
Chapter 8
The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra (stated below) provides an ideal case study
for illustrating the roles of alternative proofs in mathematical practice. Like the
Pythagorean Theorem, the Fundamental Theorem of Algebra has been proved in
many different ways since its enunciation by Euler in 1739. Unlike the Pythagorean
Theorem, however, early attempts to prove the Fundamental Theorem of Algebra
are not shrouded in the mists of antiquity, so we know how the adequacy of those
attempts was evaluated by mathematicians of the time. We can see how criticisms
of earlier efforts to prove the theorem led to alternative proof strategies, and we can
analyze why the proof given by Gauss in his 1799 inaugural dissertation was the
first to be accorded general acceptance, though it too would later be deemed not
fully rigorous.

As with the theorems considered in earlier chapters, besides questions of rigor
there have been other impetuses for devising alternative proofs of the Fundamental
Theorem of Algebra: issues of perspicuity, simplicity, generality, purity of method
and constructivity have also been matters of concern; and in a pedagogical context,
different proofs of the Fundamental Theorem have been employed as a vehicle
for introducing a variety of topics in higher-level mathematics (complex line
integrals, field extensions, Galois theory, and notions from algebraic topology) in
a text designed for a capstone course for senior mathematics majors (Fine and
Rosenberger 1997).

8.1 Alternative formulations of the theorem

In its earliest and simplest form, the Fundamental Theorem of Algebra was the
conjecture that every polynomial with real coefficients can be expressed as a product
of linear and quadratic polynomials with real coefficients. The question whether
that is so arose in connection with Leibniz’s attempts to integrate functions by the
method of partial fractions, and Leibniz himself believed the conjecture to be false.
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60 8 The Fundamental Theorem of Algebra

Euler, however, showed that putative counterexamples put forward by Leibniz and
by Nikolaus Bernoulli did, in fact, possess factorizations of the stated form, and it
was he, in a letter to Bernoulli of 1 October 1742, who first asserted the truth of
the statement. Two months later, however, in a letter of 15 December to his friend
Goldbach, he confessed that he was unable to produce a fully satisfactory proof of
the theorem.1

Today the Fundamental Theorem of Algebra is more often stated in the form
“Every polynomial p.X/ of degree n with complex coefficients possesses exactly n
complex roots, counting multiplicities.” The equivalence of that statement with the
one given above rests not only upon recognizing complex numbers as meaningful
entities, but upon the quadratic formula (which shows how to express any quadratic
polynomial as a product of two complex linear factors), upon the factor theorem of
Descartes (that a is a root of a polynomial p.X/ if and only if X � a is a factor
of p.X/), and upon the observation (made by Bombelli around 1560, and again
by Euler in his 1742 letter to Goldbach) that the complex roots of any polynomial
with real coefficients always occur in conjugate pairs, so that the product of the
corresponding linear factors guaranteed by Descartes’s theorem is a real quadratic
polynomial.

Consideration of the properties of complex conjugates shows that if p.X/
is a polynomial with complex coefficients and p.X/ is the polynomial whose
coefficients are the conjugates of those of p.X/, then the product p.X/p.X/ is
a polynomial with real coefficients. If z0 is a complex root of p.X/p.X/, then it
must either be a root of p.X/ or of p.X/; and in the latter case, again using the
overbar to denote complex conjugation, p.z0/ D p.z0/ D p.z0/ D 0, so z0 is a root
of p.X/. To prove the Fundamental Theorem it therefore suffices to establish it for
polynomials p.X/ whose coefficients are real numbers.

8.2 Early attempts to prove the theorem

The task of showing that every polynomial with real coefficients possesses at least
one complex root involves two separate aspects: showing (1) that a root of some
definite sort exists, and (2) that any such root must in fact be of the form a C bi

(in modern terms, proving the existence of a splitting field K over R for p.X/, and
then showing that K must be isomorphic to C). Before Gauss, however, those who
endeavored to prove the existence of complex roots either explicitly assumed (1)
to be true (in part, perhaps, because it was believed that formulas for the roots of
polynomials of degree � 5 similar to those obtained by Ferro, Tartaglia, Ferrari, and

1The dates given here for Euler’s letters are based on the account in Kline (1972), pp. 597–598.
They disagree with those given in Remmert (1990), which are inconsistent with one another.
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Bombelli for cubic and quartic polynomials would eventually be found2), or else
unwittingly employed arguments that smuggled in that assumption. Their efforts
focused instead on establishing (2). But, as Gauss trenchantly observed in the
critique of prior proof attempts that he gave in his dissertation, there was need not
only to justify the existence of roots, but, if algebraic operations were to be applied
to them, to characterize their structure; for it made no sense to attempt to manipulate
hypothetical quantities that were mere “shadows of shadows.”

The remainder of this section is devoted to outlining the strategies employed
by D’Alembert, Euler, Lagrange, and Laplace in their attempted proofs of the
Fundamental Theorem (published in 1746, 1749, 1772 and 1795, respectively) and
to analyzing the deficiencies in their arguments.

d’Alembert’s ‘proof’: In his memoir ‘Recherches sur le calcul intégral’
(d’Alembert 1746), Jean Le Rond d’Alembert is generally credited with having
made the first serious attempt to prove the Fundamental Theorem of Algebra.
The memoir was apparently hastily written, however, and is not notable for
its clarity. Indeed, there is marked disparity among the descriptions given by
modern commentators both of the mechanics of d’Alembert’s argument and
of the extent of its deficiencies. (My own reading of d’Alembert’s text is in
accord with the descriptions of it in Gilain (1991) and Baltus (2004), but at
variance with that in Remmert (1990).) d’Alembert began by noting that if
p.X/ D Xm C cm�1Xm�1 C � � � C c1X C c0 is a monic polynomial with real
coefficients of degree m � 1, then p.0/ D 0 if c0 D 0. He then replaced the
constant term c0 by the parameter z and set the resulting function F.X; z/ equal to
0, so that the Fundamental Theorem became the statement that for any real value of
z, there is a (possibly complex) value x for which F.x; z/ D 0. To establish that,
d’Alembert first claimed that for any real number z0, if .x0; z0/ is a point for which
F.x0; z0/ D 0— in particular, if x0 D z0 D 0— then for all real z sufficiently close
to z0, there is a complex value x for which F.x; z/ D 0. He then went on to claim
that for any real value z� of z, an overlapping chain of discs can be found, starting
at .0; 0/, yielding a sequence of points .xn; zn/ such that F.xn; zn/ D 0 for each n,
the values xn converge to a complex number x� and the (real) values zn to z�, with
F.x�; z�/ D 0.

To establish the first claim d’Alembert alleged, without proof, that if

F.x0; z0/ D 0;

then for all z sufficiently close to z0, there is a natural number q and a convergent
series of fractional powers of z � z0 such that

2The impossibility of expressing the roots of arbitrary polynomials of degree � 5 in terms of
radicals was finally established by Abel in 1826.
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x D x0 C
1X

iD1
ci .z � z0/

i=q

satisfies F.x; z0/ D 0. More than a century later that fact was finally proved by
Victor Puiseaux, as a consequence of the Fundamental Theorem (which by then had
been rigorously proved by other means); so d’Alembert’s argument was circular.
There were difficulties, too, with his second claim: What ensures that the radii of the
discs are such that the zn converge to z� ? And even if they do, why does the fact
that F.xn; zn/ D 0 for each n entail that F.x�; z�/ D 0 ? Those and other criticisms
were lodged against d’Alembert’s argument by Gauss, who nevertheless thought
that it might be possible to repair its defects. But he and others chose instead to seek
different ways to establish the Fundamental Theorem.3

Euler’s attack on the theorem: Three years after the appearance of d’Alembert’s
memoir, Euler attempted to prove the Fundamental Theorem in its original formula-
tion. By invoking the fact that a real polynomial of odd degree must have a real root
(a consequence of the intermediate-value theorem, a principle generally accepted
at the time, but first rigorously proved by Bolzano around 1816), he argued that a
real quintic polynomial must have at least one real linear factor, and then went on to
show how any real quartic polynomial could be expressed as a product of two real
quadratic factors. Having thus established the truth of the Fundamental Theorem
for polynomials of degree � 5, he attempted to extend the proof to polynomials of
higher degree, but was unable to do so.

At first glance it might appear that Euler had made but a minor advance beyond
the work of Ferrari and Bombelli two centuries earlier, since their explicit formulas
for the roots of real quartic polynomials, in which the complex roots occur in
conjugate pairs, immediately entail that all such quartics can be factored into a
product of real polynomials of degree at most 2. But in the formulas obtained
by the Italians for the roots of cubic and quartic polynomials, complex numbers
play an essential role. In its original form, however, the Fundamental Theorem
makes no reference to complex numbers, so, as noted in Remmert (1990), p. 117,
their employment in proofs thereof appears to invoke a deus ex machina. Euler’s
method of factoring quartics, however, made no use of complex numbers, so from
the standpoint of purity of method it was superior.

A detailed and very readable discussion of what Euler did in his paper Euler
(1749) is given in Dunham (1991). Following the lead of the Italian school, Euler
noted that any monic polynomial of degree 4 in the variable x with real coefficients
can be converted into an equivalent quartic in the variable y that lacks a cubic term
(via the substitution x D y � c3=4, where c3 is the coefficient of x3 in the original
polynomial). The factorization of the resulting quartic y4 C By2 C Cy C D then

3An attempt to repair d’Alembert’s proof is given in Baltus (2004), but that effort, too, appears to
be flawed.
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depends on the values of the coefficients B;C and D. If C D 0, the quartic is a
quadratic in y2, which, if B2 � 4D � 0, factors as

"
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a difference of two squares that factors once again into the product of two quadratics.
If C ¤ 0, the absence of the y3 term in y4 C By2 C Cy C D implies that any
factorization of that quartic into quadratic factors must be of the form .y2 C uy C
˛/.y2 � uy C ˇ/ for some constants u; ˛ and ˇ. Expanding that product, setting
it equal to y4 C By2 C Cy C D and equating coefficients of like powers of y,
Euler obtained three equations in the unknowns u; ˛ and ˇ, from which after further
algebra he deduced the equation u6 C 2Bu4 C .B2 � 4D/u2 �C2 D 0, in which all
the powers of u are even. The graph of Y D u6 C 2Bu4 C .B2 � 4D/u2 � C2

is therefore symmetric about the Y -axis, Y approaches C1 as u approaches
˙1, and Y.0/ < 0 (see Figure 8.1), so by the intermediate-value principle,
Y D u6 C 2Bu4 C .B2 � 4D/u2 �C2 must have real roots ˙u0, either of which can
be substituted back into the earlier equations to find real values for ˛ and ˇ.

To extend to polynomials of arbitrary degree, Euler noted that by multiplying, if
necessary, by some positive integral power of X , any polynomial p.X/ of degree

Fig. 8.1 Graph of a
sixth-degree polynomial with
no odd powers
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d could be converted into a polynomial q.X/ of degree 2m, for some m > 0.
He then attempted to mimic the procedure he had employed for factoring quartics.
A direct approach led to systems of equations too complex to allow derivation of an
equation for u, but he showed that an alternative approach, avoiding the need to find
an explicit equation for u0, was also possible in the quartic case. However, to extend
that approach to polynomials of degree 2m for m > 2 it was necessary to assume
that 2m roots of some sort existed; and without specifying the nature of those
roots, Euler’s attempt to show that algebraic combinations of them would yield real
coefficients for the putative factors of q.X/ was doomed to failure (as Gauss was to
point out).

Lagrange’s improvement of Euler’s argument: In a long and important paper
that appeared in 1770/1771,4 Joseph Louis Lagrange investigated the properties of
symmetric polynomials and established the result now known as the fundamental
theorem about them: that any polynomial S.X1; : : : ; Xn/ symmetric in X1; : : : ; Xn
has a unique representation as a polynomial P.s1; : : : ; sn/, where s1; : : : ; sn are the
elementary symmetric polynomials in X1; : : : ; Xn. Using that result, and assuming
that a real polynomial p.X/ of degree 2m had 2m roots that could be manipulated
like ordinary real numbers (in modern terms, that p.X/ had roots in some field
extending R), Lagrange was able to establish (even to Gauss’s satisfaction) that the
factors Euler had sought for p.X/ would indeed have real coefficients. Only the
justification for the existence of such roots remained to be proven.

Laplace’s proof: Under the same basic assumptions that Euler and Lagrange
had made (the existence of a splitting field and the intermediate-value principle),
together with DeMoivre’s theorem on roots of complex numbers, proved earlier in
the eighteenth century, Pierre Simon de Laplace employed Lagrange’s theorem on
symmetric polynomials to prove the Fundamental Theorem of Algebra in its second
formulation. A version of his proof in modern terminology, as given in Remmert
(1990), pp. 120–122, goes as follows.5

Suppose a monic polynomial p.X/ of degree n � 1 with real coefficients has
roots r1; : : : ; rn in some splitting field F over R, and rewrite n as 2mq, where q is
odd. The proof proceeds by induction on m. If m D 0; p.X/ has a real root by the
intermediate-value principle. For m � 1, suppose that every polynomial of degree
n D 2kq with k < m has a complex root. Laplace then considered the symmetric
polynomials over F given by

Lt.X/ D
Y

1�i<j�n
.X � ri � rj � tri rj /;

4“Réflexions sur la résolution algébrique des équations,” reprinted in Oeuvres de Lagrange III,
205–421)
5Full background details can be found in Chapter 6 of Fine and Rosenberger (1997), where,
however, the strategy underlying the proof is not credited to Laplace.
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for each positive integer t . By the Fundamental Theorem on Symmetric Polynomi-
als, each Lt , when written as a polynomial in powers of X , has coefficients that
are elementary symmetric polynomials in the roots of the real polynomial p.X/.
But the coefficient of each power Xj in p.X/ is just .�1/j sj .r1; : : : ; rn/, where
sj .r1; : : : ; rn/ is the j th elementary symmetric polynomial in r1; : : : ; rn; so each
coefficient of Lt.X/ is a real number. Moreover, each Lt.X/ has degree

 
n

2

!
D
 
2mq

2

!
D 2m�1qŒ2mq � 1�;

where qŒ2mq � 1� is odd. By the induction hypothesis, each Lt.X/ thus has a
complex root ct , so for some pair .ri ; rj / with 1 � i < j � n; ct D ri C rj C tri rj ;
and since there are infinitely many integers t but only finitely many pairs .ri ; rj /
with 1 � i < j � n, there must be distinct integers t1 and t2 such that for the
same i and j , ct1 D ri C rj C t1ri rj and ct2 D ri C rj C t2ri rj are both complex
numbers. The difference ct1 � ct2 D .t1 � t2/ri rj is then also a complex number,
whence so is ri rj . Therefore ct1 � t1ri rj D ri C rj is a complex number as well.
So by DeMoivre’s theorem and the quadratic formula, the roots of the polynomial
X2 � .ri C rj /X C ri rj D .X � ri /.X � rj /, that is, the roots ri and rj of the
original polynomial p.X/, must be complex numbers. q.e.d.

8.3 Gauss’s first proof

Gauss’s doctoral dissertation, submitted to the University of Helmstedt in 1799 and
written in Latin, was entitled Demonstratio nova theorematis omnem functionem
algebraicam rationalem integram unius variabilis in factores reales primi vel
secundi gradus resolvi posse6 — that is, “New proof of the theorem that every
rational integral algebraic function [i.e, polynomial] of one variable can be resolved
into real factors of first or second degree.” Gauss thus stated the Fundamental
Theorem in its original formulation, and declared his aim to be that of giving “a
new and stronger proof” of that result. On the second page of the dissertation
he noted the equivalent formulation in terms of complex roots, but stated that he
would eschew the use of complex numbers in his demonstration. He went on to
criticize earlier proofs, all of which he faulted for presuming without justification
that a polynomial of degree m must possess m roots of some (unspecified) sort.
To avoid that presumption, he gave a geometric argument to establish the desired
factorization.

6Reprinted in Gauss’s Werke III, 1-30. The discussion here is based on the German translation by
E. Netto in Gauss (1890).
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Outline of proof: Gauss begins by proving two lemmas.

Lemma 1: If m is any positive integer, then x2 � 2r cos�x C r2 is a factor of
sin�xm � rm�1 sin.m�/x C rm sin.m � 1/�.

(The latter expression is 0 ifm D 1. Ifm D 2, the other factor is sin�, and ifm > 2,Pm�1
iD1 sin.i�/ri�1xm�i�1 is the other factor.)

Lemma 2: If r and � satisfy the equations

(8) rm cos.m�/C Arm�1 cos.m � 1/� C Brm�2 cos.m � 2/� C : : :

C Kr2 cos.2�/C Lr cos� CM D 0

and

(9) rm sin.m�/C Arm�1 sin.m � 1/� C Brm�2 sin.m � 2/� C : : :

C Kr2 sin.2�/C Lr sin� D 0;

then the expression xm C Axm�1 C Bxm�2 C � � � C Kx2 C Lx C M has the factor
x � r cos� if r sin� D 0 and the factor x2 � .2r cos�/x C r2 if r sin� ¤ 0.
(Gauss notes that complex numbers are usually invoked to prove Lemma 2, but he
gives an alternative proof that avoids them, based on Lemma 1.)

To prove the Fundamental Theorem it therefore suffices to show that r and � can be
found that satisfy the two equations of Lemma 2.7

Toward that end, Gauss considers the surfaces generated by the functions

T D rm sin.m�/C Arm�1 sin.m � 1/� C Brm�2 sin.m � 2/� C : : :

C Kr2 sin.2�/C Lr sin�

and

U D rm cos.m�/C Arm�1 cos.m � 1/� C Brm�2 cos.m � 2/� C : : :

C Kr2 cos.2�/C Lr cos� CM

7The connection with the complex formulation of the theorem is readily seen, since by DeMoivre’s
Theorem, if the variable X is written in polar form as X D r.cos�C i sin�/, the left members of
those equations are just the real and imaginary parts of the expression Xm C Axm�1 C Bxm�2 C
� � � C Kx2 C Lx CM .
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Fig. 8.2 Alternating T - and
U - arcs

above and below the .r; �/-plane and the traces in that plane where those surfaces
intersect it.8 The problem then becomes that of showing that there is at least one
point in the .r; �/-plane where the T -trace and the U -trace themselves intersect.

Further analysis shows that the T - and U -traces each contain 2m arcs that extend
to infinity. Two arcs of the T -trace join to form the horizontal axis. The other arcs
are each asymptotic to lines where sin.m�/ D 0, that is, to lines through the origin
that are inclined to the axis at one of the angles k�=m, for 0 < k < m. The arcs
of the U -trace are likewise asymptotic to lines where cos.m�/ D 0, that is, to lines
through the origin that are inclined to the axis at one of the angles .2k � 1/�=2m,
for 0 < k � m. Accordingly, those arcs will intersect a circle of sufficiently large
radius at 2m points, which divide its circumference into 2m intervals in which T is
alternately positive and negative. Moreover, those points are alternately one where
a T -arc intersects the circle and one where a U -arc does. (See Figure 8.2, based on
Gauss’s own illustration for the quartic polynomial X4�2X2C3XC10. The solid
curves there represent the T -arcs and the dotted ones the U -arcs.)

Assuming that for at least one k the arc of the T -trace that intersects the circle at
point k and the arc of the T -trace that intersects the circle at point k C 2 are both
part of the same continuous T -branch, and likewise that the arc of the U -trace that
intersects the circle at point kC1 and the arc of the U -trace that intersects the circle
at point k C 3 are both part of the same continuous U -branch, then that U -branch,

8Since the leading terms of T and U dominate the others and can be made positive or negative
by appropriate choice of the angle �, it is clear by continuity that both surfaces do intersect the
.r; �/-plane.
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Fig. 8.3 Intersecting T - and
U -branches

in passing from one intersection point where T is positive to another where it is
negative, must at some point within the circle cross that T -branch. (See Figure 8.3,
also taken from Gauss’s original text.) The theorem would thereby be proved.

Gauss declared that the assumption involved could be justified in “many different
ways,” one of which he endeavored to outline. But ultimately he had to rely on
his geometric intuition that “an algebraic curve can neither suddenly end abruptly
. . . nor lose itself, so to speak, . . . after an infinity of circuits (as in the case of
a logarithmic spiral)” — a fact that he believed could “be taken as [having been]
sufficiently securely established” (Gauss 1890, footnote to p. 33).

Gauss’s contemporaries evidently agreed, for they found no fault with his proof.
Only much later — long after Bolzano’s proof of the intermediate-value theorem,
and after Kronecker, Dedekind and others, by relatively straightforward means, had
shown how to construct splitting fields and thereby justified the earlier proofs of
the Fundamental Theorem that had relied on those facts — did mathematicians
come to regard the principle that Gauss had relied on (that a non-compact branch
of an algebraic curve that enters a bounded space must eventually emerge from
it) as a statement (like the Jordan Curve Theorem) that required more rigorous
demonstration. The principle was finally proved rigorously by Alexander Ostrowski
in 1920, using sophisticated topological notions. (See Ostrowski 1983.)

Fifty years after his receipt of the doctorate, Gauss gave another proof of the
Fundamental Theorem (his fourth) that was a minor variant of the one given in
his dissertation.9 Since (as he remarked) complex numbers had by then come to
be generally accepted by the mathematical community (in large part due to the
Fundamental Theorem itself), he felt free to employ them in the revised version of
his proof; and there he also allowed the polynomials to have complex coefficients.

9A detailed exposition of a modernized version of Gauss’s fourth proof is given in Fine and
Rosenberger (1997), pp. 182–186.
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8.4 Argand’s proof

The assertion that every nonconstant polynomial with complex coefficients must
have a complex root was first made not by Gauss, but by Jean Robert Argand, a
Paris bookkeeper who introduced the planar representation of complex numbers
now named after him;10 and in 1814 Argand gave his own, very different proof
of that result (Argand 1814), for whose understanding nothing beyond some basic
knowledge of advanced calculus is required.

Specifically, Argand’s proof depends on knowing (1) that polynomials are
continuous functions; (2) that every continuous function defined on a closed disc
jzj � R assumes a minimum in that disc; and (3) that every complex number
has a kth root for each integer k > 1 (an immediate consequence of DeMoivre’s
Theorem).11 The proof then proceeds as follows:

Given a polynomial p.z/ D anzn Can�1zn�1 C � � � Ca1z Ca0 with n � 1, jp.z/j
approaches 1 as jzj does, so for any positive constant C , there is anR > 0 such that
jp.z/j > C for jzj > R. Taking C D infz2C jp.z/j, it follows that infz2C jp.z/j D
infz�R jp.z/j, so by (2), jp..z/j assumes a minimum for some z0 with jz0j � R. That
p.z0/ D 0 then follows directly from

Argand’s inequality: For any polynomial p.z/ of degree n � 1, if p.z0/ ¤ 0 then
there is a z1 2 C for which jp.z1/j < jp.z0/j.

Sketch of proof: Since p.z0/ ¤ 0, we can divide p.z/ by jp.z0/j to obtain a
polynomial q.z/ of the same degree for which q.z0/ D 1; and if we define h.z/ D
q.z C z0/, then h.0/ D 1, so h.z/ may be written as

1C b1z C b2z
2 C � � � C bnzn D 1C bkzk C bkC1zkC1 C � � � C bnzn

D 1C bkzk C zkŒbkC1z C � � � C bnzn�k�;

where k is the least index i for which bi ¤ 0. The expression in brackets is a
polynomial that has z D 0 as a root, so it is continuous at z D 0 and therefore can
be made arbitrarily small for z sufficiently close to 0. If r is any kth root of �1=bk ,
the triangle inequality then shows that jh.rt/j < 1 for sufficiently small positive real
numbers t . For any such t , setting z1 D z0 C rt yields jp.z1/j < jp.z0/j.

10See the entry on Argand by Phillip Jones in the Dictionary of Scientific Biography, vol. 1,
pp. 237–240.
11Argand assumed fact (2), which was not proved rigorously until later.
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8.5 Gauss’s second proof

Despite the acceptance of his 1799 proof by other mathematicians of his time,
Gauss published a second proof in 181512 that was based on algebraic rather
than geometric principles. In his opening remarks, he maintained that his first
proof “probably [sic ] leaves nothing more to be desired with respect to rigor or
simplicity”.13 He deemed his new proof to be “no less rigorous” than the first, but
he did not claim it was simpler (as it certainly was not). Why then did he offer it?

Perhaps, as the qualifying wohl might be taken to suggest, he did after all harbor
some doubts about whether the geometric principles he had invoked in his first proof
had been rigorously established; but at least ostensibly, he was concerned about
purity of method.

Like the proofs of Laplace and Lagrange, Gauss’s 1815 proof was by induction
on the highest power of 2 dividing the degree of the polynomial Y.x/. But
Gauss avoided having to assume that Y.x/ had any roots by working in terms of
indeterminates a1; a2; : : : ; an. He defined various auxiliary polynomials symmetric
in those indeterminates, and applied the Fundamental Theorem on Symmetric
Polynomials to each.14

The very long proof is divided into twenty numbered sections. To make the
argument self-contained, Gauss first established a number of preliminary results:
Given two polynomials Y1.x/ and Y2.x/, whose coefficients might include other
indeterminates in addition to x, he defined their greatest common divisor and
used the Euclidean algorithm to show that the g.c.d. must be a linear combination
of Y1.x/ and Y2.x/, so that, in particular, if Y1.x/ and Y2.x/ have no common
divisor of positive degree, there must be polynomials Z1.x/ and Z2.x/ such that
Z1.x/Y1.x/ C Z2.x/Y2.x/ D 1, and conversely. In section 3, for any positive
integer m he defined the elementary symmetric polynomials in the indeterminates
a1; a2; : : : ; am and noted that any polynomial function of them (again, possibly
containing other indeterminates as well) must also be symmetric in a1; a2; : : : ; am.
Section 4 was devoted to proving the converse (the fundamental theorem), and
section 5 to establishing the uniqueness of that representation.

Then, for any integer m � 1, he defined �m to be the symmetric polynomial in
the indeterminates a1; a2; : : : ; am given by

(10) �m D
Y

1�i;j�m
i¤j

.ai � aj / D .�1/.m2/
Y

1�i;j�m
i<j

.ai � aj /2:

12Translated into German on pp. 37–60 of Gauss (1890).
13“in Anbetracht der Strenge wie der Einfachheit wohl nichts zu wünschen übrig lässt”
14In the description of Gauss’s proof given below we depart from his notation in some respects.
In particular, we use subscripts rather than primes or distinct letters to distinguish among different
objects of the same type. For an overview in English that retains Gauss’s notation, see Baltus
(2000).
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By the fundamental theorem, �m can be represented as a polynomial in the elemen-
tary symmetric polynomials s1; s2; : : : sm of the indeterminates a1; a2; : : : ; am. Let
pm be the polynomial in the indeterminates i1; i2; : : : ; im obtained from the latter
polynomial by replacing each occurrence of sj therein by ij , for 1 � j � m.15

Then, given a monic polynomial Y.x/ D xm � C1x
m�1 C C2x

m�2 � � � � ˙ Cm
of degree m with real coefficients C1;�C2; : : : ;˙Cm, let PY be the real number
obtained by substituting for each ij in pm the value Cj from Y (that is, PY is the
value of pm.i1; i2; : : : ; im/ at .C1; C2; : : : ; Cm/).

Sections 6–9 of Gauss’s paper are devoted to proving

Lemma 1: If Y 0.x/ is the (formal) derivative of Y.x/, then Y.x/ And Y 0.x/ have
a nonconstant common factor if and only if PY D 0.

Gauss began by noting that if Y.x/ could be decomposed into (not necessarily
distinct) linear factors, say

Y.x/ D .x � A1/.x � A2/ � � � .x � Am/;

then

Y.x/ D xm � .
X

1�i�m
Ai /x

m�1 C .
X

1�i;j�m
i¤j

AiAj /x
m�2 � � � � ˙

Y

1�i�m
Ai I

that is, for each 1 � i � m, Ci D si .A1; A2; : : : ; Am/. Hence

PY D pm .s1.A1; A2; : : : ; Am/; s2.A1; A2; : : : ; Am/; : : : ; sm.A1; A2; : : : ; Am//

D
Y

1�i;j�m
i¤j

.Ai � Aj /;

so PY D 0 if and only if for some distinct i; j , Ai D Aj . It then follows directly
from the product rule, applied to the factored form of Y.x/, that the latter condition
holds if and only if Y.x/ and Y 0.x/ have some factor .x � Ai/ in common.

To avoid circularity in proving the Fundamental Theorem, however, it was
necessary to prove the Lemma without presuming that Y.x/ could be decomposed
into linear factors. To do so, Gauss noted that any monic polynomial

Y.x/ D xm � C1xm�1 C C2x
m�2 � � � � ˙ Cm

15Gauss called pm the determinant of the polynomial y.x/ D xm � i1x
m�1 C i2x

m�2 � � � � ˙
im; today, it is called the discriminant. He described it as “that function of the indeterminates
i1; : : : ; im that is transformed into the product of every pair of differences of distinct indeterminates
a1; : : : ; am when each ik is replaced by sk .” Note that pm depends only on m.
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in the indeterminate x could be regarded as a substitution instance of the polynomial

(11) y.x; i1; : : : ; im/ D xm � i1xm�1 C i2x
m�2 � � � � ˙ im;

in which the indeterminates i1; : : : ; im had been replaced by the real numbers
C1; : : : ; Cm. If, on the other hand, those indeterminates were replaced by the
elementary functions s1; : : : ; sm of the indeterminates a1; : : : ; am, the resulting
polymonial � could be written as

(12) � D
mY

iD1
.x � ai /:

As a tool for proving the ‘only if’ direction of the Lemma, Gauss considered
the polynomial in the indeterminates x; a1; a2; : : : ; am, symmetric in a1; a2; : : : ; am,
given by

� D �m

mX

iD1

Y

1�j�m
j¤i

.x � aj /
.ai � aj /2

(That � is a polynomial in x; a1; a2; : : : ; am follows from the rightmost member of
equation (10), which shows that the denominator in each summand of � divides �m.)
If 1 � k � m and x D ak , then only one summand of � and one of the derivatives
�0 is non-zero (in each case, that for which i D k), and ��0 D �m. Thus for each
integer k between 1 and m, x � ak is a factor of �m � ��0 , so � divides �m � ��0.

The quotient, � , is then another polynomial in x; a1; a2; : : : ; am symmetric in
all the ai . Applying the Fundamental Theorem on Symmetric Polynomials to each
term in the equation �m D �� C ��0 and replacing each elementary symmetric
polynomial sj therein by the indeterminate ij produces the equation

(13) pm D s.x/y.x/C r.x/y0.x/;

where r.x/ and s.x/ are polynomials in x; i1; i2; : : : ; im, and y.x/ is the polynomial
defined in (11). Replacing each ij in (13) by the real number Cj then yields
PY D S.x/Y.x/ C R.x/Y 0.x/, whose left member is a real number and whose
right member is a polynomial in x. If PY ¤ 0, division by PY yields 1 D
SY .x/

PY
Y.x/CRY .x/

PY
Y 0.x/; so Y.x/ and Y 0.x/ have no nonconstant common factor

unless PY D 0.
Conversely, if Y.x/ and Y 0.x/ have a nonconstant common factor, there are

functions f .x/ and �.x/ such that f .x/Y.x/ C �.x/Y 0.x/ D 1. Moving the left
member of that equation to the right and adding f .x/� C �.x/�0 to both sides then
gives

(14) f .x/� C �.x/�0 D 1C f .x/.� � Y.x//C �.x/.� � Y.x//0:
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Gauss abbreviates the expression f .x/.y.x/ � Y.x// C �.x/.y.x/ � Y.x//0, a
polynomial in the indeterminates x; i1; : : : ; im, by F.x; i1; : : : ; im/, and the right
member of (14), regarded as a polynomial in x and the elementary symmetric
polynomials s1; : : : ; sm, by 1 C F.x; s1; : : : ; sm). Similarly, he uses F.x; C1; : : : ;
Cm/ to denote the result of replacing each ik in F.x; i1; : : : ; im/ by Ck ; and since
y.x/ is thereby transformed into Y.x/, it follows that for any value of x,

(15) F.x; C1; : : : ; Cm/ D 0:

Gauss next applies the product rule to �, which, for any j between 1 and m,
yields

(16) �0 D
Y

1�i�m
i¤j

.x � ai /C .x � aj /
� Y

1�i�m
i¤j

.x � ai /
�0
:

Replacing �0 in (14) by the expression on the right of (16) and setting x D aj
successively for each j between 1 and m then gives the sequence of equations

�.aj /
Y

1�i�m
i¤j

.x � ai / D 1C F.aj ; s1; : : : ; sm/ .1 � j � m/:

Since the expressions on either side of each equation in that sequence are
polynomials symmetric in the indeterminates a1; : : : ; am, the same is true of the
product of those equations:

(17) �m�.a1/�.a2/ : : : �.am/ D
mY

iD1
.1C F.ai ; s1; : : : ; sm//:

The Fundamental Theorem on Symmetric Polynomials thus ensures that there are
polynomials in the indeterminates i1; : : : ; im , say t and , such that t is transformed
into �.a1/�.a2/ : : : �.am/ and  into

Qm
iD1.1CF.ai ; s1; : : : ; sm// when each ij is

replaced by sj . From (17) it then follows that pm t D  .
Replacing each indeterminate ij in this last equation by the real number Cj , and

writing T for the resulting value of t , we conclude from (15) that PY T D 1. Hence
PY ¤ 0.

Lemma 1, just proved, implies that if PY D 0, then Y.x/ must have a nontrivial
factor; so repeating that argument, if need be, shows that it must in fact have a factor
Q for whichPQ ¤ 0. Hence without loss of generality we may assume thatPY ¤ 0.
Moreover, if Y.x/ has degree m D k2�, where k is odd, then at least one factor of
Y.x/ must be of degree l2	 , where l is odd and 	 � �, for otherwise the power of 2
in m would exceed �.
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Gauss went on in section 12 to consider the polynomial

(18) 
.u; x/ D
Y
Œu � .ai C aj /x C aiaj �;

where the product is taken over the m.m � 1/=2 unordered pairs fai ; aj g; i ¤ j of
the indeterminates a1; : : : ; am. Once again, 
 is symmetric in those indeterminates,
so there is a function z.u; x/ in the indeterminates i1; : : : ; im that transforms to 

when the latter indeterminates are replaced by s1; : : : ; sm, and a function Z.u; x/
that results from z.u; x/ when each si is replaced by Ci (the i th coefficient of Y ).
Regarded as functions of u alone, 
 and z are monic polynomials of degree
n D m.m � 1/=2, with coefficients that are polynomials in x; a1; : : : ; am and in
x; i1; : : : ; im, respectively, and Z is a monic polynomial of degree n in u whose
coefficients are polynomials in x, say c1.x/; : : : ; cn.x/. We may then consider the
discriminant PZ.x/ of Z, that, is, the function pn.c1.x/; : : : ; cn.x//. (See the last
footnote above.)

Gauss’s next task was to prove

Lemma 2: If PY ¤ 0, then PZ.x/ cannot be identically zero.

He noted that, once again, that would be straightforward if Y.x/ were a product
of linear factors. To establish the result without that assumption, he observed that the
discriminant of 
 is the product of all the n.n � 1/ non-zero differences of distinct
pairs of the n expressions .ai C aj /x � aiaj . Hence the discriminants of 
 and

of z, regarded as polynomials in x, each have degree d D n.n � 1/ D 1

4
m.m �

1/.m C 1/.m � 2/, while the discriminant PZ.x/ of Z may have lesser degree if
the particular values of the Ci cause the coefficient of xd in PZ.x/ to vanish. The
problem is to show that not all the coefficients of PZ.x/ will vanish.

Closer examination of the discriminant of 
 reveals that that product may be split
into two groups of factors, the first consisting of those differences of the form

Œ.ai C aj /x � aiaj � � Œ.ai C ak/x � aiak� D .aj � ak/.x � ai /;

for distinct i; j; k, and the second of those differences of the form

(19) Œ.aiCaj /x�aiaj ��Œ.akCal /x�akal � D .aiCaj�ak�al /x�aiajCakal ;

for distinct i; j; k; l . In the first group, each factor .aj � ak/ will occur m� 2 times
(once for each value of i distinct from j and k), whereas each factor .x � ai /

will occur .m � 1/.m � 2/ times (once for every ordered pair of distinct values
j; k different from i ). If the product of the second group of factors (a polynomial
symmetric in a1; : : : ; am) be denoted by �, then from (10) and (12), the discriminant
of 
 is �mm�2�.m�1/.m�2/�.

Likewise, if k.x; i1; : : : ; im/ is the function that transforms into � when each ij in
it is replaced by sj , and K.x/ is the result of replacing each such ij by Cj , then the
discriminant of z is pmm�2y.m�1/.m�2/k and that of Z, PZ , is PY m�2Y .m�1/.m�2/K.
Since PY ¤ 0 by assumption, it remains to show that K is not identically zero.
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Toward that end Gauss introduced the function of the new indeterminate w
given by

(20)
Y
Œ.ai C aj � ak � al /w C .ai � ak/.ai � al /�;

where i; j; k; l are distinct integers between 1 and m and no factors are repeated.
(Note that each factor is invariant under the interchange of ak and al , and so
would appear twice in the product if repeated factors were allowed.) That product
is symmetric in the indeterminates a1; : : : ; am, so it is uniquely expressible as a
polynomial function f .w; s1; : : : ; sm/ of the elementary symmetric polynomials and

w. Since the number of factors in the product is
1

2
m.m�1/.m�2/.m�3/, the degree

of each substitution instance of f .w; s1; : : : ; sm/ is at most that. Also,

f .0; s1; : : : ; sm/ D �m
.m�2/.m�3/;

f .0; i1; : : : ; im/ D pm
.m�2/.m�3/; and

f .0; C1; : : : ; Cm/ D PY
.m�2/.m�3/:

In particular, the last equation shows that the constant term of

f .w; C1; : : : ; Cm/

does not vanish.
Let the non-zero term of highest degree in f .w; C1; : : : ; Cm/ be Nw� . Then for

each j between 1 and m, if w be replaced by x � aj , f .x � aj ; C1; : : : ; Cm/ may
be regarded as a polynomial in x whose leading term is Nx� and whose other
coefficients depend upon aj . Consequently

(21)
mY

jD1
f .x � aj ; C1; : : : ; Cm/

is a polynomial in x with leading term Nmxm� , in which the coefficients of the
remaining terms are functions of a1; : : : ; am.

Similarly,

mY

jD1
f .x � aj ; i1; : : : ; im/

is a polynomial function of x; a1; : : : ; am; i1; : : : ; im symmetric in a1; : : : ; am, which
by the Fundamental Theorem on Symmetric Polynomials may be rewritten as a
polynomial '.x; s1; : : : ; sm; i1; : : : ; im/. Replacing each ij by sj then yields

'.x; s1; : : : ; sm; s1; : : : ; sm/ D
mY

jD1
f .x � aj ; s1; : : : ; sm/:
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Now, for any fixed value of i , when w is replaced by x � ai , the factor

.ai C aj � ak � al /w C .ai � ak/.ai � al /

in (20) reduces after cancellation of like terms to

.ai C aj � ak � al /x � aiaj C akal ;

which is the same as the right member of (19). So each factor of � is also a factor
of '.x; s1; : : : ; sm; s1; : : : ; sm/; that is, � divides '.x; s1; : : : ; sm; s1; : : : ; sm/, say
'.x; s1; : : : ; sm; s1; : : : ; sm/ D �
.x; s1; : : : ; sm/. Therefore also

'.x; C1; : : : ; Cm; C1; : : : ; Cm/ D K
.x; C1; : : : ; Cm/:

But '.x; s1; : : : ; sm; C1; : : : ; Cm/ is the product in (21), which has leading term
Nmxm� , not involving any of s1; : : : ; sm; so Nmxm� must also be the leading term
of '.x; C1; : : : ; Cm; C1; : : : ; Cm/. In particular, '.x; C1; : : : ; Cm; C1; : : : ; Cm/ does
not vanish identically. Therefore neither does K, as was to be shown.

Before beginning the induction that lay at the heart of his second proof, Gauss
stated and proved one final lemma.

Lemma 3: Let ˆ.u; x/ denote the product
Qk
iD1.˛i C ˇiu C �ix/ of any number

of factors linear in the indeterminates u and x, and let v be another indeterminate.
Then the function

� D ˆ.u C v
@ˆ

@x
; x � v @ˆ

@u
/

is divisible by ˆ.u; x/.

Proof: For each i between 1 and k, we have

ˆ.u; x/ D .˛i C ˇiu C �ix/Qi ;

where Qi denotes the product of all the factors ˛j C ˇj u C �j x with j ¤ i . (Each
Qi is thus a polynomial in u; x; ˛j ; ˇj ; �j , for 1 � j � k; j ¤ i .) So

@ˆ

@x
D �iQi C .˛i CˇiuC�ix/

@Qi

@x
and

@ˆ

@u
D ˇiQi C .˛i CˇiuC�ix/

@Qi

@u
:

Substituting the expressions on the right sides of those equations into the
corresponding factor

˛i C ˇiu C �ix C ˇiv
@ˆ

@x
� �iv @ˆ

@u
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of ˆ yields

.˛i C ˇiu C �ix/.1C ˇiv
@Q

@x
� �iv @Q

@u
/;

and consequently,

� D ˆ.u; x/
kY

iD1
.1C ˇiv

@Q

@x
� �iv @Q

@u
/: q.e.d.

When applied to 
.u; x/ D z.u; x; s1; : : : ; sm/, Lemma 3 shows that 
 divides

z.u C v
@


@x
; x � v @


@u
; s1; : : : ; sm/;

say with quotient ‰.u; x; v; s1; : : : ; sm/. Likewise,

z.u C v
@z

@x
; x � v @z

@u
; i1; : : : ; im/ D z.u; x/‰.u; x; v; i1; : : : ; im/

and

Z.u C v
@Z

@x
; x � v @Z

@u
; C1; : : : ; Cm/ D Z.u; x/‰.u; x; v; C1; : : : ; Cm/:

Now, given definite values U and X for the indeterminates u and x, let U 0 and
X 0 denote

@Z

@u

ˇ̌
ˇ̌
.U;X/

and
@Z

@x

ˇ̌
ˇ̌
.U;X/

;

respectively. Then

Z.U C vX0; X � vU0/ D Z.U;X/‰.U;X; v; C1; : : : ; Cm/:

If U 0 ¤ 0, replacing v by
X � x
U 0 yields

(22) Z.U C XX0

U 0 � xX0

U 0 ; x/ D Z.U;X/‰.U;X;
X � x
U 0 ; C1; : : : ; Cm/:

In other words, setting u D U C X � x
U 0 X 0 transforms Z.u; X/ into

Z.U;X/‰.U;X;
X � x
U 0 ; C1; : : : ; Cm/:
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By Lemma 2, the assumption that PY ¤ 0 implies that the polynomial PZ does
not identically vanish. Therefore PZ.x/ D 0 for only finitely many values of x, so
a real number X may be chosen for which PZ.X/ ¤ 0; that is, the discriminant
of the function Z.u; X/ is non-zero. By Lemma 1, the polynomial Z.u; X/ and

its derivative
dZ

du
thus have no common factor. Also, as noted earlier, Z.u; X/ has

degree n D m.m� 1/=2 in u, where m D k2�, k odd, is the degree of Y.x/. Hence
n D .k2�/.k2� � 1/=2 D .k2/22��1 � k2��1 D Œk.k2� � 1/�2��1. The quantity
in brackets in the last member of that equation is odd, so the power of 2 in n is less
than the power of 2 inm. Therefore we may assume by induction that there is a real
or complex value U for which Z.U;X/ D 0.16 By the factor theorem, u � U must

then be a factor of Z.u; X/, but, ipso facto, not a factor of
dZ

du
. So U 0 ¤ 0, again by

the factor theorem.
For those particular values of X and U , the right-hand member of (22) is

identically zero, independent of the value of x. Thus Z.u; x/, regarded as a
polynomial in u with coefficients that are polynomials in x, vanishes when u D
U C X � x

U 0 X 0, and so has u �U � X � x
U 0 X 0 as a factor. If we then let u D x2, the

polynomial Z.x2; x/ must have the quadratic polynomial

x2 � U � X � x
U 0 X 0 D x2 C X 0

U 0 x � .U C XX0

U 0 /

as a factor. The quadratic formula then provides a real or complex root of Z.x2; x/.
Finally, recall that z.x2; x; i1; : : : ; im/ is the unique polynomial that transforms

into 
.x2; x/ when each ij is replaced by the elementary symmetric polynomial sj ,
and that Z.x2; x/ is obtained from z.x2; x; i1; : : : ; im/ by replacing each ij by the
coefficient Cj of Y.x/. But


.x2; x/ D
Y
Œx2 � .ai C aj /x C aiaj � D

Y
.x � ai /.x � aj /

D
mY

iD1
.x � ai /m�1 D �m�1

(where the first two products are taken over all unordered pairs fai ; aj g; i ¤ j ;
cf. (18) and (12) above), and the unique polynomial in x; i1; : : : ; im that transforms
into �m�1 when each ij is replaced by sj is y.x/m�1 (cf. (11)). Therefore z.x2; x/ D
.y.x//m�1 and Z.x2; x/ D .Y.x//m�1, so the root found for Z.x2; x/ is also a root
of Y.x/, completing the proof of the theorem.

16Gauss observed that the coefficients of Z.u; X/ will be real numbers if X is real and all
coefficients of Y.x/ are real — a fact needed for the base case of the induction (that a real
polynomial of odd degree must have a real root).
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The proof just given is remarkable not only for purity of method but for its
economy of means. The principal tool invoked is the Fundamental Theorem on
Symmetric Polynomials, applied over and over again to a sequence of carefully
chosen polynomials, and the only non-algebraic principle used is the intermediate-
value theorem. As such it is a tour de force. Its length, however, is a pedagogical
deterrent, and the justifications for some of the definitions and substitutions
employed become apparent only with hindsight; it is thus less perspicuous than
Argand’s nearly contemporaneous argument.

8.6 Proofs based on integration

The proofs of the Fundamental Theorem of Algebra discussed above are all direct
proofs. There are indirect proofs as well, several of which are based on the theory
of integration. Among them is another by Gauss, published just one year after his
second.17

Gauss’s third proof: As in his first proof, given a monic polynomial

Y D xm C A1x
m�1 C � � � C Am�1x C Am

with real coefficients, Gauss began by writing the variable x in polar form as
x D r.cos� C i sin�/ and considered the real and imaginary parts of Y , which
he denoted by t and u. Thus (replacing Gauss’s A;B; : : : ;M by A1; : : : ; Am)

t D
mX

jD0
Aj r

m�j cos.m � j /� and u D
mX

jD0
Aj r

m�j sin.m � j /�;

where A0 D 1 and, for 1 � j � m, the coefficients Aj are arbitrary real numbers.
He further defined

t 0 D
mX

jD0
.m � j /Aj rm�j cos.m � j /�;

u0 D
mX

jD0
.m � j /Aj rm�j sin.m � j /�;

t 00 D
mX

jD0
.m � j /2Aj rm�j cos.m � j /�;

17Translated into German on pp. 61–67 of Gauss (1890).
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u00 D
mX

jD0
.m � j /2Aj rm�j sin.m � j /�; and

y D .t2 C u2/.tt00 C uu00/C .tu0 � ut0/2 � .tt0 C uu0/2

r.t2 C u2/2
;

and stipulated thatR should be a real number greater than the largest of the numbers
.mjAj jp2/1=j , for 1 � j � m. He then claimed that setting r D R would ensure
that tt0 C uu0 was positive, for any angle �.

Proof of claim: Corresponding to the definitions of t; u; t 0 and u0, let

T D
mX

jD0
AjR

m�j cos.
�

4
C j�/;

U D
mX

jD0
AjR

m�j sin.
�

4
C j�/;

T 0 D
mX

jD0
.m � j /AjRm�j cos.

�

4
C j�/; and

U 0 D
mX

jD0
.m � j /AjRm�j sin.

�

4
C j�/:

Gauss observed that T could be rewritten as

mX

jD1

Rm�j

m
p
2
.Rj C mAj

p
2 cos.

�

4
C j�//;

and similarly for U; T 0 and U 0; so, by the stipulation on R, those four quantities,
and hence TT 0 C UU0 must all be positive. But when r D R, tt0 C uu0 D TT 0 C UU0.

To see that, note first that when r D R, the quantity t is equal to

(23) T cos.
�

4
Cm�/C U sin.

�

4
Cm�/:

For, by the definitions of T and U , each term of (23) is of the form

(24) AjR
m�j Œcos.

�

4
C j�/ cos.

�

4
Cm�/C sin.

�

4
C j�/ sin.

�

4
Cm�/�

D AjR
m�j

2
Œcos..m � j /�/C cos.

�

2
C .mC j /�/C cos..m � j /�/

� cos.
�

2
C .mC j /�/� D AjR

m�j cos..m � j /�/;
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the corresponding term of t . Likewise, when r D R, the quantities u; t 0 and u0 are
equal to

T sin.
�

4
Cm�/ � U cos.

�

4
Cm�/;

T 0 cos.
�

4
Cm�/C U 0 sin.

�

4
Cm�/; and

T 0 sin.
�

4
Cm�/ � U 0 cos.

�

4
Cm�/;

respectively. Then, letting A D �

4
Cm�, we have

tt0 D TT 0cos2AC T 0U sinA cosAC TU0 sinA cosAC UU0sin2A and

uu0 D TT 0sin2A � T 0U sinA cosA � TU0 sinA cosAC UU0cos2A;

so tt0 C uu0 D TT 0 C UU0 > 0 when r D R, as claimed.

In addition, when r D R,

t 2 D T 2cos2AC 2TU sinA cosAC U 2sin2A and

u2 D T 2sin2A � 2TU sinA cosAC U 2cos2A;

so t 2 C u2 D T 2 C U 2. Consequently, for any r satisfying the stipulations on R,
t 2 C u2 must be positive, whence t and u cannot simultaneously equal 0.

On the other hand, within the circle C of radius R centered at the origin there
must be a point .r; �/ where both t D 0 and u D 0 (and thus a point x D r.cos� C
i sin�/ where Y D 0, proving the theorem). For suppose not. Then let

� D
Z Z

C

y dA D
Z R

0

Z 2�

0

y d� dr D
Z 2�

0

Z R

0

y dr d�:

Note that
@t

@�
D �u0,

@u

@�
D t 0,

@t 0

@�
D �u00 and

@u0

@�
D t 00. Using those relations,

one computes that

(25)
@

@�

�
tu0 � ut0

r.t2 C u2/

�
D y; that is,

Z
y d� D tu0 � ut0

r.t2 C u2/
:

Since u and u0 both equal 0 when � D 0 or � D 2� , the last expression above is
also zero for those values of �, whence

(26)
Z 2�

0

y d� D 0; and so � D
Z R

0

Z 2�

0

y d� dr D 0:
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Similarly, from r
@t

@r
D t 0, r

@u

@r
D u0, r

@t 0

@r
D t 00, and r

@u0

@r
D u00, one computes

that

(27)
@

@r

�
tt0 C uu0

t 2 C u2

�
D y; that is,

Z
y dr D tt0 C uu0

t 2 C u2
:

Consequently,

Z R

0

y dr D tt0 C uu0

t 2 C u2

ˇ̌
ˇ̌
R

0

D TT 0 C UU0

T 2 C U 2
> 0 by the claim proved earlier.

But then

� D
Z 2�

0

Z R

0

y dr d� D
Z 2�

0

TT 0 C UU0

T 2 C U 2
> 0; contrary to (26):

In his prefatory remarks, Gauss said merely that continued reflection on the
Fundamental Theorem had led him to this third proof, which, like the second, was
“purely analytic,” but was based on entirely different principles and far surpassed
the second in simplicity. And indeed, like Argand’s proof, nothing beyond advanced
calculus is needed for understanding the argument just given. However, several of
the functions used in the proof, especially y, are introduced seemingly out of the
blue, and it seems almost miraculous that the partial derivatives in (25) and (27)
turn out to equal y. Thus, though succinct and requiring minimal prerequisites, the
proof is not perspicuous: It provides convincing verification that the Fundamental
Theorem is true, but it is not explanatory, since it does not convey understanding of
why it is.

Other indirect proofs of the Fundamental Theorem are based on Cauchy’s theory
of complex contour integration. The best known is perhaps that based on Liouville’s
Theorem (that a bounded entire function must be constant): For if the polynomial

p.z/ had no zero in the complex plane, then
1

p.z/
would be an entire function;

and as in Argand’s proof, for any positive constant C there is an R > 0 such that

jp.z/j > C whenever jzj > R. Thus
1

p.z/
<

1

C
for jzj > R, and as a continuous

function,
1

p.z/
would also be bounded within the disc jzj � R. Thus

1

p.z/
would

be bounded throughout the complex plane, and hence a constant by Liouville’s
Theorem — a contradiction for any p.z/ of positive degree.

Liouville’s Theorem is itself a consequence of Cauchy’s integral formula,
which asserts that if f .z/ is any function analytic in a simply connected domain
containing the simple closed curve � , then for any point z0 inside � ,
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f .z0/ D 1

2�i

Z

�

f .z/

z � z0
dzI

and, as first noted in Zalcman (1978) (see also Lax and Zalcman 2012), Cauchy’s
formula may be applied directly to yield an even simpler proof of the Fundamental
Theorem of Algebra. For if jp.z/j ¤ 0 throughout the complex plane, then q.z/ D
1

p.z/
is entire and

1

p.0/
D q.0/ ¤ 0. Hence

q.0/ D 1

2�i

Z

jzjDR
q.z/

z
dz D 1

2�

Z 2�

0

q.Rei� / d�;

for any R > 0. But as R approaches 1, the last integral approaches zero, contrary
to q.0/ ¤ 0.

Alternatively, a proof of the Fundamental Theorem may be couched in terms
of winding numbers, where the winding number of a continuously differentiable
closed curve � about the origin is given by

1

2�i

Z

�

dz

z
;

if � does not pass through the origin. That notion can, however, also be defined
without reference to line integrals: Less formally, and more generally, if f .z/ is
a continuous function that is never zero, the winding number of f .z/ around the
origin as z traces out a continuously differentiable closed curve � may be defined,
as in Courant and Robbins (1941), as “the net number of complete revolutions made
by a vector joining the origin to f .�.z// as z traces out � .” Courant and Robbins
then offer the following indirect proof of the Fundamental Theorem.

Suppose that the monic polynomial p.z/ D zn C an�1zn�1 C � � � C a0 of degree
n > 0 is never zero. Let Ct be the circle about the origin of radius t , given by the
equation z D tei� , and let �.t/ be the winding number of p.z/ around the origin as
z traces out Ct . Then � is a continuous, integer-valued function of t , and so must be
a constant; and since �.0/ D 0, we must have �.t/ D 0 for all t .

But

jzn � p.z/j � jan�1jjzjn�1 C � � � C ja0j D jzjn�1
�
jan�1 C � � � C ja0j

jzjn�1

�
;

so for values of t greater than ja0j C ja1j C � � � C jan�1j C 1; the length jzn � p.z/j
of the vector from p.z/ to zn will be less than or equal to

tn�1Œjan�1j C � � � C ja0j
tn�1 � < t

n D jznj; the distance from zn to the origin.

(See Figure 8.4.)
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Fig. 8.4 A winding-number
proof. Adapted from Figure
150, p. 270 in What is
Mathematics?, 2nd. ed.
(1996), by Richard Courant
and Herbert Robbins. By
permission of Oxford
University Press, U.S.A.

The segment joining p.z/ to zn thus cannot pass through the origin when z is
on Ct . Deforming the curve traced by p.z/ to the circle traced by zn by shrinking
each such line segment to zero will thus not alter the value of �.t/, which must be
the same as the winding number of zn around the origin as z traces out Ct .18 But that
number is n, which is greater than zero, contrary to what was found above.

The preface to the first edition of What is Mathematics? states that that book
“presupposes only knowledge that a good high school course could impart,” and
the proof just given is an excellent example of a perspicuous informal proof. By
dispensing with reference to line integrals, Courant and Robbins succeeded in
offering a proof of the Fundamental Theorem that should be both convincing and
understandable to mathematically inclined high school students — a remarkable
achievement from a pedagogical standpoint, since it is at that level that students
first encounter the Fundamental Theorem, and all other proofs known to this author
presume at least knowledge of advanced calculus.19

18The formal statement of that fact is Rouché’s Theorem.
19I vividly recall my own frustration on repeatedly reading, not only in high school, but throughout
my undergraduate courses at M.I.T., that a proof of the Fundamental Theorem was “beyond
the scope of this text.” Only when I took a graduate complex analysis course did I finally see
the theorem proved as a corollary to Liouville’s theorem — an experience I found distinctly
anticlimactic, given my long years of expectant waiting. (William Dunham, in his article Dunham
(1991), describes his own very similar experience.)
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8.7 Other modern proofs

As part of the development of field theory in the nineteenth century, Kronecker
proved the basic result needed to establish the existence of splitting fields: that
if p.x/ is an irreducible polynomial with coefficients in a field F , then there is
a field F 0 extending F , of finite degree over F , in which p.x/ has a root. The
earlier arguments put forward as proofs of the Fundamental Theorem of Algebra by
Lagrange and Laplace were thereby validated.

Later in the nineteenth century the work of Évariste Galois was belatedly
published, and in 1872 Peter Ludvig Sylow proved the theorem in group theory now
bearing his name, according to which for any prime number p, if pm is the largest
power of p dividing the order of a finite group G, then G must possess subgroups
of order pk for each k � m. In addition, the number of subgroups of G of order pm

divides the order ofG and is congruent to 1modulo p. Emil Artin then gave a proof
of the Fundamental Theorem in terms of those concepts.

Proof via Galois theory:20 Let K be a splitting field for the polynomial p.x/, of
degree n > 1 with real coefficients. K is a finite extension of the real field R, say of
degree d D 2mq over R, where q is odd. Since R has characteristic 0,K is a simple
extension R.˛/ of R, where ˛ is a root of a unique monic irreducible polynomial
r.x/ of degree d with real coefficients. If m D 0, r.x/ must have degree q D 1,
since every real polynomial of odd degree has a real root. So in that case K D R.
If m D 1 and q D 0, r.x/ is a quadratic polynomial, whose roots must lie in C,
whence K D C. So suppose m > 0 and q ¤ 0, and let G be the Galois group of K
over R. By the fundamental theorem of Galois theory, G must have order d , and by
Sylow’s theorem, G therefore has a subgroup of order 2m and index q. Again by the
fundamental theorem of Galois theory, there must then be an extension field E of R
intermediate between R and K, having degree q over R. Then as above, since q is
odd, q D 1 and E D R. Accordingly, K must have degree 2m over R, so the order
of G is 2m. By Sylow’s Theorem, G has a subgroup H1 of order 2m�1. Let L1 be
the fixed field of H1. Then L1 is an extension of R of degree 2, so L1 is isomorphic
to C (since L1 is obtained from R by adjoining a root of a quadratic polynomial),
and K is an extension of L1 of degree 2m�1. If m > 1, let H2 be a subgroup of H1

of order 2m�2, and let L2 be the fixed field of H2. Then L2 is an extension of L1
(and so is isomorphic to an extension of C) of degree 2. But that is impossible, since
quadratic polynomials with complex coefficients always have complex roots. Thus
m D 1 and K has degree 20 D 1 over L1; that is, K ' L1 ' C, where ' denotes
isomorphism. q.e.d.

The prerequisites for understanding the proof just given are substantially greater
than those for the other proofs so far considered. In particular, few undergraduates
would be able to comprehend it. Nonetheless, since Galois theory was developed to

20For further background details, see chapter 7 of Fine and Rosenberger (1997).
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answer questions about the solvability of polynomials by radicals, it is appropriate
to use it to prove the Fundamental Theorem of Algebra; and like Gauss’s second
proof, it is as methodologically pure as possible, invoking nothing non-algebraic
except the intermediate-value theorem.

There are also proofs of the Fundamental Theorem based on sophisticated
notions from algebraic topology (Brouwer degree, homotopy theory, simplicial
complexes, homology theory), three of which are sketched in chapter 9 and
appendix D of Fine and Rosenberger (1997). They are not discussed further here,
since the means they employ were developed to address very different concerns and
go far beyond what is required to establish the Fundamental Theorem. Nevertheless,
they demonstrate the power of topological techniques (another example of bench-
marking) and illustrate the coherence of disparate mathematical theories.

A much simpler proof, based on notions from point-set topology, establishes
the Fundamental Theorem in the equivalent form: Every polynomial of non-zero
degree with complex coefficients, regarded as a mapping with domain C, has range
all of C.21

A topological proof:22 Let p.z/ be a polynomial of degree n > 1 with complex
coefficients. Since p is continuous and jp.z/j approaches infinity as jzj does,
the range R of p must be closed (by Weierstrass’s theorem that every bounded
sequence has a convergent subsequence). Consider then the set T of all points p.z/
where p0.z/ D 0. Since C � R is open, it suffices to show that R � T is open as
well. For if so, then .C � R/ [ .R � T / D C � T . Since T is finite, C � T is a
connected set, which cannot be the union of two disjoint nonempty open sets; and
since p�1.T / is finite and n > 1, R � T is nonempty. Thus C �R must be empty.

The proof is completed by noting that for every p.z0/ in R � T , p0.z0/ ¤ 0, so
the inverse function theorem implies that there are neighborhoods U of z0 and V of
p.z0/ such that p maps U one-to-one onto V . Hence every point of R � T is an
interior point.

There remains the purity question broached earlier in connection with Euler’s
failed proof attempt: Can the original statement of the Fundamental Theorem, that
any non-constant polynomial with real coefficients can be expressed as a product of
real linear and quadratic factors, be proved without reference to complex numbers
or splitting fields?

Such a proof has been given, based on concepts from linear algebra. The proof
is by induction on the degree of the polynomial and uses properties of the so-
called Bezoutian resultant (the determinant of an n � n symmetric matrix defined
for any pair of polynomials p; q, where n is the maximum of the degrees of p
and q). Specifically, writing p as a function of the variable x and q as a function
of the variable w, the factor theorem implies that x � w must be a factor of the

21The intermediate-value theorem may similarly be cast as the assertion that the range of any
polynomial of odd degree with real coefficients, regarded as a mapping from R into R, is all of R.
22This is essentially the proof given in Sen (2000).
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polynomial P.x;w/ D p.x/q.w/ � p.w/q.x/, say P.x;w/ D .x � w/b.x;w/,
where b is a polynomial each of whose terms is of the form bijx

i�1wj�1, for
1 � i; j � n. The coefficients bij are the entries of the Bezoutian matrix B.p; q/,
which is nonsingular if and only if p and q have no common root.23

In outline, the proof then proceeds as follows: Given a real polynomial p.x/ D
anx

n C an�1xn�1 C � � � C a0 with a0 ¤ 0 and an ¤ 0, if n is odd, then p.x/ has
a real root x0 by the intermediate-value theorem, so p.x/ D .x � x0/q.x/, where
q.x/ has degree n � 1. By the induction hypothesis, q.x/ then is a product of real
linear and quadratic factors, whence so is p.x/. If n is even, say n D 2m, then let r
be a real parameter and define auxiliary polynomials p1.x/ and p2.x/ by

p1.x/ D p.rx/ D anr
nx C an�1rn�1xn�1 D � � � C a0 and

p2.x/ D a0x
n C a1rxn�1 C � � � C anr

n :

The intermediate-value theorem, together with properties of principal minors,
can then be invoked to show that there must be a value r0 of r for which the
determinant of B.p1; p2/ D 0 ; so when r D r0, p1.x/ and p2.x/ will have
some maximal common factor f .x/. Writing p1.x/ D f .x/Q1.x/ and p2.x/ D
f .x/Q2.x/ yields p1.x/Q2.x/ D p2.x/Q1.x/, where Q1 and Q2 are relatively
prime polynomials of degree less than n. By the induction hypothesis, if Q2 is not
constant, it must be a product of linear and quadratic factors, all of which divide p1.
The quotient p1.x/=Q2.x/ then also has degree less than n, so it too must be a
product of linear and quadratic factors. Hence p1.x/ is a product of linear and
quadratic factors, and replacing x in each of those factors by x=r0 produces a similar
factorization of p.x/.

On the other hand, if Q2.x/ is a constant, then f .x/ has degree n, so Q1.x/ is
also a constant. Hence p1.x/ D cp2.x/ for some constant c, so for each i between 0
and n, the coefficient of xi in p1.x/must equal c times the coefficient of xi in p2.x/;
that is, ai ri0 D can�i rn�i

0 for each such i . In particular, for i D m, amrm0 D camrm0 ,
so c D 1 and aj r

j
0 D an�j rn�j

0 for 0 � j � n, which means that p1.x/ is a
palindromic (self-reciprocal) polynomial. But then either xC 1 is a factor of p1.x/,
or p1.x/ D xmq.X/, where q is a polynomial of degree m and X D x C x�1.

By the induction hypothesis, q is a product of real linear and quadratic polyno-
mials in X , so p1.x/ is a product of real linear, quadratic, and quartic polynomials
in x. Since quartics can always be factored (e.g., by Euler’s technique) into products
of real linear and quadratic expressions, so can p1.x/. The desired factorization of
p.x/ is then obtained once again by replacing x everywhere by x=r0.

The proof just given (published in Eaton 1960) employs very different techniques
than the others considered here. However, the idea of using the resultant of two
polynomials as a tool in proving the Fundamental Theorem of Algebra is not new.

23Indeed, the nullity of B.p; q/ equals the number of common zeroes of p and q, counting
multiplicities.
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Indeed, the British mathematician James Wood gave an incomplete proof of that
sort in 1798, the year before Gauss’s first proof.24 A full proof using resultants was
later published by Paul Gordan, who presented it as a simpler alternative to Gauss’s
second proof (Gordan 1876).

8.8 Constructive proofs

Although the foregoing proofs establish the existence of a root for any nonconstant
polynomial, they provide no means for actually finding one. One may therefore
wonder, as Weierstrass did in 1891, whether it is possible “for any given polynomial
f in C.Z/, to produce a sequence zn of complex numbers by an effectively
defined procedure, so that jf .zn/j is sufficiently small in relation to jf .zn�1/j that
it converges to a zero of f ?”25 Beyond that, one might ask whether the proof that
such a procedure converges can be done constructively, and how computationally
efficient the procedure is. The importance of such questions to mathematical practice
is indicated by the appearance in 1969 of a volume entitled Constructive Aspects
of the Fundamental Theorem of Algebra (Dejon and Henrici 1969), containing the
proceedings of a symposium on that topic held two years before at the IBM Research
Laboratory in Zürich.

In 1924 Hermann Weyl gave an intuitionistic proof of the Fundamental Theo-
rem of Algebra that invoked winding numbers (Weyl 1924, pp. 142–146). Later
Hellmuth Kneser presented a modification of Argand’s proof in which, given a
nonconstant polynomial p.x/, he defined a sequence of complex numbers and
proved, also by means acceptable to intuitionists, that it converged to a root of p (H.
Kneser 1940). Specifically, given a monic polynomial p.x/ D xn C an�1xn�1 C
� � � C a0 of degree n > 1 with complex coefficients, Kneser defined a sequence
of complex numbers xm designed to make the ratio jp.xmC1/j=jp.xm/j as small as
possible. Toward that end he expressed p.xm C y/ as p.xm/CPn

iD1 biyi , chose y
so that one of the terms in the sum would have the same argument as �p.xm/ and
would strongly dominate the other terms, and set xmC1 D xm C y. To find such a y
he employed a lemma whose proof was lengthy and delicate. Forty-one years later
his son Martin published a simplified version of the proof (M. Kneser 1981) based
on the following much simpler lemma:

Given a monic polynomial p.x/ of degree n > 1 with constant term a0, there is
a positive number q < 1, depending only on n, such that if ja0j � c, a complex
number y can be specified for which jyj � c1=n and jp.y/j � qc.

24Wood (1798), his only published mathematical paper. An analysis of Wood’s argument, as well
as a completion of it, has recently been given by Frank Smithies (Smithies 2000). I am indebted to
Peter Goddard for bringing both those papers to my attention.
25Quoted on p. 115 of Remmert (1990) from the third volume of Weierstrass’s Mathematische
Werke, pp. 251–269.
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The sequence fxmg may then be defined inductively, as follows, starting with
x0 D 0. Suppose that xm has already been defined and satisfies jp.xm/j � qmc.
Apply the lemma to f .x/ D p.xm C x/, which has constant term p.xm/, and set
xmC1 D xm C y. Then jxmC1 � xmj D jyj � .qmc/

1=n and jp.xmC1/j � q.qmc/ D
qmC1c. The first of those inequalities shows that the sequence fxmg converges to
some value x and the second that the inductive hypothesis is satisfied by xmC1,
so that p.xm/ converges to 0. Since p is continuous, it follows that p.x/ D 0. The
proof of the lemma is constructive, and can be made to satisfy intuitionistic demands
as well.

Two years before Martin Kneser’s paper appeared, Steve Smale and Morris
Hirsch also defined a sequence of values guaranteed to converge to a root of any
given polynomial of degree n > 0 (Hirsch and Smale 1979, pp. 303–309). Their
procedure was based on a modification of Newton’s method, and again involved an
auxiliary proposition, namely:

For any positive integer n there exist real numbers �1; : : : ; �n with 0 < �k � 1 for
k D 1; : : : ; n and Kn satisfying 0 < Kn < 1, such that if hk D �ke

i�=k , then for
any n-tuple .�1; : : : ; �n/ in C

n � 0 there is an m for which
ˇ̌
ˇ̌
ˇ1C

nX

kD1
.
�k

�m
hm/

k

ˇ̌
ˇ̌
ˇ < Kn:

Suppose then that p.x/ is a polynomial of degree n > 0 and z is any complex
number. If p.z/ D 0, let z0 D z. Otherwise, for each positive integer k � n, let
�k be a kth root of p.k/.z/=kŠp.z/. Since n > 0, p.n/.z/ ¤ 0, so .�1; : : : ; �n/ is in
C
n � 0. The auxiliary proposition then yields a �m ¤ 0, whence z0 can be taken to

be z C hm=�m. Then by Taylor’s theorem,

jp.z0/j D
ˇ̌
ˇ̌
ˇp.z/C

nX

kD1

p.k/.z/

kŠ

�
hm

�m

�k ˇ̌ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇp.z/

"
1C

nX

kD1

p.k/.z/

p.z/kŠ

�
hm

�m

�k#ˇ̌ˇ̌
ˇ

D jp.z/j
ˇ̌
ˇ̌
ˇ1C

nX

kD1

�
�k

�m
hm

�k ˇ̌ˇ̌
ˇ < Knjp.z/j:

To prove the Fundamental Theorem of Algebra, let z0 be any complex number, and
assume by induction that z0; : : : ; zj have already been defined. If p.zj / D 0, then zj
is a root of p, so put zjC1 D zj . Otherwise define zjC1 to be zj Chm0=�m0 , wherem0

is the least value of m that satisfies the inequality given in the auxiliary proposition.
Then the equations and inequality displayed above show that jp.zjC1j < Knjp.zj /j.
So jp.zj /j < .Kn/

j jp.z0/j for every j . Since Kn < 1; p.zj / therefore converges
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to 0 as j approaches 1. The convergence may be very slow, however, since the
authors note that for large values of n;Kn is very close to 1.26

That a subsequence of fzj g must converge to a root of p follows by a
compactness argument:27 For since jp.z/j approaches 1 as z does, and since
jp.zj /j < Knjp.z0/j for all j , all the values zj must lie within some disc jzj � R.
If there are infinitely many distinct values zj , a subsequence of them must approach
some point within that disc, since otherwise for each point z with jzj � R some
disc Dz centered at z would contain at most one of the zj (namely zj if and only if
z D zj ). But since the disc jzj � R is compact, a finite number of those Dz would
cover it. Thus either the sequence fzj g is eventually constant, say zk D zj for all
k � j (which by construction implies that p.zj / D 0), or else every neighborhood
of some z� in C contains infinitely many of the zj . In the latter case, the continuity
of p implies that p.z�/ D 0, so z� is a root of p.

Further algorithms and constructive proofs of the Fundamental Theorem of
Algebra may be found in the volume (Dejon and Henrici 1969) cited earlier. See
in particular the article “A never failing fast convergent root-finding algorithm,” by
Bruno Dejon and Karl Nickel, pp. 1–35.
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