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Abstract Classification of meteorological time series is important for the analysis
of the climate variability and climate change. The clustering of several years in
groups that are homogeneous with reference to the amount of precipitation and to
the atmospheric condition can aid in understanding the structure of precipitation
and may be important in developing hydrological models. In this paper we propose
a cluster analysis of multivariate time series based on a dissimilarity measure that
considers the functional form of the data. The unit to be classified are 148 years,
from 1861 to 2008, and the variables are the values of precipitation, the minimum
temperature, and the maximum temperature in different occasions (days or months)
in the province of Modena (Northern Italy).

Keywords Climate change • Clustering • Functional data analysis • Precipita-
tion

1 Introduction

When studying climate change in a spatial area, we may search for typical patterns,
common to some time periods, describing the underlying atmospheric process. The
analysis and the comparison of these different patterns may give an insight into
the long-period changes in meteorological variables, such as rain and temperature.
These typical patterns may be thought of as centroids of homogeneous clusters,
where the units to be classified are years over a long period of time and the variables
are measurements of rain and temperature in different occasions (for example, days
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Fig. 1 Daily values of rainfall in Modena in the years 1839 and 1841

or months). Classification of these there-way data (unit � variables � occasions)
should consider the functional form of the multivariate time series. Indeed, salient
features of atmospheric measurements, such as extreme values, maxima or minima,
may result shifted in the different series. The transformation of time, that is the
warping function from one series to another, must be estimated, before computing
the dissimilarity between pairs of series. This function permits a fruitful alignment
of the two sequences of measurements. As an example, Fig. 1 reports the daily
values (explains) of rainfall intensity in the years 1839 and 1841, in the province
of Modena (Northern Italy). The two sequences show a great similarity, considering
that both years have a peak around 30 mm in March, three days with more than
20 mm in the period May–June and, in particular, a very rare event such as a
daily value near 80 mm in October. The timing of this very rare event is shifted
of 13 days in the 2 years (it occurs the 16th of October in the year 1839 and
the 29th of October in the year 1841). Cross-sectional similarities, which compare
measurements gathered in the same day, produce pessimistic values for these two
series. A more comprehensive similarity should align similar events that occur in
nearby days. Even the simplest data analysis, such as computing a mean, can require
that features be first aligned by a time transformation, a process that is called time-
series registration.

Classical functional data analysis [2, 7, 8, 10] interpolates the sequences of values
by a smooth curve and assumes that also the time-warping function is a smooth
function, differentiable as the curves themselves. Suppose we have n observed
values xijt, i D 1; : : : ; n, of variable j ( j D 1; : : : ; p) at time t (t D 1; : : : ; T). In
functional data analysis, the model usually assumed is

xijt D sij.wij.t// C "ijt; (1)

where sij is the smooth function underlying the time series i of variable j (i D
1; : : : ; n), ( j D 1; : : : ; p), wij.t/ is the smooth time warping function, and "ijt is
the error term. The errors are assumed independent and identically distributed. The
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function wij.t/ is subject to the following constraints:

1. t1 < t2 ” wij.t1/ < wij.t2/
2. wij.0/ D 0

3. wij.T/ D T

To keep the notation simple, in (1) it is assumed that, for each variable j and for
each time series i, both the number T and the timing of the sampled values xij are
identical. However, many applications involve variation in locations and numbers of
sampling points across replications and formula (1) may be adjusted for these cases.
The smooth functions sij and wij depend on the time series i and on the variable
j and each observation xijt is associated with the registered curve value sij.wij.t//.
The simplest curve alignment procedure is a landmark registration. A landmark is
a feature with a location that is clearly identifiable in all curves. The curves are
aligned by transforming the physical time so that the location of the landmarks is
the same for all curves. In case of a single landmark, if t0 is the timing of this
landmark in variable j and ti is the timing of this landmark in curve i, then the
time-warping function wij.t/ is specified by fitting a smooth function to the three
points .0; 0/, (t0; ti), and .T; T/. This function is as differentiable as the curves sij

themselves. According to this definition, wij.ti/ D t0, and all the registered functions
defined as yij.t/ D sij.wij.t// will all automatically arrive at the landmark at the same
time, namely t0. Both the definition of multiple landmarks and their unequivocal
identification in individual curves are problematic, especially in long time series
of atmospheric data. For example, in Fig. 1, the timing of the rain peak in March
may be either the 5th or the 17th. In October, t0 may be either the 16th or the 29th.
Moreover, these peaks may be not so visible in other years. It is evident that both
the exact number and the daily locations of landmarks in rain and temperature time
series are not objectively identifiable. As an alternative to landmark registration,
in this paper we use the dynamic time warping algorithm (dtw). In its original
formulation, the dtw estimates a “warping path” for aligning one series to another
and minimizes a measure of “discrepancy” between the two series which is called
dynamic time warping cost (dtwc). However, if we modify one of the constraints
in the classical formulation, the algorithm estimates a path which is a discrete time
warping function and minimizes, a cost which is a dissimilarity measure between the
two registered series. The dtw algorithm doesn’t require the estimate of the smooth
curves interpolating the time series. However, we may estimate these curves and use
the smoothed valued sij.t/ in order to have data less noisy than the sampled values
xijt. The main features of dtw are as follows:

– It is a nonparametric procedure which does not require prior assumptions
about the form of the warping functions (see, e.g., [9, 12] for the definition of
parametric warping functions) or about the number and the timings of salient
events (the landmarks).

– It relies on a minimization problem which can be solved efficiently by using
dynamic programming.
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– When applied to three-way data, the warping functions are estimated by con-
sidering the vector-valued time series xit D Œx11t; : : : ; x1jt; : : : ; x1pt� and not by
considering each univariate series xijt ( j D 1; : : : ; p) (t D 1; : : : ; T) separately.
Therefore, rather than estimating a univariate warping function wij for each
variable j, the dtw estimates a p-variate warping function wi.

These last two items differentiate the dtw algorithm used in this paper and the
algorithm illustrated in [13, 14]. In Wang and Gasser the warping functions are
univariate smooth continuous functions.

The paper is organized as follows. In Sect. 2 we illustrate the dtw algorithm used
in paper. In Sect. 3 we focus on the application. We first describe the data and the
study area and then we show how atmospheric data can be clustered and analyzed
to achieve meaningful results.

2 The Warping Function and the Measure of Dissimilarity

The dtw algorithm was originally developed in engineering, for speech analysis and
speech recognition, in order to align two sequences of values. Many enhancements
of the method have been proposed in the data mining literature. Among other
works, we refer to [1, 3–5]. In its original formulation, given the p-dimensional
vector-valued series x1t and x2t, where xit D Œx11t; : : : ; x1jt; : : : ; x1pt�, i D 1; 2 and
t D 1; : : : ; T, the dtw first implies the construction of a T � T square lattice D,
in which the element d.r; c/ (r; c D 1; : : : ; T) is the distance d.x1r; x2c/ between
the values of series 1 at time r and the values of series 2 at time c. Any distance
may be used in the construction of the square lattice D. However, before computing
any Minkowski metric, the p variables should be standardized to take into account
the different units of measurements and/or the different variability [6]. Each element
d.r; c/ corresponds to the alignment between points x1r and x2r in the p-dimensional
Euclidean space. The dtwc is defined as follows:

dtwc D min

sPK
kD1 dk

K
; (2)

where T � K � .2T � 1/, K is determined by the optimization process of the
algorithm and the dk are elements of D subject to the following constraints:

– Boundary condition: d1 D d.1; 1/ D d.x11; x21/ and dK D d.T; T/ D
d.x1T ; x2T/. This constraint requires that the first time and the last time in one
series are aligned with the first time and the last time, respectively, in the other
series. So, the first and the last time are not warped.

– Continuity constraint: given dk D d.x1r; x2c/ then dk�1 D d.x1r0 ; x2c0/ where
.r � r0/ � 1 and .c � c0/ � 1. This condition restricts two successive elements dk

to be adjacent (including diagonally) elements in D.
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Fig. 2 (a) An example of the distances included in the dtwc; (b) the warping path

– Monotonicity constrain: given dk D d.x1r; x2c/ then dk�1 D d.x1r0 ; x2c0/ where
.r�r0/ � 1 and .c�c0/ � 1. This condition forces the couple of points for which
the distance is taken into account in the dtwc to be monotonically spaced in time.

The dtw produces a relative shift between the two sampled curves. However, as
shown in Fig. 2a, the algorithm defines a warping path and from this path we cannot
draw two increasing warping functions to align x1 to x2 and to align x2 to x1, since
a single point on one time series may map onto a large subsection of the other
series (Fig. 2b). In order to find two monotonic—not strictly increasing—warping
functions, one could eliminate the boundary condition dK D d.x1T ; x2T/ and restrict
the continuity constrain such that .r � r0/ D 1 for aligning x1 to x2 and such that
.c � c0/ D 1 for aligning x2 to x1 (Fig. 3b). However, with this restriction, the dtwc
becomes asymmetric and cannot be a dissimilarity measure: given two sequences i
and i0, and, to keep the notation simple, dtwc.xi; xi0/ D dtwc.ii0/, then dtwc.ii0/ ¤
dtwc.i0i/. In order to define at the same time a dissimilarity measure and a warping
function, we use a modified parameterized path. This path is characterized by a
weaker continuity constraint, defined as follows:

Continuity constraint: given dk D d.x1r; x2c/ then dk�1 D d.x1r0 ; x2c0/ where
.r � r0/ � 2 & .c � c0/ < 2 or .r � r0/ < 2 & .c � c0/ � 2 (Fig. 3c).

With this continuity constraint, the classical boundary condition, and the mono-
tonicity constraint, the dtw algorithm estimates a wdi.t/ warping function, with the
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Fig. 3 Representation of the
dtw step. (a) The classical
dtw step; (b) step with
restrictions on the continuity
constraint; (c) step with a
weaker continuity constraint

following properties:

1. t1 < t2 ) wdi.t1/ � wdi.t2/ (the function is monotonic increasing but not
strictly increasing and it is not smooth)

2. wdi.0/ D 0

3. wdi.T/ D T

and a dtwc dissimilarity measure, satisfying the following conditions:

1. dtwc.ii0/ � 0, i; i0 D 1; : : : ; N (nonnegativity)
2. dtwc.ii/ D 0, i D 1; : : : ; N (this a condition weaker than the identity condition

required for distance measures)
3. dtwc.ii0/ D dtwc.i0i/, i; i0 D 1; : : : ; N (symmetry)

As outlined in the Introduction, wdi is equal for every variable j ( j D 1; : : : ; p), since
it is estimated considering the vector-valued series xit D Œx11t; : : : ; x1jt; : : : ; x1pt�,
t D 1; : : : ; T and not by considering each univariate series xijt ( j D 1; : : : ; p), (t D
1; : : : ; T) separately. Another feature that characterizes the warping function wdi

and that may be useful in applications with meteorological data, is the possibility to
define the maximum number of time-lags between the physical time and the warped
time. Indeed, considering for example daily series, only similar events that occur
in nearby days are likely to be expression of the same feature (for example, a peak
or an extreme value, in a certain period) and should be aligned. Salient events that
occurs in days which are faraway, should be considered as two “different” features
in the two series and should not be aligned. The maximum number of days between
the timing of two events that are likely to be logically compared depends on the
application and on the aim of the data analysis. In general, if u is the maximum
number of lags for which we assume the same event may be timed differently in
the different series, the simplest strategy is to introduce the following “windowing
condition” in the dtw algorithm:

dk D d.x1r; x2c/ with jr � cj � u

We refer to [11] for the definition of more refined constraints on the warping path,
aimed at preventing unrealistic warping.

The dtwc dissimilarity matrix may be used for classifying time series with the
following hierarchical methods: the average linkage, the complete and the single
linkages. The centroid method is not appropriate, since the dendrogram obtained
with this method with a dissimilarity measure is a non-monotonic cluster tree.
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3 Classification of Meteorological Time Series

We perform a cluster analysis of atmospheric measurements gathered by a historical
weather station in the urban area of the province of Modena, in the Emilia Romagna
Region (Northern Italy). The station is the geophysical observatory of Modena.
Even though the weather station does not conform to the W.M.O. regulations
for the position of the instruments (which have been emitted many years after
the construction of the geophysical observatory) it does permit the collection
rainfall data, in the same location, from 1831. Information about the history of the
geophysical observatory may be found in the web page http://www.ossgeo.unimo.
it. Here we only report the main coordinates of the station:

– Boreal latitude: 44ı38050:7600
– East longitude from Greenwich: 10ı55045:5000
– Height of the barometric cockpit from the sea level: 64:2 m
– Height of the rain gauge from the ground: 41:9 m
– Height of the ground from the sea level: 34:6 m

The (cross-sectional) mean values and the maximum values of the total rainfall for
the day (in mm) of the period 1831–2008 are reported in Fig. 4. The minimum
daily value is always equal to 0. In average, the total amount of rain in a day is
less than 4 mm and reaches the highest peaks in October and November and the
minimum values in August. The pattern of the maximum values is different: salient
peaks are present in quite all months. In some years, the total rain in a day has
reached values higher than 75 mm. The series reported in Fig. 4 shows that the
variable has a high variability between years and between days. There are many
years presenting anomalous extreme values and it is clear that the cross-sectional
mean underestimates both the value of the peaks and the order of magnitude of the
phenomenon. We consider the available “three way” data set, with p D 3. The three
variables are:

– X1: minimum air temperature (in Celsius degree)
– X2: maximum air temperature (in Celsius degree)
– X3: total rainfall (in mm)

Air temperature is known only from the year 1861. We then cluster 148 sequences:
the years 1861 to 2008. We perform a cluster analysis of the 148 years on the basis
of the minimum temperature, the maximum temperature, and the total rainfall for
the month. We will refer to these data, with T D 12, as monthly values of X1, X2,
and X3. Figure 5 reports time series of the minimum, the maximum, and the (cross-
sectional) mean of the monthly values of X1, X2, and X3. This figure shows that
Modena experiences a “mediterranean” climate with mild wet winters and hot, less
rainy, summers. While the temperature shows a clear seasonal pattern, and both the
maximum and the minimum values follow the same average pattern, the amount
of rainfall has a more irregular trend and the minimum and the maximum values
show different patterns. Before computing the dtw dissimilarity measure, data are

http://www.ossgeo.unimo.it
http://www.ossgeo.unimo.it
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Fig. 4 Time series of the maximum (top) and the average (bottom) daily values of rain

Fig. 5 Time series of the minimum, the maximum and the average monthly values of X1, X2, X3

standardized so that in each t (t D 1; : : : ; T with T D 12) each variable has 0 mean
and unit variance.

In the warping function, we set u D 2, allowing for a maximum shift of 2
months. Figure 6 reports dendrograms obtained with the single, the complete, and
the average linkages. The trees show that the single and the average linkages exhibit
less ability to provide separation than the complete linkage. The single linkage is
greatly affected by the “chain effect”. The average linkage is less influenced by
this effect but it still tends to aggregate single observations or very small groups
in each stage of the hierarchy and many single observations remain isolated till the
last stages. The complete linkage readily distinguishes clusters with more than one
or two observations. On the basis of the ratio between the within variance and the
total variance (which has a relatively high increase from partition in six clusters
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Fig. 6 Data set with n D 148, T D 12, and p D 3: full dendrogram (on the left) and dendrogram
with 30 leaf nodes (on the right) resulting by collapsing lower branches of the full dendrogram,
obtained with the single linkage (in the top), the complete linkage (in the middle), and the average
linkage (in the bottom)

to partition in five clusters) we consider the classification in six groups. Analyzing
cluster means, we see that partitions with less than six groups aggregate years with a
very different behavior, while partitions with more than six groups lead to different
clusters with similar average behavior. Groups, in the six-clusters partition, are as
follows:

Cluster 1: {1861, 1917, 1941, 1942, 1947, 1953, 1980, 1985}
Cluster 2: {1863, 1866, 1883, 1889, 1892, 1898, 1900, 1902, 1904, 1905, 1910,

1912, 1914, 1915, 1919, 1920, 1923, 1924, 1925, 1926, 1927, 1928, 1930, 1933,
1934, 1936, 1937, 1939, 1943, 1944, 1951, 1954, 1955, 1956, 1964, 1965, 1969,
1970, 1971, 1972, 1973, 1974, 1977, 1978, 1982, 1984, 1986, 1991, 1996}

Cluster 3: {1868, 1929, 1938, 1963, 1993, 2002}
Cluster 4: {1865, 1867, 1869, 1870, 1872, 1876, 1879, 1882, 1885, 1887, 1890,

1896, 1897, 1911, 1913, 1916, 1921, 1931, 1948, 1952, 1957, 1958, 1961, 1967,
1976, 1979, 1981, 1987, 1988, 1990, 1992, 2006}
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Fig. 7 Data set with n D 148, T D 12, and p D 3: group means in the partition in six clusters.
Variable X1 is reported in the top, variable X2 in the middle, and variable X3 in the bottom

Cluster 5: {1862, 1864, 1871, 1873, 1874, 1875, 1877, 1878, 1880, 1881, 1884,
1888, 1891, 1893, 1894, 1895, 1899, 1901, 1903, 1906, 1907, 1908, 1909, 1918,
1922, 1932, 1935, 1940, 1949, 1959, 1960, 1962, 1989}

Cluster 6: {1886, 1945, 1946, 1950, 1966, 1968, 1975, 1983, 1994, 1995, 1997,
1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007, 2008}

Cluster means are reported in Fig. 7. Clusters 1 and 3 represent two small groups
with anomalous years. Cluster 1 groups together former years (the most recent
one is 1985), which are characterized by low maximum temperatures in quite all
months, by a very dry summer season and dry months in the second part of autumn.
This kind of climate is completely absent in the two last decades. A similar pattern
characterizes group 5, in which are clustered several years from 1962 to 1989. In
this group, the minimum temperatures are very low, the summer season is dry but
the autumn months are extremely wet. Cluster 3 groups together 6 years (with the
recent 2002) with a large amount of rain in the summer season and relatively dry
spring months. The minimum and maximum temperatures in these years are in line
with the average values. Cluster 6 groups many of the most recent years and the
cluster means may be considered as representative of the actual climate situation.
This group is characterized by high maximum and minimum temperatures and by
a relatively large amount of rain in summer, in autumn, and in the beginning of the
winter season. The time series of the group means (as long as the composition of
the clusters) lead to the evidence that a climate change is present, at the beginning
of the twentieth century. Both the minima and the maxima temperatures are higher,
all over the years, and the seasonality in the rain is less evident, since the average
amount of rain shows less variability across months.
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Fig. 8 Data with n D 49, T D 12, and p D 3: dendrogram obtained with the complete linkage

In order to gain insights into the climate change, we perform a second analysis,
considering sequences of 3 years. Each series has 36 monthly values (T D 36)
and n D 49. The first series is the triennium 1861–1863, the last series is the
triennium 2005–2007. The label of each series is the second year (for example,
for the first series the label is 1862 and for the last series the label is 2006). We
consider triennium in order to allow a larger shift in the warping function and to
allow the shift for the month of January (for the second and the third year) and
for December (for the first and the second year). Indeed, considering series of 1
year, the warping in the winter months of January and December is not possible.
We set u D 3 (the same length of a season). Figure 8 reports the dendrogram
obtained with the complete linkage. Here again, the complete linkage seems less
affected by the “chain effect” than the single and the average linkages and the tree
shows the presence of well-separated clusters. We consider partitions in six and
three groups. The cluster means of partition in six groups are shown in Fig. 9 and
the group memberships are:

Cluster 1: {1861, 1900, 1912, 1915, 1918, 1921, 1924, 1930, 1933, 1936, 1939,
1951, 1954, 1960, 1963, 1969, 1972, 1975, 1978 }

Cluster 2: {1864, 1888, 1891, 1897, 1903, 1942, 1945, 1957, 1966, 1984, 1987,
1990}

Cluster 3: {1879}
Cluster 4: {1867, 1870, 1885, 1948}
Cluster 5: {1873, 1876, 1894, 1906, 1909, 1927}
Cluster 6: {1882, 1981, 1993, 1996, 1999, 2002, 2005}

This partition reveals the presence of an outlier, the triennium 1878–1880 in
group 3, which is characterized by extreme (both very high and very low) values
in the temperatures and in the rain. This group is merged with group 4 in partition
in three clusters. Group 4 contains early years and is characterized by very low
temperatures in winter and large amounts of rain in spring and autumn. Groups 1, 2,
and 5, contain non-recent years and are merged together in partition in three clusters.
The time series of the average values of these groups are smoother than the other
series: the seasonality in the temperatures is more evident and the amount of rain
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Fig. 9 Data set with n D 49, T D 12, and p D 3: group means in the partition in six clusters.
Variable X1 is reported in the top, variable X2 in the middle, and variable X3 in the bottom

across months presents less variability. Group 6 contains recent years. It remains
a single group in partition in six clusters and it is not merged with other groups
until the top level of the hierarchy. This feature gives evidence of the peculiarity of
the years contained in the group. The average values of the temperatures (both the
minima and the maxima) are higher than the values in the other groups. In particular,
the minima temperatures are much higher than in the other groups. The amount or
rain is greatly variable across months and shows anomalous peaks in the first year
of the triennium. In general, the amount of rain is higher around April and October
and the summer months are wetter than in other groups.

The climate change is more evident in this second analysis, since all recent
years (after 1991) are clustered together. The group containing these years remains
isolated until the last level of the dendrogram and the times series of the average
values show peculiar patterns.
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