
Machine-Learning-Based Load Balancing
for Community Ice Code Component in CESM

Prasanna Balaprakash1,2(B), Yuri Alexeev2, Sheri A. Mickelson1,
Sven Leyffer1, Robert Jacob1, and Anthony Craig3

1 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, USA

pbalapra@mcs.anl.gov
2 Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA

3 UCAR, Seattle, WA, USA

Abstract. Load balancing scientific codes on massively parallel architec-
tures is becoming an increasingly challenging task. In this paper, we focus
on the Community Earth System Model, a widely used climate modeling
code. It comprises six components each of which exhibits different scalabil-
ity patterns. Previously, an analytical performance model has been used to
find optimal load-balancing parameter configurations for each component.
Nevertheless, for the Community Ice Code component, the analytical per-
formance model is too restrictive to capture its scalability patterns. We
therefore developed machine-learning-based load-balancing algorithm.
It involves fitting a surrogate model to a small number of load-balancing
configurations and their corresponding runtimes. This model is then used
to find high-quality parameter configurations. Compared with the current
practice of expert-knowledge-based enumeration over feasible configura-
tions, the machine-learning-based load-balancing algorithm requires six
times fewer evaluations to find the optimal configuration.

1 Introduction

The Community Earth System Model (CESM) is one of the most widely used
climate models in the world. Results from this model are a major part of the
Intergovernmental Panel on Climate Change assessment reports [1]. CESM1.1.1
consists of six model components—atmosphere, ocean, sea-ice (CICE), land,
river, and land-ice models—that communicate through a coupler. Each of the
CESM model components has different scalability patterns and performance

The submitted manuscript has been created by the UChicago Argonne, LLC, Oper-
ator of Argonne National Laboratory (Argonne) under Contracts No. DE-AC02-
06CH11357 and DE-FG02-05ER25694 with the U.S. Department of Energy. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly, by
or on behalf of the Government. The NCAR is sponsored by the National Science
Foundation.

c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 79–91, 2015.
DOI: 10.1007/978-3-319-17353-5 7

80 P. Balaprakash et al.

characteristics. In this paper, we focus on static load-balancing of computation,
which is usually simple to implement with negligible overhead, making it suit-
able for “fine-grained” parallelism consisting of many small tasks. Previously, the
load-balancing problem has been formulated as a mixed-integer nonlinear opti-
mization problem and solved by using the optimization solver MINOTAUR [2].
This is a heuristic method that consists of gathering benchmarking data, cali-
brating a performance model using the data, and making decisions about optimal
allocation by using the model. The performance model predicts the execution
time of the program running in parallel as a function of problem size and the
number of processors employed. Nonetheless, several challenges in intramodel
load balancing for the CICE computations occur only where sea ice is located
and the sun is shining. This restriction presents a load-balance problem because
processors are allocated across the entire Earth grid and several locations on the
grid that do not have any sea ice [3]. The poor fit of the CICE results in ineffi-
cient processor allocations to all components—incorrect allocation of the CICE
affects all other allocations because the total number of processors available to
components is a fixed number. This is the primary motivation for us to develop
sophisticated approaches for load balancing the CICE component of the CESM.

Recently, machine-learning methods [4] have received considerable attention
for tuning performance of large scientific codes and kernels on high-performance
computing systems. In particular, supervised machine-learning tries to learn the
relationship between the input and the output of an unknown response function
by fitting a model from few representative examples. When the model is accurate
enough, it can predict the output at new unseen inputs, which provides numerous
benefits, in particular when the evaluation becomes expensive.

In this paper, we present a machine-learning-based approach for static load-
balancing problems, and we apply it to find high-quality parameter configura-
tions for load balancing the CICE component of the CESM on IBM Blue Gene/P
(BG/P). The novelty of the proposed algorithm consists of iteratively using the
model to choose configurations with shorter predicted runtime for evaluation on
the target architecture. We emphasize, however, that the algorithm is general
and not specific to the CESM and/or BG/P. The paper is structured as fol-
lows: (1) a machine-learning-based algorithm for static load-balancing problem,
(2) deployment of a machine-learning method as a diagnostic tool for analyzing
the sensitivity of the load-balancing parameters on the execution time, (3) empir-
ical analysis of several state-of-the-art machine-learning methods for modeling
the relationship between the load-balancing parameters and their corresponding
execution time, and (4) 6x savings in core-hour usage for load balancing the
CICE component of the CESM on BG/P.

2 The CICE Component on BG/P

For the CICE component, we need to find the optimal load-balancing parameter
configuration x∗ with the shortest the runtime (f∗) for task counts ∈ {80, 128,
160, 256, 320, 376, 512, 640, 800, 1024}. The task count corresponds to number of

Machine-Learning-Based Load Balancing for Community Ice Code 81

Table 1. Decomposition strategies and their corresponding block.x and block.y sizes

decomp.set decomp.typ block.x block.y

null blkrobin, blkcart
roundrobin, spacecurve

1, 2, 4, 8 24, 48, 96,
192, 3840

slenderX1
slenderX2

cartesian 4, 5, 8, 10 4 6 8 12

MPI tasks; the number of OpenMP threads per MPI task is set to four because
of memory restrictions on BG/P. The CICE component comprises six para-
meters. Three integer parameters, namely, maximum number of CICE blocks,
max.block; the size of a CICE block in the first and second horizontal dimensions
block.x and block.y respectively. Two categorical parameters that determine
the decomposition strategy, decomp.typ ∈ {blkrobin, roundrobin, spacecurve,
blkcart, cartesian} and decomp.set ∈ {null, slenderX1, slenderX1}. A binary
parameter mask.h ∈ {0,1} that specifies to run the code with or without halo.

The constraints that define a feasible set D of configurations are as follows.
The parameter max.block ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16,
20, 24, 26, 30, 32, 40, 48, 64} is determined by computing (CICE X Grid Size ×
CICE Y Grid Size) / (block.x × block.y × task count). The feasible values
for decomp.set, decomp.typ, block.x, and block.y are constrained as shown
in Table 1. The decomposition strategies have different rules, and not all combi-
nations of block sizes are possible. The blkcart method must have a multiple of
four blocks per compute core. The spacecurve method must have 2, 3, and 5 only
in max.block. The slenderX1 method requires that the block.x multiplied by the
task count divide evenly into the CICE X grid size. The value of block.y must
also be divisible by the CICE Y grid size. The slenderX2 method requires that
the block.x multiplied by the task count be divisible by the CICE X grid size
multiplied by 2. The decomposition also requires that the block.y multiplied by
2 divide evenly into the CICE Y grid size.

3 Machine-Learning Based Load-Balancing Algorithm

Given a set of training data {(x1, y1)), . . . , (xl, yl))}, where xi ∈ D and yi =
f(xi) ∈ R are the load-balancing parameter configuration and its corresponding
runtime, respectively, the supervised machine-learning approach includes finding
a surrogate function h for the expensive f such that the difference between f(xi)
and h(xi) is minimal for ∀i ∈ {1, . . . , l}. The function h, which is an empirical
performance model, can be used to predict the runtimes of unevaluated x′ ∈
D. The key idea behind the machine-learning-based load-balancing algorithm
is iteratively using the model to choose configurations with shorter predicted
runtime for evaluation and retrain the model with the evaluated configurations.

The pseudo-code is shown in Algorithm 1. The symbols ∪ and − denote set
union and difference operators, respectively. Given a task count c, a pool Xp

of unevaluated configurations of task count c, the maximum number nmax of

82 P. Balaprakash et al.

Algorithm 1. Pseudo-code for the machine-learning-based load-balancing
algorithm
Input: task count c, configuration pool Xp of task count c, max evaluations nmax,

initial sample size ns

1 Xout ← sample min{ns, nmax} distinct configurations from Xp

2 Yout ← Evaluate Parallel(c, Xout)
3 M ← fit(Xout, Yout)
4 Xp ← Xp − Xout

5 for i ← ns + 1 to nmax do
6 Yp ← predict(M, Xp)
7 xi ← x ∈ Xp with the shortest runtime in Yp

8 yi ← Evaluate(c, xi)
9 retrain M with (xi, yi)

10 Xout ← Xout ∪ xi; Yout ← Yout ∪ yi
11 Xp ← Xp − xi

12 end for

Output: x ∈ Xout with the shortest runtime in Yout

allowed evaluations, and initial sample size ns, the algorithm proceeds in two
phases: parallel initialization phase and sequential iterative phase. In the ini-
tialization phase, the algorithm first samples ns configurations at random and
evaluates them in parallel to obtain their corresponding runtimes. A supervised
learning method uses these points as a training set to build a predictive model.
The sequential iterative phase consists of predicting the runtimes of all remain-
ing unevaluated configurations using the model, evaluating the configuration
with shortest predicted runtime, and retraining the model with the evaluation
results. Without loss of generality, Algorithm1 can be run in parallel for each
task count c ∈ C. Because the best supervised learning algorithms depends
on the relationship between the input and output, we test four state-of-the-art
machine-learning algorithms as candidates for Algorithm1: random forest (RF)
[5], support vector machines (SVM) [6], Gaussian process regression (GP) [7],
and neural networks (NN) [8].

RF belongs to the class of recursive partitioning methods [9]. They are widely
used tools for predictive modeling in many scientific fields. These methods recur-
sively partition the multi-dimensional input space D′ of training points into a
number of hyper rectangles. The partition is done in such a way that input config-
urations with similar outputs fall within the same rectangle. The partition gives
rise to a set of if-else rules that can be represented as a decision tree. For each
hyper rectangle, a constant value is assigned—typically this is an average over the
output values that fall within the given hyper rectangle. An example tree which is
obtained on the CICE component data is shown in Fig. 1. Given an unseen input
x∗ ∈ D∗ ⊂ D, the algorithm uses the if-else rule to find the leaf and returns
the corresponding constant value as the predicted value. RF uses a collection
of regression trees, where each tree is obtained by the principle of recursive

Machine-Learning-Based Load Balancing for Community Ice Code 83

Fig. 1. Illustration of a decision tree obtained via recursive partitioning on CICE com-
ponent data for the task count 80.

partitioning. For each tree generation, the algorithm takes a subsample of random
points from the given training set. The subsample is either a bootstrap sample of
the same size drawn with replacement or a subset of smaller size, drawn without
replacement. Due to the randomness in the sampling, each subsample differs from
each other. Given that each individual tree is build on the subsample, it can dif-
fer significantly from other trees. For a given x∗, each tree can make a prediction
with respect to its own subsample. The power of RF comes from the aggregation
of predicted output values from different trees and the natural way of handling the
categorical parameters. Consequently, it can deal with large dimensional inputs
even in the presence of complex interactions and non-linearity.

SVM for nonlinear regression consists of mapping the given D′ of the training
points into a high dimensional feature space and performing linear regression in
the feature space:

g(D′) = 〈w · ψ(D′)〉 + b, (1)

where ψ : Rn → F being the nonlinear transformation, b being the bias term,
and w ∈ F . Finding g(D′) consists in specifying a loss function that need to
be optimized and a kernel function k(·) for nonlinearity transformation ψ. For
the former, we use ε intensive-loss function in which zero penalty is added to
the loss function when predicted value of a training point is within ε from its
observed value. For the latter, we use the widely used Gaussian radial basis
function kernel. Now, Eq. 1 can be written as follows:

g(D′) =
l∑

i=1

αi × [k(xi, x1), . . . , k(xi, xl)] + b, (2)

k(xi, xj) = exp
(

−||xi − xj ||22
2σ2

)
, (3)

84 P. Balaprakash et al.

where coefficients αi can be found by solving ε intensive-loss function, ||x−x′||22
is squared Euclidean distance that decreases with an increase in dissimilarity
between xi and xj , and σ is a parameter of the kernel.

GP follows a probabilistic approach for regression. Given a training data
of l points, GP assumes that Y = [y1, . . . , yl] as a sample from a l-variate
Gaussian distribution. For an unseen input x∗, the probability p(y∗|Y) follows
the Gaussian distribution N with a user defined kernel function k(·):

y∗|Y ∼ N (K∗K−1Y,K∗∗ − K∗K−1KT
∗), (4)

where

K =

⎡

⎢⎣
k(x1, x1) · · · k(x1, xn)

...
. . .

...
k(xn, x1) · · · k(xn, xn),

⎤

⎥⎦ (5)

K∗ = [k(x∗, x1), . . . , k(x∗, xn)],
K∗∗ = k(x∗, x∗).

Note that T represents matrix transpose operation. For k(·), we use the Gaussian
radial basis function as in Eq. 3. The predicted value ŷ∗ and variance var(y∗) of
y∗ are given by the parameters of N :

ŷ∗ = K∗K−1Y,

var(y∗) = K∗∗ − K∗K−1KT
∗ .

(6)

NN is a classical and one of most widely used supervised learning approaches.
We focus on a single-hidden-layer neural network, an effective variant that com-
prises one input layer, one hidden layers, and one output layer. The nonlinear
regression performed by NN can be written as follows:

Y = h(D′) = Bϕ(AD′ + a) + b,

where A and is the matrix of weights and bias vector for the first layer (between
input and hidden layer) and B and b are the weight matrix and the bias vector
of the second layer (between hidden and output layer). The function ϕ denotes
an element wise nonlinearity. The training in neural network consists in adapting
all the weights and biases A, B, a, and b to their optimal values for the training
set {(x1, y1)), . . . , (xl, yl))}. The optimization problem consists in minimizing the
squared reconstruction error

∑l
i=1 ||h(xi) − yi||2 and it can be solved effectively

with back-propagation algorithm.

4 Experimental Results

We evaluated the effectiveness of the proposed load-balancing algorithm with the
four machine-learning methods. In addition, we include two approaches in the

Machine-Learning-Based Load Balancing for Community Ice Code 85

comparison: Expert-knowledge-based enumeration (EE) and random search (RS).
EE is the current practice for finding the optimal load-balancing configuration for
the CICE component of the CESM. In addition to the application-specific con-
straints, expert knowledge of the code and the architecture were used to prune
the feasible set of configurations D for the CICE component. As a result, for each
task count c, there are 50 to 60 (|Dc|) feasible configurations; in total, for all the
10 task counts, there are |D| = 653 parameter configurations. This method evalu-
ates all 653 parameter configurations. Moreover, we followed the current practice
for defining the runtime f(x) for x: the code was run twice with the same x and
the shortest runtime was taken as f(x). In RS, for each task count c, parameter
configurations were sampled at random without replacement from Dc and were
evaluated. To minimize the impact of randomness involved in the initialization
procedure of Algorithm 1 and in the five approaches, we repeated all of them 10
times, each with a different random seed. Moreover, we stored the runtime of each
configuration from EE in a lookup table and reused the results for running all other
algorithms. For Algorithm 1, for each task count c, Dc obtained in the EE approach
was given as the configuration pool Xp, and the initial sample size ns was set to
5. The approaches were implemented and run in the R programming language
and environment [10] version 2.15.2 using the nnet (NN), kernlab (SVM, GP),
and randomForest (RF) packages. The default parameter values were used for
each method. Experiments were carried out on Intrepid, a BG/P supercomputer
at Argonne.

Sensitivity Analysis: First, we present an empirical analysis to explain why
the previously proposed analytical performance model fails to predict the run-
time of the CICE component and why distinct models may be constructed
for each task count. For this purpose, we used the RF method to analyze the
impact of each load-balancing parameter on the resulting runtimes. For the train-
ing data, we randomly sampled 50 % of the data (parameter configuration and
runtimes) obtained with EE approach. An RF model was fitted on this train-
ing set. The mean squared error (MSE) on the original training set is given

by
∑l

i=1(f(xi)−f̂(xi))
2

l , where l is the number of training points, and f(xi) and
f̂(xi) are the original and predicted runtime value of parameter configuration
xi, respectively. In order to assess the impact of a parameter m, the values of
m in the training set were randomly permuted. Again, an RF model was fit-
ted on this imputed training set, and the mean squared error was computed.
If a parameter m is important, then permuting the values of m should affect
the prediction accuracy significantly and eventually increase the mean squared
error. The results are shown in Fig. 2. We observe that the trend in the parame-
ter importance is not the same over all the task counts. For task counts up to
320, decomp.set and/or decomp.type have a strong impact on the runtimes; for
large task counts, they become relatively less important—max.block, block.x,
and block.y have a strong impact on the runtime. For 1024, only max.block,
block.x, and block.y have an impact on the runtime; the other three parame-
ters have negative %IncMSE, suggesting that they do not affect the runtime.
In summary, the impact of parameter values on the runtimes and the type of

86 P. Balaprakash et al.

Fig. 2. Sensitivity analysis of the load-balancing parameters on the runtime of the
CICE component for different task counts. For each parameter, the plot shows the
percentage increase in mean squared error (%IncMSE) when the values of the corre-
sponding parameter gets imputed.

nonlinear interactions between them change with an increase in the task counts.
The previously developed analytical model does not take this effect into account
for the CICE component, and consequently it falls short in runtime prediction.
Moreover, if we build a single model for all task counts with task count being an
input to the model, we might loose these task-count-specific interactions, thus
affecting the runtime quality of the obtained configurations.

Comparison Between Variants: With EE as a baseline, we next examined the
effectiveness of the five approaches in finding the optimal load-balancing configu-
ration for the CICE component. As a measure of the effectiveness of each variant,
we use the percentage deviation from the optimal runtime (%dev). Given a variant
v and task count c, this is given by fc

v−fc
opt

fc
opt

×100, where fc
v is the shortest runtime

obtained by variant v and fc
opt is the optimal runtime obtained from EE. Because

we repeated each method 10 times to reduce the impact of randomness, we con-
sider the mean percentage deviation from the optimal runtime of a variant as %dev
averaged over 10 repetitions. We also used a statistical t-test to check whether the
observed differences in the %dev of the variants are significant. Figure 3 shows the
comparison between the approaches. The results show that RS requires almost
the same number of evaluations as does EE for all task counts. These results indi-
cate that the problem of finding high-quality configurations is not an easy task;

Machine-Learning-Based Load Balancing for Community Ice Code 87

Fig. 3. Comparison between approaches for different task counts of the CICE compo-
nent. The lines represent the mean percentage deviation from the optimal runtime as
a function of the number of evaluated configurations.

clearly, we need more sophisticated approaches to find high-quality configurations
within fewer evaluations. The variants of Algorithm1 obtain optimal configura-
tions with fewer evaluations, and they outperform RS. NN completely dominates
all other variants and RS. The key advantage of NN comes from its requiring less
than 10 evaluations to find the optimal parameter configuration on 9 out of 10
task counts—only on c = 376, does it require 15 evaluations.

In Table 2, we analyze %dev of each variant, when it is allowed to perform
only 10 evaluations (for machine-learning variants this corresponds to five eval-
uations after the initialization). The results show that mean %dev of NN is zero
and it lower than all other variants. For all but one task counts, the observed
differences are significant in statistical sense. NN fails to find optimal runtime
for c = 376, where it is 6 % away from the optimal runtime and it is comparable
to other approaches.

As soon as a new evaluation becomes available, each machine-learning vari-
ants is retrained on all the available input-output pairs. This is the most com-
putationally expensive part in the iterative phase of Algorithm1. In Fig. 4, we
analyze the retraining time required by the machine-learning variants after each
evaluation. The reported time is an average time over all repetitions and task
count. The results show that NN outperforms all other variants in retraining

88 P. Balaprakash et al.

Fig. 4. Time taken by various machine-learning methods in Algorithm 1 for retraining
after each evaluation.

time. The time remains fairly constant throughout with an average of 0.5 s.
This can be attributed the effective back propagation algorithm adopted in the
underlying optimization routine. For GP and SVM, there is a slight increase in
retraining time. Nonetheless, the retraining time of RF increases linearly with
an increase in the number of training points suggesting that it might not be suit-
able for sequential learning with large number of points. Note that there exists
some advanced algorithm-specific techniques to avoid retraining from scratch,
however, none of the machine-learning methods adopts such technique in our
study. Furthermore, in all these algorithms, the time to predict an unseen input
x∗ is negligible (in the order of milli to micro seconds) because they belong to a
class of eager learning algorithms as opposed to lazy learning algorithms where
a model is built only when x∗ needs to be predicted.

5 Related Work

Compared with dynamic strategies [11–16], static load-balancing approaches
have received relatively less attention in the literature. The problem of static
load-balancing can be formulated as a graph-partitioning problem that belongs
to a class of NP-hard problem for which finding optimal solution is compu-
tationally hard. Many efficient algorithms are developed to tackle this prob-
lem in operations research community and are used for static load-balancing.
These algorithms can be grouped into geometry-based algorithms, graph-based
algorithms, and partitioning algorithms [17]. In [18], the authors carried out
an experimental comparison of eleven static load-balancing algorithms for het-
erogeneous distributed computing systems. They showed the relatively simple

Machine-Learning-Based Load Balancing for Community Ice Code 89

Table 2. Mean percentage deviation from the optimal runtime averaged over 10 repli-
cations with the maximum budget of 10 evaluations

Task count NN RF GP SVM RS

80 0.000 12.668 15.032 18.089 20.246

128 0.000 3.269 7.620 5.177 12.846

160 0.000 12.649 8.050 6.989 8.563

256 0.000 4.575 8.468 7.340 10.024

320 0.000 2.208 8.818 6.709 13.105

376 6.005 3.186 8.132 7.206 7.456

512 0.000 10.269 11.794 6.472 9.090

640 0.000 2.674 20.058 14.072 10.292

800 0.000 7.435 5.996 6.182 8.770

1024 0.000 6.645 4.985 5.966 13.241

Note: The value is typeset in italics (bold) when a vari-
ant is significantly worse (better) than NN according
to a t-test with significance (alpha) level 0.05.

Min-Min heuristic performs well in comparison to the other techniques such as
simulated annealing and genetic algorithms, and tabu search. However, the state-
of-the-art high-performing algorithms comprises hybrid algorithms, multilevel
approaches, and parallel implementations of the above algorithms [17]. We refer
the reader to [17,19] for a survey for static load balancing approaches. Recently,
in [20], a genetic algorithm was adopted for tasks scheduling and load balanc-
ing in heterogeneous parallel multiprocessor system. Nonetheless, the domain-
specific constraints of the CICE component make the search problem hard and
prevents the straightforward adoption of heuristic search algorithms [21]. In order
to handle these constraints effectively, the search algorithms need a sophisticated
constraint-handling mechanism; consequently they loose generality and become
problem-specific.

The idea of using machine learning in load-balancing has received consid-
erable attention for dynamic strategies. Examples include neural network [22],
decision tree [23], and reinforcement learning approaches [24]. However, to the
best of our knowledge, the adoption of machine-learning approaches for appli-
cation and architecture specific static load-balancing has not been investigated
before. Finally, this is the first work on the use of machine learning approaches
for analyzing the sensitivity of the load-balancing parameters.

6 Summary and Outlook

We developed a machine-learning-based approach for static load-balancing prob-
lem and applied it for load balancing the CICE component of the CESM run-
ning on BG/P. We deployed a machine-learning method as a diagnostic tool for

90 P. Balaprakash et al.

analyzing the sensitivity of the load-balancing parameters on the runtime and
provided an explanation for inadequacy of the analytical performance model.
The main contribution of the paper is the development and empirical analysis
of the machine-learning-based algorithm that allowed us to load balance the
CICE component of the CESM on BG/P with significant savings in core-hour
usage. Compared to the current practice of expert-knowledge-based enumeration
over feasible parameter configurations, we showed that the proposed algorithm
requires 6x fewer evaluations to find the optimal load-balancing configurations.

A inherent limitation of our algorithm consists in the sequential evaluation
of parameter configurations that will affect the wall clock time. To address this
issue, we will develop unsupervised learning methods to partition the feasible set
into a number of similar groups and learning those regions in parallel. To that
end, we will investigate parallel machine-learning algorithms. Since the inefficient
processor allocations of CICE component can affect overall scaling of the CESM,
we will use the proposed approach and assess the overall performance of the
CESM. Furthermore, two projects, Climate-Science Computational End Station
Development and Attributing Changes in the Risk of Extreme Weather and
Climate, granted computational time on ALCF’s BG/P and Q supercomputers
under the DOE INCITE program will directly benefit from this work. We are
planning to investigate the effectiveness of the proposed algorithm for load-
balancing various climate simulations in these projects.

Acknowledgments. This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research, under Contract DE-AC02-
06CH11357. An award of computer time was provided by the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE) program. This research
used resources of the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-06CH11357.

References

1. Metz, B., Davidson, O., Bosch, P., Dave, R., Meyer, L.: Contribution of work-
ing group III to the fourth assessment report of the Intergovernmental Panel on
Climate Change (2007)

2. MINOTAUR: a toolkit for MINLP. http://wiki.mcs.anl.gov/minotaur/index.php/
Main Page

3. 2013. http://www.cesm.ucar.edu/events/ws.2012/Presentations/SEWG2/craig.
pdf

4. Bishop, C.M., et al.: Pattern Recognition And Machine Learning. Springer,
New York (2006)

5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
6. Hearst, M.A., Dumais, S., Osman, E., Platt, J., Scholkopf, B.: Support vector

machines. Intell. Syst. Appl. 13(4), 18–28 (1998). IEEE
7. Rasmussen, C.E., Williams, C.K.: Gaussian Processes For Machine Learning. adap-

tive computation and machine learning. MIT Press, Cambridge (2005)

http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page
http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page
http://www.cesm.ucar.edu/events/ws.2012/Presentations/SEWG2/craig.pdf
http://www.cesm.ucar.edu/events/ws.2012/Presentations/SEWG2/craig.pdf

Machine-Learning-Based Load Balancing for Community Ice Code 91

8. Haykin, S.: Neural Networks: A Comprehensive Foundation, 1st edn. Prentice Hall
PTR, Upper Saddle River (1994)

9. Atkinson, E.J., Therneau, T.M.: An Introduction To Recursive Partitioning Using
The Rpart Routines. Mayo Foundation, Rochester (2000)

10. R Core Team, R: A Language and Environment for Statistical Computing, R Foun-
dation for Statistical Computing, Vienna, Austria (2013). http://www.r-project.
org

11. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++. ACM SIGPLAN Not. 28(10), 91–108 (1993)

12. Barker, K., Chernikov, A., Chrisochoides, N., Pingali, K.: A load balancingframe-
work for adaptive and asynchronous applications. IEEE Trans. Parallel Distrib.
Syst. 15(2), 183–192 (2004)

13. Barker, K.J., Chrisochoides, N.P.: An evaluation of a framework for the dynamic
load balancing of highly adaptive and irregular parallel applications. In: Proceed-
ings of the 2003 ACM/IEEE Conference on Supercomputing, p. 45. ACM (2003)

14. Huang, C., Zheng, G., Kalé, L., Kumar, S.: Performance evaluation of adaptive
MPI. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 12–21. ACM (2006)

15. Boneti, C., Gioiosa, R., Cazorla, F.J., Valero, M.: A dynamic scheduler for bal-
ancing HPC applications. In: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, p. 41. IEEE Press (2008)

16. Sharma, R., Kanungo, P.: Dynamic load balancing algorithm for heterogeneous
multi-core processors cluster. In: 2014 Fourth International Conference on Com-
munication Systems and Network Technologies (CSNT), pp. 288–292. IEEE (2014)

17. Hu, Y., Blake, R.: Load balancing for unstructured mesh applications. Parallel
Distrib. Comput. Pract. 2(3), 117–148 (1999)

18. Braun, T.D., et al.: A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems. J. Parallel
Distrib. Comput. 61(6), 810–837 (2001)

19. Ichikawa, S., Yamashita, S.: Static load balancing of parallel PDE solver for distrib-
uted computing environment. In: Proceedings of the 13th International Conference
on Parallel and Distributed Computing Systems, pp. 399–405 (2000)

20. Effatparvar, M., Garshasbi, M.: A genetic algorithm for static load balancing in
parallel heterogeneous systems. Procedia Soc. Behav. Sci. 129, 358–364 (2014)

21. Balaprakash, P., Wild, S.M., Hovland, P.D.: Can search algorithms save large-scale
automatic performance tuning? In: International Conference on Computational
Science (2011)

22. Jia, Y., Sun, J.-Z.: A load balance service based on probabilistic neural network.
In: International Conference on Machine Learning and Cybernetics, vol. 3, pp.
1333–1336. IEEE (2003)

23. Dantas, M.A., Pinto, A.R.: A load balancing approach based on a geneticmachine
learning algorithm. In: 19th International Symposium on HighPerformance Com-
puting Systems and Applications (HPCS 2005), pp. 124–130. IEEE (2005)

24. Helmy, T., Shahab, S.A.: Machine learning-based adaptive load balancing frame-
work for distributed object computing. In: Chung, Y.-C., Moreira, J.E. (eds.) GPC
2006. LNCS, vol. 3947, pp. 488–497. Springer, Heidelberg (2006)

http://www.r-project.org
http://www.r-project.org

	Machine-Learning-Based Load Balancing for Community Ice Code Component in CESM
	1 Introduction
	2 The CICE Component on BG/P
	3 Machine-Learning Based Load-Balancing Algorithm
	4 Experimental Results
	5 Related Work
	6 Summary and Outlook
	References

