
A Communication Optimization Scheme
for Basis Computation of Krylov Subspace

Methods on Multi-GPUs

Langshi Chen1(B), Serge G. Petiton1,2, Leroy A. Drummond3,
and Maxime Hugues4

1 Maison de la Simulation, USR3441, Digiteo Labs Bât 565-PC 190,
91191 Gif-sur-Yvette, France

langshi.chen@etudiant.univ-lille.fr
2 Laboratoire d’informatique Fondamentale de Lille, Université des Sciences et

Technologies de Lille, 59650 Villeneuve d’Ascq, France
Serge.Petiton@lifl.fr

3 Lawrence Berkeley National Laboratory, One Cyclotron Road,
Berkeley, CA 94720, USA

ladrummond@lbl.gov
4 INRIA Saclay, 1 rue Honor d’Estienne d’Orves, Bât Alan Turing,

91120 Palaiseau, France
maxime.hugues@lifl.fr

Abstract. Krylov Subspace Methods (KSMs) are widely used for solv-
ing large-scale linear systems and eigenproblems. However, the compu-
tation of Krylov subspace bases suffers from the overhead of performing
global reduction operations when computing the inner vector products
in the orthogonalization steps. In this paper, a hypergraph based com-
munication optimization scheme is applied to Arnoldi and incomplete
Arnoldi methods of forming Krylov subspace basis from sparse matrix,
and features of these methods are compared in a analytical way. Finally,
experiments on a CPU-GPU heterogeneous cluster show that our opti-
mization improves the Arnoldi methods implementations for a generic
matrix, and a benefit of up to 10x speedup for some special diagonal
structured matrix. The performance advantage also varies for different
subspace sizes and matrix formats, which requires a further integration
of auto-tuning strategy.

Keywords: Krylov subspace · Auto-tuning · Arnoldi orthogonalization

1 Introduction

Krylov Subspace Methods (KSMs), such as GMRES and Arnoldi method, are
kinds of iterative solvers frequently used in large-scale linear problems [1]. In KSMs,
a basic and important part is to generate an orthogonal basis for the Krylov sub-
space. Arnoldi method is commonly adopted to form the basis [2,3], but it is proved
to be time-consuming due to its blocking scalar product from its orthogonalization
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 3–16, 2015.
DOI: 10.1007/978-3-319-17353-5 1



4 L. Chen et al.

process. In a parallel framework, the matrix-vector product in Arnoldi method also
can cause a heavy communication cost. It is even worse in clusters equipped with
accelerators like GPU, since the data exchange among GPUs is still expensive.
Thus, efforts are made to reduce the communication in KSMs. Ghysels et al. [4]
has proposed a pipelined variation of GMRES, hiding the global communication
latencies by overlapping them with other communication or computations. Hoem-
men [5] has implemented a Communication Avoiding version of the Power method
for computing non-orthogonal bases, which replaces data exchange by redundant
local computation. In this paper, we apply a hypergraph based communication
optimization to parallel Arnoldi and incomplete Arnoldi orthogonalization meth-
ods. Together with the non-optimized Arnoldi and incomplete Arnoldi methods,
the four algorithms are tested within a CPU-GPU framework. Our evaluation and
comparison of performance concentrate only on the time spent in the computing
of a Krylov subspace basis. While the number of restarts and the total time for
obtaining a converged solution also depend on conditions such as the features of
target matrices, which makes it difficult to have a general analysis. For example,
methods like incomplete Arnoldi could generate fast a less orthogonal basis but
later require more iterations and time to reach convergence.

2 Methods for Generating Krylov Subspace Basis

In order to obtain a vector basis for the Krylov subspace, the Gram-Schmidt
orthogonalization based Arnoldi process is commonly used. In this paper, we
focus on the Arnoldi process in the sparse matrix case. Arnoldi consists of a
BLAS 2 bandwidth bounded Sparse matrix-vector multiplication (SpMV) opera-
tions, and a vector inner product operations which incurs a global data reduction
across all the MPI processes. In order to reduce the communication overhead,
we first introduce a variant of Arnoldi named Incomplete Arnoldi, which trun-
cates the number of inner product operation to lower down the communication
from global reduction. Then, we introduce our hypergraph based optimization
and apply them to both Arnoldi and Incomplete Arnoldi. A time complexity
analysis is given in Sects. 2.1, 2.2, 2.3 and 2.4 for the four algorithms we have
studied here.

2.1 Arnoldi

Arnoldi method uses a Classic Gram-Schmidt (CGS) process to form a full-sized
orthogonal subspace basis. The CGS is preferred to Modified Gram-Schmidt
(MGS) because it is easier to implement in parallel and is better for the scalabil-
ity of our implementations. We evaluate its computational complexity in Eq. 1.

TArnoldi(s, p,N, n) = α(2sn/pL) +α(3Ns2 + 9Ns)/2pL

+β(2s log2(p)) + G(Ns + 2s2)(p − 1)/p (1)



A Communication Optimization Scheme for Basis Computation 5

The variable s is the size of Krylov subspace; p is the number of MPI processes;
N is the row number of matrix and n is the number of nonzero entries. We
divide the overall time into three parts: (1) α(2sn/pL) is the time of the matrix-
vector multiplication in Gram-Schmidt process. The parameter α denotes the
time per arithmetic operation, and L is the number of simultaneous parallel
processing elements in each MPI process (e.g. maximal threads within a GPU).
(2) α(3Ns2 + 9Ns)/2pL is the time spent in the vector inner product of Gram-
Schmidt process, which is quadratic to the subspace size s. (3) β(2s log2(p)) +
G(Ns + 2s2)(p − 1)/p is the communication overhead. It includes a latency
part β and a bandwidth part G. The complexity analysis indicates that the
communication overhead augments with the number of MPI processes p. When
p is relatively large, the latency part will become the dominant increment to the
communication cost.

2.2 IArnoldi(q)

Secondly, we review the IArnoldi(q) based on the Classic Gram-Schmidt process.
IArnoldi(q) truncates the number of orthogonal vectors so that each new gen-
erated basis vector should only be orthogonal to its q previous basis vectors [6].
Its time complexity is evaluated in Eq. 2.

TIArnoldi(q)(s, p,N, n, q) = α(2sn/pL) + α(2q + 3)Ns/pL

+β[(s + q) log2(p)] + G[(Ns + 2qs)(p − 1)/p] (2)

s, p,N, n is the same parameters in Eq. 1, and q is the number of vectors each
new generated basis vector should be orthogonal. Thus, a small q value means a
large extent of truncation and a less time both in computation and communica-
tion. The second term α(2q + 3)Ns/pL reduces the time of inner products from
O(Ns2/pL to O(Nsq/pL). The time of latency part also drops from β(2s log2(p))
to β(s log2(p)) (we assume that q � s). However, it suffers from a less orthogonal
basis, which incurs more iterations to reach convergence.

2.3 ArnoldiHG

ArnoldiHG is an optimized Arnoldi based on an hypergraph model proposed
in [7]. As the Power iteration of SpMV in Arnoldi is communication bounded,
we model it as an hypergraph. Each vertex in hypergraph refers to a single row
in matrix A, and two vertex (row i and j) are connected by a edge if and only
if the entry A(i, j) is nonzero. The edge (i, j) means that in each power itera-
tion of SpMV, the multiplication of row A(i, ; ) and vector X requires the data
X(j) stored in row j. In a parallel implementation, the rows of A are parti-
tioned and assigned to different processes (CPU or GPU computation element).
Thus, an edge across two groups of vertex (rows) incurs a data exchange within
processes, and this dependency is invariant during the power method iteration.
Then the optimization takes two steps. It first finds an optimal partition of the
rows in A to minimize the data exchange. Then the communication only occurs



6 L. Chen et al.

× ×
× × ×

× × ×
× × ×

× × ×
× ×

P1

{

P2

{

P3

{

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3

2 3 4 5

4 5 6

Matrix A

�
�

�
�

�
�

Y n
P1P2P3

1

2

3

Xn+1
P1

2

3

4

5

Xn+1
P2

4

5

6

Xn+1
P3

Fig. 1. Matrix A is divided into 3 partitions. When update Xn+1 from Y n, each par-
tition only requires some X data depending on their nonzero entries. E.g. P2 (Blue
color) requires the data from 2, 3, 4, 5 row positions, because only column 2, 3, 4, 5 has
nonzero entries. When forming Xn+1

P2
, data 3, 4 could be directly copied from P2’s own

memory, but communication occurs when requires data 2, 5 which belongs to P1, P3.
Thus for P2, the minimal communication is receiving data 2, 5 and sending data 3, 4
(Color figure online)

among rows that have data dependency in each iteration of SpMV. Figure 1 gives
an example of the optimization scheme. After the optimization, the communi-
cation overhead β(2s log2(p)) + G(Ns + 2s2)(p − 1)/p in Eq. 1 is replaced by
{β[sf(A, p) + s log2(p)] + G[sg(A,n) + 2s2(p − 1)/p]}, where the terms f(A, p)
and g(A,n) depends on the structure and partition of matrix A. In a best case,
we have f(A, p) = O(1), g(A,n) = O(n/p) which greatly reduces the communi-
cation overhead in SpMV part.

2.4 IArnoldiHG(q)

Similarly, IArnoldiHG(q) is the hypergraph optimized IArnoldi(q). Due to the
truncation and the hypergraph optimization, the second and third terms in Eq. 3
show a significant improvement at execution time.

TIArnoldi(q)(s, p,N, n, q) = α(2sn/pL) + α(2q + 3)Ns/pL

+ β[q log2(p) + sf(A, p)] + G[sg(A,n) + 2qs(p − 1)/p] (3)

2.5 Comparison of Four Algorithms

In Table 1, we compare the four algorithms in various aspects, like the execution
time, orthogonality and scalability. Here the total execution time for computing
a basis is divided into three parts as presented in Sects. 2.1, 2.2, 2.3 and 2.4.
The orthogonality evaluates the quality of the basis, which shall affect the total



A Communication Optimization Scheme for Basis Computation 7

Table 1. Comparison of 4 parallel Arnoldi Algorithmic Implementations

Algo name Arnoldi ArnoldiHG IArnoldi(q) IArnoldiHG(q)

Computation O(2sn/pL +
3s2N/2pL)

O(2sn/pL +
3s2N/2pL)

O(2sn/pL +
2qsN/pL)

O(2sn/pL +
2qsN/pL)

Latency O(2s log2(p)) O(sf(A, p) +
s log2(p))

O(s log2(p)) O(sf(A, p) +
q log2(p))

Bandwidth O(Ns) O(sg(A,n) +
2s2)

O(Ns) O(sg(A,n) +
2qs)

Orthogonality Full Full Depend q Depend q

Strong
scalability

Medium High Low Medium

Weak
scalability

Low High Low High

Optimized
communi-
cation

NO Yes NO Yes

time for finding a converged solution in iterative methods. The Strong scalabil-
ity reflects the parallelism of the computational workload, a more computational
intensive algorithm shall have a better strong scalability. While the weak scala-
bility measures the communication overhead, where a communication intensive
algorithm has a worse performance. According to our analysis, IArnoldiHG has
the best execution time due to the truncation and our hypergraph optimization.
Both of the hypergraph optimized methods have better scalability because of
their reduced communication overhead. Nevertheless, they are affected by the
structure of the matrix which determines the factor f(A, p) and g(A,n). The
truncated versions of Arnoldi method do not have a full orthogonality of its
basis, which depends on the choice of value q. A relatively small q could reduce
the execution time but reduce the orthogonality at the same time, which may
be remedied by methods like reorthogonalization.

3 Experimentation

In the experiment, we test the four methods on two heterogeneous clusters. One
is the cluster Poincare from Maison de la Simulation, which has 4 GPU nodes
and each node consists of 2 Xeon CPU and 2 Nvidia K20m GPUs. Another clus-
ter HAPACS-TCA resides in the University of Tsukuba. It has a total 64 GPU
nodes, and each node contains 2 Xeon CPUs and 4 Nvidia K20x GPUs (See
Table 2). According to this heterogeneous architecture, the four algorithms pre-
sented in Table 1 are also implemented under a CPU-GPU hybrid programming
paradigm (See Fig. 2). The matrix A is evenly row partitioned and the work-
load is distributed over GPUs. Each GPU has its own CPU process to handle
the communication operations via MPI. The GPU codes are written in CUDA
5.5 framework, and the MPI codes are compiled by openmpi 1.6.3. In order to



8 L. Chen et al.

Table 2. Two GPU cluster’s characteristics

Name Nodes CPU/node GPU/node GPU Interconnect

Poincare 4 2 2 K20m Infiniband

HA-PACS/TCA 64 2 4 K20x Infiniband

test the influence of different matrix structure to our hypergraph model, we use
sparse matrices with different structures. The Krylov Subspace size is also varied
to test its effect on the truncated methods IArnoldi and IArnoldiHG.

3.1 The Test Matrices

In the experiment, we use four test sparse matrices. The Continuous Diagonal
Matrix (C-Diag) in Fig. 3(a), has all its subdiagonals continuously aggregates
around the main diagonal. It represents a major type of matrices generated by
PDE applications, and it maps well to a row partition where each row part only
communicates with its neighbours. The second matrix is the Equidistributed
Diagonal Matrix (E-Diag) in Fig. 3(b), which is a contrast to the C-Diag matrix

A1
n, X

1
n, Y

1
n A2

n, X
2
n, Y

2
n A3

n, X
3
n, Y

3
n A4

n, X
4
n, Y

4
n

Y 1
n = A1

nX
1
n Y 2

n = A2
nX

2
n Y 3

n = A3
nX

3
n Y 4

n = A4
nX

4
n

Y 1
n+1, X

1
n+1 Y 2

n+1, X
2
n+1 Y 3

n+1, X
3
n+1 Y 4

n+1, X
4
n+1

Yn = AnX

Yn+1 = An+1X

Host
(CPU)

Device
(GPU)

Host
(CPU)

CUDA CUDA CUDA CUDA

CUDA
& MPI

Fig. 2. A hybrid CPU-GPU programming scheme for the SpMV part of Arnoldi. At
every iteration, a group of rows of the matrix A is attached to a CPU and a GPU.
A CPU first delivers the computation task to a GPU. After the GPU has finished its
work, each CPU gathers the Y vector from its own GPU, and it gathers Y vector or
part of Y vector from other CPUs via MPI. Then a new X vector is formed in CPU
for the next iteration



A Communication Optimization Scheme for Basis Computation 9

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 3028

(a) C-Diagonal

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1668

(b) Equi-Diagonal (c) Audikw1 (d) Ldoor

Fig. 3. (a) Continuous Diagonal Matrix, size of 960000, diagonals of 33; (b) Equidis-
tributed Diagonal Matrix, size of 960000, diagonals of 33; (c) Audikw1, size of 943695,
nonzeros of 77651847; (d) Ldoor, size of 952203 nonzeros of 42943817

where subdiagonals are distributed evenly across all columns. In equal row par-
tition of E-Diag, each row part shall exchange data with distant rows, which
may examine the worst case of hypergraph optimization model. Both of C-Diag
and E-Diag matrices are generated in runtime, which could be extended to an
arbitrary scale in the strong scaling and weak scaling tests. The third and fourth
matrices are real matrices collected from the Florida University’s Sparse matrix
database as shown in Fig. 3(c) and (d). They have more complicated structure
which is taken to test the influence of matrix structure on the hypergraph model
in the strong scaling tests. We also use two different Sparse Matrix formats. One
is the Compressed Sparse Row format (CSR format), the other is the ELLPACK
format provided by Nvidia, and we also evaluate the potential impact of these
formats in the overall performance of the implementations.

3.2 The Krylov Subspace Size

During the construction of the subspace basis, one of the most important para-
meters is the subspace size s (See Sect. 2). The value of s would significantly
affect the performance of IArnoldi methods. Typically, a small value of s is pre-
ferred in the cases of IArnoldi and IArnoldiHG because the loss of orthogonality
would be reduced. In the test, we also use some large values of s to have a
complete range of tests and study the influence of the subspace size over the
performance of time and scalability.

4 Results and Analysis

Figures 4 and 5 shows the scalability results of the four algorithms on C-Diag
matrix presented in Sect. 3.1. The Krylov subspace size is set to 64, and we
use a commonly adopted sparse matrix format CSR. In Fig. 4, the strong scal-
ability of the four algorithms is not good, which is due to the low computa-
tion/communication ratio in the sparse matrix case. While the result shows a
significant benefit from hypergraph optimization. When the algorithms are scaled
to more than 100 GPUs, ArnoldiHG could achieve a nearly 10x speed up over



10 L. Chen et al.

10 20 30 40 50 60 70 80 90 100 110 120 130
0

1

2

3

4

5

Number of GPUs

T
im

e(
/s

)
Strong Scaling Test of Execution Time

Arnoldi

ArnoldiHG

IArnoldi(16)

IArnoldi(4)

IArnoldiHG(16)

IArnoldiHG(4)

Fig. 4. Scalability Test on HAPACS-TCA with C-Diag matrix stored in CSR format
double precision. Strong scaling with total matrix size 9600000× 9600000, diagonals of
33 and Krylov subspace size 64

non-optimized Arnoldi. This benefit comes from the reduction of communication
overhead in the C-Diag matrix, where each process (GPU) shall only exchange
data with its neighbours in the hypergraph model. The weak scaling test in Fig. 5
endorses our model as well, where ArnoldiHG and IArnoldiHG show a perfect
weak scalability over 100 GPUs. In contrast, the non-optimized methods suffer
a lot from their communication overhead. In Fig. 6, we have a comparison for
the two methods. When the number of GPUs is relatively small, IArnoldiHG(4)
has the best performance. It comes from the benefit of IArnoldiHG’s truncation
on the number of vector inner product operations. A smaller q value leads to
a better performance gain (IArnoldiHG(4) outperforms IArnoldiHG(16)). How-
ever, this advantage disappears as the number of GPUs increases, and the per-
formances of the three curves in Fig. 6 converge. It means that the dominance
of computation is eliminated when p is large in the computation part of Table 1.
As the communication is also optimized by hypergraph model, a performance
convergence is expected. Thus, we prefer IArnoldiHG when p is small; otherwise
ArnoldiHG shall be chosen as it has a better orthogonality.



A Communication Optimization Scheme for Basis Computation 11

10 20 30 40 50 60 70 80 90 100 110
0

1

2

3

4

5

Number of GPUs

T
im

e(
/s

)
Weak Scaling Test of Execution Time

Arnoldi

ArnoldiHG

IArnoldi(16)

IArnoldi(4)

IArnoldiHG(16)

IArnoldiHG(4)

Fig. 5. Scalability Test on HAPACS-TCA with C-Diag matrix stored in CSR format
double precision. Weak scaling with total matrix size 9600000 × 9600000, diagonals of
33 and Krylov subspace size 64

4.1 Different Structure of Input Matrix

The structure of sparse matrix may also affect the performance of hypergraph
optimization. We will first test an E-Diag matrix both in strong scaling and
weak scaling. E-Diag could be considered as a worst-case test for our optimiza-
tion model, where each process should communicate with distant processes. In
Fig. 7(a), we find a cross point at around 50 processes (GPUs). As the band-
width part of ArnoldiHG O(sn/p + 2s2) is much lower than that of Arnoldi’s
O(Ns), the crossing point could be explained by the latency part of ArnoldiHG
O(sf(A, p) + slog2(p)) with f(A, p) = min(p, diags). In our case, the number of
subdiagonals is 33. When p increases to pass a particular value, the latency part
of ArnoldiHG is surpassed by that of Arnoldi (log2(p)), and a benefit of our opti-
mization is expected. The weak scaling result also supports our analysis, where
a crossing point is found in the same place around 50 GPUs. Besides the E-Diag
matrix, we also test two real sparse matrices Audikw1 and Ldoor presented in
Fig. 3. As they have a fixed size, we only take the strong scaling test on them.
In Fig. 8, we find that our hypergraph model optimization is effective on both of



12 L. Chen et al.

10 20 30 40 50 60 70 80 90 100 110 120 130

0.2

0.4

0.6

0.8

1

1.2

Number of GPUs

T
im

e(
/s

)
Strong Scaling Test for Hypergraph Optimization Methods

ArnoldiHG

IArnoldiHG(16)

IArnoldiHG(4)

Fig. 6. Scalability Test of Hypergraph Optimization methods on HAPACS-TCA with
C-Diag matrix stored in CSR format double precision. Strong scaling with total matrix
size 9600000 × 9600000, diagonals of 33 and Krylov subspace size 64

the matrices with complicated structure. The matrix Ldoor gains more benefits
from our optimization compared to the matrix Audikw. As the two matrices
have a row size and number of nonzeros of the same order, the difference should
come from their different structures. According to the Fig. 3, Ldoor has more of
its nonzero entries aggregated around its main diagonals than that of Audikw,
which shall reduce the communication among distant processes (GPUs in our
test). Thus, we may have a conjecture that the benefit of our model depends on
the structure of the matrix (e.g. the number of subdiagonals in E-Diag matrix)
in some cases.

4.2 Varying the Size of the Krylov Subspace

Furthermore, we study the influence of the various Krylov subspace sizes on
our hypergraph optimization. Since the Krylov subspace size is one of the most
important parameters in many Krylov iterative methods, we choose three differ-
ent values 8, 64, 256 in our test. A much larger value is not preferred in KSMs
because it shall involve a very large workload. Instead, this value is generally set



A Communication Optimization Scheme for Basis Computation 13

10 20 30 40 50 60 70 80 90 100 110 120 130
0

1

2

3

4

5

6

7

8

Number of GPUs

T
im

e(
/s

)
Strong Scaling Test of Execution Time

Arnoldi

ArnoldiHG

IArnoldi(16)

IArnoldi(4)

IArnoldiHG(16)

IArnoldiHG(4)

(a) Strong Scaling

10 20 30 40 50 60 70 80 90 100 110
0

1

2

3

4

5

Number of GPUs

T
im

e(
/s

)

Weak Scaling Test of Execution Time

Arnoldi

ArnoldiHG

IArnoldi(16)

IArnoldi(4)

IArnoldiHG(16)

IArnoldiHG(4)

(b) Weak Scaling

Fig. 7. Scalability Test on HAPACS-TCA with E-Diag matrix stored in CSR format
double precision. (a) Strong scaling with total matrix size 9600000×9600000, diagonals
of 33 and Krylov subspace size 64; (b) Weak scaling with each submatrix size 96000×
96000, diagonals of 33 and Krylov subspace size 64

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of GPUs

T
im

e(
/s

)

Strong Scaling Test of Execution Time

Arnoldi

ArnoldiHG

IArnoldi(16)

IArnoldi(4)

IArnoldiHG(16)

IArnoldiHG(4)

(a) Audikw

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of GPUs

T
im

e(
/s

)

Strong Scaling Test of Execution Time

Arnoldi

ArnoldiHG

IArnoldi(16)

IArnoldi(4)

IArnoldiHG(16)

IArnoldiHG(4)

(b) Ldoor

Fig. 8. Strong Scalability Test on Poincare with Audikw and Ldoor stored in CSR
format double precision. (a) Audikw matrix size of 943695, nonzeros of 77651847, and
Krylov subspace size 64; (b) Ldoor matrix size of 952203 nonzeros of 42943817, and
Krylov subspace size 64

to around 10 to 30. In Fig. 9, the x-axis denotes three testing Krylov subspace
sizes, and the y axis is the time speedup of ArnoldiHG, IArnoldi, IArnoldiHG
over the original Arnoldi. Here, we set the q value of the truncation to be
s/4 with s equals the Krylov subspace size. We find that our ArnoldiHG per-
forms better in small subspace size rather than large subspace size. It is due
to an increase of computation/communication intensity when the value s aug-
ments (O(3s2N)). Thus, the algorithm is computation-bounded rather than



14 L. Chen et al.

8 64 256

0.9

1

1.1

1.2

1.3

1.4

1.5

1.33
1.28

1.24

1.02 1.01

1.1

1.28 1.28

1.38

Krylov Subspace Size

Sp
ee

du
p

ov
er

A
rn

ol
di

Audikw Matrix with Krylov Size 8, 64, 256 on 8 GPUs

ArnoldiHG IArnoldi(s/4) IArnoldiHG(s/4)

(a) Audikw

8 64 256

1

1.5

2

2.5

2.08
1.95

1.71

1.01 1.04
1.13

2.08 2.02 2.01

Krylov Subspace Size

Sp
ee

du
p

ov
er

A
rn

ol
di

Ldoor Matrix with Krylov Size 8, 64, 256 on 8 GPUs

ArnoldiHG IArnoldi(s/4) IArnoldiHG(s/4)

(b) Ldoor

Fig. 9. Krylov Subspace Size Test on Poincare with Audikw and Ldoor stored in CSR
format double precision. (a) Audikw matrix size of 943695, nonzeros of 77651847; (b)
Ldoor matrix size of 952203 nonzeros of 42943817

700 750 800 850 900

E-Diag

Audikw

Ldoor

C-Diag

721

791

736

738

742

876

728

744

Time(/ms)

Arnoldi within subspace size 64

CSR ELLPACK

(a) Arnoldi

0 200 400 600 800 1,000

E-Diag

Audikw

Ldoor

C-Diag

881

618

378

266

868

705

382

270

Time(/ms)

ArnoldiHG within subspace size 64

CSR ELLPACK

(b) ArnoldiHG

Fig. 10. Comparison of format CSR and ELLPACK on Poincare with 4 matrices with
subspace size 64 running on 8 GPUs with double precision

communication-bounded, and the hypergraph optimization shall have a not sig-
nificant performance impact. In terms of IArnoldi, the truncation of the com-
putational workload has better performance impact when the subspace size s is
larger, which leads to a better speedup over Arnoldi. Finally for IArnoldiHG, the
two effects coexist, and the influence of subspace size varies according to many
factors like the structure of the matrix. In Fig. 9, the test on Audikw shows a
better speedup of IArnoldiHG within larger s values. While the Ldoor matrix
shows a worse speedup of IArnoldiHG within larger s values.



A Communication Optimization Scheme for Basis Computation 15

4.3 Impact of Sparse Matrix Format

In [8], the influence of formats on the performance of SpMV has been evaluated.
Similarly, we compare the two formats CSR and ELLPACK in our test. In our
implementation, both of the CSR and ELLPACK format use the vectorization
version which uses half a warp of 16 threads for each row of the matrix. Because
the data storage of CSR is more contiguous than that of ELLPACK (padding
zeros for some rows), the retrieval of data has a better efficiency. In Fig. 10,
the implementation of format CSR runs slightly better than that of ELLPACK.
In matrix Audikw, the gap is more evident because Audikw has a more irregular
structure which causes much more padding of zeros for rows.

5 Conclusion

In this paper, we presented a hypergraph model to optimize the communica-
tion cost in computing the Krylov subspace basis from sparse matrices. The
Classical Gram-Schmidt orthogonalization based Arnoldi method and its trun-
cated version Incomplete Arnoldi have been chosen, and the optimization scheme
have been applied to them. We study the time complexity and scalabilities of
the four algorithmic implementation in a theoretical way and compare their fea-
tures. According to the experiments on a CPU-GPU hybrid platform, we arrived
on the following concluding remarks: (1) Our hypergraph based optimization is
useful for communication-bounded kernels in Krylov subspace methods. (2) The
nonzeros distribution pattern of sparse matrix has an influence on our optimiza-
tion, where a matrix with more nonzeros aggregated around the main diagonal
shall have more benefits from our scheme. (3) Factors like the subspace size
and sparse matrix format also have affected the results of optimization, and an
auto-tuning framework is expected to choose different parameters intelligently
in the optimization. In order to further remove the communication bottleneck
of the applications, we will consider the adoption of more aggressive strategies
like Communication Avoiding method (e.g. TSQR, CAQR) [5] in future work.

Acknowledgments. The research presented in this work is partly supported by the
ANR-JST Japanese-French project FP3C (Framework and Programming for Post-
Petascale Computing). We thank Professor Tetsuya SAKURAI, Professor Taisuke
BOKU and his team in University of Tsukuba for their support in providing the use
of cluster HAPACS-TCA. We also thank the anonymous reviewers for their comments
and recommendations, which help us continually improving the work.

References

1. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (2003)

2. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Q. Appl. Math. 9, 17–29 (1951)



16 L. Chen et al.

3. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Society for Industrial
and Applied Mathematics, Philadelphia (2011)

4. Ghysels, P., Ashby, T.J., Meerbergen, K., Vanroose, W.: Hiding global communica-
tion latency in the GMRES algorithm on massively parallel machines. SIAM J. Sci.
Comput. 35, C48–C71 (2013)

5. Hoemmen, M.: A communication-avoiding, hybrid-parallel, rank-revealing orthog-
onalization method. In: 2011 IEEE International Parallel Distributed Processing
Symposium (IPDPS), pp. 966–977 (2011)

6. Saad, Y., Wu, K.: DQGMRES: a direct quasi-minimal residual algorithm based on
incomplete orthogonalization. Numer. Linear Algebra Appl. 3, 3–329 (1996)

7. Catalyurek, U.V., Aykanat, C.: Hypergraph-partitioning based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Comput.
10, 673–693 (1999)

8. Hugues, M., Petiton, S.: Sparse matrix formats evaluation and optimization on a
GPU. In: 2010 12th IEEE International Conference on High Performance Comput-
ing and Communications (HPCC), pp. 122–129 (2010)


	A Communication Optimization Scheme for Basis Computation of Krylov Subspace Methods on Multi-GPUs
	1 Introduction
	2 Methods for Generating Krylov Subspace Basis
	2.1 Arnoldi
	2.2 IArnoldi(q)
	2.3 ArnoldiHG
	2.4 IArnoldiHG(q)
	2.5 Comparison of Four Algorithms

	3 Experimentation
	3.1 The Test Matrices
	3.2 The Krylov Subspace Size

	4 Results and Analysis
	4.1 Different Structure of Input Matrix
	4.2 Varying the Size of the Krylov Subspace
	4.3 Impact of Sparse Matrix Format

	5 Conclusion
	References


