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Abstract. This paper presents Unified Bounded Model Checking
(UBMC) for the verification of an infinite state system described with
Modeling, Simulation and Verification Language (MSVL) which is an exe-
cutable subset of Projection Temporal Logic (PTL). The desired prop-
erty is specified by a Propositional PTL (PPTL) formula. We present the
bounded semantics of PPTL and the approach to implementing UBMC.
A Bounded Labeled Normal Form Graph (BLNFG) is constructed on the
fly and a counterexample of minimal length is produced to ease the inter-
pretation and understanding for debugging purposes. Finally, a resource
allocation algorithm is presented as an example to illustrate how the pro-
posed approach works.

Keywords: Bounded model checking · Unified model checking · Propo-
sitional Projection Temporal Logic · Modeling · Verification

1 Introduction

Techniques for automatic formal verification of finite state transition systems
have been studied in recent years. Compared to other formal verification tech-
niques (e.g. theorem proving), model checking [1,2] is an automatical approach.
Model checking has been widely used in many fields such as verification of hard-
ware, software and communication protocols. In model checking, the system to
be verified is modeled as a finite state machine, and the specification is formalized
by a temporal logic formula.

For a system in practice, the number of states in it can be very large and the
explicit traversal of the state space becomes infeasible. To fight with this prob-
lem, several approaches, such as Symbolic Model Checking (SMC) [3], Abstract
Model Checking (AMC) [4], and Compositional Model Checking [5], etc. have
been proposed with success. The combination of symbolic model checking with
BDDs [6,7] pushed the barrier to systems with 1020 states and more later [3].
But the bottleneck of SMC is the amount of memory that is required for storing
and manipulating BDDs. The boolean functions required to represent the set of
states can grow exponentially. Bounded model checking (BMC) is an important
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progress in formal verification after SMC [8]. The basic idea in BMC is to search
for a counterexample in executions whose length is bounded by some integer k.
If the property is not satisfied, an error is found. Otherwise, we cannot tell
whether the system satisfies the property or not. In this case, we can consider
to increase k, and then perform the process of BMC again. BMC problem can
be efficiently reduced to a propositional satisfiability problem, and can therefore
be solved by SAT methods rather than BDDs. SAT procedures do not suffer
from the state space explosion problem of BDD-based methods. Modern SAT
solvers can handle propositional satisfiability problems with hundreds of thou-
sands of variables or more. Tools supporting BMC are NuSMV2 [9], bounded
model checker developed by CMU [10], Thunder of Intel [11], and so on.

With model checking and bounded model checking, the mostly used temporal
logics are LTL [12], CTL [1], and their variations. However, expressiveness of both
LTL and CTL is not powerful enough. There are at least two types of properties
in practice which cannot (or with difficulty to) be specified by LTL and CTL:
(1) time related properties such as “a property P holds after the 100th time unit
and before the 200th time unit”; (2) periodically repeated of property P . The
expressiveness of Propositional Projection Temporal Logic (PPTL) [13] is full
regular [14] which allows us to verify full regular properties and time related
properties of systems in a convenient way.

In recent years, the verification of infinite state systems has attained increas-
ing interest. The main limitation of model checking is that it is restricted to
(essentially) finite-state systems. In general, the model checking problem is unde-
cidable for infinite state systems, and hence, it may happen that the verification
process does not terminate. In the verification of an infinite state system, theorem
proving [15] is a powerful technique. Predicate abstraction has been introduced
as a technique for reduction of infinite state systems to finite one in the work of
Graf and Saidi [16]. Verification by abstraction can be applied to infinite state
systems as shown in [17–19]. Another way to deal with the difficulty of verifi-
cation is the method of compositional verification that uses the combination of
temporal case splitting and data type reductions to reduce types of infinite or
unbounded range to small finite types, and arrays of infinite or unbounded size
to small fixed-size arrays [20,21]. In bounded model checking of infinite state
systems [22], three-valued logic is employed in order to explicitly forward uncer-
tain information in the case a proof cannot be established due to insufficient
bounds.

Modeling, Simulation and Verification Language (MSVL) is a subset of Pro-
jection Temporal Logic (PTL) [13,23] with framing techniques [24]. It can be
used for the purpose of modeling, simulation and verification of software and
hardware systems. For the verification of a finite system by MSVL, a method
named Unified Model Checking has been presented in [25]. With this method, a
system is first modeled as p in MSVL. Thus, p is a non-deterministic program
of MSVL and also a formula of PTL. Second, the property we want to check is
specified by a formula φ in PPTL. To check whether or not p satisfies φ amounts
to proving |= p → φ. It turns out to prove �|= p ∧ ¬φ. Thus, for finite state
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programs in MSVL, we can translate the model checking problem into a satis-
fiability problem in PPTL since finite state programs in MSVL are equivalent
to PPTL formulas. To check the satisfiability of p ∧ ¬φ, Labeled Normal Form
Graph (LNFG) of p∧¬φ can be constructed. But for an infinite state transition
system, the path in the LNFG may be a straight infinite line and we cannot get
the result that whether the system satisfies the given property forever.

Given an infinite system p in MSVL, a property of the system in terms of a
PPTL formula φ, and a user supplied upper bound k, we present an approach
named Unified Bounded Model Checking (UBMC) which combines bounded
model checking and unified model checking approaches. In order to do this,
bounded semantics of PPTL is presented. Further, the procedure of UBMC
can be described as a process to construct the Bounded Labeled Normal Form
Graph (BLNFG) of p ∧ ¬φ on the fly. BLNFG is constructed progressively as
the current bound increases. If a finite or an infinite counterexample is found
at a given bound that is less than the upper bound, the construction of the
BLNFG stops and the counterexample is output. When there is no new node
to be dealt with and no counterexample is found, the construction of BLNFG
terminates and the result is given that the property is valid. If the current bound
is increasing until the upper bound with no counterexamples found, it cannot
be determined whether the system satisfies the property or not. At this time, we
can increase the upper bound and construct the BLNFG of p ∧ ¬φ again.

The main advantages of our technique are the follows. First, our method
can partially verify an infinite system described by MSVL. We can give the
result that whether the property is valid in bound k. Second, our method can
find counterexamples relatively quicker. This is due to the depth first nature in
the construction of our BLNFG. Finding counterexamples is arguably the most
important feature of model checking. Third, it finds a counterexample of minimal
length. This feature helps users to understand a counterexample more easily.

This paper is organized as follows. In the next section, as a property specifica-
tion language, PPTL formulas are presented. Then the language MSVL used for
the description of an infinite system is formalized. In Sect. 3, the bounded seman-
tics of PPTL formulas is given. Next, the method for constructing a BLNFG is
formalized in detail. A resource allocation algorithm is presented to illustrate
how our approach works in Sect. 5. Finally, conclusion is drawn in Sect. 6.

2 Preliminaries

2.1 Propositional Projection Temporal Logic

Let Prop be a countable set of atomic propositions. A formula P of PPTL is
given by the following grammar:

P ::= p | © P | ¬P | P1 ∨ P2 | (P1, · · · Pm) prj P

where p ∈ Prop, P1, · · · , Pm and P are all well-formed PPTL formulas. © (next)
and prj (projection) are basic temporal operators.
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A mapping from Prop to B = {true, false} is used to define a state s,
s : Prop → B. s[p] denotes the valuation of p at the state s. An interval σ is
a non-empty sequence of states. The length of σ, |σ|, is the number of states
minus 1 if σ is finite, and ω otherwise. The set of non-negative integers N0

with {ω}, Nω = N0 ∪ {ω} is used for both finite and infinite intervals. The
relational operators, =, <,≤, is extended to Nω by considering ω = ω, and for
all i ∈ N0, i < ω. Moreover, the relation symbol 
 is defined as ≤ −(ω, ω).

In an interpretation I = (σ, i, j), σ is an interval, i an integer, and j an
integer or ω such that i 
 j ≤ |σ|. If formula P is interpreted and satisfied over
a subinterval < si, · · · , sj > of σ with the current state being si, it is denoted
by the notation (σ, i, j) |= P . The satisfaction relation (|=) is inductively defined
as follows:

I − prop I |= p iff si[p] = true, and p ∈ Prop is an proposition
I − not I |= ¬P iff I �|= P
I − or I |= P ∨ Q iff I |= P or I |= Q
I − next I |= ©P iff i < j and (σ, i + 1, j) |= P
I − prj I |= (P1, · · · , Pm) prj P, if there exist integers r0 ≤ r1 ≤ · · · ≤ rm ≤ j

such that (σ, r0, r1) |= P1, (σ, rl−1, rl) |= Pl, 1 < l ≤ m, and (σ′, 0, |σ′|) |= Q
for one of the following σ′:

(a) rm < jandσ′ = σ ↓ (r0, · · · , rm) · σ(rm+1,··· ,j), or

(b) rm = j and σ′ = σ ↓ (r0, · · · , rh) for some 0 ≤ h ≤ m.

where P , P1, · · · , Pm and Q are PPTL formulas.
A formula P is satisfied by an interval σ, denoted by σ |= P , if (σ, 0, |σ|) |= P .

A formula P is called satisfiable if σ |= P for some σ. A formula P is valid,
denoted by |= P , if σ |= P for all σ.

For any PPTL formula Q, it can be rewritten into its normal form [26]:

NF (Q) ≡
n0∨

j=0

(Qej ∧ empty) ∨
n∨

i=0

(Qci ∧ ©Qfi)

where Qej and Qci are conjunctions of atomic propositions (or their negations)
in Qp which is the set of atomic propositions appearing in the PPTL formula Q,
and Qfi is an arbitrary PPTL formula.

For a PPTL formula Q, its corresponding LNFG can be constructed, which
explicitly illustrates models of the formula. Here, an example is given to show
the LNFG of a PPTL formula intuitively and the formal definition can be found
in [27].

Fig. 1. LNFG of formula ¬(true;¬ © q) ∧ (p ∨ ©(p; q))
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Example 1. LNFG of formula ¬(true;¬© q)∧ (p∨©(p; q)) is shown in Fig. 1.

In the LNFG of a formula as shown in Fig.1, each node is specified by a PPTL
formula, while each edge is a directed arc labeled with a state formula. The extra
propositions lk are employed to mark the infinite paths in the LNFG which are
not the models of the PPTL formula.

2.2 Modeling, Simulation and Verification Language

MSVL is a subset of Projection Temporal Logic [13,23] with framing technique
[24]. Based on the language, we have developed a model checking tool named
MSV which works in three modes: modeling, simulation and verification.

The arithmetic expression e and boolean expression b of MSVL are induc-
tively defined as follows:

e ::= n | x | © x | ©−x | e0 op e1 (op ::= +| − | ∗ |\|mod)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is an integer and x a variable. The elementary statements in MSVL are
defined as follows. The meanings of all statements in MSVL are given in [13].

Termination: empty State Assignment : x <== e Assignment : x := e
State Frame: lbf(x) Interval Frame: frame(x) Conjunction: p∧q
Selection: p ∨ q Next : ©p Always: �p Sequence: p; q
Conditional : if b then p else q

def=(b → p) ∧ (¬b → q)

While: while b do p
def=(p ∧ b)∗ ∧ �(empty → ¬b)

where x denotes a variable, e stands for an arbitrary arithmetic expression,
b denotes a boolean expression, and p, q stand for programs of MSVL.

Any MSVL program p can be rewritten into its normal form [13,24]. Accord-
ing to normal form, we can construct an LNFG G = (CL(p), EL(p), v0, L =
{L1, . . . , Lm}) to model an infinite state MSVL program p. Each node is spec-
ified by a program in MSVL, while each edge is a directed arc labeled with a
state formula pe from node q to node r and identified by a triple, (q, pe, r).

Note that the number of nodes is finite only when the range of values of the
variables in the program is limited to a finite set. When the range of variables is
infinite, we cannot construct a finite LNFG of the program. For example, in the
program frame(i) and (int i <== 0 and skip; while(true){(i := i + 1)}), the
value of i is increasing and a finite LNFG of the program cannot be constructed
always. In the LNFG of an infinite state MSVL program, there exist three kinds
of paths: finite paths, loop paths and infinite paths with infinite states.

3 Bounded Semantics for PPTL

The basic idea of bounded model checking, as explained before, is to consider
only a finite prefix of a path that may be a witness to the desired property. We
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Fig. 2. σ is a (k, l)-loop Fig. 3. σ is a finite interval

restrict the length of the prefix by some bound k. In practice, we progressively
increase the bound, looking for witnesses in longer and longer traces.

A crucial observation is that, though the prefix of a path is finite, it still might
represent an infinite path if there is a back loop from the last state of the prefix
to any of the previous states as in Fig. 2. If there is no such loop, as in Fig. 3, the
prefix does not say anything about the behavior of the path beyond state sk.

Definition 1 ((k,l)-loop). For l, k ∈ N0 and l ≤ k, if there is a transition
from sk to sl in σ i.e. σ = (s0, · · · , sl−1) · (sl, · · · , sk)ω, we call interval σ a (k,
l)-loop, k-loop for short.

Obviously, if σ is an infinite interval with a loop, it must be a k-loop for some k ∈
N0. We will use the notion of k-loop in order to define the bounded semantics of
PPTL. The bounded semantics is an approximation to the unbounded semantics,
which will allow us to define the bounded model checking problem. Since each
PPTL formula can be transformed into an equivalent formula in NF, we do not
need to deal with all types of PPTL formulas in the bounded semantics.

In the bounded semantics, we only consider a finite prefix of a path. In
particular, we only use the first k + 1 states (s0, . . . , sk) of a path to determine
the validity of a formula along the path. If a path is a k-loop then we simply
maintain the original semantics of atomic propositions, ¬, ∨, and © operators,
because all the information about this infinite path is contained in the prefix of
length k. Since empty ≡ ¬ © true and more ≡ ©true, the bounded semantics
of empty and more can be deduced by the bounded semantics of ¬ and ©. In
fact, the formula empty cannot be satisfied over an infinite interval, while more
is satisfied all the time in an infinite interval.

Definition 2 (Bounded Semantics for a Loop). Let k ∈ N0 and σ be a
k-loop interval, a PPTL formula f is valid along σ with bound k (denoted by
σ |=k f) iff σ |= f .

We now consider the case where σ is not a k-loop. We use the notation (σ, i) |=k f
(0 ≤ i ≤ k ≤ |σ|) to represent that formula f is interpreted and satisfied over
the subinterval < si, · · · , sk > of σ with the current state being si. (σ, 0) |=k f
is denoted by σ |=k f .

In the bounded semantics without a loop, we only consider formulas con-
structed from atomic propositions and negations of atomic propositions with ∨,
∧, and © operators as well as empty and more.

Definition 3 (Bounded Semantics without a Loop). Let k ∈ N0 and σ be
an interval that is not a k-loop. The bounded satisfaction relation |=k is defined
as follows:
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(σ, i) |=k p iff si[p] = true if p ∈ Prop is an atomic proposition
(σ, i) |=k ¬p iff si[p] = false if p ∈ Prop is an atomic proposition
(σ, i) |=k P1 ∨ P2 iff (σ, i) |=k P1 or (σ, i) |=k P2

(σ, i) |=k P1 ∧ P2 iff (σ, i) |=k P1 and (σ, i) |=k P2

(σ, i) |=k ©P iff i + 1 ≤ k and (σ, i + 1) |=k P
(σ, i) |=k empty iff i = |σ|
(σ, i) |=k more iff i < |σ|

Lemma 1. Let k ∈ N0, f be a PPTL formula, and σ a finite interval. We have
σ |=k f ⇒ σ |= f .

Proof: To prove Lemma 1, we first prove a stronger conclusion given below:

(σ, i) |=k f ⇒ (σ, i, |σ|) |= f (0 ≤ i ≤ k)

Lemma 1 can be concluded by setting i = 0. We prove the above conclusion
by induction on the structure of formula f :

Base case:

f ≡ p ∈ Prop : (σ, i) |=k p ⇒ si[p] = true ⇒ (σ, i, |σ|) |= p
f ≡ ¬p ∈ Prop : (σ, i) |=k ¬p ⇒ si[p] = false ⇒ (σ, i, |σ|) �|= p ⇒

(σ, i, |σ|) |= ¬p
f ≡ empty : (σ, i) |=k empty ⇒ i = |σ| ⇒ (σ, i, |σ|) |= empty

Inductive cases: Suppose for any PPTL formula f , (σ, i) |=k f ⇒ (σ, i, |σ|) |= f .

1. By hypothesis, when i < k ≤ |σ|, we have (σ, i+1) |=k f ⇒ (σ, i+1, |σ|) |= f .
By the definitions of semantics, (σ, i + 1) |=k f iff (σ, i) |=k ©f and (σ, i +
1, |σ|) |= f iff (σ, i, |σ|) |= ©f , so we can get (σ, i) |=k ©f ⇒ (σ, i, |σ|) |=
©f . When i = k, (σ, i+1) |=k f is false. Because false ⇒ (σ, i, |σ|) |= ©f ,
we can get (σ, i) |=k ©f ⇒ (σ, i, |σ|) |= ©f .

2. By hypothesis, we have (σ, i) |=k P1 ⇒ (σ, i, |σ|) |= P1 and (σ, i) |=k P2 ⇒
(σ, i, |σ|) |= P2. By the definitions of bounded semantics, we can easily get
(σ, i) |=k P1 ∨ P2 ⇒ (σ, i, |σ|) |= P1 ∨ P2. Similarly, (σ, i) |=k P1 ∧ P2 ⇒
(σ, i, |σ|) |= P1 ∧ P2.

Note that we do not need to deal with more in the above inductive cases
since more ≡ ©true.

Lemma 2. Let f be a PPTL formula and σ a finite interval. Then σ |= f ⇒
∃k, k ∈ N0, σ |=k f .

Proof: Since σ is a finite interval, so |σ| ∈ N0.

σ |= f ⇒ (σ, 0, |σ|) |= f
⇒ (σ, 0, k) |= f ∧ k = |σ|
⇒ ∃k, k ≥ 0, (σ, 0) |=k f
⇒ ∃k, k ≥ 0, σ |=k f
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4 Unified Bounded Model Checking of MSVL

In the Unified Model Checking implemented in [25], LNFG of p ∧ ¬φ is con-
structed to check whether a finite state MSVL program p satisfies a PPTL
formula φ. According to [27], finite and infinite models of p ∧ ¬φ are precisely
characterized by the paths which satisfy certain conditions in the LNFG. For a
PPTL formula Q, an interval σπ can be defined for a given path π in the LNFG
of formula Q and given a model σ of formula Q , σ |= Q, a path πσ can be
constructed according to the transition rules [27].

In the previous section, we defined the bounded semantics of PPTL. According
to it, a BLNFG can be constructed to describe the model of p ∧ ¬φ in bound k.

Definition 4. (Bounded Labeled Normal Form Graph, BLNFG). For
a MSVL program p, a PPTL formula φ, and k ∈ N0, its BLNFG is a tuple
G = (CL(p ∧ ¬φ), EL(p ∧ ¬φ), v0, L = {L1, . . . , Lm}, C = {C1, . . . , Ck}), where
CL(p ∧ ¬φ), EL(p ∧ ¬φ), V0 and L are identical to the ones defined in [27] and
each Ci ⊆ CL(p ∧ ¬φ), 0 ≤ i ≤ k, is the set of nodes with cq = i, where cq

represents the depth of a node q.

Since the set CL(p∧¬φ) of nodes and the set EL(p∧¬φ) of edges are inductively
produced by repeatedly rewriting the new created nodes into their normal forms,
the BLNFG can be constructed progressively with the current bound increasing
until a user supplied upper bound k. When constructing BLNFGs by normal
form reductions, for any chop formula P ;Q, we equivalently rewrite it by P ∧
fin(lk);Q as implemented in [27]. For convenience, we use inf(π) to denote the
set of nodes which infinitely often occur in the infinite path π.

By conclusions in [27], we can get the Corollaries 1 and 2 respectively as
follows.

Corollary 1. If π is a finite or an infinite path with inf(π) � Li for all 1 ≤ i ≤
m and cq ≤ k (k ∈ N0) for all nodes q on π in the BLNFG of formula p ∧ ¬φ,
then the interval obtained from the path σπ |=k p ∧ ¬φ.

Corollary 2. For a finite or an infinite interval σ, if σ |=k p ∧ ¬φ, then πσ

translated from σ with inf(πσ) � Li for all 1 ≤ i ≤ m and cq ≤ k for all nodes q
on πσ can be found in the BLNFG of formula p ∧ ¬φ.

Corollaries 1 and 2 tell us that a finite or an infinite interval σ |=k p ∧ ¬φ iff
there exists a corresponding finite or infinite path satisfying certain conditions
in the BLNFG of formula p ∧ ¬φ in bound k.

Because a MSVL program p does not satisfy a PPTL formula φ iff p ∧ ¬φ
is satisfiable, then we can get the following corollary which is important in our
unified bounded model checking.

Corollary 3. In the LNFG of an infinite system p in MSVL, finite paths precisely
characterize finite models of p; loop paths with inf(π) � Li for all 1 ≤ i ≤ m,
precisely characterize loop models of p.
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According to Corollary 3, our bounded model checking approach can be deduced
to the construction of the BLNFG of p ∧ ¬φ. In the on-the-fly construction of
p ∧ ¬φ, i is the current bound which stops increasing once a counterexample is
found or reaches the upper bound. Initially, we create the root node p ∧ ¬φ and
set cp∧¬φ to 0.

For a given bound i, nodes whose depth equals i are dealt with. In order to
retain consistency, we use p ∧ ¬φ to represent the node that will be dealt with.
For a node p ∧ ¬φ, p and ¬φ are rewritten into their normal forms respectively.
The function NF () defined in [26] is called to produce normal form of a PPTL
formula or MSVL program. Then we can get the conjunction of these two normal
forms. The first part of the conjunction is a disjunction. A finite path ended by
the empty node is found once one disjunct can be satisfied. At this time, the
construction of the BLNFG terminates and a finite counterexample is output.
Because the depth of nodes that are dealt with is increasing progressively, our
process produces counterexamples of minimal length, which eases the under-
standing for debugging purposes. If no counterexample is found by checking the

Fig. 4. The construction of the BLNFG for p ∧ ¬φ



58 B. Yu et al.

first part, the second part of the conjunction will be dealt with. For every dis-
junct, a new node will be generated if the present state can be satisfied. If the
node pfj ∧ ¬φfs does not exist, a new node pfj ∧ ¬φfs whose depth is i + 1 is
generated. Otherwise, a loop will be generated. If inf(π) � Li for all 1 ≤ i ≤ m,
the infinite path is output as a counterexample and the construction of BLNFG
terminates. If not, this infinite interval is not a model of p∧¬φ and is not taken
into account. At this time, we will check whether there exist other nodes whose
depth is equal to i. If these nodes exist, they will be dealt with by the same
process above. Those new generated nodes whose depth is equal to i+1 will not
be dealt with immediately. When the current bound increases to i+1, pfj ∧¬φfs

will be considered.
In case that all nodes whose depth is i have been dealt with and no coun-

terexample has been found, the current bound i will increase. If there is no node
to be dealt with at this time, it means that the whole LNFG of p ∧ ¬φ has been
constructed. Because no valid path exists in the LNFG, we can get the result
that the property φ is valid. If the value of i is still less than the upper bound k,
the nodes whose depth equals i will be dealt with by the same process above.
If the value of i is larger than the upper bound k, the process has to stop and
it cannot be determined whether the system satisfies the property or not. The
construction of the BLNFG for p ∧ ¬φ is depicted in Fig. 4.

Based on our UBMC algorithm, the model checker acting as a module in
the MSV toolkit [25] has been developed. Under the bounded verification mode,
a finite or an infinite system model is described by a MSVL program and the
property is specified by a PPTL formula. A upper bound can be set by the user,
otherwise it will be the default value.

5 A Case Study: Verification of Resource
Allocation Algorithm

Banker’s algorithm [28] is a resource allocation and deadlock avoidance algo-
rithm developed by Dijkstra. It tests for safety by simulating the allocation of
predetermined maximum possible amounts of all resources. The algorithm tests
for possible deadlock conditions for all other pending activities before deciding
whether allocation is permitted.

The algorithm is originally developed in the design process of operating sys-
tems. When a new process enters a system, it must declare the maximum num-
ber of each resource type that it may ever claim. When a process gets all its
requested resources, it must return them in a finite time interval. Many varia-
tions of Banker’s algorithm have been applied in cloud computing where differ-
ent computing tasks may be assigned to different platforms. Because resources
available are usually limited on a given platform, it becomes necessary to check
whether the tasks to be executed are schedulable.

We describe a variation of the resource allocation algorithm by a MSVL
program where it is assumed that five tasks need to be scheduled every time
and there exist four types of resources to be allocated. An array maxres is
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Fig. 5. The verification result of the resource allocation algorithm

used to indicate the number of resources available of each type. A 5 × 4 matrix
maxclaim defines the maximum demand of each task and another 5 × 4 matrix
curr defines the number of resources which are already allocated to each task.
In the program, the platform keeps running through a nonterminal loop and the
maximum demand of each task changes among three cases randomly. A boolean
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variable fail is used to represent whether the tasks are schedulable in each case
and order is an array used to record every task’s execution order.

Assume that we want to check whether or not the tasks are schedulable
in each case and the third task is always executed after the second one. The
property can be specified by �(p ∧ q) in PPTL where p is defined as fail = 0
and q is defined as order[1] < order[2]. The upper bounded length is set to 100.
Then we can verify the model with the bounded model checker. The verification
result is shown in Fig. 5.

The counterexample is found when the bound increases to 89. By analysing
the counterexample, we find that the resources available are too limited to sched-
ule these five tasks. When the variable maxclaim=[[4, 2, 1, 4], [2, 2, 5, 2], [5, 1,
3, 5], [3 ,5 ,3 ,0], [3 ,2 ,3 ,3]], the first and the fourth types of resources are not
enough. The program is verified again after we add one resource to the first and
the fourth types respectively. Then we can get the result that the given property
is valid for the modified program.

6 Conclusion

In this paper, we have proposed an approach named UBMC, which combines
bounded model checking with unified model checking for verifying infinite state
programs in MSVL. In our approach, a BLNFG is constructed on the fly to find
whether there exist counterexamples in the given bound. This new technique
produces counterexamples of minimal length and speeds up the verification. We
also use a resource allocation example to show our approach. To examine our
method, several case studies with larger examples are required in the near future.
Moreover, lots of efforts are needed to improve our bounded model checker.
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