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Abstract. We present a domain decomposition approach for the simula-
tion of charge transport in heterojunction semiconductors. The problem
is characterized by a large variation of primary variables across an inter-
face region of a size much smaller than the device scale, and requires
a multiscale approach in which that region is modeled as an internal
boundary. The model combines drift diffusion equations on subdomains
coupled by thermionic emission heterojunction model on the interface
which involves a nonhomogeneous jump computed at fine scale with Den-
sity Functional Theory. Our full domain decomposition approach extends
our previous work for the potential equation only, and we present per-
spectives on its HPC implementation. The model can be used, e.g., for
the design of higher efficiency solar cells for which experimental results
are not available. More generally, our algorithm is naturally paralleliz-
able and is a new domain decomposition paradigm for problems with
multiscale phenomena associated with internal interfaces and/or bound-
ary layers.

Keywords: Domain decomposition · Drift-diffusion equations · Density
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1 Introduction

In this paper we present a multiscale approach for heterojunction interfaces in
semiconductors, part of a larger interdisciplinary effort between computational
mathematicians, physicists, and material scientists interested in building more
efficient solar cells. The higher efficiency (may) arise from putting together dif-
ferent semiconductor materials, i.e., creating a heterojunction.

The computational challenge is that phenomena at heterojunctions must be
resolved at the angstrom scale while the size of the device is on the scale of
microns, thus it is difficult to simultaneously account for correct physics and
keep the model computationally tractable. To model charge transport at the
device scale we use the drift diffusion (D-D) system [14]. For interfaces, we
follow the approach from [9] in which the interface region is shrunk to a low-
dimensional internal boundary, and physics at this interface is approximated
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M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 92–101, 2015.
DOI: 10.1007/978-3-319-17353-5 8



Domain Decomposition for Heterojunction Problems in Semiconductors 93

by the thermionic emission model (TEM) which consists of unusual internal
boundary conditions with jumps.

We determine the data for these jumps from an angstrom scale calculation
using Density Functional Theory (DFT), and we model the physics away from
the interface by the usual (D-D) equations coupled by TEM. The D-D model
can be hard-coded as a monolithic approach which appears intractable and/or
impractical in 2d/3d with complicated interface geometries. Our proposed alter-
native is to apply a domain decomposition (DDM) approach which allows the
use of “black box” D-D solvers in subdomains, and enforces the TEM condi-
tions at the level of the DDM driver. DDM have been applied to D-D, e.g.,
in [12,13], where the focus was on a multicore HPC implementation of effi-
ciently implemented suite of linear and nonlinear solvers. Here we align the DDM
with handling microscale physics at material interfaces. More importantly, fully
decoupling the subdomains is a first step towards a true multiscale simulation
where the behavior in the heterojunction region is treated simultaneously by a
computational method at microscale.

The DDM approach we propose is non-standard because of the nonhomoge-
neous jumps arising from TEM. In [7] we presented the DDP algorithm for the
potential equation. In this paper we report on the next nontrivial step which
involves carrier transport equations. Here the interface model is an unusual
Robin-like interface equation. The algorithm DDC works well and has promising
properties.

This paper consists of the following. In Sect. 2 we describe the model. In Sect. 3
we present our domain decomposition algorithms, and in Sect. 4 we present numer-
ical results for the simulation of two semiconductor heterojunctions. Finally in
Sect. 5 we present conclusions, HPC context, and describe future work.

2 Computational Model for Coupled Scales

The continuum D-D model with TEM is described first, followed by the angstrom
scale DFT model.

2.1 Device Scale Continuum Models: Drift Diffusion (D-D) System

Let Ω ∈ R
N , N ∈ {1, 2, 3}, be an open connected set with a Lipschitz boundary

∂Ω. Let Ωi ∈ Ω, i = 1, 2, be two non-overlapping subsets of Ω s.t. Ω1 ∪Ω2 = Ω,
Ω1 ∩ Ω2 = ∅, and denote Γ := Ω1 ∩ Ω2. We assume Γ is a N -1 dimensional
manifold, and Γ ∩ ∂Ω = ∅. Each subdomain Ωi corresponds to a distinct semi-
conductor material, and Γ the interface between them. We adopt the following
usual notation: wi = w|Ωi

, wΓ
i = limx→Γ wi, and [w]Γ = wΓ

2 − wΓ
1 denotes the

jump of w.
In the bulk semiconductor domains Ωi, i = 1, 2, the charge transport is des-

cribed by the D-D system: a potential equation solved for electrostatic potential ψ,
and two continuity equations solved for the Slotboomvariablesu and v; these relate
to the electron andhole densitiesn and p, respectively, vian = δ2neψu, p = δ2pe−ψv.
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(The scaling parameters δ2n and δ2p depend on the material and the doping profile).
We recall that in Slotboom variables the continuity equations are self-adjoint [14].
The stationary D-D model is

−∇ · (εi∇ψi) =
1
η
(δ2pe−ψiv − δ2neψiu + NT ) := q(ψi, pi, ni), (1)

−∇ · (Dni
δ2neψi ∇ui) = R(ψi, ui, vi), (2)

−∇ · (Dpi
δ2pe−ψi ∇vi) = −R(ψi, ui, vi). (3)

For background on the D-D model the reader is referred to [1,10,14,15,19,20].
In (1)–(3) we use data: the net doping profile NT , a given expression for the
electron-hole pair generation and recombination R, electrical permittivity ε, and
electron and hole diffusivities Dn, Dp. Also, η is another scaling parameter [7].

The model (1)–(3) is completed with external boundary conditions; we impose
Dirichlet conditions for the potential and recombination-velocity (Robin type)
conditions for electron and hole densities. To this we add the TEM transmission
conditions on the interface [9]

[ψ]Γ = ψ�,
[
ε∂ψ

∂ν

]
Γ

= 0, (4)

Jn1 = an
2 (eψu)Γ

2 − an
1 (eψu)Γ

1 , [Jn]Γ = 0, (5)

Jp1 = ap
1(e

−ψv)Γ
1 − ap

2(e
−ψv)Γ

2 , [Jp]Γ = 0. (6)

Here Jn and Jp are the electron and hole currents

Jn = Dnδ2neψ∇u, (7)
Jp = Dpδ

2
pe−ψ∇v. (8)

Also, an
i and ap

i are constants dependent on material properties and temper-
ature, and ψ� is a jump discontinuity in the electrostatic potential. These can
be determined by a DFT calculation, see Fig. 1 for illustration.

The model (1)–(6) must be discretized. Here we use simple finite difference
formulation following [14,20] with N nodal unknowns; we skip details for brevity.
In what follows we refer to ψ, u, v, n, p meaning their discrete counterparts.

2.2 Density Functional Theory for Atomic Scale

Heterojunction parameters an
i , ap

i , ψ� in (4)–(6) are determined by quantum
mechanics of electrons. The Schrödinger equation solved for wave function Ψ is
fundamental for quantum behavior, but the problem of interacting N electrons
is computationally intractable for large N .

DFT [4,5] provides an efficient method of determining material properties
from first principles by shifting focus from wave functions Ψ to electron density,
n(r). The density sought in DFT is a function in R

3, while the Schrödinger
equation is solved for Ψ ∈ C

3N . Finding n is possible via application of the
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Fig. 1. Left top: schematic plot of potential across 1D interface region for Structure 1
(actual simulation in Fig. 2). Left bottom: schematic plot of potential with idealized
heterojunction interface. Right top: interface atomic structure. Right bottom: smoothed
local pseudopotential from the DFT calculation (black), and valence band jump con-
struction (red), which determines an

i , ap
i , and ψ� [7] (Color figure online)

theory of Hohenberg and Kohn to a minimization problem in n, and is equivalent
to the solution of the Schrödinger equation for the ground state. However, an
energy functional F [n] needed in the minimization principle in DFT is unknown,
and DFT requires approximations to F [n]. The Kohn-Sham equations provide a
basis for these approximations, and their solution can be found iteratively [4,5].

DFT is a widely used, low cost, first principles method which solves the zero
temperature, zero current ground state of a system [4,5]. The local pseudopo-
tential calculated by DFT is continuous at an interface (see Fig. 1), and can be
used with known material properties to obtain the change in the continuous elec-
trostatic potential ψ occurring close to a heterojunction. The potential jump
(offset) ψ� is a ground state property of the heterojunction structure, and DFT
solution in the heterojunction region provides the data needed for TEM.

For the needs of this paper, we perform DFT calculations using the VASP
code [11], with exchange-correlation treated using the Generalized Gradient
Approximation and a +U Hubbard term (U = 6 eV) for the Cu-d orbitals
[4,5,7].

3 Domain Decomposition for Continuum Model

The procedure to solve (1)–(6) numerically is a set of nested iterations, with
three levels of nesting.

First, when solving (1)–(6), we employ the usual Gummel Map [10,18], an
iterative decoupling technique within which we solve each component equation
of (1)–(3) independently. Note that each equation is still nonlinear in its primary
variable, thus we must use Newton’s iteration.
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Furthermore, each component equation employs DDM independently to re-
solve the corresponding part of TEM. In particular, we solve potential equation
(1) with (4), the electron transport (2) with (5), and the hole transport (3)
with (6). The DDM we use is an iterative substructuring method designed as a
Richardson scheme [17] to resolve the TEM, defined and executed independently
for each component. In what follows θ > 0 is an acceleration parameter, different
for each component equation. Since the DDM algorithm for p equation is entirely
analogous to that for n equation, we only define the latter.

Last, each subdomain solve of the DDM is nonlinear, and we use Newton-
Raphson iteration to resolve this.

3.1 Domain Decomposition for Potential Equation (1), (4)

Here we seek the interface value of λ with which (1), (4) is equivalent to

− ∇ · (ε1∇ψ1) = q1, x ∈ Ω1; ψ1|Γ = λ (9)
−∇ · (ε2∇ψ2) = q2, x ∈ Ω2; ψ2|Γ = λ + ψ�, (10)

which requires
[
ε∂ψ

∂ν

]
Γ

= 0. The algorithm DDP we proposed in [7] is essentially

a modification of the Neumann-Neumann algorithm [17].

Algorithm DDP to solve (1), (4): Given λ(0), for each k ≥ 0,

1. Solve (9) and (10) for ψ
(k+1)
i , i = 1, 2.

2. Update λ by

λ(k+1) = λ(k) − θψ

[
ε
∂ψ(k+1)

∂ν

]

Γ

3. Continue with (1) unless stopping criterium
∥∥∥
[
ε∂ψ(k+1)

∂ν

]
Γ

∥∥∥ holds.

3.2 Domain Decomposition for Continuity Equation (2), (5)

Here we seek to find data λ so that (2), (5) is equivalent to the problem:

− ∇ · (Dn1δ
2
neψ1∇u1) = R1, x ∈ Ω1; u1|Γ = λ (11)

−∇ · (Dn2δ
2
neψ2∇u2) = R2, x ∈ Ω2; (12)

u2|Γ =
an
1 (eψ)Γ

1

an
2 (eψ)Γ

2

λ +
Jn1

an
2 δ2(eψ)Γ

2

(13)

which requires the homogeneous jump condition [Jn]Γ = 0.
Algorithm DDC proposed in this paper is very different from DDP because

it proceeds sequentially from domain Ω1 to domain Ω2. In addition, while it
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corrects λ in a manner similar to a Neumann-Neumann algorithm, in (13) it
takes advantage of Neumann data from Ω1 resulting from (11). An appropriate
parallel algorithm for DDC which uses Neumann rather than Dirichlet data as
in (11), (12) was promising for a synthetic example, but it has difficulties with
convergence for realistic devices.

Algorithm DDC to solve (2), (5) or (3), (6): Given λ(0), for each k ≥ 0,

1. Solve (11) for u
(k+1)
1 and then solve (12)–(13) for u

(k+1)
2 .

2. Update λ by

λ(k+1) = λ(k) − θn

[
Dneψ ∂u(k+1)

∂ν

]

Γ

3. Continue with (1) unless stopping criterium ‖[Jn]Γ ‖ holds.

While DDP and DDC are motivated by the multiphysics nature of the model,
they may be viewed as extensions of Neumann-Neumann iterative substructur-
ing methods to nonhomogeneous jumps and Robin-like transmission conditions.
A scalable parallel implementation may be achieved in the future using two-level
techniques [17, Sect. 3.3.2].

4 Heterojunction Semiconductor Simulation

Now we present numerical simulation results. Structure 1 is synthetic and solar
cell-like, and is made of two hypothetical materials we call L1 and R1. Structure
2 is made of Si and Cu3PSe4 (CPS). In Table 2 we give details.

We use DFT to calculate ψ� = −0.01 eV for the Cu0.75P0.25-Si interface
formed from CPS (001) and the Si (111) surfaces having normally oriented dan-
gling bonds. Next we apply Domain Decomposition and specifically the algorithms
DDP, DDC; see Fig. 2. For both structures we see the impact of heterojunction

Table 1. Number of iterations at each Gummel Iteration (GI) and parameters θn, θp

for Structure 1 and algorithm DDC. DDP uses θ1
ψ = 0.0025, θ2

ψ = 0.00025. Also, we
use θ2

n = 4e11, θ2
p = 1.4

DDC u, θ1
n = 2.5 DDC v, θ1

p = 180

N GI 1 GI 2 GI 3 GI 4 GI 1 GI 2 GI 3 GI 4

201 6 2 1 1 5 3 1 1

401 5 2 1 1 8 4 1 1

601 3 2 1 1 8 4 1 1

801 4 2 1 1 8 4 1 1
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Table 2. Material and structure parameters

Property L1 R1 CPS Si

Permittivity ε 10.0 10.0 15.1 [6] 11.9 [21]

Electron affinity χ (eV) 5 5 4.05 4.05 [21]

Band gap Eg (eV) 1.0 0.5 1.4 [6] 1.12 [21]

Eff. electron density of
states ÑC (cm−3)

5 × 1018 5 × 1018 3 × 1019 2.8 × 1019

Eff. hole density of states
ÑV (cm−3)

5 × 1018 5 × 1018 1.2 × 1018 1 × 1019

Dopant charge density ÑT

(cm−3)
1 × 1016 −1 × 1015 −6 × 1017 [6] 1 × 1015

Electron diffusion constant
D̃n (cm2/s)

2.0 2.0 2.6 37.6 [21]

Hole diffusion constant D̃p

(cm2/s)
1.0 1.0 0.5 12.9 [21]

Constant photogeneration
density G (cm−3/s)

1 × 1017 1 × 1020 1 × 1021 1 × 1018

Direct recombination
constant Rdc (cm3/s)

1 × 10−10 1 × 10−10 1 × 10−10 1 × 10−15

Jump in potential ψ� (eV) -0.15 -0.01

Table 3. Efficiency of DDM vs monolithic solvers. Column 4 estimates multicore effi-
ciency

N Monolithic time (sec) DDM time (sec) DDM parallel estimate Current

501/501 0.5494 1.313 0.8 0.006637

751/751 0.8122 1.4537 0.9 0.006649

1001/1001 1.0231 1.4173 0.9 0.006655

1251/1251 failed 2.1665 1.3 0.0066592

and large jumps of ψ, n, p across the interface. The results are validated with a
hard-coded monolithic solver.

As concerns solver’s performance, in Table 1 we show that DDC is mesh
independent, similarly to DDP [7]. Furthermore, the choice of θ is crucial. (In
forthcoming work [3] we show how θ is determined from analysis of the jump
data.)

5 Conclusions

The main contribution reported in this paper advances HPC methodology for
solving problems with complex interface physics. We presented DDM for the
simulation of charge transport in heterojunction semiconductors. Our method
allows the coupling of “black-box” D-D (drift diffusion) solvers in subdomains
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corresponding to single semiconductor materials. We compared DDM to a mono-
lithic solver, and the results are promising; see Table 3. As usual, DDM approach
wins for large N . Also, it works when monolithic solver fails. In the model pre-
sented here DFT is used to determine heterojunction parameters but is currently
entirely decoupled from D-D solvers in the bulk subdomains. Our approach is a
first step towards a true multiscale simulation coupling the atomic and device
scales.

At the current stage, the computational complexities of the microscale and
macroscale simulations are vastly different. The microscale DFT simulations
using VASP solver [11] for electronic structure simulations running on 4 machines
with 12 cores with MPI2, take several days to complete. On the other hand, the
D-D solver takes less than minutes at worst to complete; see Table 3. Thus, a
true coupled multiscale approach is not feasible yet.

More broadly, problems with nonhomogeneous jump conditions across inter-
faces only begin to be investigated from mathematical and computational point
of view. Our DDM approach is a new paradigm that applies elsewhere, e.g., for
discrete fracture approximation models where nonhomogeneous jump conditions
arise [8,16].
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