
Chapter 10
The Prime Number Theorem

In the wake of Euclid’s proof of the infinitude of the primes, the question of how
the primes were distributed among the integers became central — a question that
has intrigued and challenged mathematicians ever since. The sieve of Eratosthenes
provided a simple but very inefficient means of identifying which integers were
prime, but attempts to find explicit, closed formulas for the nth prime, or for the
number �.x/ of primes less than or equal to a given number x, proved fruitless.
Eventually extensive tables of integers and their least factors were compiled,
detailed examination of which suggested that the apparently unpredictable occur-
rence of primes in the sequence of integers nonetheless exhibited some statistical
regularity. In particular, in 1792 Euler asserted that for large values of x; �.x/

was approximately given by
x

ln x
; six years later, Legendre suggested

x

ln x � 1 and

(wrongly)
x

ln x � 1:0836 as better approximations; and in 1849, in a letter to his

student Encke (translated in the appendix to Goldstein 1973), Gauss mentioned his
apparently long-held belief that the logarithmic integral

li.x/ D
Z x

2

1

ln t
dt

gave a still better approximation.1 Using the notation f .x/ � g.x/ to denote

the equivalence relation defined by limx!1
f .x/

g.x/
D 1, those conjectures may be

expressed in asymptotic form by the statements

(PNT) �.x/ � x

ln x
; �.x/ � x

ln x � 1 ; and �.x/ � li.x/:

1Some texts instead define li.x/ as lim�!0

� R 1��
0 1= ln t dtCR x1C� 1= ln t dt

�
, which adds a constant

(approximately 1.04) to li.x/ as defined above, but does not affect asymptotic arguments.
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112 10 The Prime Number Theorem

Clearly
x

ln x
� x

ln x � 1 , and integration by parts can be used to show that
x

ln x
� li.x/ as well. For

li.x/ D
Z x

2

1

ln t
dt D K C

Z x

e

1

ln t
dt D K C x

ln x
� e C

Z x

e

1

.ln t /2
dt

D .K � e/C x

ln x
C
"Z p

x

e

1

.ln t /2
dt C

Z x

p
x

1

.ln t /2
dt

#
;

where K is a constant. Then since 1=.ln t /2 is less than or equal to 1 on the interval
Œe;

p
x� and less than or equal to 1=.ln

p
x/2 D 4=.ln x/2 on the interval Œ

p
x; x�,

li.x/ � .K � e/C x

ln x
C p

x C 4x

.ln x/2
:

But also, li.x/ � .x � 2/= ln x, since 1= ln t is decreasing on Œ2; x� . Hence

x � 2
x

� ln x

x
li.x/ � .K � e/ ln x

x
C 1C ln xp

x
C 4

ln x
:

It follows immediately by L’Hopital’s rule that limx!1
ln x

x
li.x/ D 1; that is,

li.x/ � x

ln x
.

The three statements (PNT) are thus logically equivalent. Ipso facto, however,
they do not capture the full strength of the conjectures made by Legendre and
Gauss, since they do not indicate how accurately each of the three formulas
approximates �.x/. For that, estimates of the absolute or relative errors involved
in those approximations are also needed.

The truth of those conjectures, together with error estimates, was finally estab-
lished in 1896, independently and nearly simultaneously, by Jacques Hadamard
and Charles de la Vallée Poussin, using techniques of complex contour integration
discussed further below. Their long and complicated proofs of what has ever since
been called the Prime Number Theorem were distinct, and have been analyzed
in detail in Narkiewicz (2000). Later, proofs were devised that avoided some of
the delicate issues involved in contour integration over infinite paths by invoking
Norbert Wiener’s Tauberian theory for Fourier integrals; but the arguments remained
complex. Eventually, more than 80 years after the original proofs, Donald Newman
found a short proof involving integration only over finite contours (Newman
1980); and in the meantime, against the expectation of most of the mathematical
community, Atle Selberg and Paul Erdős (partly independently and again nearly
simultaneously) published so-called ‘elementary’ proofs, involving no recourse to
complex-analytic methods (Erdős 1949; Selberg 1949).2

2In part for those proofs, Selberg was awarded a Fields Medal in 1950 and Erdős the 1951 Cole
Prize in Number Theory.
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Because of the length and complexity of all but Newman’s proof, the discussion
that follows, unlike that in the preceding chapters, does not give full details of
the various proofs, but rather focuses on their essential ideas and the differences
among them. Readers seeking further details may consult the recent monograph
(Jameson 2003), which provides a self-contained presentation of a descendant of the
original proofs, as well as Newman’s proof and an elementary proof based on that
given in Levinson (1969), all presented at a level accessible to students who have
had only basic courses in real and complex analysis. An overview of work on the
Prime Number Theorem in the century since its first proofs is given in Bateman and
Diamond (1996), while Diamond (1982) and Goldfeld (2004) discuss the history
of elementary proofs of the theorem. Narkiewicz (2000) provides a comprehensive
history of the overall development of prime number theory up to the time of Hardy
and Littlewood, including alternative proofs of many results.

10.1 Steps toward the goal: Prior results of Dirichlet,
Chebyshev, and Riemann

As noted in Narkiewicz (2000), p. 49, “the first use of analytic methods in number
theory was made by P.G. Dirichlet” during the years 1837–39. In particular,
Dirichlet proved that if k and l are relatively prime integers with k < l , then the
arithmetic progression fnk C lg, where n ranges over the positive integers, must
contain infinitely many primes. In doing so Dirichlet considered the series now

named after him

�
those of the form

P1
nD1

f .n/

ns

�
and gave an argument that could

be adapted to show that if f is a completely multiplicative complex-valued function
(that is, f is not identically zero and f .mn/ D f .m/f .n/ for all integers m and n)

and
P1

nD1
f .n/

ns
converges absolutely for some real value s0, then it converges

absolutely for all complex s with Re s � s0 and

(28)
1X
nD1

f .n/

ns
D

Y
p prime

1X
jD0

f .pj /

pjs
D

Y
p prime

1

1 � f .p/p�s :
3

With s restricted to real values, the special case f .n/ D 1 is Euler’s product formula
(cf. Chapter 7, footnote 6):

(29) �.s/ D
1X
nD1

1

ns
D

Y
p prime

1

1 � p�s

(from which it follows that �.s/ ¤ 0 for Re s > 1).

3In fact, for any absolutely convergent series
P

1

nD1 f .n/ of non-zero terms, if f .n/ is completely
multiplicative and no f .n/ D �1, then

P
1

nD1 f .n/ D Q
p prime.1� f .p//�1.
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Nine years later, in the first of two papers on �.x/ (Chebyshev 1848), Pafnuty
Chebyshev proved that for all integers k > 1 and any constant C > 0, there are
infinitely many integers m and n for which

(30) �.m/ < li.m/C C
m

lnk m
and �.n/ > li.n/ � C n

lnk n
:

(For further details, see Narkiewicz (2000), pp. 98–102.) Consequently,

�.m/
lnm

m
< li.m/

lnm

m
C C

lnk�1 m
and �.n/

lnn

n
> li.n/

lnn

n
� C

lnk�1 n

for arbitrarily large integers m and n. Therefore, since li.x/ � x

ln x
, if the

limx!1
�.x/ ln.x/

x
exists, then it must equal 1

�
that is, �.x/ � x

ln x

�
.

In proving (30), Chebyshev made use of the Gamma function, defined for
Re s > 0 by �.s/ D R1

0
e�t t s�1 dt. In his second paper (Chebyshev 1850), how-

ever, he introduced two number-theoretic functions related to �.x/, namely

�.x/ D
X
p prime
p�x

lnp and  .x/ D
X
p prime
pn�x

lnp D
mX
nD1

�.x1=n/;

where m is the largest integer for which 2m � x, and obtained important
bounds on their values using only elementary means. In particular, since ln x is
an increasing function, �.x/ � �.x/ ln x � x ln x and  .x/ � �.x/ ln x; and since
m � ln x= ln 2,

 .x/ � �.x/ D
mX
nD2

�.x1=n/ � �.x1=2/Cm�.x1=3/

� 1

2
x1=2 ln x C ln x

ln 2

1

3
x1=3 ln x

� 1

2
x1=2 ln x C ln x

ln 2

x1=2 ln x

x1=6

� 4x1=2 ln x;

because the maximum value of
ln x

ln 2

1

x1=6
occurs for x D e6 and is less than 3:2.

Thus  .x/ � 4px ln x � �.x/ �  .x/:

Hence if limx!1
 .x/

x
exists, then so does limx!1

�.x/

x
, and they are equal.

Furthermore, if limx!1
�.x/

x
exists, then so must limx!1

�.x/ ln.x/

x
, because for

0 < � < 1,

�.x/ �
X

x1���p�x
lnp � .�.x/��.x1��//.1� �/ ln x � .�.x/� x1��/.1� �/ ln xI
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so

�.x/

x
� �.x/ ln x

x
� 1

1 � �
�.x/

x
C ln x

x�
:

As already noted, limx!1
�.x/ ln.x/

x
must then equal 1. So to prove the Prime

Number Theorem it suffices to prove that either limx!1
 .x/

x
or limx!1

�.x/

x
exists.

The principal theorem of Chebyshev (1850) was that there exist constants C1; C2,
and C3 such that for all x � 2,

(31) (i) C1x �  .x/ � C2x and (ii) C3x � �.x/ � C2x:

Indeed, Chebyshev’s methods (involving Stirling’s formula) showed that C2 can be
taken to be 1.1224 and, if x � 37, that C3 can be taken to be .73 (see Narkiewicz
2000, p. 111); and from the latter estimate Chebyshev deduced Bertrand’s postulate
(that for every x > 1 the interval .x; 2x� contains some prime) as an immediate
corollary. For direct calculation shows that Bertrand’s postulate holds for 1 � x <

37, and if it failed for some x � 37, the estimate would imply the contradiction that
1:46x � �.2x/ D �.x/ � 1:13x.

Without using Stirling’s formula, considerations involving binomial coefficients
yield the weaker inequality �.x/ � x ln 4 � 1:3863x. The argument, given in
Jameson (2003), p. 36, uses no number-theoretic facts beyond Euclid’s lemma and
its corollary that if distinct primes divide n, so does their product. Namely, for any
given n the expansion of .1 C 1/2nC1 includes the two equal binomial coefficients�
2nC1
n

�
and

�
2nC1
nC1

�
, so

�
2nC1
n

�
< 22n D 4n. If pi ; : : : ; piCj are all the primes between

nC2 and 2nC1, inclusive, then none of those primes divides the denominator nŠ of�
2nC1
n

�
, but each of them, and hence the product of all of them, divides its numerator,

nŠ
�
2nC1
n

�
. Therefore that product must divide

�
2nC1
n

�
itself and so must be less than�

2nC1
n

�
. Consequently,

�.2nC 1/ � �.nC 1/ D
jX
kD0

lnpiCk D ln.pi � � �piCj / � ln

 
2nC 1

n

!
� n ln 4:

Then since �.n/ � n ln 4 for n D 2; 3; 4, we may assume by induction on m that
�.k/ � k ln 4 for k � 2m. The assumption holds for m D 2, and m C 1 < 2m

for m � 2. So �.m C 1/ � .m C 1/ ln 4, whence by the last displayed inequality,
�.2mC1/ � .2mC1/ ln 4; and since 2mC2 is not prime, �.2mC2/ D �.2mC1/.
Thus �.2mC 2/ � .2mC 1/ ln 4 < .2mC 2/ ln 4, finishing the induction.
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The inequality (31)(ii) also entails corresponding bounds on �.x/. For �.x/ can
be expressed as the sum

P
2�n�x.f .n/= lnn/, where f .n/ D lnn if n is prime and

0 otherwise, and Abel summation4 then gives

�.x/ D �.x/

ln x
C
Z x

2

�.t/

t.ln t /2
;

so (31)(ii)) yields

C3x

ln x
C C3

Z x

2

1

.ln t /2
dt � �.x/ � C2x

ln x
C C2

Z x

2

1

.ln t /2
dt:

On the other hand, integration by parts shows that

li.x/C 2

ln 2
D x

ln x
C
Z x

2

1

.ln t /2
dt:

Hence

C3

�
li.x/C 2

ln 2

�
� �.x/ � C2

�
li.x/C 2

ln 2

�
:

Similar arguments (see Jameson (2003), p. 35) show that for any � > 0, an x0
must exist such that .C3 � �/li.x/ � �.x/ � .C2 � �/li.x/ for all x > x0.
The Prime Number Theorem would follow if it could be shown that the bounds in
Chebyshev’s estimate can be taken to be C2 D C3 D 1. But Chebyshev’s methods
were inadequate for that task.

A key breakthrough came a decade later in Bernhard Riemann’s memoir “Ueber
die Anzahl der Primzahlen unter einer gegebener Größe” (Riemann 1860). Riemann
began by recalling Euler’s product formula (29), but took s therein to be a complex
number and initially defined �.s/ to be the function of s given by the expressions on
each side of Euler’s formula whenever both expressions converged — that is, when
Re s > 1. So defined, �.s/ is analytic on the half plane Re s > 1, but Riemann went
on immediately to extend it to a function analytic on all of C except s D 1. To do so
he employed the Gamma function (actually, the function….s/ D �.sC1/) together
with the substitution t D nx to obtain

�.s/

ns
D
Z 1

0

e�nxxs�1 dx

4The result of applying the formula

X
2�n�x

a.n/g.n/ D
hX
n�x

a.n/
i
g.x/�

Z x

2

hX
n�t

a.n/
i
g0.t/ dt;

valid whenever a.1/ D 0 and g.x/ has a continuous derivative on Œ2; x�.
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as the nth term of the geometric series for �.s/�.s/. Then

�.s/�.s/ D
1X
nD1

Z 1

0

e�nxxs�1 dx D
Z 1

0

xs�1
1X
nD1

e�nx dx D
Z 1

0

xs�1

ex � 1 dx:

For s ¤ 1 he equated e��si � e�si times the latter integral to the contour integral

Z
C

.�x/s�1
ex � 1 dx;

“taken from C1 to C1 in a positive sense” around a region containing “in
its interior the point 0 but no other point of discontinuity of the integrand.” He
concluded that �.s/ could then be defined for all s ¤ 1 by the equation

(32) 2 sin.�s/�.s/�.s/ D i

Z
C

.�x/s�1
ex � 1 dx;

and that so defined �.s/ would be analytic except for a simple pole at s D 1; that is,
�.s/ � 1=.s � 1/ would be an entire function.

Riemann noted that for Re s < 0 the same integral could be taken in the reverse
direction, surrounding the region exterior to the curve C . It would then be “infinitely
small for all s of infinitely large modulus,” and the integrand would be discontinuous
only at the points 2n�i . Its value would thus be

P1
nD1.�n2�i/s�1.�2�i/, whence

2 sin.�s/�.s/�.s/ D .2�/s
1X
nD1

ns�1..�i/s�1 C i s�1/ D .2�/s�.1 � s/2 sin
�s

2
;

which reduces to the functional equation

�.1 � s/ D 2

.2�/s
cos.

�s

2
/�.s/�.s/:

In the remainder of his memoir, Riemann made some assertions concerning �.x/
and the non-real zeros of the zeta function — assertions equivalent to the following
statements:

(i) The number N.T / of non-real roots � of �.s/ for which jIm �j � T

(with multiple roots counted according to their multiplicity) is asymptotically
equal to

(33)
T

2�
ln

T

2�
� T

2�
:

(ii) It is “very likely” that all non-real zeros of �.s/ satisfy Re s D 1=2.
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(iii) If F.x/ D 1=2k C P1
nD1

�.x1=n/

n
whenever x D pk for some prime p and

F.x/ D P1
nD1

�.x1=n/

n
otherwise, then for x > 1,

F.x/ D li.x/ �
X
�

li.xp/C
Z 1

x

dx

.x2 � 1/x ln x
� ln 2;

where � ranges over all non-real roots of �.s/.

Assertions (i) and (iii) were later proved rigorously in von Mangoldt (1895), while
the conjecture that all non-real zeros of �.s/ satisfy Re s D 1=2 is the still unproven
Riemann Hypothesis.

Beyond the specific results it contained, three aspects of Riemann’s memoir
were seminal for the subsequent proofs of the Prime Number Theorem: the idea of
regarding the series

P1
nD1 n�s as a function of a complex argument; the extension

of that function to a function analytic in the region s ¤ 1, to which Cauchy’s theory
of contour integration could be applied; and the revelation that the distribution of
prime numbers was intimately related to the location of the non-real zeros of that
extended zeta function.5

10.2 Hadamard’s proof

Just a year after receiving his degree of Docteur ès Sciences, Jacques Hadamard
published the first of a series of papers concerning properties of the Riemann zeta
function. The series culminated in his paper Hadamard (1896b), in which he proved

the Prime Number Theorem in the form limx!1
�.x/

x
D 1.

Hadamard began that paper by noting that �.s/ was analytic except for a simple
pole at s D 1, and though it had infinitely many zeros with real part between 0 and
1 (a consequence of results in his earlier paper Hadamard 1893), it was non-zero for
all s with Re s > 1. His first goal was then to show that �.s/ was also non-zero for
all s with Re s D 1.

To establish that he considered ln.�.s//, which by Euler’s product theorem and

the Maclaurin series for ln.1� x/ is equal to
P1

kD1
P

p prime
1

kpks . He split that sum

into two parts, so that

(34) ln.�.s// D
X
p prime

1

ps
C

1X
kD2

X
p prime

1

kpks D S.s/C
1X
kD2

X
p prime

1

kpks ;

5A detailed commentary on developments stemming from Riemann’s classic paper is given in
Edwards (1974).
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and noted that since .s � 1/�.s/ is an entire function, it is bounded in any
closed neighborhood of s D 1. Thus in any such neighborhood the difference

ln.�.s// � ln
1

s � 1 D ln..s � 1/�.s// is a bounded function, so if s approaches

1 from the right along the real axis, ln.�.s// must approach C1. But by (34), in
any sufficiently small neighborhood of s D 1; ln.�.s// also differs from S.s/ by
a bounded expression, since the second term on the right of (34) is analytic for
Re s > 1=2. So S.s/ also approaches C1 as s approaches 1 from the right along
the real axis.

On the other hand, consider ln.j�.s/j/. By (34), for s D 	 C it, ln.j�.s/j/ D
Re ln.�.s// differs from

P.s/ D
X
p prime

Rep�s D
X
p prime

cos.t ln p/

p	

by a bounded function; and if �.1 C it0/ D 0 for some t0 ¤ 0, then 1 C it0 must
be a simple root of �.s/, whence ln.j�.	 C it/j/ must differ from ln.	 � 1/ by a
bounded function. So ln.j�.	 C it0/j/ and P.	 C it0/ must both approach �1 as
	 approaches 1 from the right, and P.	 C it0/ must differ from �S.	 C it0/ by a
bounded function.

Now suppose 0 < � D 1 � � < 1, 0 < ˛ < 1, and let Pn and Sn
denote the partial sums of P and S for p � n. Hadamard divided the set of
primes p � n into two subsets, according to whether or not, for some integer
k, the prime p satisfied the inequality jt0 lnp � .2k C 1/�j < ˛. Writing
Sn D S 0

n C S 00
n and Pn D P 0

n C P 00
n to correspond to that division, he used

elementary inequalities to conclude that there must exist an integer N� such that for
all n � N�; �n.	/ D S 0

n.	 C it0/=Sn.	 C it0/ > �, since otherwise P.	 C it0/ �
��S.	/, where � D 1 � � C � cos˛ < 1. Then, by the result of the previous
paragraph, for some function F bounded throughout the half-plane Re s > 1=2,
�S.	 C it0/ C F.	 C it0/ � ��S.	/ . That is, F.	 C it0/ � .1 � �/S.	/, with
1 � � > 0. But as noted above, lim	!1C S.	/ D C1.

The argument just given, which rests on the assumption that �.1 C it0/ D 0,
applies to any � satisfying 0 < � < 1. If � is further required to satisfy

1

1C cos.2˛/
< � < 1, then similar manipulations of inequalities show that for

n � N� and s D 	 C i.2t0/,

Pn.s/ � �nSn.	/ cos.2˛/C .�n � 1/Sn.	/
> �Sn.	/ cos.2˛/C .� � 1/Sn.	/ D ‚Sn.	/;

with ‚ D �Œ.1 C cos.2˛// � 1� > 0. Hence P.s/ D limn!C1 Pn.s/ � ‚S.	/.
Once again, lim	!1 S.	/ D C1, so P.	Ci.2t0//, and thus also ln j�.	Ci.2t0//j,
must approach C1 as 	 approaches 1 from the right. But that cannot be, since �.s/
is analytic at the point 1 C i.2t0/. The assumption that �.1 C it0/ D 0 is thereby
refuted.
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For the rest of his proof Hadamard drew upon ideas of E. Cahen, who in his
doctoral dissertation at the École Normale Supérieure had unsuccessfully attempted
to prove the Prime Number Theorem.

Given real numbers a and x, with 0 < x ¤ 1, Cahen had considered the contour
integrals

1

2�i

Z aC1i

a�1i

xz

z
dz; for a > 0, and � 1

2�i

Z aC1i

a�1i

xz

z

�0.z/
�.z/

dz; for a > 1.

Hadamard considered instead the integrals

1

2�i

Z aC1i

a�1i

xz

z

dz; for a > 0, and � 1

2�i

Z aC1i

a�1i

xz

z

�0.z/
�.z/

dz; for a > 1;

where 
 > 0, which he denoted by J
 and  
, respectively.
In order to evaluate the integrals J
, Hadamard distinguished three cases: 
 D

an integer, n; 
 is non-integral and x < 1; or 
 is non-integral and x > 1. For
his proof of the Prime Number Theorem, however, only the first case was needed
(indeed, just the case n D 2), which he established by integrating by parts n � 1

times, using the identity 1=zn D .�1/n�1

.n � 1/Š
dn�1

dzn�1 .1=z/.6 That gave

Jn D 1

2�i

Z aC1i

a�1i

xz

zn
dz D 1

2�i

.ln x/n�1

.n � 1/Š
Z aC1i

a�1i

xz

z
dz;

whence

(35) Jn D

8̂
<
:̂
0 if x < 1,
.ln x/n�1

.n � 1/Š if x > 1,

since von Mangoldt had shown the year before that

(36)
1

2�i

Z aC1i

a�1i

xz

z
dz D

8̂
<̂
ˆ̂:
0 if x < 1;

1=2 if x D 1; (von Mangoldt 1895).

1 if x > 1;

6In the other cases Hadamard used the identity 1=z
 D .�1/
�1

�.
/

d
�1

dz
�1
.1=z/, together with

Cauchy’s integral theorem, to obtain the general formula

J
 D 1

2�i

Z aC1i

a�1i

xz

z

dz D

8̂
<
:̂
0 if x < 1,
.ln x/
�1

�.
/
if x > 1:
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To evaluate the integrals  
, Hadamard noted that by (29), ln.�.s// D
�Pp ln.1 � p�s/, so logarithmic differentiation gives

(37)
�0.s/
�.s/

D �
X
p

.lnp/p�s

1 � p�s D �
X
p

lnp
1X
kD1

1

pks
D �

1X
kD1

ƒ.k/

ks
;

whereƒ denotes the von Mangoldt function, defined byƒ.k/ D lnp if k D pm for
some prime p and integer m and ƒ.k/ D 0 otherwise.

Then for 
 D 2,

 2.x/ D � 1

2�i

Z aC1i

a�1i

�0.s/
�.s/

xs

s2
ds

D
X
p

lnp
1

2�i

Z aC1i

a�1i

1X
kD1

xs

pks

1

s2

D
X
p

ln p
1X
kD1

1

2�i

Z aC1i

a�1i

.x=pk/s

s2
;

where by (35) the integrals in the last member are equal to 0 if x=pk < 1 (that is, if

x1=k < p) and equal to ln

�
x

pk

�
otherwise. Hence

 2.x/ D
1X
kD1

X
p�x1=k

lnp ln

�
x

pk

�
D
X
p�x

lnp ln

�
x

p

�
C

1X
kD2

X
p�x1=k

lnp ln

�
x

pk

�
:

The double sum in the last term of the equation above is only apparently infinite,
since the inner sum is vacuous for k > ln x= ln 2. Thus finally

(38)  2.x/ D
X
p�x

lnp ln

�
x

p

�
C

Œ
ln x

ln 2
�X

kD2

X
p�x1=k

lnp ln

�
x

pk

�
;

where the brackets above the penultimate summation symbol denote the greatest
integer function.

In the second term of (38) the first summation involves no more than ln x= ln 2
summands and the second summation no more than

p
x, the largest of which is that

for k D 2. Consequently,

 2.x/ �
X
p�x

lnp ln

�
x

p

�
C p

x
ln x

ln 2
ln.

p
x/ ln x D

X
p�x

lnp ln

�
x

p

�
C p

x
ln3 x

2 ln 2
:
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When divided by x, the last term above approaches 0 as x approaches 1.
Hadamard’s final goals were then to show

(i) that limx!1
1

x

P
p�x lnp ln

�
x

p

�
D 1

and

(ii) that (i) implies that limx!1
�.x/

x
D 1.

Hadamard established (ii) via elementary but rather involved ��ı computations,

showing that for every � > 0, x � 2�x � �.x/ � x C 5�

2
x. (For details, see

Narkiewicz 2000, pp. 202–204.) To prove (i) he showed that limx!1
 2.x/

x
D 1,

using Cauchy’s integral theorem, von Mangoldt’s theorem justifying Riemann’s
asymptotic estimate (33) of the number N.T / of non-real roots � of �.s/ for
which jIm �j � T , and two results from his earlier paper Hadamard (1896a)—
in particular,

(A) If �1; �2; : : : are the non-real roots of �.s/ ordered according to increasing
absolute value, then

P
n 1=j�nj2 converges.

and

(B) If s ¤ 1 is not a root of �.s/, then for some constant K

(39)
�0.s/
�.s/

D 1

1 � s C
X
�

�
1

s � � C 1

�

�
CK;

where � ranges over all roots of �.s/, ordered according to increasing absolute
value.

It follows from (A) that for any � > 0 there is an integer M such thatP
n>M 1=j�nj2 < �. Let I be the maximum of jIm �nj for n � M and R the

maximum of jRe �nj for n � M . Since �.s/ has no roots � with Re � � 1, R < 1.
Then, given a > 1, to compute

 2.x/ D � 1

2�i

Z aC1i

a�1i

�0.s/
�.s/

xs

s2
ds

Hadamard considered the infinite family of polygons � D ABGECDFHA defined
in terms of a real parameter y as follows (see Figure 10.1): Choose d > I such that
no root of �.s/ lies on the line Im.s/ D d , take c to be a real number satisfying
R < c < 1, and let C be the point c C di and D the point c � di. For y > d , let
A be the point a � yi and B the point a C yi. Finally, fix e < 0, let E be the point
e C di and F the point e � di, and denote by G and H the points where the lines
Im.s/ D ˙y intersect the lines from the origin that pass through E and F.
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Fig. 10.1 Contour used
by Hadamard to evaluate
the integral
1

2�i

R aC1i

a�1i

�0.z/

�.z/

xz

z2
dz

Hadamard used (33) and (39) to show that the integral of
�0.s/
�.s/

xs

s2
along each of

the segments BG and AH approaches 0 as y approaches 1.
In particular, he concluded from (33) that for any A > 1 and any positive integer

� the number of roots � of �.s/ for which jIm �j lies between A3�C3 and A3� does
not exceed K�A3�, where K is a constant. The same bound applies a fortiori to
the number of roots Nr for which jIm �j lies between 3� C 1 and 3� C 2. On the
other hand, the asymptotic expression for N.T / given in (33) approaches 1 as
� does, so for sufficiently large � there must be two consecutive roots �j and �jC1

whose imaginary parts ˇj and ˇjC1 differ by at least
A3�C2 � A3�C1

K�A3�
D A.A � 1/

K�
.

Consequently, for y� D .ˇj C ˇjC1/=2, any root of �.s/ must lie above or below

the line Im.s/ D y� by at least
A.A � 1/
2K�

.

That being so, if BG lies along Im .s/ D y�, the summation in (39) may
be estimated by splitting it into two parts, the first sum ranging over all roots �
satisfying A3� � Im � � A3�C3 and the second over all other roots. The definition
of y� entails that the first sum is bounded by C1y� ln2 y� and the second by
C2y� lny�, for some constants C1 and C2, so j�0.s/=�.s/j is itself bounded by a
constant multiple of y� ln2 y�. Hence

ˇ̌
ˇ̌
Z

BG

�0.s/
�.s/

xs

s2
ds

ˇ̌
ˇ̌ � C3

y� ln2 y�
y2�

ˇ̌
ˇ̌
Z

BG
xs ds

ˇ̌
ˇ̌ D C4

ln2 y�
y�

;
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which approaches 0 as y� approaches 1. Similar considerations show that the
integral along AH also approaches 0 as y� approaches 1.

Cauchy’s integral theorem yields that

I� D 1

2�i

Z
�

�0.s/
�.s/

xs

s2
ds

is equal to the sum of the residues at the poles of �0.s/ and the roots of �.s/ that
lie within � . The only such pole occurs at s D 1, where the residue is �x, and by
construction, the sum of the residues of the roots inside � cannot exceed �x. Thus,
writing I� D IAB C IBG C IGE C IECDF C IFH C IHA and taking the limit as �
approaches 1,

�x � � 2.x/C 0C lim
�!1 IGE C IECDF C lim

�!1 IFH C 0 � �x C �x:

The quantity IECDF is a constant, since the boundary segment ECDF is fixed
regardless of the value of �. So limx!1.IECDF=x/ D 0, and to show that
limx!1. 2.x/=x/ D 1, it remains only to show that

lim
x!1

lim�!1 IGE

x
D lim

x!1
lim�!1 IFH

x
D 0:

For that, Hadamard noted that for s on GE and FH (regardless of the value of �,

which determines the position of G and H) and any root � of �.s/, the ratio

ˇ̌
ˇ̌ s � �
�

ˇ̌
ˇ̌

must be greater than a fixed constant, so by (39),

ˇ̌
ˇ̌1
s

�0.s/
�.s/

ˇ̌
ˇ̌ is finite. Therefore for

some constant K, IGE is less than K
R

GE jxsj=jsj ds — a finite quantity — and

likewise for IFH. So
IGE

x
and

IFH

x
both approach 0 as x approaches 1.

10.3 The proof of de la Vallée Poussin

In a note appended to the end of Hadamard (1896b), Hadamard remarked that while
correcting the proofs for that paper he had been notified of de la Vallée Poussin’s
paper on the same topic (de la Vallée Poussin 1896), and he acknowledged that
their proofs, found independently, had some points in common. In particular, both
involved showing that �.s/ had no roots on the line Re s D 1. But their methods
for doing so were entirely different, and Hadamard judged that his own method was
simpler.7

7In a statement quoted on page 198 of Narkiewicz (2000), de la Vallée Poussin agreed, but
nevertheless claimed priority for the proof of that result.
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Indeed, of the twenty-one pages in Hadamard (1896b), only two and a half are
devoted to his proof that �.s/ has no root of the form 1Cˇi ; and as Hadamard noted,
that proof rested on only two simple properties of �.s/: that its logarithm could be
expressed as a series of the form

P
ane

��ns , for some positive constants an and �n,
and that � itself was analytic on the limiting line of convergence of that series, with
the exception of a single simple pole.

In contrast, de la Vallée Poussin’s proof that �.s/ had no roots on the line
Re s D 1 was the subject of the third chapter of his paper de la Vallée Poussin
(1896), which took up 18 of its 74 pages. Like Hadamard’s proof, de la Vallée
Poussin’s was by contradiction and used the fact that any root s D 1 C ˇi of �.s/
would have to be a simple root. But unlike Hadamard’s argument, which rested on
boundedness considerations, de la Vallée Poussin’s was based on the uniqueness
of certain Fourier series expansions. Specifically, he considered complex-valued
functions f .y/ of a real variable y that for y > 1 have the form L.y/ C P.y/,
where L.y/ denotes a function that approaches a finite limit A as y approaches 1
and P.y/ denotes an infinite series of the form

1X
nD1

Œcn cos.˛n lny/C dn sin.˛n lny/� ;

in which the coefficients ˛n do not approach zero as n approaches 1 and the seriesP
cn and

P
dn are absolutely convergent. He proved that in any such representation

the values A; cn; dn and ˛n are all uniquely determined by f .y/. On the other hand,
if 1 C ˇi were a root of �.s/, he showed by a long and delicate argument that the

function
1C cos.ˇ lny/

y

P
p<y lnp, where p ranges over primes, would have two

distinct representations of the formL.y/CP.y/. Salient details of the computations
involved are given on pp. 208–214 of Narkiewicz (2000).

Two other differences between the tools used by Hadamard and those employed
by de la Vallée Poussin are worth noting.

First, although de la Vallée Poussin referred to Riemann’s functional equation for
the �-function and observed that it could be used to define �.s/ throughout C� f1g,
he did not make use of that extension in his proof of the Prime Number Theorem.
Instead, he noted that integration by parts yields

Z 1

0

dx

.nC x/s
D 1

.nC 1/s
C s

Z 1

0

xdx

.nC x/sC1
;

from which it follows that for Re s > 1,

�.s/ D 1C
1X
nD1

�Z 1

0

dx

.nC x/s
� s

Z 1

0

xdx

.nC x/sC1

�
:

But

1X
nD1

Z 1

0

dx

.nC x/s
D
Z 1

1

dx

xs
D 1

s � 1 ;
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so

(40) �.s/ D 1C 1

s � 1 � s
1X
1

Z 1

0

xdx

.nC x/sC1
I

and since the sum on the right side of (40) converges absolutely for Re s > 0, that
equation may be used to define �.s/ in that half-plane, except for a simple pole at
s D 1 with residue 1.

Second, in place of the integral  2.x/ employed by Hadamard, both in his proof
that no s D 1Cˇi is a root of �.s/ and in his proof that �.x/ � x= ln x de la Vallée
Poussin made use of the integral

Iu;v.y/ D 1

2�i

Z aC1i

a�1i

�0.s/
�.s/

ysds

.s � u/.s � v/ ;

in which neither u nor v are poles or zeros of �.s/, y is a real number greater than
1, and a is a real number greater than any of 1, Re u and Re v.

Replacing the fraction �0.s/=�.s/ in the integrand of Iu;v by the expression on
the right side of (39) and integrating the result, de la Vallée Poussin obtained the
identity

(41) Iu;v.y/ D 1

u � v .y
u �

0.u/
�.u/

� yv �
0.v/
�.v/

/ � y

.u � 1/.v � 1/

C
X
�

y�

.u � �/.v � �/ C
1X
mD1

y�2m

.2mC u/.2mC v/
;

where � ranges over the roots of �.s/, ordered according to increasing absolute
value.

On the other hand, using (37) and (36), de la Vallée Poussin found that

(42) Iu;v.y/ D � 1

u � v

 
yu
X
n<y

ƒ.n/

nu
� yv

X
n<y

ƒ.n/

nv

!
;

valid for all u; v whenever y > 1.
Equating those two expressions for Iu;v.y/, solving for the quantity in parenthe-

ses in (42), setting v D 0, dividing by yu and letting u approach 1 yields

(43)
X
n<y

ƒ.n/

n
� 1

y

X
n<y

ƒ.n/ D lny � lim
u!1

�
�0.u/
�.u/

C u

u � 1
�

C 1

y

�0.0/
�.0/

�
X
�

y��1

�.� � 1/ �
1X
mD1

y�2m�1

2m.2mC 1/
;

where the term lny is obtained by writing
u

1 � u
y1�u as

u

1 � u
Œ1C .y1�u � 1/� and

applying l’Hopital’s Rule to limu!1

y1�u � 1
1 � u

.
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Recalling the definition of ƒ.n/, the left member of (43) can be written asP
pm<y

lnp

pm
� 1

y

P
pm<y lnp. In the right member the fraction

u

u � 1 can be split

up as
1

u � 1 C 1, and both summations there approach zero as y approaches 1. (In

particular, since the real part of any root � of �.s/ has been shown to be less than
one, the real part of � � 1 must be negative. The terms of the first summation are

thus dominated by those of the absolutely convergent series
P

�

1

�.� � 1/ , so that

sum must converge uniformly to zero as y increases without bound.) Consequently,
setting u D s, (43) takes the form

(44)
X
pm<y

lnp

pm
� 1

y

X
pm<y

lnp D lny � 1 � lim
s!1

�
�0.s/
�.s/

C 1

s � 1
	

C f .y/;

where f .y/ approaches 0 as y approaches 1.

De la Vallée Poussin next noted that the difference
P

p<y

lnp

p � 1 �P
pm<y

lnp

pm

approaches 0 as y approaches 1, and proved that
1

y

P
pm<y lnp � 1

y

P
p<y lnp

does so as well. He also proved that

lim
s!1

�
�0.s/
�.s/

C 1

s � 1
	

D Euler’s constant �;

defined as � D limn!1.
Pn

kD1 1=k � lnn/.
Equation (44) can therefore be replaced by

(45)
X
p<y

lnp

p � 1 � 1

y

X
p<y

lnp D lny � 1 � � C g.y/;

where g.y/ approaches 0 as y approaches 1.
Equation (45) is the key to the final two steps in de la Vallée Poussin’s derivation

of the prime number theorem, namely

(i) showing that

(46)
Z x

1

1

y

X
p<y

lnp dy D x.1C h.x//;where lim
x!1 h.x/ D 0;

and

(ii) showing that (46) implies that limx!1
�.x/

x
D 1.

To establish (46) de la Vallée Poussin integrated (45) from 1 to x and then
multiplied each term by 1=x, thus obtaining

(47)
1

x

Z x

1

X
p<y

ln p

p � 1 dy� 1

x

Z x

1

1

y

X
p<y

ln p dy D 1

x

Z x

1

lny dy���1Cj.x/;
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where j.x/ approaches 0 as x approaches 1. He then noted that the first term in
the left member of (47) can be rewritten as

1

x

Z x

1

X
p<y

lnp

p � 1 dy D 1

x

X
p<x

lnp

p � 1
Z x

p

dy(48)

D
X
p<x

lnp

p � 1 � 1

x

X
p<x

p

p � 1 lnp

D
X
p<x

lnp

p � 1 � 1

x

X
p<x

lnp C 1

x

X
p<x

lnp

p � 1 :

The first two terms in the last member of (48) make up the left member of (45),
with x in place of y. Moreover, as Franz Mertens had shown in 1874, it follows from

Chebyshev’s upper bound (31) for  .x/ that
P

p<y

lnp

p � 1 is less than a constant

multiple of lny. Consequently,

1

x

Z x

1

X
p<y

lnp

p � 1 dy D ln x � � � 1C k.x/;

where k.x/ approaches 0 as x approaches 1. Substituting the expression on the
right of this equation for the first integral in (47) and carrying out the integration in
the right member of (47) then yields

ln x � � � 1C k.x/ � 1

x

Z x

1

1

y

X
p<y

lnp dy D 1

x
Œx ln x � x� � � � 1C j.x/;

which after cancellation of terms common to both members is (i), with h.x/ D
k.x/ � j.x/.

To show that limx!1
�.x/

x
D 1, take � > 0, and use (46) to evaluate

Z .1C�/x

x

1

y

X
p<y

lnp dy D
Z .1C�/x

1

1

y

X
p<y

lnp dy �
Z x

1

1

y

X
p<y

lnp dy(49)

D .1C �/x Œ1C h..1C �/x/� � xŒ1C h.x/�

D �x � h.x/x C .1C �/xh..1C �/x/:

Dividing (49) by �x gives

1

�x

Z .1C�/x

x

1

y

X
p<y

lnp dy D 1C .1C �/h..1C �/x/ � h.x/
�

;
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and since �.y/ D P
p�y lnp, upper and lower bounds on the integrand give

�.x/

x

ln.1C �/

�
� 1C .1C �/h..1C �/x/ � h.x/

�
� �..1C �/x/

x

ln.1C �/

�
;

that is,

(50)
�.x/

x
� �

ln.1C �/
C .1C �/h..1C �/x/ � h.x/

ln.1C �/
� �..1C �/x

x
:

Since both h.x/ and h..1C �/x/ approach zero as x approaches 1, (50) shows
that

lim sup
x!1

�.x/

x
� �

ln.1C �/
� lim inf

x!1
�..1C �/x/

x
I

and by replacing x in the latter inequality by
x

1C �
, it follows that

�

ln.1C �/
� lim inf

x!1
�.x/

x
.1C �/:

By L’Hopital’s rule, lim�!0

�

ln.1C �/
D 1, so finally, limx!1

�.x/

x
D 1.

10.4 Later refinements

In the wake of Hadamard’s and de la Vallée Poussin’s proofs, various simplifica-
tions, generalizations, and improvements of their arguments were developed, by
Edmund Landau, Franz Mertens, de la Vallée Poussin himself (who in 1899 obtained
the error bound �.x/� li.x/ � Kxe�cpln x for some positive constantsK and c — a
result not bettered for a quarter of a century thereafter8), and others. Modern proofs
of the Prime Number Theorem that are descendants of the classical ones incorporate
many of those refinements and also make use of other tools such as the Riemann-
Lebesgue lemma, integral transforms, and Tauberian theorems (discussed further
below).

The proof of the Prime Number Theorem given in Jameson (2003) may be taken
as an exemplar of such proofs. Here, in outline, is its structure:

1. The comparison test is used to prove Dirichlet’s result that if

1X
nD1

jan=n˛j

8Cf. the discussion in Bateman and Diamond (1996), p. 736.
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converges for some real ˛, then the corresponding Dirichlet series
P1

nD1 an=ns
converges absolutely for all s D 	C it with 	 � ˛. In particular, if janj � 1 for
all n, then

P1
nD1 an=ns converges absolutely when Re s > 1, so

P1
nD1 1=ns

can be used to define �.s/ in that region.
2. It is shown that if F.s/ D P1

nD1 an=ns converges whenever Re s > c, then
F.s/ is analytic at all points s with Re s > c and F 0.s/ D �P1

nD1 an lnn=ns .
In particular, �0.s/ D �P1

nD1 lnn=ns for Res > 1.
3. After defining the Möbius function 
.n/ by 
.1/ D 1; 
.n/ D 0 if p2

divides n for some prime p; and 
.n/ D .�1/k if n D p1p2 : : : pk for distinct
primes p1; p2; : : : pk , the generalized Euler product identity (stated in footnote
3 above) is invoked and inverted to obtain

1P1
nD1 f .n/

D
Y

p prime

.1 � f .p// D
1X
nD1


.n/f .n/:

Consequently
1

�.s/
D P1

nD1

.n/

ns
for Re s > 1.

4. It is verified that for jsj < 1 the series
P1

nD1 sn=n defines an analytic function

h.s/ that is a logarithm of
1

1 � s . The Euler product identity then implies

that the logarithm of �.s/ should be given by H.s/ D P
p prime h.p

�s/ D
P

p prime

P1
nD1

1

npns
. It is proved that that double series converges when Re s >

1 and that its sum is equal to that of the series
P1

nD1
c.n/

ns
, where c.n/ D 1=m

if n D pm for some prime p, and c.n/ D 0 otherwise.

5. Consequently, H 0.s/ D �0.s/
�.s/

D �
1X
nD1

c.n/ lnn

ns
D �

1X
nD1

ƒ.n/

ns
, where ƒ.n/

is the von Mangoldt function.
6. Abel summation is used to show that for any sequence a.n/ and corresponding

summation function A.x/ D P
n�x a.n/, if X > 1 then

X
n�X

a.n/

ns
D A.x/

Xs
C s

Z X

1

A.x/

xsC1
dx:

Furthermore, if s ¤ 0, A.x/=xs approaches 0 as x approaches 1 and the

Dirichlet series
P1

nD1
a.n/

ns
converges, then the Dirichlet integral

s

Z 1

1

A.x/

xsC1
dx

converges to the same value. Since  .x/ is the summation function for ƒ.n/
and  .x/=xs approaches 0 as x approaches 1 if Re s > 1, it follows from 5
that
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(51)
�0.s/
�.s/

D �s
Z 1

1

 .x/

xsC1
dx:

7. A simplification due to Edmund Landau is used to extend the domain of
definition of �.s/ without using the functional equation for �.s/.9 Specifically,
for Re s > 0, �.s/ may be defined by

(52) �.s/ D 1

s � 1 C 1 � s
Z 1

1

x � Œx�
xsC1

dx ;

where Œx� denotes the greatest integer not exceeding x, and differentiation under

the integral sign shows that �.s/ � 1

s � 1 is analytic at s D 1, so �.s/ has a

simple pole there. Furthermore,

lim
s!1

�
�.s/ � 1

s � 1
�

D 1 �
Z 1

1

x � Œx�
x2

dx D Euler’s constant �:

8. Hence �.s/;
1

�.s/
and

�0.s/
�.s/

are represented by Laurent series of the forms

�.s/ D 1

s � 1 C � C
1X
nD1

cn.s � 1/n

1

�.s/
D .s � 1/ � �.s � 1/2 C : : : and

�0.s/
�.s/

D � 1

s � 1 C a0 C a1.s � 1/C : : : ;

all converging in some disk with center s D 1.
9. Since ˇ̌

ˇ̌
Z 1

N

x � Œx�
xsC1

dx

ˇ̌
ˇ̌ �

Z 1

N

1

x	C1 dx D 1

	N	
;

Euler’s summation formula for finite sums10 yields

�.s/ D
NX
nD1

1

ns
C N1�s

s � 1 � s
Z 1

N

x � Œx�
xsC1

dx �
NX
nD1

1

ns
C N1�s

s � 1 C jsj
	N	

:

Straightforward calculations using the last inequality then show that when

	 � 1 and t � 2, j�.	 C it/j � ln t C 4 and j�0.	 C it/j � 1

2
.ln t C 3/2.

9According to Bateman and Diamond (1996), p. 737, Landau was the first to prove the PNT without
recourse to that functional equation.
10
PN

nD2 f .n/ D R N
1 f .x/ dx C R N

1 .x � Œx�/f 0.x/ dx.
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Those inequalities can in turn be used to show that 1=j�.	 C it/j � 4.ln t C 5/7

for 	 > 1 and t � 2. (For details see Jameson 2003, pp. 108–109.)
10. The proof that �.s/ ¤ 0 when Re s D 1 is carried out by a simplified argument

based on Hadamard’s approach and later ideas of de la Vallée Poussin and Franz
Mertens. It rests on the trigonometric identity 0 � 2.1Ccos �/2 D 3C4 cos �C
cos.2�/. For if a Dirichlet series

P1
nD1

a.n/

ns
with positive real coefficients a.n/

converges for 	 > 	0 to a function f .s/, then for such 	

3f .	/C 4f .	 C it/C f .	 C 2it/ D
1X
nD1

a.n/

n	
.3C 4n�it C n�2it/

has real part

1X
nD1

a.n/

n	
Re.3C4n�it Cn�2it/ D

1X
nD1

a.n/

n	
.3C4 cos.t lnn/Ccos.2t lnn/ � 0:

In particular, by 4. the Dirchlet series for ln.�.s// has positive coefficients and
converges when 	 > 1, so for such 	 and all t ,

3 ln.�.	//C 4Re �.	 C it/C Re �.	 C 2it/

D ln


�.	/3j�.	 C it/j4j�.	 C 2it/j� � 0

(because Re ln z D ln jzj), that is

(53) �.	/3j�.	 C it/j4j�.	 C 2it/j � 1:

Suppose then that �.1C it0/ D 0 for some t0 ¤ 0. Then

(54) �.	/3j�.	 C it0/j4j�.	 C 2it0/j

D Œ.	 � 1/�.	/�3
� j�.	 C it0/j

	 � 1
�4
.	 � 1/j�.	 C 2it0/j:

But as 	 approaches 1C, .	 � 1/�.	/ approaches 1, while
�.	 C it0/

	 � 1
approaches �0.1C it0/ and �.	 C 2it0/ approaches �.1C 2it0/. So by (54), the
product �.	/3j�.	 C it0/j4j�.	 C 2it0/j approaches 0, contrary to (53).

11. Cauchy’s integral theorem is used to evaluate three infinite contour integrals,
namely

1

2�i

Z cCi1

c�i1
xs

s2
ds D S.x/ ln x for x > 0 and c > 0(55)

1

2�i

Z cCi1

c�i1
xs

s.s � 1/ ds D .x � 1/S.x/ for x > 0 and c > 1(56)
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Fig. 10.2 Contour used to
evaluate the integrals (53)
through (55). Adapted from
The Prime Number Theorem,
p. 116, by G.J.O. Jameson.
Reprinted with the
permission of Cambridge
University Press

1

2�i

Z cCi1

c�i1
xs�1

s.s � 1/f .s/ ds D
Z x

1

A.y/

y2
dy for x > 1 and c > 1 ;

(57)

where S.x/ denotes the step-function equal to 0 for x < 1 and 1 for x � 1

andA.x/ D P
n�x a.n/ is the summation function corresponding to a Dirichlet

series
P1

nD1 a.n/=ns that converges absolutely to f .s/ whenever Re s > 1.
In all three cases the infinite contour integrals are obtained as the limit,

as R approaches 1, of integrals taken along the paths �1 D C1 [ LR or
�2 D C2 [LR, where C1 and C2 are the arcs of the circle of radius R centered
at s D 0 that lie, respectively, to the left and right of the vertical line segment
LR with endpoints c � tR and c C tR on the circle. (See Figure 10.2.)

The integrand of (55) may be rewritten as

xs

s2
D els

s2
D 1

s2

1X
nD0

lnsn

nŠ
;

where l D ln x. Since the exponential series converges uniformly on any closed
interval, the integration may then be carried out term by term. For x � 1 the
path �1 is taken, enclosing the pole at s D 0 of xs=s2, where the residue is l .
For 0 < x < 1 the path �2 is taken instead, which encloses no poles of xs=s2;
so that integral is 0. In the first case, jsj D R and jxsj D x	 � xc on C1, so the

integral along C1 has absolute value less than or equal to
1

2�

xc

R2
2�R D xc

R
,

which approaches 0 as R approaches 1. In the second case, x	 � xc on C2 as
well, since for 0 < x < 1; x	 decreases as 	 increases. The integral along C2
thus also approaches 0 as R approaches 1. The proof of (56) is similar, using

js.s � 1j � R.R � 1/ and writing
xs

s.s � 1/ as
xs

s � 1 � xs

s
.

To obtain (57), first note that xsf .s/DP
n�x a.n/

�x
n

�sCPn>x a.n/
�x
n

�s
:

The first sum is finite, and so can be integrated term by term. By (56), the

result is
P

n�x S
�x
n

� �x
n

� 1
�

D P
n�x a.n/

�x
n

� 1
�

. The second term,
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on the other hand, is an analytic function of s that for Re s � c is bounded
by

P
n>x ja.n/j.x=n/c . By Cauchy’s theorem, its integral over �2 is zero,

and by the same reasoning as before, its integral over C2 tends to zero as R
approaches 1. Consequently, after dividing by x,

1

2�i

Z cCi1

c�i1
xs�1

s.s � 1/f .s/ ds D
X
n�x

a.n/

�
1

n
� 1

x

�
:

By Abel summation applied to the function 1=y, the last sum is equal toR x
1
A.y/=y2 dy.

12. Finally, the Prime Number Theorem in the form limx!1
 .x/

x
D 1 is obtained

as a special case of the following much more general result.

Theorem: Suppose the function f .s/ is analytic throughout the region Re s � 1,
except perhaps at s D 1, and satisfies the following conditions:

(C1) f .s/ D P1
nD1

a.n/

ns
converges absolutely when Re s > 1.

(C2) f .s/ D ˛

s � 1 C ˛0 C .s � 1/h.s/, where h is differentiable at s D 1.

(C3) There is a functionP.t/ such that jf .	Cit/j � P.t/ for 	 � 1 and t � t0 � 1,
and

R1
1
P.t/=t2 dt is convergent.

Then
Z 1

1

A.x/ � ˛x
x2

dx converges to ˛0 � ˛ where A.x/ D P
n�x a.n/:

If, furthermore,A.x/ is increasing and non-negative, then limx!1
A.x/

x
D ˛.

To prove the first claim, note that
1

s � 1 D s

s � 1 � 1, so .s � 1/h.s/ D f .s/ �
˛

s

s � 1 � .˛0 �˛/, and j.s� 1/h.s/j � P.t/C j˛j C j˛0j when j	 � 1 and jt j � t0.

Then for x > 1 and c > 1, (55), (56), and (57) give

1

2�i

Z cCi1

c�i1
xs�1h.s/

s
ds D 1

2�i

Z cCi1

c�i1
xs�1
s.s � 1/f .s/ ds

� ˛

2�i

Z cCi1

c�i1
xs�1
.s � 1/2 ds � ˛0 � ˛

2�i

Z cCi1

c�i1
xs�1
s.s � 1/ ds

D
Z x

1

A.y/

y2
dy � ˛ ln x � .˛0 � ˛/

�
1 � 1

x

�

D
Z x

1

A.y/ � ˛y
y2

dy � .˛0 � ˛/
�
1 � 1

x

�
:

Careful examination (see Jameson 2003, p. 121) shows that the result just
obtained also holds for c D 1. That is,

1

2�i

Z 1Ci1

1�i1
xs�1h.s/

s
ds D

Z x

1

A.y/ � ˛y
y2

dy � .˛0 � ˛/
�
1 � 1

x

�
:
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The path of integration for the contour integral on the left is the vertical line
Re s D 1, where s D 1C it, so that integral may be rewritten as

1

2�

Z C1

�1
xith.1C it/

1C it
dt D 1

2�

Z C1

�1
eit ln xh.1C it/

1C it
dt

�
which converges absolutely since

ˇ̌
ˇ̌h.s/
s

ˇ̌
ˇ̌ � P.t/C j˛j C j˛0j

t 2

�
. That the latter

integral approaches 0 as x approaches 1 then follows from the Riemann-Lebesgue
lemma, which states that

If 
.t/ is a continuously differentiable function from R to C and
R C1

�1 j
.t/j dt
converges, then the integral

Z C1

�1
ei�t
.t/ dt

approaches 0 as � approaches 1.
The convergence of

R1
1
.A.x/ � ˛x/=x2 dx implies the remaining claim (that

if A.x/ is increasing and non-negative, then limx!1
A.x/

x
D ˛). For such

convergence means that for any ı > 0, there is an R such that

ˇ̌
ˇ̌
Z x1

x0

A.x/ � x
x2

dx

ˇ̌
ˇ̌ < ı whenever x1 > x0 > R:

Then for 0 < ı < 1=2, the assumption either that A.x0/ > .1 C ı/x0 for some
x0 > R (and hence for all x � x0, since A.x/ is increasing), or that A.x0/ <
.1 � ı/x0 for some x0 � 2R, leads to a contradiction. (See Jameson 2003, p. 131.)

The Prime Number Theorem follows from the Theorem by taking f .s/ D
��

0.s/
�.s/

: For the result of step 5. shows that f .s/ D P1
nD1

ƒ.n/

ns
(whence (C1)

is satisfied);  .x/ D P
n�x ƒ.n/ is increasing; (C2) holds by the third equation

in step 8., with ˛ D 1; and the inequalities found in step 9. show that jf .s/j D
jf .	 C it/j < P.t/ D 2.ln t C 5/9. Since

R1
1
P.t/=t2 dt converges, (C3) is thus

also satisfied.

10.5 Tauberian theorems and Newman’s proof

The Theorem stated in the previous section is an example of a so-called Tauberian
theorem, broadly defined (as in Edwards 1974, p. 279) as a theorem that “permits
a conclusion about one kind of average [in this case, A.x/=x] given information
about another kind of average [here, the integral from 1 to 1 of .A.x/� ˛x/=x2].”
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The Prime Number Theorem was first deduced from a Tauberian theorem
by Edmund Landau in his paper Landau (1908).11 Seven years later Hardy and
Littlewood gave another such proof (Hardy and Littlewood 1915), and in the 1930s
Tauberian theorems based on Norbert Wiener’s methods in the theory of Fourier
transforms were employed to deduce the Prime Number Theorem from the non-
vanishing of �.s/ on the line Re s D 1. In particular, the Prime Number Theorem
was so deduced using

The Wiener-Ikehara Theorem: Suppose that f is a non-decreasing real-valued
function on Œ1;1/ for which

R1
1

jf .u/ju�	�1 du converges for all real 	 > 1. If
in addition

R1
1
f .u/u�s�1 du D ˛=.s � 1/ C g.s/ for some real ˛, where g.s/

is the restriction to Re s > 1 of a function that is continuous on Re s � 1, then
limu!1 f .u/=u D ˛.

But proofs of the Wiener-Ikehara Theorem are themselves difficult.
In 1935 A.E. Ingham proved another Tauberian theorem that related the Laplace

transform
R1
0
f .t/e�zt dt of a function f .t/ defined on Œ0;1/ to the integral of f .t/

itself over that interval.12 But that proof, too, was complicated, and was also based
on results from Fourier analysis (Ingham 1935). In 1980, however, D.J. Newman
found a way to prove a variant of Ingham’s theorem and to derive the Prime Number
Theorem from it without resort either to Fourier techniques or to contour integrals
over infinite paths.

Newman’s original proof (Newman 1980) was couched in terms of Dirichlet
series: he proved that if

P1
nD1 ann�s converges to an analytic function f .s/ for all

s with Re s > 1, if janj � 1 for every n, and if f .s/ is also analytic when Re s D 1,
then

P1
nD1 ann�s converges for all s with Re s D 1. Subsequent refinements of that

proof, as given in Korevaar (1982), Zagier (1997), chapter 7 of Lax and Zalcman
(2012), and Jameson (2003), recast it as an alternative proof of Ingham’s Tauberian
theorem. The formulation of that result given in Lax and Zalcman (2012) reads:

Let f be a bounded measurable function on Œ0;1/. Suppose that the Laplace
transform

g.z/ D
Z 1

0

f .t/e�zt dt ;

which is defined and analytic on the open half plane fz W Re z > 0g, extends
analytically to an open set containing fz W Re z � 0g. Then the improper integralR1
0
f .t/ dt D limT!1

R T
0
f .t/ dt converges and coincides with g.0/, the value of

the analytic extension of g at z D 0.

11Discussed in detail in Narkiewicz (2000), pp. 298–302.
12Ingham’s theorem may alternatively be stated in terms of the Mellin transform

R
1

1 f .t/t�s dt.
See, e.g., Korevaar (1982) or Jameson (2003), pp. 124–129.



10.5 Tauberian theorems and Newman’s proof 137

Fig. 10.3 Contours used in
Newman’s proof

The proof there proceeds as follows:
Say jf .t/j � M for all t � 0. For T > 0 let gT .z/ be the entire function defined

by
R T
0
f .t/e�zt dt. The theorem then asserts that limT!1 jg.0/ � gT .0/j D 0.

To establish that, choose R > 0 and ı.R/ sufficiently small that g is analytic
throughout the regionD D fz W jzj � R and Re z � �ı.R/g. Let � be the boundary
of D (shown as the solid curve in Figure 10.3), traversed counterclockwise, and
consider

(58)
1

2�i

Z
�

Œg.z/ � gT .z/�ezT

�
1C z2

R2

�
1

z
dz:

By Cauchy’s theorem, the value of (58) is g.0/ � gT .0/. Writing 	 D Re z, if
	 > 0 then

(59) jg.z/ � gT .z/j D
ˇ̌
ˇ̌
Z 1

T

f .t/e�zt dt

ˇ̌
ˇ̌ � M

Z 1

T

e�	t dt D Me�	T

	
:

Also, when jzj D R,

(60)

ˇ̌
ˇ̌ezT

�
1C z2

R2

�
1

z

ˇ̌
ˇ̌ D e	T

ˇ̌
ˇ̌
�
1

z
C z

jzj2
�ˇ̌
ˇ̌ D e	T

ˇ̌
ˇ̌1

z
C 1

z

ˇ̌
ˇ̌ D e	T

2j	 j
R2

:

Now let �C be the semicircle � \ fRe z > 0g, let �� denote � \ fRe z < 0g, and
let � 0� be the semicircle fz W jzj D R and Re z < 0g. By (59) and (60), for z 2 �C,
the absolute value of the integrand in (58) is bounded by 2M=R2, so

(61)

ˇ̌
ˇ̌
ˇ
1

2�i

Z
�C

Œg.z/ � gT .z/�ezT

�
1C z2

R2

�
1

z
dz

ˇ̌
ˇ̌
ˇ � M

R
:
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For z 2 ��, first consider gT . As an entire function, its integral over �� is the
same as its integral over � 0�. Since for 	 < 0,

(62) jgT .z/j D
ˇ̌
ˇ̌
Z T

0

f .t/e�zt dt

ˇ̌
ˇ̌ � M

Z T

�1
e�	t dt D Me�	T

j	 j ;

it follows from (60) that

(63)

ˇ̌
ˇ̌
ˇ
1

2�i

Z
� 0

�

gT .z/e
zT

�
1C z2

R2

�
1

z
dz

ˇ̌
ˇ̌
ˇ � M

R
:

Next consider g.z/. It is analytic on ��, so the quantity

ˇ̌
ˇ̌g.z/

�
1C z2

R2

�
1

z

ˇ̌
ˇ̌

is bounded on �� by some constant K (whose value depends on ı and R).
Likewise, ezT is bounded on ��, and converges uniformly to 0 on compact subsets
of fRe z < 0g as T approaches 1. Consequently,

(64) lim
T!1

ˇ̌
ˇ̌ 1
2�i

Z
��

g.z/ezT

�
1C z2

R2

�
1

z
dz

ˇ̌
ˇ̌ D 0 :

Recalling that g.0/�gT .0/ is given by the integral in (58), it follows from (61), (63),
and (64) that

lim sup
T!1

jg.0/ � gT .0/j � 2M

R
:

Since that holds for arbitrarily large values of R; limT!1 jg.0/ � gT .0/j D 0.
The Prime Number Theorem in the form limx!1  .x/=x D 1 is then deduced,

as in the previous section, from the convergence of the improper integral
R1
1
Œ .x/�

x�=x2 dx. That, in turn, follows from Ingham’s Tauberian theorem by setting x D et

and taking f .t/ D  .et /e�t � 1. For, by equation (51) above,

��
0.s/
�.s/

D s

Z 1

1

 .x/

xsC1
dx D s

Z 1

0

 .et /e�st dt;

so

g.s/ D
Z 1

0

f .t/e�st dt D
Z 1

0

Œ .et /e�t � 1�e�st dt

D
Z 1

0

 .et /e�.sC1/t dt �
Z 1

0

e�st dt

D 1

s C 1

�
��

0.s C 1/

�.s C 1/

	
� 1

s
D 1

s C 1

�
��

0.s C 1/

�.s C 1/
� 1

s
� 1

	
:
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Chebyshev’s upper bound for  .x/ shows that f .t/ is bounded, and the Laurent
series for �0.s/=�.s/ given in step 8 of the previous section shows that the expression
in the last member of the equation above can be extended to an analytic function on
the half plane Re s � 0. Hence the hypotheses of Ingham’s theorem are satisfied.

10.6 Elementary proofs

In 1909 Edmund Landau published an influential handbook (Landau 1909) that
“presented in accessible form nearly everything that was then known about the
distribution of prime numbers” (Bateman and Diamond 1996, p. 737). It popularized
use of the O-notation13 in statements concerning growth rates of functions, and drew
attention to the power of complex-analytic methods in number theory.

In particular, in contrast to the elementary methods of Chebyshev, those of
complex analysis had yielded the Prime Number Theorem. The question thus arose:
Were such methods essential to the proof of that theorem?

Many leading number theorists came to believe that they were. G.H. Hardy,
for example, in an address to the Mathematical Society of Copenhagen in 1921,
declared

No elementary proof of the prime number theorem is known, and one may ask whether
it is reasonable to expect one. [For] . . . we know that . . . theorem is roughly equivalent to
. . . the theorem that Riemann’s zeta function has no roots on a certain line.14 A proof of
such a theorem, not fundamentally dependent on the theory of functions, [thus] seems to
me extraordinarily unlikely.” (Quoted from Goldfeld 2004.)

In 1948, however, Atle Selberg and Paul Erdős, independently but each using
results of the other, found ways to prove the Prime Number Theorem without
reference to the �-function or complex variables and without resort to methods of
Fourier analysis. Their proofs, however, were ‘elementary ’ only in that technical
sense. Indeed, in Edwards (1974) Harold Edwards expresses the widely shared
opinion that “Since 1949 many variations, extensions and refinements of [Selberg’s
and Erdős’s] elementary proof[s] have been given, but none of them seems very
straightforward or natural, nor does any of them give much insight into the theorem.”
Furthermore, as noted in Jameson (2003), p. 207, no elementary proof so far devised
has given error estimates for the approximation of �.x/ by li.x/] that are “as strong

13Whereby f .x/ D O.g.x// for x > x1 � x0 means that f is eventually dominated by g, that is,
that f and g are both defined for x > x0, g.x/ > 0 for x > x0, and there is a constantK such that
jf .x/j � Kg.x/ for all x > x1.
14For as noted in the preceding section, the Wiener-Ikehara Theorem implies that the Prime
Number Theorem follows from the absence of zeroes of the �-function on the line Re s D 1,
a fact that is also implied by the Prime Number Theorem. (See, for example, Diamond 1982,
pp. 572–573.)
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as that of de la Vallée Poussin.” The interest in such proofs would thus seem to stem
primarily from concern for purity of method.

The basis of most elementary proofs of the Prime Number Theorem is a growth
estimate for a logarithmic summation found by Selberg. In one form it states that
for x > 1

(65)
X
p�x

.lnp/2 C
X
pq�x

lnp ln q D 2x ln x CO.x/;

where p and q denote prime numbers. Other statements equivalent to (65), shown
to be so in Diamond (1982), p. 566 and Jameson (2003), pp. 214–215, are

�.x/ ln x C
X
p�x

�.x=p/ lnp D 2x ln x CO.x/(66)

X
n�x
Œƒ.n/ lnnC .ƒ �ƒ/.n/� D 2x ln x CO.x/(67)

 .x/ ln x C
X
n�x

ƒ.n/ .x=n/ D 2x ln x CO.x/ and(68)

R.x/ ln x C
X
n�x

ƒ.n/R.x=n/ D O.x/ (where R.x/ D  .x/ � x),(69)

in which the symbol � denotes the Dirichlet convolution operation on arithmetic
sequences, defined by a � b D P

jkDn a.j /b.k/ D P
j jn a.j /b.n=j /.

Selberg’s original proof derived the equation limx!1 �.x/=x D 1 from (66)
using a consequence of (66) discovered by Erdős. In particular, denoting
lim inf �.x/=x by a and lim sup �.x/=x by A, Selberg deduced from (66) that
a C A D 2. Meanwhile, unaware of that fact, Erdős used (66) to show that for any
ı > 0 there is a constant K.ı/ such that for sufficiently large values of x there are
more thanK.ı/x= ln x primes in the interval .x; xCK.ı/x/. Erdős communicated
his proof of that fact to Selberg, who then, via an intricate argument, used Erdős’s
result to prove that A � a. Consequently, A D a D 1: (See Erdős 1949 for details
of all those proofs. The proof given in Selberg 1949 is a later, more direct one that
does not use Erdős’s result.15)

The most accessible elementary proof of the Prime Number Theorem is probably
that in Levinson (1969), whose very title (“A motivated elementary proof of the
Prime Number Theorem") suggests that the strategies underlying elementary proofs

15Regrettably, the interaction between Erdős and Selberg in this matter was a source of lasting
bitterness between them. Goldfeld (2004) provides a balanced account of the dispute, based on
primary sources. As noted there, the issue was not one of priority of discovery, but “arose over
the question of whether a joint paper (on the entire proof) or separate papers (on each individual
contribution) should appear”.
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of that theorem are not perspicuous.16 Variants of Levinson’s proof are also given in
Edwards (1974) and Jameson (2003). Here, in outline, is the structure of the latter
version:

1. The goal is to show that limx!1  .x/=x D 1. Toward that end, three related
functions whose behavior is easier to study are defined, namely

R.x/ D
(
0 if x < 1

 .x/ � x if x � 1
; S.x/ D

Z x

0

R.t/

t
dt and W.x/ D S.ex/

ex
:

Then limx!1  .x/=x D 1 if and only if limx!1R.x/=x D 0.
2. It follows from Chebyshev’s result  .x/ � 2x that jR.x/j � x for x > 0.

Furthermore,
R x
1
R.t/=t2 dt D R x

1
 .t/=t2 dt�ln x, and Abel summation yields

Z x

1

 .t/

t2
dt D

X
n�x

ƒ.n/

n
�  .x/

x
:

On the other hand, Mertens in 1874 applied Chebyshev’s bound to obtain thatP
n�x ƒ.n/=n D ln x C O.1/. (See Jameson 2003, p. 90 for details.) Conse-

quently, applying Chebyshev’s bound once more,
R x
1
R.t/=t2 dt is bounded for

x > 1.
3. Since, by 2., the absolute value of the integrand in the definition of S is

bounded by 1; S satisfies the Lipschitz condition jS.x2/ � S.x1/j � x2 � x1
for x2 > x1 > 0. That, in turn, together with the inequality e�x � 1� x, shows
thatW likewise satisfies the Lipschitz condition jW.x2/�W.x1j � 2.x2 � x1/
for x2 > x1 > 0.

4. The Lipschitz condition on S gives jS.x/j � x for x > 0, that is, jS.x/=xj � 1

for x > 0. Then jW.x/j � 1 and
Z x

1

S.t/

t2
dt D

Z x

1

1

t2

Z t

1

R.u/

u
du dt

D
Z x

1

R.u/

u

Z x

u

1

t2
dt du

D
Z x

1

R.u/

u

�
1

u
� 1

x

�
du

D
Z x

1

R.u/

u2
du � S.x/

x
;

16Levinson’s paper won the Mathematical Association of America’s Chauvenet Prize for exposi-
tion in 1971. Nevertheless, after reading it, the number theorist Harold Stark commented “Well,
Norman tried, but the thing is as mysterious as ever.” (Quoted in Segal 2009, p. 99.)
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which is bounded for all x > 1 by the result of step 2. above. Consequently,R x
0
W.t/ dt is bounded for all x > 0.

5. Straightforward arguments with inequalities yield the following Tauberian
theorem:

If A.x/ � 0, A.x/ is increasing for x > 1, and
1

x

Z x

1

A.t/

t
dt ! 1 as x ! 1,

then
A.x/

x
! 1 as x ! 1.

Then since S.x/=x D .1=x/
R x
1
 .t/=t dt � 1 � 1=x, taking A.x/ D  .x/ in

the Tauberian theorem shows that to prove that  .x/=x ! 1 as x ! 1 it
suffices to prove that S.x/=x ! 0 as x ! 1.

6. Equivalently, it suffices to show that W.x/ ! 0 as x ! 1. For that purpose,
let

˛ D lim sup
x!1

jW.x/j � 1 and ˇ D lim sup
x!1

1

x

Z x

0

jW.t/j dt:

Then ˇ � ˛. Crucially, however,

(70) ˇ D ˛ only if ˛ D 0I
so to prove the Prime Number Theorem it suffices to show that ˛ � ˇ.

To prove (70), assume ˛ > 0. Since
R x
0
W.t/ dt is bounded for all x > 0,

there is a constant B such that j R x2
x1
W.t/ dtj � B for all x2 > x1 > 0. Also,

by the definition of ˛, for any a > ˛ there is some xa such that jW.x/j � a

for x > xa. So suppose ˛ < a � 2˛ and consider
R x1Ch
x1

jW.t/j dt, where
x1 � xa and h � 2˛ is to be determined. If W.x/ changes sign within the
interval Œx1; x1 C h�, the intermediate-value theorem yields the existence of a
point z in that interval where W.z/ D 0. The Lipschitz condition on W then

gives jW.x/j � 2jx � zj, and since h � a, at least one of the points z ˙ a

2
lies

between x1 and x1Ch. So either the interval Œz; zCa=2� lies within Œx1; x1Ch�

or Œz � a=2; z� does. Whichever does, call it I . (If both do, pick one.) ThenR
I

jW.x/j dx � R
I
2jx � zj dx D a2=4. The part of Œx1; x1 C h� lying outside I

has length h � a=2, and there jW.x/j � a. So, finally,

(71)
Z x1Ch

x1

jW.x/j dx � a2

4
C a

�
h � a

2

�
D a

�
h � a

4

�
< a

�
h � ˛

4

�
:

By choosing h to be the greater of ˛ and B=˛ C ˛=4, (71) can be ensured to
hold as well if W.x/ does not change sign within Œx1; x1 C h�.

To complete the proof, note that for any x � x1 C h there is an integer n
such that xa C nh � x < xa C .nC 1/h. Then
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Z x

0

jW.x/j dx �
Z xa

0

jW.x/j dx C .nC 1/
�
h � ˛

4

�
ah

D C C .nC 1/
�
h � ˛

4

�
ah;

where C is constant and n ! 1 as x does. Hence, since x > nh,

1

x

Z x

0

jW.x/j dx � C

x
C
�
1C 1

n

��
1 � ˛

4h

�
a:

As x ! 1, the right member of that inequality approaches .1 � ˛=4h/a.
Consequently ˇ � .1�˛=4h/a for any a > ˛. Therefore ˇ � .1�˛=4h/˛ < ˛.

7. It is at this point that Selberg’s inequality enters in. In Levinson (1969) and
Jameson (2003) that inequality, in the forms (68) and (69), is derived as a
corollary to the Tatuzawa-Iseki identity, which states that if F is a function
defined on the interval Œ1;1/ and G.x/ D P

n�x F.x=n/, then for x � 1:

(72)
X
k�x


.k/ ln
x

k
G
�x
k

�
D F.x/ ln x C

X
n�x

ƒ.n/F
�x
n

�
;

where 
 denotes the Möbius function and ƒ the von Mangoldt function.
The Tatuzawa-Iseki identity is a variant of the Möbius inversion formula,

which states that under the same hypotheses, F.x/ D P
n�x 
.n/G.x=n/. It

is obtained by multiplying the Möbius formula by ln x to get the first term in
the right member of (72), rewriting the factor ln.x=k/ in the left member as

ln x � ln k, replacing G
�x
k

�
in
P

k�x 
.k/ ln k G
�x
k

�
by
P

j�x=k F
�
x

jk

�
,

interchanging the order of summation in the double sum, and expressing the
result in terms of ƒ.n/.17

To obtain inequality (68), the Tatuzawa-Iseki identity is applied with
F.x/ D R.x/ C � C 1, where � is Euler’s constant. One proves that then
jG.x/j � ln x C 2 for x � 1. The derivation is completed by invoking the
integral test for series together with Chebyshev’s upperbound for  .x/.

8. Inequality (67) is deduced as a corollary to (68), using Abel summation and
Chebyshev’s result that  .x/ � 2x. Since the integral test implies thatP

n�x lnn D x ln x C O.x), a further equivalent of Selberg’s formula isP
n�xŒƒ.n/ lnnC .ƒ �ƒ/.n/� � 2 lnn D O.x/.

9. Dividing (69) by t , where 1 � t � x, gives

R.t/
ln t

t
C 1

t

X
n�x

ƒ.n/R

�
t

n

�
D O.1/:

17The Möbius inversion formula by itself does not suffice to give the desired bound on R.x/, and
that, in Levinson’s opinion, accounts for “the long delay in the discovery of an elementary proof”
of the Prime Number Theorem. (Levinson 1969, p. 235)
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Integrating and using jS.t/=t j � 1 from step 4. then shows that for x � 1,

(73) S.x/ ln x C
X
n�x

ƒ.n/S.x=n/ D O.x/;

which is (69) with R replaced by S .
10. Three technical lemmas are now proved, using (68), (69) and the Lipschitz

condition on S , respectively. First, for all x � 1 there is a constantK1 such that

(74) jS.x/j.ln x/2 �
X
n�x
Œƒ.n/ lnnC .ƒ �ƒ/.n/�

ˇ̌
ˇS
�x
n

�ˇ̌
ˇCK1x ln x:

Second,
(75)X
n�x
Œƒ.n/ lnnC .ƒ �ƒ/.n/�

ˇ̌
ˇS
�x
n

�ˇ̌
ˇ D 2

X
n�x

lnn
ˇ̌
ˇS
�x
n

�ˇ̌
ˇCO.x ln x/I

and third, for all x � 1 there is a constant K2 such that

(76)
X
n�x

lnn
ˇ̌
ˇS
�x
n

�ˇ̌
ˇ �

Z x

1

ln t
ˇ̌
ˇS
�x
t

�ˇ̌
ˇ dt CK2x :

11. Together, (74), (75), and (76) yield that for all x � 1 there is a constantK3 such
that

jS.x/j.ln x/2 � 2

Z x

1

ln t
ˇ̌
ˇS
�x
t

�ˇ̌
ˇ dt CK3x ln x ; so that

(77) jW.x/j � 2

x2

Z x

0

.x � u/jW.u/j du C K3

x
:

12. Finally, for ˛ and ˇ as defined in step 6., (77) implies that ˛ � ˇ. For, by the
definition of ˇ, for every � > 0 there exists an x1 such that for every x � x1,R x
0

jW.t/j dt � .ˇC �/x . In order to apply (77), consider
R x
0
.x � u/jW.u/j du,

which may be rewritten as

Z x

0

jW.u/j
Z x

u
dt du D

Z x

0

Z t

0

jW.u/j du dt:

Then for x � x1,

Z x

x1

Z t

0

jW.u/j du dt �
Z x

x1

.ˇ C �/t dt D 1

2
.ˇ C �/.x2 � x21/:
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On the other hand, jW.u/j � 1 for all u by step 4. So

Z x1

0

Z t

0

jW.u/j du dt �
Z x1

0

t dt D 1

2
x21:

Therefore
Z x

0

.x � u/jW.u/j du D
Z x1

0

.x � u/jW.u/j du C
Z x

x1

.x � u/jW.u/j du

� 1

2
.ˇ C �/x2 C 1

2
x21 :

Then by (77), jW.x/j � ˇ C � C x21
x2

C K3

x
. By definition of ˛, that means

˛ � ˇ C �; and since � can be chosen to be arbitrarily small, ˛ � ˇ. q.e.d.

10.7 Overview

The five proofs of the Prime Number Theorem considered here employ a wide range
of methodologies, including analytic continuation, Abel summation, Dirichlet con-
volution, contour integration, Fourier analysis, Laplace transforms, and Tauberian
theorems. They differ from one another in many respects, including the ways in
which the domain of definition of �.s/ is extended and whether or not recourse is
made to the functional equation for the �-function.

The proofs also exemplify several of the different motivations discussed in
Chapter 2. For example, Riemann’s program for proving the Prime Number The-
orem by examining the behavior of the complex �-function proposed bringing the
methods of complex analysis to bear on the seemingly remote field of number
theory; so the successful carrying out of that program by Hadamard and de la Vallée
Poussin may be deemed instances of benchmarking. And the marked differences
in the independent and nearly simultaneous proofs of the theorem that Hadamard
and de la Vallée Poussin gave — each of which was based upon the same corpus
of earlier work (especially Chebyshev’s results) and followed the same basic steps
in Riemann’s program (proving that �.s/ has no roots of the form 1 C it and then
applying complex contour integration to expressions involving �0=�) — are surely
attributable to differences in their individual patterns of thought.

In the case of Hadamard, a further motive was that of correcting deficiencies in
Cahen’s earlier proof attempt. Indeed, at the beginning of section 12 of his memoir,
Hadamard noted explicitly that Cahen had claimed to have proved that �.x/ � x,
but that his demonstration was based on an unsubstantiated claim by Stieltjes (who
thought he had proved the Riemann Hypothesis). Nonetheless, Hadamard declared,
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“we will show that the same result can be obtained in a completely rigorous way”
via “an easy modification” of Cahen’s analysis.18

The modern descendants of those classical proofs illustrate how simplifications,
generalizations, and refinements of mathematical arguments gradually evolve and
are incorporated into later proofs. Examples include the proof that �.s/ has no
roots with real part equal to one, which was significantly shortened and simplified
through the use of a trigonometric identity; the deduction of the Prime Number
Theorem from a general Tauberian theorem, which showed it to be a particular
instance of a family of such theorems concerning Dirichlet series;19 and the use
in Newman’s proof of a contour integral that is much more easily evaluated than
the classical ones. Newman’s proof also exhibits economy of means with regard
to conceptual prerequisites, making it comprehensible to those having only a
rudimentary knowledge of complex analysis.

The ‘elementary’ proofs, on the other hand, are no simpler than the classical
analytic ones, are generally regarded as less perspicuous (giving little or no insight
into why the Prime Number Theorem is true), and do not yield as sharp error
bounds as those obtained by analytic means. The esteem nonetheless accorded
them by the mathematical community, as reflected in the prizes awarded to their
discoverers, may thus be taken as a quintessential manifestation of the high regard
mathematicians have for purity of method in and of itself.
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