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Abstract. We consider the solution of sparse linear systems using direct
methods via LU factorization. Unless the matrix is positive definite,
numerical pivoting is usually needed to ensure stability, which is costly to
implement especially in the sparse case. The Random Butterfly Transfor-
mations (RBT) technique provides an alternative to pivoting and is eas-
ily parallelizable. The RBT transforms the original matrix into another
one that can be factorized without pivoting with probability one. This
approach has been successful for dense matrices; in this work, we inves-
tigate the sparse case. In particular, we address the issue of fill-in in the
transformed system.

1 Introduction

When solving the linear systems using the LU or the LDLT factorizations,
numerical pivoting is often needed to ensure stability. Pivoting prevents division
by zero or by small quantities by permuting on the fly the rows and/or columns of
the matrix so that the pivotal element is relatively large in magnitude. Pivoting
involves irregular data movement and can significantly impact the speed of the
factorization, especially on large parallel machines. This issue arises in both
unsymmetric and symmetric cases, and for both dense and sparse factorizations.
The ScaLAPACK [7], MAGMA [20] and PLASMA [17] dense linear algebra
libraries contain a Cholesky factorization for positive definite matrices, for which
no pivoting is required, but they do not contain an LDLT factorization. They
contain an LU factorization with partial pivoting (i.e. PA = LU , where P is a
permutation matrix), but partial pivoting can significantly slow down the speed.
For example, on a hybrid CPU/GPU system, the LU algorithm in the MAGMA
library spends over 20 % of the factorization time in pivoting even for a large
random matrix of size 10, 000 × 10, 000.

Pivoting poses additional problems in sparse factorizations because of the
fill-in, which corresponds to the new nonzeros generated in the factored matrices
L and U . For sparse Cholesky, where pivots can be chosen on the diagonal, we often
use a sparsity-preserving ordering algorithm, such as minimum degree or nested
dissection, to reorder the matrix first so that the Cholesky factor of the permuted
matrix PAPT has less fill-in than that of A. For sparse LU, we often factorize
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PAQT with both row and column permutation matrices P and Q. The purpose
is to preserve sparsity as well as to maintain numerical stability. There are
complex interplays between ordering (for sparsity) and pivoting (for stability).
Often, the two objectives cannot be well achieved simultaneously. Several relaxed
pivoting schemes, other than partial pivoting, have been developed to trade off
stability and sparsity, which allow larger pivot growth while maintaining better
sparsity. These include threshold pivoting [10], restricted pivoting [19], and static
pivoting [14].

One difficulty with dynamic pivoting, either partial pivoting or threshold piv-
oting, is that the fill-ins are produced on the fly depending on the permutation
at each step. It is thus not possible to have the separate ordering and symbolic
preprocessing algorithms that precisely minimize the number of fill-ins and fore-
cast the fill-in positions. A good ordering strategy to accommodate dynamic
row pivoting is to apply any ordering algorithm to the graph of the symmetrized
matrix ATA which gives a fill-reducing permutation Q. Then, Q is applied to
the columns of A before performing the LU factorization with row pivoting:
P (AQT ) = LU . The rationale behind this is that the nonzero structure of the
Cholesky factor R of ATA = RTR upper bounds the nonzero structures of LT

and U of PA = LU , for any row permutation P [12]. That is, the Cholesky factor
Rq of (AQT )T (AQ) = RT

q Rq upper bounds the LT
q and Uq of P (AQT ) = LqUq,

and Rq contains smaller amount of fill than that of R. In essence, the column
ordering Q tends to minimize an upper bound on the actual fill-ins in the LU
factors, taking into account all the possible row pivotings. This strategy can
be pessimistic when most pivots happen to be on the diagonal (e.g. diagonally
dominant matrices). The sequential SuperLU library uses this ordering strategy
together with partial pivoting [9]. This is our comparison baseline to be used in
Sect. 3 about the numerical results.

The cost of dynamic pivoting in parallel is even more dramatic than in the
dense case. For example, for matrix nlpkkt80 of a KKT system from nonlinear
optimization, the parallel factorization with threshold pivoting using MUMPS [2]
took 639 s with 128 processes. After the matrix is modified to be diagonally
dominant with the same sparsity structure, the parallel factorization without
pivoting took only 87 s, even though the size of the LU factors and the flop
count are roughly the same in both cases.

In the parallel direct solver SuperLU DIST [14], a static pivoting strategy is
used to enhance scalability. Here, P is chosen before factorization based solely
on the values of the original A. A maximum weighted matching algorithm and
the code MC64 [11] is currently employed. The algorithm chooses P to maximize
the magnitude of the diagonal entries of PA. During factorization, the pivots are
chosen on the diagonal and the tiny ones are replaced by a fixed value. Since this
does not involve dynamic row permutation, a sparsity-reducing algorithm can
be applied to the graph of another symmetrized matrix PA+(PA)T , producing
the permutation matrix Q. This tends to minimize the amount of fill in the L
and U of Q(PA)QT = LU . The static pivoting improves speed and scalability
but it might fail for very challenging problems. MC64 is sequential in nature and
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there is no good parallel algorithm yet. Riedy [18] suggests a parallel auction
algorithm but concludes that parallel performance is too unpredictable to make
it a black-box tool. Therefore, the pre-pivoting phase will be a severe obstacle
for solving larger problems on extreme-scale parallel machines.

In 1995, Parker introduced a randomization algorithm to eliminate the need
for pivoting [16]. In this approach, the Random Butterfly Transformation (RBT)
is used to transform the original system into an “easier” one such that, with prob-
ability one, the LU factorization of the transformed matrix can be performed
without pivoting. This technique was successfully applied and implemented into
the dense libraries for LU and LDLT factorizations [3,6]. In this work, we inves-
tigate the potential of the RBT method for sparse cases.

2 Random Butterfly Transformations

In this section we recall the main concepts and definitions related to RBT where
the randomization of the matrix is based on a technique initially described by
Parker [16] and recently revisited by Baboulin et al. [3] for general dense systems.
The procedure to solve Ax = b, where A is a general matrix, using a random
transformation and the LU factorization is:

1. Compute Ar = UTAV , with U, V random matrices,
2. Factorize Ar = LU (without pivoting),
3. Solve Ary = UT b and compute x = V y.

The random matrices U and V are chosen among a particular class of matrices
called recursive butterfly matrices. A butterfly matrix is an n × n matrix of the
form

B<n> =
1√
2

[
R0 R1

R0 −R1

]

where R0 and R1 are random diagonal n
2 × n

2 matrices. A recursive butterfly
matrix of size n and depth d is defined recursively as

W<n,d> =

⎡
⎢⎢⎣

B
<n/2d−1>
1

. . .

B
<n/2d−1>

2d−1

⎤
⎥⎥⎦ · W<n,d−1>, with W<n,1> = B<n>

where the B
<n/2d−1>
i are butterflies of size n/2d−1, and B<n> is a butterfly of

size n.
In the original work by Parker, d = log2 n; he shows that, given two recur-

sive butterfly matrices U and V , the matrix UTAV , where A is the original
matrix of the system to be solved, can be factored into LU without pivoting
with probability 1 in exact arithmetic, or with probability 1−O(2−t) using t-bit
floating point numbers. For symmetric problems, V = U and the same result
holds with LDLT . Baboulin et al. studied extensively the use of RBT for dense
matrices and showed that in practice, d = 1 or 2 is enough; in most cases a few



138 M. Baboulin et al.

steps of iterative refinement can recover the digits that have been lost. They also
showed that random butterfly matrices are cheap to store and to apply (O(nd)
and O(dn2) respectively) and they proposed implementations on hybrid multi-
core/GPU systems for the unsymmetric [3] case. For the symmetric case, they
proposed a tiled algorithm for multicore architectures [4] and more recently a
distributed solver [5] combined with a runtime system [8]. As was demonstrated,
the preprocessing by RBT can be easily parallelized with good scalability.

3 Using RBT in Sparse Direct Solvers

We first describe and compare different strategies and parameters when applying
RBT to the sparse LU factorization. We carry out the experiments on a large
set of sparse matrices in order to identify the best practical strategy.

3.1 Influence of the Degree d

In the dense case, the use of RBT incurs small amount of extra operation and
memory. The cost is limited to storing and applying RBT prior to the factoriza-
tion. However, in the sparse case, applying RBT modifies the nonzero structure
of the transformed matrix. The number of nonzeros in the transformed matrix
UTAV can be up to 4d times the number of nonzeros in A in the worst case.
This increase in nonzeros may lead to an even larger increase in the size of the
LU factors and thus to prohibitive costs. We therefore limit our investigation
to small degrees: d = 1 or 2, which correspond to the practical setting used by
Baboulin et al. in the dense case [3–5].

3.2 Combining RBT and Fill-Reducing Permutations

Fill-reducing ordering is critical to preserve sparsity. This operation is usually
performed after all the preprocessings that modify the sparsity pattern of the
input matrix (e.g., MC64). At first glance, it seems that the most natural way
of combining RBT with a fill-reducing permutation is:

1. transform the original matrix A into UTAV ,
2. permute with a fill-reducing algorithm (then factorize).

However, one can show that the matrix resulting from steps 1 and 2 is not
guaranteed to be factorizable without pivoting. We provide an example here.
Let A be a 4 × 4 matrix; A can be written in a 2 × 2 form as

A =
[
A11 A12

A21 A22

]

Let U and V two recursive butterflies of size 4 and degree 2. By Parker’s theorem,
if A is non-singular then UTAV is factorizable without pivoting. Let p be the
permutation vector [1 3 2 4] and P the associated permutation matrix. We con-
sider B = PUTAV PT . One can show that if

∑
A11 =

∑
A22 =

∑
A21 =

∑
A12
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then the leading submatrix B1:2,1:2 is singular, regardless of the random values
in U and V . Therefore B is not factorizable without pivoting (B22 becomes
0 after eliminating the first pivot, in the absence of roundoff errors). One can

easily build a non-singular matrix satisfying this property, e.g., A11 =
[
2 0
0 2

]
,

A12 = A21 =
[
1 1
1 1

]
, A22 =

[
3 0
0 1

]
(leading to det(A) = −4, i.e., A non-singular).

As a consequence, the strategy consisting in permuting for sparsity after
the transformation may not work in theory, but we still wish to investigate its
practical performance. We compare the following two strategies:

Strategy 1: the matrix is permuted using a fill-reducing (or bandwidth min-
imization) heuristic then transformed with RBT. This guarantees that the
factorization would succeed for d = log2 n but it might yield large number of
fill-ins in the factors. The first step is an attempt to minimize the nonzeros
in the transformed matrix and the fill-ins.

Strategy 2: the matrix is transformed with RBT then permuted using a fill-
reducing heuristic. This might fail even for d = log2 n but it provides a much
better control of fill-in.

3.3 Evaluation of the Different Strategies and Parameters

The experiments were carried out on 90 non-singular matrices with size n ≤
10, 000. Table 1 shows the success rate of the factorization, the increase in nonze-
ros and the increase in the size of the LU factors with respect to partial pivoting.
We use the partial pivoting code SuperLU [9]; for RBT, pivoting is disabled and
the factorization is stopped whenever a zero diagonal pivot is found (although
a possibility could be to replace it by a small perturbation such as ε‖A‖). The
random values we use are er/10 with r randomly chosen in [− 1

2 , 1
2 ] from a uniform

distribution. This guarantees a small condition number for U and V [3].

Table 1. Influence of the different strategies and parameters for 90 matrices with size
n ≤ 10, 000. “Success rate” is the percentage of matrices for which the factorization
completes. “Increase in nonzeros” is the ratio nnz(UTAV )/nnz(A) and “Increase in
factors” is the ratio nnz(LU(UTAV ))/nnz(LU(A)); we report the minimum, geometric
mean, arithmetic mean, and maximum.

Strategy and degree Success Increase in nonzeros Increase in factors

rate min geo avg max min geo avg max

Strategy 1 d = 1 81.1 % 1.00 2.97 3.14 3.99 1.12 9.92 21.07 362.32

d = 2 92.2 % 2.01 9.53 10.52 15.79 1.14 19.35 45.41 635.84

Strategy 2 d = 1 82.2 % 1.00 2.02 2.25 4.00 0.03 1.55 2.62 20.42

d = 2 80.0 % 1.50 4.95 5.98 15.01 0.06 2.96 6.78 144.49
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We make the following observations: (1) Strategy 1 and Strategy 2 have
similar success rates. Although both strategies lead to an increase in the size
of the LU factors (with respect to partial pivoting), this increase is much more
limited with Strategy 2. Therefore, Strategy 2 will be our method of choice.
(2) Similar to what was observed in the dense case, most matrices succeed with
d = 1. With Strategy 1, d = 2 yields a near-perfect success rate at the price of
a large increase in the size of factors; the effect is less clear with Strategy 2.

Using Strategy 2 with d = 1 seems to be the most practical setting. Figure 1
shows how this approach compares with partial pivoting. Figure 1(a) shows how
the size of the factors varies when RBT is used. 37 out of 90 matrices have a
smaller size of LU factors; as explained in the introduction, this is due to the
fact that partial pivoting relies on a fill-reducing permutation that can only aim
at minimizing an upper bound of the fill-in, since the order in which variables
are eliminated is not known in advance. On the other hand, not doing pivoting
allows the fill-reducing permutation to focus on the right problem (minimizing
the actual fill-in). For 30 matrices, the increase (due to the larger structure of the
transformed matrix) is moderate (larger than one but less than two). Although
this means that the number of operations with RBT might be larger than with
partial pivoting, RBT may catch up since doing no pivoting yields better flop
rate and scalability. For 23 matrices, the increase is large (between 2 and 20),
which means it is more unlikely that RBT will yield better runtime. Figure 1(b)
shows the ratio between the forward error ||x − xtrue||/||xtrue|| with RBT and
that with partial pivoting. For 69 out of 90 problems, the ratio is less than 102

i.e. at most 2 digits are lost when using RBT instead of partial pivoting. The loss
in accuracy found for some matrices is due to a larger growth factor with RBT,
meaning that some elements found during the factorization become very large
(relative to the elements in the matrix to be factored) and lead to inaccuracies. In
most cases, a few steps of iterative refinement recover the lost digits. Overall, we
found that 48 out of 90, i.e. 53.3 % have both a moderate increase in the factors
size (less than twice) and a moderate loss in accuracy (less than 2 digits).

3.4 One-Sided Transformation

The original approach proposed by Parker relies on a two-sided transformation
UTAV . We showed that a one-sided transformation is sufficient to maintain the
main numerical property, i.e., UTA can be factorized without pivoting when
U is a recursive butterfly matrix with degree d = log2 n. The benefit is that
the number of nonzeros in UTA (and the LU factor size) can be less than the
number of nonzeros in UTAV . Through private communication, Parker mentions
that it is analogous to using partial pivoting rather than complete pivoting, i.e.,
although no zero pivot appears, the growth factor may be larger.

We experimented this one-sided approach, and found that, with d = 1, the
success rate of the one-sided and two-sided approaches are similar. For d = 2, the
success rate is marginally higher with the two-sided approach. Figure 2 illustrates
how the two approaches influence the size of the transformed matrix and the size
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Fig. 1. RBT (Strategy 2, d = 1) vs partial pivoting for 90 matrices sorted by size.

of the factors. We observed that the one-sided approach marginally decreases the
size of the factors on average, but the results are problem-dependent.

3.5 Source of Failures

Parker’s theorem states that, using d = logn, no zero pivot can be found during
the factorization (with probability one). However, in [15], there is no proof about
the magnitude of the pivots. Small (with respect to machine precision) pivots
lead to large element growth in the U factor, and elements of smaller size are lost.

Consider a matrix M and its LU factorization M = LMUM . The standard
metric used in error analysis is the growth factor [13]

ρ =
maxi,j,k |m(k)

ij |
maxi,j |mij |

where a
(k)
ij is the element met at the k-th step of Gaussian Elimination on M . ρ

is expensive to compute, and, in practice, solvers report the pivot growth, which
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Fig. 2. One-sided vs two-sided (Strategy 2, d = 1) for 90 matrices sorted by size.

is either ||UM ||∞
||M ||∞ (e.g., in LAPACK [1]), or maxj

||UM (:,j)||∞
||M(:,j)||∞ (e.g., in SuperLU).

These definitions assume that partial pivoting is used; in this case, elements
in the L factor are bounded by 1. To accomodate the fact that we do not use
pivoting when we use RBT, we propose the following definition:

ρ = max
(

max
j

||LM (:, j)||∞
||M(:, j)||∞ , max

j

||UM (:, j)||∞
||M(:, j)||∞

)

In Fig. 3, we report the pivot growth for our collection of test matrices, using
partial pivoting (i.e., growth factor for the original matrix A) and using RBT
(i.e., pivot growth for the factorization without pivoting of UTAV ). We observe
that for most matrices the pivot growth is slightly larger (but reasonable) when
using RBT instead of partial pivoting. However, a few matrices have very large
pivot growth, leading to instability in the factorization.
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Fig. 3. Pivot growth for 90 matrices sorted by size.

4 Conclusion and Perspectives

For sparse direct solvers using LU factorization, a serious scalability bottle-
neck is numerical pivoting. A number of relaxed pivoting algorithms have been
developed, but none of them have shown promise of scalable implementation. In
this exploratory work, through large number (90) of real-world test matrices, we
demonstrated that the Random Butterfly Transformation is a good alternative to
pivoting, especially with properly chosen ordering strategies and transformation
parameters. RBT is particularly appealing for extreme-scale systems because it
is highly parallelizable. This opens the possibilities of several avenues of new
research, such as application of RBT to the LDLT factorization, classification of
the problems according to various RBT strategies, and investigation of RBT’s
impact on the scalability of existing parallel direct solvers.
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