies δ ≤ ξ.
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We use achievable rate of LV code families over a LVAC to define capacity of
these channels.

Definition 5. The capacity C of a (ρr, ρw) LVAC is the highest achievable rate
of all LV code families C for the channel.

4 An Upper Bound on the Rate of LV Codes

We derive an upper bound on the rate of an LV code and use the bound to find
an upper bound on the highest achievable rate of a code family for a (ρr, ρw)-LV
adversary channel. The rate upper bound only depends on the parameter ρw.
However achieving the bound would impose condition on ρr.

Theorem 2. The rate of an LV code CN over a (ρr, ρw)-LVAC is bounded as,

R(CN) =
H(M)

N log |Σ| ≤ 1− ρw + 2H(δ). (2)

The highest achievable rate of an LV code family for a (ρr, ρw)-LVAC is bounded
as,

C ≤ 1− ρw. (3)

Proof is in Appendix A.

In restricted LVACs, the adversary is restricted in their choice of Sr and Sw

and so one may expect a different upper bound. However we prove the same
upper bound holds in this case also.

Proposition 1. The rate of an LV code family for a restricted ρ-LVAC is
bounded as,

C ≤ 1− ρw

Note that this proposition does not follow from Theorem 2 as the adversary
in restricted LVAC is less powerful and one may expect a different upper bound.
One however can use the same proof method to derive the bound for codes over
restricted LVACs.

Achievable Rate of LVAC

LV codes provide unique decoding for bounded number of additive errors, guar-
anteeing error probability bounded by δ. The upper bound (3) on the rate of LV
codes may not be achievable for all values of ρr. In particular for ρr = 1, the
full codeword will be visible to the adversary and so LVAC error model reduces
to the Hamming error model for which it is well known that perfect (zero error)
unique decodeability is possible only for rates up to 1− 2ρw. For the same error
model, allowing decoder error probability to be bounded by δ (instead of perfect
unique decoding) one could expect the rate to slightly increase. However the rate
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1− ρw is the list decoding capacity in Hamming error model and so one cannot
expect small (δ) error probability for unique decoding at such rates. (We are not
aware of any relevant bound on the list size that can be used here.)

Our construction in Section 5 achieves the bound 1− ρw for ρr < 1− ρw and
so is capacity achieving for this range of ρr. The best achievable rate of LV codes
when 1− ρw < ρr < 1 remains an open problem.

5 An LV Code Family that Achieves the Bound for
ρr < 1 − ρw

We construct an efficient LV code family C = {CN}N∈N for a (ρr, ρw)-LVAC.
The encoding and decoding algorithms of the LV code family C are denoted by
LVACenc and LVACdec, respectively. The construction employs a construction of
Folded Reed-Solomon codes that uses subspace evasive sets, a message authen-
tication code, and an adversarial wiretap code, with the following parameters:

– FRS codes using subspace evasive sets: From Lemma 1, there is an FRS

code CFRS over alphabet ΣFRS = F

1
ξ4

q , with rate RFRS = 1 − ρw − ξ2. The
construction uses subspace evasive sets and has the decoder list size bounded

by (1/ξ2)
D
ξ2

log log 1
ξ2 .

– MAC: From Lemma 2, there is a MAC function MAC : FuRN
q × F

N
q → F

N
q ,

with the probability of failure to detect a forged tagged message bounded
by δMAC ≤ uR

qN .
– AWTP code: From Theorem 1, there is an AWTP code CAWTP over alphabet

ΣAWTP = F

1
ξ2

q , whose rate is RAWTP = 1 − ρr − ρw − ξ, and has decoding

error bounded by δAWTP ≤ (1/ξ)
D
ξ

log log( 1
ξ
)

qN .

The construction of the LV code is as follows.

LV code Construction

Encoding: Alice does the following:

1. For an information block m of length uRN with u = log |Σ| and Σ =

F

1
ξ2

+ 1
ξ4

q , do the following. Generate a random vector r ∈ F
N
q and use it

to find the MAC tag for the message m, using the MAC construction in
Section 2.3,

MAC(m, r) = t.

The tagged message is of length uRN +N over Fq.
2. Encode the randomness r into a codeword cAWTP of an AWTP code of

length N ,
cAWTP = AWTPenc(r).
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3. Encode the vector (m, t) into a codeword cFRS of an Folded Reed-
Solomon of length N that uses subspace evasive sets for efficient de-
coding. That is,

cFRS = FRSenc(m, t).

4. The codeword c of the LV code has the ith component, ci =
(cAWTP,i, cFRS,i) ∈ Σ, i = 1, · · · , N .
Alice sends c to Bob over the LVAC.

Decoding: Bob does the following:

1. Bob receives a corrupted word y. The word y can be separated into
Each component of y is broken into two parts to reconstruct the (cor-
rupted) AWTP codeword yAWTP, and the (corrupted) FRS codeword
yFRS, of the sender.

2. Bob uses AWTP decoding algorithm to decode yAWTP and obtain the
randomness vector r. The decoding error of AWTP code is bounded by
δAWTP.

3. Bob uses the FRS codeword decoding algorithm to decode yFRS, and

outputs a list LFRS of size |LFRS| ≤ (1/ξ2)
D
ξ2

log log 1
ξ2 . Each element in

the list LFRS is a potential tagged message (mi, ti).
4. Bob checks whether the (mi, ti) is a correctly formed tagged message

by verifying,
ti = MAC(mi, ri).

If there is a unique valid tagged message, then Bob outputs the message
m corresponding to the tagged message. Otherwise, outputs ⊥.

Reliability of LV Codes

Lemma 3. The probability of decoding error (strong reliability) for the LV code

is bounded by δ ≤ 2(1/ξ2)
(2+ D

ξ2
log log 1

ξ2
)

qN .

Proof is in Appendix B.

Rate of an LV Code Family

Theorem 3. The information rate of the probabilistic LV code family C =
{CN}N∈N over a (ρr, ρw)-LVAC is R(C) = 1 − ρw. The read and write pa-
rameters must satisfy ρr + ρw < 1. The encoding and decoding algorithms are
polynomial time in N .

Proof is in Appendix C.
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A Comparison of LV Code Constructions

We compare the LV code construction in this paper with previous constructions.
LV code I is deterministic while the latter two are probabilistic. LV code I and
LV code III are both capacity achieving and allow Sr �= Sw. LV code I has
ρr+ρw < 1−1/N and has the restriction that ρr = ρw. LV code III has efficient
decoding and has the requirement that ρr + ρw < 1

Table 1. LV code Construction

Code Rate R(CN ) Comp. Σ Adversary capability
Achieves

the bound

LV code I [23] 1 − ρw − ξ Exp(N) F
2
q

ρr = ρw =

min(R − 1
2N , 1 − R − 1

2N )
Yes

LV code II [24] 1−ρw−Nξ4−N2ξ6

1+Nξ2
Poly(N) O(F

N2

ξ4
q ) Sr = Sw, ρ < 1/2 No

LV code III (this

work)

1 − ρw − ξ Poly(N) O(F

1
ξ4
q ) ρr + ρw < 1 Yes

6 Reliable Message Transmission and LV Codes

6.1 Reliable Message Transmission (RMT)

A cryptographic primitive that is closely related to LV codes is RMT [6,9], that
is introduced to provide reliability for communication in a partially corrupted
network.

In the RMT setting (recalled in Section 1.2) Alice uses the encoding algorithm
of the RMT protocol to encode the message m into a vector (w1, w2 · · ·wN ),
referred to a protocol transcript, and sends wi over wire i. A transcript may be
corrupted by the adversary, and will be received by Bob as (w′

1, w
′
2 · · ·w′

N ). Bob
uses the decoding algorithm of the RMT protocol to output a message m′.

Definition 6. A reliable message transmission protocol is called δ−reliable
(δ−RMT) protocol if for any message m, R receives the message m correctly
with probability ≥ 1− δ. That is,

Pr[MR �= MS ] ≤ δ

Here the probability is over the randomness of the encoding and holds for any
message. A stronger reliability requirement is requiring the decoder to output
correct messages only. That is the decoder outputs either the correct message,
or a special symbol ⊥.

It has been proved [9] that for 1-round δ-RMT, δ < 1
2 (1 − 1

|M|) is pos-

sible only if N ≥ 2t + 1. Let Wi denote the set of possible transmissions
over wire i. Transmission rate of an RMT protocol is defined as, τ(RMT) =
Length of Transmissions over All Wires

Length of Message =
∑

i log2 |Wi|
log2 |M| .
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For 1-round δ-RMT protocols, the lower bound on transmission rate, assum-
ing does not output incorrect message (stronger definition of reliability) is N

N−t

[21]. A δ-RMT protocol whose transmission rate is of order O( N
N−t ) is called

transmission optimal.

6.2 1-round RMT from LV Codes

LV codes are defined over an alphabet Σ and so all components of a codeword
are elements of Σ. In RMT protocols however, the set of transmissions over each
wire may be different.

Definition 7 (Symmetric RMT). Let Wi
j , j = 1 · · ·N, i = 1 · · · r, denote the

set of possible transmissions over wire j in an r-round RMT protocol. An RMT
protocol is called a symmetric RMT protocol if Wi

j = W i is independent of j.

All known constructions of threshold RMT protocols are symmetric.

Proposition 2. There is a one-to-one correspondence between LV codes CN of
length N that provide δ-reliability for restricted ρ-LVACs, and 1-round symmet-
ric δRMT-RMT protocols for N wires with security against a (t, N) threshold
adversary, where t = ρN .

An LV code can be used to construct a 1-round symmetric δRMT-RMT, where
δRMT = δ. The converse is also true.

Proof is in Appendix D.
The upper bound on the rate (Theorem 2) of LV codes for ρ-restricted LVAC,

gives a lower bound on the transmission rate of 1-round symmetric δ-RMT pro-
tocols.

Theorem 4. Transmission rate of 1-round symmetric δ-RMT protocols is lower
bounded by,

τ(RMT) ≥ N

N − t+ 2NH(δ)
.

Proof is in Appendix E.
Since δ ≥ 0, the right hand side of the bound is smaller than the known bound

N
N−t . This is expected as the definition of reliability used here us weaker than
the one used derivation of this latter bound (Theorem 4, [21]) requiring decoder
to output correct messages only.

Corollary 1. For N = 2t+ 1, we have,

τ(RMT) =
1

R(CN)
≥ 2t+ 1

t+ 1 + 2(2t+ 1)H(δ)
.

Since δ ≥ 0, the right hand side of the bound is less than the known bound
2t+1
1+t that is for the stronger definition of reliability. An explanation similar to
what is given for Theorem (4) applies here also.
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Corollary 2. For N = 2t+ ct, we will have the following.

1.

τ(RMT) =
1

R(CN )
≥ 2 + c

1 + c+ 2(2 + c)H(δ)
.

2. The RMT construction obtained from the LV code in Section 5 is efficient
and optimal, and the failure probability δ ≤ O( 1

qN ).

Proof is in Appendix F.

6.3 Comparing RMT Constructions

Table 2 compares the protocol in this paper with the other known 1-round δ-
RMT protocols. The protocol in [22] is for N = 2t+1 but can be easily extended
to N = 2t+ ct with the same failure probability δ. The last construction allows
the read and write sets of the adversary be different: that is Sr �= Sw.

Table 2. Comparison with 1-round δ-RMT protocols for N = 2t+ ct

RMT Comp. δ Optimality Sr, Sw
Outputs Incor-
rect Message

Protocol I, Safavi-
Naini et al.[22]

Poly. ≤ O(N
q
) Yes Sr = Sw No

Protocol II, this
Work

Poly. ≤ O( 1
qN

) Yes Sr �= Sw No

7 Conclusions

We revisited the definition of LV codes and gave an upper bound on the rate
of LV code families. The bound holds for deterministic and probabilistic codes
both. We gave an efficient construction of an LV code family that achieves the
bound with equality when ρr < 1− ρw and so is capacity achieving.

Construction of LV code families with ρr > 1− ρw and small designed δ, for
example δ < 1/2, is an open question. A list decodable code corrects errors up
to 1− ρw where ρw is the fraction of errors and assuming the adversary can see
the whole codeword (ρr = 1) before constructing the error vector. We showed
that unique decoding for this fraction error is possible if the read fraction ρr
is bounded. Finding the relationship between the list size and ρr is an open
question.

Extending this work to include other resources such as extra channels, or
allowing interaction are future works.

LV codes provide a coding theoretic framework for the study of 1-round sym-
metric δ-RMT. The construction of RMT protocol obtained from the LV code
in this paper has the lowest δ, and provides security for the case that Sr �= Sw.



228 P. Wang and R. Safavi-Naini

Acknowledgement. This research is in part supported by Alberta Innovates
Technology Future in the province of Alberta, Canada, and National Science
and Engineering Research Council of Canada.

References

1. Ahmadi, H., Safavi-Naini, R.: Detection of algebraic manipulation in the presence
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A Proof of Theorem 2

Proof. We prove an upper bound on the rate of weak LV codes for (ρr, ρw)-
LVACs. For these codes error probability is averaged over all codewords. The
rate upper bound for strong LV codes cannot be more than this upper bound as
for these latter codes error probability of decoding for any message is bounded
by δ.

The bound is for the rate of an arbitrary code and is derived for a special
strategy of the adversary given below. Noting that the adversary can always use
this strategy, it follows that the code rate cannot be higher than the bound that
is derived for this special strategy. The adversary’s strategy is the following.
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1. Adversary selects a reading set Sr and a writing set Sw before the LV code
transmission.

2. After the codeword is transmitted, the adversary 1) reads the ρrN components
of the codeword on the set Sr; 2) chooses an error vector ewith SUPP(e) ∈ Sw,
randomly and with uniform distribution, and adds it component-wise to the
codeword.

Let M denote the random variable associated with the message space, C
denote the random variable associated with the LV codeword sent by Alice,
Y denote the random variable associated with the received word of Bob, and E
denote the random variable associated with the error generated by the Adversary.
We associate a random variable Ci to the i

th component of the code. Distribution
of this variable can be obtained from the distribution of C. Let YSw and YSw

denote the components of a codeword on the sets Sw and Sw = [N ]/Sw of a
word Y , respectively. The proof has three steps.

STEP 1. First, we give an upper bound on H(M |Y ).
From the weak LV codes we have,

Pr(MS �= MR) ≤ δ.

From Fano’s inequality (Theorem 2.10.1, Page 38, [2]), the decoding error prob-
ability δ implies,

H(M |Y ) ≤ H(MR|MS) ≤ H(δ) + δ log |M|. (4)

Since log |M| ≤ N log |Σ|, we have

H(M |Y ) ≤ H(δ) + δN log |Σ|. (5)

STEP 2. We give an upper bound on the rate R(CN) of an LV code CN of
length N .

We have,

H(M) = H(M |Y ) +H(Y )−H(Y |M). (6)

In the following, we will bound the three terms on the right side of Eq. (6).
The first term has been bounded by Eq. (5). The second term is bounded by,

H(Y ) ≤ log |Y| ≤ N log |Σ|. (7)

The last term is bounded as follow,

H(Y |M) = H(YSwYSw
|M)

≥ H(YSw |M)

≥ H(YSw |MC)

(1)
= H(E)

= ρwN log |Σ|.

(8)
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Here (1) is because the adversary’s error is selected uniformly and independent
of the message and the codeword.

From Eq. (5) (7) (8), we have,

H(M) ≤ (1 − ρw)N log |Σ|+H(δ) + δN log |Σ|. (9)

The bound (9) holds for any distribution on M. In particular for uniform
message distribution, we have the bound R(CN ) on the code rate,

R(CN) =
H(M)

N log |Σ| ≤ 1− ρw + 2H(δ). (10)

STEP 3. Let C denote the highest achievable rate of an LV code family for
a (ρr, ρw)-LVAC. We show the upper bound on C . Suppose there is an LV

code family C for a (ρr, ρw)-LVAC with rate R(C) = 1− ρw + ξ̂, for some small

constant 0 < ξ̂ < 1
2 .

Let H(p0) =
ξ̂
4 . So for any ξ̂′ ≤ p0, we have 2H(ξ̂′) ≤ ξ̂

2 and ξ̂′ ≤ H(ξ̂′) ≤ ξ̂
4 .

From Definition 4, for any 0 < ξ̂′ ≤ p0, there is an N0 such that for any N > N0,
we have δ < ξ̂′ and,

R(CN ) ≥ R(C)− ξ̂′

= 1− ρw + ξ̂ − ξ̂′

(1)
= 1− ρw + 2H(δ) +

ξ̂

2
− ξ̂′

(2)
> 1− ρw + 2H(δ).

Here (1) is from H(δ) ≤ H(ξ̂′) < ξ̂
2 ; and (2) is from ξ̂′ < ξ̂

2 .
This contradicts the bound on R(CN ) in Eq. (10). So the upper bound on the

rate of an LV code family over a (ρr, ρw)-LVAC is,

C = max
C

R(C) ≤ 1− ρw


�

B Proof of Lemma 3

Proof. The decoding error happens in the following cases.

1. The AWTP decoding algorithm outputs the wrong randomness vector r′.

This probability is bounded by δAWTP ≤ (1/ξ)
D
ξ

log log( 1
ξ
)

qN .
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2. If the AWTP decoding algorithm outputs the correct randomness r′, there
exists a tagged message (m′, t′) in the decoding list LFRS with m′ �= m that
passes the MAC verification algorithm. Since the AWTP code is perfectly
secure, the randomness r is received by Bob with perfect security. So Bob can
use r to verify the validity of the tagged message (m′, t′). For each (m′, t′)
with m′ �= m, the probability of passing MAC verification is bounded by
δMAC ≤ uR

qN . Since the size of the list containing (m′, r′) ∈ LFRS is bounded

by |LFRS| ≤ (1/ξ2)
D
ξ2

log log 1
ξ2 , the probability that the decoder outputs the

message m′, such that the corresponding tagged message (m′, r′) passes

the MAC verification and (m′, r′) ∈ LFRS, is bounded by δFRS ≤ uR|L|
qN ≤

uR(1/ξ2)
D
ξ2

log log 1
ξ2

qN
.

So the total probability of decoding error is bounded as follows,

δ = δAWTP + δFRS ≤ 2(1/ξ2)
(2+ D

ξ2
log log 1

ξ2
)

qN
.


�

C Proof of Theorem 3

Proof. 1). First we show that the rate of the LV code family is R(C) = 1− ρw.
Let 0 ≤ ξ ≤ 1

2 , and N0 ≥ (2+ D
ξ2 log log

1
ξ2 )(1+2 log 1

ξ )+log 1
ξ . From u2R2N =

uRN , we have,

R2 =
u

u2
R = (1 +

1

u2
)R ≤ R+ ξ4.

Since R2 = 1− ρw − ξ2, we have,

R ≥ R2 − ξ4 ≥ 1− ρw − 2ξ2 ≥ 1− ρw − ξ,

and,

δ ≤ 2(1/ξ2)
(2+ D

ξ2
log log 1

ξ2
)

qN
≤ ξ.

So the rate of LV code family is R(C) = 1− ρw.

2). Second we show that the reading and writing parameter must satisfy ρr +
ρw < 1.

To transmit the randomness r securely and reliably, the maximum length of r
must be no more than the maximum information that can be transmitted by the
AWTP code. Lemma 1 implies that the length of the randomness r is bounded
as,

N ≤ (1− ρr − ρw − ξ) log |Σ1|N.

Since Σ1 = F

1

ξ2
1

q , we have,

1− ξ − ξ2 ≥ ρr + ρw.
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So the reading and writing sets must satisfy 1 − ξ − ξ2 ≥ ρr + ρw. Since ξ
approaches zero as N goes to infinity, we have ρr + ρw < 1.

3). The encoding algorithm is efficient since both adversarial wiretap codes
and FRS codes (with subspace evasive set message coding), have polynomial
(in N) time encoding algorithms (in Poly(N)); also the MAC function MAC is
polynomial time Poly(N). The decoding algorithm is efficient because decoding
function of the first two primitives are efficient, and the output list size of the
FRS code with subspace evasive set message coding is constant size. Finally, the
MAC verification algorithm is in Poly(N). 
�

D Proof of Proposition 2

Proof. Consider an LV code CN with decoding error δ for a restricted ρ-LVAC.
By associating each component of a codeword with a distinct wire, one can
construct a 1-round symmetric δRMT-RMT protocol for N wires. The protocol
security is against a threshold (t, N) adversary with t = ρN . The RMT encoding
and decoding are obtained from the corresponding functions in the LV code;
that is, RMTenc(m) = LVACenc(m) and RMTdec(y) = LVACdec(y). To relate the
reliability of the RMT protocol to that of the LVAC-code, we note the following:

1. Decoding error is both cases requires the decoder to output the correct mes-
sage with probability at least 1− δ.

2. The corruption of a codeword in a restricted ρ-LVAC is by additive error
while in RMT the adversary can arbitrarily modify the |S| = t corrupted
wires. However in restricted ρ-LVACs, S = Sr = Sw, |S| = ρN and so modi-
fying the components (ci1 , · · · cit) to (c′i1 , · · · c′it) is equivalent to calculating
an error e with SUPP(e) = S and (ei1 , · · · eit) = ((c′i1 − ci1), · · · (c′it − cit)),
and adding it to the codeword. This means that for these channels additive
error can be used to generate all possible adversarial tamperings.

The theorem follows by constructing a restricted LV code with S = Sr = Sw

from a 1-round symmetric δRMT-RMT, using the same correspondence between
the code components and the wires. We will have δ = δRMT. 
�

E Proof of Theorem 4

Proof. Let R(CN ) be the rate of a δ-LV code CN for a restricted ρ-LVAC. From
Proposition 2, the transmission rate of the associated 1-round symmetric δ-RMT

is given by, τ(RMT) = N log |V|
log |M| = 1

R(CN ) .

Now consider a 1-round symmetric δ-RMT for N wires and t = ρN . Using
Theorem 2, we have an LV code for a restricted LVAC with S = Sr = Sw whose
information rate is upper bounded by,

R(CN) ≤ 1− ρ+ 2H(δ).
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Since the transmission rate of a symmetric δ-RMT protocol is the inverse of the
information rate of the corresponding LV code, we have,

τ(RMT) =
1

R(CN)
≥ 1

1− ρ+ 2H(δ)
=

N

N − t+ 2NH(δ)
.


�

F Proof of Corollary 2

Proof. Item 1, follows directly from Theorem 4 by substituting N = (2 + c)t.
For item 2, we need to choose parameters R(CN ), ρ, ξ of the LV code such

that the corresponding 1-round RMT is optimal. The selection is as follows.

1. We choose ρr = ρw = ρ = 1
2+c .

2. Rate R(CN): we have the LV code rate R(CN ) = 1
2+c . The transmission rate

τ of the corresponding RMT is τ = 1
R(CN ) = 2 + c = O( N

N−t ) which is a

constant and so the RMT protocol is optimal.
3. Parameter ξ: the code family is capacity achieving and parameter ξ deter-

mines that the code rate is at most ξ less than the capacity.
The parameter must be chosen with two considerations: the FRS code with
the subspace evasive set used for the encoding of the message (appended
with MAC), and the AWTP code used for transfering the MAC key.
(a) FRS with subspace evasive set message coding: From Section 5, for the

LV code we have ΣFRS = F

1
ξ4

q and Σ = F

1
ξ4

+ 1
ξ2

q . Let ρ = 1
2+c and

R(CN ) = 1
2+c . From,

log |M| = RFRS(CN)N log |ΣFRS| = R(CN)N log |Σ|,

we have,
R(CN) ≤ RFRS(CN ).

Since RFRS(CN) = 1− ρ− ξ, it implies that,

R(CN) ≤ RFRS(CN ) = 1− ρ− ξ,

and so ξ must satisfy,

ξ ≤ 1− ρ−R(CN ) = 1− 1

2 + c
− 1

2 + c
=

c

2 + c
. (11)

(b) AWTP code: We have RAWTP(CN ) = 1− ρ− ρ− ξ and ρ = 1
2+c , and so,

RAWTP(CN ) = 1− 2ρ− ξ.

Let
ξ ≤ c

2(2 + c)
. (12)
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From Section 5 the alphabet of AWTP is ΣAWTP = F

1
ξ2

q and so the rate
of the AWTP code is,

RAWTP(CN ) = 1− 2ρ− ξ =
c

2 + c
− ξ =

c

2(2 + c)
. (13)

The required randomness vector r h for the LV code has length N . Since,

log |r|
N log |ΣAWTP|

=
N

N log |ΣAWTP|
= (

c

2(2 + c)
)2

is less than the information rate of the AWTP code with the chosen
parameters, if we choose ξ = c

2(2+c) , then r can be sent securely and

reliably using the AWTP code.
To satisfy both above conditions, Eq. (11) and AWTP code Eq. (12), we will
choose,

ξ ≤ c

2(2 + c)
.

From the LV code parameter R(CN), ρ, ξ above, we can determine the param-
eters of the δ-RMT scheme obtained from the LV code:

1. Transmission rate: τ = O( N
N−t ) and so the RMT is optimal.

2. Computational time: Since ξ = c
2(2+c) is constant, the list size of the FRS

code with subspace evasive set encoding is constant and so the decoding
algorithms of the AWTP code and the FRS code with subspace evasive set
encoding, are polynomial in N and so the decoding algorithm of the RMT
is polynomial time.

3. Decoding error: the LV code decoding error is δ ≤ 2(1/ξ2)
(2+ D

ξ2
log log 1

ξ2
)

qN
and

ξ is constant. This means that the decoding error of RMT is bounded by
δ ≤ O( 1

qN ).

�
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Abstract. Locally decodable codes (LDC) [1,9] are error correcting
codes that allow decoding (any) individual symbol of the message, by
reading only few symbols of the codeword. LDC’s, originally considered
in the setting of PCP’s [1], have found other additional applications
in theory of CS, such as PIR in cryptography, generating a lot of fas-
cinating work (see [12] and references within). In one straightforward
practical application to storage, such codes provide enormous efficiency
gains over standard error correcting codes (ECCs), that need to read the
entire encoded message to learn even a single bit of the encoded mes-
sage. Typically, LDC’s, as well as standard ECC’s are designed to decode
the encoded message if up to some bounded fraction of the symbols had
been modified. This corresponds to decoding strings of bounded Ham-
ming distance from a valid codeword. A stronger natural metric is the
edit distance, measuring the shortest sequence of insertions and dele-
tions (indel.) of symbols leading from one word to another. 1Standard
ECC’s for edit distance have been previously considered [11]. Further-
more, [11] devised codes with rate and distance (error tolerance) optimal
up to constants, with efficient encoding and decoding procedures. How-
ever, combining these two useful settings of LDC, and robustness against
indel. errors has never been considered.
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In this work, we study the question of constructing LDC’s for edit dis-
tance. We demonstrate a strong positive result - LDC’s for edit
distance can be achieved, with similar parameters to LDC’s for Ham-
ming distance. More precisely, we devise a generic transformation from
LDC for Hamming distance to LDC for edit distance with related param-
eters. Besides the theoretical appeal of such a primitive, we put forward
a cryptographic application to secure property testing over storage prone
to indel. errors (such as DNA-based storage).

1 Introduction

In this work, we define and study the feasibility of locally decodable codes (LDC)
for edit distance. Standard LDC codes are defined over the Hamming distance,
allowing to decode individual symbols of the message by reading few symbols
of the codeword. This provides enormous efficiency gains over standard error
correcting codes (ECCs), that need to read the entire encoded message to learn
even a single bit of information. There exist many scenarios where edit distance,
rather than the more traditional Hamming distance, is the appropriate metric.

Let us give an example of a cryptographic application to efficient secure prop-
erty testing over unreliable storage. See full version for details. Consider a set-
ting where a storage system prone to insertion and deletion errors is employed.
For instance, consider a DNA-based storage system (prototypes of such systems
have already been constructed, and have the advantage of high information den-
sity [2]). In such systems, it makes sense to store information encoded via ECC
for edit distance. Now, consider a scenario where two (or more) users want to
securely and efficiently compute whether their joint input (x1, x2) satisfies some
property, or is far from it (otherwise we don’t care about the output). In the
world of property testing, the primary goal is to make a sublinear (as small as
possible) number of queries into the input [6]. As a simple example, consider
a pair of users who wish to securely check whether a pair of strings they hold
are equal or 0.2-far from being equal in Hamming distance (but reveal nothing
else about their inputs). There exists a simple (not secure) protocol for the task,
that makes t queries into the strings at random locations j, and checks whether
x1,j = x2,j . Accept iff. all comparisons succeed. Clearly, this protocol has one-
sided error of ≤ 0.8t, so taking t = log2(n) results in a negligible error. Observe
that (an oracle) to the randomized functionality computed by the protocol, al-
lows for privacy in the sense that the probability of outputting 0 or 1 depends
only on whether the input has the property or has distance ≥ 0.2 from the
property, but not on the particular distance (upto negligible differences). Thus,
to securely evaluate the property if not for the issue of unreliable storage, the
parties could run MPC (secure multi-party computation) for the functionality
and achieve polylog(n) · security-param work load.2

2 Note that to meet the efficiency requirements when using the typical circuit-based
protocols form the literature, the parties first agree on randomness for the sampling,
and let each party locally derive the sublinear sampling circuit at the first step.
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Now consider unreliable storage, and assume upto an ε-fraction of insertion
or deletion errors (mutations) may occur in the storage devise (except for with
negligible probability - see the full version for a treatment of the setting where
the mutation rate can be large with non-negligible probability). We modify the
above solution to read input symbols by decoding them from the correspond-
ing codewords.3 If the LDC has a small enough decoding error (assuming few
corruptions), it is easy to show that every symbol has a very low (albeit higher
and 2-sided) simulation error. The overhead in work is not too great because the
code is an LDC, and grows roughly by the query complexity of the LDC.

Going back to our main theoretical question - we put forward a strong positive
result, by demonstrating a compiler from standard LDC’s into LDC’s for edit
distance, with only small losses to the parameters. In particular, the tolerated
fraction of errors (typically a constant), and the code’s rate are only degraded by
a constant. The query complexity grows by polylogarithmic factors in the size
of the codeword. The compiler is black box, in the sense that the LDC decoder
for the resulting code uses the decoder of the original LDC code in a black box
way (only reading and answering its queries to the purported codeword). Our
main technique is reducing the task to the problem of searching an element
in a large sorted list L with a constant fraction δ of corrupted values. The
search should succeed with overwhelming in |L| probability for all but, say, 50δ
fraction of the queries into uncorrupted locations. The number of queries to the
list should be polylogarithmic. We devise a comparison-based algorithm with
O(log2+o(1) |L|) queries for this task. This algorithm may be of independent
interest, as for the more stringent setting where all uncorrupted entries should
be recovered correctly, there exist polynomial lower bounds on the number of
queries by comparison-based algorithms. We leave open the question of whether
O(log(|L|)) queries are sufficient.

Theorem 1. (Main theorem, informal). Consider an (δ(n), q(n), ε(n))-
LDC LH : F

n
p → F

m
p for Hamming distance. Here q(n) is the query complexity, and

ε(n) is a bound on the worst case error probability in decoding a message symbol if the
message is at Hamming distance ≤ δ(n) from a codeword. There exists a black box
transformation taking any such LH into a (δ/c, q · polylog(m, p), ε + neg(m))-LDC
LE : F

n
p → F

m
p for edit distance, where c is a (quite large) global constant. The code

rate degrades by a constant. Encoding (and decoding) efficiency only degrades by a
poly(n) factor.

The transformation from Theorem 1 is black box in the following sense. Let
DwH

H , DwE

E denote the decoders of the original LDC (for Hamming distance) and
the decoder for the LDC for edit distance that we construct, respectively. DwE

E

receives an input i and needs to decode xi. For that purpose, it runs D·
H(i) as is,

reading only the sequence of locations DH asks to query wH at, and answering
them. To answer a query j of wH , it simulates the answer wH [j] using queries to
3 To meet the efficiency goal, we now need to incorporate the LDC decoder’s random-

ness into the first step of generating the sampling circuit. As before, this randomness
(circuit) may be public without violating privacy.
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its own oracle wE , which "induces" a codeword wH . Finally, the output of DH

is returned.
On a high level, LE is a composition of LH with a standard code I for edit

distance. That is, to encode a message m, it computes w = LH [m], divides w
into blocks w1, . . . , wT , and outputs w′ = (I(w′

1) ◦ . . . ◦ I(w′
T )), where w′

i is
“almost” wi. To answer a query at index i, the goal is to find the relevant block
in w′, and decode it to extract the relevant symbol. Even in standard codes, one
central difficulty is in finding the block in w′. For this purpose, the w′

j ’s explicitly
include their relative index: w′

i = (i, wi) . This transformation is essentially the
one used in SZ codes [11], where LH is replaced by a “standard’ code C. This is
up to a few technical enhancements beyond using an LDC C that are required to
ensure the resulting code is an LDC (see Section 1.1). The main novelty of our
construction, is in demonstrating that this transformation (almost) preserves the
parameters of LDC codes ( [11] show that for a careful choice of block length,
it preserves distance and rate of standard ECC up to a constant), by devising a
suitable decoder procedure. As we explain below, just adding the indices is not
sufficient for LDC codes. If the entire codeword can be read, we can just “read
off” the indices of all blocks, and interpret the (decoded) (i, a) as a appearing
at location i. If there are relatively few errors, this will produce a C-codeword
with few erasures (duplicate and missing entries) + changes (erroneous entries
we do not know of), which can then be decoded. For LDC codes, the problem
is in finding a specific block w′

i by reading only polylog(m) entries from the
codeword (in particular, |I(w′

i)| = polylog(m). Although the location of the
relevant block can move up to a δ |WE | fraction of symbols, we should find it
with high probability for “most” blocks.

Our main technical tool is a new algorithm for searching an element in a sorted
list L where up to a constant δ fraction of the original entries may be arbitrarily
modified (and possibly out of order), looking at only polylog|L| locations of the
list. The algorithm performs a "clever" version of binary search, that guarantees
correct recovery of 1− cδ fraction of the list entries (same set in each execution).
This technique may be of independent interest. The problem of searching sorted
lists with corruptions or errors in query’s answers has been considered before
( [10,5] to mention a few). The main difference of our setting is that we get much
lower query complexity at the cost of allowing incorrect answers for some cδ of the
uncorrupted entries. Without this compromise, in comparison-based algorithms
(ours included), the query complexity is provably Ω(poly(n)) for constant error
fractions [5].

We also observe that our technique for transforming codes for Hamming
distance into codes for edit distance applies to the setting of computational
LDC’s [8], and of Locally testable codes (see [7] and references within).

1.1 Our Technique in More Detail

Our starting point is the construction by Schulman et al [11], that converts (stan-
dard) error correcting codes for Hamming distance into ones for edit distance.
Their construction is a composition of two codes.
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1. Start with a standard “outer” ECC C1 : F
n
p → F

m
p , and apply it to the

plaintext message x, obtaining y.
2. Encode y under a greedily constructed code I for edit distance as follows

(denote this new code by C2). Divide y into blocks of log m symbols each,
resulting in T = m/logm blocks. Encode each block yi at the i’th block using
an “inner” (greedily constructed, exponential-time) code I, applied to (i, yi),
obtaining wi = I(i, yi). Output w = w1 ◦ w2 . . . ◦ wT as the codeword. The
code I : F

logm
p → F

h
p has constant rate and tolerates a constant fraction of

errors. (the number of blocks is selected as such to ensure constant rate of
C2).

The resulting code C2 ◦ C1 is a code for edit distance, in the sequel we refer to it
as SZ.4 Their goal is to obtain codes with efficient (in n) encoding and decoding
procedures, and constant distance and rate. Thus, they plug in C1 with constant
distance and rate parameters, and C2 ◦ C1 inherits these properties (due to also
constant rate and distance for I). The reason that SZ do not just use I as the
code for edit distance is its inefficiency of encoding and decoding, so it can only
be practically applied to short blocks.

Besides constant (edit) distance, another property of the code I that they
need, is that for every pair of different codewords, the distance between a prefix
w1 of w, and a suffix u1 of u (or vise versa) of large enough (fractional) length,
say 0.1, have large distance. This ensures that in a corrupted codeword w, sub-
sequences “close enough” to different codewords do not intersect “by much”.
Thus, a corrupted w can be viewed as a sequence of codewords (of I) and pos-
sibly garbage between them, written one after the other (possibly up to small
fractional overlaps). This way, every original wi that was corrupted by “not too
much” will be recovered when scanning a small vicinity of wi (as is useful for
LDC’s), or when scanning the entire w from left to right (as is useful for standard
decoding, like in SZ).

This construction suggests the following simple transformation from standard
LDC’s into LDC’s for edit distance - plug the (standard) LDC C1 as the outer
code (instead of a standard ECC) into the construction. The code LE = C2 ◦ C1
is our LDC for edit distance! As mentioned before, there are two technical points
where our construction diverges from SZ, to be noted below. A decoder for LE

acts as follows.
Simulate C1’s decoder D1. For any query D1 makes, decode the corresponding

block (by going to its vicinity), and retrieve the relevant query by decoding I.
To make blocks identifiable, we use a slightly stronger "no overlapping" property
of I that is implicit in [11]’s instantiation of I (first point of divergence). At the
end, output whatever D1 outputs. If I has edit distance δI , then a δE fraction
of errors will corrupt (beyond repair) a ≤ δE/δI fraction of the blocks, but the
rest will be correctly recovered (if found!). If the original LDC tolerates a δH

fraction of errors, we may set δE = δHδI . As D1 sees at most a δE fraction of
corrupted symbols, the new decoder’s decoding probability is the same as D1’s.
4 In SZ, I with binary input and output alphabet is used. It is easy to modify to work

over larger alphabets, possibly allowing for better (constant) parameters.
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The main problem is that it is unclear how to find the required blocks. Due
to deletion and insertion errors occurring before it, every block can be as far
as δm symbols from its expected index (in the original sequence w1, . . . , wT ).
To cope with this, we develop a clever binary search technique allowing to find
it, even in the presence of corruptions. More precisely, we reduce our problem
to the following problem of searching a sorted list L∗ of length T (only known
to us up to a factor of 2) where up to some (constant) δ fraction of the entries
may have been corrupted, resulting in a list L. Entries of the list are of the form
(i, ai), where the sorting is by the unique keys i (up to duplications introduced
by corruptions). One wants to learn s associated with i in L∗ (or that i does
not appear in it). Design an algorithm V (i) that makes polylog(T ) queries into
the list that returns the correct value s with probability 1 − neg(T ) for at least
a 1 − cδ fraction of the original (i, a) entries, where c is a constant independent
of δ.

The constant "loss of correctness" factor c above will just translate into a
further decrease in tolerated δE , namely δE ≤ δHδI/c, so we can afford it.
Roughly speaking, uncorrupted entries in L will correspond to the list of blocks
(1, w1), . . . , (T, wT ) that we not “deleted”, but either modified or newly inserted.
The former blocks will retain their original order, where a block’s corresponding
key is a blocks index i, and its payload wi.

In Section 2.1 we present our algorithm for searching sorted lists with cor-
ruptions. In Section 3 we discuss how to adapt this abstraction to searching a
symbol wi in a codeword w of C2 ◦ C1 as above (and spells out the codes’ de-
coding algorithm). There are several technical issues that need to be carefully
treated here. In particular, the type of queries we chose for the the sorted list
searching abstraction are easy to (approximately) implement given w.

A second point where our construction diverges from the original construction
of SZ is in the efficiency of I. As mentioned above, the inner code I is constructed
in a greedy manner, with exponential complexity in the message space. In our
case,this size is up to log m symbols, so encoding and decoding of that code
may have complexity mlog p (bit operations), which is prohibitively high in the
setting of LDC and ok for (non-local) decoding of the entire message for binary
or constant p (although overall efficiency of decoding is a secondary goal in LDC,
it is important in practice). Thus, we use a recursive version of the inner code
(also mentioned in the paper), where every block (i, yi) is encoded by a SZ code
(based on, say, Reed Solomon as the outer code), so the greedy part is now
applied to messages of length ≤ log(log m · log p) bits. This comes only at a
constant decrease in tolerated errors and rate.

Remark 1. For some settings of parameters, one would just rather fall back to
(non-local) SZ codes for edit distance, that read the entire codeword to decode.
As explained above, some kind of “binary” search seems inevitable. Thus, we
expect to lose a factor of log m in the query complexity (even if we were willing
to give up such a factor on rate). For some codes, such as the Hadamard code,
log m = n, so there is no gain in query complexity. Nevertheless, the construction
is non-trivial for most useful parameter settings of LDC.
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1.2 Preliminaries

In this paper Fp denotes a finite alphabet of size p (typically, but not necessarily
a finite field). We denote the Hamming distance of two strings x, y ∈ F

l
p by

distH(x, y). The edit distance between x, y ∈ F
∗
p, distE(x, y) is the minimal

number of insertion or deletion operations to be performed on x to obtain y (or
visa versa, as distE is a metric). We often just write "dist(x, y)" when the type
of distance is clear from the context.

For a metric dist ∈ {distH , distE}, we say C : F
n
p → F

m
p is an error correcting

code (ECC) with distance parameter d if for any pair of codewords, C(x) �= C(y),
we have dist(C(x), C(y)) ≥ d. Alternatively, we will often measure the number
of errors the code can tolerate (up to (d − 1)/2). The codes’ rate is the ratio
m/n.

By default, we consider families of ECC’s C : F
n
p → F

m(n)
p (sometimes p de-

pends on n as well), and discuss their asymptotic parameters.

Definition 1. An ECC, L : F
n
p → F

m
p is a (δ(n), q(n), ε(n))-LDC (locally de-

codable code) for Hamming distance if there exists a decoding algorithm Dw′(i)
such that for all i ∈ [n], x ∈ F

n
p , and all w′ ∈ F

m
p satisfying distH(w′, L(x)) ≤

δm, we have
P r[Dw′

(i) = xi] ≥ 1 − ε.

Here D reads at most q(n) locations in w′.

Definition 2. LDC for edit distance is defined as LDC for Hamming distance
(replacing distH with distE everywhere), with the minor difference that Dw′ is
also given |w′| as an additional input.

We use the following family of codes for edit distance implicit in [11].

Lemma 1. For every finite alphabet Fp, there exists an integer t0 and real δ >
0, such that for all t ≤ t0, δ′ ≤ δ, there exists an ECC It,δ′ : F

t → F
m
p for

edit distance tolerating up to δ′m insertions and deletions. It,δ′ has constant
(possibly depending on δ′) rate m/t. Also, there exist a (global) constant c such
that for all It,δ′ as above satisfy the following “no overlapping” property. For
every pair of codewords (ws1, s2v), if |s1| = |s2| ≥ 2δm, then either ws1 = s2v,
or distE(s1, s2) ≥ 1.5δm. Furthermore, if |s1|, |s2| ≤ (1 − δ)m, then it must be
the case that distE(s1, s2) ≥ 1.5δm. The codes’ encoding and decoding complexity
is poly(m).

See full verion for a proof.
We will need the following version of the Chernoff’s bound.

Lemma 2. Let X1, . . . , X1 denote independent random variables, and let X =
∑

i Xi. Assume also that the support of each is [0, B], for some B > 0. Then for
ε > 0, we have

P r[|X − E(X)| ≥ εE(X)] ≤ e−Θ(ε2)E(X)
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2 Searching Sorted Lists with Corruptions

Some Discussion and Notation. As explained in the introduction, proving The-
orem 1 boils down to the developing a search algorithm on a sorted list with
(small) constant fraction ≤ δ of corrupted entries, making a polylog number of
queries to the list. The original list L∗ list is comprised from pairs of (i, ai) where
i is a unique key (before corruptions). The input to the algorithm is a key i, and
it should return a corresponding ai in its input list L. We require that for all lists
L∗, all L resulting from L∗ by modifying (no indel. operations!) a δ fraction of
entries, the algorithm returns ai on query i to L with probability 1 − neg(|L∗|)
for all but some 1 − cδ fraction of the (original) entries, for a constant c inde-
pendent of δ. Clearly, c can not be less then 1. In particular, if only the ai’s are
modified (keys are intact), there is no way to recover the original values.

Previous work. There exist algorithms in the literature in a similar setting with
stronger guarantees and worse parameters. For instance, [5,4] consider algorithms
that guarantee to recover ai for all values for which (i, ai) was not corrupted,
and if there is no key i in the sequence, corrupted or correct, the algorithm
should output “not found”. They prove that for such a stringent requirement,
any comparison-based algorithm, that accesses some Ω(log |L| + δ · |L|) loca-
tions errs on some input with probability at least 1/2.5 They demonstrate some
matching upper bounds, with parameters (almost) matching the lower bound.
Still, even for an algorithm matching the lower bound perfectly, for the range
of parameters where δ0 is a constant, the query complexity is Ω(|L|), which is
unacceptable in our case. The key for obtaining a (comparison based) algorithm
with query complexity polylog(|L|), is considering a setting with relaxed cor-
rectness guarantees as above. To the best of our knowledge, this setting had not
been considered before in the area of searching on sorted lists.

2.1 Our Approach

A Warmup - Random Error Locations. To gain intuition, assume that the
error locations were picked at random - each entry is corrupted with probability
δ ≤ δ0 = 0.2. Jumping ahead, for our application to LDC for edit distance, this
would happen if the insertions and deletions occurring are at random locations.

Assume that the success requirements of the algorithm need to only hold for
“most” error patters (allowing high failure rates for all queries for a small frac-
tion of error patterns). Then the following simple variant of binary search works.
Given a list of length m = |L|, proceed in levels, so that on every level we divide
the interval at hand into three equal intervals (start with the entire list). For the
middle interval, randomly and independently sample log2 m entries, and record
the fraction of keys smaller or larger then i, (s, b = 1 − s) respectively (for sim-
plicity of analysis, sample with repetitions). If some (i, a) element is found, we
5 This is a certain restatement of their theorem 5, in terms of the number of elements

involved in the comparison queries, rather then in terms of the number of compar-
isons made. The proof follows straightforwardly from their proof of that theorem.
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stop and return a corresponding to the first appearance of i found immediately.
Otherwise, return the corresponding a for the first such appearance and termi-
nate). If s, b ≥ 0.4, proceed with the middle interval recursively. Otherwise, if
s > b proceed with interval (2/3, 1) as the new interval, if b > s proceed with
(0, 1/3). We stop at intervals of size log2 m, and scan the entire interval; return
a corresponding to the first (i, a) in the interval, or ⊥ otherwise.

Quite straightforward analysis, implies that the above algorithm succeeds to
achieve its goal for all but a small fraction of error patterns. One type of error
is that of finding the wrong (i, a) and terminating the search (even if the correct
(i, a) is located in a different interval). All these errors may only occur for at
most 2δm of the keys i originally present in L. Those which were "duplicated"
elsewhere, and those that were modified into the new duplicates, possibly erasing
their own information.

For all other entries (keys) on which the algorithm may err, entries of the
form (i, a) only appear in the interval that originally contains an entry (i, a) for
that key, and thus this type of error may not occur. In that case, only errors due
to excluding an interval originally containing i at some point along the recursion
may occur - we refer to these as type 2 errors. This type of errors is slightly
trickier to bound - jumping ahead, it will occur with probability > neg(m) for
none of these other keys for this algorithm, and account for most of the errors
of the algorithm for general errors.

A crucial point is that the probability (over picking error patters uniformly at
random) that the search reaches an interval with density larger then 0.25 = 1.2δ0
fraction of errors for any searched key i is bounded by poly(m) · m−Θ(logm)) =
neg(m) (Chernoff + union bound). Here poly(m) is a bound on the number of
reachable nodes (for any key i) derived from 3log1.5(m) = mlog1.5(3) ≤ m2.71.6

It is easy to see that if the latter happens, at every step of the recursion, the
algorithm can make a type 2 error when moving to the next step of the recursion
with probability at most mΘ(− logm).

This holds since if i is in the first interval, (same holds for the 3rd interval),
and assuming the error density in interval 2 is indeed ≤ 0.25, then ≥ 0.75 fraction
of elements in 2 are bigger then i. Thus, having s ≥ 0.4 (necessary for b, s ≥ 0.4)
is highly unlikely - recalling (i, a) can not appear in interval 2 (we account
for such keys i in type 1 errors), s has expectancy of at most most 1/3. By
Chernoff bound, s ≥ 0.4 thus has negligible in m probability exp(−Θ(log2(m))).
Otherwise, getting s > b would require getting s ≥ 0.5 for same expected value
of 0.3 - again a exp(−Θ(log2(m))) probability.

Taking union bound over the path for any given key i, the overall error prob-
ability is O(log m · mΘ(− logm)) = neg(m).

6 To be precise, the graph in question is the union of the algorithm’s executions over
all possible keys i, and all possible error patterns that were present in the original
list. That is, V consists of list intervals potentially reachable at the various recursion
levels ran - 3i at the i’th level, until reaching those of size smaller then log2 m. The
graph edges E connect each node at level i, to each of the three nodes at level i + 1
that are sub-intervals of I .
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The General Case. The main difficulty is that for arbitrary error patterns, low
density of errors in all intervals in not guaranteed. Thus, a more sophisticated
analysis (for a somewhat more sophisticated algorithm, but quite along the lines
of the one above) is required. The parameters tolerated by the above algorithm
in this random errors setting are c = 2, and δ ≤ 0.2. The parameters we achieve
for general errors will be worse – c = 50, and δ bounded correspondingly (δ ≤ 1/c
to obtain any non-trivial correctness guarantee).

Formal specification of the model. Let us first fully formalize the setting in which
the search algorithm operates.

– The protocol is specified by an algorithm SL(i). It has oracle access to a list
L, resulting from a sorted list L∗ by modifying upto a constant δ fraction
of elements (possibly not respecting the original order). Let m′ denote an
approximation on |L| up to a factor of 2 (m′ is available to S, while the exact
m = |L| is not). The input is a key i to search.

– Oracle queries: There are two types of possible queries to the list.
1. (v0, v1), where (v0, v1) are fractional locations in the list, where v0 ≤ v1.

The entry (i, a) at a randomly selected location inside the interval is
returned. Query cost is 1.

2. (v0, v1, y). If the interval (v0, v1) is of (absolute) size y or smaller, the
sequence of all points in the interval will be returned. Otherwise, an error
is returned. Query cost is y (regardless of the query’s outcome).

– Output: Given a key i, such that (i, ai) was present in the original list (before
corruptions occurred), the correct output for it is ai.

– Goal: Maximize the worst case fraction of keys i originally present in the
list (before corruptions) for which the reply is correct with probability 1 −
neg(m). The total cost of queries made should be polylog(m) - we are not
trying to optimize the concrete complexity.7

Construction 3. Initialize the searched interval to I = (0, 1), Δ = 3 (or any,
other constant > 3), T = Δ, r = log2 m′. Repeat:

1. Make a type-2 query with (I, r). If it returns a sequence of points, and one
of them is of the form (i, a), return a corresponding to the first such i. Oth-
erwise, return ⊥. (we reached a short interval we can read completely)

7 Jumping ahead, to motivate the concrete choices in the model definition, recall
searching for some key i in list L is an abstraction for searching for the i’th block in a
corrupted codeword w, meant to make the analysis cleaner. The set of allowed queries
into L have been selected so that in the actual decoding algorithm we are able to
translate access to w′ into access to L. In particular, the cost of a query qL in the list
model corresponds to the number of symbols read by the LDC’s decoding algorithm
in a query corresponding to qL. In fact, to interface with the LDC’s decoding process,
we will need a slightly more involved, so called weighted list model (see full version).
We choose to present this simpler one as the search algorithm since it captures the
core ideas of searching in the weighted model. Also, our list searching abstraction
may be useful for other applications, where the extra generalization is an unnecessary
complication.
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2. Otherwise, divide I into T intervals I1, . . . , IT of equal size (up to ±1 due
to rounding). Sample r random locations in each of the intervals, resulting
in oi,1, . . . , oi,r for the i’th interval (via type-1 queries).
(a) If some sample is of the form (i, a), return a corresponding to the first

such i.
(b) Otherwise, for each interval, calculate the fractions s, b = 1−s of smaller

and larger then i sampled elements respectively. We say that interval j
votes against interval k, k > j for i , equivalently votes against (Ik, i) if
b ≥ 0.31 (for k < j, if s ≥ 0.31).Note that if Ij votes against (Ik, i), then
it votes against all (Ih, i) for h on the same side of Ij as lk. We then
say that Ij votes against its left (right) side on i. For every interval j,
we count the number of votes against (Ij , i) over all other intervals.

i. If there is exactly one interval with a minimum number of votes, fix
I to be that interval, and T = Δ.

ii. If there are two such adjacent intervals Ij , Ij+1 let I be their union.
Fix T = 2Δ.

iii. Otherwise, output ⊥ and terminate.

Theorem 2. Construction 3 is an algorithm for searching on sorted lists (in a
framework as defined above), tolerating a (small enough) constant8 δ fraction of
corruptions. For at least a 1 − 52δm fraction of the original lists’ elements, it
recovers them correctly with probability ≥ 1 − neg(m) (δ is the actual fraction of
corruptions that occurred). It makes queries of total cost O(log3 m).

See full version for a proof, here we briefly outline the main components of the
proof. Fix some list L and set of corruptions, and a searched key i. Assume
for simplicity that the length of the list, m′ is known, and that up to δ · m′

entries in the list are corrupted. There are two types of errors. The simple kind
is when a corrupted (i, a) is found, for which either i or a was modified. These
may lead to at most 2δm′ errors (due to not finding (i, a) that was changed
to (i′, a), or finding (i′, a) instead of a (i′, b) that was originally present in the
list). A more problematic kind of errors is due to not finding an uncorrupted
entry (i, b) because other (corrupted) entries made the search exclude it from
subsequent search at some recursion level l. These lead to the (large) constant
blowup in incorrectly recovered entries (beyond δm′). Our first step is identify
a set M of entries (i, a) for which an error (of either type) may occur which is
independent of the algorithm’s random choices. Then we bound the number of
elements that fall into M due to errors of the second type. A key concept we
use is that of a basic interval on a recursion level l - one Δl equal intervals in a
partition on L (up to rounding). For any input key i, nodes of 1 or 2 contiguous
intervals are considered on level l. A bad basic interval is one containing many
corrupted entries (say, a ≥ 0.3 fraction). We include all entries in bad intervals
in M , adding 10/3δm′ entries to M . Then, we prove that at a level l with l′

bad intervals, only 15 · l′ intervals I may contain uncorrupted keys for which
8 Construction 3 can also handle subs-constant in |L| δ with the same degradation

factors, but constant δ is the most interesting parameter setting.
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that interval is excluded from the search on input i (refer as “injured” entries).
As the number of levels is Θ(log |L|)), naively summing over all levels results in
Θ(log n · n) > n keys on which we err, which is not a meaningful bound. The
second key observation is that we should count the number of entries that are
injured on each level for the first time. To bound these, we refine the first bound,
and prove that newly injured entries on level l, Ml are in fact of size ≤ 15B′

l,
where B′

l is the set of level-l bad intervals not contained in bad intervals on
previous levels. The disjointness of the B′

l’s for different B′
l ’s yields the result.

We observe that our result and technique bear only superficial resemblance to
the result and technique of [3]. More precisely, one of their results is a property
tester for “sortedness” (in increasing order). That is, it accepts a sorted list,
and rejects a list that is log(|L|)ε-far in edit distance from any sorted list. Their
may technical observation that a list that is log(|L|)ε-far from sorted contains
a large fraction of “light” elements. Such elements are defined as list locations
i for which a (fixed) set of some O(log(n)) intervals contains at least one in-
terval I in which a large fraction of elements of I “vote” against L[i]. While
this observation easily induces a property-testing algorithm for ε-“sortedness”
making O(log(n)/ε) queries into L, it is unclear how to use it for searching in
a list which is ε − close to sorted. Also, note that while the property tester is
not adaptive, our searching algorithm is. Finally, the conceptual role of intervals
in the two algorithms is quite different. While they look for elements with some
interval “voting against it”, we distinguish an interval with the least number of
intervals voting against it, to continue with it to the next level of the recursion.
In particular we may continue even if all intervals are voted against the “right”
location for the input key i by some of the intervals. This idea seems key in
allowing to search lists that are far (up to constant fraction) from sorted.

3 Transforming Standard LDC into LDC for Edit
Distance

Let C1 : F
n
p → F

m
p denote a (δ1, n, ε)-LDC code for Hamming distance, and

C2 : F
m
p → F

h
p a corresponding SZ code. Let Q1 denote a suitable decoding

algorithm for C1. To transform C1 into an LDC for edit distance, we compose it
with C2 (as done in [11] for a standard ECC C1, and p = 2).

Recall that C2 : Fm
p → F

h
p on input w1, divides it into T = 	m/ log m
 blocks

w1,1, . . . , w1,T . Then there are t = 	(m/T + log m)/logp
 ≤ 	2 log m
 symbols
in a block. We let I = It,δ, where It,δ is as guaranteed by Lemma 1 (we are
not concerned that t needs to be “large enough”, wlog. we may consider only
codes starting with large enough n (m)). It outputs w2 = w2,1 ◦ . . .◦ w2,T , where
w2,i = I(i, w1,i). Denote the output length of I by mt(= O(log m)).

We claim that the code C2(C1) is a (δ′
1, q · polylog(m), ε + neg(m))-LDC for

edit distance, where δ′
1 = c · δ1, for some global constant c that depends only

on parameters of It. The decoder Q2 for C2 runs a straightforward simulation
of Q1, where the crux of technical difficulty is providing answers to Q1’s oracle
queries, using its own oracle. In slightly more detail.
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Construction 4. Decoding algorithm Q
w′

2
2 (i) :

1. Run Q·
1(i). When a query k into w′

1 is made:
– Calculate the index i ∈ [T ] of the block in which the k’th position in w2

is located (�k/T � + 1).
– Execute FindBlockw′

2(i) using some polylog(m) queries into w′
2. Let v =

(i′, w′
1,i) denote its reply. Read w1[k] from w′

1,i and forward it to Q1 as
the reply to its query.

2. Output the value that Q1 outputs.

That is, FindBlockw′
2(i) locates the i’th block of w2, decodes it via I as

some(i, a), where a is (hopefully) the i’th block of w1. As mentioned before, the
main difficulty is in searching for the block in w′

2. We do not know where it is
located in w′

2 (but only up to a distance of δ|w2| symbols, or so).
The high level idea is to somehow interpret w′

2 as a list of sorted elements with
corruptions (the sorting is by the index i written in each block), and run the
algorithm for sorted lists with corruptions on it. For this purpose, we should be
able to make “backwards” translations of the list searching algorithm’s queries
into reading portions of w′

2. In particular, we show that for small enough δ1,
blocks from w2 (= w′

2 before modifications) form 1 − O(δ1) of the induced list’s
elements, and appear in their correct order. It turns out that a slightly general-
ized abstraction of a weighted sorted list with certain restrictions on list weights
emerges. Fortunately we will be able to adapt our searching algorithm for un-
weighted lists to this more general setting. See full version for precise details.
We obtain our main theorem.

Theorem 3. Consider an (δ(n), q(n), ε(n))-LDC LH : F
n
p → F

m
p for Hamming

distance, where δ(m) is some constant9. Consider a code C2(C1) as defined at
the beginning of this section (given C1). This code is a (cδ, q · polylog(m, p), ε +
neg(m))-LDC LE : F

n
p → F

m
p for edit distance, where c is a (quite small) global

constant. The code rate degrades by a constant. Encoding and decoding efficiency
only degrades by a poly(n) factor.

The proof of this theorem follows by the construction outlined in this section.
Namely, the decoder for C2(C1) is outlined in Construction 4. FindBlockw′

2(i)
runs WSL′

2(i, T ), and implements its queries using oracle access to its own oracle
w′

2, as outlined in the full version of the paper. The various efficiency properties
of the resulting code follow from Lemma 1. The constant c is a product of two
constants resulting from the FindBlockw′

2 algorithm. The core of this algorithm
is a an algorithm for searching on weighted sorted lists with corruption. This
constant is comparable to the 1/52 loss we get in the algorithm for searching
unweighted lists 2. The other factor stems from the need to correct errors in I,
and to make sure that the word w′

2 indeed induces a list with a small (O(δ))
fraction of corruptions. This part is comparable to the fraction of errors tolerated
by I.
9 As opposed to our construction for searching on sorted lists with corruptions, here

we require that δ is not subconstant. Otherwise, the degradation in δ could be
superconstant in the actual error fraction δ.
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Abstract. This work extends the line of research on the hidden number
problem. Motivated by studying bit security in finite fields, we define the
multivariate hidden number problem. Here, the secret and the multiplier
are vectors, and partial information about their dot product is given.
Using tools from discrete Fourier analysis introduced by Akavia, Gold-
wasser and Safra, we show that if one can find the significant Fourier
coefficients of some function, then one can solve the multivariate hidden
number problem for that function. This allows us to generalise the work
of Akavia on the hidden number problem with (non-adaptive) chosen
multipliers to all finite fields.

We give two further applications of our results, both of which gener-
alise previous works to all (finite) extension fields. The first considers the
general (random samples) hidden number problem in Fpm and assumes
an advice is given to the algorithm. The second considers a model that
allows changing representations, where we show hardness of individual
bits for elliptic curve and pairing based functions for elliptic curves over
extension fields, as well as hardness of any bit of any component of the
Diffie-Hellman secret in Fpm (m > 1).

Keywords: hidden number problem, bit security, hardcore bits.

1 Introduction

The computational Diffie-Hellman assumption (CDH) states that for appropriate
groupsG, given values g, ga, gb ∈ G, the Diffie-Hellman secret gab is hard to com-
pute. However, this assumption does not rule out the possibility that some bits of
gab are predictable. This leads to interesting theoretical questions about the se-
curity of bits arising from computational problems. A useful language to express
these ideas is the hidden number problem. Informally, the hidden number problem
in a (multiplicative) groupGwith a (non-constant) function f defined overG is the
problem of recovering a hidden element s ∈ G given pairs (ti, f(sti)).

This problem was introduced by Boneh and Venkatesan [7] in order to study
bit security (specifically blocks of most-significant bits) of the Diffie-Hellman
secret. They were the first to prove hardness of bits for Diffie-Hellman key ex-
change. Today, this problem is studied in its own right and is of theoretical in-
terest, and also leads to practical results, outside the scope of the Diffie-Hellman
key exchange (see, for example, [10, 14]). It is most desirable to prove security
of the smallest possible blocks of bits (i.e., blocks of size 1).

c© Springer International Publishing Switzerland 2015
A. Lehmann and S. Wolf (Eds.): ICITS 2015, LNCS 9063, pp. 250–268, 2015.
DOI: 10.1007/978-3-319-17470-9_15
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Interested in the hidden number problem in (finite) extension fields, we study
the following variant of the hidden number problem, which we call themultivariate
hidden number problem. Here, the problem takes place over a ring R, on which a
function f is defined, and the secret s = (s1, . . . , sm) is an m-tuple in Rm. Infor-
mally again, the problem is recovering the secret s given pairs (ti, f(s · ti)), where
s · ti is the dot product of s and ti. That is, f(s · x) = f(s1x1 + · · · + smxm) for
x = (x1, . . . , xm) ∈ Rm.

This problem arises naturally from the following observation. Assume an or-
acle O gives partial information, e.g. one bit, of one (fixed) component of sx,
for a secret s and a multiplier x in Fpm . One would like to learn s. First, the
component can be expressed as a dot product s̃ · x for x ∈ (Fp)

m, a vector that
represents x, and some s̃ ∈ (Fp)

m. If one can learn s̃ given O(x) = bit(s̃ · x),
then the learner can solve the hidden number problem by computing s from s̃.

Previous Work

The hidden number problem has been extensively studied, and different variants
have been proposed throughout the years, as well as numerous extensions (for a
comprehensive overview of the different extensions, see Shparlinski’s survey [18]).
Boneh and Venkatesan [7] considered G = Z

∗
p for prime p and showed that the√

log p+log log p most-significant bits of the Diffie-Hellman secret gab are as hard
to compute as the whole secret. Their approach uses lattice basis reduction.
There is a considerable subsequent literature, including the case of extension
fields, but lattice methods are unable to obtain hardness results for single bits.

Significant progress resulted from the introduction of tools from Fourier anal-
ysis (learning theory) by Akavia, Goldwasser and Safra [3] (for a complete de-
scription, see Akavia’s thesis [1]). They showed that if one can find the heavy
Fourier coefficients of a function, then one can solve the hidden number problem
for that function. In addition, they built on the fundamental work of Goldreich
and Levin [13] and Kushilevitz and Mansour [15] and provided an algorithm
to find heavy Fourier coefficients of a function, under the membership queries
model. This new approach allows to consider hardness of single bits, even for
noisy oracles that only have a non-negligible advantage over the bias of the
function in question. Since these tools work under specific query-access models,
they can only be used to solve the hidden number problem when the solver has
the suitable access to the function.

This new approach, involving Fourier analysis, laid the groundwork for sub-
sequent interesting results in the study of bit security. Akavia [2] gave a solution
to the hidden number problem with chosen multipliers in the multiplicative
group of prime fields Fp for a family of functions, called concentrated functions,
where multipliers are chosen non-adaptively1 . Akavia also showed that the most-
significant-bit function is concentrated. Morillo and Ràfols [16] proved that, for
any integer 1 ≤ k ≤ log2(N), the k-th bit function on ZN is concentrated (they

1 As noted in [7], if we let “the queries be correlated” the problem already had a
known solution for a block of one bit “even when the oracle is noisy”.
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specifically considered N a prime or an RSA modulus). This can be combined
with Akavia’s result on concentrated functions.

By combining the above with the work of Boneh and Shparlinski [6], Duc and
Jetchev [9] showed the hardness of any single bit of elliptic curve and pairing
based functions for elliptic curves over prime fields, in a model that allows the
solver to change the representation of the group. In a similar model, Fazio,
Gennaro, Perera and Skeith [12] gave the first single bit hardness result for
Diffie-Hellman secrets in extension field – excluding hardness of the constant-
term component bits – where they considered the field Fp2 = Fp[x]/(x

2+Ax+B)
(with p a prime) using a polynomial basis representation. A very recent result
by Wang, Zhan and Zhang [20] generalised this work to extension fields Fpm ,
where m is polynomial in log p. As in [12], only polynomial basis representations
are considered in [20].

Our Contribution
Our contribution is first and foremost of a mathematical nature. We show that
if one can find heavy Fourier coefficients of a function f , then one can solve the
multivariate hidden number problem for f . This is done by proving an algebraic
relation between the Fourier transforms of f and fs, where fs(x) := f(s · x) as
above. Using the algorithm from [1,3], we give a solution to a chosen-multiplier
version of the multivariate hidden number problem for concentrated functions f
over Fp, where multipliers are chosen non-adaptively.

This allows us to generalise the solution to the hidden number problem with
chosen multipliers to all finite fields Fpm for concentrated functions, which in-
clude the k-th bit function of each component, for every 1 ≤ k ≤ log2(p).

We also give several application of our main results. We show how the results
can be used in different models, one of which is the “representation changing”
model. By constructing isomorphisms between representations of Fpm that forms
a dot product (as in the multivariate hidden number problem) in a specific com-
ponent, we show that changing field representations gives the required multipliers
needed to solve the multivariate hidden number problem, for concentrated func-
tions over Fp. Specifically, we prove hardness of any single bit of any component
for Diffie-Hellman secrets in Fpm . We do not restrict only to polynomial repre-
sentations. This result holds for general vector space representations and also
normal basis representations of Fpm . We also give bit security results for elliptic
curve and pairing based functions for elliptic curves over Fpm .

We stress that as with previous work our results are not sufficient to prove
(single) bit security of the classic Diffie-Hellman key exchange. This is due to the
fact that the chosen multipliers needed for these approaches cannot be obtained
when attacking the Diffie-Hellman protocol. However, one can obtain bit security
results for Diffie-Hellman and related schemes by considering algorithms with
advice, as was done by Akavia [2], for example.

Paper Organisation. The paper is organised as follows. Section 2 gives
definitions and some facts needed for our later results. Sections 3 and 4 are our
main theoretical contributions. In section 3 we introduce the multivariate hidden
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number problem and establish ourmain tool, to be used in Section 4, where we give
ourmain results: solutions to themultivariate hidden number problem overFp and
the hidden number problem in Fpm . Section 5 focuses on other applications. We
discuss two models in which our results can be applied, by giving the appropriate
background and summarizing recent results. We then show how one can use our
results to prove bit security in these models, and how it relates to previous work.

2 Preliminaries

2.1 Fourier Analysis on Finite Groups

Let (R,+, ·) be a finite ring and denote by G := (R,+) the corresponding addi-
tive abelian group. We are interested in the set of functions {f : R → C}. This
set of functions is a vector space (over the complex field), whose dimension is
|R|, since, for instance, the Kronecker delta functions {δi}i∈R

(
δi(j) = 1 if j = i,

otherwise δi(j) = 0
)
form a basis for this vector space; every function f : R → C

can be written as f(x) =
∑

i∈R f(i)δi(x). Let z denote the complex conjugate
of a complex number z. We define an inner product in this vector space by

〈f, g〉 := Ex∈R

[
f(x) · g(x)

]
= 1

|R|
∑

x∈R f(x) · g(x). The l2 norm of a function f

is ‖f‖2 :=
√
〈f, f〉.

A character of G is a group homomorphism taking values in the non-zero
complex numbers, namely χ : G → C

∗ such that χ(x + y) = χ(x)χ(y). Since
χ(x)|G| = χ(|G| · x) = χ(0G) = 1, we get that the characters take values in
the complex |G|-th roots of unity. Moreover, there are exactly |G| of them, so we
associate each character χ to a group element a ∈ G, yielding χa. That is, denote
by Ĝ the set (group) of characters of G, and consider the map ϕ : G → Ĝ, given
by ϕ(a) := χa. The map ϕ can be shown to be an isomorphism.

An alternative basis for {f : R → C} is the Fourier basis consisting of all
the characters χ. Standard facts in Fourier analysis on finite groups are: for the
trivial character χ0 ∈ Ĝ it holds that

∑
x∈G χ0(x) = |G|, and

∑
x∈G χ(x) = 0 if

χ0 	= χ ∈ Ĝ; in addition, these characters are orthogonal and have l2 norm of
1, hence the Fourier basis is an orthonormal basis. Therefore, we can represent
each function f : R → C as a linear combination of the characters χa. This
linear combination is given by f(x) =

∑
a∈G f̂(a)χa(x), where each coefficient is

the Fourier transform f̂(a) := 〈f, χa〉. Let χa be the conjugate to the character
χa. That is, χa(x) = χa(x).

For G = ZN we define the characters χa by χa(x) := e
2πi
N ax. For G =

ZN1 × ...×ZNm , let a = (a1, . . . , am) and x = (x1, . . . , xm); the character χa(x)

is given by χa(x) := χa1(x1) · ... · χam(xm) = e
2πi
N1

a1x1 · ... · e 2πi
Nm

amxm .
Let f : Zp → C and define the function fs : Zp → C by fs(x) := f(sx), for

s ∈ Z
∗
p. The well-known scaling property of the Fourier transform is the fol-

lowing relation between the Fourier transforms (with respect to the additive

group G = (Zp,+)) of f and fs: f̂s(z) = f̂(zs−1). This is a basic property of
the Fourier transform, which follows from the fact that χz(sx) = χzs(x). This
relation inspires our approach in Lemma 13, and so we see fit to show its proof.
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Lemma 1. Let s ∈ Z
∗
p, let f : Zp → C and define fs : Zp → C by fs(x) := f(sx)

for every x ∈ Zp. The Fourier transform of fs satisfies f̂s(z) = f̂(zs−1) for every
z ∈ Zp.

Proof. By definition of the Fourier transform we get that

f̂s(z) =
1

p

∑

x∈Zp

fs(x)χz(x) =
1

p

∑

x∈Zp

f(sx)χz(x) .

Since x′ := sx is a permutation of Zp, we change the order of summation and
sum over x′. Therefore,

f̂s(z) =
1

p

∑

x′
f(x′)χz(s

−1x′)

=
1

p

∑

x′
f(x′)e−

2πi
p z(s−1x′) =

1

p

∑

x′
f(x)e−

2πi
p (zs−1)x′

=
1

p

∑

x′
f(x′)χzs−1(x′) = f̂(zs−1) .

We now recall some definitions from [3, 9, 16]. The same definitions can be
made for functions over rings R where G is their additive group.

Definition 2 (Restriction). Given a function f : G → C and a set of char-
acters Γ , the restriction of f to Γ is the function f |Γ : G → C defined by

f |Γ :=
∑

χa∈Γ f̂(a)χa.

Definition 3 (Concentration). A function f : G → C is Fourier concentrated

if for every ε > 0 there exist a set Γ of poly
(
log

(
|G|
ε

))
characters, such that

‖f − f |Γ ‖22 ≤ ε.

Definition 4 (Heavy coefficient). For a function f : G → C and a threshold

τ > 0, we say that a coefficient f̂(a) (corresponding to the character χa) is

τ -heavy if |f̂(a)|2 > τ .

Theorem 5 (Akavia [1]). There is a probabilistic algorithm that given a finite
group G, a threshold τ > 0 and oracle query access to a function f : G → C,
finds all the τ-heavy Fourier coefficients. The algorithm runs in polynomial time
in log

(
|G|

)
, 1

τ and ‖f‖2.

The models of oracle access in this paper are discussed in Remark 8 below.

2.2 Finite Field Representations

Let F be a finite field. A known fact is that if F has q elements, then q is a power
of some prime p, that is, q = pm for a prime p and a positive integer m. Hence,
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we denote that field by Fq. Another known fact is that given a number q = pm

as above, there is a unique field with q elements, up to isomorphism. Yet, Fq

has different (all isomorphic to each other) representations. One representation
of a field Fpm is given by Fp[x]/ (h), where Fp[x] is the ring of polynomials with
coefficients in Fp, the polynomial h is a monic irreducible polynomial of degree
m in Fp[x], and (h) is the principal ideal generated by h. We emphasize that

there are also other representations, like the normal basis {θ, θp, θp2

, . . . , θp
m−1},

where θ is an element of the field such that this set is linearly independent, and
θp

m

= θ.
The field Fpm is a vector space of dimension m over the field Fp, equipped

with a bilinear inner product. For an aribtrary vector space basis of Fpm there
are m3 structure coefficients which determine the multiplication rule in Fpm . For
completeness we state and prove the following standard result.

Lemma 6. Let {b1, . . . , bm} be a basis of the vector space Fpm over Fp. For
elements u, v ∈ Fpm , let u, v be the coefficient vectors in F

m
p corresponding to

this vector space basis. There exist m invertible matrices M1, . . . ,Mm such that
uv =

∑m
k=1 wkbk, where each coefficient is given by wk = uMkv

T .

Proof. For a basis {b1, . . . ,bm} ⊆ Fpm , the structure coefficients determine the
product of all the basis elements. That is, bibj =

∑m
k=1 c

k
i,jbk, where cki,j are

the structure coefficients. Then, by the bilinearity of multiplication, we get that
a product of any two elements u =

∑m
i=1 uibi and v =

∑m
j=1 vjbj is of the form

uv =

m∑

i=1

ui

m∑

j=1

vj
(
bibj

)
=

m∑

i=1

ui

m∑

j=1

vj

m∑

k=1

cki,jbk =

m∑

k=1

m∑

i=1

uiṽki bk ,

where ṽki is a linear combination of the scalars vi with cki,j as coefficients. In
other words, by representing the multiplication of u and v as linear combination
of the basis elements – uv =

∑m
k=1 wkbk – every coefficient wk in this linear

combination is of the linear form u1ṽk1 + ...+umṽkm, where ui are the coefficients
of u. The existence of the matrices Mk follows.

Assume that Mk is not invertible, then there exists u 	= 0 such that uMk = 0.
Hence, for every v, the coefficient wk = 0. Let u 	= 0 be the field element
corresponding to u. We get that multiplication by u is not an injection. Therefore
u is a zero divisor – a contradiction.

2.3 Hidden Number Problem

The hidden number problem was introduced in [7] in order to study the bit se-
curity of Diffie-Hellman key exchange. The relation between the two is explained
in Remark 9 below. The problem was introduced over the multiplicative group
Z
∗
p, but it can be generalised to arbitrary finite (abelian) groups. Since our ap-

plications involve single bit functions, we present the problem with a single bit
function.
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Definition 7 (Hidden Number Problem (Single Bit)). Let (G, ·) be a
group, let s 	= 0 be a secret element of G and let f : G → {−1, 1}. The goal
is to find the secret element s using oracle access to the function fs(x) := f(sx).

Remark 8 (Access models). We use the term oracle access as a general term for
any of the following oracle models. We follow the language from [17] in describing
the oracle access models in this paper. When we write query access we refer to
the membership queries model, where the learner can query the function on any
input x ∈ G and receive the sample (x, fs(x)). In the uniform distribution model,
the learner has access to a random source of samples: at each time the learning
algorithm queries, a random input x ∈ G is chosen uniformly, and the sample
(x, fs(x)) is returned to the algorithm.

Models of HNP. We adopt the notation from [6] and write HNP-CM for a
chosen-multiplier version of the hidden number problem, which is under the
membership queries model. That is, in HNP-CM the learner can query the func-
tion on any input. We emphasize that in this paper, unlike [6], any queries in
this model are made non-adaptively. This means that the algorithm first chooses
all its queries, and after receiving the response starts its process. This is opposed
to adaptive queries, where the queries may depend on the secret s and are ad-
justed during the process of recovering s. When a solver can choose multipliers
adaptively the problem already has a solution (based on the work in [5], and
later [4]).

In the original (more general) variant of the hidden number problem, which
we denote by HNP, the oracle access is in the uniform distribution model. That
is, the solver only gets pairs (ti, fs(ti)), for d elements t1, . . . , td ∈ G chosen
independently and uniformly at random. This is probably the most frequently
discussed variant of the hidden number problem.

Unfortunately, the algorithm in Theorem 5 cannot be used in the uniform
distribution model, and therefore cannot be used to solve HNP. The upside of
Theorem 5 is that it is strong enough to handle oracles that only have a non-
negligible advantage over the bias of the function in question. That is, the results
hold even for a noisy oracle, i.e., an oracle that does not give a correct answer all
the time, but with some probability. Since this work focuses on a mathematical
framework, we do not elaborate on this noise model. The interested reader can
look at [1, 3, 9, 16].

Remark 9. One historical motivation for the hidden number problem is the fol-
lowing. Given a group G, an element g in the group and the values ga and gb,
the shared Diffie-Hellman secret s is the value s = DHg(g

a, gb) = gab. Notice
that one can choose a number k and calculate gk, then by multiplying gk and
ga, one gets gagk = ga+k. An active attacker in the static Diffie-Hellman pro-
tocol (where Bob always uses a fixed value gb), who has access to some bit of
the shared secret, can send the value ga+k to Bob, so that Bob calculates the
value (ga+k)b = gabgbk = sgbk and we notice that the attacker can calculate the
value gbk by (gb)k, yielding the (uniformly distributed) multiplier for the secret
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(in the hidden number problem). The attacker’s goal (computing s) is exactly
the hidden number problem.

An alternative interpretation is to consider a Diffie-Hellman oracle. Suppose
we have an oracle that on input gx and gy outputs some bits of gxy. We can
query this oracle on gb and ga+k for several k’s, and if we can solve the hidden
number problem, we can find the secret s = gab.

Terminology. Adopting the language from [2], we say that an algorithm (l, δ, t)-
solves the (multivariate) hidden number problem if the number of queries to the
oracle is at most l, the algorithm outputs the hidden number s with probability
at least δ, and the running time is at most t. We say that an algorithm solves the
(multivariate) hidden number problem if 1

δ , l and t are polynomials in log
(
|G|

)
.

We now recall the main result of Akavia [2] and sketch its proof. A full proof
can be found in [2] (with a different terminology of the hidden number problem;
for more details see our discussion in Section 5.1). We divide the result into two
parts. Theorem 10 shows that an algorithm that learns heavy Fourier coefficients
of functions over Fp, leads to a solution to the hidden number problem in Z

∗
p.

Corollary 11 shows how to solve (with non-adaptive queries) HNP-CM for con-
centrated functions in Zp. The ability to choose multipliers in HNP-CM is what
allows one to have the oracle query access needed in applying the algorithm from
Theorem 5, which allows to solve the hidden number problem.

Theorem 10 ([2]). Let A be an algorithm that learns the τ-heavy Fourier coef-
ficients of functions defined over Fp. For any concentrated2 function f : Fp →
{−1, 1}, there exists an algorithm that solves the hidden number problem in Z

∗
p.

Proof sketch. Let fs : Fp → {−1, 1} be the function from the hidden number
problem, i.e., fs(x) := f(sx). By the scaling property (Lemma 1) we know that
the Fourier coefficients of fs are simply the Fourier coefficients of f permuted by
s−1. One might imagine that it is easy to compute the lists of Fourier coefficents
of both f and fs and then match them up to deduce the permuting element s−1.
However, this is not an efficient task when p is large (in both aspects: computing
and comparing). This is where the idea of using concentrated functions is crucial.
Instead of computing all the Fourier coefficients we just locate the τ -heavy ones
for suitable τ , using the learning algorithm A on both f and fs. These lists are
short (by Parseval) and so matching up the values to find the permutation factor
s−1 is efficient.

Corollary 11 ([2]). For any concentrated3function f : Fp → {−1, 1}, there
exists an algorithm that solves HNP-CM in Z

∗
p, where the queries are made non-

adaptively.

Akavia proved that the most-significant-bit function MSB : Zp → {−1, 1}
is concentrated, and hence proved that HNP-CM in Z

∗
p with the MSB function

2 In [2], a different definition of concentration is taken. We use the definition from [3].
Both papers use the same method to obtain the proof of Theorem 10.

3 See previous footnote.
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can be solved. Later on, Morillo and Ràfols [16] proved that, for any integer
1 ≤ k ≤ log2(p), the k-th bit function on Zp is concentrated. Therefore, HNP-
CM in Z

∗
p can also be solved with these functions.

3 Multivariate Hidden Number Problem

In this section we define our variant of the hidden number problem, which we
call the multivariate hidden number problem, and then introduce the tool that
helps us solve this problem.

Definition 12 (Multivariate Hidden Number Problem (Single Bit)).
Let R be a ring, let s = (s1, . . . , sm) 	= (0, . . . , 0) be a secret in Rm, and let
f : R → {−1, 1}. The goal is to find the secret s using oracle access to the
function fs(x) := f(s · x) = f(s1x1 + · · ·+ smxm).

For m = 1 the multivariate hidden number problem is simply the hidden
number problem. As noted in [18], a polynomial version of the hidden number
problem (poly-HNP) can be considered. This polynomial version can be seen as
a special case of the multivariate hidden number problem. As above, we write
MV-HNP-CM for a chosen-multiplier version of the multivariate hidden number
problem, and MV-HNP for uniformly random multipliers.

The following lemma gives a relation between the Fourier transforms of fs
and f , analogous to the relation in Lemma 1 (scaling property). This lemma
may be of independent interest.

Lemma 13. Let f : Zp → C, let s = (s1, . . . , sm) ∈ Z
m
p be such that not all

si = 0, and define fs : Z
m
p → C by fs(x) := f(s · x). For any sk 	= 0, the Fourier

transform of fs satisfies

f̂s(z1, . . . , zm) =

{
f̂(zks

−1
k ) if zj − zks

−1
k sj = 0, ∀1 ≤ j 	= k ≤ m;

0 otherwise.
(1)

Proof. Recall that a character in Zp is defined by χa(x) = e
2πi
p ax and that for

an element a = (a1, . . . , am) ∈ Z
m
p the character χa(x) is given by χa(x) =∏m

i=1 χai (xi). Therefore, for 1 ≤ k ≤ m, we have

χ(a1,...,am) (x1, . . . , xm) =

m∏

i=1

χai (xi) =
∏

i�=k

χai (xi)χak
(xk)

= χ(a1,...,ak−1,ak+1,am)(x1, . . . , xk−1, xk+1, xm)χak
(xk) .

Assume without loss of generality that sm 	= 0. Then, f̂s (z1, . . . , zm) =

1

pm

∑

(x1,...,xm)∈Zm
p

fs (x1, . . . , xm)χ(z1,...,zm) (x1, . . . , xm)
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=
1

pm

∑

x1,...,xm∈Zp

f (s1x1 + · · ·+ smxm)χ(z1,...,zm) (x1, . . . , xm)

=
1

pm

∑

x1,...,xm−1

∑

xm

f (s1x1 + · · ·+ smxm)χ(z1,...,zm−1) (x1, . . . , xm−1)χzm (xm)

=
1

pm

∑

x1,...,xm−1

χ(z1,...,zm−1)(x1, . . . , xm−1)
∑

xm

f(s1x1 + · · ·+ smxm)χzm(xm) .

Since x′
m := smxm is a permutation of Zp, we change the order of summation

and sum over x′
m. Therefore, f̂s (z1, . . . , zm) =

1

pm

∑

x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1) ·

∑

x′
m

f
(
s1x1 + · · ·+ sm−1xm−1 + x′

m

)
χzm

(
s−1
m x′

m

)
.

Let y := s1x1 + · · ·+ sm−1xm−1 + x′
m, so that f

(
s1x1 + · · ·+ sm1xm1 + x′

m

)
=

f (y). We get that f̂s (z1, . . . , zm) =

1

pm−1

∑

x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1) ·

1

p

∑

y

f (y)χzm

(
s−1
m (y − s1x1 − · · · − sm−1xm−1)

)

=
1

pm−1

∑

x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1) ·

1

p

∑

y

f(y)χzms−1
m

(y)χ(−zms−1
m s1,...,−zms−1

m sm−1) (x1, . . . , xm−1)

=
1

pm−1

∑

x1,...,xm−1

χ(z1−zms−1
m s1,...,zm−1−zms−1

m sm−1) (x1, . . . , xm−1) f̂
(
zms−1

m

)

= f̂
(
zms−1

m

) 1

pm−1

∑

x1,...,xm−1

χ(z1−zms−1
m s1,...,zm−1−zms−1

m sm−1) (x1, . . . , xm−1) .

The last sum equals 0 unless the character χ(z1−zms−1
m s1,...,zm−1−zms−1

m sm−1)
is

the trivial character in Z
m−1
p , in which case it equals pm−1.4 Therefore we get

that f̂s(z1, ..., zm) = f̂(zms−1
m ) when zj − zms−1

m sj = 0 for all 1 ≤ j ≤ m− 1 and

otherwise f̂s(z1, ..., zm) = 0, as stated in (1).

The interesting property of fs(x) is that its Fourier coefficients are equal to
zero outside the line (x1, . . . , xm) = (ts1, . . . , tsm) for t ∈ Zp. Along this line

4 Recall that
∑

x∈G χ(x) = 0 if χ0 �= χ ∈ Ĝ, and for the trivial character χ0 ∈ Ĝ we
get

∑
x∈G χ0(x) = |G|.
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the Fourier coefficients of fs(x) are those of f(x). So it is like the graph of the
Fourier spectrum of f(x) is drawn along a diagonal line in the space Z

m
p .

We now give our main tool that allows to attack the multivariate hidden
number problem using Fourier learning. Denote by Heavyτ (f) = {ci | |f̂(ci)|2 >
τ} the list that represents all τ -heavy Fourier coefficients of f .

Proposition 14. Let f : Zp → {−1, 1}, let s = (s1, . . . , sm) ∈ Z
m
p be such that

not all si = 0, and let fs : Z
m
p → {−1, 1} be the function fs(x) := f(s ·x). Then,

Heavyτ (f) = {c1, . . . , ct} if and only if Heavyτ (fs) = {(cis1, . . . , cism)|1 ≤ i ≤ t}.
In other words, a coefficient f̂s(z1, . . . , zm) of fs is τ-heavy if and only if there

exists 1 ≤ i ≤ t such that zj = cisj for every 1 ≤ j ≤ m and f̂(ci) is τ-heavy.

Proof. The claim follows from Lemma 13. Let 1 ≤ k ≤ m such that sk 	= 0.
Assume c ∈ Heavyτ (f) and consider the vector (z1, . . . , zm) = (cs1, . . . , csm).
Specifically zk = csk, so c = zks

−1
k and therefore for every 1 ≤ j ≤ m one

gets zj = csj = zks
−1
k sj or zj − zks

−1
k sj = 0. From Lemma 13 we get that

f̂s(cs1, . . . , csm) = f̂s(z1, . . . , zm) = f̂(zks
−1
k ) = f̂(c). Therefore, we get that

(cs1, . . . , csm) ∈ Heavyτ (fs). That is,

|f̂(c)|2 > τ =⇒ |f̂s(cs1, . . . , csm)|2 > τ .

Conversely,

|f̂s(z1, . . . , zm)|2 > τ =⇒ f̂s(z1, . . . , zm) 	= 0

=⇒ zj = zks
−1
k sj for every 1 ≤ j ≤ m

=⇒ zj = csj for c = zks
−1
k ∈ Zp

=⇒ f̂(c) = f̂(zks
−1
k ) = f̂s(z1, . . . , zm)

=⇒ |f̂(c)|2 > τ .

That is, the coefficient f̂s(z1, . . . , zm) is τ -heavy if and only if there exists 1 ≤
i ≤ t such that zj = cisj for every 1 ≤ j ≤ m and f̂(ci) is τ -heavy.

Corollary 15. Let f be a function defined over Zp, let s = (s1, . . . , sm) ∈ Z
m
p

be a secret, and let fs be a function over Z
m
p defined by fs(x) := f(s · x). The

function f is concentrated if and only if the function fs is concentrated.

Proof. LetΓ be a set of characters ofZp, anddefineΓs := {χa |a = (as1, . . . , asm),
χa ∈ Γ} to be the corresponding set of characters ofZm

p . The proof is evident, since
∑

a∈Γs
|f̂s(a)|2 =

∑
a∈Γ |f̂(a)|2.

4 Main Results

In this section we show that an algorithm that learns heavy Fourier coefficients
of functions over finite abelian groups, leads to solutions to the multivariate
hidden number problem over Fp and to the hidden number problem in Fpm .
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Theorem 16. Let A be an algorithm that learns the τ-heavy Fourier coefficients
of functions defined over finite abelian groups. For any concentrated function
f : Fp → {−1, 1}, there exists an algorithm that solves the multivariate hidden
number problem over Fp.

Proof. The proof follows from Proposition 14 and the proof of Theorem 10. Since
the function f is concentrated, we can run the learning algorithm A (on f) in
the group Zp. When p is very small we can just compute the list of all Fourier
coefficients. When p is large we can experiment with the learning algorithm (in
polynomial time) to choose a suitable threshold τ , so that one can obtain in
polynomial time in log(p) a short list of τ -heavy coefficients of f .

From Corollary 15, the function fs is concentrated, so running the learning
algorithm A (on fs with the same threshold τ) in the group Z

m
p outputs in

polynomial time in log(pm) = m log(p) the list of τ -heavy coefficients of fs. We
use the relation between the (τ -heavy) coefficients of fs and f from Proposition
14 and follow the same process from the proof of Theorem 10 to recover the
secrets s1, . . . , sm.

Since the algorithm from Theorem 5 can learn heavy Fourier coefficients for
functions over arbitrary finite fields in the membership queries model, even in
the presence of noise, we get the following:

Corollary 17. For any concentrated function f : Fp → {−1, 1}, there exists an
algorithm that solves MV-HNP-CM over Fp, where the queries are made non-
adaptively.

Proof. Take A to be the algorithm from Theorem 5 and apply Theorem 16.

We turn from the multivariate hidden number problem to the hidden number
problem. Recall that the hidden number problem in the group (R∗, ·) considers
the multiplication in R, and not the dot product used in the multivariate hidden
number problem. We now consider R = Fpm as a vector space. Given a basis
of Fpm we represent an element a ∈ Fpm by its components vector (related to
the given basis): a = (a1, . . . , am). We use Lemma 6 to show that for every
1 ≤ i ≤ m, the i-th component of the product as (for a, s ∈ Fpm) can be
represented as aMis

T , whereMi is an invertible matrix. Therefore, for a function
F over Fpm we have Fs(a) := F (sa) = F (aM1s

T , . . . , aMmsT ). Note that this
is a general property of Fpm as a vector space, and therefore applies to all types
of field representation. Hence, the following theorem can be applied for normal
bases, polynomial bases or any other vector space basis for Fpm .

Theorem 18. Let A be an algorithm that learns the τ-heavy Fourier coefficients
of functions over finite abelian groups. Fix 1 ≤ i ≤ m, and let f : Fp → {−1, 1}
be a concentrated function. For any function F : Fpm → {−1, 1} given by F (x) =
F (x1, . . . , xm) := f(xi), there exists an algorithm that solves the hidden number
problem in Fpm .

Proof. Let s ∈ Fpm be the secret element in the hidden number problem, written
as s = (s1, . . . , sm) with respect to any vector space basis of Fpm . Fix 1≤i≤m
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and consider the i-th component in F
m
p . Lemma 6 shows that for each multiplier

a ∈ Fpm (written as a = (a1, . . . , am)) in the hidden number problem we can rep-
resent the i-th component of the product as by aMis

T =
∑m

j=1 aj s̃j , where s̃j :=(
Mis

T
)
j
. Therefore Fs(x) := F (sx) = f(s̃1x1 + ...+ s̃mxm mod p). Thus, oracle

access to Fs(x) is equivalent to oracle access to f(s̃1x1+ ...+ s̃mxm mod p). The
latter is the multivariate hidden number problem over Fp with the concentrated
function f . By Theorem 16 we can solve this problem to retrieve s̃ = (s̃1, . . . , s̃m).

Since the matrix Mi is invertible, and since aMis
T =

∑m
j=1 aj s̃j = a · s̃T , we

can recover the secret s by sT = M−1
i s̃T , that is, s = s̃

(
M−1

i

)T

.

Corollary 19. Fix 1 ≤ i ≤ m, and let f : Fp → {−1, 1} be a concentrated
function. For any function F : Fpm → {−1, 1} given by F (x) = F (x1, . . . , xm) :=
f(xi), there exists an algorithm that solves HNP-CM in Fpm , where the queries
are made non-adaptively.

Remark 20. One should notice that, having the ability to query the function
at specific points, one can easily reduce the m-dimensional problem to m one-
dimensional instances, then solve them one-by-one using back substitution of
previous parts that were recovered. This is in fact how the algorithm from The-
orem 5 works over direct product of groups.

Remark 21. We stress that our methods do not hold for the elliptic-curve-based
hidden number problem. One of the reasons that these methods do not work in
the elliptic curve case is that, unlike F

∗
pm , the elliptic curve group law in E(Fq)

is not of a bilinear form s · x.

5 Applications

In this section we give several applications, under different models, of our main
results. These applications generalise previous bit security results to all exten-
sion fields. In Section 5.1 we generalise the work of Akavia [2] on the hidden
number problem in prime fields. In Section 5.2 we generalise the works of Fazio
et al. [12] on bit security of CDH in Fp2 and of Duc and Jetchev [9] on hardness of
individual bits of elliptic curve and pairing based functions for elliptic curve over
prime fields. We show how to reduce each problem to the form of MV-HNP-CM.
The bit security results follow from the solutions given in the previous section.

5.1 Solving the Hidden Number Problem in F
∗
pm with Multipliers

of the Form gx Using Advice

The idea of using advice to solve different variants of the hidden number problem
was first considered by Boneh and Venkatesan [8]. Using advice bits, independent
of the secret s, they were able to solve the hidden number problem with uniformly
random samples in prime fields Fp for a function that outputs the 2 log log pmost-
significant bits. Shparlinski and Winterhof [19] modified this work to extend the
result to certain subgroups of Fp, also under the provided advice.
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The terminology of Corollary 11 above is slightly different than given in [2].
There, the following variant of the hidden number problem is considered: the
solver chooses values x and the multipliers for the secret s are of the form gx.
This is the original formulation of the hidden number problem in [7], which has
in mind attacks on Diffie-Hellman key exchange (see Remark 9 above for more
details). Clearly, this problem is harder than HNP-CM, since one has to solve
certain discrete logarithms (to the base g) in order to be able to choose the right
multipliers. For this reason an additional advice was considered in [2]. This short
advice depends only on p and g (and not on the secret s) – it is exactly certain
discrete logarithms.

Since Corollary 19 is a generalisation of Corollary 11 to extension fields, our
results hold for this variant of the hidden number problem. That is, we get the
following result.

Corollary 22. Let 1 ≤ i ≤ m, let f : Fp → {−1, 1} be concentrated. For
any function F : Fpm → {−1, 1} given by F (x) = F (x1, . . . , xm) := f(xi),
there exists an algorithm that solves with advice the hidden number problem with
multipliers of the form gx in the group F

∗
pm .

As shown in [8] and then discussed in [2, 19] this result can be applied to
show bit security of ElGamal’s public key system and Okamoto’s conference key
sharing scheme.

5.2 Hardness of Every Single Bit of CDH by Changing
Representations

Diffie-Hellman key exchange and many other cryptographic protocols can be
considered for Fpm with m > 1. Hence, it is of interest to consider bit security
results in that context. It is also interesting to consider bit security for elliptic
curve groups E(Fq).

The idea of changing representations to show hardness of bits of Diffie-Hellman
secrets was first considered in [6] for Weierstrass equations of elliptic curves
(defined over prime fields). They show the hardness of the least-significant bit
of a Diffie-Hellman secret S in E(Fp) under a very strong model, in which the
solver not only gets the value f(S) (and therefore the value f(S + P ) for points
P ∈ E(Fp), as explained in Remark 9 above),5 but also gets the values f(φ(S)),
where φ(S) is the image of the point under an elliptic curve isomorphism φ :
E(Fp) → E′(Fp) to a different Weierstrass model, for isomorphisms that can
be chosen by the solver. This idea was followed in [9] for elliptic curves defined
over prime fields, where hardness of single bits of elliptic-curve-based functions is
considered, and in [12,20] for extension fields in polynomial basis representation,
where hardness of single bits of (polynomial-represented) Diffie-Hellman secrets
is considered.

5 In [6] the function f is the least-significant-bit function LSB : Zp → {−1, 1}.
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CDH in Fpm with Field Isomorphisms. In [12] the field Fp2 is considered.
Succinctly, when one considers the leading-coefficient component (coefficient of
x), they show how one can choose multipliers by taking appropriate field iso-
morphisms to another polynomial basis. Let K = k1x + k0 ∈ Fp2 be unknown
(recall that k1, k0 ∈ Fp), and suppose one is interested to learn the secret value
k1. Any isomorphism φ : Fp2 → Fp2 of polynomial representations of the finite
field maps K to φ(K) = λ1k1x + λ0k1 + k0, for λ1, λ0 ∈ Fp. Therefore, in a
model for which one has oracle access to a single bit of the x-component after
any such chosen isomorphism (therefore, chosen λ1, λ0), we get HNP-CM in Fp.

The case of the constant-term component (coefficient of x0) was left open,
as well as the case of extension fields Fpm where m > 2. In [20] some steps
are taken to close this gap. They generalise the result of [12] to extension fields
Fpm .6 This is done by similar methods that give rise to HNP-CM in Fp, where
the secret is one of the components ki. As in [12], the constant-term component
k0 is excluded.

For the case in which K = gab is a Diffie-Hellman secret in Fpm , one can use
the results involving summing functions from [11] and recover the entire secret
K from the algorithm that recovers a single (fixed) component ki.

Remark 23. Such models give some assurance that bits in the Diffie-Hellman
protocol are hard. The results can be interpreted as follows: considering Diffie-
Hellman key exchange over an elliptic curve (resp. a finite field), specific bits
of the secret key cannot be easy to compute for all (in fact, for a non-negligble
fraction of) the representations of the elliptic curve (resp. polynomial representa-
tions of the field) at once. That is, given the bit we wish to compute, there exists
a representation for which this bit is hard to compute. However, this model does
not prove anything about a fixed representation of the elliptic curve or finite
field. It does not give any assurance of hardness of a specific bit of a specific
group representation.

We show that under the representation changing model in arbitrary extension
fields Fpm one can recover directly the secret K using our solution to MV-HNP-
CM. For K = gab, a Diffie-Hellman secret in Fpm , this shows hardness of any bit
of any component, under the specified model. This result improves the results
of Fazio et al. [12] and Wang et al. [20] by showing a direct reduction from
the computational Diffie-Hellman assumption, with no intermediate steps. In
addition, the result holds for all extension fields Fpm . This allows us to consider
the case of large m, and in particular the case of fields with small characteristic.

Moreover, we do not restrict only to polynomial bases. The result holds for
general vector spaces and normal bases. Polynomial bases are more restrictive
and do not allow to recover the entire secret directly, since the isomorphisms
restrict the multipliers of the constant term. Note that there is no particular

6 In [20] they specifically consider Fpm where m is polynomial in log p. They also show
that if oracle access to a single bit of the constant-term component in Fp2 is given,
then one can recover the secret value k1.
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reason to choose polynomial bases to represent Fpm , so we recommend to use
normal bases to get efficient field arithmetic and the strongest bit security result.

We now state our result for the Diffie-Hellman protocol. Note that in fact this
result holds for any secret element in Fpm .

Corollary 24. Let s = DHg(g
a, gb) = gab be a Diffie-Hellman secret in Fpm .

Given g, ga, gb ∈ Fpm , computing a single bit of s in a random vector space or
normal bases representation of Fpm is as hard as computing s. In other words, an
algorithm that has a non-negligible advantage over a random guess in computing
a single bit of s (in a random vector space or normal bases representation of
Fpm) can be used to efficiently compute s.

Proof. Let s ∈ Fpm be a secret with components s1, . . . , sm ∈ Fp. Assume
one has oracle access to a bit of component j of elements in Fpm . Given λ =

(λ1, . . . , λm) ∈ F
m
p , one needs to construct an isomorphism φj

λ : Fpm → Fpm

between representations of the finite field such that component j of φj
λ(s) is of

the form λ1s1 + · · ·+ λmsm. The result then follows.
Recall that Fpm is a vector space of dimension m over the field Fp, that

has different types of representations. We briefly discuss the construction of a
suitable isomorphism in the cases of interest.

General Vector Space F
m
p . Let B1 = {v1, . . . , vm}, B2 = {u1, . . . , um} be two

bases of Fm
p . The mapping φj

λ of an element s = s1v1+ · · ·+smvm should satisfy

φj
λ(s) = (∗)u1 + · · ·+ (λ1s1 + λ2s2 + · · ·+ λmsm)uj + · · ·+ (�)um .

Consider this linear map as a matrix. One can easily see that the j-th row of
this matrix should be (λ1 , λ2 , . . . , λm). In order for the matrix to be a full
rank map – therefore an isomorphism – it should be nonsingular. One can easily
construct such a linear map.

Normal Basis. Let B1 = {α, αp, . . . , αpm−1}, B2 = {β, βp, . . . , βpm−1} be two

normal bases of Fpm . The mapping φj
λ of an element s = s1α + · · · + smαpm−1

should satisfy

φj
λ(s) = (∗)β + · · ·+ (λ1s1 + λ2s2 + · · ·+ λmsm)βpj−1

+ · · ·+ (�)βpm−1

. (2)

Consider the linear map satisfying φj
λ(α) = λjβ + λj−1β

p + · · · + λj+1β
pm−1

(indices for λk are taken modulo m such that 1 ≤ k ≤ m, i.e., λ0 = λm and
λm+1 = λ1). Then

φj
λ(s) = φj

λ(s1α+ · · ·+ smαpm−1

) = s1φ
j
λ(α) + s2φ

j
λ(α)

p + · · ·+ smφj
λ(α)

pm−1

= s1(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)

+ s2(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)p + · · ·

+ sm(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)p
m−1
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= s1(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)

+ s2(λjβ
p + λj−1β

p2

+ · · ·+ λj+1β) + · · ·

+ sm(λjβ
pm−1

+ λj−1β + · · ·+ λj+1β
pm−2

) ,

where the last equality follows from βpm

= β for normal bases. After collecting

the terms for each βpk

(with 0 ≤ k ≤ m − 1) one gets (2). In order for φj
λ to

be an isomorphism, one needs to check that φj
λ(α)

pm

= φj
λ(α) and that the set

{φj
λ(α), φ

j
λ(α)

p, . . . , φj
λ(α)

pm−1} is linearly independent. This can be easily shown:
the former property follows from βpm

= β, while the latter from the linear inde-
pendence of the basis B2.

Remark 25 (Polynomial basis). Given a polynomial a = amxm−1+· · ·+a2x+a1,
one looks for an isomorphism φj

λ such that

φj
λ(a) = (∗)xm−1 + · · ·+ (λ1a1 + λ2a2 + · · ·+ λmam)xj−1 + · · ·+ (�)x0 .

For the constant polynomial 1 = 0 · xm−1 + · · · + 0 · x + 1 one gets that the
coefficient of xj−1 of the polynomial φj

λ(1) is λ1, i.e., φ
j
λ(1) = λ1x

j−1+ . . . . Since
an isomorphism maps the identity element to the identity element, it follows
that if j 	= 1, then λ1 has to be 0, and if j = 1, then λ1 has to be 1. Therefore,
when using polynomial representations, one cannot choose multipliers for s1 and
therefore cannot recover the secret s1 using the solution to MV-HNP-CM. One
can still try to recover some, or all, of the other coefficients using the method
to solve MV-HNP-CM. We leave it for future work – it is an open problem to
construct isomorphisms that give rise to the required multipliers even for some
coefficients.

CDH in E(Fpm) with Changing Weierstrass/ Field Representations.
Let E be an elliptic curve over a field Fpm and let S = (sx, sy) ∈ E(Fpm)
be a secret point. We wish to learn S using oracle access to some function on
changed representations of S. Such results have applications for CDH and pairing
functions on elliptic curves.

The simplest approach is to assume we can get a bit of a component of sx
under changes of field representation. The result then follows from the methods
of Section 5.2.

If we cannot change the field representation, then we can change the Weier-
strass equation as was done by Boneh and Shparlinski [6]. Suppose E is given
by the Weierstrass Equation W : y2 = x3 +Ax+B. For a non-zero λ ∈ Fpm let
Wλ : Y 2 = X3 + Aλ4X + Bλ6. The map φλ : W → Wλ that takes P = (x, y)
on W to Pλ = (λ2x, λ3y) on Wλ is known to be an isomorphism of groups. The
image of the point S = (sx, sy) ∈ W under φλ is φλ(S) = (λ2sx, λ

3sy).
One can see that if t is a quadratic residue in Fpm , that is t = λ2 for some

λ ∈ Fpm , then by considering only the x-coordinate, the function φλ allows to
choose multipliers for the secret. That is, φλ(S)x = sxt, where sx, t ∈ Fpm .
Therefore, changing Weierstrass equations allows to choose multipliers for the
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secret, as long as t is a quadratic residue in Fpm . Due to the work in [9] for elliptic
curves defined over prime fields, this is sufficient to solve HNP-CM in Fpm . A
similar approach holds for the y-coordinate. Using the solution to HNP-CM in
Fpm given in Corollary 19, this forms bit security results as in [9] for elliptic
curves defined over extension fields E(Fpm). Since the solution to HNP-CM in
Fpm given in Corollary 19 does not take into account the representation of the
field Fpm , this result holds for any such representation.

These arguments give the following result, which we state for the Diffie-
Hellman protocol, but can also be stated for elliptic-curve-based one-way func-
tions and pairing-based one-way functions as in [9], and in fact holds for any
secret element in E(Fpm).

Corollary 26. Let S = DHP ([a]P, [b]P ) = [ab]P be a Diffie-Hellman secret in
E(Fpm). Given P, [a]P, [b]P ∈ E(Fpm), computing a single bit of S for a random
representation ofE(Fpm ) or a randomrepresentation ofFpm is as hard as computing
S. In other words, an algorithm that has a non-negligible advantage over a random
guess in computing a single bit of S (for a random representation of E(Fpm) or a
random representation of Fpm) can be used to efficiently compute S.

Acknowledgements. We thank the anonymous referees for their helpful
comments.
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Abstract. When analyzing lattice-based cryptosystems, we often need
to solve the Shortest Vector Problem (SVP) in some lattice associated
to the system under scrutiny. The go-to algorithms in practice to solve
SVP are enumeration algorithms, which usually consist of a preprocess-
ing step, followed by an exhaustive search. Obviously, the two steps offer
a trade-off and should be balanced in their running time in order to min-
imize the overall complexity. In practice, the most common approach
to control this trade-off is to use block reduction algorithms during the
preprocessing. Despite the popularity of this approach, it lacks any well
founded analysis and all practical approaches seem to use ad hoc param-
eters. This weakens our confidence in the cryptanalysis of the systems.
In this work, we aim to shed light on at least one side of this trade-
off and analyze the effect of block reduction on the exhaustive search.
For this, we give asymptotic worst case bounds and present results from
both experiments and simulation that show its average case behavior in
practice.

1 Introduction

Lattice-based cryptography is a very active research area having attracted a
lot of attention in recent years. There are several reasons for this. On the one
hand, lattice problems seem very useful in the construction of new cryptographic
primitives. For example, they have been used to construct candidates for fully
homomorphic encryption [13] and multi-linear maps [12], making significant
progress on long standing open problems in cryptography. Furthermore, since
Ajtai showed in his breakthrough work [2] a worst-case to average-case reduc-
tion for lattice problems, many primitives have emerged that enjoy a strong
security reduction, see for example [23,3,28,21,22,14]. Finally, lattices have been
studied in mathematics and computer science for a long time and the hardness
of many associated problems is well understood by now. One of the most classi-
cal and prominent problems of this kind is the Shortest Vector Problem (SVP).
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The SVP has been proved to be NP-hard under randomized reductions [19,24],
and thus all known algorithms to solve it have a (super) exponential complexity.
Unfortunately, these algorithms are not very well understood. This is demon-
strated by the recurring phenomenon that, as already pointed out in [10], asymp-
totically fast algorithms are routinely outperformed in practice by algorithms
having inferior theoretical bounds. One such example are block reduction algo-
rithms (which actually approximate SVP, rather than solve it). In theory, slide
reduction [10] seems to offer the best trade-off between running time and output
quality, but is outperformed in practice by BKZ [29], as demonstrated in [11].
Such gaps between theory and practice weaken our confidence in the cryptanal-
ysis of lattice based cryptosystems and thus hinder a wide spread adoption in
practice.

Another example for such a gap are exact SVP algorithms. Sieving [4,6,26]
and Voronoi cell based algorithms [25] are known to have a single exponential
complexity, but they are hardly ever used to solve SVP in practice, since they are
outperformed by enumeration for all practically feasible instances (see e.g. [27]),
which is only known to have super exponential complexity in the worst case.
Even inside the class of enumeration algorithms, such gaps exist. For example,
for a long time, we only knew two kinds of enumeration algorithms that solve
SVP: FinckePohst [9] (including a wide range of heuristic variants) having a

worst case complexity of 2O(n2), and Kannan’s algorithm [18] with a complexity
of nO(n). But again, the latter is outperformed by the former in practice.

All known enumeration algorithms consist of two phases: a preprocessing that
prepares the input, followed by an exhaustive search for the shortest vector.
Roughly speaking, the exhaustive search is the source of the inefficiency for
these algorithms and the asymptotic superiority of Kannan’s algorithm stems
from a very heavy preprocessing, significantly reducing the search space. How-
ever, it is also exactly this preprocessing that slows it down in practice, even
though asymptotically it is dominated by the search step. Only very recently
it was shown how to reduce this preprocessing step while keeping the search
efficient [27]. On the other hand, it was already pointed out in [17], that spend-
ing more time on the preprocessing than the FinckePohst algorithm also makes
sense in practice. To demonstrate this, a block reduction algorithm was used
as the preprocessing to speed up the exhaustive search. The parameter of the
reduction algorithm that controls the quality of the output can be used to trade
off preprocessing time for a faster exhaustive search. A similar approach is also
used in [7] and represents the state of the art. Despite the popularity of this
method, to the best of our knowledge there is no well founded analysis of the
trade-off that can be achieved, and all practical approaches seem to use ad hoc
parameters.

Contribution. In this work, we aim to shed light on at least one side of the trade-
off between preprocessing and exhaustive search in enumeration algorithms by
obtaining explicit asymptotic bounds for the exhaustive search depending on the
kind and parameter of the approximation algorithm used as preprocessing. We
first show what a straight forward analysis might look like. While this already
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shows that the enumeration complexity drops from 2O(n2) to 2O((n2 log2 β)/β)

when preprocessing the basis with block size β, we will argue that this bound is
too rough by drawing a connection between enumeration on block reduced bases
with large block size and Kannan’s algorithm. We then build on techniques from
[27] to show that the enumeration complexity in fact drops to βO(n2/β). We also
hint at implications these bounds have for the complexity of the entire algorithm,
but leave an in depth analysis for future work. Instead, we move on to the
practical side and show through a number of experiments and simulations that
in practice the exhaustive search has a complexity qualitatively similar to the
asymptotic bounds. We hope that this work helps to further our understanding
of lattice algorithms and to ultimately lead to a wider adoption of lattice-based
cryptography in practice.

2 Preliminaries

Notation. Numbers and reals are denoted by lower case letters and sets by
upper case letters. For n ∈ Z+ we denote the set {1, . . . , n} by [n]. For vectors
we use bold lower case letters and the i-th entry of a vector v is denoted by
vi. Let 〈v,w〉 =

∑
i vi · wi be the scalar product of two vectors, and ‖v‖ =√

〈v,v〉 the standard Euclidean norm. We define the projection of a vector

b orthogonally to a vector v as πv(b) = b − 〈b,v〉
‖v‖2 v. Matrices are denoted

by bold upper case letters. The i-th column of a matrix B is denoted by bi.
Furthermore, we denote the submatrix comprising the columns from the i-th
to the j-th column (inclusive) as B[i,j]. We extend the projection operator to
matrices, where πV(B) is the matrix obtained by applying πV to every column
bi of B and πV(bi) = πvk

(· · · (πv1(bi)) · · · ).

Lattices. A lattice Λ is a discrete subgroup of Rm and is generated by a matrix
B ∈ Rm×n, i.e. Λ = L(B) = {Bx : x ∈ Zn}. If B has full column rank, it is
called a basis of Λ and dim(Λ) = n is the dimension (or rank) of Λ. A lattice
has infinitely many bases, which are related to each other by right-multiplication
with unimodular matrices. With each matrix B we associate its Gram-Schmidt-
Orthogonalization (GSO) B∗, where the i-th column b∗

i of B∗ is defined as
b∗
i = πB[1,i−1]

(bi) = πB∗
[1,i−1]

(bi) (and b∗
1 = b1). For a fixed matrix B we extend

the projection operation to indices: πi(·) = πB∗
[1,i]

(·). Whenever we refer to the

shape of a basis B, we mean the vector (‖b∗
i ‖)i∈[n].

For every lattice Λ there are a few invariants associated to it. One of them is
its determinant det(L(B)) =

∏
i ‖b∗

i ‖ for any basisB. Even though the basis of a
lattice is not uniquely defined, the determinant is and it is efficiently computable
given a basis. Furthermore, for every lattice Λ we denote the length of its shortest
non-zero vector (also known as the first minimum) by λ1(Λ), which is always
well defined. We use the short-hand notations det(B) = det(L(B)) and λ1(B) =
λ1(L(B)). Minkowski’s theorem is a classic result that relates the first minimum
to the determinant of a lattice. It states that λ1(Λ) ≤ √

γn det(Λ)
1/n, for any

Λ with dim(Λ) = n, where Ω(n) ≤ γn ≤ n is Hermite’s constant. Finding a
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(even approximate) shortest nonzero vector in a lattice, commonly known as
the Shortest Vector Problem (SVP), is NP-hard under randomized reductions
[19,24].

Lattice Reduction. Lattice reduction algorithms deal with the problem of obtain-
ing a “good” basis from an arbitrary basis for some notion of a “good” basis. The
LLL algorithm [20] is a polynomial time basis reduction algorithm that produces
a basis B ∈ Zm×n such that δ‖b∗

i ‖ ≤ λ1(πi−1(B[i,i+1])) for all i ∈ [n − 1] and
some δ < 1 usually chosen close to 1.

BKZ-β [29] is a generalization of LLL to larger block size, i.e. it guarantees
that the output basis satisfies δ‖b∗

i ‖ ≤ λ1(πi−1(B[i,min(i+β,n)])) for all i ∈ [n−1]
by utilizing a SVP oracle in dimension β. When β = n, this is usually re-
ferred to as HKZ reduction and is essentially equivalent to solving SVP. Using
Minkowski’s theorem, one can prove the following bounds for b1 of a BKZ-β
reduced basis [16]:

‖b1‖ ≤ β
n−1
β−1 λ1(B) (1)

‖b1‖ ≤ β
n−1

2(β−1)+
3
2 det(B)1/n (2)

Note that any prefix B[1,i] and any projection πi(B) of a BKZ-β reduced ba-
sis is also BKZ-β reduced. Unfortunately, there is no polynomial bound on the
number of calls BKZ makes to the SVP oracle, but it has been repeatedly re-
ported to behave very well in practice (see e.g. [11,7]). Furthermore, Hanrot,
Pujol, and Stehlé showed in [16] that one can terminate BKZ after a polynomial
number of calls to the SVP oracle and provably achieve bounds only slightly
worse than (1). For these reasons, BKZ is very popular in practice and imple-
mentations are readily available in different libraries, e.g. in NTL[31] or fpLLL[5].
As the dimension and block size of BKZ grows, running it becomes more and
more impractical. But since BKZ has also proved to be a very useful tool in the
cryptanalysis of lattice-based cryptosystems, one would like to predict its behav-
ior for very large instances to estimate the security of such systems. To this end,
Chen and Nguyen introduced a BKZ simulator [7] that, given as input the shape
of a basis and an integer closely related to the number of SVP calls, predicts
the shape of the output of BKZ after the given number of calls to the oracle
without the need to run it, based on heuristic assumptions. It is straightforward
to modify the simulator to predict the output of BKZ by calling it repeatedly
until no more change to the shape of the basis is observed.

In [10], Gama and Nguyen introduced a different block reduction algorithm,
namely slide reduction. Similar to BKZ, it is parameterized by a block size β
and uses a SVP oracle in dimension β to produce a basis with the following
properties:

‖b1‖ ≤ β
n−β
β−1 λ1(B) (3)

‖b1‖ ≤ β
n−1

2(β−1) det(B)1/n (4)
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Moreover, every prefix B[1,iβ] and every projection πiβ(B) is slide reduced and
every projected block πiβ(B[iβ+1,(i+1)β]) is HKZ reduced. Slide reduction has
the desirable property of only making a polynomial number of calls to the SVP
oracle. Unfortunately, as reported in [10] and [11], it seems to be outperformed
by BKZ, despite providing better guarantees on output quality and runtime. Not
surprisingly, it is rarely used in practice and we are not aware of any publicly
available implementation.

Enumeration Algorithms. The standard enumeration procedure, usually
attributed to Fincke, Pohst [9], and Kannan [18] can be described as a recursive
algorithm: given as input a basis B ∈ Zm×n and a radius r, it first recursively
finds all vectors v′ ∈ Λ(π1(B)) with ‖v′‖ ≤ r, and then for each of them finds all
v ∈ Λ(B), s.t. π1(v) = v′ and ‖v‖ ≤ r, using b1. For each i ∈ [n], the procedure
introduces a multiplicative factor proportional to r/‖b∗

i ‖ to its complexity. So
the complexity of the enumeration procedure depends on a) the upper bound r
for the shortest vector and b) the shape of the basis. In fact, Hanrot and Stehlé
noticed in [17] that one can estimate the complexity of enumeration based on
the Gaussian heuristic by the quantity

E(r,B) = max
i∈[n]

πi/2ri

Γ (i/2 + 1)
∏

j≥n−i+1 ‖b∗
i ‖

(5)

We remark that, as already pointed out in [7], this estimate is likely to over-
estimate the complexity, since it does note take heuristics like dynamic radius
updates etc. into account. So Equation (5) should not be used as a precise pre-
diction, but it is very useful to compare the expected complexity of enumeration
for different inputs.

The bound r is usually chosen to be either the length of first vector ‖b1‖ of
the basis or Minkowski’s bound. The shape of the basis is determined by the
preprocessing strategy and there is a trade-off between preprocessing the basis
and enumeration. The simplest approach, first proposed by Fincke and Pohst
[9], is to apply LLL to the input and then call the enumeration procedure. This

algorithm has a worst case complexity of 2O(n2). On the other hand, Kannan [18]
proposed to use a much heavier, recursive preprocessing: alternate LLL reduction
on B[1,2] and recurse on π1(B) until no more change is observed. At this point
the basis is often called quasi-HKZ reduced. Only then call the enumeration
procedure to find the shortest vector v and finally recurse on πv(B) to fully
HKZ reduce the basis (which is necessary for the recursive calls to make sense).
It can be shown that this algorithm runs in at most O(nn/2e+o(n)) steps [17]. In
theory, this is much better than the bound obtained for FinckePohst, but the
heavy preprocessing seems to kill the performance in practice, so it is never used.
It was only very recently, that a technique for interpolating both algorithms was
introduced [27], providing an easy method to trade off preprocessing time and
enumeration complexity. In practice, the most common approach at this point
is to use block reduction algorithms to preprocess the basis before enumeration
(see e.g. [17,7]), but to the best of our knowledge there is no analysis of this
approach and the parameter choice is usually ad hoc.
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3 Worst-Case Analysis of Enumeration After Block
Reduction

Consider an algorithm that reduces an input basis B using a block reduction
algorithm with parameter β and then runs enumeration to find the shortest
vector. We are interested in the complexity of the enumeration step depending
on the parameter β.

3.1 A Naive Attempt

As a warm up we will show how a simple analysis could go and argue why this
result is not satisfactory. Assume for now that the enumeration bound is chosen
to be r = ‖b1‖ and that ‖b1‖ � ‖b∗

i ‖ for all i ∈ [n] (which is true under a
common heuristic assumption, namely the Geometric Series Assumption [30]).
In this case, enumeration can be bounded by the quantity

∏

i

‖b1‖
‖b∗

i ‖

One can easily show (see e.g. [8], Theorem 1) for BKZ-β reduced bases that

‖b1‖ ≤ β
log β+1

2 (1+ i−1
β−1 )‖b∗

i ‖ ≈ 2(i log
2 β)/2β‖b∗

i ‖

which results in a bound for enumeration of 2(n
2/4β) log2 β . While already showing

that there is at least an improvement of (log2 β)/β as compared to FinckePohst
(which corresponds to the case of β = 2), this bound seems to be too rough.
Consider the algorithm with parameter β = n− 1. In this case, it has a striking
similarity to Kannan’s algorithm: Recall that Kannan’s algorithm can be viewed
as alternately calling a SVP oracle on B[1,2] and a HKZ oracle (instantiated with
a recursive call) on π1(B). The only difference between this kind of preprocessing
and BKZ-(n − 1) is that the latter alternates between calling an SVP oracle
on B[1,n−1] and a HKZ oracle on π1(B). So a BKZ-(n − 1) reduced basis is
also quasi-HKZ reduced and thus strictly stronger reduced than after Kannan’s
preprocessing. In particular, the enumeration complexity should not be larger
than for Kannan’s algorithm, which we know to be O(nn/2e+o(n)). However,
plugging β = n−1 into the bound we obtained above, we see that the complexity
is bounded by nO(n logn), which is off by a factor logn in the exponent. It follows
that the analysis could be improved by at least that factor.

We remark that we do not believe that BKZ-(n−1) is a suitable preprocessing
for enumeration since it is even more expensive than quasi-HKZ reduction and
can be expected to be at least as impractical.

3.2 ζ-Reducedness of Block Reduced Bases

Our analysis of the enumeration builds on the framework recently introduced in
[27], namely ζ-reduction. We recall the corresponding definition.
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Definition 1 ([27]). Let B ∈ Zm×n be a lattice basis1 and ζ : [n] → R+. We
call B ζ-reduced, if for all i ∈ [n]

‖b∗
i ‖ > ζ(i) det(B)1/n ⇒ λ1(πi−1(B)) > λ1(B)

and B[1,k] is ζ-reduced for all k ∈ [n− 1].

In [27] it was proved that using the ζ-reducedness of a basis we can bound
the enumeration step:

Theorem 1 ([27]). Let B ∈ Zm×n be a ζ-reduced basis with ζ(i) ≥
√
n for

all i ∈ [n]. Then there is an efficiently computable set M ⊂ Zn with |M | ≤
3n

∏n
i=1 ζ(i) such that there is a vector x ∈ M with ‖Bx‖ = λ1(B).

It follows that in order to bound the enumeration on BKZ reduced bases, it
suffices to analyze the ζ bounds that BKZ achieves. This is exactly what the
following lemma does.

Lemma 1. If B ∈ Zm×n is BKZ-β reduced then it is ζ-reduced with ζ(i) =

β
n−1

2(β−1)
+ 3

2 .

Proof. We prove the contrapositive and assume λ1(πi−1(B)) ≤ λ1(B). Since
πi−1(B) and B[1,i−1] are BKZ-β reduced, we have

‖b∗
i ‖ ≤β

n−i
(β−1) λ1(πi−1(B))

≤β
n−i

(β−1) λ1(B)

≤β
n−i

(β−1) ‖b1‖

≤β
n−i

(β−1) β
i−2

2(β−1)
+ 3

2 det(B[1,i−1])
1/(i−1)

and so

‖b∗
i ‖i−1 ≤ β

(i−1)(n−i)
(β−1)

+ (i−1)(i−2)
2(β−1)

+ 3
2 (i−1) det(B[1,i−1])

By (2) we also have ‖b∗
i ‖n−i+1 ≤ β

(n−i)(n−i+1)
2(β−1)

+ 3
2 (n−i+1) det(πi−1(B)). Multiply-

ing those two bounds and doing some arithmetic gives

‖b∗
i ‖n ≤ β

(i−1)(n−i)
(β−1)

+ (i−1)(i−2)
2(β−1)

+ (n−i)(n−i+1)
2(β−1)

+ 3
2n det(B) ≤ β

n(n−1)
2(β−1)

+ 3
2n det(B)

�

Using Theorem 1 we can easily deduce a runtime bound for the enumeration
step.

Corollary 1. Given a BKZ-β reduced basis B ∈ Zm×n, enumeration can solve

SVP in Λ(B) in β
n(n−1)
2(β−1)

+ 3
2n2O(n).

1 In [27] the definition covers arbitrary generating systems, not just bases. In this work
however, we only consider bases, so we slightly simplified the definition accordingly.
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For β = 2 (FinckePohst) and β = n − 1 (≈ Kannan) we get the expected
bounds up to constants in the exponent. Other values for β interpolate the two
algorithms offering an improvement in the exponent of the dominating factor of
FinckePohst of about log(β)/β. Up to constants in the exponent, this proves that
the enumeration step after BKZ is as efficient as after Kannan’s preprocessing
as long as β = O(n).

Although rarely used in practice, we now also show how to apply ζ-reduction
to slide reduced bases, which leads to slightly improved results.

Lemma 2. If B ∈ Zm×n is slide reduced with parameter β the k-th projected
block πkβ(B[kβ+1,(k+1)β]) is ζ-reduced for

ζ(kβ < i ≤ (k + 1)β) = β
n−1

2(β−1)
+ β

β−1− kβ2

n(β−1)

Proof. As before, we assume λ1(πi−1(B)) ≤ λ1(B). We start by showing the
lemma for the first vector ‖b∗

i ‖ of the block. In this case B[1,i−1] and πi−1(B)
are also slide reduced and we can apply the same approach as for BKZ:

‖b∗
i ‖ ≤β

n−i−β
(β−1) λ1(πi−1(B))

≤β
n−i−β
(β−1) λ1(B)

≤β
n−i−β
(β−1) ‖b1‖

≤β
n−i−β
(β−1) β

i−2
2(β−1) det(B[1,i−1])

1/(i−1)

and so

‖b∗
i ‖i−1 ≤ β

(i−1)(n−i−β)
(β−1)

+ (i−1)(i−2)
2(β−1) det(B[1,i−1])

By (4) we also have ‖b∗
i ‖n−i+1 ≤ β

(n−i)(n−i+1)
2(β−1) det(πi−1(B)). Again, multiplying

those two bounds gives

‖b∗
i ‖n ≤ β

(i−1)(n−i−β)
(β−1)

+ (i−1)(i−2)
2(β−1)

+ (n−i)(n−i+1)
2(β−1) det(B)

≤ β
n(n−1)−2β(i−1)

2(β−1) det(B)
(6)

which implies ‖b∗
i ‖ ≤ β

n−1
2(β−1) det(B)1/n and shows the result for the first vector

of each block, because β
β−1 ≥ kβ2

n(β−1) and so ζ(i) ≥ β
n−1

2(β−1) .

We now generalize to arbitrary i. Let j = (k+1)β, i.e. the end of the block. If
λ1(πj(B)) > λ1(πi−1(B)) then the shortest vector in πi−1(B) is in πi−1(B[i,j])
and ‖b∗

i ‖ = λ1(πi−1(B)), because πi−1(B[i,j]) is HKZ reduced. It follows that

‖b∗
i ‖ is ζ-reduced for all ζ(i) ≥ √

n ≤ β
n−1

2(β−1) . Now let λ1(πj(B)) ≤ λ1(πi−1(B)).
Then by assumption λ1(πj(B)) ≤ λ1(πi−1(B)) ≤ λ1(B), so (6) holds for b∗

j+1.
Utilizing the fact that πi−1(B[i,j]) is HKZ reduced and πi(B[i+1,j+1]) is DSVP

reduced, we easily deduce by Minkowski’s theorem that ‖b∗
i ‖ ≤ κ

κ
κ−1 ‖b∗

j+1‖
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where κ = j − i+ 1. Putting this and (6) together, we get:

‖b∗
i ‖ ≤κ

κ
κ−1 ‖b∗

j+1‖

≤β
β

β−1 β
n(n−1)−2βj

2n(β−1) det(B)1/n

≤β
n−1

2(β−1)
+ β

β−1− kβ2

n(β−1) det(B)1/n

�

Again, using Theorem 1, we obtain a bound on the runtime of enumeration
on slide reduced bases.

Corollary 2. Given a β-slide reduced basis B ∈ Zm×n, enumeration can solve

the SVP in Λ(B) in β
n(n−1)
2(β−1)

+ (n−β)
2 2O(n).

Proof. The corollary follows from a short sequence of equations:

n/β∏

k=1

ζ((k − 1)β + 1)β =β
n(n−1)
2(β−1)

+ nβ
β−1− β3

n(β−1)

∑n/β
k=1 k

=β
n(n−1)
2(β−1)

+ nβ
β−1−nβ+β2

2(β−1)

=β
n(n−1)
2(β−1) +

β(n−β)
2(β−1) ≈ β

n(n−1)
2(β−1) +

(n−β)
2

�

Not surprisingly, due to the better bounds achieved on ‖b∗
1‖, slide reduction

yields a stronger ζ-reduction and thus improves the bound on the enumeration.
However, plugging β = n−1 into the bound2 shows that the bound is still worse
than the one for Kannan, but only by a factor 1/e. We leave it as an interesting
open question if one can achieve such a bound for block reduced bases.

Remark Recall that block reduction algorithms use a SVP oracle in dimension
β. Obviously, we can use recursive calls to our enumeration algorithm (including
block reduction) to implement this oracle. In the case of BKZ we can use the
slightly worse bound obtained in [16] instead of Equation (1). This will give
us worse constants in the exponents, but has the advantage that the number
of (top level) recursive calls during the preprocessing is polynomially bounded,
which bounds the overall number of recursive calls by nO(n). This proves that
using the algorithm proposed in [16] combined with ζ-reduction, SVP can be
solved by block reduction and enumeration in nO(n) steps by setting β = O(n).
Alternatively, we can use slide reduction instead of BKZ to achieve a similar
result. To the best of our knowledge, such a bound was only known for Kannan’s
algorithm and the recent variant in [27], up to this point.

2 Technically, this choice of parameter is not possible for slide reduction as it requires
β|n. But plugging in this value should give a good estimation of how tight the bound
is by comparison with Kannan’s algorithm.
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4 Performance in Practice

In this section we present experimental results that indicate that the bound
obtained in Section 3 for BKZ is not only of theoretical nature, but that the
average case hardness of enumeration on block reduced bases can be expected
to follow similar bounds (with smaller constants) in practice.

(a) dim(Λ) = 75 (b) dim(Λ) = 85

Fig. 1. Runtime of HKZ reduction after BKZ-β reduction

(a) dim(Λ) = 300 (b) dim(Λ) = 400

Fig. 2. Estimated runtime of enumeration (in nodes) after simulated BKZ-β reduction

All experiments and simulations were performed on random lattices in the
sense of Goldstein and Mayer [15] with numbers of bit length 10n, where n
is the lattice dimension. In order to demonstrate that the enumeration follows

qualitatively similar bounds in practice, we use the model βa n(n−1)
(β−1)

+bn2cn, where
n is the lattice dimension, β the block size of BKZ, and a, b, and c are parameters.
We fit the model to our data using standard statistical methods and show that
it is indeed a good fit.
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4.1 Experiments

We used NTL’s BKZ algorithm to reduce the input lattice of dimension n with
varying parameter β, after which we called it again using β = n to HKZ reduce
the lattice (which is essentially equivalent to finding the shortest vector). We
only measure the running time of the second call as the goal of this article is
to explore the effect the reducedness has on the final enumeration. In order to
obtain results in larger dimensions we set NTL’s pruning parameter to 10. Still,
the algorithm has its limits (both, the BKZ preprocessing and the final HKZ
reduction) and we were only able to obtain meaningful results for n ≤ 85 and
5 ≤ β ≤ 55. We used the model for fixed n and fitted it to the data obtained by
the experiments (where each data point is the average over 20 random lattices).
Figure 1 shows exemplary results for n = 75 and n = 85, respectively. The
results demonstrate that for fixed dimension n the running time of enumeration
in practice closely follows the theoretical worst-case bound up to constants in

Fig. 3. Log of runtime in nodes for full enumeration depending on dimension n and
blocksize β
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Fig. 4. Fitted value for parameter a for different n = dim(Λ) and fixed parameters b
and c

the exponents. Curiously, the exponents for the closest curve vary for different
dimensions - an issue, we will address later.

4.2 Simulation

As the experiments in the previous section are somewhat limited in scale due
to resource constraints, we reverted to simulation to obtain data in larger di-
mensions. Specifically, we generated random lattices in dimension n ∈ {100, 110,
. . . , 400} and LLL reduced them using NTL. Then we used the BKZ simulator3

for each lattice to compute the expected shape of a BKZ-β reduced basis for
β ∈ {50, 55, . . . , n}. Finally, for each n we estimated the number of nodes that
need to be enumerated using (5).

The result is shown in Figure 2. Again we see that the running time follows
the theoretical bound and again we observed the phenomenon that the constants
seem to depend on n. To explore this issue a little deeper, we fitted the model to
the complete data set (i.e. now n and β are the variables). The result is shown in
Figure 3 and indicates that for large dimensions the average case hardness can
be expected to follow the model at least roughly. As we are mostly interested
in the constant of the dominating term, we fixed b and c to the value obtained
by this fitting and extracted the corresponding a parameter for each fixed n.
Figure 4 plots the obtained a value depending on the dimension n. While the
values do increase with the dimension, they do so less and less rapidly. From
the theoretical analysis we know that they cannot increase indefinitely, so we
conjecture that they converge at some point. We do not offer an explanation for
this phenomenon and leave it for future work to explore this behavior in depth.

3 Our implementation of the simulator is available at
http://cseweb.ucsd.edu/~miwalter/src/sim_bkz.sage

http://cseweb.ucsd.edu/~miwalter/src/sim_bkz.sage
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Abstract. In this paper we present adaptive key recovery attacks on
NTRU-based somewhat homomorphic encryption schemes. Among such
schemes, we study the proposal by Bos et al [BLLN13] in 2013. Given
access to a decryption oracle, the attack allows us to compute the private
key for all parameter choices. Such attacks show that one must be very
careful about the use of homomorphic encryption in practice. The exis-
tence of a key recovery attack means that the scheme is not CCA1-secure.
Indeed, almost every somewhat homomorphic construction proposed till
now in the literature is vulnerable to an attack of this type. Hence our
result adds to a body of literature that shows that building CCA1-secure
homomorphic schemes is not trivial.

1 Introduction

The construction of fully homomorphic encryption (FHE) was conjectured in
1978 by Rivest, Adleman and Dertouzos [RAD78]. Although it was immediately
recognized as a very interesting possibility in cryptography, no concrete con-
struction was known until 2009, when Gentry used ideal lattices to settle this
conjecture [Gen09a].

In short, ciphertexts produced by an FHE scheme can be operated on in
such a way that we obtain a ciphertext that corresponds to the addition or
multiplication of the respective plaintexts. The ability to algebraically operate
over ciphertexts is of great importance because we can transform any algorithm
into a sequence of additions and multiplications in Z2. Therefore, such a scheme
can evaluate any algorithm solely with access to the encryption of its input, and
such that the computation returns the encryption of the output.

Since Gentry’s work, many FHE constructions have appeared in the literature.
However, all the proposals have a common drawback: they are not practical. Ini-
tially, the algorithms involved in the constructions, although having polynomial
complexity, had high polynomial degree. Later, the asymptotic complexity became
much better. Indeed, we now have constructions with polylog overhead per opera-
tion, but with terribly high constants.
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Although fully homomorphic encryption is not practical yet, many
constructions have been proposed recently, achieving a somewhat homomorphic
encryption (SHE) scheme. They allow a limited “depth” of operations to be per-
formed. These constructions are indeed very useful in practice, specially in order
to provide security in the scenario of cloud computing. SHE is important also in
the implementation of private information retrieval (PIR) protocols, which can
be seen as a building block to the solution for the privacy problem that emerges
when we give our data to the cloud.

In the cloud computing scenario it is natural to imagine an attacker having
access to a decryption oracle (e.g., the cloud can feed invalid ciphertexts to a
user and monitor their behaviour). It is obvious that a homomorphic encryption
scheme cannot have security of ciphertexts under adaptive attacks. Hence, adap-
tive attacks are already a very serious concern in this setting. But one could hope
that at least the private key remains secure in the presence of a decryption ora-
cle. However, it is already known that this is not necessarily the case. Loftus et
al [LMSV12] were the first to observe adaptive key recovery attacks, and further
examples were given by Zhang et al [ZPS12] and Chenal and Tang [CT14]. By
now, most schemes have been attacked, but the NTRU-based schemes remained
unbroken.

Gentry’s original construction is based on ideal lattices and is naturally imple-
mented using cyclotomic rings. On the other hand, NTRU is a practical lattice-
based cryptosystem, also based on cyclotomic rings, that remained without a
security proof for a long time. Recently NTRU was put on a stronger founda-
tion by Stehlé and Steinfeld [SS11], and NTRU-based cryptosystems returned as
a fruitful research area. Scale-invariant homomorphic encryption was proposed
by Brakerski [Bra12], presenting a construction that avoids the utilization of
modulus switching technique, considerably simplifying the scheme.

In this work, we present adaptive key recovery attacks on NTRU-based SHE
schemes. In particular, we attack the scale-invariant proposal by Bos et al
[BLLN13].

1.1 Notation

Notation �a� is used to round a to the nearest integer, while notation [a]q is used
to denote centralized modular reduction, i.e. reduction modulo q, but with result
given in the interval (−q/2, q/2]. If a is a polynomial, then in order to compute
[a]q we must compute a centralized modular reduction of each coefficient of a
(analogously for �a�). When working over a polynomial ring R, if a(x) ∈ R, we
use the notation a[i] to denote the i-th coefficient of the polynomial a(x).

1.2 Paper Organization

This paper is organized as follows. In section 2 we present basic definitions and
details about the security model that will be used. In section 3 we gather informa-
tion about key recovery attacks on other schemes in the literature.
In section 4 we describe exactly how the SHE scheme BLLN is constructed.
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In section 5 we provide the main contribution of this paper, which is the key
recovery attack. Finally, in section 6 we give our concluding remarks.

2 Fundamentals and Security Model

In this section we are going to present basic concepts and the security model
that we will use throughout the paper.

Definition 1. Homomorphic Encryption. A homomorphic cryptosystem is
defined using four algorithms, KeyGen,Dec,Enc,Eval. The first three are
conventional encryption algorithms, with plaintext space P and security param-
eter λ. The scheme is said to be correct if, for a given algebraic circuit C, every
key pair (sk, pk) generated by KeyGen(λ), any message tuple (m1, . . . ,mt) ∈ Pt

and corresponding ciphertexts Ψ = 〈ψ1, . . . , ψt〉, that is, ψi = Encpk(mi) for
1 ≤ i ≤ t, then we have that the Eval algorithm respects the following relation

Decsk(Evalpk(C, Ψ)) = C(m1, . . . ,mt).

Furthermore, the algorithms KeyGen, Dec, Enc and Eval must have poly-
nomial complexity and we say that the scheme is homomorphic with respect to
the circuit C.

Definition 2. Fully Homomorphic Encryption. A scheme E = (KeyGen,
Dec,Enc,Eval) is correct for a class SC of circuits, if it is correct for each C ∈
SC. Moreover, E is called fully homomorphic encryption (FHE) scheme, if it is
correct for every algebraic circuit. Alternatively, we can base our construction
over Boolean circuits, because both computational models are equivalent. If the
scheme can deal with a restricted class of circuits, but not every one, then we
call the scheme a somewhat homomorphic encryption (SHE) scheme.

A cryptosystem is secure against chosen ciphertext attack (CCA2) if there
is no polynomial time adversary A that can win the following game with non
negligible probability.

Setup. The challenger obtains (sk, pk) = KeyGen(λ) and sends pk to adver-
sary A.

Queries. A sends ciphertexts to the challenger, before or after the challenge.
The challenger returns the corresponding plaintexts.

Challenge. The adversary randomly generates two plaintexts m0,m1 ∈ P and
sends them to the challenger, who chooses randomly a bit b ∈ {0, 1} and
computes the ciphertext c = Encpk(mb). The challenger sends c to A.

Answer. A sends a bit b′ to the challenger and wins the game if b′ = b.

If we allow queries only before the challenge, we say that the cryptosystem is
secure against CCA1 adversaries (lunchtime attacks). As previously described,
queries can be interpreted as access to a decryption oracle. If instead we only
allow access to an encryption oracle, i.e., the adversary can choose any message
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that is distinct from m0 and m1 to be encrypted under the same key pair, then
we say that the cryptosystem is secure against chosen plaintext attacks (CPA).

In homomorphic encryption, it is impossible to achieve CCA2 security, be-
cause the adversary can add an encryption of zero to the encrypted challenge,
or multiply it by the encryption of one, and send it to the decryption oracle,
which allows him to trivially win the game. Many FHE schemes have as public
value an encryption of the private key bits, which can be sent to the decryption
oracle before the challenge, which makes such schemes insecure against CCA1
adversaries. Indeed, a key recovery attack is stronger than a CCA1 attack and
Loftus et al [LMSV12] showed that Gentry’s construction over ideal lattices is
vulnerable to it and presented the only SHE proposal that is known to be CCA1
secure.

Recently [CT14], Chenal and Tang showed that many SHE schemes are not
CCA1 by presenting a key recovery attack. The aim of this paper is to consider
such attacks in the setting of NTRU-based schemes.

From now on we are going to work over the cyclotomic ring Rq = Zq[x]/(x
d+

1), where d is a power of 2. Cyclotomic rings were introduced to lattice-based
cryptography in [HPS98], and have been very popular since the breakthrough
work of Lyubashevsky et al [LPR13]. Lattices constructed using such rings are
often called ideal lattices. Although there is no proof that ideal lattices maintain
the same security guarantees as conventional lattices, no significant improvement
in the complexity of algorithms for computational problems in ideal lattices is
known.

3 Previous Constructions

We can divide homomorphic encryption schemes as in Figure 1. In the first
column, we have the schemes that are based on integers, which are simpler to
understand. Lattice-based constructions are separated in four categories: the
initial schemes, that still depend on the Sparse Subset Sum Problem (SSSP);
Brakerski-Gentry-Vaikuntanathan (BGV)-like proposals, that bring new con-
cepts and allow better constructions in practice; asymptotically better construc-
tions that are based on the approximate eigenvector method, and NTRU-based
schemes, that permit to obtain ciphertexts that correspond to just one ring el-
ement, simplifying previous schemes. NTRU-based SHE offers the possibility of
encoding integers in a natural way, that can be used to solve practical problems
such as statistical applications [LLAN14,BLN14].

In the literature [ZPS12,LMSV12,CT14] there are adaptive key recovery at-
tacks on many schemes and these schemes were adapted and optimized later;
thus, such constructions should be assessed in order to verify whether the attacks
are still feasible. Table 1 shows which schemes have been attacked by each of the
previously cited works, showing also which schemes seem to be vulnerable to the
same kind of attacks. Although some of them were not directly attacked, the key
generation and decryption algorithms are so close to the attacked schemes, that
the same strategy can be followed to compute the private key using decryption
oracles.
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[Gen09a]

[vDGHV10]

[CMNT11]

[CNT12]

[CCK+13]

[Gen09b]

[SV10]

[SS10]

[LMSV12]

[BGV12]

[BV11b]

[BV11a]

[Bra12]

[GSW13]

[BV14]

[LATV12]

[BLLN13]

ideal lattices LWE eigenvectors

integers

NTRU

lattices

Fig. 1. Homomorphic Encryption Proposals

Table 1. Key recovery attacks

Attack Schemes Seems to extend to

[ZPS12] [vDGHV10,CMNT11] [CNT12]

[LMSV12] [Gen09b,SV10,GS11] [SS10]

[CT14] [vDGHV10,BGV12,BV11b,BV11a,Bra12,GSW13] [BV14]

this work [LATV12,BLLN13] -

no attack [LMSV12] -

4 NTRU-Based Somewhat Homomorphic Encryption

NTRU [HPS98] is an efficient lattice-based cryptographic scheme but, for many
years, the lack of security proofs, reducing its security to worst-case hard lattice
problems, was a serious concern. Stehlé and Steinfeld [SS11] presented such a
proof, replacing the original ring Zq[x]/(x

d − 1) by the previously described
cyclotomic ring Rq = Zq[x]/(x

d + 1), where d is restricted to a power of 2.
In 2012, López-Alt, Tromer and Vaikuntanathan [LATV12] proposed the con-

struction of multikey fully homomorphic encryption, which we call the LTV
scheme. The difference here is that users with distinct keys can compute ci-
phertexts that will be processed by a server in order to obtain the homomorphic
evaluation of a determined function. It means that all the users together will
be able to decrypt the function evaluation and this strategy can be followed to
construct a multiparty computation scheme. Doröz, Hu and Sunar [DHS14] im-
plemented the LTV scheme. They implemented also the homomorphic evaluation
of AES, showing that it offers advantages against the BGV scheme [BGV12].

However, the LTV scheme is based on non-standard assumptions. In 2013, a
scale-invariant NTRU-based scheme was proposed by Bos et al [BLLN13]. We
call it the BLLN scheme. The basic scheme, Ebasic, can be described as follows:
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Definition 3. Setup. Given the security parameter λ construct the ring R =
Z[x]/
(xd+1), where d is a power of two. Define Rq = R/(q) ∼= Zq[x]/(x

d+1). Choose
a small integer t, real numbers σk and σe and a prime q such that t, σ 	 q.
Let Dkey and Derr be distributions on R coming from discrete Gaussians on Z

with standard deviations σk and σe respectively. The Setup algorithm returns
(t, d, q,Dkey,Derr).

Key generation. Given the output of the Setup algorithm, sample polynomials
f ′,
g ← Dkey and compute f = [tf ′ + 1]q. Check that f is invertible modulo q,
if not choose a new f ′. Compute the inverse f−1 ∈ Rq and set h = [tgf−1]q.
The public key is pk = h and the private key is sk = f . Algorithm KeyGen

returns (sk, pk).

Encryption. The plaintext space is R/tR, so a message is given by a coset
m + tR. Let [m]t be a canonical representative element of the coset. Sample
s, e ← Derr and compute the ciphertext

c = Encpk(m) = [�q/t� [m]t + te+ hs]q .

Decryption. Compute

m = Decsk(c) =
[
�(t/q). [fc]q�

]

t
.

Return the message [m]t.

Given the integers t and q returned by the Setup algorithm, the plaintext
space is given by R/tR, while the ciphertext space is given by R/qR. Note that
t 	 q. Indeed, the last condition is important to enable as many multiplications
as possible. Thus, if t grows when compared to a fixed q, then we would be
able to execute fewer multiplications. Although the multiplicative depth of a
homomorphic encryption scheme is an important issue, it is not relevant for the
attacks we are going to present. Hence, we omit further details and we assume
that the inequalities relating t and q in Lemma 1 are respected.

The security of this scheme is based on an analysis from Gentry et al [GHS12],
which in turn used parameters presented in the work of Lindner and Peik-
ert [LP11], showing that the scheme is secure as long as the LWE problem
parameters d, q, σ obey the inequality

d > log
( q

σ

)λ+ 110

7.2
.

When applied with homomorphic schemes, this relation acquires a challenging
aspect. As the standard deviation increases, fewer homomorphic operations can
be evaluated, since a larger initial noise would be rapidly propagated. Thus, the
ratio q/σ determines the LWE-based cryptography security.

The distribution Dkey must be chosen according to the description of Stehlé
and Steinfeld [SS11], such that the public key is close enough to the uniform
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distribution, so that it reveals almost nothing about the private key. Rigorously,
it reveals only a negligible fraction of the secret. Thus, Dkey is a discrete Gaus-
sian on Rq with standard deviation at least (d

√
log 8dq)qk, for k in the interval

(1/2, 1). Furthermore, Derr is a ω(
√
d log (d))-bounded Gaussian distribution. In

our attacks we may assume that q is very large in comparison with t and σk.

5 Adaptive Key Recovery Attacks

In a key recovery attack, we submit appropriately chosen ciphertexts to a de-
cryption oracle in order to compute the private key. Once the private key is
computed, then any ciphertext can later be decrypted. Consequently, a key re-
covery attack is stronger than a CCA1 attack.

5.1 Attacking the BLLN Scheme for t > 2 and Ternary f ′

In the original paper [BLLN13], Bos et al stated that we can choose f ′ and g
with coefficients in {−1, 0, 1}. We call this “ternary f ′”. We now show that in
this case, and when t > 2, we can easily compute f ′ using just one query to the
decryption oracle. Recall that f ′[i] is the i-th coefficient of the polynomial f ′.

Lemma 1. Let f = tf ′+1 where f ′ has coefficients in {−1, 0, 1}. Suppose t ≥ 3
and 6(t2 + t) < q. Then,

[�(t/q)[f [i]�q/t2�]q�]t = f ′[i].

Proof. Let �q/t2� = q/t2 − ε for some 0 ≤ ε < 1. Then,

f [i]�q/t2� = (tf ′[i] + 1)(q/t2 − ε) = f ′[i](q/t) + (q/t2)− ε(tf ′[i] + 1)

and [f [i]�q/t2�]q = f [i]�q/t2� − vq for some v ∈ Z[x]. Finally,

[�(t/q)[f [i]�q/t2�]q�]t = [f ′[i] + �1/t− ε(t2f ′[i] + t)/q� − vt]t = [f ′[i]]t

since the entries of the polynomial 1/t − ε(t2f ′ + t)/q all have absolute value
< 1/3+1/6 = 1/2 (the bound |t2f ′[i]+ t|/q ≤ |t2+ t|/q < 1/6 is used here).

We introduce the informal notation a 	 b to mean that b is much bigger than
a (say, b > 106a for parameters in actual cryptosystems). Hence we can observe
that t2 	 q and so �q/t2� is a very large integer.

Theorem 1. Let t > 2 and 6(t2+t) < q. Let mf = Dec(�q/t2�) be a polynomial
in R with coefficients in [−t/2, t/2], where �q/t2� is a constant integer polynomial
that can easily be computed using the public parameters q and t. Then we have
that f = tmf + 1.

Proof. We have that Dec(�q/t2�) = [�(t/q)[f(�q/t2�)]q�]t. Because we are mul-
tiplying f by a constant polynomial, each coefficient of f is multiplied by �q/t2�.
By Lemma 1 we obtain an element in R with coefficients in {−1, 0, 1} that equals
f ′ ∈ R.
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Note that the restriction t > 2 is a requirement for Lemma 1, but there
is also a second reason why it is important. Because −1 ≡ 1 (mod 2), we can’t
distinguish between −1 and 1 from information modulo 2. Therefore, when t = 2
it will be necessary to provide an algorithm to find out the sign of each coefficient.

Algorithm 5.1 uses the ideas described above. We emphasize that the attack is
very fast, since it needs to perform just one query to the decryption oracle. Also,
the ciphertext that we submit to the decryption oracle is trivial to construct,
and the final computation is also very easy.

Algorithm 5.1. BLLN Attack for Ternary Polynomials when t > 2 and Ternary
f ′

Require: The public parameters (q, d, t).
Ensure: The private key f .
mf = Dec(�q/t2�).
return f = tmf + 1.

5.2 Attacking the BLLN Scheme for General f ′ and t > 2

We now consider the case where f ′ is chosen fromDkey and so has a wider range of
possible values. The idea is to make queries on ciphertexts ck =
�q/(kt2)� for various values k > 1 to learn information about [ 1kf

′] (mod t).

Lemma 2. Let f = tf ′ + 1 where f ′ is a polynomial whose entries are integers
bounded in absolute value by B such that B2 < q/(36t2). Let 0 ≤ i < d. Let
kmax,i ≤ 2B be the maximal integer such that the i-th coefficient of the decryption
of ciphertext �q/(kmax,it

2)� is non-zero. Then, we have that, for all 0 ≤ i < d,

|f ′[i]| = �(kmax,i + 1)/2�.

Proof. The proof is similar to the proof of Lemma 1. Write ck = �q/(kt2)� =
q/(kt2)− ε for 0 ≤ ε < 1, and note that

[fck]q = q
kt2 (tf

′ + 1)− ε(tf ′ + 1)− vq

for some v ∈ Z[x]. Then,

u = t
q [fck]q = 1

kf
′ + 1

kt − εt(tf ′ + 1)/q − vt

is a polynomial with rational coefficients.
We now consider rounding the coefficients of the polynomial u(x) to the near-

est integer. For i > 0 we have u[i] = 1
kf

′[i]− v[i]t and so

�u[i]� = � 1
kf

′[i]� − v[i]t.
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It follows that the result of the decryption query is [�u[i]�]t = [� 1
kf

′[i]�]t. Note
that if k > 2B ≥ 2|f ′[i]|, then | 1kf ′[i]| < 1/2 and so the rounded value is zero.

If k is maximal, then � 1
kf

′[i]� �= 0 but � 1
k+1f

′[i]� = 0, and so

| 1kf
′[i]| ≥ 1

2 and | 1
k+1f

′[i]| ≤ 1
2 .

It follows that
k
2 ≤ |f ′[i]| ≤ k+1

2 .

It remains to deal with the coefficient f ′[0], which has an additional error term
1
kt −ε� where ε� = εt(tf ′+1)/q is added to it. Note that, since q � t(tB+1) and
t > 2, we have |ε�| 	 1. However, we cannot ignore the error as we are adding
it to the rational number 1

kf
′[0]. By the same argument as above, we compute

| 1kf
′[0] + 1

kt − ε�| ≥ 1
2 and | 1

k+1f
′[0] + 1

(k+1)t − ε�| ≤ 1
2 .

It follows that

k
2 ≤ |f ′[0] + 1

t − kε�| and |f ′[0] + 1
t − (k + 1)ε�| ≤ k+1

2 .

Since (k + 1)ε� < 3Bt22B/q ≤ 1/6 and 1/t ≤ 1/3 we see there is no rounding
error. This completes the proof.

Note that if t = 2 and k = 1, then we must be careful about what happens
with the independent coefficient, as will be the case in the next section. However,
when t > 2 we have that if � 1

kf
′[i]� ≡ 1 (mod t), then f ′[i] is positive, while

if � 1
kf

′[i]� ≡ −1 (mod t), then f ′[i] is negative, which allows us to completely
determine the private key since we know the absolute value and the sign of each
coefficient.

The attack is then straightforward. Using binary search and queries to the
decryption oracle one can determine kmax,i for 0 ≤ i < d and hence learn all
coefficients. To see that binary search is applicable, note that |f ′[i]| ≤ B and so
| 1
2B f ′[i]| ≤ 1/2 and so decryption will generally return 0 for that coefficient. One
can then query using k = B, and noting that | 1B f ′[i]| ≤ 1 and so the output of

decryption is either 0 or ±1. If the output is ±1 then B
2 ≤ |f ′[i]| ≤ B and one

can try k = (B + 2B)/2 = 3B/2, while if the output is 0 then | 1B f ′[i]| ≤ 1/2
and one can try k = B/2, giving | 1kf ′[i]| ≤ 1, and so on. We give the details as
Algorithm 5.2.

The total number of decryption oracle queries, if the algorithm is implemented
naively, is d�log2(B)�. However, this can be improved somewhat by recycling
previous oracle values and sub-dividing intervals into t sub-intervals (resulting
in logt(B) steps in the search) instead of binary splitting and log2(B) steps.

5.3 Attacking the BLLN Scheme for t = 2

If t = 2 we can proceed as in Section 5.2, but our main problem is to find out
the sign of each coefficient. Of course, if f is a valid private key then so is −f ,
so we only need to compute f up to a global choice of sign.
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Algorithm 5.2. BLLN Attack for General Polynomials when t > 2

Require: The public parameters (q, d, t).
Ensure: The private key f .
Let B be the largest possible coefficient of f .
for i = 1 till d do
Use binary search to find 1 ≤ kmax,i ≤ 2B satisfying the condition of
Lemma 2.
f ′[i] = [Dec(q/(kmax,it

2))[i].�(kmax,i + 1)/2�]q.
return f = tf ′ + 1.

Going back to the case of ternary polynomials, we can detect with a single
decryption query when the coefficients of f ′ are zero. But we cannot distinguish
when they are 1 or −1, because we are operating modulo 2.

The idea is to make decryption queries to ciphertexts of the form c = �q/(t2k)�
(1+xj) for suitably chosen k and j. We then get information about 1

kf
′(1+xj).

The point is that the i-th coefficient of f ′(1+ xj) is the sum of f ′[i] and f ′[i− j
(mod d)]. If the coefficients f ′[i] and f ′[i− j] are both non-zero then they either
cancel to zero or add to ±2. Hence, taking k = 2 we can determine the signs of
coefficients relative to each other. By fixing one non-zero coefficient as a “base”,
we can deduce the sign of all other non-zero coefficients relative to this (as before,
we leave the constant coefficient to the end of the algorithm).

When f ′ is ternary then the details are simple. When f ′ has general coefficients
then the trick is to balance the sizes of coefficients so that cancellation to zero
still takes place. So suppose we have run Algorithm 5.2 and determined each
coefficient (except perhaps the constant coefficient) f ′[i] up to sign. Suppose
without loss of generality that f ′[1] is non-zero. We will use this as our “base”.
For each i such that f ′[i] is non-zero, we consider the ciphertext

c = �q/(2t2|f ′[1]| · |f ′[i]|)�(|f ′[1]|+ xi−1|f ′[i]|).

The i-th coefficient of the decryption of this ciphertext will be

1
|f ′[1]|·|f ′[i]| (|f

′[1]| · f ′[i] + |f ′[i]| · f ′[1]) .

Hence, if the signs are opposite, then we get a 0 and if the signs are equal, the
coefficient is ±1, which modulo t = 2 becomes 1. It follows that multiplying the
absolute value by the term (2Dec(c)− 1) gives us the desired result.

Therefore, after calling algorithm 5.2, we must use algorithm 5.3 to determine
the sign of each coefficient of the private key. But we still have to solve the problem
of the independent coefficient, mentioned in last section. As we have seen, the term
1/t − ε� can change the result of rounding to the nearest integer. For instance,
considering the case of ternary f ′ and t = 2, then we have that k = 1 and in the
case that f ′[0] = −1, we have that

[�−1 + 1/2 + ε��]t = 0
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Algorithm 5.3. BLLN Attack for t = 2

Require: The absolute value |f ′|, and the public parameters (q, d).
Ensure: The private key f .
Run the main part of Algorithm 5.2 to determine |f ′[i]| for all 0 ≤ i < d.
Let i0 be the smallest integer i > 0 such that f ′[i] �= 0.
f ′[i0] = |f ′[i0]|.
for i = i0 + 1 till d do
if |f ′[i]| > 0 then
Let ci,i0 = �q/(2t2|f ′[i0]| · |f ′[i]|)�(|f ′[i0]|+ xi−i0 |f ′[i]|).
f ′[i] = (2.Dec(ci,i0 )[i]− 1).|f ′[i]|.

Find three candidate values for f ′[0] and test the three possible values for f
using h
return f = tf ′ + 1.

and the decryption oracle returns 0 instead of 1 as expected. Then we have to
distinguish between two cases: f ′[0] = −1 and f ′[0] = 0. But since we have
arbitrarily chosen the sign of f [i0] as positive, then we must check also the
case f [0] = 1. Hence we have three candidates for f ′. We can check which of
them satisfies the requirement that (tf ′ + 1)h in Rq is a polynomial with small
coefficients. This completes the attack.

There are at most d− 1 additional decryption oracle queries to determine the
sign.

5.4 Attacking the LTV Scheme

In this section we assume that q is odd. The LTV scheme is extremely similar
to the BLLN scheme. The two schemes are based on the same algebraic struc-
ture, and the key generation algorithms are essentially the same, with the only
difference that LTV is restricted to the case t = 2. The LTV scheme is not scale-
invariant, leading to simpler algorithms. Our focus is the decryption algorithm,
so we explain this now.

Decryption. Compute m = [fc]q. Output m (mod 2).
The paper [LATV12] is vague about the exact computation of the decryption

algorithm. The value m is a polynomial in Rq with small coefficients, so it is
natural to interpret it as an element of R = Z[x]/(xd +1). The ambiguity comes
in the next step. Doesm (mod 2) mean only the constant term of the polynomial
modulo 2, or the whole polynomial reduced modulo 2? In our attack we assume
the latter case. The former case can be reduced to the latter case by replacing a
decryption query on c by d decryption queries on cxi for 0 ≤ i < d.

The attack is therefore seen to be more-or-less identical to the attack in the
previous section. Let k ≥ 1 be an integer and consider the ciphertext ck =
2�q/(4k)�. Lemma 3 shows why we can compute f ′ using the same strategy as
before.
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Lemma 3. Let ck = 2�q/(4k)�. Let k�max,i be the maximal integer such that
Dec(ck�

max,i
)[i] is non-zero. Then we have that f [i] is given by k�max,i + 1.

Proof. First note that ck is an even integer and so (2f ′ + 1)ck is an integer
polynomial with even coefficients.

For k ≥ 1 we have that ck = q/(2k)− ε for some 0 ≤ ε < 2, and decryption of
ck first computes

(2f ′ + 1)ck = f ′(q/k − 2ε) + 2�q/(4k)�.

Note that q/k − 2ε is an even integer. Thus, if k is big when compared to
f ′[i], reduction by q does not change the value, then after reducing by 2 we get
zero. If f ′[i] ≥ k then f ′[i](q/k) ≥ q and so, as long as the error term is small
enough, f ′[i](q/k − 2ε)− q is odd. It follows that [fck]q (mod 2) is odd and so
the condition f ′[i] > k can be tested using a decryption oracle query. Hence, we
proceed using the same method as before. One chooses maximal k�max,i such that
f ′[i] > k�max,i and hence determines the value of |f ′[i]|. For instance, we have
that |f ′[i]| = k�max,i + 1. The signs and the independent coefficient are handled
in the same way as above.

Algorithm 5.4. LTV Attack

Require: The public parameters (q, d, t).
Ensure: The absolute value of the private key f .
Let B be the largest possible coefficient of f .
for i = 1 till d do
Use binary search to find 1 ≤ k�max,i ≤ 2B satisfying the condition of
Lemma 3.
|f [i]| = [(k�max,i + 1)]q.

return f .

6 Concluding Remarks

We have described adaptive key recovery attacks on NTRU-based SHE schemes.
Other families of SHE schemes, as represented in Figure 1, are also vulnerable to
this kind of attack, showing that CCA1 security is hard to achieve in homomor-
phic encryption. Adaptive key recovery attacks on homomorphic encryption seem
to be realistic in certain scenarios, so they are potentially a serious problem in prac-
tice. The only homomorphic encryption scheme known to resist such attacks is the
scheme by Loftus et al [LMSV12].
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