
Chapter 8

Elastic Instability and Surface Wrinkling

Pascal Damman

8.1 Introduction

The stability of constrained slender structures is a very old topic, that has started

with Galileo, who questioned the stability of a beam supporting a heavy load and

solved by Leonhard Euler with the Elastica [1]. With the emergence of new

architectural design, this stability problem rapidly becomes a major subject for

mechanical engineers. Surprisingly, physicists and engineers have rediscovered the

specific problem of thin sheets instability at the end of twentieth century. This

re-discovery was triggered by two seminal papers reporting experiments about the

formation of regular wrinkles in constrained systems. Tanaka et al. showed that the

outer surface of a gel confined in a petri dish swollen by solvent vapors becomes

unstable and exhibits periodic structures (Fig. 8.1a) [2]. Bowden et al. have beau-

tifully explained the formation of tiny wrinkles during the thermal evaporation of a

metal thin film on a soft foundation (Fig. 8.1b) [3]. They performed a linear stability

analysis including the bending of the rigid metal layer and the elastic deformation

of the soft foundation that clearly demonstrates the instability of the outer surface.

From countless examples, it is now crystal clear that the homogeneous (often

flat) states of constrained thin sheets are very often unstable. Since the seminal

works of Tanaka and Bowden, the final states were broadened in a zoo of complex

morphologies made of wrinkles, creases, crumples, folds, and blisters, several mor-

phologies sometimes co-existing in a single experiment. Transition from one

morphology to another can be observed depending on various experimental condi-

tions. For instance, by decreasing adhesion, you switch from regular wrinkles to

blister. Increasing compression could also reveal nonlinear regimes with increasing

complexity. As fluids, thin elastic sheets appear to be very promising systems that
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bear similarity with classical problems of linear and nonlinear pattern formation such

as period-doubling bifurcations. Their study opens new prospects to understand the

emergence of complexity, breaking of symmetry and singularities. Even the simple

buckling of a sheet shows intrinsic behaviors that raise fundamental questions such

as, why do films become folded upon confinement whereas a thick slab of an identical

material favors creases? Why does paper sheets crumple into singularities whereas

rubber sheets would smoothly wrinkle? Answering these questions (and many others)

is important, first for our natural curiosity, and to understand the emergence of

complex shapes and patterns in Nature.

Understanding thin sheets behavior is also extremely important for many tech-

nological applications, specially for those involving micro-patterning of surfaces.

The design of new materials combining extreme mechanics with optical, electronic,

or chemical properties is very often achieved with specific coatings on thin sheets.

In this case, the failure of the coating, or even the thin sheet itself, should be

avoided. The opposite is also true! These complex features can be very interesting

for some applications, essentially in micro- and nano-technology. Indeed, under-

standing how complex patterns emerge spontaneously under featureless forces may

inspire efficient methods for tailoring a desired surface pattern to achieve the

required property (e.g., reversible superhydrophobicity, flexible electronics).

8.2 Wrinkling in Constrained Free-Sheets

Usually, wrinkles are associated with multilayers, including materials with very

contrasted elastic properties. The archetype of these systems that will be discussed

in the next section is the rigid/inextensible thin sheet glued on an elastomer or a

Fig. 8.1 (Left) ionized acrylamide gel formed in a petri dish allowed to swell in water, (a)–(c)
show the evolution of the morphology with time [2]. (Right) optical micrographs showing

representative patterns of wrinkles that formed when a nanometric gold layer is evaporated onto

warm (110 ∘C) polydimethylsiloxane. The pattern appears when the sample is cooled to room

temperature [3]
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fluid foundation and subjected to a uniaxial constraint. It is however possible to

generate wrinkles in free sheets provided you are using the proper geometrical

constraints. The very typical example of this geometrically induced wrinkling is the

collapse of a viscous bubble (Fig. 8.2). During the collapse, the shape of the bubble

drastically changes from a purely spherical to a flat shape, due to surface tension at

the edge of the hole created in the bubble. With this sudden change of morphology,

a hoop stress builds that induces the wrinkling of the fluid thin layer (high viscosity

slows the relaxation of the wrinkles allowing their visualization) [4, 5].

Geometrical constraints can also be applied on rectangular sheets. Indeed, thin

sheets compressed at one edge to follow a periodic sinusoidal profile and free at the

other, i.e. a curtain-like morphology (Fig. 8.3), develop a self-similar hierarchy of

folds [6, 7]. We will now demonstrate a universal method based on a scaling

approach to find the morphology of constrained thin sheets.

As shown in Fig. 8.3, sheets made of various materials constrained at one edge

develop a regular hierarchical pattern of folds that follow simple power laws.

These patterns consist of a hierarchy of successive generations of folds whose

wavelength gradually increases along x. For the sake of clarity, the structure of the
deformed sheet is described by a periodic function z(x, y)¼A(x) sin q(x)y, with
z the amplitude of out-of-plane deflections, y being parallel to the edge (q ¼ 2π=λ).
The hierarchical patterns are characterized by the evolution of the average

wavelength, λ(x). For rigid sheets, the amplitude of the folds is determined by

the compression ratio and the inextensibility of the sheet, A � λ
ffiffiffi
δ

p
. Since,

inextensibility ensures that

W0 ¼
Z W

0

ds cos θ ’
Z W

0

ds 1� 1

2
_z2

� �
’ W � 1

2
W

A

λ

� �2

and δ ¼ ðW �W0Þ=W.

Fig. 8.2 Image of a

collapsing viscous bubble.

The bubble loses its

axisymmetric shape, small

amplitude ripples grow. The

inset displays a schematic

side view of the essentially

conical deflating bubble at

the onset of the

instability [5]
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The bending energy density related to a fold is thus given by

ub � Eh3 κ2 � Eh3δ=λ2:

Since ub is proportional to 1∕λ2, the membrane adopts the largest possible

wavelength compatible with the imposed constraints. The minimization of bending

energy is thus the “driving force” toward larger and larger folds and is the source of

the observed hierarchy. Figure 8.3 shows that curtains made of various materials

with contrasted properties can be sorted in two classes with different

exponents� 2 ∕ 3 for “light” sheets and� 1 ∕ 2 for “heavy” sheets (we will see later

the meaning of light and heavy). What does determine these exponents, is it related

to pure geometry or to deformation energy of the sheet? To increase the wave-

length, adjacent folds should merge. Looking carefully a curtain, you would

probably observe the merging of two, three, and very rarely fourfolds, some folds

remaining almost unaltered. We will however make the assumption, first proposed

by mathematicians Jin and Sternberg, that the observed morphology can be

described by successive period-doubling transitions constituting the building-

blocks of the global pattern [8]. The hierarchy is obtained by stitching these

Fig. 8.3 Top of a rubber curtain constrained at one edge with an imposed sinusoidal deformation

z(0, y)¼A(0) sin(q(0)y) and power laws describing the evolution of the wavelength with the

distance from the constrained edge [6]
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building-blocks. The key feature of a single block element, here after named

wrinklon, is its length, L, i.e., the sheet length required to accommodate the λ� 2λ
transition. If the energy is also involved (and not only geometry), this length

should be determined by material properties, E, h the constraint/compression ratio

δ and the wavelength. The power law describing self-similar patterns can be built

from this length according todλ=dx � λ=L. To estimate the length of the wrinklon,

we use a scaling approach where energetic penalty must be compensates by

energetic gain. Close inspection of the wrinklon morphology reveals the occur-

rence of a curved ridge at the tip of the merging folds (Fig. 8.4). Such curved ridge

is characterized by a non-vanishing Gauss curvature. From the Theorema
Egregium [9], the sheet around these curved ridge should concentrate on

stretching energy (i.e., the surface is no more isometric of a flat surface). The

energetic penalty involved into a single λ� 2λ transition should be related to local
stretching, the energetic gain being related to the decrease in curvature.

The stretching energy can be estimated from the slope of the sheet which

determines the strain ε induced by the change of amplitude A � 2A (related to the

change of wavelength since inextensibility ensures that A � ffiffiffi
δ

p
λ). The strain given

by ε � A2=L2 � δλ2=L2 yields the stretching energy Us�Eh L λ ε2�Eh δ2λ5L�3.

The wrinklon length results then from a balance of this stretching energetic penalty

and bending energy,Ub�Eh3 L λ κ2 which yieldsLðλÞ � h�1=2δ1=4λ3=2. The scaling
for the wavelength describing the whole hierarchical pattern of folds is obtained by

the integration of equation dλ=dx � λ=L,

λðxÞδ1=6
h

� x

h

� �2=3

:

Fig. 8.4 (a) Wrinklon morphology. (b) Origami model of the λ � 2λ transition [6]
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The class of patterns related to “light” curtains, 2/3 exponent, is in close agreement

with this scaling model. In addition to yielding the proper exponent, this relation

enables the comparison of the data obtained from seemingly disparate systems, over

a wide range of lengthscales. Figure 8.5 provides a remarkable collapse of the data

measured with paper, fabric, and various plastic sheets. Interestingly, the elastic

modulus of the material used to build the sheet does not appear in this relation. This

was expected since both stretching and bending energies linearly depend on the

elastic modulus.

As shown in Fig. 8.3, “heavy” curtains, made of nanometric films of polystyrene

on water [7], rubber sheets, and constrained graphene do not follow the 2/3 scaling.

Instead, their dynamics obey λ / ffiffiffi
x

p
). The main difference between both families is

related to the lack or the occurrence of a significant tensile force, T. For all “heavy”
curtains, an additional tensile force is acting on the sheet. For graphene sheets, this

tension is related to the longitudinal tensile strain induced by thermal manipulations

Fig. 8.5 Master curves,

normalized wavelength

vs. normalized distance

from edge for the “light” (a)
and “heavy” (b) curtains [6]
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of the compression device [10]. For rubber curtains, the tension is determined by

gravity (T� ρcghH, where ρc and H are the density and height of the curtain). For

compressed nanometric polystyrene films on water, a tensile force is exerted by the

surface tension of water at the free edges of the polymer film [7].

The tension per unit width imposes an additional stretching energyUt� Tα2 Lλ� T
δ λ3L�1 where α is the slope of the sheet within the wrinklon (α�A2/L2). This energy
becomes dominant when Ut>Us, that is when T>Eh2δ/A. Neglecting the stretching
term, the total energy of the distorted membrane becomes Utot ¼ Ut þ Ub. The

wrinklon length which minimizes Utot (balancing tension and bending energies)

becomes L λð Þ � λ2

h

ffiffiffiffi
T
Eh

q
. As expected, the tensile force increases the length of

wrinklons for a given wavelength and can thus be used to tune the energetic penalty

associated with the λ � 2λ transitions. Considering the equation dλ=dx � λ=L, we
obtain the scaling for the wavelength along a heavy sheet

λðxÞ
h

� Eh

T

� �1=4 x

h

� �1=2

: ð8:1Þ

This scaling is in excellent agreement with the power laws observed for heavy

curtains and graphene bilayers (Fig. 8.3). The data of various macroscopic curtains,

graphene bilayers, and nanometric polystyrene thin films indeed collapse onto a

single master curve without any fitting parameters (see Fig. 8.5) which highlight the

universality of our description. Our formalism is thus validated for seven orders of

magnitude in thickness from graphene sheets to rubber and fabric curtains.

There is obviously various method to geometrically constrain a free sheet.

Consider, for instance, a thin film of PS of nanometric thickness deposited on a

water droplet (Fig. 8.6). The edge of the circular sheet is decorated with a set

Fig. 8.6 (Left) image of a ultrathin sheet of polystyrene deposited on a water droplet [11]. (Right)
sheets confined between two spheres [12]
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wrinkles [11]. These wrinkles should grow to accommodate the stress arising when

a flat sheet is forced to adopt a spherical shape. In fact, the change of shape induces

a change in Gaussian curvature and thus a stretching. Since the surface tension

exerted by water at the edge is not strong enough to overcome this stretching force,

the thin sheet slightly retracts and wrinkles to avoid compression along the edge.

8.3 Compression of Thin Sheets on a Soft Foundation

In the previous section, we showed how to generate wrinkles by playing with

geometrical constraints applied on a free thin sheet. This method is very powerful

to generate hierarchical wrinkles, as shown in Figs. 8.3 and 8.6. In fact constrained

free-sheets always tend to develop cascades of wrinkles with an increasing wave-

length whatsoever the way geometrical constraints are applied. This natural ten-

dency is directly related to the minimization of bending energy through the

curvature (Ub� κ2� 1/λ4). Surprisingly, the growth of a pattern made of regular

parallel wrinkles with a constant wavelength is far from obvious! The solution is to

balance the bending energy with another energy that decreases when curvature

increases. This can be achieved by gluing the thin sheet on a soft substrate, able to

follow the shape of the constrained sheet. This strategy was successfully applied to

fluid [13] and to elastomers [3, 14]. As shown in Fig. 8.7, very regular parallel

wrinkles are observed when a rigid sheet deposited on a soft substrate is compressed

uniaxially. The wavelength is determined by the elastic properties of the membrane

and the foundation (Fig. 8.7). The exact shape of the sheet can be obtained either via

variational methods through Euler–Lagrange equation [15–17] or from a linear

stability analysis of the homogeneous flat state [2, 3, 13, 15].

A linear stability analysis for systems consisting in a rigid layer, Em on top of an

elastomer, Ef with Em�Ef can be easily achieved. When uniaxially compressed by

a factor (Δ ¼ L� L0Þ=L0), energy can be stored in two ways, (1) as pure compres-

sion, the sheet remaining flat, Uc, or (2) as bending of the sheet plus elastic

deformation of the soft foundation, Ub,Uf in the wrinkled state. The comparison

of these energy yields ΔU ¼ Ub þ U f � Uc. The profile of the wrinkled state is

periodic (q ¼ 2π=λ ) and can always be described through a Fourier expansion,

y(x)¼∑ Am cos mqx. For a linear analysis, we only consider single mode, the mean

curvature of a sinusoidal profile is< y00 >�A2q2. We also assume inextensible

boundary condition for the rigid sheet which implies thatΔ ¼ A2q2. The difference
in energy can be written as

ΔU ¼ Δ Emh
3q2 þ E f

1

q
� EmhΔ

� �
:
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The flat state becomes unstable if ΔU < 0. For each wavenumber q we have thus a

critical compression, Δc ¼ h2q2 þ ðE f =EmhÞq�1. Close to the threshold, the

observed wrinkles period should correspond to the minimum of Δc which yields

the following wavelength and critical strain

q ¼ E f

Emh
3

� �1=3

λ ¼ h
Em

E f

� �1=3

ð8:2Þ

Δ∗
c ¼ 2

E f

Em

� �2=3

: ð8:3Þ

The predicted evolution of the wavelength with the material properties is in very

good agreement with observed data for a large variety of experimental systems

(Fig. 8.7). A similar method can be used to study the stability of compressed sheets

on fluid substrates provided you replace the energy of substrate deformation by the

Fig. 8.7 (Top) images of wrinkled state of a rigid sheet compressed on water for increasing

compression ratios [13]. Uniform wrinkled state and period-doubling morphology observed for

compressed sheet deposited on elastomer [14]. (Bottom) evolution of the wrinkles wavelength for

fluid (circles) and elastomer (square) foundations [16]
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relation Uf� ρgA2, involving the hydrostatic pressure of the fluid [13, 18]. The

wavelength for fluid substrate becomes λ � ðEmh
3=ρgÞ1=4 in very good agreement

with experimental observations (Fig. 8.7).

Obviously such a linear analysis is only valid very close to the threshold,

i.e. when A is infinitely small. This model suggests that above (but close to) the

threshold, the wrinkles amplitude should scale as
ffiffiffiffi
Δ

p
with the compression ratio.

Figure 8.8 shows that this law remains however valid for unexpectedly large

compression ratios, Δ � 0:2, well above the threshold for this peculiar system,

close to 0. 02. This observation highlights the robustness of the single wavelength

wrinkled morphology, there is no emergence of super-harmonic modes (nq, with
n integer) as expected for classical pattern formation mechanisms [19].

Close to the threshold for wrinkling, there is no way to discriminate wrinkles on

fluid or solid/elastomer substrates. Increasing the compression ratio changes the

rules, a drastic modification of morphology is indeed observed with different

responses for fluid and elastomers. For fluid substrates, the extra length due to

compression concentrates in a single fold, while compressed sheets on elastomers

always stay periodic. This difference should reflect the emergence of different

nonlinear terms that breaks the symmetry of the wrinkled state. In a similar manner

that buckling breaks the symmetry of the homogeneous flat state. For fluids, the

nonlinearity essentially arises from the bending energy, through the curvature,

κ ¼ y
˙ ˙
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _y2

p
. This nonlinearity generates a quartic term in the expression of

energy that will break the longitudinal symmetry keeping the transversal symmetry

of the deformed sheet, i.e., folds up and down are energetically equivalent. As

shown by Diamant and Witten, the resulting nonlinear Euler–Lagrange equation

Fig. 8.8 (a) Definitions of the wrinkles amplitudes A0 and A1. (b) Comparison between exper-

imental and theoretical evolutions of A0 and A1 as a function of the compression ratio for

polystyrene and PDMS [16]
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describing these systems is reminiscent of the sine-Gordon family equations

explaining the growth of solitons [17].

For elastomers, a bifurcation due to the nonlinearities is observed with the

emergence of a sub-harmonic mode, q/2 (Fig. 8.8). This bifurcation clearly corre-

sponds to a period-doubling sequence similar to what is observed for Faraday

instability of shaken fluid layers, except that this bifurcation refers to time and

not space [20]. For the Faraday instability, the period-doubling is usually described

with a nonlinear parametric oscillator model. Interestingly, the Euler–Lagrange

equation describing the minimization of energy for the compressed sheet on

elastomer bears also some resemblance with a parametric oscillator [14].

It should be noticed however that the period-doubling behavior is only observed

for elastomer substrates without pre-strain. When the compression is achieved

through a pre-stretching of the elastomer slab prior deposition of the thin sheet,

the nonlinear elasticity of the PDMS rubber comes into play and other morphology

characterized by periodic cusps is observed [21].

8.4 Wrinkling Coupled to Diffusion, Swelling, Thermal
Constraints, . . .

Wrinkles are however not limited to a set of parallel periodic folds, 2D wrinkled

patterns can also be produced. Obviously, there is no way to generate 2D morphol-

ogy from simple uniaxial compression of the thin sheets. We will now consider

radial compression, symmetric or not. The simplest method to produce 2D patterns

is to apply compression in the rigid sheet along two orthogonal directions. Different

morphologies, with periodic nipples, squares, or labyrinthine can be achieved.

However, several experimental studies highlight that the resulting morphology

strongly depends on the history of deformations, applying two subsequent uniaxial

compressions is clearly not the same as applying simultaneously compression along

two directions (Fig. 8.9).

Fig. 8.9 SEM and AFM images of surface patterns when compressing an oxidized PDMS film

either (a) sequentially or (b) simultaneously [22]
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Interestingly, 2D compression stress can be applied through unconventional

methods involving, swelling, or surface tension. 2D stress can also be applied by

subsequent inflating/deflating of a spherical bump in a microfluidic device

(Fig. 8.10) [23]. Swelling can be used in two different ways, either by a direct

compression of a confined slab as shown by Tanaka et al. [2], or indirectly, the

solvent changing the rheological properties of the foundation [24, 25]. This last

method was used to induce wrinkling in bilayers of titanium thin film deposited on

polystyrene (PS). Wrinkling was induced by immersing the multilayers in toluene

vapors. Toluene is a good solvent of PS, it can swell the polymer layer located

below the Ti membrane by diffusing through tiny defects, either resulting from the

deposition process or obtained by AFM indentation.

As shown in Fig. 8.11, immersion of a polystyrene film capped with a thin

titanium layer in toluene vapors leads to the formation of wrinkle domains in the

Fig. 8.10 (a) Highly pre-stretched bi-layer system using micro-fluidics. (b) Compressive strain is

applied by reducing the oil inside the chamber and a ridge structure emerges on the surface.

(c) SEM image of the ridge structure [23]
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metallic membrane with various morphologies. Parallel wrinkles, herringbones,

splaying-fan like morphologies, circles, and circles decorated with tiny dots can be

observed when the solvent diffuses inside the polymer layer. These metastable

patterns emerge spontaneously depending on the geometry of the diffusion front

and the layer thicknesses.

For the diffusion assisted wrinkling process, the compressive stress at the origin

of the patterns is related to the thermal deposition of the metal film on the polymer

substrate. Due to the very high elastic modulus of glassy PS the metal surface while

in compression remains flat. The wrinkling instability is then induced by immersing

the samples in solvent vapors of the polymer, since swelling induces a drastic

decrease of the elastic modulus (Fig. 8.11). Strikingly, the resulting wrinkling

patterns do not show the usual labyrinthine morphology [3] (see Fig. 8.1) but are

clearly determined by the geometry of the diffusion process (Fig. 8.11). Parallel

wrinkles are observed when the solvent diffuses from the edge yielding a linear

front. Radial organization of wrinkles arises from point-like diffusion starting at

tiny holes randomly distributed in the thin metal layer (i.e., defects resulting from

the deposition process of the metallic film). The wrinkles thus always grow

preferentially perpendicular to the wavefront. The relevance of molecular diffusion

in the observed phenomena is obviously supported by the dynamics of the process

that follows the classical Fickian diffusive behavior, distance/ t1/2.
As a consequence, multilayers made up of low elastic modulus elastomers, such as

polydimethylsiloxane (PDMS, Ep� 106 Pa), buckle with very small critical stresses.

It was thus not surprising that metal surfaces deposited by thermal evaporation

wrinkle during the deposition process [3]. The PDMS layer, thermally expanded

during metal deposition, induces a compressive stress in the rigid membrane when

cooled to ambient temperature. In contrast, replacing the elastomer with a high

modulus glassy polymer, such as PS, Ep� 109 Pa, increases the critical stress by

one order of magnitude. It could become so large that the thin metal surfaces, while

Fig. 8.11 (Left) parallel and radial wrinkles morphologies observed when solvent diffuses in the

PS layer from an edge or a point-like defect, respectively. (Right) schematic representation of the

wrinkle mechanism induced by solvent diffusion. First, the thermal deposition process generates

compression in the upper membrane. Subsequently, solvent diffusion triggers the transition from

unbuckled to buckled state
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stressed, remain perfectly flat after the thermal deposition. These stressed but flat

titanium surfaces can thus be considered as ready to buckle membranes.

The Ti/PS/SiOxmultilayers are however highly sensitive to chemical stimulation

thanks to the polymer layer. Indeed, the diffusion of a good solvent in PS leads to a

drop of the glass transition temperature together with a drastic decrease of the

elastic modulus (e.g., adding 15% w/w of toluene is enough to obtain elastomeric

PS at room temperature). To some extent, we could consider that solvent diffusion

is equivalent to a local increase of temperature for the PS layer. Since the formation

of wrinkles is fully determined by the critical stress, strongly dependent on polymer

elastic modulus, this diffusion process should trigger a transition from unwrinkled

to wrinkled state (Fig. 8.11).

The relation between the wavelength and materials properties can be obtained

from a scaling energetic approaches, based on a balance of the membrane bending

energy with the penalty associated with the deformation of the foundation [26]. For

micrometric polymer film thicknesses, the wrinkle wavelength follows the allometric

relation λ/ (hHp)
1/2 or λ∗/Hp

∗1/2 using variables without dimensions,λ∗ ¼ λ=h and
H∗

p ¼ Hp=h.

Interestingly, we observe a drastic deviation from the expected behavior for very

thin polymer films (nanometric thickness), Fig. 8.12. Instead of a continuous

decrease of λ∗ with Hp
∗, a “V shape” curve with a slope reversal is observed.

Since the deviation appears for polymer films thinner than 50 nm, we add van der

Waals (VDW) interactions between the silicon substrate and the titanium mem-

brane in our model. These interactions cannot be neglected when both surfaces are

separated by a distance smaller than 100 nm. The VDW energy (per unit surface area)

between two surfaces separated by a distance z is given by PðzÞ ¼ AH=12πz2

[27]. The Hamaker constant, AH, corresponding to the interactions of two surfaces,

1 and 2, through a medium 3, can be computed from the dispersive component of the

individual surface tensions, γi
D, by using the relation A132 ’ ð

ffiffiffiffiffi
γD1

p
� ffiffiffiffiffi

γD3
p Þ

6

7
8
9

100

2

3

4

5

6

*

1 10 100

H*p

Fig. 8.12 Evolution of the

normalized wavelength, λ∗,
with the normalized

foundation thickness Hp
∗,

for trilayers Ti/PS/SiOx

immersed in toluene vapors.

The line corresponds to the

solution of Eq. (8.5)
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ð
ffiffiffiffiffi
γD2

p
�

ffiffiffiffiffi
γD3

p
Þ [28]. For two materials of high surface energy separated by a polymer

medium, AH ’ �4:10�19 J.Forawrinkledsurfacewitha slowlyvarying thickness z(x),
the corresponding energy can be estimated from a Taylor expansion limited at the

second order of P[z(x)] that yields

Zλ

0

1

2

d2P

dz2

� �

z¼z0

½zðxÞ � z0�2 dx,

where z0 is the average film thickness.

For a sinusoidally wrinkled polymer layer with zðxÞ ¼ H p þ A sin 2πx=λ and

z0¼Hp, the total energy of the system per unit surface area can be written as:

UT ’ Eh3A2

λ3
þ Epλ

3A2

H3
p

� jAHjA2λ

H4
p

, ð8:4Þ

where the first term is the bending energy of the upper Ti membrane, the second

term is the elastic energy stored in the polymer layer, and the third term is the

contribution of the VDW energy. For such very high molecular weight polymer

(Mw¼ 1. 4 � 106Da), we can consider a purely elastic foundation. Indeed, the time

scale of the experiment (’ 100 s) remains very small with respect to the disentan-

glement time τd that determines the transition between elastic and viscous behav-

iors. Minimizing the total energy with respect to λ∗, considering λ∗ and Hp
∗

variables, yields the relation

� E

λ∗4
þ E pλ

∗2

H∗3
p

� jAHj
h3H∗4

p

¼ 0: ð8:5Þ

The solution of this equation is plotted with the experimental data in Fig. 8.12,

showing the good agreement between the model including VDW energy and the

experimental results.

Wrinkling from solvent diffusion was also used for other systems [29]. For

instance, combining UV exposure and solvent diffusion, a zoo of morphology:

flowers, concentrated rings, and labyrinthine patterns can be obtained (Fig. 8.13). It

should be noted however that there is no theoretical model to explain the transition

between all these rather exotic patterns.

Combining wrinkling and diffusion provides thus an interesting method to

produce complex patterns with tunable dimensions. However this physical method

by itself is not suitable as a patterning technique due to the randomness of the

wrinkle nucleation events. Indeed, the random distribution of the wrinkled domains

is related to the uncontrolled localization of defects in the metal membrane. To

solve this problem, we use thicker titanium layers and an AFM tip (Fig. 8.14) to

make small holes in the metal layer with a specific geometry. As shown in
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Fig. 8.14c, this nano-indentation process prior to solvent exposure provides a fine

control of the spatial layout of the wrinkled domains. Furthermore, since the

wrinkle orientation is determined by the diffusion front, it becomes possible to

generate tailor-made wrinkled patterns by tuning the geometry of the carving.

Wrinkles initiated at the corners and tips of the engraved area (Fig. 8.14b) exhibit

radial orientation while parallel wrinkles develop from the linear parts.

Fig. 8.13 Variety of morphological patterns via swelling-induced surface wrinkling. Optical

microscopy images of various wrinkling patterns produced on 500 nm thick PS films with different

UVO exposure times from 2–40min [29]

Fig. 8.14 Optical images of wrinkled Si/PS/Ti multilayers, previously patterned with an AFM tip

and then exposed to toluene vapor for 2 min. (a) scheme of the patterning method, observed

patterns for squares 2 μm (b) and lines 2 μm wide (c). Scale bars correspond to 10 mm [25]
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8.5 Conclusions

Playing with materials properties and the way the compression stress is applied,

various topography with parallel wrinkles (with a cascade of wavelength, or a

superposition of several modes, or the growth of a soliton-like solution), radial

wrinkles, chaotic labyrinthine, and many others patterns can be generated. For

application purposes, it is usually more convenient to generate in situ the rigid

thin sheet on the elastomer by using UV irradiation, for instance. Oxydation of the

polymer surface creates a crust that wrinkles when a compression stress is applied.

As shown by Eq. (8.2), the thin sheet thickness and thus irradiation time determines

the wavelength that could range from hundred of nanometers to centimeters. These

surfaces were used for various applications including the design of superhydrophobic

surfaces, new non-permanent adhesive [30], flexible electronic devices [31].Wrinkled

surfaces exhibiting sub-micrometric features were also used for optical devices such

as anti-reflective coatings, optical cavity [32, 33].
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