
A Study of SpMV Implementation Using MPI
and OpenMP on Intel Many-Core Architecture

Fan Ye1,2(B), Christophe Calvin1, and Serge G. Petiton2,3

1 CEA/DEN/DANS/DM2S, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
2 Maison de la Simulation, USR3441,

Digiteo Labs Bât 565, 91191 Gif-sur-Yvette, France
fan.ye@cea.fr

3 Laboratoire d’Informatique Fondamentale de Lille,
Université des Sciences et Technologies de Lille, 59650 Villeneuve d’Ascq, France

Abstract. The Sparse Matrix-Vector Multiplication (SpMV) is funda-
mental to a broad spectrum of scientific and engineering applications,
such as many iterative numerical methods. The widely used Compressed
Sparse Row (CSR) sparse matrix storage format was chosen to carry on
this study for sustainability and reusability reasons.

We parallelized for Intel Many Integrated Core (MIC) architecture a
vectorized SpMV kernel using MPI and OpenMP, both pure and hybrid
versions of them. In comparison to pure models and vendor-supplied
BLAS libraries across different mainstream architectures (CPU, GPU),
the hybrid model exhibits a substantial improvement.

To further assess the behavior of hybrid model, we attribute the inad-
equacy of performances to vectorization rate, irregularity of non-zeros,
and load balancing issue. A mathematical relationship between the first
two factors and the performance is then proposed based on the experi-
mental data.

1 Introduction

The SpMV is vital to scientific and engineering applications. It is the essential
operation of many iterative linear and eigen solvers such as Conjugate Gradient
(CG) and Generalized Minimum Residual (GMRES). In this paper, we take Intel
Xeon Phi coprocessor as the underlying system for revealing some idiosyncrasies
in an efficient SpMV implementation. A simplified way to view this many-core
architecture is a chip-level SMP which offers remarkably high bandwidth. The
prototype C0 codenamed Knights Corner (KNC) has 61 cores, each featuring
a 512-bit wide vector unit and being capable of running up to 4 HW threads.
These factors enable such single chip to yield over 1 TFlops double precision
peak performance.

Due to sparse matrices’ nature of irregularity, the memory subsystem often
appears as the main bottleneck of SpMV’s efficiency in terms of FLOPS
(FLoating-point Operations Per Second). Furthermore, in a shared memory
context with a large count of cores such as MIC, the scalability behavior is
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 43–56, 2015.
DOI: 10.1007/978-3-319-17353-5 4



44 F. Ye et al.

not obvious which may depend on issues like data locality and access pattern.
A common approach to address these problems is to propose a new sparse matrix
storage format [10]. However, some certain techniques used in new formats may
become less pertinent as the targeting architecture evolves. They may need to
be adapted accordingly. Another potential downside of a new format is that it is
hard to implement it in a large numerical package such as PETSc [1] or Trilinos
[7], and thus be not easy to integrate or interface in large scientific applications.
Both PETSc and Trilinos adopt the CSR (Compressed Row Storage) as the
underlying sparse format. We want to study the SpMV kernel within the con-
text of linear or eigen solvers, making the availability of these numerical packages
prominent to us. As a result, we chose to use CSR format.

The preceding studies [4,5] hold pessimistic views of hybrid fashion com-
pared to a unified MPI approach. The related literatures usually underline the
importance of network performance in explaining the gap between different
models. Therefore the high on-chip bandwidth of MIC drives us to investigate
the potential benefit of using hybrid programming. We refer the hybrid execu-
tion here to a scenario where the coprocessor resources (cores and caches) are
divided into several separate domains and each domain is governed by one MPI
process and shared by a number of OpenMP threads.

To set an architectural baseline, we also perform the tests over the same
matrix suite on dual Intel Sandy-Bridge octa-core processors, as well as the
NVIDIA Tesla K20 GPU, using the vendor-supplied BLAS libraries.

The outline of this paper is structured as follows: the Sect. 2 details the
architectural features of MIC, the Sect. 3 discusses different dimensions of par-
allelisms of a vectorized SpMV kernel, the Sect. 4 is devoted to the experimental
environment and results, the Sect. 5 concentrates on the performance analysis
and modeling, and the Sect. 6 concludes.

2 Architectural Overview of MIC

The Intel Xeon Phi coprocessor is x86-based many-core architecture. It has
61 cores connected via a 512-bit bidirectional ring interconnect. There are
8 memory controllers supporting up to 16 GDDR5 channels. The core’s memory
interface are 32-bit wide with two channels which sustains a total bandwidth
8.4 GB/s per core. The STREAM Triad benchmark achieves around 160 GB/s
on this architecture with ECC turned on.

There are two levels of cache memory. The level one cache has 32 KB instruc-
tion cache and 32 KB data cache. Associativity was increased to 8-way, with a
64 byte cache line. The bank width is 8 bytes. Data return is out-of-order. The
L1 cache has a load-to-use latency of 1 cycle which allows an integer value
loaded from the cache to be used in the next clock by an integer instruction.
The L2 cache has a unified 512 KB capacity. Each core can access to all other L2
cache via the ring interconnection which makes a collective L2 cache size up to
32 MB. The L2 organization comprises 64 bytes per way with 8-way associativity,
1024 sets, 2 banks, 32 GB (35 bits) of cacheable address range and a raw latency
of 11 clocks [8].



A Study of SpMV Implementation Using MPI and OpenMP on Intel 45

The vector processing units (VPU) of each core contains 32 × 512 bit SIMD
registers which accommodates eight 64-bit values or sixteen 32-bit values. The
VPU supports Fused Multiply-Add (FMA) operations which, for benchmarking
purposes, counted as two floating operations. All these factors enable one single
chip to yield over 1 TFlops double precision peak performance.

3 Sparse Matrix Vector Product Implementations
for CSR Format

The CSR [11] comprises of 3 arrays, row ptrs, col inds, and vals, representing
respectively the position of the first nonzero element of each row stored inside
of vals, the column indices of every single nonzero element stored in vals, and
the nonzero entries of the matrix in row-major order. Taking the standard CSR
format as a starting point, we derived a vectorized kernel for SpMV.

Algorithm 1. Vectorized multiplication of the kth row (zero-based) of a matrix
stored in CSR format (in row ptrs, col inds, and vals) with the vector x.

reg y ← 0
start ← row ptrs[k]
end ← row ptrs[k + 1]
for i = start to end do

writemask ← (end − i) > 8 ? 0xff : (0xff � (8 − end + i))
reg ind ← load(writemask,&col inds[i])
reg val ← load(writemask,&vals[i])
reg x ← gather(writemask, reg ind, x)
reg y ← fmadd(reg x, reg val, reg y, writemask)
i = i + 8

end for
y[k] = reduce add(reg y)

3.1 Vectorized Kernel

For CSR, a natural way to parallelize the SpMV is to assign the subsets of rows
to different execution units. The elementary operation is then shrinked into the
product of a compressed sparse vector with a dense vector. By using the SIMD
instruction we insert at the lowest dimension a parallelism resulting from the
vectorization. In this direction we propose the row-wise vectorized kernel for
SpMV, which is similar to recent work on SpMV for MIC [10]. The Algorithm 1
delineates the SIMDized kernel that handles the row-wise multiplication. The
writemask functions as a shifting window ensuring only the lower portion of
vector being operated when there’re less than 8 nonzero elements left in a row.
The “8” in Algorithm 1 implies 8 double precision floating numbers which fill the
512-bits SIMD units in MIC. It is worth noting that, to ensure the correctness of
results, the CSR used here must not be a simplified form for symmetric matrices.



46 F. Ye et al.

3.2 Hierarchical Exploitation of Hardware Resources

The second dimension of parallelism is built upon the number of cores. Along
with the hierarchical memory subsystem, these resources can be exploited by
processes and threads spawned and managed by the multiprocessing techniques.
In most cases, it is easier to implement with the pure model than the hybrid one.
In this paper we discuss both pure and hybrid implementations. We expect to
promote the efficiency of data access and alleviate the scaling pressure occurred
in the pure model by mixing different approaches.

We define the SpMV process y ← Ax + y as two phases:
1. The computing phase, where all elements of y should be calculated.
2. The communication phase, where y is copied to x.

The communication phase occurred usually in a iterative solver where the SpMV
process needs to be repeated until the convergence of the solver. Because the mem-
ory space is unified for all threads, the communication phase of pure OpenMP
can’t be started before the termination of computing phase. However, with the
participation of MPI, these two phases could be partially overlapped. In our study,
we collect the computing phase timings corresponding to the slowest MPI process
of each execution. These timing data were used to deduce the performance of
SpMV. To obtain statistically meaningful results, we iterated 100 times for each
measure of SpMV timing.

In terms of implementations, some conventional optimizations are applied to
both pure and hybrid cases, such as software prefetching, and streaming stores.
The rows of matrix are distributed so that each process receives the same num-
ber of nonzero elements. The minimal unit of partioning is one row. We also
altered the number of processes and threads and attempted exhaustively all
possible combinations of processes and threads to seek the best configuration of
maximizing the performance for each test matrix. In particular, we don’t take
advantage of matrix symmetry to achieve better performance. All matrices are
considered equally as non-symmetric ones. For the sake of better cache usage
and to avoid oversubscription of threads, it is important to configure properly
the processes’ and threads’ affinity. What’s more, the highest numbered core of
MIC (61th) should be left unused so it may process the interference from OS
threads.

4 Experimental Results

4.1 Matrix Suite

In practice, we have 3 principles in selecting the test matrices [6]. Firstly, we prefer
the matrices that have been used in previous literatures. Secondly, the matrices
should have a larger volume in memory than 30 MB, which is the aggregate L2
cache size of Xeon Phi, in order to neutralize the promotion in temporal locality
induced by repeated runs of SpMV kernel. Lastly, our future study of eigensolvers
requires the matrices to be square. We also include a dense 8000 × 8000 matrix
(dense8000 ) expressed in CSR format. We outline the basic characteristics of
18 selected matrices in Table 1.



A Study of SpMV Implementation Using MPI and OpenMP on Intel 47

Table 1. List of main characteristics of test matrices. nnz is the number of nonzero
elements. nrow is the square matrix dimension.

Name Dim (K) nnz (M) nnz/nrow Name Dim (K) nnz (M) nnz/nrow

mixtank new 29.957 1.995 66.597 sme3Db 29.067 2.081 71.595

mip1 66.463 10.353 155.768 ldoor 952.203 46.522 48.858

rajat31 4690.002 20.316 4.332 Si41Ge41H72 185.639 15.011 80.863

nd6k 18.000 6.897 383.184 pdb1HYS 36.417 4.345 119.306

cage15 5154.859 99.199 19.244 bone010 986.703 71.666 72.632

crankseg 2 63.838 14.149 221.637 dense8000 8 64.000 8000

ns3Da 20.414 1.680 82.277 pwtk 217.918 11.634 53.389

in-2004 1382.908 16.917 12.233 torso1 116.158 8.517 73.318

circuit5M 5558.326 59.524 10.709

4.2 Experimental Environment

Different SpMV kernels were conducted and compared on various architectures.

– Intel MIC, pre-production of KNC prototype C0, 61 cores running at 1.2 GHz,
16 GB GDDR5 memory with ECC enabled, installed with MPSS v3.1.

– Dual-socket Intel Xeon E5-2670, 16 core running at 2.6 GHz, 64 GB DDR
memory with ECC enabled.

– NVIDIA K20 GPU, 2496 cores running at 0.7 GHz, 5 GB GDDR5 memory
with ECC enabled.

On MIC, SpMV kernels of pure OpenMP, hybrid MPI/OpenMP, MKL (Intel
Math Kernel Library, v11.1) were tested. On CPU, only the MKL SpMV routine
was tested. On GPU, cuSPARSE (NVIDIA CUDA Sparse Matrix library, v2.6)
kernel was tested. All tested vendor-supplied BLAS libraries use the CSR sparse
format.

4.3 OpenMP and MKL Performances

The SpMV is one of the challenging instances that is known to be memory
bandwidth bound. Its streaming memory access pattern makes the cores hard to
run at full speed. Adding the number of threads helps to hide the latency due to
data miss. But the increase of virtual cores might leads to memory contention and
network congestion, thus exhibits a poor scaling performance. At core level, the
vectorization is necessary for improving performance. However, it also burdens
more on memory subsystem for the vector instructions consume much more data
than scalar ones. The load of data is less efficient for x than for col inds or vals.
A unified address of x for all cores may drive the problem even more severe.
We implemented on MIC a multithreaded SpMV kernel using OpenMP. The
MKL version was also tested as it is based on OpenMP threading environment
therefore comparable to our implementation. We varied the number of threads



48 F. Ye et al.

Fig. 1. Performances of OpenMP version of SpMV kernel. For each test matrix the
performances are plotted in different colors depending on the number of threads used
(Color figure online).

(from 1 to 4 threads per core) while measuring the performances. For each matrix
we plot in Figs. 1 and 2 the bars of performance among which from top to bottom
the performances corresponding to different thread configuration (1, 2, 3 or 4
threads per core) are shown in a descending order. All bars started from 0
GFlops. The lower part of the bars may be covered by other bars with smaller
magnitude except the smallest one.

From these two figures we observe a similar behavior of both implementa-
tions on different matrices. None of them performs better in average than the
other one, except that the MKL tends to have better performance when using
more threads per core. We argue that’s because of its better thread scheduling
and some low-level optimizations. Both implementations are nowhere near the
theoretical or achievable peak performance of MIC architecture.

4.4 Hybrid MPI/OpenMP Performances

To better deal with the issue of thread scaling and alleviate the memory con-
tention, we propose to implement the hybrid MPI/OpenMP SpMV kernel. We
expect to promote the efficiency of multithreading, scaling and cache utilization.
In this case, we evenly divide the cores’ domain according to common resources
(cores, caches) and place one MPI process for each subdomain. In each subdo-
main, we spawn the same number of threads. The experiments were conducted



A Study of SpMV Implementation Using MPI and OpenMP on Intel 49

Fig. 2. Performances of MKL version of SpMV kernel. For each test matrix the perfor-
mances are plotted in different colors depending on the number of threads used (Color
figure online).

using all possible combinations of processes and threads with careful pinnings.
Every subdomain governed by one MPI process is guaranteed to have the same
and integer number of cores. And the highest numbered core of MIC is always
free from application threads. All threads participate in the parallelization of
vectorized SpMV kernel. Only the master thread manages the communication.
The hybrid algorithm is described in Algorithm2. We plot the gain of hybrid
model against pure OpenMP in the Fig. 3. Over the entire matrix suite, the
hybrid model exhibits a substantial performance improvement except in one
case (cage15 ).

Algorithm 2. Hybrid MPI/OpenMP algorithm. Each MPI process accommodates
the same number of OpenMP threads.

Distribute row blocks (rowptrs, colinds, vals) of A so that each MPI process receives
approximately same number of nonzero elements
Replicate x on all MPI processes, allocate y (same size of x) on all MPI processes
Apply locally the vectorized SpMV kernel using OpenMP multithreading with
“guided” scheduling
Gather the results from other MPI processes and update the local portion of y



50 F. Ye et al.

Fig. 3. Gain in percentage of hybrid MPI/OpenMP SpMV kernel against the pure
OpenMP one.

4.5 Performances of SpMV Kernel on Various Architectures

Finally, the performances of different SpMV kernels will be presented here. The
Fig. 4 delineates the performances of hybrid model versus vendor-supplied BLAS
libraries across a variety of architectures. In most cases, the hybrid model outruns
the other ones. Since we used the CSR format for all architectures, the results
do not represent the inherent capacity of some architecture such as GPU. But
it shows a path to better exploit the MIC architecture. We notice in some cases
that CPU still achieved better performances. We will try to understand this
phenomenon in Sect. 5.

5 Performance Analysis and Modeling

The experimental results reveal a considerable advantage of hybrid model over
the pure ones. However, not being able to determine in advance the optimal
combination of MPI processes and OpenMP threads invalidates this approach
simply because the best results are irreproducible. As a consequence, it is imper-
ative to devise a method to sketch the behavior of the machine. We will discuss
qualitatively the reasons of performance improvement and the primary perfor-
mance restraining factors, from where we develop a mathematical relationship
that quantifies the effects of different factors. The effectiveness of the deduced
model will be verified at the end of this section.



A Study of SpMV Implementation Using MPI and OpenMP on Intel 51

Fig. 4. Performances of different SpMV kernels on various architectures.

5.1 Performance Analysis

First thing to understand is the performance improvement due to the mixture
of MPI and OpenMP. We argue that’s mainly because of the promotion of data
locality and thread scalability. The promoted data locality improves the data
reusability in terms of better cache utilization. It also mitigates the memory
contention. More specifically, the vector x is replicated, thus avoiding contention
when large number of threads read elements of x. This would also be possible in
pure OpenMP via thread-private variables. However, that means the replication
of x has to be made on all threads. The memory usage would be varied if number
of threads changes. In the case of hybrid model, the x is only replicated on each
process and shared by threads belonging to that process which creates us a
higher degree of flexibility. In addition, the rows of matrix A is distributed to
different memory regions. Therefore, these data are spatially local to the process
domain. By carefully binding the processes to the physical cores, the data are
stored uniformly in the memory space. Therefore it is more likely to generate a
higher aggregate bandwidth in the on-chip ring network.

The scaling factor should also be considered. In a large many-core system, the
multithreading overheads such as loop scheduling overheads may not be linear
when the number of threads grows. However, in hybrid model, each process keeps
a relatively small number of threads making it easier to scale.



52 F. Ye et al.

There are other potential advantages for hybrid model as well. For example,
it is straightforward to implement it in a numerical software environment such as
Trilinos, where the underlying MPI/OpenMP modules are already encapsulated
and ready to use.

In spite of some performance improvement, the hybrid SpMV kernel still
performs poorly in some cases compared to other implementations. The poor
performances are likely to occurred in matrices having a low average number
of nonzero elements1, as seen in Table 1 for rajat31, cage15, in-2004, circuit5M.
However, these are not the only matrices behaving badly. The performances of
ns3Da and sme3Db are not promising either whereas they have decent average
numbers of nonzero elements. Further research shows that their nonzero elements
are distributed dispersedly and sparsely along the rows, which may lead to poor
vectorization efficiency. Since each thread performs the vectorized multiplica-
tion between two arrays at a time, small number of nonzeros per row makes the
vector instruction overheads significant compared to the whole execution time,
thus inducing a low vectorization rate. In general, low vectorization rate shakes
the foundation of producing high performance. Though this reasoning does not
applied well in ns3Da and sme3Db. The nonzero elements of these two matrices
are not only numerous but also uniformly spreaded. The vectorization should be
well conducted unless certain operation described in Algorithm 1 decelerates the
computation. The most probable explanation would be that the gather instruc-
tion appeared in line 8 of Algorithm1 cancels out the high vectorization rate
because of its long latency. The irregularity of nonzero elements makes the load
of x inefficient, thus causing the unexpected cache misses and eventually bad
performance.

Besides these two factors, there should be one more concern linked to the
message passing programming, which is the load balancing issue. In the hybrid
model, the processes are independent and the last terminated process determines
the global performance. In our case, this issue is connected to the row partitioning
policy. Using a dynamic instead of static row distributing strategy may improve
load balancing. We will include this study in our future works.

5.2 Performance Modeling

Definition 1. For a given matrix, let the nnz be the number of nonzero ele-
ments. If t is the execution time of SpMV computing phase defined in Sect. 3.2,
then the performance P of a hybrid SpMV kernel is defined as

P =
2 nnz

tmax

where tmax is the execution time of the last terminated MPI process.

1 The average number of nonzero elements is defined as the quotient of total number
of nonzero elements over the row dimension.



A Study of SpMV Implementation Using MPI and OpenMP on Intel 53

If nnzglob is the total number of nonzero elements in a given matrix, then the
global performance Pglob is given by

Pglob =
2 nnzglob

tmax

To properly model the performance, we want to seperate the load balancing
factor from the vectorization rate and nonzero elements’ irregularity. Since the
tmax is the time of the slowest MPI process, it is more accurate to obtain its
local performance Plocal by applying the same formula:

Plocal =
2 nnzlocal

tmax
=

nnzlocal
nnzglob

Pglob

where nnzlocal is the number of nonzero elements of the row block assigned
to the slowest process. We measured the execution time of the slowest process
with its rank recorded. The ranking information helps to identify the row blocks
assigned to the processes. Since thread is the minimal execution unit which
performs vector instructions, the per thread performance is more meaningful for
characterizing the indicators discussed in the last subsection.

Definition 2. If P is the aggregate performance of nthd number of threads, then
the per-thread performance is estimated as

Pthd =
P

nthd

Assume the nthd is the number of threads spawned within the slowest process,
then the local per-thread performance is

Pthd =
Plocal

nthd

In this context, two indicators are proposed to quantify the SIMD efficiency
as well as the impact of nonzero elements’ dispersion. The first one is the aver-
age number of nonzero elements. There are at least three features helping to set
up the functional relationship between this indicator and the per-thread perfor-
mance. All these features are discussed without the interference of the second
indicator.

1. If the number of nonzero elements equals to 0, the performance should also
be 0. However, as the average number of nonzero elements starts from 0, the
impact of vector instruction overheads might diminish rapidly.

2. Bigger the average number of nonzero elements is, less amplification of per-
formance is gained.

3. The performance should have an upper bound as the number of nonzero
elements is extremely large.



54 F. Ye et al.

Fig. 5. The relationships between two indicators and the performance. The first indi-
cator is the average number of nonzero elements per row. The second indicator is
the average number of occurrences when the distance between any pair of contiguous
nonzero elements within a row is greater than 2.

Such relationship could be delineated by the blue curve in Fig. 5. With more
nonzero elements in a row we have generally better performance, if given a
fixed level of nonzero elements’ dispersion. The second indicator should then
be able to describe the “level of dispersion”. A direct solution is to estimate
the cache misses. However, the cache behavior in modern architecture depends
on, including but not limited to, cache capacity, cache associativity, cache line
width, cache levels, and replacement policy. It is highly unpredictable using a
low-cost model. Considering its complexity, this method is less practical. We are
searching for a convenient and simple approach to establish the second indicator.
It turns out that a simple trait of matrix, which based on the distances between
each pair of contiguous nonzero elements in a row, is an effective indicator. It
refers to the average number of occurrences when such distance is greater than 2.
Similar to the first indicator, it averages over all studied rows. The red convex
decreasing curve with triangle markers in Fig. 5 depicts the attenuation caused
by the second indicator to the performance. According to the graphs of two
indicators, we give the functional form of regression model in Eq. 1, where P̂thd

is the estimated per-thread performance, nnz is the first indicator and the d is
the second indicator.

P̂thd(nnz, d) = α

[
1 − exp

(
−nnz

ε1

)]
exp

(
− d

ε2

)
(1)

The experimental data were collected from the slowest processes of different
matrices listed in Table 1. These data were processed to obtain Plocal, nthd,
nnzlocal, dlocal for the use of regression analysis.



A Study of SpMV Implementation Using MPI and OpenMP on Intel 55

Fig. 6. The real and the estimated local per-thread performances over a set of test
matrices.

The Fig. 6 draws the real and the estimated local per-thread performances
over a set of test matrices. The local performance were collected from the slowest
process of each execution. It is based on this set of data that we obtained the
following coefficients. The estimated values are:

α̂ = 187.5, ε̂1 = 55, ε̂2 = 40

where the α̂ corresponds to the per-thread performance (in MFlops) of dense8000.
Considering its large average number of nonzero elements per row and continuous
nonzero elements, it should execute almost optimally.

6 Conclusions

The SpMV is the key kernel that constitutes the main process in many itera-
tive numerical methods. In this paper, we investigate two programming models,
the pure OpenMP and the hybrid MPI/OpenMP. Starting from a vectorized
CSR SpMV kernel, we proposed different ways of parallelizing it. A set of eval-
uations on various mainstream architectures (Intel Dual-Socket Sandy Bridge,
NVIDIA K20 GPU) was conducted by using not only our own implementations
but also the vendor supplied BLAS libraries. The results suggest that the hybrid
MPI/OpenMP model is very promising on Intel MIC architecture. It can help
to reduce the scaling overheads and promote data locality compared to the pure
models, thus improving substantially the performance.

In order to better understand the performance of hybrid model, we identi-
fied 3 performance indicators, namely the average number of nonzero elements,



56 F. Ye et al.

the average number of occurrences when the distance between any two con-
tiguous nonzero elements within a row is greater than 2, along with the load
balancing. We studied the impacts of the first two indicators within the last
terminated process and came up with a regression model based on the exper-
imental data. We also estimated the regression coefficients and obtained good
fitting results.

References

1. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G.,
McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page (2013). http://www.mcs.
anl.gov/petsc

2. Berrendorf, R., Nieken, G.: Performance characteristics for OpenMP constructs on
different parallel computer architectures. Concurrency Pract. Exp. 12(12), 1261–
1273 (2000)

3. Bull, J.M.: Measuring synchronisation and scheduling overheads in OpenMP. In:
Proceedings of First European Workshop on OpenMP, pp. 99–105 (1999)

4. Cappello, F., Etiemble, D.: MPI versus MPI+OpenMP on IBM SP for the NAS
benchmarks. In: Proceedings of the 2000 ACM/IEEE Conference on Supercom-
puting, Supercomputing 2000. IEEE Computer Society, Washington, DC (2000).
http://dl.acm.org/citation.cfm?id=370049.370071

5. Chow, E., Hysom, D.: Assessing performance of hybrid MPI/OpenMP programs on
SMP clusters. Technical report, Lawrence Livermore National Laboratory (2001)

6. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw 38(1), 1:1–1:25 (2011). http://doi.acm.org/10.1145/2049662.2049663

7. Heroux, M., Bartlett, R., Hoekstra, V.H.R., Hu, J., Kolda, T., Lehoucq, R.,
Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R.,
Willenbring, J., Williams, A.: An overview of trilinos. Technical report, SAND2003-
2927, Sandia National Laboratories (2003)

8. Intel: Intel Xeon Phi Coprocessor System Software Developers Guide. Technical
report (2012)

9. Kourtis, K., Goumas, G., Koziris, N.: Exploiting compression opportunities to
improve SpMxV performance on shared memory systems. ACM Trans. Architec.
Code Optim. 7(3), 16:1–16:31 (2010)

10. Liu, X., Smelyanskiy, M., Chow, E., Dubey, P.: Efficient sparse matrix-vector mul-
tiplication on x86-based many-core processors. In: Proceedings of the 27th Inter-
national ACM Conference on International Conference on Supercomputing, ICS
2013, pp. 273–282. ACM, New York (2013). http://doi.acm.org/10.1145/2464996.
2465013

11. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (2003)

12. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimiza-
tion of sparse matrix-vector multiplication on emerging multicore platforms. In:
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC 2007, pp.
38:1–38:12. ACM, New York (2007). http://doi.acm.org/10.1145/1362622.1362674

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://dl.acm.org/citation.cfm?id=370049.370071
http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2464996.2465013
http://doi.acm.org/10.1145/2464996.2465013
http://doi.acm.org/10.1145/1362622.1362674

	A Study of SpMV Implementation Using MPI and OpenMP on Intel Many-Core Architecture
	1 Introduction
	2 Architectural Overview of MIC
	3 Sparse Matrix Vector Product Implementations for CSR Format
	3.1 Vectorized Kernel
	3.2 Hierarchical Exploitation of Hardware Resources

	4 Experimental Results
	4.1 Matrix Suite
	4.2 Experimental Environment
	4.3 OpenMP and MKL Performances
	4.4 Hybrid MPI/OpenMP Performances
	4.5 Performances of SpMV Kernel on Various Architectures

	5 Performance Analysis and Modeling
	5.1 Performance Analysis
	5.2 Performance Modeling

	6 Conclusions
	References


