Chapter 6
The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic (FTA) states that every integer greater than
1 has a factorization into primes that is unique up to the order of the factors. The
theorem is often credited to Euclid, but was apparently first stated in that generality
by Gauss.! Note that the statement has two parts: First, every integer greater than 1
has a factorization into primes; second, any two factorizations of an integer greater
than 1 into primes must be identical except for the order of the factors. The proofs
of each of those parts will thus be considered separately.

The first part is the subject of propositions VII,31 and VII,32 of the Elements.
Proposition VII,31 states that any composite number (that is, any number that has a
proper divisor other than one) is divisible by some prime. Having established that,
Euclid then immediately concludes in proposition VIL,32 that any number greater
than 1 is either prime or is divisible by some prime.

Euclid’s proof of VIL,31: Let A be a composite number. By definition, A has a
proper divisor B other than one. If B is prime, we are done. If not, B has a proper
divisor C other than one, and then C is a proper divisor of A. If C is prime, we are
done. Otherwise, C has a proper divisor other than one. Continuing in this fashion,
one must eventually obtain a prime divisor of A, since otherwise there would be an
infinite sequence of divisors B, C, ... of A, each smaller than the one before, which
is impossible.

Second proof (of VIL,31 and VII,32 together): By complete induction on the
integer A > 1. Suppose every integer greater than 1 and less than A is divisible
by some prime. Consider A. If 4 is prime, we are done. Otherwise, A = BC with
1 < B, C < A. By the inductive hypothesis, B is divisible by some prime, and that
prime divides A.

'In the Disquisitiones Arithmeticae (Gauss 1801, Bd. I, p. 15). (See Collison 1980, p. 98.) However,
the result was certainly known, if not explicitly stated, beforehand. For example, Euler used it
implicitly in his 1737 proof of the infinitude of the primes (via the divergence of the harmonic
series).
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42 6 The Fundamental Theorem of Arithmetic

Repeated application of VII,32 then establishes the existence of a prime factor-
ization for any integer greater than 1.

Note that the first of the proofs above is a reductio, while the second is a direct
proof that explicitly uses induction. Euclid takes for granted that there cannot be an
infinite strictly decreasing sequence of positive integers — a statement that nowa-
days would be deemed to require proof. The most direct proof is by means of the
well-ordering principle, which is equivalent to induction (or complete induction).
Indeed, the statement in question is itself logically equivalent to induction.

There is little more development of the first part of the FTA, since the second
argument above is so simple. (Some further remarks about the first part will,
however, be made at the end of the chapter). Consider then the second part of
the FTA.

A corollary of the FTA is Euclid’s Lemma, which asserts that if a prime divides
a product it must divide one of the factors. A strong form of Euclid’s Lemma, but
restricted to products of just two factors, was stated by Euclid as proposition VIL,30
of the Elements. A consequence of that result is Euclid’s proposition IX,14 (‘If a
number be the least that is measured by [three distinct] prime numbers, it will not
be measured by any other prime number except those originally measuring it.”).

Euclid did not consider products of more than three primes, nor products
involving repeated factors. However, his proof of IX,14 can be applied to conclude
that the representation of a number as a product of distinct primes is unique except
for the order of the factors. To extend to products involving repeated factors one
can apply proposition IX,13 of the Elements (which states that the only divisors
of pX are the numbers 1, p, p?, ..., p¥) in combination with VII,30. Alternatively,
one can argue, as Gauss later did, that if a prime p appears to the power j in one
factorization of a number n and to the power k in another, with j < k, then dividing
by p/ will yield two factorizations of another number, at most one of which involves
the factor p. Applying VII,30 repeatedly then shows that p must in fact occur in
neither, so j = k. Any other repeated prime factors may be similarly eliminated, so
only products of distinct prime factors need be considered.

Consequently, Euclid’s Lemma also implies the second part of the FTA, and
it is useful to distinguish proofs of the second part of the FTA that do not first
prove Euclid’s Lemma from those that do. Proofs of the second part of the FTA
may also be distinguished according to what extent (if any) they use mathematical
induction, whether they are direct or indirect, whether they invoke the concepts of
least common multiple or greatest common divisor, and whether they employ the
division algorithm, the Euclidean algorithm, or neither.

6.1 Direct proofs of Euclid’s Lemma

The statement of proposition VII,30 in Euclid’s Elements is just that of Euclid’s
Lemma: ‘If two numbers by multiplying one another make some number, and
any prime number measure the product, it will also measure one of the original
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numbers.” The proof, however, only uses the assumption that the number measuring
the product is prime to deduce that it is relatively prime to each of the original
factors. It thus establishes the following stronger result, stated earlier in Chapter 4.

Theorem: If a divides bc and is relatively prime to b, then a divides c.

Proof (a modern paraphrase of Euclid’s argument): Suppose a divides bc, say
bc = ad, and a is relatively prime to b. Then a must be the least natural number
that, when multiplied by d, yields a multiple of c; that is, ad must be the least
common multiple of ¢ and d. For let f denote the least such number, and suppose
fd = ec. By the division algorithm, a = gf + r for some g,r with0 < r < f,
so bc = ad = qfd + rd = gec + rd. Hence rd = bc — gec = (b — ge)c. By the
minimality of f, r must equal 0, so @ = ¢f and (since ¢ # 0) b = ge. ¢ is thus a
common factor of @ and b, which implies that ¢ = 1. Therefore a = £, as claimed.

To finish the proof, Euclid appealed to his proposition VII,20 (whose proof,
however, was faulty; cf. footnote 1 in Chapter 4): a is the least natural number
for which a/b = c/d, so a divides c. Alternatively, one may apply the division
algorithm again to deduce that ¢ = pa + s for some p,s with 0 < s < a. Then,
s = ¢ —pa, so

sd = cd — pad = c¢d — pbc = (d — pb)c.

That is, sd is a multiple of ¢, so by the minimality of a, s = 0. Thus ¢ = pa, so a
divides c. q.e.d.

Whichever method is used to complete the proof above, the argument as a
whole invokes the division algorithm twice, since (again as noted in footnote 1 of
Chapter 4) a correct proof of Euclid’s VII,20 employs the division algorithm.

By contrast, the next proof (from Rademacher and Toeplitz 1957, pp. 71-72)
of the weaker form of Euclid’s Lemma does so only once, to show that the least
common multiple of two numbers divides any common multiple of them, but it
makes use of an additional fact (displayed as (7) below) not employed in Euclid’s
argument.

Second proof: If m is the least common multiple of two numbers @ and b and M
is any common multiple of them, then m divides M ; for, by the division algorithm,
M = gm + r for some ¢ and r with 0 < r < m, so the minimality of m implies
that r = M — gm must be 0. In particular, m must divide ab, say md = ab, where

@) d must divide both a and b.

(For if m = ka = Ib, then md = kad = ab and md = Ibd = ab, so kd = b
and ld = a.) Now suppose the prime p divides BC, and let L be the least common
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multiple of p and B. Since BC and pB are both common multiples of p and B, L
divides both of those products — say LE = BC and LF = pB. By (7) above, F
divides both p and B, and since p is prime, either F = 1 or F = p; that is, either
L = pBor L = B. In the former case, LE = pBE = BC, so pE = C, thatis, p
divides C'. In the latter case, p divides B, since L is a multiple of p. q.e.d.

That the quantity d in (7) is actually the greatest common divisor of a and
b is nowhere used in the proof above. However, Euclid’s Lemma is an almost
immediate consequence of the following well-known characterization of greatest
common divisors.

Linear representation theorem: If d is the greatest common divisor of a and
b, then there are integers m and n, exactly one of which is positive, for which
d = ma + nb.

Proof of Euclid’s lemma from the linear representation theorem: If p is a prime
that divides bc but not b, then the greatest common divisor of p and b is 1. Therefore
1 = mp + nb for some integers m and n, so ¢ = mpc + nbc. Since p divides each
summand on the right, p divides c. (Exactly the same argument holds if p is not
necessarily prime, but merely relatively prime to b.)

The argument just given forms the conclusion of two distinct proofs of Euclid’s
Lemma, which differ in how the linear representation theorem itself is derived.

Third proof (summarized from Courant and Robbins 1941, pp. 45-47): The
representation of the greatest common divisor of integers @ and b as an integral
linear combination of them is obtained constructively by examining the proof of the
Euclidean algorithm (proposition VIL,2 in Euclid’s Elements). That proof, and the
implementation of the algorithm to compute m and n explicitly, involves iterated
application of the division algorithm, in which the number of iterations required
is not fixed, as in the two proofs given earlier, but depends on the values of
aandb.? g.e.d.

Alternatively, the linear representation of the greatest common divisor may be
demonstrated non-constructively as follows.

Fourth proof: The set I of all linear combinations ma + nb, as m and n range over
all integers, is an ideal within the ring of integers. Let d be an element of / whose
absolute value is minimal. A single application of the division algorithm shows
that d must divide every element of 7, so in particular it must divide @ and b. But
any common divisor of ¢ and b must also divide every element of 7, including d.
Therefore d must be a greatest common divisor of ¢ and b (as must —d, so d may
be taken to be positive without loss of generality). q.e.d.

20f course, the division algorithm itself involves iterated subtraction, where the number of
iterations likewise depends on the values of the dividend and divisor.
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A priori, the greatest common divisor of @ and b is just that, the common divisor
which is the largest. But one important consequence of the linear representation
theorem is the following property of the greatest common divisor.

Divisibility property of the ged: The greatest common divisor of a and b is
divisible by every common divisor of a and b.

Proof. Let ¢ be a common divisor of @ and b. Express the greatest common divisor
d of a and b as d = ma + nb. Then, since ¢ divides both a and b, ¢ divides d
as well.

Weintraub (in Weintraub 2008) gave the following proof of Euclid’s lemma from
the divisibility property of the gcd (which itself may be proved in various ways).

Fifth proof: Consider ac and bc. They have a greatest common divisor d. Now ¢
divides both ac and bc, so by the divisibility property of the gcd, ¢ divides d. Write
d = cz. Now d divides bc, that is, cz divides bc, so z divides b. Similarly, ¢z divides
ac, so z divides a. But a and b are assumed to be relatively prime, so z = 1 and
d = c. Now a certainly divides ac, and a divides bc by hypothesis, so a divides d
by the divisibility property of the gcd again; since ¢ = d, a divides c.

6.2 Indirect proofs of the FTA and Euclid’s Lemma

The Fundamental Theorem of Arithmetic may also be proved outright, without
first proving Euclid’s Lemma, through inductive arguments by reductio. Two such
proofs, the first by Ernst Zermelo and the second by Gerhard Klappauf,® are
reproduced in Scholz (1961). Both begin by presuming, contrary to the statement
of the FTA, that there are integers with distinct prime factorizations, among which
there must be some least integer . Zermelo then argued as follows.

Sixth proof: Suppose m = pipy---px = q1q2+++qs, With p; < py < -+ < p
and ¢, < ¢ < --- < ¢,. By the minimality of m, p; # ¢i, so without loss of
generality we may suppose that p; < ¢;. Then the number

n=m-—pqs--qgs=pi(p2-pr—q2-+-qs) = (g1 — p1)(q2---q5)

is less than m, and so must possess a unique prime factorization. Since p; is less
than every ¢;, it must therefore divide ¢; — p;. But then p; would divide ¢, which
is prime. Since 1 < p; < ¢, that is impossible. q.e.d.

In the paper in which he presented the proof just given, Zermelo stated that his
reason for doing so was to show that even in elementary number theory it was

3Published originally in Zermelo (1934) and Klappauf (1935), respectively.
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possible to simplify the proofs.* His proof, in turn, then stimulated Klappauf to
show that the method Zermelo had used to produce the counterexample n could be
further simplified.

Seventh proof: Let m be as in Zermelo’s proof and consider the remainders r;,
for i = 1,...,s that are obtained when each ¢; is divided by p;. We have
qi = a;p1 + ri, where each r; < pj. Since p; < ¢; for each i, every a; must
be positive; and since each ¢; is a prime different from p;, every 7; is also positive.
Hence m = qq2---q, can be written as m = Ap, + R, where R = riry-- 71
and A and R are both positive. Since p; divides m, it must also divide R. But p,
cannot divide any r;; so factoring each r; into primes yields a factorization of R
that is distinct from the factorization involving p;. Since R < m that contradicts the
minimality of m. g.e.d.

Unlike Zermelo’s proof, Klappauf’s employs the division algorithm. Moreover,
in Klappauf’s proof ry = g1 —aip1 < q1 — p1,and r; < gq; fori = 2, so the
number R used therein to contradict the minimality of m is less than the number
n = (q1 — p1)q2 - - - g5 used for that purpose in Zermelo’s proof.

Euclid’s Lemma may also be proved by reductio. Indeed, Gauss did so (for the
contrapositive statement) in his Disquisitiones Arithmeticae. His proof, presented
next below, is actually a double reductio that invokes the division algorithm thrice.

Eighth proof: Gauss first showed by reductio that no prime p can divide a product
of two smaller positive integers. For suppose to the contrary that p is a prime that
divides such a product, and let r < p be the least positive integer for which there
exists a positive integer s < p such that p divides rs. Then r # 1 (since s < p), so
r does not divide the prime p. Hence by the division algorithm, p = gr + ¢, where
0 <t < r.Butthen ts = ps — grs is divisible by p, contrary to the minimality of r.

To complete the proof of Euclid’s Lemma, suppose then (again by reductio)
that a prime p divides bc but neither b nor c. Then the division algorithm gives
b=qip+riandc = qp+ry, with0 < ry,r, < p. So be can be expressed in the
form gp + rir,. That is, rir, = gp — bc, which is a multiple of p if bc is; but that
contradicts Gauss’s earlier result. q.e.d.

Another reductio proof of Euclid’s Lemma, in the strong form stated by Euclid,
was given by Daniel Davis and Oved Shisha in a little-known article in Mathematics
Magazine (Davis and Shisha 1981).% The last of the proofs to be considered here, it
is an elegant exemplar of purity of method.

“He noted that he had first communicated his proof around 1912, in correspondence with
A. Hurwitz, E. Landau and others, and was stimulated to publish it after reading the proof in
the German edition (1933) of Rademacher and Toeplitz’s book (the second proof given above),
unaware when he did so that a proof similar to his had been published six years earlier by Helmut
Hasse (Hasse 1928). In addition, F.A. Lindemann had published another similar, but somewhat
more complicated, proof just the year before (Lindemann 1933).

STheir paper actually gave five slightly variant proofs.
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Ninth proof: Assume that there is a triple (4, B, C) of positive integers for which
both of the following properties hold:

Pi(A, B,C). A divides BC but is relatively prime to B.
P>(A, B, C). A divides BC but does not divide C.

Then fori = 1, 2, it follows directly that

(1.7) If P;(A,B,C)and B > A, then P;(A,B — A,C)
and
(2.7) If P;(A, B,C), say BC = AD, then P;(B, A, D).

Proof of (1.1): If A divides BC and B > A, then A divides (B—A)C = BC—AC;
and if A is relatively prime to B = (B — A) + A it must also be relatively prime
to B — A.

Proof of (1.2): If A divides BC but not C, then A divides (B — A)C = BC—AC
but not C.

Proof of (2.1): If BC = AD and A is relatively prime to B, then B divides AD
and is relatively prime to A.

Proof of (2.2): If BC = AD but A does not divide C, then B divides AD but does
not divide D.

Among all triples (A4, B, C) satisfying P; and P, there is at least one, say
(A4, By, Cy), that minimizes A + B + C. Then by P,, A; # 1,soby Py, A; # B;.
By (2.i), the triple (A, By, D) also satisfies P; and P,, and B;C; = A D; so if
By < Ay, then D < Cj and therefore Ay + By + D < A} + B; + C}, contrary to
the minimality property of (41, By, C;). The only remaining possibility is B; > 4.
Then by (1.7), the triple (4, Bi— A, C) also satisfies P, and P,;but Bj—A; < By,
so A+ (B1—A1)+C, = B;+C; < A1+ B, +C}, again contrary to the minimality
property of (A, By, Cy). Hence by reductio, no triple (A4, B, C) satisfying both P;
and P, exist. That is, if A divides BC but is relatively prime to B, then A must
divide C. g.e.d.

This proof of Davis and Shisha is distinguished above all by its economy of
means, for it employs nothing more than subtraction and the concepts involved in
the statement of Euclid’s Lemma (divisibility and relative primality).

6.3 Summary

It should be clear from the commentary above that the two proofs of the first
part of the FTA considered in this chapter, and the nine proofs of the second
part, are all structurally distinct. Moreover, they exemplify several of the rationales
for presenting alternative proofs enumerated in Chapter 2: the desires to simplify,
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to minimize conceptual prerequisites, to extend to broader contexts, to achieve
methodological purity, and to find new routes to a goal. As to proofs of the first part,
the second proof is direct while the first proof is a proof by reductio. As to the second
part, Gauss’s proof extended that of Euclid; the second, sixth and seventh proofs, and
especially the ninth, exhibit various forms of simplification; and the third and fourth
proofs introduce a concept (that of representing the greatest common divisor of two
integers as a linear combination of them) that is foreign to all the others, while the
fifth proof deliberately avoids using that concept.

It is enlightening to examine these proofs in the context of generalizations to
commutative ring theory. As to the proofs of the first part, the first proof leads
directly to the concept of a Noetherian ring, and directly generalizes to show
that every element in a Noetherian integral domain has a (that is, at least one)
factorization into primes. The second proof, while simpler, is one that is restricted
to the positive integers.

As to the proofs of the second part, again the most direct proofs, the sixth,
seventh, and ninth, are restricted to the positive integers.

The other proofs generalize to commutative rings of various kinds. By definition,
a Fuclidean domain is one in which there is a division algorithm, properly
interpreted, and these proofs show that Euclid’s lemma holds in Euclidean domains,
and hence that these are unique factorization domains (that is, that the analog of
the FTA holds in them). By definition, a principal ideal domain is one in which
an appropriate generalization of the linear representation theorem holds, and so the
third and fourth proofs, which rely on that concept, show that every principal ideal
domain is a unique factorization domain. Since there are principal ideal domains
that are not Euclidean, this provides a further generalization. Furthermore, not
every unique factorization domain is a principal ideal domain, so the fifth proof
generalizes still further (though in this case one needs some other argument to show
that the divisibility property of the gcd holds). The second proof, which introduces
the concept of the least common multiple, is stated for the positive integers, and
directly generalizes to Euclidean domains. But that same concept is fruitful in the
more general contexts we have just described, and that proof can be modified to be
valid in them as well.
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