
Self-adaptive Multiprecision Preconditioners
on Multicore and Manycore Architectures

Hartwig Anzt1(B), Dimitar Lukarski2, Stanimire Tomov1, and Jack Dongarra1

1 Innovative Computing Lab, University of Tennessee, Knoxville, USA
hanzt@icl.utk.edu, tomov@cs.utk.edu, dongarra@eecs.utk.edu

2 Department of Information Technology, Uppsala University, Uppsala, Sweden
dimitar.lukarski@it.uu.se

Abstract. Based on the premise that preconditioners needed for scien-
tific computing are not only required to be robust in the numerical sense,
but also scalable for up to thousands of light-weight cores, we argue that
this two-fold goal is achieved for the recently developed self-adaptive
multi-elimination preconditioner. For this purpose, we revise the under-
lying idea and analyze the performance of implementations realized in
the PARALUTION and MAGMA open-source software libraries on GPU
architectures (using either CUDA or OpenCL), Intel’s Many Integrated
Core Architecture, and Intel’s Sandy Bridge processor. The comparison
with other well-established preconditioners like multi-coloured Gauss-
Seidel, ILU(0) and multi-colored ILU(0), shows that the twofold goal of
a numerically stable cross-platform performant algorithm is achieved.

1 Introduction

When solving sparse linear systems iteratively, e.g., via Krylov subspace solvers,
using preconditioners is often the key to reducing the time needed to obtain a
sufficiently accurate solution approximation. For this reason, significant effort is
spent on the development of efficient preconditioners, usually optimized for one
particular problem. However, the theoretical derivation of methods improving
the convergence characteristics is often not sufficient, as the algorithms have to
be implemented and parallelized on the respectively used hardware platform.
The use of accelerator technology, like graphics processing units (GPUs) or
Intel Xeon Phi Coprocessors (known also as Many Integrated Core Architec-
tures, or MIC), in scientific computing centers requires a combination of deep
mathematical background knowledge and software engineering skills to develop
suitable methods. The challenge is to combine the robustness and efficiency of
the preconditioner scheme with the scalability of the implementation up to hun-
dreds and thousands of light-weight computing cores. The non-uniformity of the
high-performance computing landscape introduces additional complexity to this
endeavor, and complex sparse linear algebra algorithms that are designed to effi-
ciently exploit one specific architecture often fail to leverage the computing power
of other technologies. In this paper we show that, for the recently developed self-
adapting and multi-precision preconditioner [10], the two-fold goal of deriving a
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 115–123, 2015.
DOI: 10.1007/978-3-319-17353-5 10



116 H. Anzt et al.

numerically robust method featuring cross-platform scalability is achieved. While
the use of different floating point precision formats, and the combination of dense
and sparse linear algebra operations, may challenge cross-platform suitability,
we show that the self-adaptive mixed precision multi-elimination method can
efficiently exploit different hardware architectures and is highly competitive to
some of the most commonly used preconditioners. While the implementation of
the algorithm is realized using the PARALUTION [8] and MAGMA [5] open
source software libraries, both known to be able to efficiently exploit the com-
puting power of accelerators, the hardware systems used in our experiments
represent some of the most popular technologies used in current HPC platforms.
The rest of the paper is structured as follows. First, we provide some details
about the self-adaptive mixed precision multi-elimination preconditioner and the
implementation we use. Next, we summarize some characteristics of the many-
core accelerators we target in our experiments and introduce the test matrices we
use for benchmarking. We then evaluate the performance of the mixed precision
multi-elimination preconditioner, embedded in a Conjugate Gradient solver on
the different hardware systems, and compare against other well-known precon-
ditioners. Finally, we summarize some key findings and provide ideas for future
research.

2 Self-adaptive Multi-elimination Preconditioner

Among the most popular preconditioners is the class based on the incomplete LU
factorization (ILU) [15]. Although using ILU without fill-ins can lead to appealing
convergence improvement to the top-level iterative method, it may also fail due to
its rather rough approximation properties, e.g., when solving linear systems aris-
ing from complex applications like computational fluid dynamics [14]. To enhance
the accuracy of the preconditioner, one can allow for additional fill-in in the pre-
conditioning matrix, resulting in the (ILU(m) scheme, see [15]). Additional fill-
in usually reduces the amount of parallelism in ILU(m) compared to ILU(0), but
there are a number of techniques designed to retain it, such as the level-scheduling
techniques [11,15] or the multi-coloring algorithms for the ILU factorization with
levels based on the power(q)-pattern method [9]. Another workaround is given
by the idea of multi-elimination [14,16], which is based on successive indepen-
dent set coloring [6]. The motivation is that in a step of the Gaussian elimina-
tion, there usually exists a large set of rows that can be processed in parallel. This
set is called the independent set. For multi-elimination, the idea is to determine
this set, and then eliminate the unknowns in the respective rows simultaneously,
to obtain a smaller reduced system. To control the sparsity of the factors, multi-
elimination uses an approximate reduction based on a standard threshold strat-
egy. Recursively applying this step, one obtains a sequence of linear systems with
decreasing dimension and increasing fill-in. On the lowest level, the system must
be solved, e.g., either by an iterative method, or by a direct solver based on an
LU factorization. Recently, a multi-elimination preconditioner, using an adaptive
level depth in combination with a direct solver based on LU factorization, was



Self-adaptive Multiprecision Preconditioners 117

proposed in [10]. The advantage of this approach is that the once computed LU
factorization for the bottom-level system can be reused in every iteration step,
and the ability to utilize a lower precision format in the triangular solves allows
for leveraging the often superior single precision performance of accelerators like
GPUs. While we only shortly recall the central ideas of the multi-elimination con-
cept, a detailed derivation can be found in [14]. The underlying scheme is to use
permutations P to bring the original matrix A, of the system Ax = b that we want
to solve, into the form

PAPT ≡
(
D F
E C

)
,

where D is preferably a diagonal or at least an easy to invert matrix, so that

PAPT ≡
(
D F
E C

)
=

(
I 0

ED−1 I

)
×

(
D F

0 Â

)
with Â = C − ED−1F (1)

is easy to compute [10]. One way to achieve this is by using an independent set
ordering [6,7,13,18], where non-adjacent unknowns of the original matrix A are
determined. Recursively applying this idea and using some threshold strategy
to control the fill-in one obtains a sequence of successively smaller problems.
To control the increasing density of Â, we propose a self-adapting algorithm
which determines an appropriate sequence depth and a fill-in threshold based
on the average of all non-zero entries of Â. In the iteration phase (see Fig. 1) the
sequence of transformations must also be applied to the right-hand side and to
the solution approximation. This is achieved by applying the decomposition [14]

x :=
(
ŷ
x̂

)

and computing, according to the partitioning in (1), the forward sweep as [14]:
x̂ := x̂ − ED−1y. Consequently, backward solution for yj hence becomes y :=
D−1 (y − F x̂). On the lowest level the linear system must be solved, either again
via an iterative method, or, like suggested in [10] via triangular solves (in single
precision), using a beforehand computed factorization. Algorithmic details, as
well as a comparison between single and double precision triangular solves, can
be found in [10]. As the level-depth is not preset but determined during the
recursive factorization sequence using thresholds for drop-off and the direct solve
size, the algorithm is self-adapting to a specific problem.

3 Hardware and Software Issues

Target Platforms. The trend to introduce accelerator technology into high
performance computers is reflected in the top-ranked computer systems in both
the performance-oriented TOP500, and the resource-aware Green500 list (see [3]
and [1], respectively). While in recent years the usage of GPUs from differ-
ent vendors drew attention, Intel responded with the development of the MIC



118 H. Anzt et al.

Fig. 1. Visualization of the multi-elimination scheme denoting the system matrix of
the original problem An and a sequence of successively smaller problems down to the
bottom-level system matrix A0.

architecture (and in the November 2013 Top500 list, the number one ranked
supercomputer was based on MICs). For the future, even more diversity may be
expected as precise plans for building systems based on the low-power ARM tech-
nology already exist [2]. Despite attempts like OpenCL [17] and OpenACC [4],
unfortunately no cross-platform language that allows for efficient usage of the
different accelerator architectures currently exists. Therefore, it usually remains
a burden to the software developer to implement algorithms for a specific target
architecture using a suitable programming language for the respective hardware.
Especially for numerical linear algebra algorithms, the algorithm-specific prop-
erties often make the implementation on different architectures challenging. To
determine whether the challenge of deriving a cross-platform performant method
is achieved for the recently developed self-adaptive multi-elimination precondi-
tioner we introduced in the last section, we benchmark it on different multi- and
many-core systems listed along with some key characteristics in Table 1.

The implementation of the preconditioner, as well as the other methods we
compare against in Sect. 4, is realized using the PARALUTION [8] (version
0.4.0) and MAGMA [5] (version 1.4) open-source software libraries. The frame-
work and the CPU solver implementations are based on C/C++, while the

Table 1. Key characteristics of the target architectures.

Acronym System Performance Peak Memory Bandwidth

ISB 2× Intel Xeon E5-2670
(Sandy Bridge)

333 GFlop/s 65 GB 2× 25.5 GB/s

K40 NVIDIA Tesla K40c 1,682 GFlop/s 12 GB 288 GB/s

AMD AMD Radeon HD 7970
(Tahiti)

947 GFlop/s 3 GB 264 GB/s

MIC Intel Xeon Phi 7110P 1,238 GFlop/s 16 GB 352 GB/s



Self-adaptive Multiprecision Preconditioners 119

Table 2. Description and properties of the test matrices.

Matrix #nonzeros (nnz) Size (n) nnz/n

apache 4,817,870 715,176 6.74

ecology 4,995,991 999,999 5.00

G2 circ 726,674 150,102 4.83

G3 circ 7,660,826 1,585,478 4.83

Laplace 4,996,000 1,000,000 4.99

offshore 4,242,673 259,789 16.33

StocF 21,005,389 1,465,137 14.34

thermal 8,580,313 1,228,045 6.99

GPU-accelerated implementations use either CUDA [12] version 5.5 for the
NVIDIA GPUs, or OpenCL [17], version 1.2 and clAmdBlas 1.11.314 for AMD
GPUs. The MIC implementation, similar to GPU’s, treats the MIC as an accel-
erator/coprocessor and is based on OpenMP and the BLAS operations provided
in Intel’s MKL 11.0, update 5.

Solver Parameters. All experiments solve the linear system Ax = b where
we set the initial right-hand-side to b ≡ 1, start with the initial guess x ≡ 0
and run the iteration process until we achieve a relative residual accuracy of
1e − 6. In the preprocessing phase of the multi-elimination, the identification
of an independent set via a graph algorithm is handled by the CPU of the
host system; the factorization process itself, including the permutation and the
generation of the lower-level systems via a sparse matrix-matrix multiplication
is implemented on the GPU.

Test Matrices. For the experiments, we use a set of symmetric, positive definite
(SPD) test matrices taken either from the University of Florida matrix collec-
tion (UFMC)1, Matrix Market2, or generated as finite difference discretization
(Laplace). The test matrices are listed along with some key characteristics in
Table 2. Although we target only SPD systems, we use ME-ILU factorization due
to the fact that the IC requires non-zero diagonal elements. Positive diagonal
entries for the IC can be obtained with non-symmetric permutation. This is not
applicable because the multi-elimination uses maximal independent set (MIS)
algorithm which produces a symmetric permutation.

4 Performance on Emerging Hardware Architectures

In Table 3 we list the runtime of the iteration phase of the self-adaptive mixed pre-
cision multi-elimination implementation on different hardware platforms. With
the number of iterations constant over the architectures, the performance is deter-
mined by the available computing power and the efficiency of the programming
1 UFMC; see http://www.cise.ufl.edu/research/sparse/matrices/.
2 see http://math.nist.gov/MatrixMarket/.

http://www.cise.ufl.edu/research/sparse/matrices/
http://math.nist.gov/MatrixMarket/


120 H. Anzt et al.

Table 3. Iteration count and runtime (in seconds) of the Conjugate Gradient solver
preconditioned with the self-adaptive mixed precision multi-elimination (MPME) pre-
conditioner for different test matrices and hardware architectures.

Matrix #iters ISB K40 AMD MIC

apache 293 15.43 3.04 15.46 8.35

ecology 799 63.57 10.98 - 23.17

G2 circ 359 11.11 2.49 15.99 5.29

G3 circ 512 20.30 5.42 18.23 16.18

Laplace 338 9.13 3.41 14.31 10.01

offshore 1314 93.67 9.59 58.23 14.88

StocF 4388 178.56 52.06 - 115.05

thermal 916 57.41 13.93 59.20 35.73

model to exploit it. The results reveal that the best performance is achieved using
the CUDA implementation on the NVIDIA Kepler architecture. The MIC imple-
mentation fails to achieve the K40 performance, but is in most cases superior to
ISB . Switching from the CPU to the OpenCL programming model on the AMD
platformaccelerates the solver executiononly for someproblems, andeven for those,
the performance is significantly lower than on the NVIDIA GPU. Furthermore,

Table 4. Iteration count and runtime (in seconds) of the unpreconditioned Conju-
gate Gradient solver (labelled CG) and the implementations using a multi-coloured
Gauss-Seidel preconditioner (labelled MCGS-CG), a ILU-0 and a multi-colored ILU-
0 preconditioner (labelled ILU0-CG and MCILU0-C, respectively) for different test
matrices and hardware architectures.

CG MCGS-CG

matrix #iters ISB K40 AMD MIC #iters ISB K40 AMD MIC

apache 3971 16.60 5.02 15.39 10.12 1677 15.45 5.22 14.90 12.56

ecology 5392 24.17 8.20 19.74 15.35 2784 27.50 8.94 19.83 19.17

G2 circ 8911 5.32 3.76 13.83 10.27 907 1.61 1.29 5.47 4.80

G3 circ 12658 107.56 29.67 60.86 77.15 1329 28.55 9.01 15.82 22.35

Laplace 1633 8.03 2.53 5.87 4.73 817 9.00 2.63 5.76 5.60

offshore – no convergence – 628 10.19 4.92 15.03 16.79

StocF – no convergence – 66042 2200.46 1187.59 2679.99 2678.97

thermal 4589 53.06 9.63 28.44 30.52 2151 39.27 18.33 36.28 52.68

ILU0-CG MCILU0-CG

matrix #iters ISB K40 AMD MIC #iters ISB K40 AMD MIC

apache 643 25.56 9.63 - - 1438 16.37 4.07 11.55 9.80

ecology 1700 74.86 64.03 - - 2854 38.18 8.35 18.72 18.09

G2 circ 481 3.28 6.15 - - 857 1.54 1.12 4.37 3.94

G3 circ 680 51.73 33.77 - - 1242 25.06 7.71 13.20 19.24

Laplace 537 23.18 19.30 - - 817 8.49 2.37 5.29 5.29

offshore 365 13.83 23.22 - - 487 6.88 3.57 8.54 11.72

StocF 2364 368.36 158.37 - - 16740 544.91 290.38 634.35 624.89

thermal 1945 188.58 54.13 - - 2095 42.33 16.79 30.57 49.53



Self-adaptive Multiprecision Preconditioners 121

Fig. 2. Runtime of the different implementations normalized to the runtime of the best
method on the Intel Sandy Bridge CPU.

Fig. 3. Runtime of the different implementations normalized to the runtime of the best
method on the Kepler K40 GPU.

the smaller memory size of the AMD architecture prevents it from handling all
problems. While this performance drop may suggest that mixed precision multi-
elimination is not suitable for OpenCL on AMD architectures, the runtime results
for other preconditioner choices inTable 4 indicate that this behavior is not a singu-
larity. None of the implementations using the OpenCL-AMD framework achieves
performance competitive to the CUDA results on the Kepler K40. Finally, we want
a comparison between the different preconditioners. InFigs. (2, 3, 4, and 5)we com-
pare for the different architectures the performance of the plain CG with the imple-
mentations preconditioned by multi-colored Gauss-Seidel, ILU(0), multi-colored
ILU(0), and the developedmixedprecisionmulti-eliminationwith the runtimenor-
malized to the respective best implementation.

From the results we can determine that the mixed precision multi-elimination
is not suitable for the small G2 circ problem, but reduces the runtime signifi-
cantly in the StocF case. Furthermore, it shows very good performance on the
Kepler K40 GPU and Intel’s Manycore Architecture. Overall, the developed self-
adaptive preconditioner is competitive compared to the well-established methods.



122 H. Anzt et al.

Fig. 4. Runtime of the different implementations normalized to the runtime of the best
method on the AMD Radeon 7900.

Fig. 5. Runtime of the different implementations normalized to the runtime of the best
method on Intel’s Many Integrated Core Architecture.

5 Summary and Future Research

In this paper we have analyzed the cross-platform suitability of the recently
developed mixed precision multi-elimination preconditioner using self-adaptive
level depth. We have analyzed the method’s performance characteristics using
different hardware platforms and compared the runtime with some of the most
popular preconditioners. The numerical robustness combined with platform-
independent scalability makes the method a competitive candidate when choos-
ing a preconditioner for solving linear problems in scientific computing. Future
research will target the question of how to leverage the computing power of
platforms equipped with multiple, not necessarily uniform, accelerators.

Acknowledgments. This work has been supported by the Linnaeus centre of excel-
lence UPMARC, Uppsala Programming for Multicore Architectures Research Center,
the Russian Scientific Fund (Agreement N14-11-00190), DOE grant #DE-SC0010042,
NVIDIA, and the NSF grant # ACI-1339822.



Self-adaptive Multiprecision Preconditioners 123

References

1. The green 500 list. http://www.green500.org/
2. The Mont Blanc Project. http://montblanc-project.eu
3. The top 500 list. http://www.top.org/
4. O. Corp. Openacc 2.0a spec - revised august 2013, June 2013
5. I. C. Lab. Software distribution of MAGMA version 1.4 (2013). http://icl.cs.utk.

edu/magma/
6. Leuze, M.R.: Independent set orderings for parallel matrix factorization by gaussian

elimination. Parallel Comput. 10(2), 177–191 (1989)
7. Luby, M.: A simple parallel algorithm for the maximal independent set problem.

SIAM J. Comput. 15(4), 1036–1053 (1986)
8. Lukarski, D.: PARALUTION project. http://www.paralution.com/
9. Lukarski, D.: Parallel Sparse Linear Algebra for Multi-core and Many-core Plat-

forms - Parallel Solvers and Preconditioners. Ph.D. thesis, Karlsruhe Institute of
Technology (KIT), Germany (2012)

10. Lukarski, D., Anzt, H., Tomov, S., Dongarra, J.: Multi-Elimination ILU Precondi-
tioners on GPUs. Technical report UT-CS-14-723, Innovative Computing Labora-
tory, University of Tennessee (2014)

11. Naumov, M.: Parallel solution of sparse triangular linear systems in the precondi-
tioned iterative methods on the GPU. Technical report, NVIDIA (2011)

12. NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture
Programming Guide, 2.3.1 edition, August 2009

13. Robson, J.: Algorithms for maximum independent sets. J. Algorithms 7(3),
425–440 (1986)

14. Saad, Y.: Ilum: a multi-elimination ilu preconditioner for general sparse matrices.
SIAM J. Sci. Comput 17, 830–847 (1999)

15. Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia (2003)

16. Saad, Y., Zhang, J.: Bilum: block versions of multi-elimination and multi-level
ilu preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 20,
2103–2121 (1997)

17. Stone, J.E., Gohara, D., Shi, G.: Opencl: a parallel programming standard for
heterogeneous computing systems. IEEE Des. Test 12(3), 66–73 (2010)

18. Yao, L., Cao, W., Li, Z., Wang, Y., Wang, Z.: An improved independent set ordering
algorithm for solving large-scale sparse linear systems. In: 2010 2nd International
Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC),
vol. 1, pp. 178–181 (2010)

http://www.green500.org/
http://montblanc-project.eu
http://www.top.org/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://www.paralution.com/

	Self-adaptive Multiprecision Preconditioners on Multicore and Manycore Architectures
	1 Introduction
	2 Self-adaptive Multi-elimination Preconditioner
	3 Hardware and Software Issues
	4 Performance on Emerging Hardware Architectures
	5 Summary and Future Research
	References


