
Fault Tolerance in an Inner-Outer Solver:
A GVR-Enabled Case Study

Ziming Zheng1, Andrew A. Chien1(B), and Keita Teranishi2

1 University of Chicago, Chicago, IL 60637, USA
achien@cs.uchicago.edu

2 Sandia National Laboratories, Livermore, CA 94551, USA

Abstract. Resilience is a major challenge for large-scale systems. It is
particularly important for iterative linear solvers, since they take much
of the time of many scientific applications. We show that single bit flip
errors in the Flexible GMRES iterative linear solver can lead to high
computational overhead or even failure to converge to the right answer.
Informed by these results, we design and evaluate several strategies for
fault tolerance in both inner and outer solvers appropriate across a range
of error rates. We implement them, extending Trilinos’ solver library with
the Global View Resilience (GVR) programming model, which provides
multi-stream snapshots, multi-version data structures with portable and
rich error checking/recovery. Experimental results validate correct exe-
cution with low performance overhead under varied error conditions.

Keywords: Resilience ·Numerical solver ·High performance computing

1 Introduction

The scaling of semiconductor technology and increasing power concerns com-
bined with system scale make fault management a growing concern in high
performance computing systems [1,4,11,13]. Soft errors and higher error rates
all expected. Just as they played an important role in achieving scalable, high
performance, we expect that widely-used numeric solvers such as Flexible Gener-
alized Minimal Residual Method (FGMRES) will play an important key role in
achieving resilience and performance for large-scale applications in future “exa”
scale systems.

Flexible GMRES with restarting (see Fig. 1 [2,17]) is robust to soft errors
due to three aspects. First, the inner solver in Step 3 is inexact, and the outer
solver can tolerate large changes to inner solver. Second, the minimal residual
procedure can reduce the impact of error on inner solver and keep the resid-
ual decreasing (see Step 11). Third, FGMRES restarts the computation after m
outer iterations (see Step 17). While the major purpose of restarting is to address
the performance and memory usage, restarting can also eliminate errors in outer
solver data structures. However in our experiments some bit-errors are still prob-
lematic. Errors in inner solver can incur high computational overhead for con-
vergence. Errors in outer solver can even lead to divergence failure. Restarting
may lead to stagnation of convergence.
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 124–132, 2015.
DOI: 10.1007/978-3-319-17353-5 11



Fault Tolerance in an Inner-Outer Solver: A GVR-Enabled Case Study 125

With these insights, we design and evaluate error checking and recovery
strategies. For inner solver, residual based checking is deployed to identify sig-
nificant error; recomputing and multi-versioning are exploited for recovery in
different cost and granularity. For outer solver, double modular redundancy and
data reloading strategies are utilized for error checking and recovery. Our exper-
iments employ the Trilinos library [12], extending FGMRES inner-outer solver
with the Global View Resilience (GVR) framework [10], use 5 matrices from
the Florida sparse collection [7], running on up to 128 processes. Experimental
results illustrate that our GVR-enabled FGMRES solver successfully tolerates
the bit flip errors and significantly reduces the impact on performance. Specific
contributions include:

– Characterizing situations where bit-errors cause resilience problems for both
inner and outer solvers in FGMRES.

– Employ GVR programming model with Trilinos library for portable and rich
error checking/recovery strategies in inner-outer solver.

– Evaluate each recovery method, empirically validating that they are efficient
and that each is best for regime of error rates.

The rest of the paper is organized as follows. Section 2 introduces the back-
ground of GVR and Trilinos for our implementation. Sections 3 and 4 explore
the error impact error checking and recovery methods for inner solver and outer
solver respectively. Section 5 discusses experimental results, and Sect. 6 surveys
related work. Finally, we summarize and discuss future directions in Sect. 7.

Fig. 1. Flexible GMRES with restarting



126 Z. Zheng et al.

2 GVR and Trilinos

Our implementation of fault tolerance inner-outer solver is based Global View
Resilience (GVR) [10] and Trilinos [12]. Trilinos is an object-oriented software
framework for solving big complex science and engineering problems. Kernel
classes of Trilinos include vector, matrix, and map. It provides common abstract
solvers, such as iterative linear solvers and preconditioners. Based on the kernel
class and solvers, Trilinos provides comprehensive algorithmic packages such as
stochastic PDEs.

GVR is a novel programming model to enable sophisticated, application-
specific fault tolerance in parallel computing. It enables the application to create
global data store (GDS) objects for flexible, portable and efficient fault manage-
ment. We extend the kernel classes of Trilinos using GVR APIs, including the
GDS object creation, put/get operations, and GDS versioning. Based on the
extended kernel classes, we implement GVR enabled inner-outer solver pack-
age, which can be directly used for other Trilinos applications. Especially, GVR
facilitates our inner-outer solver in the following aspects.

1. GVR provides multi-stream scheme to create multiple GDS objects for dis-
tributed basis vectors and solution vectors. Each GDS object can periodically
take snapshots at application specified stable point such as the end of itera-
tion. GVR explores the benefits of local and hierarchy storage to reduce the
runtime overhead of snapshot.

2. Multiple older versions of the GDS object remain available for access. The
multi-version scheme is motivated for latent error, i.e., errors that retain for
some iterations. We use it for recovery inside of the inner solver.

3. It is flexible to configure different versioning, error-checking, and error-
recovery schemes to each GDS object. It is helpful to customize the explored
strategies thus adapting to different error rates.

4. GVR provides erasure code based on resilience mechanisms for the multi-
version snapshots. Since the snapshot is used only for recovery, the overhead
is negligible. It is also configurable to explore NVRAM with low error rate
for snapshot resilience.

5. The application can provide each GDS object with specific callback routines
for error checking and error-recovery in a uniform framework. Error-recovery
routines can respond to errors raised by either the application or by the
underlying system, such as uncorrectable ECC signal from operating sys-
tem. Combining with multi-version, GVR can recover the application from
catastrophic memory failures.

In this paper, we only use 1–4 GVR features to address soft errors. We will
explore using more features in the future.

3 Inner Solver

In this study, we presume that the inner solves takes most of execution time and
arbitrarily set 30 iterations inner solver. In this scenario, the inner solver takes



Fault Tolerance in an Inner-Outer Solver: A GVR-Enabled Case Study 127

more than 90 % execution time, which is a key factor to make trade-off between
system reliability and inner solve reliability. We will study other scenarios as a
future work.

3.1 Error Impact

To study the impact of errors on inner solver, we randomly inject the error
during SpMV or vector dot product operation as the most error-prone, or inject
the result vector zj directly as the most important data visible to the outer
solver. In this study, we focus on double precision floating-point data, which
consists of 1 sign bits, 11 exponent bits, and 52 bits for mantissa. Bit-flips not
in the first 2 bytes only introduce a relative error <= 2−4 [9], thus having little
impact on execution correctness and convergence.

As inner solver result is approximate, if error occurs not in the first 2 bytes
which only introduces a relative error <= 2−4 [9], error impact is minimal on
execution correctness and convergence. However, as shown in Fig. 2, if a bit error
significantly increase the residual of a significant inner solver comparing with
previous inner-outer iteration, it generally incurred 2 or 3 additional inner-outer
solver iterations, which is consistent with the study in [9]. In extreme cases, as
many as 48 additional inner-outer solver iterations can be required. Further, the
error impact can accumulate. As the increasing of errors, we observe 8× number
of inner-outer iterations in extreme cases.

3.2 Error Check and Recovery: Outside

First, we study outside error checking and recovery; such coarse-grained recov-
ery is relevant even in current-day error environments, and applies to many inner
solvers such as GMRES and CG. We exploit two symptoms to identify significant
error: (1) residual increase (vs previous iteration) and (2) the matrix H(1 : j, 1 : j)
is not full rank [2]. For these methods, checking overhead is low. Explicit residual
checks can be calculated by outer solver, as well as checks for errors in A and qj . In
our experiments, the explicit residual check incurs only take 0.2 % overhead per
iteration. Further, checking rank deficiency of matrix H(1 : j, 1 : j) is essentially
free as the SVD-based method to calculate step-11 (see Fig. 1) computes the its
rank directly.

There are two simple strategies for recovery outside of inner solver. The
first is recomputing the inner solver, incurring high overhead since the inner
solver is 90 % of the computation. Despite that, recomputing is still viable as
the significant inner solver errors generally introduce 2–3 more inner-outer solver
iterations (see Fig. 2). The second is restarting the whole computation as step-17
in Fig. 1 [2]. Restarting may lead to stagnation of convergence, so it is employed
only if recomputing fails.

3.3 Error Recovery: Inside

For higher error rates, it is necessary to handle the errors inside of the inner
solver rather than recomputing the whole inner solver. In this study, we keep



128 Z. Zheng et al.

Fig. 2. Distribution of additional inner-outer solver iterations incurred by significant
inner solver errors.

one snapshot of qj at the beginning and multi-version snapshot of zj during the
inner solver iterations. If a significant error is detected outside of inner solver,
we check the versions in descend order. If any version of intermediate result has
significant lower residual than the final result, inner solver rolls back to that
point, reload qj and A, and executes the rest iterations. Otherwise, inner solver
is recomputed from the scratch.

An alternative solution is to check and handle the error during the inner
solver iterations. In this study, we do not adopt it due to two reasons. First, it
is difficult to identify the error with low overhead and high coverage. Second, it
is hard to predict the impact of the error on the inner-outer iterations. We will
study this solution as a future work.

The crossover between outside and inside error handling happens when the
overhead of error recovery within the solver is less than later recomputing. In
this study, we define the error probability as the ratio between the number
of iterations with errors and the total iterations. Suppose the probability of
inner solver error is P , the error-free execution is Φ longer due to the over-
head of snapshot, and the error handling inside reduce the recomputing time
by Θ shorter. So the error handling inside inner solver become beneficial when
1−P +2P > (1−P )Φ+(1+Θ)P . We validate these tradeoffs in our experiments
in Sect. 5.

4 Outer Solver

The outer solver typically consumes less execution time, but errors in outer solver
are more critical for correctness and performance. In most cases, if significant
errors occur in the basis vectors or Hessenberg matrix H, the residual may
increase or stay constant. Even a single bit-flip may lead to divergence no matter
at which iteration the bit-flip occurs.

To tolerate the error in outer solver, we adopt simple double modular redun-
dancy (DMR) [15]. It executes the outer solver twice and compare the results.
DMR based method may fail to tolerate the memory error staying in both exe-
cutions. To address this problem, at each error-free iteration, we take snapshots



Fault Tolerance in an Inner-Outer Solver: A GVR-Enabled Case Study 129

Fig. 3. GVR overhead in error-free execution. Here one snapshot of related vectors are
taken at each inner-outer iteration.

of subspace basis [v1, v2, . . . , vj−1], [z1, z2, . . . , zj−1], matrix H, and result vector
xj . Notice that GVR provides resilience mechanism for these snapshots. Reload-
ing A, b, and these snapshots in previous iteration from GDS objects before
the second execution, can detect memory errors in the original execution. If any
inconsistency between two outer solver executions, the third one will be trig-
gered to identify the correct execution. This approach has low overhead, high
error checking accuracy and prevents error propagation to the next iteration.

5 Experiments

Based on our implementation from GVR and Trilinos, we run 128 processes
with 5 matrices from the Florida sparse collection. The data is the average
result of 1,000 error trials for each error probability and matrix. As the error
impact studies, we mainly focus on significant error in the first 2 bytes of double
precision data.

5.1 GVR Overhead in Error-Free Execution

In our GVR enabled FGMRES, we create GDS objects on the solution and
basis vectors, put the data into GDS objects and make the versions. We vary
the number of processes to study the overhead of GVR in error-free execution.
Here we take one snapshot of zj , [v1, v2, . . . , vj−1], [z1, z2, . . . , zj−1], H, and xj

at each inner iteration.
As shown in Fig. 3, the overhead is less than 15% and keeps stable with

the increasing of processes. The major overhead is on versioning since we use
collective call to get consistent snapshot. We plan to bundle these vectors into
one GDS object thus reducing the number of versioning operation. Note that
the overhead is much lower for a realistic error rate, which is unnecessary for
versioning at each inner iteration.

5.2 Inner Solver

To explore a range of error rates, we vary probability of significant error inside
of inner solver computation or the result vector zj . The recovery process is



130 Z. Zheng et al.

Fig. 4. Execution slowdown - original FGMRES, recomputing based recovery, and
multi-version based recovery.

triggered only if the inner solver residual becomes 100× larger than the previous
iteration. We compare the total execution time without recovery and with our
inside/outside resilience method. We calculate the slowdown as the ratio between
the total execution time with errors and the failure-free execution time.

Our results of slowdown (see Fig. 4) show that both recomputing and multi-
versioning based recovery outperforms the original FGMRES with restarting.
When error probability is < 11%, recomputing has lower slowdown than multi-
versioning based recovery due to the cost of snapshot. As the growth of error
probability, multi-versioning based recovery becomes more beneficial by reducing
the work loss.

5.3 Outer Solver

We vary probability of significant error in the basis vectors and solution vectors
of outer solver and present the slowdown in Fig. 5. The significant error in outer
solver always leads to divergence for FGMRES without restarting. When the
error probability is low, restarting can tolerate the error but introduce extreme
high overhead, e.g. 1682.5 % slowdown on 10% of error probability. As the
increasing of error probability, it also becomes divergence. Our GVR enabled
FGMRES successfully addresses the high error probability with relatively small
overhead because it can isolate the errors in each iteration.

6 Related Work

In large-scale system, traditional studies have focused on system level checkpoint/
restart to tolerate fail-stop process failures [16]. As the growing concern around
soft errors, more recent studies have focused on application level and cross layer
solutions, especially for numeric solvers.Huang andAbrahamdeveloped the check-
sums based algorithm-based fault tolerance (ABFT) technique for matrix opera-
tions [14]. In [6], Chen developed theoretical conditions based error checking for



Fault Tolerance in an Inner-Outer Solver: A GVR-Enabled Case Study 131

Fig. 5. Execution slowdown - original FGMRES, recomputing based, and multi-version
based recovery.

Krylov subspace iterative methods. In [3], Bronevetsky analyzed soft error vulner-
ability for linear solvers. In [18], fault tolerant PCG solver is presented for sparse
linear systems. Du presented encoding strategy for LU factorization based dense
liner systems [8]. Unlike these works, this study is focusing on inner-outer solver.

The studies on fault tolerant inner-outer solver are limited. In [5], Chen
analyzed flexible BiCGStab to bound the inner solver error for convergence. In
[9], Elliott studied the impact of inner solver error in FGMRES. In [2] FGMRES
solver was extended to tolerate inner solver error. Distinguished from these stud-
ies, this paper presents comprehensive error analysis for FGMRES and develops
GVR-enabled methods for both inner and outer solvers under various error rate.

7 Summary and Future Work

We analyze the impact of bit-flip errors on the FGMRES inner-outer solver,
which can lead to divergence failure or extreme high computation overhead.
Based on the analysis results, we design the error checking/recovery strategies
for inner solver and outer solver. We implement it by extending Trilinos solver
library with our Global View Resilience (GVR) system. Our experiments show
that our GVR-enabled inner-outer solver successfully tolerate the bit flip errors
for execution convergence with low overhead.

Interesting future directions include, studying a wider range of inner-outer
solver configurations, error checking and recovery methods, and employing addi-
tional GVR features. Another direction would include study of errors from other
sources – other hardware elements, or even intentional inaccuracies such as
reduced coverage ECC or probabilistic CMOS.

Acknowledgments. We thank Mark Hoemmen from Sandia National Laboratories
for his advice. This work supported by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Award DE-SC0008603
and Contract DE-AC02-06CH11357. Also under the DOE National Nuclear Security
Administration (NNSA) Advanced Simulation and Computing (ASC) program. Sandia
National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy National Nuclear Security Administration under contract DE-
AC04-94AL85000.



132 Z. Zheng et al.

References

1. Borkar, S., Chien, A.A.: The future of microprocessors. Commun. ACM 54(5),
67–77 (2011)

2. Bridges, P.G., Ferreira, K. B., Heroux, M. A., Hoemmen, M.: Fault-tolerant lin-
ear solvers via selective reliability. ArXiv e-prints, June 2012. Provided by the
SAO/NASA Astrophysics Data System

3. Bronevetsky, G., de Supinski, B.: Soft error vulnerability of iterative linear algebra
methods. In: Proceedings of ICS (2008)

4. Cappello, F., Geist, A., Gropp, W., Kale, L., Kramer, W., Snir, M.: Towards
exascale resilience. Int. J. High Perform. Comput. Appl. 23(4), 374–388 (2009)

5. Chen, J., McInnes, L.C., Zhang, H.: Analysis and practical use of flexible
BiCGStab. Technical report ANL/MCS-P3039-0912, Argonne National Labora-
tory (2012)

6. Chen, Z.: Online-ABFT: an online algorithm based fault tolerance scheme for soft
error detection in iterative methods. In: Proceedings of PPoPP (2013)

7. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1–25 (2011)

8. Du, P., Luszczek, P., Dongarra, J.: High performance dense linear system solver
with resilience to multiple soft errors. In: Proceedings of ICCS (2012)

9. Elliott, J., Hoemmen, M., Mueller, F.: Evaluating the impact of SDC on the
GMRES iterative solver. In: Proceedings of IPDPS (2014)

10. Chien, A., et al.: Global View Resilience Project (GVR). http://gvr.cs.uchicago.
edu

11. Elnozahy, M., et al.: System resilience at extreme scale (2009). White Paper writ-
ten for the Defense Advanced Research Project Agency (DARPA), with Ricardo
Bianchini et al.

12. Heroux, M., et al.: An overview of the trilinos project. ACM Trans. Math. Softw.
31(3), 397–423 (2005)

13. Kogge, P., et al.: Exascale computing study: Technology challenges in achieving
exascale systems. Technical report TR-2008-13, University of Notre Dame CSE
Department (2008)

14. Huang, K., Abraham, J.: Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Comput. C–33(6), 518–528 (1984)

15. Lidman, J., Quinlan, D. J., Liao, C., McKee, S.A.: ROSEFTTransform - a source-
to-source translation framework for exascale fault-tolerance research. In: DSN-W
(2012)

16. Moody, A., Bronevetsky, G., Mohror, K., Supinski, B.: Design, modeling, and eval-
uation of a scalable multi-level checkpointing system. In: Proceedings of Supercom-
puting (2010)

17. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM,
Philadelphia (2003)

18. Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Fault tolerant preconditioned
conjugate gradient for sparse linear system solution. In: Proceedings of ICS (2012)

http://gvr.cs.uchicago.edu
http://gvr.cs.uchicago.edu

	Fault Tolerance in an Inner-Outer Solver: A GVR-Enabled Case Study
	1 Introduction
	2 GVR and Trilinos
	3 Inner Solver
	3.1 Error Impact
	3.2 Error Check and Recovery: Outside
	3.3 Error Recovery: Inside

	4 Outer Solver
	5 Experiments
	5.1 GVR Overhead in Error-Free Execution
	5.2 Inner Solver
	5.3 Outer Solver

	6 Related Work
	7 Summary and Future Work
	References


