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Preface

VECPAR is an international conference series dedicated to the promotion and
advancement of all aspects of high-performance computing for computational science,
as an academic discipline and as a technique for real-world applications, extending the
frontier of the state of the art and the state of practice. The audience and participants of
VECPAR are researchers in academy, laboratories, and industry. The memory of the
conference is preserved at http://vecpar.fe.up.pt.

The 11th edition of the conference, VECPAR 2014, was held in Eugene, OR, during
June 30 – July 3, 2014. It was the sixth time the conference was held outside its “birth
place,” in Porto (Portugal), succeeding Valencia (Spain) in 2004, Rio de Janeiro
(Brazil) in 2006, Toulouse (France) in 2008, Berkeley (USA) in 2010, and Kobe
(Japan) in 2012.

The conference program consisted of 2 invited talks, 18 papers, and 11 posters. The
invited talks were presented by John Shalf, “Exascale Programming Challenges:
Adjusting to the New Normal for Computer Architecture,” and Masaki Satoh, “A Super
High-Resolution Global Atmospheric Simulation by the Nonhydrostatic Icosahedral
Atmospheric Model Using the K Computer.” In his talk, Dr. Shalf discussed challenges of
programming future computing systems, with very high level of parallelism, and provided
some highlights from the search for durable programming abstractions to more closely
track emerging computer technology trends to guarantee the longevity of codes. In his
talk, Dr. Satoh discussed a new type of the global atmospheric model called NICAM (non-
hydrostatic icosahedral atmospheric model) that covers the Earth with a quasi-uniform
mesh, and whose horizontal interval can be a subkilometer by using a high-end computer.
He also gave an overview of recent results from super-high resolution simulations with
NICAM using the K computer at the RIKEN AICS, in Kobe, Japan.

The major themes of the conference (thus the accepted papers and posters) were:

• Large-scale Simulations in CS&E
• Parallel and Distributed Computing
• Numerical Algorithms for CS&E
• Multiscale and Multiphysics Problems
• Data Intensive Computing
• Performance Analysis

The most significant contributions of VECPAR 2014 have been made available in
the present book, edited after the conference, and after a second review of all orally
presented papers. The first round of reviews was based on an eightpage extended
abstract. Each paper was reviewed by three reviewers; in some cases, a fourth reviewer
helped in the final decision. Out of 32 submissions, 18 were accepted for presentation.
For the second round of reviews, authors were given a larger page budget, so they
could better address reviewers’ comments and suggestions. Finally, 17 were accepted
for publication in this book.

http://vecpar.fe.up.pt


In addition, three related events were organized in the first two days of the
conference:

• The Ninth International Workshop on Automatic Performance Tuning (iWAPT
2014), whose contributions are also included in this book,

• Tutorial on Trilinos, a software library for solving large-scale mathematical problems
arising in science and industry,

• Programming and Optimizing for the Intel® Xeon Phi™ Coprocessor, in which
participants could learn about programming models and optimization for that
architecture, complemented with hands-on work.

VECPAR 2014 took place at the University of Oregon and Hilton Conference
Center, in Eugene, Oregon, USA. Paper submissions were managed with the EasyChair
conference system; the conference website and registration process were managed by
the University of Oregon.

The success of VECPAR and the long life of the series result from the work of many
people. As in all previous occasions, a large number of collaborators were involved in
the organization and promotion of the conference. Here, we would like to express our
gratitude to Allen Malony and Sameer Shende, and the iWAPT organizers, in particular
Franz Franchetti and Yusaku Yamamoto.

We thank all authors who have contributed to this book, for adhering to the
deadlines and responding to the reviewers’ comments and suggestions, and all mem-
bers of the Scientific Committee, who greatly helped us with the paper selection
process.

February 2015 Michel Daydé
Osni Marques

Kengo Nakajima

VI Preface



Organization

Organizing Committee

Allen Malony University of Oregon, USA
Sameer Shende University of Oregon, USA

Steering Committee

Osni Marques (Chair) LawrenceBerkeleyNational Laboratory,USA
Álvaro Coutinho COPPE/UFRJ, Brazil
Michel Daydé IRIT, France
Jack Dongarra University of Tennessee, USA
Inês Dutra University of Porto, Portugal
Kengo Nakajima The University of Tokyo, Japan

Scientific Committee

Kengo Nakajima (Chair) The University of Tokyo, Japan
Yifeng Cui (Vice-Chair) San Diego Supercomputer Center, USA
Osni Marques (Vice-Chair) Lawrence Berkeley National Laboratory, USA
Sameer Shende (Vice-Chair) University of Oregon, USA
Reza Akbarinia Inria, France
William Barth TACC/University of Texas at Austin, USA
Taisuke Boku University of Tsukuba, Japan
Jed Brown Argonne National Laboratory, USA
Xiao-Chuan Cai University of Colorado, USA
Xing Cai Simula Research Laboratory, Norway
Christophe Calvin CEA, France
Andrew Canning Lawrence Berkeley National Laboratory, USA
Lucia Catabriga Universidade Federal do Espírito Santo, Brazil
Li Chen Tsinghua University, China
Edmond Chow Georgia Institute of Technology, USA
Olivier Coulaud Inria, France
Alvaro Coutinho Federal University of Rio de Janeiro, Brazil
Jose Cuminato Universidade de São Paulo, Brazil
José Cunha Universidade Nova de Lisboa, Portugal
Claudio Curotto Federal University of Paraná, Brazil
Michel Daydé IRIT, France
Frédéric Desprez Inria, France
Philippe Devloo UNICAMP, Brazil
Tony Drummond Lawrence Berkeley National Laboratory, USA



Ines Dutra University of Porto, Portugal
Akihiro Fujii Kogakuin University, Japan
Luc Giraud Inria, France
Jorge Gonzalez-Dominguez Universidade da Coruña, Spain
Ronan Guivarch ENSEEIHT, France
Daniel Hagimont ENSEEIHT, France
Abdelkader Hameurlain IRIT, France
Hidehiko Hasegawa University of Tsukuba, Japan
Mark Hoemmen Sandia National Laboratories, USA
Toshiyuki Imamura RIKEN AICS, Japan
Takeshi Iwashita Kyoto University, Japan
Jean-Pierre Jessel IRIT, France
Zhong Jin Chinese Academy of Sciences, China
Takahiro Katagiri The University of Tokyo, Japan
Harald Koestler Universität Erlangen-Nürnberg, Germany
Jakub Kurzak University of Tennessee, USA
Julien Langou University of Colorado at Denver, USA
Stéphane Lanteri Inria, France
Jean-Yves L’Excellent Inria ENS Lyon, France
Sherry Li Lawrence Berkeley National Laboratory, USA
Paul Lin Sandia National Laboratories, USA
Thomas Ludwig German Climate Computing Center, Germany
Piotr Luszczek University of Tennessee, USA
Naoya Maruyama RIKEN AICS, Japan
Hiroshi Nakashima Kyoto University, Japan
Satoshi Ohshima The University of Tokyo, Japan
Hiroshi Okuda The University of Tokyo, Japan
Kenji Ono RIKEN AICS, Japan
Christian Perez Inria, France
Serge Petiton Université de Lille, France
François-Henry Roeut Lawrence Berkeley National Laboratory, USA
Tetsuya Sakurai University of Tsukuba, Japan
Augusto Sousa University of Porto, Portugal
Reiji Suda The University of Tokyo, Japan
Frederic Suter IN2P3 ENS Lyon, France
Daisuke Takahashi University of Tsukuba, Japan
Osamu Tatebe University of Tsukuba, Japan
Keita Teranishi Sandia National Laboratories, USA
Miroslav Tuma Academy of Sciences of the Czech Republic,

Czech Republic
Paulo Vasconcelos University of Porto, Portugal
Xavier Vasseur CERFACS, France
Richard Vuduc Georgia Institute of Technology, USA
Weichung Wang National Taiwan University, Taiwan

VIII Organization



Roland Wismuller Universität Siegen, Germany
Rio Yokota King Abdullah University of Science

and Technology, Saudi Arabia

Invited Speakers

John Shalf Lawrence Berkeley National
Laboratory, USA

Masaki Satoh The University of Tokyo, Japan

Sponsoring Organizations

The organizing committee is very grateful to the following organizations for their kind
support to VECPAR 2014:

Fujitsu Limited
Intel
Rogue Wave Software
ParaTools

Organization IX



Posters

Towards Multicolor Particle Contact Detection Method for Hybrid MPI-OpenMP
Execution in DEM
Takahiro Katagiri (The University of Tokyo), Hiroshi Takeda (Rflow Corporation),
Jyunya Kato (Hosei University), Shota Kawamura (Hosei University), and
Yasuyoshi Horibata (Hosei University)

Generate Very Large Sparse Matrices Starting from a Given Spectrum
Hervé Galicher (CEA Saclay), France Boillod-Cerneux (Université Lille),
Serge Petiton (Université de Lille), and Christophe Calvin (CEA Saclay)

Effects of Blocking and Re-Ordering of Matrix Index in a Parallel Linear Iterative
Solver of FEM Application Development Support Middleware
Takeshi Kitayama (The University of Tokyo), Olav Aanes Fagerlund (The Uni-
versity of Tokyo), and Hiroshi Okuda (CREST)

Parallel Preconditioning Methods for Ill-Conditioned Problems by BILUT(p,d,t)
Kengo Nakajima (The University of Tokyo)

INARMERA-ICT: Straightening Computational Science Capacity in Armenia
Yu. Shoukourian (National Academy of Sciences of the Republic of Armenia),
V. Sahakyan (National Academy of Sciences of the Republic of Armenia),
H. Astsatryan (National Academy of Sciences of the Republic of Armenia),
M. Dayde (IRIT), and P.H. Cros (IRIT)

ACP: Advanced Communication Primitives for Exa-scale Systems1

Shinji Sumimoto (Fujitsu), Yuichiro Ajima (Fujitsu), Kazushige Saga (Fujitsu),
Takafumi Nose (Fujitsu), Naoyuki Shida (Fujitsu), and Takeshi Nanri (Kyushu
University)

Using MUMPS as a preconditioner solver for a Hetero3D Elasticity Problem
Michel Daydé (IRIT), Ronan Guivarch (IRIT), Guillaume Joslin (IRIT), and
Kengo Nakajima (The University of Tokyo)

Fast computation of double precision sparse matrix in BCRS and DD vector product
using AVX2
Toshiaki Hishinuma (Kogakuin University), Akihiro Fujii (Kogakuin University),
Teruo Tanaka (Kogakuin University), and Hidehiko Hasegawa (University of
Tsukuba)

1 Winner of the Best Poster Award.



Current efforts for performance analysis and enhancements of CESM
Srinath Vadlamani (NCAR), John Dennis (NCAR), Youngsung Kim (NCAR), and
Sameer Shende (University of Oregon)

Peformance Evaluation of Multiple-inputs Parallel Hatree-Fock Calculation
Hiroaki Honda (Kyushu University), Yu-ichi Inadomi (Kyushu University), and
Jun Maki (Institute of Systems, Information Technologies and Nanotechnologies)

Revisiting svd(B) through eig(T)
Osni Marques (Lawrence Berkeley National Laboratory)

XII Posters



Message from the Chairs of iWAPT 2014

The International Workshop on Automatic Performance Tuning (iWAPT) brings
together researchers studying how to automatically adapt algorithms and software
for high performance on modern machines. The workshop convened for the 9th
consecutive year on July 1st, 2014 at the University of Oregon and Hilton Conference
Center, Eugene, Oregon, USA.

The invited presentations The End of Coding as We Know it by Boyana Norris
(University of Oregon) and Auto-Tuning for Unreliable HPC by Keita Teranishi
(Sandia National Laboratories) addressed the challenges of auto-tuning in the world of
ever-increasing code and hardware complexity and the resulting need for automation
and fault tolerance.

The remaining presentations reinforced various aspects of this theme, spanning
across a wide range of topics from service orchestration and checkpointing to the
tuning of numerical linear algebra kernels and code generation. There were eight
accepted technical papers, one reprint and one vision paper. The eight technical papers
are included in these proceedings while the other papers were only distributed at
VECPAR.

Many people and organizations helped to make this workshop a success. We are
especially grateful to the VECPAR Organizing Committee, especially Osni Marques and
Kengo Nakajima, for their logistical and intellectual support; the iWAPT Steering
Committee, especially Reiji Suda and Takahiro Katagiri, for their guidance; and the
Program Committee for volunteering their time to help assemble an outstanding program.
Furthermore, the workshop would not be possible without the generous financial support
of the Japan Science and Technology Agency, whose contributions have made Japan a
leading international player in auto-tuning research. Lastly, we thank the invited speakers,
authors, and meeting participants for their insights and thoughtful debate throughout the
workshop.

February 2015 Osni Marques
Franz Franchetti

Yusaku Yamamoto
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A Communication Optimization Scheme
for Basis Computation of Krylov Subspace

Methods on Multi-GPUs

Langshi Chen1(B), Serge G. Petiton1,2, Leroy A. Drummond3,
and Maxime Hugues4

1 Maison de la Simulation, USR3441, Digiteo Labs Bât 565-PC 190,
91191 Gif-sur-Yvette, France

langshi.chen@etudiant.univ-lille.fr
2 Laboratoire d’informatique Fondamentale de Lille, Université des Sciences et

Technologies de Lille, 59650 Villeneuve d’Ascq, France
Serge.Petiton@lifl.fr

3 Lawrence Berkeley National Laboratory, One Cyclotron Road,
Berkeley, CA 94720, USA

ladrummond@lbl.gov
4 INRIA Saclay, 1 rue Honor d’Estienne d’Orves, Bât Alan Turing,

91120 Palaiseau, France
maxime.hugues@lifl.fr

Abstract. Krylov Subspace Methods (KSMs) are widely used for solv-
ing large-scale linear systems and eigenproblems. However, the compu-
tation of Krylov subspace bases suffers from the overhead of performing
global reduction operations when computing the inner vector products
in the orthogonalization steps. In this paper, a hypergraph based com-
munication optimization scheme is applied to Arnoldi and incomplete
Arnoldi methods of forming Krylov subspace basis from sparse matrix,
and features of these methods are compared in a analytical way. Finally,
experiments on a CPU-GPU heterogeneous cluster show that our opti-
mization improves the Arnoldi methods implementations for a generic
matrix, and a benefit of up to 10x speedup for some special diagonal
structured matrix. The performance advantage also varies for different
subspace sizes and matrix formats, which requires a further integration
of auto-tuning strategy.

Keywords: Krylov subspace · Auto-tuning · Arnoldi orthogonalization

1 Introduction

Krylov Subspace Methods (KSMs), such as GMRES and Arnoldi method, are
kinds of iterative solvers frequently used in large-scale linear problems [1]. In KSMs,
a basic and important part is to generate an orthogonal basis for the Krylov sub-
space. Arnoldi method is commonly adopted to form the basis [2,3], but it is proved
to be time-consuming due to its blocking scalar product from its orthogonalization
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 3–16, 2015.
DOI: 10.1007/978-3-319-17353-5 1
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process. In a parallel framework, the matrix-vector product in Arnoldi method also
can cause a heavy communication cost. It is even worse in clusters equipped with
accelerators like GPU, since the data exchange among GPUs is still expensive.
Thus, efforts are made to reduce the communication in KSMs. Ghysels et al. [4]
has proposed a pipelined variation of GMRES, hiding the global communication
latencies by overlapping them with other communication or computations. Hoem-
men [5] has implemented a Communication Avoiding version of the Power method
for computing non-orthogonal bases, which replaces data exchange by redundant
local computation. In this paper, we apply a hypergraph based communication
optimization to parallel Arnoldi and incomplete Arnoldi orthogonalization meth-
ods. Together with the non-optimized Arnoldi and incomplete Arnoldi methods,
the four algorithms are tested within a CPU-GPU framework. Our evaluation and
comparison of performance concentrate only on the time spent in the computing
of a Krylov subspace basis. While the number of restarts and the total time for
obtaining a converged solution also depend on conditions such as the features of
target matrices, which makes it difficult to have a general analysis. For example,
methods like incomplete Arnoldi could generate fast a less orthogonal basis but
later require more iterations and time to reach convergence.

2 Methods for Generating Krylov Subspace Basis

In order to obtain a vector basis for the Krylov subspace, the Gram-Schmidt
orthogonalization based Arnoldi process is commonly used. In this paper, we
focus on the Arnoldi process in the sparse matrix case. Arnoldi consists of a
BLAS 2 bandwidth bounded Sparse matrix-vector multiplication (SpMV) opera-
tions, and a vector inner product operations which incurs a global data reduction
across all the MPI processes. In order to reduce the communication overhead,
we first introduce a variant of Arnoldi named Incomplete Arnoldi, which trun-
cates the number of inner product operation to lower down the communication
from global reduction. Then, we introduce our hypergraph based optimization
and apply them to both Arnoldi and Incomplete Arnoldi. A time complexity
analysis is given in Sects. 2.1, 2.2, 2.3 and 2.4 for the four algorithms we have
studied here.

2.1 Arnoldi

Arnoldi method uses a Classic Gram-Schmidt (CGS) process to form a full-sized
orthogonal subspace basis. The CGS is preferred to Modified Gram-Schmidt
(MGS) because it is easier to implement in parallel and is better for the scalabil-
ity of our implementations. We evaluate its computational complexity in Eq. 1.

TArnoldi(s, p,N, n) = α(2sn/pL) +α(3Ns2 + 9Ns)/2pL

+β(2s log2(p)) + G(Ns + 2s2)(p − 1)/p (1)
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The variable s is the size of Krylov subspace; p is the number of MPI processes;
N is the row number of matrix and n is the number of nonzero entries. We
divide the overall time into three parts: (1) α(2sn/pL) is the time of the matrix-
vector multiplication in Gram-Schmidt process. The parameter α denotes the
time per arithmetic operation, and L is the number of simultaneous parallel
processing elements in each MPI process (e.g. maximal threads within a GPU).
(2) α(3Ns2 + 9Ns)/2pL is the time spent in the vector inner product of Gram-
Schmidt process, which is quadratic to the subspace size s. (3) β(2s log2(p)) +
G(Ns + 2s2)(p − 1)/p is the communication overhead. It includes a latency
part β and a bandwidth part G. The complexity analysis indicates that the
communication overhead augments with the number of MPI processes p. When
p is relatively large, the latency part will become the dominant increment to the
communication cost.

2.2 IArnoldi(q)

Secondly, we review the IArnoldi(q) based on the Classic Gram-Schmidt process.
IArnoldi(q) truncates the number of orthogonal vectors so that each new gen-
erated basis vector should only be orthogonal to its q previous basis vectors [6].
Its time complexity is evaluated in Eq. 2.

TIArnoldi(q)(s, p,N, n, q) = α(2sn/pL) + α(2q + 3)Ns/pL

+β[(s + q) log2(p)] + G[(Ns + 2qs)(p − 1)/p] (2)

s, p,N, n is the same parameters in Eq. 1, and q is the number of vectors each
new generated basis vector should be orthogonal. Thus, a small q value means a
large extent of truncation and a less time both in computation and communica-
tion. The second term α(2q + 3)Ns/pL reduces the time of inner products from
O(Ns2/pL to O(Nsq/pL). The time of latency part also drops from β(2s log2(p))
to β(s log2(p)) (we assume that q � s). However, it suffers from a less orthogonal
basis, which incurs more iterations to reach convergence.

2.3 ArnoldiHG

ArnoldiHG is an optimized Arnoldi based on an hypergraph model proposed
in [7]. As the Power iteration of SpMV in Arnoldi is communication bounded,
we model it as an hypergraph. Each vertex in hypergraph refers to a single row
in matrix A, and two vertex (row i and j) are connected by a edge if and only
if the entry A(i, j) is nonzero. The edge (i, j) means that in each power itera-
tion of SpMV, the multiplication of row A(i, ; ) and vector X requires the data
X(j) stored in row j. In a parallel implementation, the rows of A are parti-
tioned and assigned to different processes (CPU or GPU computation element).
Thus, an edge across two groups of vertex (rows) incurs a data exchange within
processes, and this dependency is invariant during the power method iteration.
Then the optimization takes two steps. It first finds an optimal partition of the
rows in A to minimize the data exchange. Then the communication only occurs
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Fig. 1. Matrix A is divided into 3 partitions. When update Xn+1 from Y n, each par-
tition only requires some X data depending on their nonzero entries. E.g. P2 (Blue
color) requires the data from 2, 3, 4, 5 row positions, because only column 2, 3, 4, 5 has
nonzero entries. When forming Xn+1

P2
, data 3, 4 could be directly copied from P2’s own

memory, but communication occurs when requires data 2, 5 which belongs to P1, P3.
Thus for P2, the minimal communication is receiving data 2, 5 and sending data 3, 4
(Color figure online)

among rows that have data dependency in each iteration of SpMV. Figure 1 gives
an example of the optimization scheme. After the optimization, the communi-
cation overhead β(2s log2(p)) + G(Ns + 2s2)(p − 1)/p in Eq. 1 is replaced by
{β[sf(A, p) + s log2(p)] + G[sg(A,n) + 2s2(p − 1)/p]}, where the terms f(A, p)
and g(A,n) depends on the structure and partition of matrix A. In a best case,
we have f(A, p) = O(1), g(A,n) = O(n/p) which greatly reduces the communi-
cation overhead in SpMV part.

2.4 IArnoldiHG(q)

Similarly, IArnoldiHG(q) is the hypergraph optimized IArnoldi(q). Due to the
truncation and the hypergraph optimization, the second and third terms in Eq. 3
show a significant improvement at execution time.

TIArnoldi(q)(s, p,N, n, q) = α(2sn/pL) + α(2q + 3)Ns/pL

+ β[q log2(p) + sf(A, p)] + G[sg(A,n) + 2qs(p − 1)/p] (3)

2.5 Comparison of Four Algorithms

In Table 1, we compare the four algorithms in various aspects, like the execution
time, orthogonality and scalability. Here the total execution time for computing
a basis is divided into three parts as presented in Sects. 2.1, 2.2, 2.3 and 2.4.
The orthogonality evaluates the quality of the basis, which shall affect the total



A Communication Optimization Scheme for Basis Computation 7

Table 1. Comparison of 4 parallel Arnoldi Algorithmic Implementations

Algo name Arnoldi ArnoldiHG IArnoldi(q) IArnoldiHG(q)

Computation O(2sn/pL +
3s2N/2pL)

O(2sn/pL +
3s2N/2pL)

O(2sn/pL +
2qsN/pL)

O(2sn/pL +
2qsN/pL)

Latency O(2s log2(p)) O(sf(A, p) +
s log2(p))

O(s log2(p)) O(sf(A, p) +
q log2(p))

Bandwidth O(Ns) O(sg(A,n) +
2s2)

O(Ns) O(sg(A,n) +
2qs)

Orthogonality Full Full Depend q Depend q

Strong
scalability

Medium High Low Medium

Weak
scalability

Low High Low High

Optimized
communi-
cation

NO Yes NO Yes

time for finding a converged solution in iterative methods. The Strong scalabil-
ity reflects the parallelism of the computational workload, a more computational
intensive algorithm shall have a better strong scalability. While the weak scala-
bility measures the communication overhead, where a communication intensive
algorithm has a worse performance. According to our analysis, IArnoldiHG has
the best execution time due to the truncation and our hypergraph optimization.
Both of the hypergraph optimized methods have better scalability because of
their reduced communication overhead. Nevertheless, they are affected by the
structure of the matrix which determines the factor f(A, p) and g(A,n). The
truncated versions of Arnoldi method do not have a full orthogonality of its
basis, which depends on the choice of value q. A relatively small q could reduce
the execution time but reduce the orthogonality at the same time, which may
be remedied by methods like reorthogonalization.

3 Experimentation

In the experiment, we test the four methods on two heterogeneous clusters. One
is the cluster Poincare from Maison de la Simulation, which has 4 GPU nodes
and each node consists of 2 Xeon CPU and 2 Nvidia K20m GPUs. Another clus-
ter HAPACS-TCA resides in the University of Tsukuba. It has a total 64 GPU
nodes, and each node contains 2 Xeon CPUs and 4 Nvidia K20x GPUs (See
Table 2). According to this heterogeneous architecture, the four algorithms pre-
sented in Table 1 are also implemented under a CPU-GPU hybrid programming
paradigm (See Fig. 2). The matrix A is evenly row partitioned and the work-
load is distributed over GPUs. Each GPU has its own CPU process to handle
the communication operations via MPI. The GPU codes are written in CUDA
5.5 framework, and the MPI codes are compiled by openmpi 1.6.3. In order to
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Table 2. Two GPU cluster’s characteristics

Name Nodes CPU/node GPU/node GPU Interconnect

Poincare 4 2 2 K20m Infiniband

HA-PACS/TCA 64 2 4 K20x Infiniband

test the influence of different matrix structure to our hypergraph model, we use
sparse matrices with different structures. The Krylov Subspace size is also varied
to test its effect on the truncated methods IArnoldi and IArnoldiHG.

3.1 The Test Matrices

In the experiment, we use four test sparse matrices. The Continuous Diagonal
Matrix (C-Diag) in Fig. 3(a), has all its subdiagonals continuously aggregates
around the main diagonal. It represents a major type of matrices generated by
PDE applications, and it maps well to a row partition where each row part only
communicates with its neighbours. The second matrix is the Equidistributed
Diagonal Matrix (E-Diag) in Fig. 3(b), which is a contrast to the C-Diag matrix
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Fig. 2. A hybrid CPU-GPU programming scheme for the SpMV part of Arnoldi. At
every iteration, a group of rows of the matrix A is attached to a CPU and a GPU.
A CPU first delivers the computation task to a GPU. After the GPU has finished its
work, each CPU gathers the Y vector from its own GPU, and it gathers Y vector or
part of Y vector from other CPUs via MPI. Then a new X vector is formed in CPU
for the next iteration
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Fig. 3. (a) Continuous Diagonal Matrix, size of 960000, diagonals of 33; (b) Equidis-
tributed Diagonal Matrix, size of 960000, diagonals of 33; (c) Audikw1, size of 943695,
nonzeros of 77651847; (d) Ldoor, size of 952203 nonzeros of 42943817

where subdiagonals are distributed evenly across all columns. In equal row par-
tition of E-Diag, each row part shall exchange data with distant rows, which
may examine the worst case of hypergraph optimization model. Both of C-Diag
and E-Diag matrices are generated in runtime, which could be extended to an
arbitrary scale in the strong scaling and weak scaling tests. The third and fourth
matrices are real matrices collected from the Florida University’s Sparse matrix
database as shown in Fig. 3(c) and (d). They have more complicated structure
which is taken to test the influence of matrix structure on the hypergraph model
in the strong scaling tests. We also use two different Sparse Matrix formats. One
is the Compressed Sparse Row format (CSR format), the other is the ELLPACK
format provided by Nvidia, and we also evaluate the potential impact of these
formats in the overall performance of the implementations.

3.2 The Krylov Subspace Size

During the construction of the subspace basis, one of the most important para-
meters is the subspace size s (See Sect. 2). The value of s would significantly
affect the performance of IArnoldi methods. Typically, a small value of s is pre-
ferred in the cases of IArnoldi and IArnoldiHG because the loss of orthogonality
would be reduced. In the test, we also use some large values of s to have a
complete range of tests and study the influence of the subspace size over the
performance of time and scalability.

4 Results and Analysis

Figures 4 and 5 shows the scalability results of the four algorithms on C-Diag
matrix presented in Sect. 3.1. The Krylov subspace size is set to 64, and we
use a commonly adopted sparse matrix format CSR. In Fig. 4, the strong scal-
ability of the four algorithms is not good, which is due to the low computa-
tion/communication ratio in the sparse matrix case. While the result shows a
significant benefit from hypergraph optimization. When the algorithms are scaled
to more than 100 GPUs, ArnoldiHG could achieve a nearly 10x speed up over
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Fig. 4. Scalability Test on HAPACS-TCA with C-Diag matrix stored in CSR format
double precision. Strong scaling with total matrix size 9600000× 9600000, diagonals of
33 and Krylov subspace size 64

non-optimized Arnoldi. This benefit comes from the reduction of communication
overhead in the C-Diag matrix, where each process (GPU) shall only exchange
data with its neighbours in the hypergraph model. The weak scaling test in Fig. 5
endorses our model as well, where ArnoldiHG and IArnoldiHG show a perfect
weak scalability over 100 GPUs. In contrast, the non-optimized methods suffer
a lot from their communication overhead. In Fig. 6, we have a comparison for
the two methods. When the number of GPUs is relatively small, IArnoldiHG(4)
has the best performance. It comes from the benefit of IArnoldiHG’s truncation
on the number of vector inner product operations. A smaller q value leads to
a better performance gain (IArnoldiHG(4) outperforms IArnoldiHG(16)). How-
ever, this advantage disappears as the number of GPUs increases, and the per-
formances of the three curves in Fig. 6 converge. It means that the dominance
of computation is eliminated when p is large in the computation part of Table 1.
As the communication is also optimized by hypergraph model, a performance
convergence is expected. Thus, we prefer IArnoldiHG when p is small; otherwise
ArnoldiHG shall be chosen as it has a better orthogonality.
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Fig. 5. Scalability Test on HAPACS-TCA with C-Diag matrix stored in CSR format
double precision. Weak scaling with total matrix size 9600000 × 9600000, diagonals of
33 and Krylov subspace size 64

4.1 Different Structure of Input Matrix

The structure of sparse matrix may also affect the performance of hypergraph
optimization. We will first test an E-Diag matrix both in strong scaling and
weak scaling. E-Diag could be considered as a worst-case test for our optimiza-
tion model, where each process should communicate with distant processes. In
Fig. 7(a), we find a cross point at around 50 processes (GPUs). As the band-
width part of ArnoldiHG O(sn/p + 2s2) is much lower than that of Arnoldi’s
O(Ns), the crossing point could be explained by the latency part of ArnoldiHG
O(sf(A, p) + slog2(p)) with f(A, p) = min(p, diags). In our case, the number of
subdiagonals is 33. When p increases to pass a particular value, the latency part
of ArnoldiHG is surpassed by that of Arnoldi (log2(p)), and a benefit of our opti-
mization is expected. The weak scaling result also supports our analysis, where
a crossing point is found in the same place around 50 GPUs. Besides the E-Diag
matrix, we also test two real sparse matrices Audikw1 and Ldoor presented in
Fig. 3. As they have a fixed size, we only take the strong scaling test on them.
In Fig. 8, we find that our hypergraph model optimization is effective on both of
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Fig. 6. Scalability Test of Hypergraph Optimization methods on HAPACS-TCA with
C-Diag matrix stored in CSR format double precision. Strong scaling with total matrix
size 9600000 × 9600000, diagonals of 33 and Krylov subspace size 64

the matrices with complicated structure. The matrix Ldoor gains more benefits
from our optimization compared to the matrix Audikw. As the two matrices
have a row size and number of nonzeros of the same order, the difference should
come from their different structures. According to the Fig. 3, Ldoor has more of
its nonzero entries aggregated around its main diagonals than that of Audikw,
which shall reduce the communication among distant processes (GPUs in our
test). Thus, we may have a conjecture that the benefit of our model depends on
the structure of the matrix (e.g. the number of subdiagonals in E-Diag matrix)
in some cases.

4.2 Varying the Size of the Krylov Subspace

Furthermore, we study the influence of the various Krylov subspace sizes on
our hypergraph optimization. Since the Krylov subspace size is one of the most
important parameters in many Krylov iterative methods, we choose three differ-
ent values 8, 64, 256 in our test. A much larger value is not preferred in KSMs
because it shall involve a very large workload. Instead, this value is generally set
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Fig. 7. Scalability Test on HAPACS-TCA with E-Diag matrix stored in CSR format
double precision. (a) Strong scaling with total matrix size 9600000×9600000, diagonals
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Fig. 8. Strong Scalability Test on Poincare with Audikw and Ldoor stored in CSR
format double precision. (a) Audikw matrix size of 943695, nonzeros of 77651847, and
Krylov subspace size 64; (b) Ldoor matrix size of 952203 nonzeros of 42943817, and
Krylov subspace size 64

to around 10 to 30. In Fig. 9, the x-axis denotes three testing Krylov subspace
sizes, and the y axis is the time speedup of ArnoldiHG, IArnoldi, IArnoldiHG
over the original Arnoldi. Here, we set the q value of the truncation to be
s/4 with s equals the Krylov subspace size. We find that our ArnoldiHG per-
forms better in small subspace size rather than large subspace size. It is due
to an increase of computation/communication intensity when the value s aug-
ments (O(3s2N)). Thus, the algorithm is computation-bounded rather than
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Fig. 10. Comparison of format CSR and ELLPACK on Poincare with 4 matrices with
subspace size 64 running on 8 GPUs with double precision

communication-bounded, and the hypergraph optimization shall have a not sig-
nificant performance impact. In terms of IArnoldi, the truncation of the com-
putational workload has better performance impact when the subspace size s is
larger, which leads to a better speedup over Arnoldi. Finally for IArnoldiHG, the
two effects coexist, and the influence of subspace size varies according to many
factors like the structure of the matrix. In Fig. 9, the test on Audikw shows a
better speedup of IArnoldiHG within larger s values. While the Ldoor matrix
shows a worse speedup of IArnoldiHG within larger s values.
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4.3 Impact of Sparse Matrix Format

In [8], the influence of formats on the performance of SpMV has been evaluated.
Similarly, we compare the two formats CSR and ELLPACK in our test. In our
implementation, both of the CSR and ELLPACK format use the vectorization
version which uses half a warp of 16 threads for each row of the matrix. Because
the data storage of CSR is more contiguous than that of ELLPACK (padding
zeros for some rows), the retrieval of data has a better efficiency. In Fig. 10,
the implementation of format CSR runs slightly better than that of ELLPACK.
In matrix Audikw, the gap is more evident because Audikw has a more irregular
structure which causes much more padding of zeros for rows.

5 Conclusion

In this paper, we presented a hypergraph model to optimize the communica-
tion cost in computing the Krylov subspace basis from sparse matrices. The
Classical Gram-Schmidt orthogonalization based Arnoldi method and its trun-
cated version Incomplete Arnoldi have been chosen, and the optimization scheme
have been applied to them. We study the time complexity and scalabilities of
the four algorithmic implementation in a theoretical way and compare their fea-
tures. According to the experiments on a CPU-GPU hybrid platform, we arrived
on the following concluding remarks: (1) Our hypergraph based optimization is
useful for communication-bounded kernels in Krylov subspace methods. (2) The
nonzeros distribution pattern of sparse matrix has an influence on our optimiza-
tion, where a matrix with more nonzeros aggregated around the main diagonal
shall have more benefits from our scheme. (3) Factors like the subspace size
and sparse matrix format also have affected the results of optimization, and an
auto-tuning framework is expected to choose different parameters intelligently
in the optimization. In order to further remove the communication bottleneck
of the applications, we will consider the adoption of more aggressive strategies
like Communication Avoiding method (e.g. TSQR, CAQR) [5] in future work.
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Abstract. The Generalized Minimum Residual (GMRES) method is a
popular Krylov subspace projection method for solving a nonsymmet-
ric linear system of equations. On modern computers, communication
is becoming increasingly expensive compared to arithmetic operations,
and a communication-avoiding variant (CA-GMRES) may improve the
performance of GMRES. To further enhance the performance of CA-
GMRES, in this paper, we propose two techniques, focusing on the two
main computational kernels of CA-GMRES, tall-skinny QR (TSQR) and
matrix powers kernel (MPK). First, to improve the numerical stability of
TSQR based on the Cholesky QR (CholQR) factorization, we use higher-
precision arithmetic at carefully-selected steps of the factorization. In
particular, our mixed-precision CholQR takes the input matrix in the
standard 64-bit double precision, but accumulates some of its interme-
diate results in a software-emulated double-double precision. Compared
with the standard CholQR, this mixed-precision CholQR requires about
8.5× more computation but a much smaller increase in communication.
Since the computation is becoming less expensive compared to the com-
munication on a newer computer, the relative overhead of the mixed-
precision CholQR is decreasing. Our case studies on a GPU demonstrate
that using higher-precision arithmetic for this small but critical segment
of the algorithm can improve not only the overall numerical stability of
CA-GMRES but also, in some cases, its performance. We then study an
adaptive scheme to dynamically adjust the step size of MPK based on
the static inputs and the performance measurements gathered during the
first restart loop of CA-GMRES. Since the optimal step size of MPK is
often much smaller than that of the orthogonalization kernel, the overall
performance of CA-GMRES can be improved using different step sizes
for these two kernels. Our performance results on multiple GPUs show
that our adaptive scheme can choose a near optimal step size for MPK,
reducing the total solution time of CA-GMRES.

1 Introduction

The cost of executing software can be modeled by a function of its computa-
tional and communication costs (e.g., in terms of required cycle time or energy
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 17–30, 2015.
DOI: 10.1007/978-3-319-17353-5 2
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consumption). For instance, the computational cost can be modeled based on the
number of required floating point operations (flops), while the communication
includes the synchronization and data transfer between the parallel processing
units, as well as the data movement through the levels of the local memory hier-
archy. On modern computers, communication is becoming increasingly expensive
compared to computation. It is critical to take this hardware trend into considera-
tion when designing high-performance software for new and emerging computers.

The Generalized Minimum Residual (GMRES) method [6] is a popular Krylov
subspace projection method for solving a large-scale nonsymmetric linear system
of equations. To address the current hardware trend, we studied a communication-
avoiding variant of GMRES [5] on multicore CPUs with multiple GPUs [8]. Our
experimental results demonstrated that CA-GMRES can obtain the speedups
of up to two by avoiding some of the communication on such shared-memory
computer architectures. Our experimental results also showed that both the per-
formance and numerical stability of CA-GMRES depends on the two computa-
tional kernels, the orthogonalization (Orth) and matrix powers kernels (MPK ).
For example, compared with other orthogonalization schemes, the Cholesky
QR (CholQR) factorization [7] obtained a superior performance based on the
optimized BLAS-3 GPU kernels. Unfortunately, when the input matrix is ill-
conditioned, CholQR can be numerically unstable, and CA-GMRES may not
converge even with reorthogonalization. We also found that depending on the
sparsity pattern of the coefficient matrix, MPK can be slower than the stan-
dard sparse-matrix vector multiply (SpMV ) due to the computational and/or
communication overheads traded for reducing the communication latency. This
is especially true in CA-GMRES, where a relatively large step size is preferred
by Orth.

To address the aforementioned limitations of CA-GMRES, in this paper, we
first design and study a mixed-precision variant of CholQR that takes the input
matrix in the standard 64-bit double precision but accumulates some of its inter-
mediate results in software-emulated double-double precision [4]. Compared with
the standard CholQR, our mixed-precision CholQR increases the computational
cost by 8.5× but the increase in its communication cost is less significant. Since
the computation is becoming less expensive compared to the communication on
new and emerging computers, we hope to improve the overall numerical stabil-
ity of CA-GMRES using the higher-precision without a significant increase in
the orthogonalization time. Case studies on different GPUs demonstrate that
this mixed-precision CholQR can improve not only the overall stability of CA-
GMRES but also, in some cases, its performance by allowing a larger step size,
avoiding the reorthogonalization, and improving the solution convergence rate.
We then study an adaptive scheme that uses different step sizes for MPK and
Ortho and dynamically adjusts the step size of MPK at run time. We demon-
strate that our adaptive scheme can find a near optimal step size based on the
static input parameters and the performance measurements gathered during the
first restart loop, and reduce the total solution time of CA-GMRES.
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x̂ := 0 and v1 := b/‖b‖2.
repeat (restart-loop)

Generate Krylov Subspace on GPUs (inner-loop):
for j = 1, s + 1, 2s + 1, . . . , m do

MPK : Generate new vectors vk+1 := Avk

for k = j, j + 1, . . . ,min(j + s, m).
BOrth: Orthogonalize Vj+1:j+s+1 against V1:j .
TSQR: Orthogonalize the vectors within Vj+1:j+s+1.

end for

Solve Projected Subsystem on CPUs (restart):

Compute the solution x̂ in the generated subspace,
which minimizes its residual norm.

Set v1 := r/‖r‖2, where r := b − Ax.
until solution convergence do

Fig. 1. CA-GMRES(s,m) pseudocode.

Step 1: Gram-matrix formation
for d = 1, 2, . . . , ng do

B(d) := V
(d)T
1:s+1V

(d)
1:s+1 on GPU

end for

B :=
∑

B(d) (global reduce)

Step 2: Cholesky factorization
R := chol(B) on CPU

Step 3: Orthogonalization
copy R to all the GPUs (broadcast)
for d = 1, 2, . . . , ng do

V
(d)
1:s+1 := V

(d)
1:s+1R−1 on GPU

end for

Fig. 2. CholQR pseudocode.

The rest of the paper is organized as follows: In Sect. 2, we first review the
CA-GMRES, MPK, and CholQR algorithms, and present their implementations
on the multicore CPUs with multiple GPUs. Then in Sect. 3, we describe the
mixed-precision CholQR and its implementation with the GPU. The perfor-
mance of the mixed-precision CholQR and its effects on the performance of
CA-GMRES are also presented in this section. Next, in Sect. 4, we describe our
adaptive scheme for the MPK ’s step size and present its effectiveness in selecting
the near-optimal step size. We provide final remarks in Sect. 5.

2 Communication-Avoiding GMRES

The Generalized Minimum Residual (GMRES) method [6] is a popular Krylov
subspace projection method for solving a nonsymmetric linear system of equa-
tions, Ax = b. The GMRES’s j-th iteration generates the (j + 1)-th Krylov
basis vector vj+1. This is done through a sparse matrix-vector multiply (SpMV )
with the previously-generated basis vector vj , followed by the orthonormaliza-
tion (Orth) of the resulting vector against all the previously-generated basis
vectors v1,v2, . . . ,vj . As the iteration proceeds, this explicit orthogonalization
of the basis vectors becomes increasingly expensive in terms of both computa-
tional and storage requirements.

To avoid the expensive costs of generating a large projection subspace, GMRES
iteration is restarted after computing a fixed number m + 1 of basis vectors.
Before restart, GMRES updates the approximate solution x̂ by solving a least-
squares problem g := arg mint‖c − Ht‖, where c := V T

1:m+1(b − Ax̂), H :=
V T
1:m+1AV1:m, x̂ := x̂ + V1:mg, and V1:m is the matrix consists of the column

vectors v1,v2, . . . ,vm. Compared with the coefficient matrix A, the projected
matrix H, a by-product of the orthogonalization procedure, is smaller in dimen-
sion (i.e., m � n) and is in a Hessenberg form. Hence, the least-squares problem
can be efficiently solved, requiring only about 3(m + 1)2 flops. On the other
hand, for an n-by-n matrix A with nnz(A) nonzeros, SpMV and Orth require
a total of about 2m · nnz(A) and 2m3n flops over the m iterations, respectively
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(i.e., n, nnz(A) � m). Hence, the solution time of GMRES is often dominated by
the first step of generating the basis vectors. To accelerate the solution process
using GPUs, we distribute the coefficient matrix A and the basis vectors V1:m+1

in a 1D block row format among the GPUs. We then generate these basis vectors
on the GPUs, while the least-square problem is solved on the CPUs.

Even with a single GPU, both SpMV and Orth require communication to
move the data through the memory hierarchy of the GPU, while with multiple
GPUs, additional communication is needed among the GPUs. CA-GMRES [5]
aims to reduce this communication by redesigning the algorithm to replace SpMV
and Orth with three new kernels – matrix powers kernel (MPK ), block orthog-
onalization (BOrth), and tall-skinny QR (TSQR) – that generate and orthog-
onalize a set of s basis vectors at once. By avoiding the communication, even
with one GPU, CA-GMRES can obtain a speedup of up to two [8]. Figure 1
shows the pseudocode of CA-GMRES (s, m). A more detailed description of our
implementation can be found in [8].

In the rest of this section, we review the two main computational kernels
of CA-GMRES, TSQR and MPK, improving whose performance is the focus of
this paper.

2.1 Cholesky QR Factorization

To orthonormalize the tall-skinny matrix V1:s+1 with s + 1 columns, we focus
on TSQR based on the Cholesky QR (CholQR) factorization [7]. To describe
our implementation of CholQR on multicore CPUs with multiple GPUs, we use
V

(d)
1:s+1 to denote the local submatrix of V1:s+1, distributed to the d-th GPU, and

ng is the number of available GPUs. To orthogonalize the s + 1 vectors V1:s+1,
CholQR first forms the Gram matrix, B := V T

1:s+1V1:s+1, through the local
matrix-matrix product B(d) := V

(d)T
1:s+1V

(d)
1:s+1 on the GPU, followed by the reduc-

tion B :=
∑ng

d=1 B(d) on the CPU. Next, the Cholesky factor R of B is com-
puted on the CPU. Finally, the GPU orthogonalizes V1:s+1 by a triangular solve
V

(d)
1:s+1 := V

(d)
1:s+1R

−1. Hence, all the required GPU-GPU communication is aggre-
gated into a pair of messages between the CPU and GPUs, while all the GPU
computation is based on BLAS-3. As a result, both intra and inter GPU commu-
nication can be optimized. Figure 2 shows these three steps of CholQR. Unfor-
tunately, the condition number κ(B) of the Gram matrix B is the square of the
condition number κ(V1:s+1) of the input matrix V1:s+1 (i.e., κ(B) = κ(V1:s+1)2).
This often causes numerical instability, especially in CA-GMRES, where even
using the Newton basis [1], the vector vj can converge to the principal eigenvec-
tor of A, and κ(V1:s+1) can be large.

2.2 Matrix Powers Kernel

For SpMV on multiple GPUs, the communication of the distributed vector
elements through the PCI Express bus could become a bottleneck. To reduce
this bottleneck, given a starting vector vj , MPK first communicates all the



Mixed-Precision Orthogonalization Scheme and Adaptive Step Size 21

Fig. 3. Illustration of MPK for a tridiagonal matrix A with the starting vector v
and the step size s = 4. The blue circles represent the local elements of the vectors
to be computed on this GPU and the red circles are the required non-local vector
elements. The GPU first communicates the red elements of v on the s-level overlap,
then independently performs SpMV (Color figure online).

required vector elements of vj on the s-level overlap at once so that each GPU
can independently compute the local components of the s matrix-vector products
Avj , A

2vj , . . . , A
svj without further communication [2]. Figure 3 illustrates our

implementation of MPK for a tridiagonal matrix A. As a result, MPK reduces
the communication latency by a factor of s, but introduces the overheads to
store, communicate, and perform computation on the s-level overlap. Though
MPK often improve the performance of SpMV using a small step size s, its
optimal step size may be much smaller than that of BOrth or TSQR due to
the overheads associated with MPK. See [8] for the detailed discussion of our
implementation of MPK and its performance.

3 Mixed-Precision CholQR

To improve the numerical stability of CholQR in the working 64-bit double
precision, we use a software-emulated quadruple precision at the first two steps
of CholQR, while the last step is in the working precision. This is motivated
by the fact that the condition number of the Gram matrix B is the square of
the condition number of the input matrix V1:s+1. Hence, the numerical stability
should be improved by using the higher-precision arithmetic for forming and
factorizing the Gram matrix (see [9] for the detailed numerical analysis and
studies of the mixed-precision CholQR). Here, in Sect. 3.1, we first describe our
implementation of the mixed-precision CholQR on the multicore CPUs with
the GPU. Then, in Sect. 3.2, we present its performance. Finally, in Sect. 3.3,
we study the effects of using the higher-precision on the performance of CA-
GMRES.

3.1 Implementation

When the target hardware does not support a desired higher precision, software
emulation is needed. For instance, double-double (dd) precision emulates the
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# of double precision instructions
double-double operation Add/Substitute Multiply FMA Total

Multiply (double-double input) 5 3 1 9
Multiply (double input) 3 1 1 5
Addition (IEEE-style) 20 0 0 20
Addition (Cray-style) 11 0 0 11

Fig. 4. Number of double-precision instructions in double-double operations.
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Fig. 5. InnerProds implementation (arrow
shows data access by a GPU thread).

double regC[mb][nb], regA[mb], regB
for � = 1, . . . h

nt
do

for j = 1 . . . nb

regA[i] = x�∗nt,j

end for
for j = 1, . . . , nb do
regB = y

�∗nt,j

for i = 1 . . . mb

regC[i][j] += regA[i] * regB
end for

end for
end for

Fig. 6. InnerProds pseudocode.

quadruple precision by representing each numerical value by an unevaluated
sum of two double precision numbers, and is capable of representing the 106 bits
precision, while the double-precision number is of 53 bits precision. There are two
standard implementations [4] of adding two numerical values in double-double
precision, a + b = ĉ + e, where e is the round-off error; one satisfies the IEEE-
style error bound (e = δ(a + b) with |δ| ≤ 2εdd and εdd = 2−105), and the other
satisfies the weaker Cray-style error bound (e = δ1a + δ2b with |δ1|, |δ2| ≤ εdd).
Figure 4 lists the computational costs of the double-double operations required
by our mixed-precision CholQR (dd-CholQR). The standard CholQR in double
precision (d-CholQR) performs about a half of its total flops at Step 1 and the
other half at Step 3. On the other hand, compared with the input matrix V1:s+1,
the Gram matrix B is much smaller in its dimension (i.e., s � n), and CholQR
spends only a small portion of its flops and orthogonalization time, computing its
Cholesky factor at Step 2. Hence, using the Cray-style double-double precision
for Steps 1 and 2, our dd-CholQR performs about 8.5× more computation than
d-CholQR. On the other hand, the increase in communication is less significant;
our intra-GPU communication is about the same, only writing the s-by-s output
matrix in double-double precision while reading and writing the n-by-s input
matrix V1:s+1 in double precision (s � n). In addition, we communicate twice
more data between the GPUs (16s2Bytes with s ≈ 10), but with the same
latency.

Though CholQR performs only a half of the total flops at Step 1, its
orthogonalization time can be dominated by Step 1. This is because though
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Fig. 7. Performance of standard and mixed-precision InnerProds in double precision.

the other half of the total flops is performed at Step 3, solving the triangular
system with many right-hand-sides at Step 3 exhibits a high parallelism and can
be implemented efficiently on a GPU. On the other hand, at Step 1, comput-
ing each element of the Gram matrix requires a reduction operation on two n-
length vectors. These inner-products (InnerProds) are communication-intensive
and exhibit only limited parallelism. Hence, Step 1 often becomes the bottle-
neck, where standard implementations fail to obtain high-performance on the
GPU. In our batched implementation of a matrix-matrix multiply (GEMM) to
compute InnerProds, B := XT Y , each thread block computes a partial product,
B(i,j,k) := X(k,i)T Y (k,j), where X(k,i) and Y (k,j) are the h-by-mb and h-by-nb

blocks of X and Y , respectively.1 Within the thread block, each of its nt threads
computes its partial result in the local registers (see Fig. 5 for an illustration, and
Fig. 6 for the pseudocode, where x�,j is the (�, j)-th element of X(k,i)). Then,
each thread block performs the binary reduction of the partial results among
its threads, summing nr columns at a time using the shared memory to store
nt × (mb ×nr) numerical values. The final result is computed by another binary
reduction among the thread blocks. Our implementation is designed to reduce
the number of synchronizations among the threads while relying on the CUDA
runtime and the parameter tuning to exploit the data locality. For the symmetric
(SYRK) multiply, B := V T V , the thread blocks compute only a triangular part

1 In the current implementation, the numbers of rows and columns in X and Y are a
multiple of h, and multiples of mb and nb, respectively, where nb is a multiple of nr.
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Fig. 9. d/dd-CholQR performance.

of B and reads V (k,j) once for computing a diagonal block. Our performance
studies in the next subsection are based on this batched kernel.

3.2 Performance

Figure 7 compares the standard and mixed-precision InnerProds performance on
different GPUs, where the mixed-precision InnerProds reads the input matrix in
the standard 64-bits double precision, but accumulates its intermediate results
into the output matrix in the double-double precision. Each GPU has a different
relative cost of communication to computation, and on top of each plot, we show
the ratio of the double-precision peak performance (Gflop/s) over the shared
memory bandwidth (GB/s) (i.e., flop/B to obtain the peak). This ratio tends
to increase on a newer architecture, indicating a greater relative communication
cost. We tuned our kernel for each matrix dimension on each GPU in each
precision (see the five tunable parameters h, mb, nb, nr, and nt in Sect. 3.1),
and the figure shows the optimal performance. Based on the memory bandwidth
and the fixed number of columns in the figure, the respective peak performances
of the standard d-GEMM are 442, 625, and 720Gflop/s on the M2090, K20c,
and K40 GPUs. Our d-GEMM obtained 29, 26, 28% of these peak performances
and speedups of about 1.8, 1.7, and 1.7 over CUBLAS 5.5 on these three GPUs.
In addition, though it performs 16× more floating-point instructions, the gap
between the standard d-GEMM and the mixed-precision dd-GEMM tends to
decrease on a newer architecture, and dd-GEMM is only less than four times
slower on K20c. We also see that by taking advantage of the symmetry, both
d-SYRK and dd-SYRK improve the performance of d-GEMM and dd-GEMM,
respectively.

Figure 8 shows the breakdown of the standard d-CholQR orthogonalization
time on two eight-core Intel Sandy Bridge CPUs with one NVIDIA K20c GPU.
Because of our efficient implementation of InnerProds, only about 30 % of the
orthogonalization time is now spent in d-InnerProds. As a result, while the mixed
precision dd-InnerProds was about four times slower than d-InnerProds, Fig. 9
shows that the mixed-precision dd-CholQR is only about 1.7 or 1.4 times slower
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Name Source n/1000 nnz/n

cant FEM Cantilever 62.4 64.2
shipsec1 FEM Ship secion 140.8 87.3

dielFilterV2real FEM in Electromagnetic 1157.5 41.9
G3 circuit Circuit simulation 1585.4 4.8

Fig. 10. Test matrices used for test cases with CA-GMRES.

GMRES d−GEMM dd−GEMM d−SYRK dd−SYRK
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 T
im

e

cant with CA−GMRES(60,30), double

 

 
SpMV
BOrth
TSQR

GMRES d−GEMM dd−GEMM d−SYRK dd−SYRK
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 T
im

e

shipsec1 with CA−GMRES(60,30), double

 

 
SpMV
BOrth
TSQR

0.42 (7)

0.38 (8)
0.36 (7)

0.37 (8)

0.35 (7)

1.70 (16)

2.26 (28)

1.55 (18)

2.22 (28)

1.47 (18)

Fig. 11. Performance comparison of CA-GMRES using dd-CholQR (with dd-GEMM
or dd-SYRK) against CA-GMRES using d-CholQR with (d-GEMM or d-SYRK) and
GMRES using CGS: On top of each bar shows total time in seconds and restart count.
To obtain the solution convergence, the reorthogonalization was used with d-CholQR,
while it was not needed with dd-CholQR.

than the standard d-CholQR when GEMM or SYRK is used for InnerProds,
respectively. In other words, if the reorthogonalization is avoided using the higher-
precision, then dd-CholQR may obtain a performance competitive to that of d-
CholQR with reorthogonalization. For the mixed-precision dd-CholQR, the
Cholesky factorization in the double-double precision is computed using MPACK2

on the CPU, while for d-CholQR, we use the threaded version of MKL for the
Cholesky factorization in the double precision.

3.3 Case Studies with CA-GMRES

Figure 11 shows the solution time of CA-GMRES using the standard d-CholQR
and the mixed-precision dd-CholQR on two eight-core Sandy Bridge CPUs with
a single K20c. To maintain the numerical stability and obtain the solution con-
vergence, the full-reorthogonalization was needed with d-CholQR, while it was
2 http://mplapack.sourceforge.net.

http://mplapack.sourceforge.net
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Fig. 12. Result of MPK performance model on two and three GPUs.

not needed with dd-CholQR. For BOrth, we used the classical Gram-Schmidt
(CGS) process [3] with reorthogonalization, which obtains high performance with
the GPU [8]. The solution time is normalized using the corresponding solution
time of GMRES that uses CGS with reorthogonalization for orthogonalizing
its basis vectors. Figure 10 shows the properties of our test matrices that were
downloaded from the University of Florida Sparse Matrix collection.3 We see
that using dd-CholQR, even with the computationally expensive software emu-
lation, the solution time was reduced not only because the reorthogonalization
was avoided but also because CA-GMRES converged in fewer iterations.

4 Adaptive Step Size for Matrix Powers Kernel

Most of CA-GMRES implementations including ours [8] use the same step size s
for MPK, BOrth, and TSQR, while the optimal s for MPK is typically smaller
than that of BOrth or TSQR due to the computational and/or communication

3 http://www.cise.ufl.edu/research/sparse/matrices/.

http://www.cise.ufl.edu/research/sparse/matrices/
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overheads associated with MPK. To address this performance difference, we first
adapted our implementation such that MPK uses a smaller step size ŝ than the
step size s used for BOrth and TSQR. Hence, to generate the s basis vectors,
we invoke MPK s/ŝ times using the step size ŝ before calling BOrth and TSQR.
In addition, instead of having a different ŝ for MPK as a user-specified input
parameter, we design an adaptive scheme to dynamically adjust the step size
ŝ of MPK based on the static inputs (i.e., the sparsity pattern of the coeffi-
cient matrix A and the maximum step size s) and the performance measure-
ments gathered during the first restart-loop of CA-GMRES. In particular, for
our experiments, we use the following performance model:

MPK time = Inter-communication time + Kernel time,

where we let

Inter-communication time = Latency +
Communication volume

Bandwidth
, and

Kernel time =
Flop count

flop/s
+ # of random data accesses × Data access time,

and “Kernel time” consists of the computation and intra-GPU communication
time. In our experiments, “Communication volume” and “Flop count” are com-
puted based on the sparsity pattern of the coefficient matrix A, while “# of
random data accesses” is approximated by the aggregated number of non-local
vector elements accessed by MPK. On the other hand, we computed “Latency,”
“Bandwidth,” “flop/s,” and “Data access time” based on the measured time
of the reduction for the dot-products, point-to-point communication for SpMV,
flop count and time required by SpMV, and data copy on the GPU, respectively.
All the performance measurements are collected during the first restart loop of
CA-GMRES. In practice, we often use GMRES iteration for the first restart loop
(i.e., s = 1). This is because to maintain the numerical stability, MPK generates
the Newton basis [1] whose shifts can be computed during the first restart. Since
these shifts are not available for the first restart loop, to maintain the numerical
stability, GMRES iteration is used. Hence, with the proposed adaptive scheme,
we gather both the numerical and performance statistics of the given problem
during the first restart loop. Then, based on these statistics, the input parame-
ters are adjusted to enhance both the performance and stability of CA-GMRES
for the remaining loops.

Figure 12 shows the effectiveness of the performance model to capture the
performance of MPK for two sparse matrices on Intel Sandy Bridge CPUs with
three NVIDIA Tesla M2090 GPUs. The properties of our test matrices from
the University of Florida Sparse Matrix collection are shown in Fig. 10. Since we
use the performance model to select a good step size, the model only needs to
capture the performance trend and not the exact performance. In addition, in
many cases, the performance of MPK does not change significantly around the
optimal step size. The figure demonstrates that for both matrices, the model was
successful in capturing the performance trends and selecting a near-optimal step
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Fig. 13. Effects of adaptive MPK step size on performance of CA-GMRES.

size. In particular, for the dielFilterV2real matrix, due to the overhead asso-
ciated with MPK, the standard SpMV was faster than MPK. Our performance
model could capture this and select the step size of one for MPK.

Figure 13 shows the effects of the adaptive step size on the performance of
CA-GMRES, where the static scheme uses the fixed step size for MPK, BOrth,
and TSQR that obtains the near-optimal performance of CA-GMRES. Though
the improvement was not significant, this is based on the near-optimal perfor-
mance of MPK. We expect the benefit of the adaptive scheme to increase on
the computer where the communication cost is higher (e.g., a GPU cluster).
Finally, in all the test cases, it only required marginal overheads to gather the
performance measurements.

5 Conclusion

We proposed a mixed-precision orthogonalization scheme to improve the numer-
ical stability of CA-GMRES. When the target hardware does not support a
desired higher precision, software emulation is needed. We showed that though
the software emulation could significantly increase the computational cost, the
increase in the communication cost is less significant. As a result, the overhead
of using the software emulation is decreasing on a newer GPU architecture where
the cost of the computation is decreasing compared to the cost of the commu-
nication. Our case studies on multicore CPUs with a GPU demonstrated that
though it requires about 8.5× more computation, using a higher-precision for
this small but critical segment of CA-GMRES can improve not only its overall
stability but also, in some cases, its performance.

In this paper, we only studied the effects of a higher-precision on a single
GPU. On multiple GPUs of a compute node, the performance of CA-GMRES
depends more on the performance of the GPU kernels (i.e., intra-GPU communi-
cation) than the inter-GPU communication [8]. Hence, similar benefits of using a
higher-precision are expected on the multiple GPUs. We will study its effects on a
system with a greater communication latency (e.g., distributed GPUs or CPUs)
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where the performance improvement by using the higher-precision arithmetic
may be greater. We are also studying the use of mixed-precision in eigensolvers
where the orthogonality can be more crucial, and are writing an extended paper
focusing on the numerical properties of our mixed-precision scheme [9]. Finally,
it is of our interest to apply or extend recent mixed precision efforts (e.g., repro-
ducible BLAS4 and precision tuning5) for our studies.

In this paper, we also studied an adaptive scheme to adjust the step size
of MPK on multiple GPUs. Our performance results demonstrated that our
adaptive scheme can find a near optimal step size based on the static input
parameters and the performance measurements gathered during the first restart
loop, and reduce the total solution time of CA-GMRES. Our MPK is currently
optimized only for the inter-GPU communication which is relatively inexpensive
on a node. We are looking to optimize MPK on a GPU, which should increase
the benefit of the adaptive step size. We also plan to study the effectivness of
the adaptive schme on a larger system with greater communication cost (e.g., a
distributed system), where a greater benefit of the adaptive scheme is expected
(in term of time or memory).
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Abstract. We present an efficient and scalable programming model for
the development of linear algebra in heterogeneous multi-coprocessor
environments. The model incorporates some of the current best design
and implementation practices for the heterogeneous acceleration of dense
linear algebra (DLA). Examples are given as the basis for solving lin-
ear systems’ algorithms – the LU, QR, and Cholesky factorizations. To
generate the extreme level of parallelism needed for the efficient use of
coprocessors, algorithms of interest are redesigned and then split into
well-chosen computational tasks. The tasks execution is scheduled over
the computational components of a hybrid system of multi-core CPUs
and coprocessors using a light-weight runtime system. The use of light-
weight runtime systems keeps scheduling overhead low, while enabling
the expression of parallelism through otherwise sequential code. This sim-
plifies the development efforts and allows the exploration of the unique
strengths of the various hardware components.

1 Programming Models for the Off-load Mode

The Intel Xeon Phi coprocessor is a hardware accelerator that made its debut in
the late 2012 as a platform for high-throughput technical computing, sometimes
known under an alternative name of Many Integrated Cores (MIC). The common
mode of operation for the device is called off-load but the stand-alone and reverse
off-load are also possibilities. When in off-load mode, the device receives work from
the host processor and reports back as soon as the computational task completes.
Any such assignment of work proceeds and completes without the host device
(commonly an Intel CPU such as Sandy Bridge or Ivy Bridge) being involved. The
CPU may monitor the activity of communication and/or computation through an
event-based interface and can also pursue its own computational activities between
events. This is very similar to the operation of hardware accelerators based on
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Xeon Phi 2

Xeon Phi 1

CPU

critical path

Fig. 1. DLA algorithm as a collection of BLAS-based tasks represented as rectan-
gles and their dependences represented as arrows. The algorithm’s critical path is,
in general, scheduled on the CPUs, and large data-parallel tasks on the Xeon Phi
coprocessors.

compute-capable GPUs and FPGAs that are specialized for certain types of work-
loads beyond what could be achieved on standard multicore CPUs. In fact, Xeon
Phi is often considered to be an alternative to the hardware accelerators from AMD
and NVDIA despite the fact that there exist many technical differences between
the three (Fig 1).

The off-load mode for the Xeon Phi devices has direct support from the
compiler in that it is possible to issue requests to the device and ascertain
the completion of tasks directly from the user’s C/C++ code. The support
for this mode of operation is offered by the Intel compiler through Phi-specific
pragma directives: offload, offload attribute, offload transfer, and offload wait [4].
This is very closely related to the off-load directives now included in the OpenMP
4 standard. In fact, the two are syntactically and semantically equivalent, barring
the difference in the “omp” prefix for the OpenMP syntax. A similar standard
for GPUs is called OpenAcc. A summary of various programming methods on
Xeon Phi is provided in Table 1.

For many scientific applications, the offload model offered by the Intel com-
piler and OpenMP 4 is sufficient. Until recently, this was not the case for a port
of the MAGMA library to the Xeon Phi because of the very rich functional-
ity that MAGMA inherits from both its CUDA and OpenCL ports. We had to
use the LLAPI (Low-Level API) based on Symmetric Communication InterFace

Table 1. Programming models for the Intel Xeon Phi coprocessors and their current
status and properties.

Programming model/API Status Portability Overhead Language support

SCIF Mature No None No

COI Mature Yes Minimal Yes

OpenMP 4.0 Early Yes Varies Yes

OpenCL Experimental Yes Minimal No
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(SCIF) that offers, as the name suggests, a very low-level interface to the host
and device hardware. The use of this API is discouraged for most workloads as it
tends to be error-prone and offers very little abstraction on top of the hardware
interfaces. The motivation to use SCIF is to take advantage of the capability of
asynchronous events that allows the user for low-latency messaging between the
host and the device as well as to notify about completion of kernels on Xeon
Phi. This enabled the possibility of hiding the cost of data transfer between
the host and the device which requires the transfer of submatrices to overlap
with the computation. The direct access to the DMA (Direct Memory Access)
engine allowed us to maximize the bandwidth of data transfers over the PCI
Express bus. The only requirement was that the memory regions for transfers
to be page-aligned and pinned to guarantee their fixed location in the physical
memory.

With the continuous improvements in the APIs that conceptually reside
above SCIF, the overheads and functionality afforded by SCIF is no longer
exclusive, and we are able to achieve very much comparable performance and
asynchronous interface using higher-level APIs, while gaining portability as an
important added bonus.

2 Efficient and Scalable Programming Model Across
Multiple Devices

In this section, we describe a programming model that raises the level of abstrac-
tion above the hardware specifics while still allowing us to capture the strengths
of the various hardware components in a heterogeneous system and develop
highly efficient algorithms. We present the accompanying software stack and the
techniques developed for the effective use of both single and multi Xeon Phi
coprocessors. Our proposed techniques consider both the higher ratio of execu-
tion and the hierarchical memory model of the new emerging coprocessors.

2.1 Task Distribution Based on Hardware Capability

Programming models that raise the level of abstraction are of great importance
for reducing software development efforts. A traditional approach has been to
organize algorithms in terms of BLAS calls, where hardware specific optimiza-
tions would be hidden in BLAS implementations such as Intel’s MKL or AMD’s
ACML. This is illustrated in Algorithm 1 where the factorization is split on two
phases: the panel factorization phase which is a sequence of Level 1 BLAS call
and thus memory bound operations followed by the trailing matrix update which
is Level 3 BLAS call and thus compute intensive operations. This is still used but
has shown some drawbacks on new architectures. In particular, parallelization is
achieved using a fork-join approach since only the trailing matrix update, can be
performed efficiently in parallel (fork) but a synchronization is needed before per-
forming the next call (join). The number of synchronizations thus can become
a prohibitive bottlenecks for performance on highly parallel devices such as the
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Fig. 2. Execution trace of DGEQRF (QR factorization) based on Algorithm 1 and
using 1 Xeon Phi cards (Color figure online).

MICs. This type of programming has been popularized under the Bulk Synchro-
nous Processing name [13,14]. The synchronization do not allow to overlap the
panel computation with the trailing matrix update and thus can results in slow
performance especially that the panel factorization is memory bound and thus
performs close to sequential. We depict in Fig. 2 the execution trace of the QR
decomposition as implemented based on the technique described in Algorithm 1.
It is clear that the panel factorization phase (“geqrf+larft” red and orange color of
Fig. 2) cannot be overlapped with the trailing matrix update (“larfb” green color
of Fig. 2).

Algorithm 1. Two-phase traditional blocked factorization of A =
[P1, P2, . . .].
for Pi ∈ {P1, P2, . . . , Pn} do

PanelFactorize on CPU(Pi)

TrailingMatrixUpdateon MIC(A
(i))

Instead, the algorithms (like matrix factorizations) are broken into computa-
tional tasks (e.g., panel factorizations followed by trailing submatrix updates) and
pipelined for execution on the available hardware components (see below). More-
over, particular tasks are scheduled for execution on the hardware components
that are best suited for them. Thus, this task distribution based on hardware capa-
bility allows the user for the efficient use of each hardware component. In the case
of DLA factorizations, the less parallel panel tasks are scheduled for execution on
multicore CPUs, and the parallel updates mainly on the MICs. We illustrate this
in Algorithm 2 and depict the execution trace of the QR decomposition on Fig. 3.
Now the panel factorization (which is memory bound phase “geqrf+larft” red and
orange color of Fig. 3) can be overlapped with the remaining of the trailing matrix
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Algorithm 2. Two-phase factorization of A = [P1, P2, . . .] with lookahead
of depth 1. Matrix A and the result are assumed to be on the MIC memory.
PanelStartReceivingon CPU(P1) ;
for Pi = P1, P2, . . . do

PanelFactorizeon CPU(Pi) ;
PanelSendto MIC(Pi) ;
TrailingMatrixUpdateon MIC(Pi+1) ;
PanelStartReceivingon CPU(Pi+1) ;
TrailingMatrixUpdateon MIC(Pi+2, . . .) ;

update (Pi+2, . . . “larfb” green color of Fig. 3). The cost of the panel phase can be
hidden with the update on the MIC and thus we expect performance to reach close
to the Level 3 BLAS peak of the MIC.

Fig. 3. Execution trace of DGEQRF (QR factorization) based on Algorithm 2 and
using 1 Xeon Phi cards (Color figure online).

2.2 Task Based Runtime Model

The scheduling of tasks for execution can be static or dynamic. In either case,
the small and not easy to parallelize tasks from the critical path (e.g., panel
factorizations) are executed on CPUs, and the large and highly parallel task
(like the matrix updates) mostly on the MICs.

The use of multiple coprocessors complicates the development using static
scheduling. Instead, the use of a light-weight runtime system is preferred as it
can keep scheduling overhead low, while enabling the expression of parallelism
through sequential-like code. The runtime system relieves the developer from
keeping track of the computational activities that, in the case of heterogeneous
systems, are further exacerbated by the separation between the address spaces of
the main memory of the CPU and the MICs. Our runtime model is build on the
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QUARK [15] superscalar execution environment that has been originally used
with great success for linear algebra software on just multicore platforms [8].
The conceptual work though could be replicated within other models such as
StarPU [1], OmpSS [11], Cilk [2], and Jade [12], to just mention a few. A detailed
comparison of some of these systems was attempted before [7] with very little
performance difference on CPU-only systems and a difference on the order of
few percentage points was observed [3,9,10] when memory-bound (rather than
compute-bound) kernels were scheduled by the system.

We will now use Algorithm 2 to illustrate the task based execution model.
There are two types of communication tasks Task : PanelSend, PanelStartRe-
ceiving, and two computational tasks Taskexe: PanelFactorize, TrailingMatrixUp-
date. In a general sense these tasks are asynchronous in that they do not have
prescribed moment in time to execute, rather they execute when both all their
input dependences are satisfied and the appropriate hardware entity is available.
Formally, the task space T for the factorization is defined as:

T = {PanelSend,PanelStartReceiving,PanelFactorize,TrailingMatrixUpdate} (1)

the tasks are sequential and free of side-effects which gives the runtime scheduler
to execute them in parallel with each other as long as their dependences are
satisfied. These dependences are defined as follows:

Pi → PanelSend → Pi for i = 1 . . . n (2)
Pi → PanelStartReceiving → Pi for i = 1 . . . n (3)
Pi → PanelFactorize → Pi for i = 1 . . . n (4)
Pi → TrailingMatrixUpdate → Pi+1, Pi+2 . . . for i = 1 . . . n (5)

where all the tasks take panel Pi as input. The panel tasks produce panel Pi as
output and the update tasks produces all the subsequent panels as output.

2.3 Improving Offload Mode Communication

It is well known that the off-load transfer mode copies only continuous chunks
of data from and to the coprocessors. However most of the scientific application
algorithms require to exchange data with 2D or 3D storage and thus this may
create an issue when using the off-load transfer mode. In particular, the one-sided
factorizations (Cholesky, LU, and QR) require to send the panel to the CPU and
then receive it later after being factorized by the CPU. A simple implementation
loop over one direction and call the off-load section to send/receive a contiguous
vector. Such implementation behaves poorly and as a result the communication
will become expensive and slow down the algorithm. Indeed, another alternative
is to copy the 2D panel to a contiguous temporary space on the MIC, and then
to send it and vice versa. Hence, there are two points that need to be taken into
consideration. Firstly, the copy needs to be implemented as a multi-threaded
operation in order to hide its cost. For that, we implemented a parallel copy
that uses all of the 240 hardware threads of the MIC to perform the copy. This
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might be against the common wisdom that multi-threading is of little help for
bandwidth-limited operations such as a memory copy. However, it is not the case
on the MIC, where the clock frequency of the compute cores is twice as low as
that of the main memory on the compute card – the exact opposite of what is
the case for the Intel x86 multicore processors. In addition to the low frequency,
the current MIC hardware is to a large degree an in-order architecture with dual-
pipeline execution and single-issue fetch/decode units [6] which poses constraints
on the amount of bandwidth that can be utilized by a single core. These can
be overcome in multiple ways, including the use of streaming loads and having
multiple threads issuing requests for data simultaneously. Furthermore, when the
MIC copies data to or from the temporary space, it should be the only kernel
running, otherwise, it would interfere with other kernels executing at the same
time and this may slow down both of the kernels. To that end, we represented
the copy kernel as a task with high priority and the scheduler was responsible
for executing it as soon as possible and to handle the dependences such that
no other kernel will be running at the same time. Experiments showed that
when using these optimizations the performance of the off-load communication
mode is comparable to both the SCIF and the COI mode with a variance of less
than 5 %.

2.4 Data Distribution to Minimize Communication

Data distribution formats for multi-device computations can drastically affect the
performance. In particular, swapping rows (the dlaswp routine) in LU, or the dlarfb
trailing matrix update routine in QR, may require unnecessary data movements
in certain data formats. Therefore, to minimize the amount of communication
between devices, our implementation uses a 1D block cyclic distribution. Indeed,
using the well known 2D block cyclic distribution among multi-devices will enforce
an extra amount of communication between them in order to perform the dlaswp
in LU, while using 1D block cyclic distribution will not need any of these com-
munication. Another example is the dlarfb routine used in the QR factorization
to perform (I − V TTV T )Ã. Here V holds the Householder reflectors generated
during the panel factorization at step k, and Ã is the trailing matrix at step k.
A 2D block cyclic distribution will require a sum between the devices in order
to compute V T Ã, while a 1D block cyclic distribution will again not need any
communications. Note that the overall workload is well spread among the multi-
coprocessors when using 1D block cyclic distribution.

2.5 Trading Extra Computation for Higher Execution Rate

The optimization discussed here is MIC-specific but is often valid for any hard-
ware architecture with multilayered memory hierarchy. The dlarfb routine used
by the QR decomposition consists of two dgemms and one dtrmm. Since coproces-
sors are better at handling compute-bound tasks, for computational efficiency,
we replace the dtrmm by dgemm, yielding 5–10 % performance improvement. For
the Cholesky factorization, the trailing matrix update requires a dsyrk. Due to
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uneven storage, the multi-device dsyrk cannot be assembled purely from regular
dsyrk calls on each device. Instead, each block column must be processed indi-
vidually. The diagonal blocks require special attention. One can use a dsyrk to
update each diagonal block, and a dgemm to update the remainder of each block
column below the diagonal block. The small dsyrk operations have little paral-
lelism and therefore their execution is inefficient on MICs. This can be improved
to some degree by using pragma to run several dsyrk’s simultaneously. Neverthe-
less, because we have copied the data to the device, we can consider the space
above the diagonal to be a scratch workspace. Thus, we update the entire block
column, including the diagonal block, writing extra data into the upper triangle
of the diagonal block, which is subsequently ignored. We do extra computation
for the diagonal block, but gain efficiency overall by launching fewer BLAS ker-
nels on the device and using the more efficient dgemm kernels, instead of small
dsyrk kernels, resulting in overall 5–10 % improvement in performance.

2.6 Scaling with Respect to Multiple Coprocessor Cards

To achieve scalability of the computation when new MIC cards are added to the
system, our programming model offers a number of advantages. The underlying
messaging layer at the hardware level is the PICexpress interface. In its current
form, it is not meant for scale-up operation and even the high-end installations
can accommodate up to about 10 cards in a single shared memory server node.
Working within this limitation, the task-based dataflow representation offers
plentiful opportunities for parallelism and dynamic scheduling to adapt to a
number of hardware components in an asynchronous fashion. The scaling across
the cards is further supported by the 1D block cyclic data distribution, that is
essential for a balanced distribution of work. Finally, our dynamic scheduling
system handles simultaneously CPU cores and coprocessor cards’ workload and
is capable of managing a one-to-one match between the two, which more than
adequate given the aforementioned limitations of the PCIexpress bus.

3 Experimental Results

We present performance results on an Intel dual-socket multicore system with
three Intel Xeon Phi cards. Each CPU processor is eight-core Intel Xeon E5-2670
(Sandy Bridge), running at 2.6 GHz, and has a 24 MB shared Level 3 cache.
Each core has a private 256 KB Level 2 and 64 KB Level 1 caches. The system
is equipped with 52 GB of memory. Its theoretical peak in double precision is
332 Gflop/s. The Intel Xeon Phi cards have 15 GB memory each, running at
1.09 GHz, and yielding a double precision theoretical peak of 1, 046 Gflops.

On the CPU side we use the MKL (Math Kernel Library) [5], version 11.00.03.
The Intel Xeon Phi is running the MPSS 2.1.5889-16 software stack and the icc
13.1.1 20130313 compiler. These come with the composer xe 2013.3.163 suite.

Figures 4, 5, and 6 show the performance results for the Cholesky, LU, and
QR factorizations respectively. The figures show a scalability study for up to 3
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Fig. 4. Performance of DPOTRF (Cholesky factorization) on up to 3 Xeon Phi cards.
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Fig. 6. Performance of DGEQRF (QR factorization) on up to 3 Xeon Phi cards.

Xeon Phi devices. The first observation is the large matrix sizes (beyond 5000)
required to take advantage of the benefits that the devices offer and, conse-
quently, outperform the peak performance of the CPU. Similarly, adding the
second Xeon Phi is beneficial for matrix sizes larger than 10, 000 for Cholesky,
12, 000 for LU, and QR factorizations. Finally, the addition of the third Xeon
Phi benefits all three factorizations only beyond matrices of size 16, 000. This
behavior is to be expected from a compute-oriented device that is connected to
the CPU through a high-latency, low-bandwidth bus such as the PCI Express.
Each matrix panel is factorized on the CPU and for that must make its way from
the Xeon Phi device to the CPU and back, thus suffering the communication
penalty twice. While the dynamic scheduling allows us to hide this overhead
at the beginning of the factorization when the trailing matrix updates carry
enough of a computational load, the final steps are squarely dominated by the
panel computation and very little can be done about it since the Xeon Phi is a
throughput oriented device and in our attempts delivered low performance for
latency-bound workloads such as the panel factorization.

As far as scaling and parallel efficiency are concerned, Figs. 4, 5, and 6 show
that once the matrix sizes grow beyond the aforementioned threshold, the scaling
from one to two and from two to three Xeon Phi devices remains steady and
progresses as expected.

Another important aspect of the performance behavior that we observed on
our Xeon Phi cards can be seen in Fig. 4. The figure shows extra data points
to underscore the variability of the performance with respect to the problem
size. In particular, when the matrix sizes are not divisible by a particular value,
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a blocking factor for the underlying BLAS library, the resulting performance
might not follow a smooth path and experience variations. However, we are
finding this behavior to continuously become less of a burden with every new
release of the software stack for the Xeon Phi card.

Finally, our results for the single Xeon Phi card match the performance
numbers obtained by Intel’s own MKL library in off-load mode.

4 Conclusions and Future Work

We designed algorithms and a programing model for developing high-performance
dense linear algebra in co-processors environments. Further, despite the complex-
ity of the hardware, acceleration was achieved at a surprisingly low software devel-
opment effort using a high-level methodology of developing hybrid algorithms. In
particular, we obtained high fraction of the peak performance for the entire hetero-
geneous system. The promise shown so far motivates and opens opportunities for
future research and extensions, e.g., tackling more complex algorithms and hybrid
hardware. When a complex algorithm needs to be executed on a complex het-
erogeneous system, scheduling decisions have a dramatic impact on performance.
Therefore, new scheduling strategies must be designed to fully benefit from the
potential of future large-scale machines. In particular, taking our algorithms and
the programming paradigm beyond a single node is also an important topic of the
future research.
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Abstract. The Sparse Matrix-Vector Multiplication (SpMV) is funda-
mental to a broad spectrum of scientific and engineering applications,
such as many iterative numerical methods. The widely used Compressed
Sparse Row (CSR) sparse matrix storage format was chosen to carry on
this study for sustainability and reusability reasons.

We parallelized for Intel Many Integrated Core (MIC) architecture a
vectorized SpMV kernel using MPI and OpenMP, both pure and hybrid
versions of them. In comparison to pure models and vendor-supplied
BLAS libraries across different mainstream architectures (CPU, GPU),
the hybrid model exhibits a substantial improvement.

To further assess the behavior of hybrid model, we attribute the inad-
equacy of performances to vectorization rate, irregularity of non-zeros,
and load balancing issue. A mathematical relationship between the first
two factors and the performance is then proposed based on the experi-
mental data.

1 Introduction

The SpMV is vital to scientific and engineering applications. It is the essential
operation of many iterative linear and eigen solvers such as Conjugate Gradient
(CG) and Generalized Minimum Residual (GMRES). In this paper, we take Intel
Xeon Phi coprocessor as the underlying system for revealing some idiosyncrasies
in an efficient SpMV implementation. A simplified way to view this many-core
architecture is a chip-level SMP which offers remarkably high bandwidth. The
prototype C0 codenamed Knights Corner (KNC) has 61 cores, each featuring
a 512-bit wide vector unit and being capable of running up to 4 HW threads.
These factors enable such single chip to yield over 1 TFlops double precision
peak performance.

Due to sparse matrices’ nature of irregularity, the memory subsystem often
appears as the main bottleneck of SpMV’s efficiency in terms of FLOPS
(FLoating-point Operations Per Second). Furthermore, in a shared memory
context with a large count of cores such as MIC, the scalability behavior is
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 43–56, 2015.
DOI: 10.1007/978-3-319-17353-5 4
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not obvious which may depend on issues like data locality and access pattern.
A common approach to address these problems is to propose a new sparse matrix
storage format [10]. However, some certain techniques used in new formats may
become less pertinent as the targeting architecture evolves. They may need to
be adapted accordingly. Another potential downside of a new format is that it is
hard to implement it in a large numerical package such as PETSc [1] or Trilinos
[7], and thus be not easy to integrate or interface in large scientific applications.
Both PETSc and Trilinos adopt the CSR (Compressed Row Storage) as the
underlying sparse format. We want to study the SpMV kernel within the con-
text of linear or eigen solvers, making the availability of these numerical packages
prominent to us. As a result, we chose to use CSR format.

The preceding studies [4,5] hold pessimistic views of hybrid fashion com-
pared to a unified MPI approach. The related literatures usually underline the
importance of network performance in explaining the gap between different
models. Therefore the high on-chip bandwidth of MIC drives us to investigate
the potential benefit of using hybrid programming. We refer the hybrid execu-
tion here to a scenario where the coprocessor resources (cores and caches) are
divided into several separate domains and each domain is governed by one MPI
process and shared by a number of OpenMP threads.

To set an architectural baseline, we also perform the tests over the same
matrix suite on dual Intel Sandy-Bridge octa-core processors, as well as the
NVIDIA Tesla K20 GPU, using the vendor-supplied BLAS libraries.

The outline of this paper is structured as follows: the Sect. 2 details the
architectural features of MIC, the Sect. 3 discusses different dimensions of par-
allelisms of a vectorized SpMV kernel, the Sect. 4 is devoted to the experimental
environment and results, the Sect. 5 concentrates on the performance analysis
and modeling, and the Sect. 6 concludes.

2 Architectural Overview of MIC

The Intel Xeon Phi coprocessor is x86-based many-core architecture. It has
61 cores connected via a 512-bit bidirectional ring interconnect. There are
8 memory controllers supporting up to 16 GDDR5 channels. The core’s memory
interface are 32-bit wide with two channels which sustains a total bandwidth
8.4 GB/s per core. The STREAM Triad benchmark achieves around 160 GB/s
on this architecture with ECC turned on.

There are two levels of cache memory. The level one cache has 32 KB instruc-
tion cache and 32 KB data cache. Associativity was increased to 8-way, with a
64 byte cache line. The bank width is 8 bytes. Data return is out-of-order. The
L1 cache has a load-to-use latency of 1 cycle which allows an integer value
loaded from the cache to be used in the next clock by an integer instruction.
The L2 cache has a unified 512 KB capacity. Each core can access to all other L2
cache via the ring interconnection which makes a collective L2 cache size up to
32 MB. The L2 organization comprises 64 bytes per way with 8-way associativity,
1024 sets, 2 banks, 32 GB (35 bits) of cacheable address range and a raw latency
of 11 clocks [8].
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The vector processing units (VPU) of each core contains 32 × 512 bit SIMD
registers which accommodates eight 64-bit values or sixteen 32-bit values. The
VPU supports Fused Multiply-Add (FMA) operations which, for benchmarking
purposes, counted as two floating operations. All these factors enable one single
chip to yield over 1 TFlops double precision peak performance.

3 Sparse Matrix Vector Product Implementations
for CSR Format

The CSR [11] comprises of 3 arrays, row ptrs, col inds, and vals, representing
respectively the position of the first nonzero element of each row stored inside
of vals, the column indices of every single nonzero element stored in vals, and
the nonzero entries of the matrix in row-major order. Taking the standard CSR
format as a starting point, we derived a vectorized kernel for SpMV.

Algorithm 1. Vectorized multiplication of the kth row (zero-based) of a matrix
stored in CSR format (in row ptrs, col inds, and vals) with the vector x.

reg y ← 0
start ← row ptrs[k]
end ← row ptrs[k + 1]
for i = start to end do

writemask ← (end − i) > 8 ? 0xff : (0xff � (8 − end + i))
reg ind ← load(writemask,&col inds[i])
reg val ← load(writemask,&vals[i])
reg x ← gather(writemask, reg ind, x)
reg y ← fmadd(reg x, reg val, reg y, writemask)
i = i + 8

end for
y[k] = reduce add(reg y)

3.1 Vectorized Kernel

For CSR, a natural way to parallelize the SpMV is to assign the subsets of rows
to different execution units. The elementary operation is then shrinked into the
product of a compressed sparse vector with a dense vector. By using the SIMD
instruction we insert at the lowest dimension a parallelism resulting from the
vectorization. In this direction we propose the row-wise vectorized kernel for
SpMV, which is similar to recent work on SpMV for MIC [10]. The Algorithm 1
delineates the SIMDized kernel that handles the row-wise multiplication. The
writemask functions as a shifting window ensuring only the lower portion of
vector being operated when there’re less than 8 nonzero elements left in a row.
The “8” in Algorithm 1 implies 8 double precision floating numbers which fill the
512-bits SIMD units in MIC. It is worth noting that, to ensure the correctness of
results, the CSR used here must not be a simplified form for symmetric matrices.
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3.2 Hierarchical Exploitation of Hardware Resources

The second dimension of parallelism is built upon the number of cores. Along
with the hierarchical memory subsystem, these resources can be exploited by
processes and threads spawned and managed by the multiprocessing techniques.
In most cases, it is easier to implement with the pure model than the hybrid one.
In this paper we discuss both pure and hybrid implementations. We expect to
promote the efficiency of data access and alleviate the scaling pressure occurred
in the pure model by mixing different approaches.

We define the SpMV process y ← Ax + y as two phases:
1. The computing phase, where all elements of y should be calculated.
2. The communication phase, where y is copied to x.

The communication phase occurred usually in a iterative solver where the SpMV
process needs to be repeated until the convergence of the solver. Because the mem-
ory space is unified for all threads, the communication phase of pure OpenMP
can’t be started before the termination of computing phase. However, with the
participation of MPI, these two phases could be partially overlapped. In our study,
we collect the computing phase timings corresponding to the slowest MPI process
of each execution. These timing data were used to deduce the performance of
SpMV. To obtain statistically meaningful results, we iterated 100 times for each
measure of SpMV timing.

In terms of implementations, some conventional optimizations are applied to
both pure and hybrid cases, such as software prefetching, and streaming stores.
The rows of matrix are distributed so that each process receives the same num-
ber of nonzero elements. The minimal unit of partioning is one row. We also
altered the number of processes and threads and attempted exhaustively all
possible combinations of processes and threads to seek the best configuration of
maximizing the performance for each test matrix. In particular, we don’t take
advantage of matrix symmetry to achieve better performance. All matrices are
considered equally as non-symmetric ones. For the sake of better cache usage
and to avoid oversubscription of threads, it is important to configure properly
the processes’ and threads’ affinity. What’s more, the highest numbered core of
MIC (61th) should be left unused so it may process the interference from OS
threads.

4 Experimental Results

4.1 Matrix Suite

In practice, we have 3 principles in selecting the test matrices [6]. Firstly, we prefer
the matrices that have been used in previous literatures. Secondly, the matrices
should have a larger volume in memory than 30 MB, which is the aggregate L2
cache size of Xeon Phi, in order to neutralize the promotion in temporal locality
induced by repeated runs of SpMV kernel. Lastly, our future study of eigensolvers
requires the matrices to be square. We also include a dense 8000 × 8000 matrix
(dense8000 ) expressed in CSR format. We outline the basic characteristics of
18 selected matrices in Table 1.
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Table 1. List of main characteristics of test matrices. nnz is the number of nonzero
elements. nrow is the square matrix dimension.

Name Dim (K) nnz (M) nnz/nrow Name Dim (K) nnz (M) nnz/nrow

mixtank new 29.957 1.995 66.597 sme3Db 29.067 2.081 71.595

mip1 66.463 10.353 155.768 ldoor 952.203 46.522 48.858

rajat31 4690.002 20.316 4.332 Si41Ge41H72 185.639 15.011 80.863

nd6k 18.000 6.897 383.184 pdb1HYS 36.417 4.345 119.306

cage15 5154.859 99.199 19.244 bone010 986.703 71.666 72.632

crankseg 2 63.838 14.149 221.637 dense8000 8 64.000 8000

ns3Da 20.414 1.680 82.277 pwtk 217.918 11.634 53.389

in-2004 1382.908 16.917 12.233 torso1 116.158 8.517 73.318

circuit5M 5558.326 59.524 10.709

4.2 Experimental Environment

Different SpMV kernels were conducted and compared on various architectures.

– Intel MIC, pre-production of KNC prototype C0, 61 cores running at 1.2 GHz,
16 GB GDDR5 memory with ECC enabled, installed with MPSS v3.1.

– Dual-socket Intel Xeon E5-2670, 16 core running at 2.6 GHz, 64 GB DDR
memory with ECC enabled.

– NVIDIA K20 GPU, 2496 cores running at 0.7 GHz, 5 GB GDDR5 memory
with ECC enabled.

On MIC, SpMV kernels of pure OpenMP, hybrid MPI/OpenMP, MKL (Intel
Math Kernel Library, v11.1) were tested. On CPU, only the MKL SpMV routine
was tested. On GPU, cuSPARSE (NVIDIA CUDA Sparse Matrix library, v2.6)
kernel was tested. All tested vendor-supplied BLAS libraries use the CSR sparse
format.

4.3 OpenMP and MKL Performances

The SpMV is one of the challenging instances that is known to be memory
bandwidth bound. Its streaming memory access pattern makes the cores hard to
run at full speed. Adding the number of threads helps to hide the latency due to
data miss. But the increase of virtual cores might leads to memory contention and
network congestion, thus exhibits a poor scaling performance. At core level, the
vectorization is necessary for improving performance. However, it also burdens
more on memory subsystem for the vector instructions consume much more data
than scalar ones. The load of data is less efficient for x than for col inds or vals.
A unified address of x for all cores may drive the problem even more severe.
We implemented on MIC a multithreaded SpMV kernel using OpenMP. The
MKL version was also tested as it is based on OpenMP threading environment
therefore comparable to our implementation. We varied the number of threads
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Fig. 1. Performances of OpenMP version of SpMV kernel. For each test matrix the
performances are plotted in different colors depending on the number of threads used
(Color figure online).

(from 1 to 4 threads per core) while measuring the performances. For each matrix
we plot in Figs. 1 and 2 the bars of performance among which from top to bottom
the performances corresponding to different thread configuration (1, 2, 3 or 4
threads per core) are shown in a descending order. All bars started from 0
GFlops. The lower part of the bars may be covered by other bars with smaller
magnitude except the smallest one.

From these two figures we observe a similar behavior of both implementa-
tions on different matrices. None of them performs better in average than the
other one, except that the MKL tends to have better performance when using
more threads per core. We argue that’s because of its better thread scheduling
and some low-level optimizations. Both implementations are nowhere near the
theoretical or achievable peak performance of MIC architecture.

4.4 Hybrid MPI/OpenMP Performances

To better deal with the issue of thread scaling and alleviate the memory con-
tention, we propose to implement the hybrid MPI/OpenMP SpMV kernel. We
expect to promote the efficiency of multithreading, scaling and cache utilization.
In this case, we evenly divide the cores’ domain according to common resources
(cores, caches) and place one MPI process for each subdomain. In each subdo-
main, we spawn the same number of threads. The experiments were conducted
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Fig. 2. Performances of MKL version of SpMV kernel. For each test matrix the perfor-
mances are plotted in different colors depending on the number of threads used (Color
figure online).

using all possible combinations of processes and threads with careful pinnings.
Every subdomain governed by one MPI process is guaranteed to have the same
and integer number of cores. And the highest numbered core of MIC is always
free from application threads. All threads participate in the parallelization of
vectorized SpMV kernel. Only the master thread manages the communication.
The hybrid algorithm is described in Algorithm2. We plot the gain of hybrid
model against pure OpenMP in the Fig. 3. Over the entire matrix suite, the
hybrid model exhibits a substantial performance improvement except in one
case (cage15 ).

Algorithm 2. Hybrid MPI/OpenMP algorithm. Each MPI process accommodates
the same number of OpenMP threads.

Distribute row blocks (rowptrs, colinds, vals) of A so that each MPI process receives
approximately same number of nonzero elements
Replicate x on all MPI processes, allocate y (same size of x) on all MPI processes
Apply locally the vectorized SpMV kernel using OpenMP multithreading with
“guided” scheduling
Gather the results from other MPI processes and update the local portion of y
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Fig. 3. Gain in percentage of hybrid MPI/OpenMP SpMV kernel against the pure
OpenMP one.

4.5 Performances of SpMV Kernel on Various Architectures

Finally, the performances of different SpMV kernels will be presented here. The
Fig. 4 delineates the performances of hybrid model versus vendor-supplied BLAS
libraries across a variety of architectures. In most cases, the hybrid model outruns
the other ones. Since we used the CSR format for all architectures, the results
do not represent the inherent capacity of some architecture such as GPU. But
it shows a path to better exploit the MIC architecture. We notice in some cases
that CPU still achieved better performances. We will try to understand this
phenomenon in Sect. 5.

5 Performance Analysis and Modeling

The experimental results reveal a considerable advantage of hybrid model over
the pure ones. However, not being able to determine in advance the optimal
combination of MPI processes and OpenMP threads invalidates this approach
simply because the best results are irreproducible. As a consequence, it is imper-
ative to devise a method to sketch the behavior of the machine. We will discuss
qualitatively the reasons of performance improvement and the primary perfor-
mance restraining factors, from where we develop a mathematical relationship
that quantifies the effects of different factors. The effectiveness of the deduced
model will be verified at the end of this section.
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Fig. 4. Performances of different SpMV kernels on various architectures.

5.1 Performance Analysis

First thing to understand is the performance improvement due to the mixture
of MPI and OpenMP. We argue that’s mainly because of the promotion of data
locality and thread scalability. The promoted data locality improves the data
reusability in terms of better cache utilization. It also mitigates the memory
contention. More specifically, the vector x is replicated, thus avoiding contention
when large number of threads read elements of x. This would also be possible in
pure OpenMP via thread-private variables. However, that means the replication
of x has to be made on all threads. The memory usage would be varied if number
of threads changes. In the case of hybrid model, the x is only replicated on each
process and shared by threads belonging to that process which creates us a
higher degree of flexibility. In addition, the rows of matrix A is distributed to
different memory regions. Therefore, these data are spatially local to the process
domain. By carefully binding the processes to the physical cores, the data are
stored uniformly in the memory space. Therefore it is more likely to generate a
higher aggregate bandwidth in the on-chip ring network.

The scaling factor should also be considered. In a large many-core system, the
multithreading overheads such as loop scheduling overheads may not be linear
when the number of threads grows. However, in hybrid model, each process keeps
a relatively small number of threads making it easier to scale.
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There are other potential advantages for hybrid model as well. For example,
it is straightforward to implement it in a numerical software environment such as
Trilinos, where the underlying MPI/OpenMP modules are already encapsulated
and ready to use.

In spite of some performance improvement, the hybrid SpMV kernel still
performs poorly in some cases compared to other implementations. The poor
performances are likely to occurred in matrices having a low average number
of nonzero elements1, as seen in Table 1 for rajat31, cage15, in-2004, circuit5M.
However, these are not the only matrices behaving badly. The performances of
ns3Da and sme3Db are not promising either whereas they have decent average
numbers of nonzero elements. Further research shows that their nonzero elements
are distributed dispersedly and sparsely along the rows, which may lead to poor
vectorization efficiency. Since each thread performs the vectorized multiplica-
tion between two arrays at a time, small number of nonzeros per row makes the
vector instruction overheads significant compared to the whole execution time,
thus inducing a low vectorization rate. In general, low vectorization rate shakes
the foundation of producing high performance. Though this reasoning does not
applied well in ns3Da and sme3Db. The nonzero elements of these two matrices
are not only numerous but also uniformly spreaded. The vectorization should be
well conducted unless certain operation described in Algorithm 1 decelerates the
computation. The most probable explanation would be that the gather instruc-
tion appeared in line 8 of Algorithm1 cancels out the high vectorization rate
because of its long latency. The irregularity of nonzero elements makes the load
of x inefficient, thus causing the unexpected cache misses and eventually bad
performance.

Besides these two factors, there should be one more concern linked to the
message passing programming, which is the load balancing issue. In the hybrid
model, the processes are independent and the last terminated process determines
the global performance. In our case, this issue is connected to the row partitioning
policy. Using a dynamic instead of static row distributing strategy may improve
load balancing. We will include this study in our future works.

5.2 Performance Modeling

Definition 1. For a given matrix, let the nnz be the number of nonzero ele-
ments. If t is the execution time of SpMV computing phase defined in Sect. 3.2,
then the performance P of a hybrid SpMV kernel is defined as

P =
2 nnz

tmax

where tmax is the execution time of the last terminated MPI process.

1 The average number of nonzero elements is defined as the quotient of total number
of nonzero elements over the row dimension.
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If nnzglob is the total number of nonzero elements in a given matrix, then the
global performance Pglob is given by

Pglob =
2 nnzglob

tmax

To properly model the performance, we want to seperate the load balancing
factor from the vectorization rate and nonzero elements’ irregularity. Since the
tmax is the time of the slowest MPI process, it is more accurate to obtain its
local performance Plocal by applying the same formula:

Plocal =
2 nnzlocal

tmax
=

nnzlocal
nnzglob

Pglob

where nnzlocal is the number of nonzero elements of the row block assigned
to the slowest process. We measured the execution time of the slowest process
with its rank recorded. The ranking information helps to identify the row blocks
assigned to the processes. Since thread is the minimal execution unit which
performs vector instructions, the per thread performance is more meaningful for
characterizing the indicators discussed in the last subsection.

Definition 2. If P is the aggregate performance of nthd number of threads, then
the per-thread performance is estimated as

Pthd =
P

nthd

Assume the nthd is the number of threads spawned within the slowest process,
then the local per-thread performance is

Pthd =
Plocal

nthd

In this context, two indicators are proposed to quantify the SIMD efficiency
as well as the impact of nonzero elements’ dispersion. The first one is the aver-
age number of nonzero elements. There are at least three features helping to set
up the functional relationship between this indicator and the per-thread perfor-
mance. All these features are discussed without the interference of the second
indicator.

1. If the number of nonzero elements equals to 0, the performance should also
be 0. However, as the average number of nonzero elements starts from 0, the
impact of vector instruction overheads might diminish rapidly.

2. Bigger the average number of nonzero elements is, less amplification of per-
formance is gained.

3. The performance should have an upper bound as the number of nonzero
elements is extremely large.
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Fig. 5. The relationships between two indicators and the performance. The first indi-
cator is the average number of nonzero elements per row. The second indicator is
the average number of occurrences when the distance between any pair of contiguous
nonzero elements within a row is greater than 2.

Such relationship could be delineated by the blue curve in Fig. 5. With more
nonzero elements in a row we have generally better performance, if given a
fixed level of nonzero elements’ dispersion. The second indicator should then
be able to describe the “level of dispersion”. A direct solution is to estimate
the cache misses. However, the cache behavior in modern architecture depends
on, including but not limited to, cache capacity, cache associativity, cache line
width, cache levels, and replacement policy. It is highly unpredictable using a
low-cost model. Considering its complexity, this method is less practical. We are
searching for a convenient and simple approach to establish the second indicator.
It turns out that a simple trait of matrix, which based on the distances between
each pair of contiguous nonzero elements in a row, is an effective indicator. It
refers to the average number of occurrences when such distance is greater than 2.
Similar to the first indicator, it averages over all studied rows. The red convex
decreasing curve with triangle markers in Fig. 5 depicts the attenuation caused
by the second indicator to the performance. According to the graphs of two
indicators, we give the functional form of regression model in Eq. 1, where P̂thd

is the estimated per-thread performance, nnz is the first indicator and the d is
the second indicator.

P̂thd(nnz, d) = α

[
1 − exp

(
−nnz

ε1

)]
exp

(
− d

ε2

)
(1)

The experimental data were collected from the slowest processes of different
matrices listed in Table 1. These data were processed to obtain Plocal, nthd,
nnzlocal, dlocal for the use of regression analysis.
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Fig. 6. The real and the estimated local per-thread performances over a set of test
matrices.

The Fig. 6 draws the real and the estimated local per-thread performances
over a set of test matrices. The local performance were collected from the slowest
process of each execution. It is based on this set of data that we obtained the
following coefficients. The estimated values are:

α̂ = 187.5, ε̂1 = 55, ε̂2 = 40

where the α̂ corresponds to the per-thread performance (in MFlops) of dense8000.
Considering its large average number of nonzero elements per row and continuous
nonzero elements, it should execute almost optimally.

6 Conclusions

The SpMV is the key kernel that constitutes the main process in many itera-
tive numerical methods. In this paper, we investigate two programming models,
the pure OpenMP and the hybrid MPI/OpenMP. Starting from a vectorized
CSR SpMV kernel, we proposed different ways of parallelizing it. A set of eval-
uations on various mainstream architectures (Intel Dual-Socket Sandy Bridge,
NVIDIA K20 GPU) was conducted by using not only our own implementations
but also the vendor supplied BLAS libraries. The results suggest that the hybrid
MPI/OpenMP model is very promising on Intel MIC architecture. It can help
to reduce the scaling overheads and promote data locality compared to the pure
models, thus improving substantially the performance.

In order to better understand the performance of hybrid model, we identi-
fied 3 performance indicators, namely the average number of nonzero elements,
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the average number of occurrences when the distance between any two con-
tiguous nonzero elements within a row is greater than 2, along with the load
balancing. We studied the impacts of the first two indicators within the last
terminated process and came up with a regression model based on the exper-
imental data. We also estimated the regression coefficients and obtained good
fitting results.
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Abstract. In this paper, we discuss an efficient implementation of the
three-dimensional multigrid Poisson solver on a many-core coprocessor,
Intel Xeon Phi. We have used the modified block red-black (mBRB)
Gauss-Seidel (GS) smoother to achieve sufficient degree of parallelism
and high cache hit ratio. We have vectorized (SIMDized) the GS steps
in the smoother by introducing a partially SIMDizing technique based
on loop splitting. Our numerical tests demonstrate that our implementa-
tion performs 35.5 % better than the conventional mBRB-GS smoother
implementation on Xeon Phi.

1 Introduction

Discrete Poisson equation problems often appear in various computational sci-
ence simulations. When the problem is associated with spatially varying diffusion
coefficients, it is commonly solved using the finite difference method. The finite
difference discretization results in a linear system of equations, that can require
a large amount of computational effort, especially for a large-scale simulation
problem. Consequently, there is a demand for a fast linear solver for the discrete
Poisson equation problem.

A (geometric) multigrid [2] solver is one of the most popular linear iterative
solvers for a linear system derived from the finite difference discretization of the
Poisson equation. It has a convergence property suitable for large-scale problems.
The multigrid solver’s convergence rate is independent from the problem size
when it is applied to the linear system derived from the homogeneous discrete
Poisson equation. Consequently, we have developed a fast geometric multigrid
Poisson solver. In this paper, we have investigated the performance of our solver
on an Intel Xeon Phi coprocessor [7], which is a recently developed processor.

The Intel Xeon Phi coprocessor is based on Intel MIC architecture, and
includes many relatively lower performance cores in its package. The current
version of the processor, which we have used in our research, consists of 60 cores.
Its peak performance reaches 1TFlops (DP). Moreover, the Xeon Phi coprocessor
c© Springer International Publishing Switzerland 2015
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has a good performance per watt ratio [3], and its programming model is easier
than that for GPU. Various useful applications and tools developed for general
purpose multi-core processors (such as MPI and OpenMP) can be used, because
each processing core in Xeon Phi is based on X86 architecture. Xeon Phi is
currently used as the accelerator for the host CPU [4], but standalone CPU
models will be developed in the future. Because of these features, it is predicted
that Xeon Phi will play an important role in future computational science.

To efficiently implement a multigrid Poisson solver on the Xeon Phi, we
should consider the following key issues.

1. Large degree of thread parallelism: Xeon Phi has larger numbers of cores than
a general multi-core processor, and it can simultaneously execute 240 threads
using Intel Hyper-Threading technology.

2. Data locality: The processor uses a general cache based memory architecture.
Therefore, data locality is important for attaining a high cache hit ratio.

3. Convergence rate: Similarly to implementations on other processors, the con-
vergence rate of the solver has a significant effect on its performance.

4. Vectorization (SingleInstructionMultipleData (SIMD) instructions): Xeon
Phi has a relatively wide SIMD engine. Therefore, SIMD instructions should
be effectively used in the analysis to let the processor achieve its full potential.

In this paper, we mainly discuss the parallel smoother in the multigrid solver,
paying special attention to these key issues. The other components of the multi-
grid solver can be straightforwardly parallelized and vectorized using a domain
decomposition approach.

In VECPAR 2012, we reported a parallel smoother called the modified block
red-black Gauss-Seidel (mBRB-GS) smoother [6]. It is a multiplicative Schwarz
smoother. The Schwarz smoother is parallelized by applying red-black ordering
to cuboid blocks of the problem domain [5], and multiple Gauss-Seidel (GS)
iterations are performed in each red or black block. Because the second or later
GS iterations in the block are performed on-cache, high data locality is achieved
in the smoothing step. Moreover, analytical investigation and numerical tests
showed that the smoother attains a sufficient degree of thread parallelism and
fast convergence. Accordingly, the mBRB-GS smoother has desirable character-
istics in three out of the four key issues mentioned above, and it can be regarded
as a candidate for a parallel smoother for the Xeon Phi coprocessor. However,
the innermost loop of the smoother consists of sequential GS steps, and it cannot
be straightforwardly vectorized.

Our solution to this problem is a partial SIMDization (vectorization) of the
GS loop which we split into six simpler loops. Five of the loops are made do-all
and thus SIMDizable. The loop-splitting itself is a classic technique for vector
processors [1]. However, our revisit has various new aspects such as its appli-
cation to the SIMD mechanism and the cache-awareness that is essential for
scalar many-core processors. We conducted numerical tests on the Xeon Phi
coprocessor to compare the effectiveness of the developed solver with the solver
based on the conventional gridpoint-wise red-black GS smoother that is naturally
vectorized.
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2 Parallelized Multigrid Solver for the Three-Dimensional
Poisson Equation

2.1 Poisson Equation Problem and Multigrid Solver

We used a 7-point finite difference scheme to solve the three-dimensional Poisson
equation. This leads to the following linear system of equations.

Aφ = ρ, (1)

where ρ is the discretized given source, φ is the unknown vector, and A is
the coefficient matrix. The row of the linear system of (1) corresponding to the
grid-point (i, j, k) is written as

ai,j,k ∗ φi,j,k−1 + bi,j,k ∗ φi,j−1,k + ci,j,k ∗ φi−1,j,k + φi,j,k

+ ei,j,k ∗ φi+1,j,k + fi,j,k ∗ φi,j+1,k + gi,j,k ∗ φi,j,k+1 = ρi,j,k(2)

where (i, j, k) represents the grid coordinates. We use the geometric multigrid
method to solve the linear system.

The multigrid method consists of the smoother, residual calculator, restric-
tion and prolongation operators and coarsest grid solver. Among these compo-
nents, we have focused our analysis on the smoother. When we consider the
parallelization of the multigrid solver, the residual calculation, the restriction,
and the prolongation can be straightforwardly parallelized using domain decom-
position. However, it is difficult to parallelize some smoothers. For example, the
GS smoother cannot be naturally parallelized. Moreover, a smoother has a sig-
nificant impact on the performance of the multigrid solver. It greatly affects the
convergence of the solver, and its total computational effort is larger than the
other components. Consequently, this paper mainly discusses the smoother and
its vectorization for the many-core processor.

2.2 Modified Block Red-Black Gauss-Seidel Smoother

In our analysis, we have used the mBRB-GS smoother, which is a multiplicative
Schwarz smoother. In this smoother, the entire grid is decomposed into subdo-
mains based on block red-black (BRB) ordering. The entire grid is divided into
multiple blocks, and then the red-black ordering is applied to the blocks. Each
red or black block is treated as a subdomain in the Schwarz smoother. Multiple
sequential GS steps are performed in each subdomain (red/black block), which is
smaller than the cache size. Consequently, the second and subsequent GS steps
in each subdomain are executed on-cache, which results in high cache hit ratio
(good data locality). The degree of parallelism of the smoother is given by the
number of blocks of each color. In general, the size of the entire grid is larger
than the cache size, and the degree of parallelism is expected to be sufficiently
large. Moreover, it was reported in [6] that the multigrid solver using mBRB-GS
converges more quickly than when using hybrid Jacobi and GS, or red-black GS
smoothers. Consequently, the mBRB-GS smoother is considered to be a promis-
ing parallel smoother candidate for the multigrid solver on the Intel Xeon Phi
coprocessor.
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3 Efficient Implementation of the GS Smoother
on Xeon Phi

To develop an efficient multigrid Poisson solver on the Xeon Phi coprocessor,
we should consider the vectorization (SIMDization) of the smoother in addition
to the parallelization. This is because of the relatively wide SIMD engine of the
coprocessor compared with general multi-core processors. However, the mBRB-
GS smoother uses GS iterations, which cannot be naturally vectorized. We now
introduce an implementation method that makes a compiler generate a partially
SIMDized binary code.

Algorithm 1 shows the ordinary Fortran implementation of the GS method.
When it is used in the mBRB-GS smoother, NX, NY and NZ correspond to
the block sizes along the x, y and z axes, respectively.

In the program code, the innermost loop has a loop carried dependence
caused by the term c(i, j, k) ∗ phi(i − 1, j, k) (highlighted in red), which usu-
ally prevents the compiler from SIMDizing the loop.

Algorithm 1. Ordinary implementation of the GS method

1 do k = 1, NZ

do j = 1, NY

do i = 1, NX !This loop is not SIMDized

phi(i,j,k)= rho(i,j,k) &

+ a(i,j,k)*phi(i,j,k-1) + b(i,j,k)*phi(i,j-1,k) &

6 + c(i,j,k)*phi(i-1,j,k) + e(i,j,k)*phi(i+1,j,k) &

+ f(i,j,k)*phi(i,j+1,k) + g(i,j,k)*phi(i,j,k+1) )

enddo

enddo

enddo

Although this dependence is essential to the GS method, it does not necessar-
ily inhibit the SIMDization of the whole loop. In fact, as shown in Algorithm2, if
we apply loop-splitting so that we have six separated loops for each of the addi-
tive terms referencing phi, five loops out of the six are free from the loop carried
dependence and thus easily and well SIMDized. Note that the loop-splitting does
not always improve the loop performance because of additional operations, which
in this case are load/store operations of the scratchpad array tmp. However, the
negative impact is expected to be minor and the following positive effects are
also possible.

First, the cost of the additional accesses to tmp is minimized by tuning
the size NX so that tmp is always resident in the first level cache. For the
mBRB-GS smoother that has an inherent blocking feature, this tuning is almost
automatic and does not require further cache-aware blocking. Second, each of
the five dependence-free loops is so simple that all compilers can easily grasp
the structure of the loop body, so it is strongly expected that the loop body is
efficiently SIMDized, even with the restricted SIMD architecture of Xeon Phi.
That is, the relatively small number of streams (four for the first and three
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for others) makes it feasible for the compilers to exploit SIMD load/store and
alignment instructions, while the common right-hand side structure of x + y ∗ z
perfectly fits to the fused multiply-add instructions that are the other source of
the high peak performance of Xeon Phi.

Algorithm 2. Partially SIMDized implementation of the GS method

do k = 1, NZ
do j = 1, NY

!$DEC SIMD
do i = 1, NX

5 tmp(i) = rho(i,j,k) + a(i,j,k)*phi(i,j,k-1)
enddo
!$DEC SIMD
do i = 1, NX

tmp(i) = tmp(i) + b(i,j,k)*phi(i,j-1,k)
10 enddo

!There are SIMDized phi(i+1,j,k), phi(i,j+1,k) and phi(i,j,k+1) loop.

do i = 1, NX !This loop is not SIMDized

15 phi(i,j,k) = tmp(i) + c(i,j,k)*phi(i-1,j,k)
enddo

enddo
enddo

4 Numerical Tests

4.1 Numerical Test Conditions

Weexamined theperformance of themultigridPoisson solverwithmBRB-GSusing
an implementation method for partial SIMDization on an Intel Xeon Phi 7120
coprocessor. The fundamental specifications are listed in Table 1. On the coproces-
sor, up to 240 threads can run on 60 cores. The program codewaswritten inFortran
compiled by Intel Composer 14.0.0 with the options -O3 -openmp -mmic -no-opt-
prefetch. It was run on Xeon Phi using its native execution mode. The test problem
had 5123 grid points. The multigrid solver has converged when the relative residual
norm was less than 10−7. In our numerical tests, we evaluated the performance of
the multigrid Poisson solver with red-black GS (RB-GS), mBRB-GS based on the
implementation methods in Algorithms 1 and 2. The block size of the mBRB-GS
smoother NX × NY × NZ was 512 × 2 × 2, and there were two GS iterations for
each block in a smoothing step.

4.2 Performance Evaluation of Proposed Implementation Method

Figure 1 shows the relative speedup of calculation time of the entiremultigrid solver
comparedwith the sequentialmBRB-GS (Algorithm 1).These results confirm that
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Table 1. Specifications of Xeon Phi

Processor Model 7120(KnightsCorner)

Number of cores 61

Clock frequency 1.24 GHz

L1D-cache size 32 KByte/core

L2-cache size 512 KByte/core

Memory Technology GDDR5

Size 16 GByte

mBRB-GS outperforms RB-GS on numerical tests conducted on the Xeon Phi
coprocessor. In our analysis, RB-GS is implemented using stride memory access.
This is one of the most popular implementation methods for RB-GS, because it
does not require the array to be reordered for the unknowns. This is convenient
for other multigrid components such as the restriction. However, stride memory
access is not advantageous in terms of the cache hit ratio when compared with
the contiguous method. Consequently, RB-GS is inferior to mBRB-GS in terms of
performance, although it can be naturally vectorized. This result is similar to the
numerical results on a general multi-core processor [6].

Next, we compared the two implementations of mBRB-GS. Although the
partially SIMDized GS implementation (Algorithm2) outperforms the ordinary
method (Algorithm 1) on the numerical test using 240 threads, it is inferior to the
ordinary implementation when using 120 or less threads. Using the Intel Vtune
Amplifier, we found that Algorithm2 suffers from two types of processor stalls.
One is the VPU STALL REG event detected when a read-after-write hazard
stalls the SIMD instruction pipeline. The other is the PIPELINE AGI STALL
that corresponds to the stall of a load/store instruction. It is caused by the
latency of the corresponding instruction to provide (a source of) the address
to be accessed. We consider that the number of stalls increases because of the
reduced number of instructions involved in a loop in Algorithm2. The hyper-
threading technology reduces the impact of these stalls on the performance, by
interleaving instructions from multiple threads to hide the latency between the
pair of instructions. Thus, Algorithm2 performs 19.1 % better than Algorithm 1
in the case of 240 threads.

The other important observation obtained from our analysis of Algorithm2
using the Vtune Amplifier is that the ratio of SIMD instructions to all executed
instructions is only 25.9 %. This is much smaller than we expected for the five
simple SIMDizable loops. We examined the object code for the loops and found
that a significantly large portion of instructions in the loop body is occupied by
calculations of the addresses of each element of the three or four arrays referred
to in each loop. That is, Intel Composer generates fairly redundant codes for
address calculations of three-dimensional array elements. This potential ineffi-
ciency might be hidden under the powerful out-of-order superscalar mechanism of
ordinary Xeons with multiple integer units which simultaneously works together
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with SIMD floating-point units. However, this inefficiency is revealed when it is
executed on Xeon Phi, because of its in-order two-way superscalar mechanism.
This means that only one integer instruction stream can be processed when it has
instructions tightly dependent on each other and/or the SIMD floating-point unit
is in use.

To reduce the overhead of the address calculation, we made the three-
dimensional arrays one-dimensional by applying the well-known array flatten-
ing technique. Then, most operations are made loop-invariant and are explicitly
moved outside the loop body. This handmade optimization significantly reduced
the number of non-SIMD instruction executions for address calculations, result-
ing in a much higher SIMD instruction ratio of 53.8 %. Then, the improvement
of the SIMD instruction ratio directly effected the higher performance of three
mBRB-GS implementations, as shown in Fig. 2. As the figure clearly shows,
Algorithm 2 with array flattening improves the performance of the 240-thread
case and outperforms Algorithm1 by 35.5 %. It also improves performance when
using 120 threads or less, and is the best of the three implementations in all cases.

Finally, we briefly compared the performances of Xeon Phi and an ordi-
nary multi-core HPC server node of dual Xeon E5-2670 SandyBridge processors.
We measured the server node performance using Algorithm 1 and 2 and found
that the differences between them are insignificant. This is most likely because
of the narrower 256-bit wide SIMD mechanism and the powerful out-of-order
superscalar mechanism. On the other hand, an important observation is that
Algorithm 2 with array flattening on the single Xeon Phi coprocessor using 240
threads outperforms Algorithm1 on the dual-Xeon server using 16 threads by
34.1 %. This demonstrates its high potential, even for hardly-SIMDizable ker-
nels. It also shows the importance of architecture-aware code tuning, which we
expect to be incorporated into automated optimizations of future compilers for
many-core processors with wider SIMD mechanisms.

5 Conclusion

In this paper, we discussed an efficient three dimensional multigrid Poisson
solver, working on an Intel Xeon Phi coprocessor. To effectively use the SIMD
instructions of Xeon Phi, we introduced the partially SIMDized method for the
GS iterations in the multigrid solver, using the mBRB-GS smoother. In our
implementation, the innermost loop is split into six loops, each of which corre-
sponds to one additive term in a 7-point finite difference scheme. Because five
of these loops are free from loop carried dependence, they can be SIMDized.
The loop-splitting itself is a classic technique for vector processors. However,
our revisit has various new aspects such as its application to the SIMD mecha-
nism and the cache-awareness that is essential for scalar many-core processors.
Moreover, using detailed performance profiling and analysis, we found that the
reduction of address calculations in the loop body by using array flattening signif-
icantly improved performance. Overall, the partially SIMDized implementation
attained a 35.5 % better performance than the conventional implementation of
the mBRB-GS smoother in the 240-thread execution on Xeon Phi.
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Abstract. We evaluate the performance of a parallel 3D finite-difference method
(FDM) simulation of seismic wave propagation using the Intel Xeon Phi copro‐
cessor. Since a continued decrease in the byte/flop ratio of future machines is
forecast, program optimization with a decrease byte/flop ratio was applied by
fusing the original major kernel and omitting the storing and loading of inter‐
mediate variables. We confirm that 1) MPI/OpenMP hybrid parallel computing
with hyper-threading is more efficient than pure MPI parallel computing and 2)
the performance of the FDM simulation with a splitting of triple DO loops is 1.3
times faster than the modified code with triple DO loops, while no performance
acceleration is achieved with a fused double DO-loop calculation. We consider
that loop distribution optimization is effective for prefetching and the thread
parallelization of each loop by its use and reuse on cache data.

Keywords: Intel Xeon Phi coprocessor · Seismic wave propagation · Performance
optimization · Pure MPI · MPI/OpenMP hybrid parallel computing · FDM

1 Introduction

Recent efforts in high-performance computing have focused on achieving increases in
speed by using massively parallel computing with multicore and many-core processors.
Recently, the Intel Xeon Phi coprocessor, a new type of many-core architecture copro‐
cessor has received significant attention with regard to multicore parallel computing.
This is because since June 2013, the Tianhe-2 supercomputer at the National University
of Defense Technology, China, which uses the Intel Xeon Phi coprocessor, received the
first prize in the Top 500 ranking of the world’s fastest supercomputers [1]. With such
rapid changes occurring in computing strategy, users must design code suitable for the
new architecture every time a new parallel-architecture machine is developed. To avoid
complications, we have developed a standard parallel finite-difference method (FDM)
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library (ppOpen-APPL/FDM) as part of the ppOpen-HPC project [2], which will enable
users to smoothly and easily transport existing FDM applications to newly developed
architectures of current and future machines.

Multicore and many-core processors support different types of parallel-computing
programming environments. Generally, the message passing interface (MPI) has been
considered optimal for process-level coarse parallelism [3], while OpenMP is considered
optimal for fine-grain loop-based parallelism [4]. For current massively parallel
computing that combines MPI and OpenMP parallelization, the construction of a hybrid
program may be more efficient when using multicore and many-core processors. MPI/
OpenMP hybrid parallelization can reduce the communication overhead of MPI but can
lead to a large OpenMP overhead due to thread process creation and increased memory
bandwidth contention. For multicore architecture, such as the T2 K Open Supercomputer
and the Fujitsu FX10 systems installed at the Information Technology Center of the
University of Tokyo, many researchers have demonstrated that using MPI/OpenMP
hybrid parallel computing is more effective than using MPI alone (known as pure MPI
parallel computing) [5–8]. The advantage of MPI/OpenMP hybrid parallelism becomes
more important in massively parallel computing when multicore and many-core
processors are being used.

Another important issue for high-performance parallel computing of FDM simula‐
tion is the restriction of the memory bandwidth, relative to the CPU speed (i.e., bytes/
flop or B/F). For example, the recent trend of supercomputer architecture has the B/F
ratio dropping drastically from 4 to 0.5 for the Earth Simulator and the K-computer [9].
The B/F ratio of the next-generation computers is expected to fall even further. To
overcome this challenge, it is necessary to optimize the performance of the FDM simu‐
lation, for example by more efficiently utilizing of cache memory.

In this study, we tuned the performance of the ppOpen-APPL/FDM library to make
it suitable for the Intel Xeon Phi coprocessors. In the following section, we briefly
explain the FDM simulation of seismic wave propagation using the ppOpen-APPL/FDM
library. Next we present an overview of the Intel Xeon Phi coprocessor and demonstrate
the performance of the parallel FDM simulation of seismic wave propagation in 3D, and
go on to compare its parallel performance with those based on pure MPI and MPI/
OpenMP hybrid parallel computing. Then, we described the performance tuning we
used to improve efficiency for lower B/F ratios and evaluate the results. Finally, we
present our conclusions and remarks regarding future studies.

2 Overview of the Seismic Wave Propagation Simulation Using
the ppOpen-APPL/FDM Library

Here, we briefly explain the procedure of the FDM simulation of seismic wave propa‐
gation using the ppOpen-APPL/FDM library. This simulation explicitly solves an equa‐
tion of motion in 3D as follows:
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(1)

where σpq, fp, ρ, and Δt are stress, body force, density, and time step, respec‐
tively.  and  are the particle velocities at time t = (n ± 1/2)Δt.

Hereafter, we refer to this calculation procedure as “update-velocity”. The stress
component for the next time step at t = (n + 1)Δt is updated using the spatial derivative
of the velocity component derived from Eq. (1) and multiplying the elastic constants
(denoted as “update-stress”) as follows:

(2)

where λ and μ are Lamé’s constants and δpq denotes the Kronecker delta.
The spatial derivatives in Eqs. 1 and 2 are calculated using a staggered-grid fourth-

order-central FDM. Calculations of Eqs. 1 and 2 are repeated explicitly for the time
desired for seismic wave propagation. The structures of the programs for the “update-
velocity” and “update-stress” kernels with triple DO loops (i, j, k) are schematically
illustrated in Fig. 1. Note that these four calculation kernels are the time-intensive part
of this FDM simulation, respectively taking 20.9 % (difference-velocity), 20.4 %
(difference-stress), 17.3 % (update-stress) and 12.7 % (update-velocity) of total calcu‐
lation cost on the Intel Xeon Phi coprocessor (Fig. 2).

Fig. 1. Structure of the (a) “update-velocity” and (b) “update-stress” kernels of the seismic wave
propagation simulation using the ppOpen-APPL/FDM.
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Fig. 2. Total of calculation cost of each kernel on the Intel Xeon Phi coprocessor for an FDM
calculation for 1283 grid points using 16 MPI parallel processes (Color figure online).

3 Overview of the Intel Xeon Phi Coprocessor

The Intel Xeon Phi 5110P coprocessor has 60 physical cores with a clock speed of
1.053 GHz, and each core offers four hyper-threading computations at the hardware
level. Thus, it yields 240 logical cores for thread-parallel computing with the use of an
8-GB shared memory. The processor connected to a host computer via a PCI Express
bus, has dual 8-core Intel Xeon E5-2670 processors with a 2.60-GHz clock speed and
a 128-GB shared main memory. Table 1 summarizes the specifications of the host PC
and the Intel Xeon Phi 5110P coprocessor.

We used the Intel Fortran Compiler, version 14.0.2, and the Intel MPI Library, version
4.1.0, with the compiler options “mpiifort –mmic –O3 –align array64byte” when
conducting parallel computing using MPI alone (pure MPI parallel computing). In addition
to those, we specified the OpenMP option (“–openmp”) when conducting MPI/OpenMP
hybrid parallel computing.

We evaluated the performance of the parallel FDM simulation on the native
computing mode of the Intel Xeon Phi coprocessor. We compared the performance of the
pure MPI and MPI/OpenMP hybrid parallelization using different combinations of MPI
process (P) numbers and OpenMP thread processes (T) numbers. The calculation time
for each kernel (update-velocity and update-stress) was evaluated from 200 time-step
calculations. The size of the 3D FDM simulation is 240 × 240 × 240 grid points which
requires almost the maximum memory (8 GB) of the Intel Xeon Phi 5110P coprocessor
available for single-precision arithmetic calculation, although the calculation time is
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dependent on the number of grid points. Table 2 shows the partition number for each
direction and the number of grid points per process corresponding to the different numbers
of MPI processes used in this performance evaluation.

4 Performance in Pure MPI and MPI/OpenMP Hybrid
Parallel Computing

Figure 3 shows the results of a strong-scaling test of pure MPI parallel computing for the
two kernels. The calculation time decreases linearly from 28.2 to 3.04 s and from 35.3 to
4.3 s for the update-velocity and update-stress kernels, respectively, when going from 8
to 60 MPI processes. This is achieved 9.2 times and 8.2 times faster in the update-velocity
and update-stress kernels, respectively, when using 60 MPI processes. However, the
parallel performance is saturated when using more than 60 MPI processes. The 60-core
speed-up ratio indicates a super-linear speed advancement. The number of grid points per
process using 8 cores is 120 × 120 × 120, and that using 60 cores is 40 × 48 × 120. In these
cases, the available local L1 cache size increases with the increase in cores because the

Table 1. Summary of specifications of the host PC cluster and the Intel Xeon Phi coprocessor

PC Cluster Intel Xeon Phi 5110P

CPU Clock Speed 2.60 GHz (Xeon E5-2670) 1.053 GHz

Number of Cores 8 60

Threads /Core 2 4

Size of L1 Cache 512 KB 32 KB

Size of L2 Cache 2 MB 512 KB

Size of Shared Memory 128 GB 8 GB

Peak Performance 332.8 GFLOPS 1.01 TFLOPS

Peak Memory Bandwidth 51.2 GB/sec 320 GB/sec (ECC off)

Table 2. Three-dimensional domain decomposition for the MPI parallel computing processes

Number of MPI processes 8 16 30 60 120 240

Partition number of X direction
(grid points / process)

2
(120)

4
(60)

5
(48)

6
(40)

10
(24)

12
(20)

Partition number of Y direction
(grid points / process)

2
(120)

2
(120)

3
(80)

5
(48)

6
(40)

10
(24)

Partition number of Z direction
(grid points / process)

2
(120)

2
(120)

2
(120)

2
(120)

2
(120)

2
(120)
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number of grid points with respect to the local cache decreases. Therefore, the calculation
using 60 cores becomes faster than that using fewer than 60 cores. Moreover, the
performance when using more than 60 cores is saturated because of the restriction of the
memory bandwidth to CPU.

We then conducted a strong-scaling test of MPI/OpenMP hybrid parallel computing
for the two kernels (Fig. 4), for comparison with the results obtained with pure MPI
parallel computing (Fig. 3). For displaying the results of this test [Fig. 4 (a)], we selected
the combinations of MPI process numbers and OpenMP thread numbers that had the
shortest calculation times. We then inserted the OpenMP directives in the ppOpen-APPL/
FDM prior to executing the outermost DO loops of the kernels and then measured the
calculation times. The results of the strong-scaling test of the MPI/OpenMP hybrid
parallel computing case show that the calculation time scales down monotonically for up
to 240 logical cores. We note that the calculation time for MPI/OpenMP hybrid parallel
computing is shorter than that for pure MPI parallel computing using 240 logical cores

Fig. 3. Strong-scaling test of pure MPI parallel computing showing (a) the reduction in
calculation time by the increase in the number of MPI processes and (b) the speed-up ratio. Blue
and red lines denote the performance of the update-velocity and the update-stress kernels,
respectively. The black dashed line indicates ideal speed-up as a function of the number of cores
(Color figure online).
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due to the use of hyper-threading functions. Using 240 logical cores, the speed-up ratio
[Fig. 4(b)] for MPI/OpenMP hybrid parallel computing (8 MPI processes and 30 OpenMP
threads, denoted “P8T30”) is 1.57 for the update-velocity and 1.64 for the update-stress
over those using pure MPI parallel computing (60 MPI processes). In the case of pure
MPI parallel computing using 240 cores (P240T1), 4 MPI processes are assigned to a
physical core. In other words, the local cache of the core is shared with the 4 processes.
On the other hand, in the case of MPI/OpenMP hybrid parallel computing using 240 cores
(P8T30), 1 MPI process is assigned to 7.5 physical cores. Therefore, the cache efficiency
of the P8T30 is greater than of the P240T1. MPI/OpenMP hybrid parallel computing is
faster than pure MPI parallel computing because of its utilization of large-scale thread-
parallel computing with hyper-threading functions.

Fig. 4. Comparison of the strong scaling of MPI/OpenMP hybrid parallel computing (green
points) and pure MPI parallel computing (blue and red lines) for the (a) update-velocity and
update-stress kernels and (b) the speed up ratio comparison between 60 MPI parallel processes
and each hybrid parallel computing. In (a), the horizontal axis is the number of cores and the
vertical axis is the calculation time. In (b), the black dashed line indicates the reference line, which
parallel computing is faster. In MPI/OpenMP hybrid parallel computing, we selected the shortest
calculation time for each combination of MPI process (P) numbers and OpenMP thread (T)
numbers (Color figue online).

5 Performance Evaluation of the Program for Decreasing
the Byte/Flop Ratio

The FDM simulation of seismic wave propagation using ppOpen-APPL/FDM requires
high memory bandwidth. Thus the memory bandwidth (bytes) is larger than the compu‐
tational cost of the processors (flop). For example, the required B/F ratios for calculating
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the update-velocity and the update-stress kernels are 2.7 and 1.7, respectively, much
larger than those required by current processors (0.01–0.1). In the original code, the
values of each spatial derivative are stored in a corresponding array. Thus, to obtain
good computational performance on today’s powerful processors, we need to either
make full use of the cache memory of the processors or modify the program structure
to reduce the required B/F ratio, or both.

Figure 5 shows a procedure we propose to effectively decrease the required B/F ratio
of the FDM simulation of seismic wave propagation. In the original simulation code,
we first calculated each spatial derivative of the velocity and stress components and
stored them in memory. These derivatives were then used for the kernels of update-stress
and update-velocity, requiring large B/F ratios in order to load and store the large number
of variables. To overcome this challenge, we modified the FDM code to merge the
derivative and update calculations, thereby avoiding the need to store and load variables
during the calculation. As a result, the required B/F ratios for both the update-velocity
and the update-stress kernels dropped dramatically, to 0.4.

Fig. 5. Procedure for decreasing the B/F ratio: (a) original code and (b) modified code. The
required B/F of the update-velocity kernel (2.7) and the update-stress kernel (1.7) kernels can be
reduced dramatically to 0.4 in each kernel. In (b), C40, C41, ROX, ROY, ROZ, dx and DT are
constants.

Figure 6 displays the comparison of the performance of the original and modified
code in MPI/OpenMP hybrid parallel computing. In Fig. 6, we show the shortest calcu‐
lation times for each combination of MPI process (P) numbers and OpenMP thread (T)
numbers. For parallel computing up to 60 physical cores, the modified code is slower
than the original code. However, with the much larger scale parallel simulation using
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240 logical cores, the modified code doubles the speed of the original code because of
the moderation of the restriction on the memory bandwidth achieved by decreasing the
B/F ratio.

6 Performance Optimization of Kernel Loops

The 3D FDM simulation kernels consist of triple DO loops with respect to the i, j, and
k directions. It is well recognized that the fusion of many DO loops yields efficient
thread-parallel computing performance with increasing loop length while decreasing the
overhead of thread-parallel computing [10]. We examined the effectiveness of loop
fusion for MPI/OpenMP hybrid parallel computing by using 240-core hyper-thread
parallel computing, with the results as given in Fig. 7. There, we indicate the shortest

Fig. 6. Comparison of MPI/OpenMP hybrid parallel computing based on the original code and
on the modified B/F-reduction code for the (a) update-velocity and (b) update-stress kernels. The
horizontal axis is the number of cores and the vertical axis is the calculation time. On the horizontal
axis, we indicate the shortest calculation time for each combination of MPI process (P) numbers
and OpenMP thread (T) numbers in the original and the modified code (Color figure online).
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calculation time for each combination of MPI process (P) numbers and OpenMP thread
(T) numbers. With the double DO-loop fusion, the calculation for P30T8 is 1.45 times
slower for the update-velocity kernel, and that for P120T2 is 1.33 times slower for the
update-stress kernel, compared with the triple DO loop (P30T8).

Loop distribution is the inverse process of loop fusion and divides a loop into multiple
loops to improve the spatial locality. We investigated the loop distribution of the triple
DO loops for MPI/OpenMP hybrid parallel computing by using 240-core hyper-thread
parallel computing; the resulting calculation (for P8T30) is 1.38 times faster for the update-
velocity kernel, and 1.13 times faster for the update-stress kernel, than that of the triple
DO loops (P30T8), as is shown in Fig. 7. Loop distribution optimization is applied to
prefetch and to the thread parallelization of each loop by its use and reuse on cache data.

7 Conclusion and Future Work

We have evaluated the parallel performance of the ppOpen-APPL/FDM for the 3D
FDM simulation of seismic wave propagation implemented on the Intel Xeon Phi
coprocessor, and have confirmed that MPI/OpenMP hybrid parallel computing is more
effective than pure MPI parallel computing for many (i.e., 120–240) logical cores with
hyper-threading processing. Furthermore, we have presented modified code that
decreases the B/F ratio, thereby improving performance in MPI/OpenMP hybrid
parallel computing. The performance of the FDM simulation with a splitting of triple
DO loops was found to be faster than the modified code. We conclude that loop
distribution optimization is effective for prefetching and the thread parallelization of
each loop by its use and reuse on cache data. Since the B/F ratio is expected to continue

Fig. 7. Effect of loop fusion and loop distribution with MPI/OpenMP hybrid parallel computing
(HB) using 240-core hyper-thread computation in the modified code: update-velocity (left) and
update-stress (right) kernels. The blue bar indicates triple DO loops, the red bar indicates double
DO-loop fusion, and the green bar indicates loop distribution of the triple DO loops. The horizontal
axis is the kernel, and the vertical axis is the calculation time. We indicate the shortest calculation
time for each combination of MPI process (P) numbers and OpenMP thread (T) numbers in the
original and the modified code (Color figure online).
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decreasing in future machines, the program optimization with a decreased B\F ratio
was applied by fusing the original major kernel and omitting the storing and loading
of intermediate variables.

At present, the Intel Xeon Phi 5110P coprocessor has only 8 GB of local memory and
is connected to other Intel Xeon Phi coprocessors via the relatively slow PCI Express bus.
This is the current bottleneck for performing realistic large-scale applications of the FDM
simulation using the Intel Xeon Phi coprocessor. To overcome this bottleneck, a compre‐
hensive parallel computing scheme with the concurrent use of the Intel Xeon Phi copro‐
cessor on the host computer, referred to as offload computing, is needed.
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Abstract. Load balancing scientific codes on massively parallel architec-
tures is becoming an increasingly challenging task. In this paper, we focus
on the Community Earth System Model, a widely used climate modeling
code. It comprises six components each of which exhibits different scalabil-
ity patterns. Previously, an analytical performance model has been used to
find optimal load-balancing parameter configurations for each component.
Nevertheless, for the Community Ice Code component, the analytical per-
formance model is too restrictive to capture its scalability patterns. We
therefore developed machine-learning-based load-balancing algorithm.
It involves fitting a surrogate model to a small number of load-balancing
configurations and their corresponding runtimes. This model is then used
to find high-quality parameter configurations. Compared with the current
practice of expert-knowledge-based enumeration over feasible configura-
tions, the machine-learning-based load-balancing algorithm requires six
times fewer evaluations to find the optimal configuration.

1 Introduction

The Community Earth System Model (CESM) is one of the most widely used
climate models in the world. Results from this model are a major part of the
Intergovernmental Panel on Climate Change assessment reports [1]. CESM1.1.1
consists of six model components—atmosphere, ocean, sea-ice (CICE), land,
river, and land-ice models—that communicate through a coupler. Each of the
CESM model components has different scalability patterns and performance
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characteristics. In this paper, we focus on static load-balancing of computation,
which is usually simple to implement with negligible overhead, making it suit-
able for “fine-grained” parallelism consisting of many small tasks. Previously, the
load-balancing problem has been formulated as a mixed-integer nonlinear opti-
mization problem and solved by using the optimization solver MINOTAUR [2].
This is a heuristic method that consists of gathering benchmarking data, cali-
brating a performance model using the data, and making decisions about optimal
allocation by using the model. The performance model predicts the execution
time of the program running in parallel as a function of problem size and the
number of processors employed. Nonetheless, several challenges in intramodel
load balancing for the CICE computations occur only where sea ice is located
and the sun is shining. This restriction presents a load-balance problem because
processors are allocated across the entire Earth grid and several locations on the
grid that do not have any sea ice [3]. The poor fit of the CICE results in ineffi-
cient processor allocations to all components—incorrect allocation of the CICE
affects all other allocations because the total number of processors available to
components is a fixed number. This is the primary motivation for us to develop
sophisticated approaches for load balancing the CICE component of the CESM.

Recently, machine-learning methods [4] have received considerable attention
for tuning performance of large scientific codes and kernels on high-performance
computing systems. In particular, supervised machine-learning tries to learn the
relationship between the input and the output of an unknown response function
by fitting a model from few representative examples. When the model is accurate
enough, it can predict the output at new unseen inputs, which provides numerous
benefits, in particular when the evaluation becomes expensive.

In this paper, we present a machine-learning-based approach for static load-
balancing problems, and we apply it to find high-quality parameter configura-
tions for load balancing the CICE component of the CESM on IBM Blue Gene/P
(BG/P). The novelty of the proposed algorithm consists of iteratively using the
model to choose configurations with shorter predicted runtime for evaluation on
the target architecture. We emphasize, however, that the algorithm is general
and not specific to the CESM and/or BG/P. The paper is structured as fol-
lows: (1) a machine-learning-based algorithm for static load-balancing problem,
(2) deployment of a machine-learning method as a diagnostic tool for analyzing
the sensitivity of the load-balancing parameters on the execution time, (3) empir-
ical analysis of several state-of-the-art machine-learning methods for modeling
the relationship between the load-balancing parameters and their corresponding
execution time, and (4) 6x savings in core-hour usage for load balancing the
CICE component of the CESM on BG/P.

2 The CICE Component on BG/P

For the CICE component, we need to find the optimal load-balancing parameter
configuration x∗ with the shortest the runtime (f∗) for task counts ∈ {80, 128,
160, 256, 320, 376, 512, 640, 800, 1024}. The task count corresponds to number of
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Table 1. Decomposition strategies and their corresponding block.x and block.y sizes

decomp.set decomp.typ block.x block.y

null blkrobin, blkcart
roundrobin, spacecurve

1, 2, 4, 8 24, 48, 96,
192, 3840

slenderX1
slenderX2

cartesian 4, 5, 8, 10 4 6 8 12

MPI tasks; the number of OpenMP threads per MPI task is set to four because
of memory restrictions on BG/P. The CICE component comprises six para-
meters. Three integer parameters, namely, maximum number of CICE blocks,
max.block; the size of a CICE block in the first and second horizontal dimensions
block.x and block.y respectively. Two categorical parameters that determine
the decomposition strategy, decomp.typ ∈ {blkrobin, roundrobin, spacecurve,
blkcart, cartesian} and decomp.set ∈ {null, slenderX1, slenderX1}. A binary
parameter mask.h ∈ {0,1} that specifies to run the code with or without halo.

The constraints that define a feasible set D of configurations are as follows.
The parameter max.block ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16,
20, 24, 26, 30, 32, 40, 48, 64} is determined by computing (CICE X Grid Size ×
CICE Y Grid Size) / (block.x × block.y × task count). The feasible values
for decomp.set, decomp.typ, block.x, and block.y are constrained as shown
in Table 1. The decomposition strategies have different rules, and not all combi-
nations of block sizes are possible. The blkcart method must have a multiple of
four blocks per compute core. The spacecurve method must have 2, 3, and 5 only
in max.block. The slenderX1 method requires that the block.x multiplied by the
task count divide evenly into the CICE X grid size. The value of block.y must
also be divisible by the CICE Y grid size. The slenderX2 method requires that
the block.x multiplied by the task count be divisible by the CICE X grid size
multiplied by 2. The decomposition also requires that the block.y multiplied by
2 divide evenly into the CICE Y grid size.

3 Machine-Learning Based Load-Balancing Algorithm

Given a set of training data {(x1, y1)), . . . , (xl, yl))}, where xi ∈ D and yi =
f(xi) ∈ R are the load-balancing parameter configuration and its corresponding
runtime, respectively, the supervised machine-learning approach includes finding
a surrogate function h for the expensive f such that the difference between f(xi)
and h(xi) is minimal for ∀i ∈ {1, . . . , l}. The function h, which is an empirical
performance model, can be used to predict the runtimes of unevaluated x′ ∈
D. The key idea behind the machine-learning-based load-balancing algorithm
is iteratively using the model to choose configurations with shorter predicted
runtime for evaluation and retrain the model with the evaluated configurations.

The pseudo-code is shown in Algorithm 1. The symbols ∪ and − denote set
union and difference operators, respectively. Given a task count c, a pool Xp

of unevaluated configurations of task count c, the maximum number of
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Algorithm 1. Pseudo-code for the machine-learning-based load-balancing
algorithm
Input: task count c, configuration pool Xp of task count c, max evaluations nmax,

initial sample size ns

1 Xout ← sample min{ns, nmax} distinct configurations from Xp

2 Yout ← Evaluate Parallel(c, Xout)
3 M ← fit(Xout, Yout)
4 Xp ← Xp − Xout

5 for i ← ns + 1 to nmax do
6 Yp ← predict(M, Xp)
7 xi ← x ∈ Xp with the shortest runtime in Yp

8 yi ← Evaluate(c, xi)
9 retrain M with (xi, yi)

10 Xout ← Xout ∪ xi; Yout ← Yout ∪ yi
11 Xp ← Xp − xi

12 end for

Output: x ∈ Xout with the shortest runtime in Yout

allowed evaluations, and initial sample size ns, the algorithm proceeds in two
phases: parallel initialization phase and sequential iterative phase. In the ini-
tialization phase, the algorithm first samples ns configurations at random and
evaluates them in parallel to obtain their corresponding runtimes. A supervised
learning method uses these points as a training set to build a predictive model.
The sequential iterative phase consists of predicting the runtimes of all remain-
ing unevaluated configurations using the model, evaluating the configuration
with shortest predicted runtime, and retraining the model with the evaluation
results. Without loss of generality, Algorithm1 can be run in parallel for each
task count c ∈ C. Because the best supervised learning algorithms depends
on the relationship between the input and output, we test four state-of-the-art
machine-learning algorithms as candidates for Algorithm1: random forest (RF)
[5], support vector machines (SVM) [6], Gaussian process regression (GP) [7],
and neural networks (NN) [8].

RF belongs to the class of recursive partitioning methods [9]. They are widely
used tools for predictive modeling in many scientific fields. These methods recur-
sively partition the multi-dimensional input space D′ of training points into a
number of hyper rectangles. The partition is done in such a way that input config-
urations with similar outputs fall within the same rectangle. The partition gives
rise to a set of if-else rules that can be represented as a decision tree. For each
hyper rectangle, a constant value is assigned—typically this is an average over the
output values that fall within the given hyper rectangle. An example tree which is
obtained on the CICE component data is shown in Fig. 1. Given an unseen input
x∗ ∈ D∗ ⊂ D, the algorithm uses the if-else rule to find the leaf and returns
the corresponding constant value as the predicted value. RF uses a collection
of regression trees, where each tree is obtained by the principle of recursive
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Fig. 1. Illustration of a decision tree obtained via recursive partitioning on CICE com-
ponent data for the task count 80.

partitioning. For each tree generation, the algorithm takes a subsample of random
points from the given training set. The subsample is either a bootstrap sample of
the same size drawn with replacement or a subset of smaller size, drawn without
replacement. Due to the randomness in the sampling, each subsample differs from
each other. Given that each individual tree is build on the subsample, it can dif-
fer significantly from other trees. For a given x∗, each tree can make a prediction
with respect to its own subsample. The power of RF comes from the aggregation
of predicted output values from different trees and the natural way of handling the
categorical parameters. Consequently, it can deal with large dimensional inputs
even in the presence of complex interactions and non-linearity.

SVM for nonlinear regression consists of mapping the given D′ of the training
points into a high dimensional feature space and performing linear regression in
the feature space:

g(D′) = 〈w · ψ(D′)〉 + b, (1)

where ψ : Rn → F being the nonlinear transformation, b being the bias term,
and w ∈ F . Finding g(D′) consists in specifying a loss function that need to
be optimized and a kernel function k(·) for nonlinearity transformation ψ. For
the former, we use ε intensive-loss function in which zero penalty is added to
the loss function when predicted value of a training point is within ε from its
observed value. For the latter, we use the widely used Gaussian radial basis
function kernel. Now, Eq. 1 can be written as follows:

g(D′) =
l∑

i=1

αi × [k(xi, x1), . . . , k(xi, xl)] + b, (2)

k(xi, xj) = exp
(

−||xi − xj ||22
2σ2

)
, (3)
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where coefficients αi can be found by solving ε intensive-loss function, ||x−x′||22
is squared Euclidean distance that decreases with an increase in dissimilarity
between xi and xj , and σ is a parameter of the kernel.

GP follows a probabilistic approach for regression. Given a training data
of l points, GP assumes that Y = [y1, . . . , yl] as a sample from a l-variate
Gaussian distribution. For an unseen input x∗, the probability p(y∗|Y) follows
the Gaussian distribution N with a user defined kernel function k(·):

y∗|Y ∼ N (K∗K−1Y,K∗∗ − K∗K−1KT
∗ ), (4)

where

K =

⎡
⎢⎣

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn),

⎤
⎥⎦ (5)

K∗ = [k(x∗, x1), . . . , k(x∗, xn)],
K∗∗ = k(x∗, x∗).

Note that T represents matrix transpose operation. For k(·), we use the Gaussian
radial basis function as in Eq. 3. The predicted value ŷ∗ and variance var(y∗) of
y∗ are given by the parameters of N :

ŷ∗ = K∗K−1Y,

var(y∗) = K∗∗ − K∗K−1KT
∗ .

(6)

NN is a classical and one of most widely used supervised learning approaches.
We focus on a single-hidden-layer neural network, an effective variant that com-
prises one input layer, one hidden layers, and one output layer. The nonlinear
regression performed by NN can be written as follows:

Y = h(D′) = Bϕ(AD′ + a) + b,

where A and is the matrix of weights and bias vector for the first layer (between
input and hidden layer) and B and b are the weight matrix and the bias vector
of the second layer (between hidden and output layer). The function ϕ denotes
an element wise nonlinearity. The training in neural network consists in adapting
all the weights and biases A, B, a, and b to their optimal values for the training
set {(x1, y1)), . . . , (xl, yl))}. The optimization problem consists in minimizing the
squared reconstruction error

∑l
i=1 ||h(xi) − yi||2 and it can be solved effectively

with back-propagation algorithm.

4 Experimental Results

We evaluated the effectiveness of the proposed load-balancing algorithm with the
four machine-learning methods. In addition, we include two approaches in the
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comparison: Expert-knowledge-based enumeration (EE) and random search (RS).
EE is the current practice for finding the optimal load-balancing configuration for
the CICE component of the CESM. In addition to the application-specific con-
straints, expert knowledge of the code and the architecture were used to prune
the feasible set of configurations D for the CICE component. As a result, for each
task count c, there are 50 to 60 (|Dc|) feasible configurations; in total, for all the
10 task counts, there are |D| = 653 parameter configurations. This method evalu-
ates all 653 parameter configurations. Moreover, we followed the current practice
for defining the runtime f(x) for x: the code was run twice with the same x and
the shortest runtime was taken as f(x). In RS, for each task count c, parameter
configurations were sampled at random without replacement from Dc and were
evaluated. To minimize the impact of randomness involved in the initialization
procedure of Algorithm 1 and in the five approaches, we repeated all of them 10
times, each with a different random seed. Moreover, we stored the runtime of each
configuration from EE in a lookup table and reused the results for running all other
algorithms. For Algorithm 1, for each task count c, Dc obtained in the EE approach
was given as the configuration pool Xp, and the initial sample size ns was set to
5. The approaches were implemented and run in the R programming language
and environment [10] version 2.15.2 using the nnet (NN), kernlab (SVM, GP),
and randomForest (RF) packages. The default parameter values were used for
each method. Experiments were carried out on Intrepid, a BG/P supercomputer
at Argonne.

Sensitivity Analysis: First, we present an empirical analysis to explain why
the previously proposed analytical performance model fails to predict the run-
time of the CICE component and why distinct models may be constructed
for each task count. For this purpose, we used the RF method to analyze the
impact of each load-balancing parameter on the resulting runtimes. For the train-
ing data, we randomly sampled 50 % of the data (parameter configuration and
runtimes) obtained with EE approach. An RF model was fitted on this train-
ing set. The mean squared error (MSE) on the original training set is given

by
∑l

i=1(f(xi)−f̂(xi))
2

l , where l is the number of training points, and f(xi) and
f̂(xi) are the original and predicted runtime value of parameter configuration
xi, respectively. In order to assess the impact of a parameter m, the values of
m in the training set were randomly permuted. Again, an RF model was fit-
ted on this imputed training set, and the mean squared error was computed.
If a parameter m is important, then permuting the values of m should affect
the prediction accuracy significantly and eventually increase the mean squared
error. The results are shown in Fig. 2. We observe that the trend in the parame-
ter importance is not the same over all the task counts. For task counts up to
320, decomp.set and/or decomp.type have a strong impact on the runtimes; for
large task counts, they become relatively less important—max.block, block.x,
and block.y have a strong impact on the runtime. For 1024, only max.block,
block.x, and block.y have an impact on the runtime; the other three parame-
ters have negative %IncMSE, suggesting that they do not affect the runtime.
In summary, the impact of parameter values on the runtimes and the type of
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Fig. 2. Sensitivity analysis of the load-balancing parameters on the runtime of the
CICE component for different task counts. For each parameter, the plot shows the
percentage increase in mean squared error (%IncMSE) when the values of the corre-
sponding parameter gets imputed.

nonlinear interactions between them change with an increase in the task counts.
The previously developed analytical model does not take this effect into account
for the CICE component, and consequently it falls short in runtime prediction.
Moreover, if we build a single model for all task counts with task count being an
input to the model, we might loose these task-count-specific interactions, thus
affecting the runtime quality of the obtained configurations.

Comparison Between Variants: With EE as a baseline, we next examined the
effectiveness of the five approaches in finding the optimal load-balancing configu-
ration for the CICE component. As a measure of the effectiveness of each variant,
we use the percentage deviation from the optimal runtime (%dev). Given a variant
v and task count c, this is given by fc

v−fc
opt

fc
opt

×100, where f c
v is the shortest runtime

obtained by variant v and fc
opt is the optimal runtime obtained from EE. Because

we repeated each method 10 times to reduce the impact of randomness, we con-
sider the mean percentage deviation from the optimal runtime of a variant as %dev
averaged over 10 repetitions. We also used a statistical t-test to check whether the
observed differences in the %dev of the variants are significant. Figure 3 shows the
comparison between the approaches. The results show that RS requires almost
the same number of evaluations as does EE for all task counts. These results indi-
cate that the problem of finding high-quality configurations is not an easy task;
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Fig. 3. Comparison between approaches for different task counts of the CICE compo-
nent. The lines represent the mean percentage deviation from the optimal runtime as
a function of the number of evaluated configurations.

clearly, we need more sophisticated approaches to find high-quality configurations
within fewer evaluations. The variants of Algorithm1 obtain optimal configura-
tions with fewer evaluations, and they outperform RS. NN completely dominates
all other variants and RS. The key advantage of NN comes from its requiring less
than 10 evaluations to find the optimal parameter configuration on 9 out of 10
task counts—only on c = 376, does it require 15 evaluations.

In Table 2, we analyze %dev of each variant, when it is allowed to perform
only 10 evaluations (for machine-learning variants this corresponds to five eval-
uations after the initialization). The results show that mean %dev of NN is zero
and it lower than all other variants. For all but one task counts, the observed
differences are significant in statistical sense. NN fails to find optimal runtime
for c = 376, where it is 6 % away from the optimal runtime and it is comparable
to other approaches.

As soon as a new evaluation becomes available, each machine-learning vari-
ants is retrained on all the available input-output pairs. This is the most com-
putationally expensive part in the iterative phase of Algorithm1. In Fig. 4, we
analyze the retraining time required by the machine-learning variants after each
evaluation. The reported time is an average time over all repetitions and task
count. The results show that NN outperforms all other variants in retraining
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Fig. 4. Time taken by various machine-learning methods in Algorithm 1 for retraining
after each evaluation.

time. The time remains fairly constant throughout with an average of 0.5 s.
This can be attributed the effective back propagation algorithm adopted in the
underlying optimization routine. For GP and SVM, there is a slight increase in
retraining time. Nonetheless, the retraining time of RF increases linearly with
an increase in the number of training points suggesting that it might not be suit-
able for sequential learning with large number of points. Note that there exists
some advanced algorithm-specific techniques to avoid retraining from scratch,
however, none of the machine-learning methods adopts such technique in our
study. Furthermore, in all these algorithms, the time to predict an unseen input
x∗ is negligible (in the order of milli to micro seconds) because they belong to a
class of eager learning algorithms as opposed to lazy learning algorithms where
a model is built only when x∗ needs to be predicted.

5 Related Work

Compared with dynamic strategies [11–16], static load-balancing approaches
have received relatively less attention in the literature. The problem of static
load-balancing can be formulated as a graph-partitioning problem that belongs
to a class of NP-hard problem for which finding optimal solution is compu-
tationally hard. Many efficient algorithms are developed to tackle this prob-
lem in operations research community and are used for static load-balancing.
These algorithms can be grouped into geometry-based algorithms, graph-based
algorithms, and partitioning algorithms [17]. In [18], the authors carried out
an experimental comparison of eleven static load-balancing algorithms for het-
erogeneous distributed computing systems. They showed the relatively simple
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Table 2. Mean percentage deviation from the optimal runtime averaged over 10 repli-
cations with the maximum budget of 10 evaluations

Task count NN RF GP SVM RS

80 0.000 12.668 15.032 18.089 20.246

128 0.000 3.269 7.620 5.177 12.846

160 0.000 12.649 8.050 6.989 8.563

256 0.000 4.575 8.468 7.340 10.024

320 0.000 2.208 8.818 6.709 13.105

376 6.005 3.186 8.132 7.206 7.456

512 0.000 10.269 11.794 6.472 9.090

640 0.000 2.674 20.058 14.072 10.292

800 0.000 7.435 5.996 6.182 8.770

1024 0.000 6.645 4.985 5.966 13.241

Note: The value is typeset in italics (bold) when a vari-
ant is significantly worse (better) than NN according
to a t-test with significance (alpha) level 0.05.

Min-Min heuristic performs well in comparison to the other techniques such as
simulated annealing and genetic algorithms, and tabu search. However, the state-
of-the-art high-performing algorithms comprises hybrid algorithms, multilevel
approaches, and parallel implementations of the above algorithms [17]. We refer
the reader to [17,19] for a survey for static load balancing approaches. Recently,
in [20], a genetic algorithm was adopted for tasks scheduling and load balanc-
ing in heterogeneous parallel multiprocessor system. Nonetheless, the domain-
specific constraints of the CICE component make the search problem hard and
prevents the straightforward adoption of heuristic search algorithms [21]. In order
to handle these constraints effectively, the search algorithms need a sophisticated
constraint-handling mechanism; consequently they loose generality and become
problem-specific.

The idea of using machine learning in load-balancing has received consid-
erable attention for dynamic strategies. Examples include neural network [22],
decision tree [23], and reinforcement learning approaches [24]. However, to the
best of our knowledge, the adoption of machine-learning approaches for appli-
cation and architecture specific static load-balancing has not been investigated
before. Finally, this is the first work on the use of machine learning approaches
for analyzing the sensitivity of the load-balancing parameters.

6 Summary and Outlook

We developed a machine-learning-based approach for static load-balancing prob-
lem and applied it for load balancing the CICE component of the CESM run-
ning on BG/P. We deployed a machine-learning method as a diagnostic tool for
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analyzing the sensitivity of the load-balancing parameters on the runtime and
provided an explanation for inadequacy of the analytical performance model.
The main contribution of the paper is the development and empirical analysis
of the machine-learning-based algorithm that allowed us to load balance the
CICE component of the CESM on BG/P with significant savings in core-hour
usage. Compared to the current practice of expert-knowledge-based enumeration
over feasible parameter configurations, we showed that the proposed algorithm
requires 6x fewer evaluations to find the optimal load-balancing configurations.

A inherent limitation of our algorithm consists in the sequential evaluation
of parameter configurations that will affect the wall clock time. To address this
issue, we will develop unsupervised learning methods to partition the feasible set
into a number of similar groups and learning those regions in parallel. To that
end, we will investigate parallel machine-learning algorithms. Since the inefficient
processor allocations of CICE component can affect overall scaling of the CESM,
we will use the proposed approach and assess the overall performance of the
CESM. Furthermore, two projects, Climate-Science Computational End Station
Development and Attributing Changes in the Risk of Extreme Weather and
Climate, granted computational time on ALCF’s BG/P and Q supercomputers
under the DOE INCITE program will directly benefit from this work. We are
planning to investigate the effectiveness of the proposed algorithm for load-
balancing various climate simulations in these projects.

Acknowledgments. This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research, under Contract DE-AC02-
06CH11357. An award of computer time was provided by the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE) program. This research
used resources of the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-06CH11357.

References

1. Metz, B., Davidson, O., Bosch, P., Dave, R., Meyer, L.: Contribution of work-
ing group III to the fourth assessment report of the Intergovernmental Panel on
Climate Change (2007)

2. MINOTAUR: a toolkit for MINLP. http://wiki.mcs.anl.gov/minotaur/index.php/
Main Page

3. 2013. http://www.cesm.ucar.edu/events/ws.2012/Presentations/SEWG2/craig.
pdf

4. Bishop, C.M., et al.: Pattern Recognition And Machine Learning. Springer,
New York (2006)

5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
6. Hearst, M.A., Dumais, S., Osman, E., Platt, J., Scholkopf, B.: Support vector

machines. Intell. Syst. Appl. 13(4), 18–28 (1998). IEEE
7. Rasmussen, C.E., Williams, C.K.: Gaussian Processes For Machine Learning. adap-

tive computation and machine learning. MIT Press, Cambridge (2005)

http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page
http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page
http://www.cesm.ucar.edu/events/ws.2012/Presentations/SEWG2/craig.pdf
http://www.cesm.ucar.edu/events/ws.2012/Presentations/SEWG2/craig.pdf


Machine-Learning-Based Load Balancing for Community Ice Code 91

8. Haykin, S.: Neural Networks: A Comprehensive Foundation, 1st edn. Prentice Hall
PTR, Upper Saddle River (1994)

9. Atkinson, E.J., Therneau, T.M.: An Introduction To Recursive Partitioning Using
The Rpart Routines. Mayo Foundation, Rochester (2000)

10. R Core Team, R: A Language and Environment for Statistical Computing, R Foun-
dation for Statistical Computing, Vienna, Austria (2013). http://www.r-project.
org

11. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++. ACM SIGPLAN Not. 28(10), 91–108 (1993)

12. Barker, K., Chernikov, A., Chrisochoides, N., Pingali, K.: A load balancingframe-
work for adaptive and asynchronous applications. IEEE Trans. Parallel Distrib.
Syst. 15(2), 183–192 (2004)

13. Barker, K.J., Chrisochoides, N.P.: An evaluation of a framework for the dynamic
load balancing of highly adaptive and irregular parallel applications. In: Proceed-
ings of the 2003 ACM/IEEE Conference on Supercomputing, p. 45. ACM (2003)
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Abstract. We present a domain decomposition approach for the simula-
tion of charge transport in heterojunction semiconductors. The problem
is characterized by a large variation of primary variables across an inter-
face region of a size much smaller than the device scale, and requires
a multiscale approach in which that region is modeled as an internal
boundary. The model combines drift diffusion equations on subdomains
coupled by thermionic emission heterojunction model on the interface
which involves a nonhomogeneous jump computed at fine scale with Den-
sity Functional Theory. Our full domain decomposition approach extends
our previous work for the potential equation only, and we present per-
spectives on its HPC implementation. The model can be used, e.g., for
the design of higher efficiency solar cells for which experimental results
are not available. More generally, our algorithm is naturally paralleliz-
able and is a new domain decomposition paradigm for problems with
multiscale phenomena associated with internal interfaces and/or bound-
ary layers.

Keywords: Domain decomposition · Drift-diffusion equations · Density
Functional Theory · Heterojunction · Multiscale semiconductor model-
ing · Solar cells

1 Introduction

In this paper we present a multiscale approach for heterojunction interfaces in
semiconductors, part of a larger interdisciplinary effort between computational
mathematicians, physicists, and material scientists interested in building more
efficient solar cells. The higher efficiency (may) arise from putting together dif-
ferent semiconductor materials, i.e., creating a heterojunction.

The computational challenge is that phenomena at heterojunctions must be
resolved at the angstrom scale while the size of the device is on the scale of
microns, thus it is difficult to simultaneously account for correct physics and
keep the model computationally tractable. To model charge transport at the
device scale we use the drift diffusion (D-D) system [14]. For interfaces, we
follow the approach from [9] in which the interface region is shrunk to a low-
dimensional internal boundary, and physics at this interface is approximated
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 92–101, 2015.
DOI: 10.1007/978-3-319-17353-5 8
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by the thermionic emission model (TEM) which consists of unusual internal
boundary conditions with jumps.

We determine the data for these jumps from an angstrom scale calculation
using Density Functional Theory (DFT), and we model the physics away from
the interface by the usual (D-D) equations coupled by TEM. The D-D model
can be hard-coded as a monolithic approach which appears intractable and/or
impractical in 2d/3d with complicated interface geometries. Our proposed alter-
native is to apply a domain decomposition (DDM) approach which allows the
use of “black box” D-D solvers in subdomains, and enforces the TEM condi-
tions at the level of the DDM driver. DDM have been applied to D-D, e.g.,
in [12,13], where the focus was on a multicore HPC implementation of effi-
ciently implemented suite of linear and nonlinear solvers. Here we align the DDM
with handling microscale physics at material interfaces. More importantly, fully
decoupling the subdomains is a first step towards a true multiscale simulation
where the behavior in the heterojunction region is treated simultaneously by a
computational method at microscale.

The DDM approach we propose is non-standard because of the nonhomoge-
neous jumps arising from TEM. In [7] we presented the DDP algorithm for the
potential equation. In this paper we report on the next nontrivial step which
involves carrier transport equations. Here the interface model is an unusual
Robin-like interface equation. The algorithm DDC works well and has promising
properties.

This paper consists of the following. In Sect. 2 we describe the model. In Sect. 3
we present our domain decomposition algorithms, and in Sect. 4 we present numer-
ical results for the simulation of two semiconductor heterojunctions. Finally in
Sect. 5 we present conclusions, HPC context, and describe future work.

2 Computational Model for Coupled Scales

The continuum D-D model with TEM is described first, followed by the angstrom
scale DFT model.

2.1 Device Scale Continuum Models: Drift Diffusion (D-D) System

Let Ω ∈ R
N , N ∈ {1, 2, 3}, be an open connected set with a Lipschitz boundary

∂Ω. Let Ωi ∈ Ω, i = 1, 2, be two non-overlapping subsets of Ω s.t. Ω1 ∪Ω2 = Ω,
Ω1 ∩ Ω2 = ∅, and denote Γ := Ω1 ∩ Ω2. We assume Γ is a N -1 dimensional
manifold, and Γ ∩ ∂Ω = ∅. Each subdomain Ωi corresponds to a distinct semi-
conductor material, and Γ the interface between them. We adopt the following
usual notation: wi = w|Ωi

, wΓ
i = limx→Γ wi, and [w]Γ = wΓ

2 − wΓ
1 denotes the

jump of w.
In the bulk semiconductor domains Ωi, i = 1, 2, the charge transport is des-

cribed by the D-D system: a potential equation solved for electrostatic potential ψ,
and two continuity equations solved for the Slotboomvariablesu and v; these relate
to the electron andhole densitiesn and p, respectively, vian = δ2neψu, p = δ2pe−ψv.
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(The scaling parameters δ2n and δ2p depend on the material and the doping profile).
We recall that in Slotboom variables the continuity equations are self-adjoint [14].
The stationary D-D model is

−∇ · (εi∇ψi) =
1
η
(δ2pe−ψiv − δ2neψiu + NT ) := q(ψi, pi, ni), (1)

−∇ · (Dni
δ2neψi ∇ui) = R(ψi, ui, vi), (2)

−∇ · (Dpi
δ2pe−ψi ∇vi) = −R(ψi, ui, vi). (3)

For background on the D-D model the reader is referred to [1,10,14,15,19,20].
In (1)–(3) we use data: the net doping profile NT , a given expression for the
electron-hole pair generation and recombination R, electrical permittivity ε, and
electron and hole diffusivities Dn, Dp. Also, η is another scaling parameter [7].

The model (1)–(3) is completed with external boundary conditions; we impose
Dirichlet conditions for the potential and recombination-velocity (Robin type)
conditions for electron and hole densities. To this we add the TEM transmission
conditions on the interface [9]

[ψ]Γ = ψ�,
[
ε∂ψ

∂ν

]
Γ

= 0, (4)

Jn1 = an
2 (eψu)Γ

2 − an
1 (eψu)Γ

1 , [Jn]Γ = 0, (5)

Jp1 = ap
1(e

−ψv)Γ
1 − ap

2(e
−ψv)Γ

2 , [Jp]Γ = 0. (6)

Here Jn and Jp are the electron and hole currents

Jn = Dnδ2neψ∇u, (7)
Jp = Dpδ

2
pe−ψ∇v. (8)

Also, an
i and ap

i are constants dependent on material properties and temper-
ature, and ψ� is a jump discontinuity in the electrostatic potential. These can
be determined by a DFT calculation, see Fig. 1 for illustration.

The model (1)–(6) must be discretized. Here we use simple finite difference
formulation following [14,20] with N nodal unknowns; we skip details for brevity.
In what follows we refer to ψ, u, v, n, p meaning their discrete counterparts.

2.2 Density Functional Theory for Atomic Scale

Heterojunction parameters an
i , ap

i , ψ� in (4)–(6) are determined by quantum
mechanics of electrons. The Schrödinger equation solved for wave function Ψ is
fundamental for quantum behavior, but the problem of interacting N electrons
is computationally intractable for large N .

DFT [4,5] provides an efficient method of determining material properties
from first principles by shifting focus from wave functions Ψ to electron density,
n(r). The density sought in DFT is a function in R

3, while the Schrödinger
equation is solved for Ψ ∈ C

3N . Finding n is possible via application of the
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Fig. 1. Left top: schematic plot of potential across 1D interface region for Structure 1
(actual simulation in Fig. 2). Left bottom: schematic plot of potential with idealized
heterojunction interface. Right top: interface atomic structure. Right bottom: smoothed
local pseudopotential from the DFT calculation (black), and valence band jump con-
struction (red), which determines an

i , ap
i , and ψ� [7] (Color figure online)

theory of Hohenberg and Kohn to a minimization problem in n, and is equivalent
to the solution of the Schrödinger equation for the ground state. However, an
energy functional F [n] needed in the minimization principle in DFT is unknown,
and DFT requires approximations to F [n]. The Kohn-Sham equations provide a
basis for these approximations, and their solution can be found iteratively [4,5].

DFT is a widely used, low cost, first principles method which solves the zero
temperature, zero current ground state of a system [4,5]. The local pseudopo-
tential calculated by DFT is continuous at an interface (see Fig. 1), and can be
used with known material properties to obtain the change in the continuous elec-
trostatic potential ψ occurring close to a heterojunction. The potential jump
(offset) ψ� is a ground state property of the heterojunction structure, and DFT
solution in the heterojunction region provides the data needed for TEM.

For the needs of this paper, we perform DFT calculations using the VASP
code [11], with exchange-correlation treated using the Generalized Gradient
Approximation and a +U Hubbard term (U = 6 eV) for the Cu-d orbitals
[4,5,7].

3 Domain Decomposition for Continuum Model

The procedure to solve (1)–(6) numerically is a set of nested iterations, with
three levels of nesting.

First, when solving (1)–(6), we employ the usual Gummel Map [10,18], an
iterative decoupling technique within which we solve each component equation
of (1)–(3) independently. Note that each equation is still nonlinear in its primary
variable, thus we must use Newton’s iteration.
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Furthermore, each component equation employs DDM independently to re-
solve the corresponding part of TEM. In particular, we solve potential equation
(1) with (4), the electron transport (2) with (5), and the hole transport (3)
with (6). The DDM we use is an iterative substructuring method designed as a
Richardson scheme [17] to resolve the TEM, defined and executed independently
for each component. In what follows θ > 0 is an acceleration parameter, different
for each component equation. Since the DDM algorithm for p equation is entirely
analogous to that for n equation, we only define the latter.

Last, each subdomain solve of the DDM is nonlinear, and we use Newton-
Raphson iteration to resolve this.

3.1 Domain Decomposition for Potential Equation (1), (4)

Here we seek the interface value of λ with which (1), (4) is equivalent to

− ∇ · (ε1∇ψ1) = q1, x ∈ Ω1; ψ1|Γ = λ (9)
−∇ · (ε2∇ψ2) = q2, x ∈ Ω2; ψ2|Γ = λ + ψ�, (10)

which requires
[
ε∂ψ

∂ν

]
Γ

= 0. The algorithm DDP we proposed in [7] is essentially

a modification of the Neumann-Neumann algorithm [17].

Algorithm DDP to solve (1), (4): Given λ(0), for each k ≥ 0,

1. Solve (9) and (10) for ψ
(k+1)
i , i = 1, 2.

2. Update λ by

λ(k+1) = λ(k) − θψ

[
ε
∂ψ(k+1)

∂ν

]
Γ

3. Continue with (1) unless stopping criterium
∥∥∥[

ε∂ψ(k+1)

∂ν

]
Γ

∥∥∥ holds.

3.2 Domain Decomposition for Continuity Equation (2), (5)

Here we seek to find data λ so that (2), (5) is equivalent to the problem:

− ∇ · (Dn1δ
2
neψ1∇u1) = R1, x ∈ Ω1; u1|Γ = λ (11)

−∇ · (Dn2δ
2
neψ2∇u2) = R2, x ∈ Ω2; (12)

u2|Γ =
an
1 (eψ)Γ

1

an
2 (eψ)Γ

2

λ +
Jn1

an
2 δ2(eψ)Γ

2

(13)

which requires the homogeneous jump condition [Jn]Γ = 0.
Algorithm DDC proposed in this paper is very different from DDP because

it proceeds sequentially from domain Ω1 to domain Ω2. In addition, while it
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corrects λ in a manner similar to a Neumann-Neumann algorithm, in (13) it
takes advantage of Neumann data from Ω1 resulting from (11). An appropriate
parallel algorithm for DDC which uses Neumann rather than Dirichlet data as
in (11), (12) was promising for a synthetic example, but it has difficulties with
convergence for realistic devices.

Algorithm DDC to solve (2), (5) or (3), (6): Given λ(0), for each k ≥ 0,

1. Solve (11) for u
(k+1)
1 and then solve (12)–(13) for u

(k+1)
2 .

2. Update λ by

λ(k+1) = λ(k) − θn

[
Dneψ ∂u(k+1)

∂ν

]
Γ

3. Continue with (1) unless stopping criterium ‖[Jn]Γ ‖ holds.

While DDP and DDC are motivated by the multiphysics nature of the model,
they may be viewed as extensions of Neumann-Neumann iterative substructur-
ing methods to nonhomogeneous jumps and Robin-like transmission conditions.
A scalable parallel implementation may be achieved in the future using two-level
techniques [17, Sect. 3.3.2].

4 Heterojunction Semiconductor Simulation

Now we present numerical simulation results. Structure 1 is synthetic and solar
cell-like, and is made of two hypothetical materials we call L1 and R1. Structure
2 is made of Si and Cu3PSe4 (CPS). In Table 2 we give details.

We use DFT to calculate ψ� = −0.01 eV for the Cu0.75P0.25-Si interface
formed from CPS (001) and the Si (111) surfaces having normally oriented dan-
gling bonds. Next we apply Domain Decomposition and specifically the algorithms
DDP, DDC; see Fig. 2. For both structures we see the impact of heterojunction

Table 1. Number of iterations at each Gummel Iteration (GI) and parameters θn, θp

for Structure 1 and algorithm DDC. DDP uses θ1
ψ = 0.0025, θ2

ψ = 0.00025. Also, we
use θ2

n = 4e11, θ2
p = 1.4

DDC u, θ1
n = 2.5 DDC v, θ1

p = 180

N GI 1 GI 2 GI 3 GI 4 GI 1 GI 2 GI 3 GI 4

201 6 2 1 1 5 3 1 1

401 5 2 1 1 8 4 1 1

601 3 2 1 1 8 4 1 1

801 4 2 1 1 8 4 1 1
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Table 2. Material and structure parameters

Property L1 R1 CPS Si

Permittivity ε 10.0 10.0 15.1 [6] 11.9 [21]

Electron affinity χ (eV) 5 5 4.05 4.05 [21]

Band gap Eg (eV) 1.0 0.5 1.4 [6] 1.12 [21]

Eff. electron density of
states ÑC (cm−3)

5 × 1018 5 × 1018 3 × 1019 2.8 × 1019

Eff. hole density of states
ÑV (cm−3)

5 × 1018 5 × 1018 1.2 × 1018 1 × 1019

Dopant charge density ÑT

(cm−3)
1 × 1016 −1 × 1015 −6 × 1017 [6] 1 × 1015

Electron diffusion constant
D̃n (cm2/s)

2.0 2.0 2.6 37.6 [21]

Hole diffusion constant D̃p

(cm2/s)
1.0 1.0 0.5 12.9 [21]

Constant photogeneration
density G (cm−3/s)

1 × 1017 1 × 1020 1 × 1021 1 × 1018

Direct recombination
constant Rdc (cm3/s)

1 × 10−10 1 × 10−10 1 × 10−10 1 × 10−15

Jump in potential ψ� (eV) -0.15 -0.01

Table 3. Efficiency of DDM vs monolithic solvers. Column 4 estimates multicore effi-
ciency

N Monolithic time (sec) DDM time (sec) DDM parallel estimate Current

501/501 0.5494 1.313 0.8 0.006637

751/751 0.8122 1.4537 0.9 0.006649

1001/1001 1.0231 1.4173 0.9 0.006655

1251/1251 failed 2.1665 1.3 0.0066592

and large jumps of ψ, n, p across the interface. The results are validated with a
hard-coded monolithic solver.

As concerns solver’s performance, in Table 1 we show that DDC is mesh
independent, similarly to DDP [7]. Furthermore, the choice of θ is crucial. (In
forthcoming work [3] we show how θ is determined from analysis of the jump
data.)

5 Conclusions

The main contribution reported in this paper advances HPC methodology for
solving problems with complex interface physics. We presented DDM for the
simulation of charge transport in heterojunction semiconductors. Our method
allows the coupling of “black-box” D-D (drift diffusion) solvers in subdomains
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corresponding to single semiconductor materials. We compared DDM to a mono-
lithic solver, and the results are promising; see Table 3. As usual, DDM approach
wins for large N . Also, it works when monolithic solver fails. In the model pre-
sented here DFT is used to determine heterojunction parameters but is currently
entirely decoupled from D-D solvers in the bulk subdomains. Our approach is a
first step towards a true multiscale simulation coupling the atomic and device
scales.

At the current stage, the computational complexities of the microscale and
macroscale simulations are vastly different. The microscale DFT simulations
using VASP solver [11] for electronic structure simulations running on 4 machines
with 12 cores with MPI2, take several days to complete. On the other hand, the
D-D solver takes less than minutes at worst to complete; see Table 3. Thus, a
true coupled multiscale approach is not feasible yet.

More broadly, problems with nonhomogeneous jump conditions across inter-
faces only begin to be investigated from mathematical and computational point
of view. Our DDM approach is a new paradigm that applies elsewhere, e.g., for
discrete fracture approximation models where nonhomogeneous jump conditions
arise [8,16].
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Abstract. The computer-aided design (CAD) applications that are fun-
damental to the electronic design automation industry need to harness
the available hardware resources to be able to perform full-chip simula-
tion for modern technology nodes (45 nm and below). We will present a
hybrid (MPI+threads) approach for parallel transistor-level transient cir-
cuit simulation that achieves scalable performance for some challenging
large-scale integrated circuits. This approach focuses on the computa-
tionally expensive part of the simulator: the linear system solve. Hybrid
versions of two iterative linear solver strategies are presented, one takes
advantage of block triangular form structure while the other uses a Schur
complement technique. Results indicate up to a 27x improvement in total
simulation time on 256 cores.

1 Introduction

Circuit simulation is a technique for checking and verifying the design of electrical
and electronic circuits and systems prior to manufacturing and deployment.
Circuit simulators use a detailed, transistor-level description of the circuit to
achieve relatively accurate performance characteristics. For integrated circuit
(IC) design, where probing the behavior of internal signals is extremely difficult,
time-domain circuit simulation is an essential, yet expensive, part of the CAD
process. Efficient, scalable simulation tools are even more important for simula-
tion of modern technology nodes, where parasitic effects can increase the device
count in an integrated circuit by an order of magnitude or more. Traditional
transistor-level simulation, made popular by the Berkeley SPICE program [9],
becomes impractical beyond tens of thousands of devices, due to the reliance on
sparse direct linear solvers [3]. Many attempts have been made to allow for faster,
large-scale circuit simulation with Fast-SPICE tools or hierarchical simulators.
Unfortunately, the approximations inherent to these simulation approaches can
break down under some circumstances, rendering such tools unreliable. With
the transition to manycore processors, parallel transistor-level simulation has
received more interest from the electronic design automation community.
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Fig. 1. General circuit simulation flow

Our contributions in this paper are: a scalable and robust transistor-level cir-
cuit simulation approach for large and challenging problems that uses a hybrid
version of the BTF-based preconditioner [11] or a multithreaded Schur com-
plement computation within a hybrid (direct+iterative) solver [10], integration
of these linear solvers to a distributed memory parallel circuit simulator, Xyce
[6], and a thorough comparison with other serial, multithreaded and distributed
solvers for the full simulation. Our hybrid solvers can achieve a parallel speedup
of up to 27x when compared with fastest third party solver. This paper improves
upon the MPI-only Schur complement solver that was presented before [1,12].

2 Xyce Framework

Xyce is a transistor-level simulator and adheres to a general flow, as shown in
Fig. 1. The circuit is described by a netlist file, which lists the individual compo-
nents and how they are connected together. This list of devices and interconnec-
tivity is transformed via modified nodal analysis (MNA) into a set of nonlinear
differential algebraic equations (DAEs)

dq(x(t))
dt

+ f(x(t)) = b(t), (1)

where x(t) ∈ R
N is the vector of circuit unknowns, q and f are functions repre-

senting the dynamic and static circuit elements (respectively), and b(t) ∈ R
M is

the input vector.
Time-domain simulation, or transient analysis, solves the nonlinear DAEs (1)

implicitly through numerical integration methods, resulting in the nested solver
loop in Fig. 1. Any numerical integration method requires the solution to a
sequence of nonlinear equations, F (x) = 0. Typically, Newton’s method is used
to solve these nonlinear equations, which generates a sequence of linear systems

Ax = b (2)

with conductance, G(t) = df
dx (x(t)), and capacitance, C(t) = dq

dx (x(t)), matrices.
The computational expense in large-scale circuit simulation is dominated by

repeatedly solving linear systems of equations, which are at the center of the
nested solver loop (Fig. 1). This requires their assembly, which depends upon
device evaluations for the whole circuit and the Jacobian matrix and residual
vector load. So the dominant computational expense includes both the device
loads and the numerical method used to solve the linear systems. For smaller
problems, the device loads dominate the total simulation time. However, as the
circuit size increases, the linear solve phase starts to dominate.
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3 Linear Solver Strategies for Circuit Simulation

Circuit simulation generates some of the most challenging sparse linear systems
for both direct and iterative methods because of their heterogeneous structure
and ill-conditioning. Direct sparse linear solvers [3] are the industry standard
approach because of their robustness, but the are less practical when the linear
system has hundreds of thousands of unknowns or more. Iterative methods have
more potential for scalability, but their efficacy is deeply reliant upon the pre-
conditioner. Standard preconditioners, such as multigrid, domain decomposition
and incomplete factorizations, do not generally work well for circuit problems
and have scaling issues, since the number of iterations to solve the linear system
will increase with the number of MPI processes. A hybrid approach, combin-
ing iterative and direct methods, controls the number of iterations and Schur
complement approaches have been shown to work well as preconditioners [1,2].

This section describes two hybrid linear solvers, one that takes advantage
of block triangular form (BTF) structure to create a preconditioned iterative
method and another that uses a Schur complement approach to combine iter-
ative and direct techniques. The discussion will introduce a BTF-based pre-
conditioner and Schur complement solver that is effective for circuit problems,
then discuss their limitations in a distributed memory only implementation and
hybrid techniques that improve scalability. For full-chip circuit simulation, where
the number of devices can reach into the millions, these types of scalable hybrid
linear solver strategies are imperative.

3.1 KLU

KLU is the only open-source sparse direct linear solver developed for matrices
from circuit simulation [3]. At this time, KLU is a serial direct linear solver.
It leverages the often reducible property of circuit matrices, permuting them
to block triangular form (equivalently the Dulmage Mendelsohn decomposition)
before performing an AMD ordering of each diagonal block. The block triangu-
lar form is determined in two steps: first a maximum matching permutation to
generate a matrix with a zero-free diagonal, and second a topological sort which
finds the strongly-connected components of the associated directed graph. Cir-
cuit matrices are very sparse and the permutations performed by KLU retain
this property, so there are no dense substructures for BLAS to be useful. Because
it is an efficient and reliable serial direct solver for this application, it is used as
the block diagonal solver for both hybrid linear solvers presented in this paper.
For the Schur complement solver, we introduced multithreaded triangular solves
in KLU for block columns and leveraged the sparsity structure of the right-hand
sides.

3.2 BTF-based Preconditioned Iterative Method

In general, a good preconditioner for the linear system (2) is inexpensive to apply
and approximates the coefficient matrix A well. Unfortunately, these two prop-
erties often conflict. So, like with many applications, domain-specific structure
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must be leveraged to develop an effective preconditioner for circuit simulation.
The motivation behind the BTF-based preconditioning technique is the obser-
vation that the conductance matrix G(t) is often reducible when t = 0, and
sometimes may be permuted to a block triangular form with small diagonal
blocks [3,11].

This linear solution strategy has several steps that result in a block Jacobi
preconditioner for the Generalized Minimal Residual (GMRES) method. The
first step, singleton removal, removes the dense rows and columns that typically
result from ideal power supplies and ground nodes, which are common to cir-
cuits [2]. These dense rows (or columns) correspond to singleton columns (or
singleton rows) with one and only one non-zero entry. These matrix features
have the potential to increase communication costs dramatically and can eas-
ily be removed from the linear system in a pre-processing (singleton rows) or
post-processing (singleton columns) step.

The second step of this linear solution strategy is the permutation of the
matrix resulting from the singleton removal to block lower (or upper) triangular
form. We leverage the fact that circuits often give many small diagonal blocks to
use the BTF structure in a novel way. A condensed (block) graph is constructed
by contracting all the vertices within each diagonal block into a single vertex.
This results in a coarse representation of the original graph that is often much
smaller.

The matrix partitioning is the third step in this linear solution strategy. We
partition the condensed (block) graph into parts that are only loosely connected
using hypergraph partitioning [4]. These three steps produce a global matrix
reordering, illustrated in Fig. 2, that is used to generate a block Jacobi pre-
conditioner for GMRES. The number of MPI processes determines the number
of diagonal blocks in the preconditioner. Since a block Jacobi preconditioner
only applies the inverse of these diagonal blocks, no parallel communication is
required to perform the factorization and solve, which makes it a scalable pre-
conditioning technique. However, the number of GMRES iterations needed to
solve the linear system to a given tolerance will increase with the number of
subdomains (MPI ranks). This effectively limits the number of MPI processes
that can be used for any given problem. Therefore, it is necessary to take advan-
tage of intra-node parallelism for accelerating local computations. We use the
multithreaded (MPI+threads) kernels in the Epetra package of Trilinos for the
multithreaded sparse matrix-vector multiplication and vector operations.

Epetra MPI+threads Support. The Epetra package [5] in Trilinos provides
fundamental data classes for application codes, like Xyce. Epetra supports piece-
wise construction of distributed sparse and dense matrices, vectors and graphs,
and executes in parallel using either MPI or OpenMP, or both (with OpenMP
running underneath each MPI process). Threaded execution via OpenMP is
supported for all vector and multivector operations and for sparse matrix mul-
tiplication. Work and data distribution are managed dynamically through the
OpenMP runtime system. The performance limits of Epetra computations are
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Fig. 2. Example matrix structure after the second (left) and third (right) step of the
BTF-based preconditioning method.

almost always determined by the memory system performance of the computa-
tional nodes, since the operations-per-memory-reference ratio is very low. As a
result–especially on non-uniform memory access (NUMA) architectures–proper
data placement is extremely important for obtaining optimal performance. The
more closely aligned the memory pages are with the processing core that uses
the data most frequently, the better the effective bandwidth we expect to see.

3.3 ShyLU

ShyLU is a hybrid linear solver designed to be a black-box algebraic solver [10]. It
is hybrid in both the parallel programming sense - using MPI and threads - and
in the mathematical sense - using features from direct and iterative methods.
ShyLU was originally designed to be a subdomain solver in a domain decompo-
sition framework within Trilinos [10]. However, it can also be used as a global
Schur complement solver, as we do in this paper. We introduce hybrid paral-
lelism in the Schur complement computation of ShyLU for it to be more scalable
for large circuits.

Let Ax = b be the system of interest. Suppose A has the form

A =
(
D C
R G

)
, (3)

where D and G are square and D is non-singular. The Schur complement is
S = G − R ∗ D−1 ∗ C. Solving Ax = b,(

D C
R G

)
×

(
x1

x2

)
=

(
b1
b2

)
, (4)

consists of factoring D and solving
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Fig. 3. Graph/Hypergraph based ordering of the sparse linear system for parallelism
in ShyLU with unsymmetric ordering (left) and symmetric ordering (right).

1. Dz = b1.
2. Sx2 = b2 − Rz.
3. Dx1 = b1 − Cx2.

ShyLU uses hypergraph partitioning to permute the matrix into the bordered
block diagonal form shown in Fig. 3. Each block diagonal in the permuted matrix
corresponds to a MPI rank and is factored using a direct solver. An approximate
Schur complement is used to compute a preconditioner for an iterative method
to solve for the Schur complement. The approximation is computed using either
dropping or a probing method for a fixed pattern. We will use the former in this
paper.

The first expensive step in ShyLU is the factorization of block diagonals. For
all the problems in this paper we use KLU [3] to factor the block diagonals.
The second expensive step is computing the approximate Schur complement.
Computing the approximate Schur complement is completely local within an
MPI rank in ShyLU and is a good candidate for hybrid parallelism. It involves
triangular solves in D−1∗C computation of the Schur complement and a matrix-
vector multiply. While it can also be formulated as a matrix-matrix multiply,
ShyLU uses the matrix-vector formulation. The triangular solve in this particular
case has multiple right-hand sides, where the right-hand sides are themselves
sparse columns of C. We have modified KLU in order to more efficiently compute
the approximate Schur complement as described below.

The hybrid Schur approximation uses a triangular solve with multiple right-
hand sides to compute a block column of the Schur complement in parallel.
KLU’s triangular solve was optimized for multiple right-hand sides using vec-
torization. We have introduced the multithreaded triangular solves for block
columns in addition to the existing vectorization. The change is to exploit the
sparsity in the right-hand side of the triangular solve, since C is a sparse matrix.
This is accomplished by avoiding the additional floating point operations in the
triangular solve. The importance of exploiting the sparsity in the triangular
solves has been observed before [13]. However, it is also important to exploit the
BTF structure in the factorization step for circuit problems. The BTF here is
within the direct solver and different from BTF-based preconditioner in Sect. 3.2.
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As KLU uses the BTF structure in its factorization and triangular solve we
exploit the sparsity within the triangular solve corresponding to the diagonal
blocks of the BTF structure. Note that the numeric factorization of KLU is still
sequential. In summary, we have introduced a multithreaded triangular solve
with block right-hand sides that exploits sparsity in the right-hand side within
the BTF structure.

4 Performance Results

This section presents results for the proposed hybrid approaches for parallel sim-
ulation of challenging problems. Results presented in this paper are generated
using Xyce (post release 5.2.1) and Trilinos(10.10.1). The test machine is a capac-
ity cluster, with 272 compute nodes, where each node has a 2.2 GHz AMD quad
socket/quad core processor and 32GB RAM. Xyce, Trilinos, SuperLU v4.3 [7],
and SuperLU DIST v2.5 [8] are compiled using Intel 11.1 compilers, where the
Intel MKL 11.1 provides the BLAS/LAPACK and PARDISO libraries. The inte-
grated circuits selected for these tests are of varying scales and the simulation
challenges even the sparse direct linear solvers. Table 1 partially describes the
circuits used in the numerical experiments. All three of these are proprietary
application-specific integrated circuits (ASICs).

Table 1. Circuits: matrix size(N), capacitors(C), MOSFETs(M), resistors(R), voltage
sources(V), diodes (D).

Circuit N C M R V D

ckt1 116247 52552 69085 76079 137 0

ckt2 688838 93 222481 176 75 291761

ckt3 1944792 400234 211486 795827 36100 199992

4.1 Sparse Direct Solver Performance

The circuits selected for these experiments are small enough that sparse direct
solvers are still practical. Therefore, we will start by looking at performance
results from the state-of-the-art sparse solvers KLU, PARDISO, SuperLU, and
SuperLU DIST in Table 2. KLU and SuperLU are serial, while the parallel codes
are run on 16 cores. The results illustrate the difficulty of these simulations. The
only solver that consistently enables a transient simulation to complete is KLU.
PARDISO performs well, beating KLU on ckt1, and ckt2, but fails to complete
the DC analysis phase for ckt3. SuperLU DIST is designed for problems with
supernodal structure which is not present in any of our test cases. We believe
its static pivoting choice causes the problems in completing the simulation. Note
that these are representative simulations. Real simulations could be order of
magnitude longer. We will compare our approaches to KLU in the rest of the
paper.
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Table 2. Total linear solve time (sec.) for various sparse direct solvers; “-” indicates
simulation failed to complete; parentheses contain the # of threads/MPI processes.

ckt1 ckt2 ckt3

KLU 9381.3 7060.8 14222.7

PARDISO (16) 715.0 6690.5 -

SuperLU - - 72176.8

SuperLU Dist (16) - - -

Table 3. Comparison of total linear solve time for ckt1 when the number of MPI
processes per node (ppn) is varied with one thread.

MPI processes 4 ppn 8 ppn 16 ppn

4 253.8 - -

8 125.9 136.7 -

16 77.5 83.5 94.7

32 74.8 84.5 100.4

4.2 Hybrid Linear Solver Performance

The linear solver dominates the simulation time for circuits ckt1 and ckt3
(> 90 %), while it is about half the total simulation time for ckt2. Thus, these
circuits are the most useful in determining the effectiveness of the hybrid linear
solvers. From past experience [11,12] with MPI-only simulations the BTF-based
preconditioner will be used for ckt1 and ckt2. ShyLU will provide a much more
robust solver strategy for ckt3, as it has a large irreducible conductance matrix.
The BTF-based preconditioner is paired with the Epetra MPI+threads imple-
mentation in these experiments. For both linear solver strategies, KLU is chosen
as the block diagonal solver.

A scaling study is performed using ckt1 to determine the number of MPI pro-
cesses per node resulting in the best linear solver performance for the BTF-based
preconditioner. The simulations are run for various numbers of MPI processes per
node (ppn), 4, 8, or 16, from 1 to 8 nodes. The results in Table 3 indicate that
using 4 processes per node enables the simulator to achieve a faster linear solver
time than with 8 or 16 processes per node. In fact, both 8 and 16 processes per
node achieve their peak linear solver performance with 16 MPI processes. The
number of MPI processes is the same as the number of subdomains, as a result
the preconditioner is more effective with fewer MPI ranks. The hybrid approach
allows us to use the available cores effectively with fewer subdomains and a better
preconditioner. For comparison the 4 ppn configuration (with 32 MPI processes)
results in 25 % speedup over 16 ppn configuration and results in a 9.5x speedup
over PARDISO’s time (Table 2).

A larger scaling study is performed for ckt2, which generates a much larger
linear system (Table 1). The strong scaling results for the linear solver time and
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Fig. 4. Speedup of Xyce’s simulation time and linear solve time for strong scaling
experiments with different configurations of MPI tasks x threads per node using BTF
(ckt2, left) and ShyLU (ckt3, right).

total simulation time are presented in Fig. 4(left). They indicate that the BTF-
based preconditioning technique achieves scalable performance up to 64 MPI
processes, or 256 cores. At 32 MPI processes, the Epetra MPI+threads imple-
mentation provides an additional 2x speedup over KLU. Overall the total sim-
ulation time is 27x faster on 64 MPI processes for this circuit.

The largest and most challenging test case is ckt3. For single node runs, only
KLU and SuperLU can finish this simulation and take 4 hours and 20 hours,
respectively, for a transient time of 1 ns. Typical simulations require a transient
time of 20 ns or longer, which would result in the simulation taking more than
a week. The hybrid linear solver - ShyLU - is used to simulate ckt3 on up to
256 cores. The results, shown in Fig. 4 (right), indicate a significant speedup in
the linear solve time, up to 22x, and total simulation time, up to 19x.

The importance of hybrid parallelism is illustrated in Fig. 4(right) by compar-
ing different MPI tasks x threads per node 8×2 vs 4×4). The 4×4 configuration
clearly wins in the larger core counts (128 and 256). At 256 cores, the number of
MPI processes for the 8x2 configuration is 128, which is equal to the number of
parts for ShyLU’s partitioning (see Fig. 3). Experiments indicate that the ideal
part size for ckt3 is 64. Using 128 parts results in a matrix that is imbalanced
in the direct factorization phase. This results in the 8x2 case having the best
performance with 128 cores (or 64 MPI processes). The 4x4 case achieves its
best performance with 64 MPI processes for 256 cores. Thus, using four threads
instead of two threads allowed ShyLU to speedup the simulation by an additional
4x (from 15x to 19x) for higher core counts. An MPI-only version [12] peaks at
just 64 cores because of the limited inherent parallelism in the linear problem.

5 Conclusion

This paper proposes hybrid techniques for enabling fast, parallel circuit sim-
ulation of large-scale ASICs on modern multicore platforms. These techniques
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are implemented in a MPI-based parallel circuit simulator, Xyce, and tested on
a set of challenging integrated circuits. The results presented indicate that the
hybrid linear solver strategies provide a significant improvement to Xyce’s scala-
bility. For a 500 K device ASIC, the BTF-based preconditioned iterative method
enables Xyce to achieve a 27x speedup on 256 cores. While, ShyLU, the Schur
complement based hybrid linear solver, enables Xyce to achieve a 19x speedup
on 256 cores for a 2 million device ASIC.
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Abstract. Based on the premise that preconditioners needed for scien-
tific computing are not only required to be robust in the numerical sense,
but also scalable for up to thousands of light-weight cores, we argue that
this two-fold goal is achieved for the recently developed self-adaptive
multi-elimination preconditioner. For this purpose, we revise the under-
lying idea and analyze the performance of implementations realized in
the PARALUTION and MAGMA open-source software libraries on GPU
architectures (using either CUDA or OpenCL), Intel’s Many Integrated
Core Architecture, and Intel’s Sandy Bridge processor. The comparison
with other well-established preconditioners like multi-coloured Gauss-
Seidel, ILU(0) and multi-colored ILU(0), shows that the twofold goal of
a numerically stable cross-platform performant algorithm is achieved.

1 Introduction

When solving sparse linear systems iteratively, e.g., via Krylov subspace solvers,
using preconditioners is often the key to reducing the time needed to obtain a
sufficiently accurate solution approximation. For this reason, significant effort is
spent on the development of efficient preconditioners, usually optimized for one
particular problem. However, the theoretical derivation of methods improving
the convergence characteristics is often not sufficient, as the algorithms have to
be implemented and parallelized on the respectively used hardware platform.
The use of accelerator technology, like graphics processing units (GPUs) or
Intel Xeon Phi Coprocessors (known also as Many Integrated Core Architec-
tures, or MIC), in scientific computing centers requires a combination of deep
mathematical background knowledge and software engineering skills to develop
suitable methods. The challenge is to combine the robustness and efficiency of
the preconditioner scheme with the scalability of the implementation up to hun-
dreds and thousands of light-weight computing cores. The non-uniformity of the
high-performance computing landscape introduces additional complexity to this
endeavor, and complex sparse linear algebra algorithms that are designed to effi-
ciently exploit one specific architecture often fail to leverage the computing power
of other technologies. In this paper we show that, for the recently developed self-
adapting and multi-precision preconditioner [10], the two-fold goal of deriving a
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 115–123, 2015.
DOI: 10.1007/978-3-319-17353-5 10
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numerically robust method featuring cross-platform scalability is achieved. While
the use of different floating point precision formats, and the combination of dense
and sparse linear algebra operations, may challenge cross-platform suitability,
we show that the self-adaptive mixed precision multi-elimination method can
efficiently exploit different hardware architectures and is highly competitive to
some of the most commonly used preconditioners. While the implementation of
the algorithm is realized using the PARALUTION [8] and MAGMA [5] open
source software libraries, both known to be able to efficiently exploit the com-
puting power of accelerators, the hardware systems used in our experiments
represent some of the most popular technologies used in current HPC platforms.
The rest of the paper is structured as follows. First, we provide some details
about the self-adaptive mixed precision multi-elimination preconditioner and the
implementation we use. Next, we summarize some characteristics of the many-
core accelerators we target in our experiments and introduce the test matrices we
use for benchmarking. We then evaluate the performance of the mixed precision
multi-elimination preconditioner, embedded in a Conjugate Gradient solver on
the different hardware systems, and compare against other well-known precon-
ditioners. Finally, we summarize some key findings and provide ideas for future
research.

2 Self-adaptive Multi-elimination Preconditioner

Among the most popular preconditioners is the class based on the incomplete LU
factorization (ILU) [15]. Although using ILU without fill-ins can lead to appealing
convergence improvement to the top-level iterative method, it may also fail due to
its rather rough approximation properties, e.g., when solving linear systems aris-
ing from complex applications like computational fluid dynamics [14]. To enhance
the accuracy of the preconditioner, one can allow for additional fill-in in the pre-
conditioning matrix, resulting in the (ILU(m) scheme, see [15]). Additional fill-
in usually reduces the amount of parallelism in ILU(m) compared to ILU(0), but
there are a number of techniques designed to retain it, such as the level-scheduling
techniques [11,15] or the multi-coloring algorithms for the ILU factorization with
levels based on the power(q)-pattern method [9]. Another workaround is given
by the idea of multi-elimination [14,16], which is based on successive indepen-
dent set coloring [6]. The motivation is that in a step of the Gaussian elimina-
tion, there usually exists a large set of rows that can be processed in parallel. This
set is called the independent set. For multi-elimination, the idea is to determine
this set, and then eliminate the unknowns in the respective rows simultaneously,
to obtain a smaller reduced system. To control the sparsity of the factors, multi-
elimination uses an approximate reduction based on a standard threshold strat-
egy. Recursively applying this step, one obtains a sequence of linear systems with
decreasing dimension and increasing fill-in. On the lowest level, the system must
be solved, e.g., either by an iterative method, or by a direct solver based on an
LU factorization. Recently, a multi-elimination preconditioner, using an adaptive
level depth in combination with a direct solver based on LU factorization, was
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proposed in [10]. The advantage of this approach is that the once computed LU
factorization for the bottom-level system can be reused in every iteration step,
and the ability to utilize a lower precision format in the triangular solves allows
for leveraging the often superior single precision performance of accelerators like
GPUs. While we only shortly recall the central ideas of the multi-elimination con-
cept, a detailed derivation can be found in [14]. The underlying scheme is to use
permutations P to bring the original matrix A, of the system Ax = b that we want
to solve, into the form

PAPT ≡
(
D F
E C

)
,

where D is preferably a diagonal or at least an easy to invert matrix, so that

PAPT ≡
(
D F
E C

)
=

(
I 0

ED−1 I

)
×

(
D F

0 Â

)
with Â = C − ED−1F (1)

is easy to compute [10]. One way to achieve this is by using an independent set
ordering [6,7,13,18], where non-adjacent unknowns of the original matrix A are
determined. Recursively applying this idea and using some threshold strategy
to control the fill-in one obtains a sequence of successively smaller problems.
To control the increasing density of Â, we propose a self-adapting algorithm
which determines an appropriate sequence depth and a fill-in threshold based
on the average of all non-zero entries of Â. In the iteration phase (see Fig. 1) the
sequence of transformations must also be applied to the right-hand side and to
the solution approximation. This is achieved by applying the decomposition [14]

x :=
(
ŷ
x̂

)

and computing, according to the partitioning in (1), the forward sweep as [14]:
x̂ := x̂ − ED−1y. Consequently, backward solution for yj hence becomes y :=
D−1 (y − F x̂). On the lowest level the linear system must be solved, either again
via an iterative method, or, like suggested in [10] via triangular solves (in single
precision), using a beforehand computed factorization. Algorithmic details, as
well as a comparison between single and double precision triangular solves, can
be found in [10]. As the level-depth is not preset but determined during the
recursive factorization sequence using thresholds for drop-off and the direct solve
size, the algorithm is self-adapting to a specific problem.

3 Hardware and Software Issues

Target Platforms. The trend to introduce accelerator technology into high
performance computers is reflected in the top-ranked computer systems in both
the performance-oriented TOP500, and the resource-aware Green500 list (see [3]
and [1], respectively). While in recent years the usage of GPUs from differ-
ent vendors drew attention, Intel responded with the development of the MIC
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Fig. 1. Visualization of the multi-elimination scheme denoting the system matrix of
the original problem An and a sequence of successively smaller problems down to the
bottom-level system matrix A0.

architecture (and in the November 2013 Top500 list, the number one ranked
supercomputer was based on MICs). For the future, even more diversity may be
expected as precise plans for building systems based on the low-power ARM tech-
nology already exist [2]. Despite attempts like OpenCL [17] and OpenACC [4],
unfortunately no cross-platform language that allows for efficient usage of the
different accelerator architectures currently exists. Therefore, it usually remains
a burden to the software developer to implement algorithms for a specific target
architecture using a suitable programming language for the respective hardware.
Especially for numerical linear algebra algorithms, the algorithm-specific prop-
erties often make the implementation on different architectures challenging. To
determine whether the challenge of deriving a cross-platform performant method
is achieved for the recently developed self-adaptive multi-elimination precondi-
tioner we introduced in the last section, we benchmark it on different multi- and
many-core systems listed along with some key characteristics in Table 1.

The implementation of the preconditioner, as well as the other methods we
compare against in Sect. 4, is realized using the PARALUTION [8] (version
0.4.0) and MAGMA [5] (version 1.4) open-source software libraries. The frame-
work and the CPU solver implementations are based on C/C++, while the

Table 1. Key characteristics of the target architectures.

Acronym System Performance Peak Memory Bandwidth

ISB 2× Intel Xeon E5-2670
(Sandy Bridge)

333 GFlop/s 65 GB 2× 25.5 GB/s

K40 NVIDIA Tesla K40c 1,682 GFlop/s 12 GB 288 GB/s

AMD AMD Radeon HD 7970
(Tahiti)

947 GFlop/s 3 GB 264 GB/s

MIC Intel Xeon Phi 7110P 1,238 GFlop/s 16 GB 352 GB/s



Self-adaptive Multiprecision Preconditioners 119

Table 2. Description and properties of the test matrices.

Matrix #nonzeros (nnz) Size (n) nnz/n

apache 4,817,870 715,176 6.74

ecology 4,995,991 999,999 5.00

G2 circ 726,674 150,102 4.83

G3 circ 7,660,826 1,585,478 4.83

Laplace 4,996,000 1,000,000 4.99

offshore 4,242,673 259,789 16.33

StocF 21,005,389 1,465,137 14.34

thermal 8,580,313 1,228,045 6.99

GPU-accelerated implementations use either CUDA [12] version 5.5 for the
NVIDIA GPUs, or OpenCL [17], version 1.2 and clAmdBlas 1.11.314 for AMD
GPUs. The MIC implementation, similar to GPU’s, treats the MIC as an accel-
erator/coprocessor and is based on OpenMP and the BLAS operations provided
in Intel’s MKL 11.0, update 5.

Solver Parameters. All experiments solve the linear system Ax = b where
we set the initial right-hand-side to b ≡ 1, start with the initial guess x ≡ 0
and run the iteration process until we achieve a relative residual accuracy of
1e − 6. In the preprocessing phase of the multi-elimination, the identification
of an independent set via a graph algorithm is handled by the CPU of the
host system; the factorization process itself, including the permutation and the
generation of the lower-level systems via a sparse matrix-matrix multiplication
is implemented on the GPU.

Test Matrices. For the experiments, we use a set of symmetric, positive definite
(SPD) test matrices taken either from the University of Florida matrix collec-
tion (UFMC)1, Matrix Market2, or generated as finite difference discretization
(Laplace). The test matrices are listed along with some key characteristics in
Table 2. Although we target only SPD systems, we use ME-ILU factorization due
to the fact that the IC requires non-zero diagonal elements. Positive diagonal
entries for the IC can be obtained with non-symmetric permutation. This is not
applicable because the multi-elimination uses maximal independent set (MIS)
algorithm which produces a symmetric permutation.

4 Performance on Emerging Hardware Architectures

In Table 3 we list the runtime of the iteration phase of the self-adaptive mixed pre-
cision multi-elimination implementation on different hardware platforms. With
the number of iterations constant over the architectures, the performance is deter-
mined by the available computing power and the efficiency of the programming
1 UFMC; see http://www.cise.ufl.edu/research/sparse/matrices/.
2 see http://math.nist.gov/MatrixMarket/.

http://www.cise.ufl.edu/research/sparse/matrices/
http://math.nist.gov/MatrixMarket/
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Table 3. Iteration count and runtime (in seconds) of the Conjugate Gradient solver
preconditioned with the self-adaptive mixed precision multi-elimination (MPME) pre-
conditioner for different test matrices and hardware architectures.

Matrix #iters ISB K40 AMD MIC

apache 293 15.43 3.04 15.46 8.35

ecology 799 63.57 10.98 - 23.17

G2 circ 359 11.11 2.49 15.99 5.29

G3 circ 512 20.30 5.42 18.23 16.18

Laplace 338 9.13 3.41 14.31 10.01

offshore 1314 93.67 9.59 58.23 14.88

StocF 4388 178.56 52.06 - 115.05

thermal 916 57.41 13.93 59.20 35.73

model to exploit it. The results reveal that the best performance is achieved using
the CUDA implementation on the NVIDIA Kepler architecture. The MIC imple-
mentation fails to achieve the K40 performance, but is in most cases superior to
ISB . Switching from the CPU to the OpenCL programming model on the AMD
platformaccelerates the solver executiononly for someproblems, andeven for those,
the performance is significantly lower than on the NVIDIA GPU. Furthermore,

Table 4. Iteration count and runtime (in seconds) of the unpreconditioned Conju-
gate Gradient solver (labelled CG) and the implementations using a multi-coloured
Gauss-Seidel preconditioner (labelled MCGS-CG), a ILU-0 and a multi-colored ILU-
0 preconditioner (labelled ILU0-CG and MCILU0-C, respectively) for different test
matrices and hardware architectures.

CG MCGS-CG

matrix #iters ISB K40 AMD MIC #iters ISB K40 AMD MIC

apache 3971 16.60 5.02 15.39 10.12 1677 15.45 5.22 14.90 12.56

ecology 5392 24.17 8.20 19.74 15.35 2784 27.50 8.94 19.83 19.17

G2 circ 8911 5.32 3.76 13.83 10.27 907 1.61 1.29 5.47 4.80

G3 circ 12658 107.56 29.67 60.86 77.15 1329 28.55 9.01 15.82 22.35

Laplace 1633 8.03 2.53 5.87 4.73 817 9.00 2.63 5.76 5.60

offshore – no convergence – 628 10.19 4.92 15.03 16.79

StocF – no convergence – 66042 2200.46 1187.59 2679.99 2678.97

thermal 4589 53.06 9.63 28.44 30.52 2151 39.27 18.33 36.28 52.68

ILU0-CG MCILU0-CG

matrix #iters ISB K40 AMD MIC #iters ISB K40 AMD MIC

apache 643 25.56 9.63 - - 1438 16.37 4.07 11.55 9.80

ecology 1700 74.86 64.03 - - 2854 38.18 8.35 18.72 18.09

G2 circ 481 3.28 6.15 - - 857 1.54 1.12 4.37 3.94

G3 circ 680 51.73 33.77 - - 1242 25.06 7.71 13.20 19.24

Laplace 537 23.18 19.30 - - 817 8.49 2.37 5.29 5.29

offshore 365 13.83 23.22 - - 487 6.88 3.57 8.54 11.72

StocF 2364 368.36 158.37 - - 16740 544.91 290.38 634.35 624.89

thermal 1945 188.58 54.13 - - 2095 42.33 16.79 30.57 49.53
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Fig. 2. Runtime of the different implementations normalized to the runtime of the best
method on the Intel Sandy Bridge CPU.

Fig. 3. Runtime of the different implementations normalized to the runtime of the best
method on the Kepler K40 GPU.

the smaller memory size of the AMD architecture prevents it from handling all
problems. While this performance drop may suggest that mixed precision multi-
elimination is not suitable for OpenCL on AMD architectures, the runtime results
for other preconditioner choices inTable 4 indicate that this behavior is not a singu-
larity. None of the implementations using the OpenCL-AMD framework achieves
performance competitive to the CUDA results on the Kepler K40. Finally, we want
a comparison between the different preconditioners. InFigs. (2, 3, 4, and 5)we com-
pare for the different architectures the performance of the plain CG with the imple-
mentations preconditioned by multi-colored Gauss-Seidel, ILU(0), multi-colored
ILU(0), and the developedmixedprecisionmulti-eliminationwith the runtimenor-
malized to the respective best implementation.

From the results we can determine that the mixed precision multi-elimination
is not suitable for the small G2 circ problem, but reduces the runtime signifi-
cantly in the StocF case. Furthermore, it shows very good performance on the
Kepler K40 GPU and Intel’s Manycore Architecture. Overall, the developed self-
adaptive preconditioner is competitive compared to the well-established methods.
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Fig. 4. Runtime of the different implementations normalized to the runtime of the best
method on the AMD Radeon 7900.

Fig. 5. Runtime of the different implementations normalized to the runtime of the best
method on Intel’s Many Integrated Core Architecture.

5 Summary and Future Research

In this paper we have analyzed the cross-platform suitability of the recently
developed mixed precision multi-elimination preconditioner using self-adaptive
level depth. We have analyzed the method’s performance characteristics using
different hardware platforms and compared the runtime with some of the most
popular preconditioners. The numerical robustness combined with platform-
independent scalability makes the method a competitive candidate when choos-
ing a preconditioner for solving linear problems in scientific computing. Future
research will target the question of how to leverage the computing power of
platforms equipped with multiple, not necessarily uniform, accelerators.
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Abstract. Resilience is a major challenge for large-scale systems. It is
particularly important for iterative linear solvers, since they take much
of the time of many scientific applications. We show that single bit flip
errors in the Flexible GMRES iterative linear solver can lead to high
computational overhead or even failure to converge to the right answer.
Informed by these results, we design and evaluate several strategies for
fault tolerance in both inner and outer solvers appropriate across a range
of error rates. We implement them, extending Trilinos’ solver library with
the Global View Resilience (GVR) programming model, which provides
multi-stream snapshots, multi-version data structures with portable and
rich error checking/recovery. Experimental results validate correct exe-
cution with low performance overhead under varied error conditions.

Keywords: Resilience ·Numerical solver ·High performance computing

1 Introduction

The scaling of semiconductor technology and increasing power concerns com-
bined with system scale make fault management a growing concern in high
performance computing systems [1,4,11,13]. Soft errors and higher error rates
all expected. Just as they played an important role in achieving scalable, high
performance, we expect that widely-used numeric solvers such as Flexible Gener-
alized Minimal Residual Method (FGMRES) will play an important key role in
achieving resilience and performance for large-scale applications in future “exa”
scale systems.

Flexible GMRES with restarting (see Fig. 1 [2,17]) is robust to soft errors
due to three aspects. First, the inner solver in Step 3 is inexact, and the outer
solver can tolerate large changes to inner solver. Second, the minimal residual
procedure can reduce the impact of error on inner solver and keep the resid-
ual decreasing (see Step 11). Third, FGMRES restarts the computation after m
outer iterations (see Step 17). While the major purpose of restarting is to address
the performance and memory usage, restarting can also eliminate errors in outer
solver data structures. However in our experiments some bit-errors are still prob-
lematic. Errors in inner solver can incur high computational overhead for con-
vergence. Errors in outer solver can even lead to divergence failure. Restarting
may lead to stagnation of convergence.
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 124–132, 2015.
DOI: 10.1007/978-3-319-17353-5 11
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With these insights, we design and evaluate error checking and recovery
strategies. For inner solver, residual based checking is deployed to identify sig-
nificant error; recomputing and multi-versioning are exploited for recovery in
different cost and granularity. For outer solver, double modular redundancy and
data reloading strategies are utilized for error checking and recovery. Our exper-
iments employ the Trilinos library [12], extending FGMRES inner-outer solver
with the Global View Resilience (GVR) framework [10], use 5 matrices from
the Florida sparse collection [7], running on up to 128 processes. Experimental
results illustrate that our GVR-enabled FGMRES solver successfully tolerates
the bit flip errors and significantly reduces the impact on performance. Specific
contributions include:

– Characterizing situations where bit-errors cause resilience problems for both
inner and outer solvers in FGMRES.

– Employ GVR programming model with Trilinos library for portable and rich
error checking/recovery strategies in inner-outer solver.

– Evaluate each recovery method, empirically validating that they are efficient
and that each is best for regime of error rates.

The rest of the paper is organized as follows. Section 2 introduces the back-
ground of GVR and Trilinos for our implementation. Sections 3 and 4 explore
the error impact error checking and recovery methods for inner solver and outer
solver respectively. Section 5 discusses experimental results, and Sect. 6 surveys
related work. Finally, we summarize and discuss future directions in Sect. 7.

Fig. 1. Flexible GMRES with restarting
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2 GVR and Trilinos

Our implementation of fault tolerance inner-outer solver is based Global View
Resilience (GVR) [10] and Trilinos [12]. Trilinos is an object-oriented software
framework for solving big complex science and engineering problems. Kernel
classes of Trilinos include vector, matrix, and map. It provides common abstract
solvers, such as iterative linear solvers and preconditioners. Based on the kernel
class and solvers, Trilinos provides comprehensive algorithmic packages such as
stochastic PDEs.

GVR is a novel programming model to enable sophisticated, application-
specific fault tolerance in parallel computing. It enables the application to create
global data store (GDS) objects for flexible, portable and efficient fault manage-
ment. We extend the kernel classes of Trilinos using GVR APIs, including the
GDS object creation, put/get operations, and GDS versioning. Based on the
extended kernel classes, we implement GVR enabled inner-outer solver pack-
age, which can be directly used for other Trilinos applications. Especially, GVR
facilitates our inner-outer solver in the following aspects.

1. GVR provides multi-stream scheme to create multiple GDS objects for dis-
tributed basis vectors and solution vectors. Each GDS object can periodically
take snapshots at application specified stable point such as the end of itera-
tion. GVR explores the benefits of local and hierarchy storage to reduce the
runtime overhead of snapshot.

2. Multiple older versions of the GDS object remain available for access. The
multi-version scheme is motivated for latent error, i.e., errors that retain for
some iterations. We use it for recovery inside of the inner solver.

3. It is flexible to configure different versioning, error-checking, and error-
recovery schemes to each GDS object. It is helpful to customize the explored
strategies thus adapting to different error rates.

4. GVR provides erasure code based on resilience mechanisms for the multi-
version snapshots. Since the snapshot is used only for recovery, the overhead
is negligible. It is also configurable to explore NVRAM with low error rate
for snapshot resilience.

5. The application can provide each GDS object with specific callback routines
for error checking and error-recovery in a uniform framework. Error-recovery
routines can respond to errors raised by either the application or by the
underlying system, such as uncorrectable ECC signal from operating sys-
tem. Combining with multi-version, GVR can recover the application from
catastrophic memory failures.

In this paper, we only use 1–4 GVR features to address soft errors. We will
explore using more features in the future.

3 Inner Solver

In this study, we presume that the inner solves takes most of execution time and
arbitrarily set 30 iterations inner solver. In this scenario, the inner solver takes
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more than 90 % execution time, which is a key factor to make trade-off between
system reliability and inner solve reliability. We will study other scenarios as a
future work.

3.1 Error Impact

To study the impact of errors on inner solver, we randomly inject the error
during SpMV or vector dot product operation as the most error-prone, or inject
the result vector zj directly as the most important data visible to the outer
solver. In this study, we focus on double precision floating-point data, which
consists of 1 sign bits, 11 exponent bits, and 52 bits for mantissa. Bit-flips not
in the first 2 bytes only introduce a relative error <= 2−4 [9], thus having little
impact on execution correctness and convergence.

As inner solver result is approximate, if error occurs not in the first 2 bytes
which only introduces a relative error <= 2−4 [9], error impact is minimal on
execution correctness and convergence. However, as shown in Fig. 2, if a bit error
significantly increase the residual of a significant inner solver comparing with
previous inner-outer iteration, it generally incurred 2 or 3 additional inner-outer
solver iterations, which is consistent with the study in [9]. In extreme cases, as
many as 48 additional inner-outer solver iterations can be required. Further, the
error impact can accumulate. As the increasing of errors, we observe 8× number
of inner-outer iterations in extreme cases.

3.2 Error Check and Recovery: Outside

First, we study outside error checking and recovery; such coarse-grained recov-
ery is relevant even in current-day error environments, and applies to many inner
solvers such as GMRES and CG. We exploit two symptoms to identify significant
error: (1) residual increase (vs previous iteration) and (2) the matrix H(1 : j, 1 : j)
is not full rank [2]. For these methods, checking overhead is low. Explicit residual
checks can be calculated by outer solver, as well as checks for errors in A and qj . In
our experiments, the explicit residual check incurs only take 0.2 % overhead per
iteration. Further, checking rank deficiency of matrix H(1 : j, 1 : j) is essentially
free as the SVD-based method to calculate step-11 (see Fig. 1) computes the its
rank directly.

There are two simple strategies for recovery outside of inner solver. The
first is recomputing the inner solver, incurring high overhead since the inner
solver is 90 % of the computation. Despite that, recomputing is still viable as
the significant inner solver errors generally introduce 2–3 more inner-outer solver
iterations (see Fig. 2). The second is restarting the whole computation as step-17
in Fig. 1 [2]. Restarting may lead to stagnation of convergence, so it is employed
only if recomputing fails.

3.3 Error Recovery: Inside

For higher error rates, it is necessary to handle the errors inside of the inner
solver rather than recomputing the whole inner solver. In this study, we keep
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Fig. 2. Distribution of additional inner-outer solver iterations incurred by significant
inner solver errors.

one snapshot of qj at the beginning and multi-version snapshot of zj during the
inner solver iterations. If a significant error is detected outside of inner solver,
we check the versions in descend order. If any version of intermediate result has
significant lower residual than the final result, inner solver rolls back to that
point, reload qj and A, and executes the rest iterations. Otherwise, inner solver
is recomputed from the scratch.

An alternative solution is to check and handle the error during the inner
solver iterations. In this study, we do not adopt it due to two reasons. First, it
is difficult to identify the error with low overhead and high coverage. Second, it
is hard to predict the impact of the error on the inner-outer iterations. We will
study this solution as a future work.

The crossover between outside and inside error handling happens when the
overhead of error recovery within the solver is less than later recomputing. In
this study, we define the error probability as the ratio between the number
of iterations with errors and the total iterations. Suppose the probability of
inner solver error is P , the error-free execution is Φ longer due to the over-
head of snapshot, and the error handling inside reduce the recomputing time
by Θ shorter. So the error handling inside inner solver become beneficial when
1−P +2P > (1−P )Φ+(1+Θ)P . We validate these tradeoffs in our experiments
in Sect. 5.

4 Outer Solver

The outer solver typically consumes less execution time, but errors in outer solver
are more critical for correctness and performance. In most cases, if significant
errors occur in the basis vectors or Hessenberg matrix H, the residual may
increase or stay constant. Even a single bit-flip may lead to divergence no matter
at which iteration the bit-flip occurs.

To tolerate the error in outer solver, we adopt simple double modular redun-
dancy (DMR) [15]. It executes the outer solver twice and compare the results.
DMR based method may fail to tolerate the memory error staying in both exe-
cutions. To address this problem, at each error-free iteration, we take snapshots
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Fig. 3. GVR overhead in error-free execution. Here one snapshot of related vectors are
taken at each inner-outer iteration.

of subspace basis [v1, v2, . . . , vj−1], [z1, z2, . . . , zj−1], matrix H, and result vector
xj . Notice that GVR provides resilience mechanism for these snapshots. Reload-
ing A, b, and these snapshots in previous iteration from GDS objects before
the second execution, can detect memory errors in the original execution. If any
inconsistency between two outer solver executions, the third one will be trig-
gered to identify the correct execution. This approach has low overhead, high
error checking accuracy and prevents error propagation to the next iteration.

5 Experiments

Based on our implementation from GVR and Trilinos, we run 128 processes
with 5 matrices from the Florida sparse collection. The data is the average
result of 1,000 error trials for each error probability and matrix. As the error
impact studies, we mainly focus on significant error in the first 2 bytes of double
precision data.

5.1 GVR Overhead in Error-Free Execution

In our GVR enabled FGMRES, we create GDS objects on the solution and
basis vectors, put the data into GDS objects and make the versions. We vary
the number of processes to study the overhead of GVR in error-free execution.
Here we take one snapshot of zj , [v1, v2, . . . , vj−1], [z1, z2, . . . , zj−1], H, and xj

at each inner iteration.
As shown in Fig. 3, the overhead is less than 15% and keeps stable with

the increasing of processes. The major overhead is on versioning since we use
collective call to get consistent snapshot. We plan to bundle these vectors into
one GDS object thus reducing the number of versioning operation. Note that
the overhead is much lower for a realistic error rate, which is unnecessary for
versioning at each inner iteration.

5.2 Inner Solver

To explore a range of error rates, we vary probability of significant error inside
of inner solver computation or the result vector zj . The recovery process is
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Fig. 4. Execution slowdown - original FGMRES, recomputing based recovery, and
multi-version based recovery.

triggered only if the inner solver residual becomes 100× larger than the previous
iteration. We compare the total execution time without recovery and with our
inside/outside resilience method. We calculate the slowdown as the ratio between
the total execution time with errors and the failure-free execution time.

Our results of slowdown (see Fig. 4) show that both recomputing and multi-
versioning based recovery outperforms the original FGMRES with restarting.
When error probability is < 11%, recomputing has lower slowdown than multi-
versioning based recovery due to the cost of snapshot. As the growth of error
probability, multi-versioning based recovery becomes more beneficial by reducing
the work loss.

5.3 Outer Solver

We vary probability of significant error in the basis vectors and solution vectors
of outer solver and present the slowdown in Fig. 5. The significant error in outer
solver always leads to divergence for FGMRES without restarting. When the
error probability is low, restarting can tolerate the error but introduce extreme
high overhead, e.g. 1682.5 % slowdown on 10% of error probability. As the
increasing of error probability, it also becomes divergence. Our GVR enabled
FGMRES successfully addresses the high error probability with relatively small
overhead because it can isolate the errors in each iteration.

6 Related Work

In large-scale system, traditional studies have focused on system level checkpoint/
restart to tolerate fail-stop process failures [16]. As the growing concern around
soft errors, more recent studies have focused on application level and cross layer
solutions, especially for numeric solvers.Huang andAbrahamdeveloped the check-
sums based algorithm-based fault tolerance (ABFT) technique for matrix opera-
tions [14]. In [6], Chen developed theoretical conditions based error checking for
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Fig. 5. Execution slowdown - original FGMRES, recomputing based, and multi-version
based recovery.

Krylov subspace iterative methods. In [3], Bronevetsky analyzed soft error vulner-
ability for linear solvers. In [18], fault tolerant PCG solver is presented for sparse
linear systems. Du presented encoding strategy for LU factorization based dense
liner systems [8]. Unlike these works, this study is focusing on inner-outer solver.

The studies on fault tolerant inner-outer solver are limited. In [5], Chen
analyzed flexible BiCGStab to bound the inner solver error for convergence. In
[9], Elliott studied the impact of inner solver error in FGMRES. In [2] FGMRES
solver was extended to tolerate inner solver error. Distinguished from these stud-
ies, this paper presents comprehensive error analysis for FGMRES and develops
GVR-enabled methods for both inner and outer solvers under various error rate.

7 Summary and Future Work

We analyze the impact of bit-flip errors on the FGMRES inner-outer solver,
which can lead to divergence failure or extreme high computation overhead.
Based on the analysis results, we design the error checking/recovery strategies
for inner solver and outer solver. We implement it by extending Trilinos solver
library with our Global View Resilience (GVR) system. Our experiments show
that our GVR-enabled inner-outer solver successfully tolerate the bit flip errors
for execution convergence with low overhead.

Interesting future directions include, studying a wider range of inner-outer
solver configurations, error checking and recovery methods, and employing addi-
tional GVR features. Another direction would include study of errors from other
sources – other hardware elements, or even intentional inaccuracies such as
reduced coverage ECC or probabilistic CMOS.
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Abstract. We consider the solution of sparse linear systems using direct
methods via LU factorization. Unless the matrix is positive definite,
numerical pivoting is usually needed to ensure stability, which is costly to
implement especially in the sparse case. The Random Butterfly Transfor-
mations (RBT) technique provides an alternative to pivoting and is eas-
ily parallelizable. The RBT transforms the original matrix into another
one that can be factorized without pivoting with probability one. This
approach has been successful for dense matrices; in this work, we inves-
tigate the sparse case. In particular, we address the issue of fill-in in the
transformed system.

1 Introduction

When solving the linear systems using the LU or the LDLT factorizations,
numerical pivoting is often needed to ensure stability. Pivoting prevents division
by zero or by small quantities by permuting on the fly the rows and/or columns of
the matrix so that the pivotal element is relatively large in magnitude. Pivoting
involves irregular data movement and can significantly impact the speed of the
factorization, especially on large parallel machines. This issue arises in both
unsymmetric and symmetric cases, and for both dense and sparse factorizations.
The ScaLAPACK [7], MAGMA [20] and PLASMA [17] dense linear algebra
libraries contain a Cholesky factorization for positive definite matrices, for which
no pivoting is required, but they do not contain an LDLT factorization. They
contain an LU factorization with partial pivoting (i.e. PA = LU , where P is a
permutation matrix), but partial pivoting can significantly slow down the speed.
For example, on a hybrid CPU/GPU system, the LU algorithm in the MAGMA
library spends over 20 % of the factorization time in pivoting even for a large
random matrix of size 10, 000 × 10, 000.

Pivoting poses additional problems in sparse factorizations because of the
fill-in, which corresponds to the new nonzeros generated in the factored matrices
L and U . For sparse Cholesky, where pivots can be chosen on the diagonal, we often
use a sparsity-preserving ordering algorithm, such as minimum degree or nested
dissection, to reorder the matrix first so that the Cholesky factor of the permuted
matrix PAPT has less fill-in than that of A. For sparse LU, we often factorize

c© Springer International Publishing Switzerland 2015
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PAQT with both row and column permutation matrices P and Q. The purpose
is to preserve sparsity as well as to maintain numerical stability. There are
complex interplays between ordering (for sparsity) and pivoting (for stability).
Often, the two objectives cannot be well achieved simultaneously. Several relaxed
pivoting schemes, other than partial pivoting, have been developed to trade off
stability and sparsity, which allow larger pivot growth while maintaining better
sparsity. These include threshold pivoting [10], restricted pivoting [19], and static
pivoting [14].

One difficulty with dynamic pivoting, either partial pivoting or threshold piv-
oting, is that the fill-ins are produced on the fly depending on the permutation
at each step. It is thus not possible to have the separate ordering and symbolic
preprocessing algorithms that precisely minimize the number of fill-ins and fore-
cast the fill-in positions. A good ordering strategy to accommodate dynamic
row pivoting is to apply any ordering algorithm to the graph of the symmetrized
matrix ATA which gives a fill-reducing permutation Q. Then, Q is applied to
the columns of A before performing the LU factorization with row pivoting:
P (AQT ) = LU . The rationale behind this is that the nonzero structure of the
Cholesky factor R of ATA = RTR upper bounds the nonzero structures of LT

and U of PA = LU , for any row permutation P [12]. That is, the Cholesky factor
Rq of (AQT )T (AQ) = RT

q Rq upper bounds the LT
q and Uq of P (AQT ) = LqUq,

and Rq contains smaller amount of fill than that of R. In essence, the column
ordering Q tends to minimize an upper bound on the actual fill-ins in the LU
factors, taking into account all the possible row pivotings. This strategy can
be pessimistic when most pivots happen to be on the diagonal (e.g. diagonally
dominant matrices). The sequential SuperLU library uses this ordering strategy
together with partial pivoting [9]. This is our comparison baseline to be used in
Sect. 3 about the numerical results.

The cost of dynamic pivoting in parallel is even more dramatic than in the
dense case. For example, for matrix nlpkkt80 of a KKT system from nonlinear
optimization, the parallel factorization with threshold pivoting using MUMPS [2]
took 639 s with 128 processes. After the matrix is modified to be diagonally
dominant with the same sparsity structure, the parallel factorization without
pivoting took only 87 s, even though the size of the LU factors and the flop
count are roughly the same in both cases.

In the parallel direct solver SuperLU DIST [14], a static pivoting strategy is
used to enhance scalability. Here, P is chosen before factorization based solely
on the values of the original A. A maximum weighted matching algorithm and
the code MC64 [11] is currently employed. The algorithm chooses P to maximize
the magnitude of the diagonal entries of PA. During factorization, the pivots are
chosen on the diagonal and the tiny ones are replaced by a fixed value. Since this
does not involve dynamic row permutation, a sparsity-reducing algorithm can
be applied to the graph of another symmetrized matrix PA+(PA)T , producing
the permutation matrix Q. This tends to minimize the amount of fill in the L
and U of Q(PA)QT = LU . The static pivoting improves speed and scalability
but it might fail for very challenging problems. MC64 is sequential in nature and



Using Random Butterfly Transformations to Avoid Pivoting 137

there is no good parallel algorithm yet. Riedy [18] suggests a parallel auction
algorithm but concludes that parallel performance is too unpredictable to make
it a black-box tool. Therefore, the pre-pivoting phase will be a severe obstacle
for solving larger problems on extreme-scale parallel machines.

In 1995, Parker introduced a randomization algorithm to eliminate the need
for pivoting [16]. In this approach, the Random Butterfly Transformation (RBT)
is used to transform the original system into an “easier” one such that, with prob-
ability one, the LU factorization of the transformed matrix can be performed
without pivoting. This technique was successfully applied and implemented into
the dense libraries for LU and LDLT factorizations [3,6]. In this work, we inves-
tigate the potential of the RBT method for sparse cases.

2 Random Butterfly Transformations

In this section we recall the main concepts and definitions related to RBT where
the randomization of the matrix is based on a technique initially described by
Parker [16] and recently revisited by Baboulin et al. [3] for general dense systems.
The procedure to solve Ax = b, where A is a general matrix, using a random
transformation and the LU factorization is:

1. Compute Ar = UTAV , with U, V random matrices,
2. Factorize Ar = LU (without pivoting),
3. Solve Ary = UT b and compute x = V y.

The random matrices U and V are chosen among a particular class of matrices
called recursive butterfly matrices. A butterfly matrix is an n × n matrix of the
form

B<n> =
1√
2

[
R0 R1

R0 −R1

]
where R0 and R1 are random diagonal n

2 × n
2 matrices. A recursive butterfly

matrix of size n and depth d is defined recursively as

W<n,d> =

⎡
⎢⎢⎣

B
<n/2d−1>
1

. . .

B
<n/2d−1>

2d−1

⎤
⎥⎥⎦ · W<n,d−1>, with W<n,1> = B<n>

where the B
<n/2d−1>
i are butterflies of size n/2d−1, and B<n> is a butterfly of

size n.
In the original work by Parker, d = log2 n; he shows that, given two recur-

sive butterfly matrices U and V , the matrix UTAV , where A is the original
matrix of the system to be solved, can be factored into LU without pivoting
with probability 1 in exact arithmetic, or with probability 1−O(2−t) using t-bit
floating point numbers. For symmetric problems, V = U and the same result
holds with LDLT . Baboulin et al. studied extensively the use of RBT for dense
matrices and showed that in practice, d = 1 or 2 is enough; in most cases a few



138 M. Baboulin et al.

steps of iterative refinement can recover the digits that have been lost. They also
showed that random butterfly matrices are cheap to store and to apply (O(nd)
and O(dn2) respectively) and they proposed implementations on hybrid multi-
core/GPU systems for the unsymmetric [3] case. For the symmetric case, they
proposed a tiled algorithm for multicore architectures [4] and more recently a
distributed solver [5] combined with a runtime system [8]. As was demonstrated,
the preprocessing by RBT can be easily parallelized with good scalability.

3 Using RBT in Sparse Direct Solvers

We first describe and compare different strategies and parameters when applying
RBT to the sparse LU factorization. We carry out the experiments on a large
set of sparse matrices in order to identify the best practical strategy.

3.1 Influence of the Degree d

In the dense case, the use of RBT incurs small amount of extra operation and
memory. The cost is limited to storing and applying RBT prior to the factoriza-
tion. However, in the sparse case, applying RBT modifies the nonzero structure
of the transformed matrix. The number of nonzeros in the transformed matrix
UTAV can be up to 4d times the number of nonzeros in A in the worst case.
This increase in nonzeros may lead to an even larger increase in the size of the
LU factors and thus to prohibitive costs. We therefore limit our investigation
to small degrees: d = 1 or 2, which correspond to the practical setting used by
Baboulin et al. in the dense case [3–5].

3.2 Combining RBT and Fill-Reducing Permutations

Fill-reducing ordering is critical to preserve sparsity. This operation is usually
performed after all the preprocessings that modify the sparsity pattern of the
input matrix (e.g., MC64). At first glance, it seems that the most natural way
of combining RBT with a fill-reducing permutation is:

1. transform the original matrix A into UTAV ,
2. permute with a fill-reducing algorithm (then factorize).

However, one can show that the matrix resulting from steps 1 and 2 is not
guaranteed to be factorizable without pivoting. We provide an example here.
Let A be a 4 × 4 matrix; A can be written in a 2 × 2 form as

A =
[
A11 A12

A21 A22

]

Let U and V two recursive butterflies of size 4 and degree 2. By Parker’s theorem,
if A is non-singular then UTAV is factorizable without pivoting. Let p be the
permutation vector [1 3 2 4] and P the associated permutation matrix. We con-
sider B = PUTAV PT . One can show that if

∑
A11 =

∑
A22 =

∑
A21 =

∑
A12
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then the leading submatrix B1:2,1:2 is singular, regardless of the random values
in U and V . Therefore B is not factorizable without pivoting (B22 becomes
0 after eliminating the first pivot, in the absence of roundoff errors). One can

easily build a non-singular matrix satisfying this property, e.g., A11 =
[
2 0
0 2

]
,

A12 = A21 =
[
1 1
1 1

]
, A22 =

[
3 0
0 1

]
(leading to det(A) = −4, i.e., A non-singular).

As a consequence, the strategy consisting in permuting for sparsity after
the transformation may not work in theory, but we still wish to investigate its
practical performance. We compare the following two strategies:

Strategy 1: the matrix is permuted using a fill-reducing (or bandwidth min-
imization) heuristic then transformed with RBT. This guarantees that the
factorization would succeed for d = log2 n but it might yield large number of
fill-ins in the factors. The first step is an attempt to minimize the nonzeros
in the transformed matrix and the fill-ins.

Strategy 2: the matrix is transformed with RBT then permuted using a fill-
reducing heuristic. This might fail even for d = log2 n but it provides a much
better control of fill-in.

3.3 Evaluation of the Different Strategies and Parameters

The experiments were carried out on 90 non-singular matrices with size n ≤
10, 000. Table 1 shows the success rate of the factorization, the increase in nonze-
ros and the increase in the size of the LU factors with respect to partial pivoting.
We use the partial pivoting code SuperLU [9]; for RBT, pivoting is disabled and
the factorization is stopped whenever a zero diagonal pivot is found (although
a possibility could be to replace it by a small perturbation such as ε‖A‖). The
random values we use are er/10 with r randomly chosen in [− 1

2 , 1
2 ] from a uniform

distribution. This guarantees a small condition number for U and V [3].

Table 1. Influence of the different strategies and parameters for 90 matrices with size
n ≤ 10, 000. “Success rate” is the percentage of matrices for which the factorization
completes. “Increase in nonzeros” is the ratio nnz(UTAV )/nnz(A) and “Increase in
factors” is the ratio nnz(LU(UTAV ))/nnz(LU(A)); we report the minimum, geometric
mean, arithmetic mean, and maximum.

Strategy and degree Success Increase in nonzeros Increase in factors

rate min geo avg max min geo avg max

Strategy 1 d = 1 81.1 % 1.00 2.97 3.14 3.99 1.12 9.92 21.07 362.32

d = 2 92.2 % 2.01 9.53 10.52 15.79 1.14 19.35 45.41 635.84

Strategy 2 d = 1 82.2 % 1.00 2.02 2.25 4.00 0.03 1.55 2.62 20.42

d = 2 80.0 % 1.50 4.95 5.98 15.01 0.06 2.96 6.78 144.49
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We make the following observations: (1) Strategy 1 and Strategy 2 have
similar success rates. Although both strategies lead to an increase in the size
of the LU factors (with respect to partial pivoting), this increase is much more
limited with Strategy 2. Therefore, Strategy 2 will be our method of choice.
(2) Similar to what was observed in the dense case, most matrices succeed with
d = 1. With Strategy 1, d = 2 yields a near-perfect success rate at the price of
a large increase in the size of factors; the effect is less clear with Strategy 2.

Using Strategy 2 with d = 1 seems to be the most practical setting. Figure 1
shows how this approach compares with partial pivoting. Figure 1(a) shows how
the size of the factors varies when RBT is used. 37 out of 90 matrices have a
smaller size of LU factors; as explained in the introduction, this is due to the
fact that partial pivoting relies on a fill-reducing permutation that can only aim
at minimizing an upper bound of the fill-in, since the order in which variables
are eliminated is not known in advance. On the other hand, not doing pivoting
allows the fill-reducing permutation to focus on the right problem (minimizing
the actual fill-in). For 30 matrices, the increase (due to the larger structure of the
transformed matrix) is moderate (larger than one but less than two). Although
this means that the number of operations with RBT might be larger than with
partial pivoting, RBT may catch up since doing no pivoting yields better flop
rate and scalability. For 23 matrices, the increase is large (between 2 and 20),
which means it is more unlikely that RBT will yield better runtime. Figure 1(b)
shows the ratio between the forward error ||x − xtrue||/||xtrue|| with RBT and
that with partial pivoting. For 69 out of 90 problems, the ratio is less than 102

i.e. at most 2 digits are lost when using RBT instead of partial pivoting. The loss
in accuracy found for some matrices is due to a larger growth factor with RBT,
meaning that some elements found during the factorization become very large
(relative to the elements in the matrix to be factored) and lead to inaccuracies. In
most cases, a few steps of iterative refinement recover the lost digits. Overall, we
found that 48 out of 90, i.e. 53.3 % have both a moderate increase in the factors
size (less than twice) and a moderate loss in accuracy (less than 2 digits).

3.4 One-Sided Transformation

The original approach proposed by Parker relies on a two-sided transformation
UTAV . We showed that a one-sided transformation is sufficient to maintain the
main numerical property, i.e., UTA can be factorized without pivoting when
U is a recursive butterfly matrix with degree d = log2 n. The benefit is that
the number of nonzeros in UTA (and the LU factor size) can be less than the
number of nonzeros in UTAV . Through private communication, Parker mentions
that it is analogous to using partial pivoting rather than complete pivoting, i.e.,
although no zero pivot appears, the growth factor may be larger.

We experimented this one-sided approach, and found that, with d = 1, the
success rate of the one-sided and two-sided approaches are similar. For d = 2, the
success rate is marginally higher with the two-sided approach. Figure 2 illustrates
how the two approaches influence the size of the transformed matrix and the size
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Fig. 1. RBT (Strategy 2, d = 1) vs partial pivoting for 90 matrices sorted by size.

of the factors. We observed that the one-sided approach marginally decreases the
size of the factors on average, but the results are problem-dependent.

3.5 Source of Failures

Parker’s theorem states that, using d = logn, no zero pivot can be found during
the factorization (with probability one). However, in [15], there is no proof about
the magnitude of the pivots. Small (with respect to machine precision) pivots
lead to large element growth in the U factor, and elements of smaller size are lost.

Consider a matrix M and its LU factorization M = LMUM . The standard
metric used in error analysis is the growth factor [13]

ρ =
maxi,j,k |m(k)

ij |
maxi,j |mij |

where a
(k)
ij is the element met at the k-th step of Gaussian Elimination on M . ρ

is expensive to compute, and, in practice, solvers report the pivot growth, which
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Fig. 2. One-sided vs two-sided (Strategy 2, d = 1) for 90 matrices sorted by size.

is either ||UM ||∞
||M ||∞ (e.g., in LAPACK [1]), or maxj

||UM (:,j)||∞
||M(:,j)||∞ (e.g., in SuperLU).

These definitions assume that partial pivoting is used; in this case, elements
in the L factor are bounded by 1. To accomodate the fact that we do not use
pivoting when we use RBT, we propose the following definition:

ρ = max
(

max
j

||LM (:, j)||∞
||M(:, j)||∞ , max

j

||UM (:, j)||∞
||M(:, j)||∞

)

In Fig. 3, we report the pivot growth for our collection of test matrices, using
partial pivoting (i.e., growth factor for the original matrix A) and using RBT
(i.e., pivot growth for the factorization without pivoting of UTAV ). We observe
that for most matrices the pivot growth is slightly larger (but reasonable) when
using RBT instead of partial pivoting. However, a few matrices have very large
pivot growth, leading to instability in the factorization.
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Fig. 3. Pivot growth for 90 matrices sorted by size.

4 Conclusion and Perspectives

For sparse direct solvers using LU factorization, a serious scalability bottle-
neck is numerical pivoting. A number of relaxed pivoting algorithms have been
developed, but none of them have shown promise of scalable implementation. In
this exploratory work, through large number (90) of real-world test matrices, we
demonstrated that the Random Butterfly Transformation is a good alternative to
pivoting, especially with properly chosen ordering strategies and transformation
parameters. RBT is particularly appealing for extreme-scale systems because it
is highly parallelizable. This opens the possibilities of several avenues of new
research, such as application of RBT to the LDLT factorization, classification of
the problems according to various RBT strategies, and investigation of RBT’s
impact on the scalability of existing parallel direct solvers.
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Abstract. We develop a computationally less expensive alternative to
the direct solution of a large sparse symmetric positive definite system
arising from the numerical solution of elliptic partial differential equation
models. Our method, substituted factorization , replaces the computa-
tionally expensive factorization of certain dense submatrices that arise in
the course of direct solution with sparse Cholesky factorization with one
or more solutions of triangular systems using substitution. These sub-
stitutions fit into the tree-structure commonly used by parallel sparse
Cholesky, and reduce the initial factorization cost at the expense of a
slight increase cost in solving for a right-hand side vector. Our analysis
shows that substituted factorization reduces the number of floating-point
operations for the model k× k 5-point finite-difference problem by 10 %
and empirical tests show execution time reduction on average of 24.4 %.
On a test suite of three-dimensional problems we observe execution time
reduction as high as 51.7 % and 43.1 % on average.

1 Introduction

The solution of sparse linear systems arising from finite discretization of second-
order elliptic partial differential equations (PDEs) dominates the execution time
of scientific codes [1]. These systems of linear equations may be solved by two
broad categories of solvers, namely direct or iterative [2–5]. In application, a third
hybrid category may appear, which tries to balance trade-offs between direct
and iterative solvers [6,7]. They make no claim on the number of iterations
needed to solve the system, and therefore hybrid methods can be seen as a
preconditioned iterative method. We provide a new formulation used as a direct
method by making substitutions in place of factorization, and demonstrate how
this formulation results in savings over the direct method sparse Cholesky while
providing a robust solution.

This paper provides a detailed understanding and analysis of our new substi-
tuted factorization (SF ), and demonstrates our method as an alternative direct
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method formulation for solving systems arising from finite discretization of a
second-order elliptic PDE on quasi-uniform grids. Although other methods exist,
the choice of the best method depends on the number of solves, robustness,
and memory constraints. Direct methods provide a desired robustness and low
cost for multiple solves that many iterative solvers cannot provide. However,
the high computational cost of factorization in direct methods makes iterative
method more desirable unless this cost can be amortized with multiple solves.
Our method provides a middle ground in terms of the number of solves needed
to amortize factorization cost while still providing the desirable robustness.

2 Background and Related Work

A number of methods exist to solve systems arising from second-order ellip-
tic PDE models. Sparse direct solvers [2,4] use sparse factorization to compute
robust solutions. Iterative solvers, such as Krylov space based Conjugate Gra-
dients (CG) [3,5], attempt to solve systems faster by iteratively converging to a
solution. Many elliptic problems can be efficiently solved using domain decom-
position methods (DDM) by splitting the problem into smaller domains. DDM
may solve the arising systems or be used to precondition Krylov space iterative
methods, and the effectiveness varies with problem and decomposition.

When using an iterative method similar to CG, the number of iterations
needed to solve for a single right-hand side vector (RHS) depends on the condi-
tion number of the matrix. The condition number of a matrix is defined as:
δ(A) = ‖A‖2‖A−1‖2 [3]. In particular, the number of iterations needed for CG
to converge is O(

√
δ(A)) [8].

For symmetric systems of equations arising from finite discretization of a
second-order elliptic PDE on regular grids, the condition of the matrix is known
to be greater than O(h−2). Generally, h−1 equals n1/2 for two-dimensional (2D),
and n1/3 for three-dimensional (3D) grids. However, the condition number for
submatrices used may be better. Mansfield [9] demonstrates the condition num-
ber for the Schur complement is bounded by O(h−1) for the broad class of linear
systems arising from finite discretization of a second-order elliptic PDE on reg-
ular grids. SF uses this bound to fix the number of iterations for CG.

Hybrid solvers [6,7] use various combinations of direct and iterative meth-
ods. These hybrid solvers partition the matrix into submatrices linked by other
submatrices that correspond to separators in the graph representation, and the
resulting form may be similar to:⎡

⎣A11 0 AT
31

0 A22 AT
32

A31 A32 A33

⎤
⎦

⎡
⎣x1 = xs

1 + xd
1

x2 = xs
2 + xd

2

x3

⎤
⎦ =

⎡
⎣f1

f2
f3

⎤
⎦ . (1)

Sparse factorization or incomplete factorization of these submatrices are used to
compute a solution vector.

SF is related to our earlier work, Booth, Chatterjee, Raghavan, & Frasca. [6],
which uses Eq. 1, and we refer to this method as DI. In DI, sparse Cholesky is
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applied to A11 and A22, incomplete Cholesky to the submatrix corresponding to
the separator, and A31 and A32 remain unfactored. After factorization, DI applies
direct forward/backwards solves to find xd

1 and xd
2, and uses preconditioned CG

to solve for x3. Finally, DI uses forward/backward solves to find xs
1 and xs

2.
SF uses DI’s framework, and provides a new formulation by expanding A33 and
using factorization on A31 and A32.

3 Substituted Factorization Formulation

In this section, we present our alternative direct method known as substituted
factorization (SF ). For our method, we consider a sparse linear system Ax = f ,
where A is a n × n sparse symmetric positive definite matrix (A ∈ R

n×n),
f ∈ R

n×1, and x ∈ R
n×1. We wish to solve for x, and we rely on a graph

representation of the sparse matrix A to construct a tree-structure. In this graph
representation, each row/column represents a node and an undirected edge exists
iff A(i, j) �= 0. Additionally, self edges, i.e., A(i, i) �= 0, are removed.

Nodes in the graph are split into two disconnected sets of nodes (Ω0 and
Ω1) and a small set of nodes (Λ0) that separates them. Λ0 is commonly called a
separator and Ωis the domains. In a tree-structure, each separator is the parent of
two domains. These domains can be split recursively. When done recursively, the
resulting tree has leaf nodes of disconnected domains and internal parent nodes
of separators. This tree-structure may impose a new ordering for the sparse
matrix A by numbering the nodes corresponding to separators after those of
their children. This ordering is known as nested dissection (ND) [10,11].

By splitting the graph twice and reordering, we rewrite A and its associated
Cholesky factorization as follows:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 AT
31 AT

71

A22 AT
32 AT

72

A31 A32 A33 AT
73

A44 AT
64 AT

74

A55 AT
65 AT

75

A64 A65 A66 AT
76

A71 A72 A73 A74 A75 A76 A77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

&

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

L11

L22

L31 L32 L33

L44

L55

L64 L65 L66

L71 L72 L73 L74 L75 L76 L77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where A = LLT . We divide the submatrices of the sparse Cholesky into two
groups, namely domains and separators.

The domain (i ∈ { 1, 2, 4, 5}) and their corresponding off-diagonal entries
can be written as Aii = LiiL

T
ii and Aji = LjiL

T
ii where j is an index of a separator

such that j ∈ { 3, 6, 7}. Additionally, the diagonal entries corresponding to our
domains will be relatively sparse compared to our separators after factorization.
Therefore, we perform sparse Cholesky on both the diagonal and off-diagonal
domain submatrices.
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The separators (i ∈ { 3, 6, 7}) submatrices have the following equations

A73 = L71L
T
31 + L72L

T
32 + L73L

T
33, (2)

A76 = L74L
T
64 + L75L

T
65 + L76L

T
66, (3)

A77 = L71L
T
71 + L72L

T
72 + L73L

T
73 + L74L

T
74 + L75L

T
75 + L76L

T
76 + L77L

T
77.(4)

Because these submatrices become dense during factorization, we avoid comput-
ing their factorization. The matrices, LjjL

T
jj , for the top levels are commonly

referred to as the Schur complement, and denote them as Ajj . To avoid factor-
ization, we solve each Ajj with associated right-hand side using a fixed number
of iterations of CG guarantee to converge, thus making our method direct.

Traditional direct methods that implement sparse Cholesky have a forward
and backward stage when solving for a given right-hand side (f). During the
forward and backward stages, an updated right-hand side must be formed for
each of the separating pieces, i.e., j ∈ {3, 5, 7}. These new right-hand sides
(denoted f̂j) need updates by all Lj,i where i corresponds to all node underneath
j in the tree-structure, e.g., f̂3 = f3 − L31L

−1
11 f1 − L32L

−1
22 f2. However, we save

operations by not finding the factorization LjjL
T
jj and its corresponding off-

diagonal entries for the top levels in our tree-structure. Instead, SF keeps the
following equations from (2) and (3) as:

E73 = L73L
T
33 = A73 − L71L

T
31 − L72L

T
32, (5)

E76 = L76L
T
66 = A76 − L74L

T
64 − L75L

T
65, (6)

and substitutes them when forming the associated right-hand side for A77.
Using substitution, we can write the solution to the set of linear equations

in two sets, namely forward and backward. The forward set is defined as:

xf
1 = L−1

11 f1,

xf
2 = L−1

22 f2,

xf
4 = L−1

44 f4,

xf
5 = L−1

55 f5,

xf
3 = A33

−1
f̂3,

xf
6 = A66

−1
f̂6,

x7 = A77
−1

f̂7,
where

f̂3 = f3 − L31x
f
1 − L32x

f
2 ,

f̂6 = f6 − L64x
f
4 − L65x

f
5 ,

f̂7 = f7 − L71x
f
1 − L72x

f
2 − L74x

f
4 − L75x

f
5 − E73x

f
3 − E76x

f
6 .

Using this forward set, the backward set is defined as:

x1 = L−T
11 (xf

1 − LT
31x3 − LT

71x7), x5 = L−T
55 (xf

5 − LT
65x6 − LT

75x7),

x2 = L−T
22 (xf

2 − LT
32x3 − LT

72x7), x3 = xf
3 − A33

−1
ET

73x7,

x4 = L−T
44 (xf

4 − LT
64x6 − LT

74x7), x6 = xf
6 − A66

−1
ET

76x7.
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4 Cost Analysis

In this section, we provide the cost analysis in terms of the number of multiplica-
tion operations (Ops) and in terms of number of nonzeros (NNZ) needed by SF .
This analysis focuses on applying SF on the model k ×k finite-difference 5-point
stencil problem. We will examine the setup cost, i.e., the cost of factorization,
and solve cost for SF compared to sparse Cholesky with ND ordering (Chol).
The setup and solve cost are denoted as Γ i

setup and Γ i
solve where i is either SF or

Chol. Additionally, we provide a comparison of the cost to solve multiple RHS,
and provide a break even point between the two methods in terms of the number
of RHS. Lastly, we provide the number of nonzeros needed to store the partially
factorization in SF (Ψ).

Setup Cost. We first consider the setup cost of Chol and SF . The setup cost is
defined as the number of Ops during factorization. The setup cost to apply sparse
Cholesky to a matrix A approximately equals 1/2

∑n
i=1 nnz(i)2 where nnz(i) is

the number of nonzeros in the i th column of L, such that A = LLT [2]. When A
is reordered with ND, George [10] provides that ΓChol

setup ≈ 267
28 k3 − 17k2 log2 k +

847
28 n2 + O(k log2 k).

SF has the same number of Ops as the previous analysis minus the cost to
factor the top level “+” separator which accounts for A33, A66, and A77. The
cost to factor the “+” separator is

∑3k/2
i=k i2 − 1

2

∑k
i=1 i2 = 23

24k3 + 7
8k2 + 1

6k.
Therefore, our setup cost equals:

ΓSF
setup ≈ 1441

168
k3 − 17k2 log2 k +

235
8

k2 + O(k log2 k). (7)

As our result, setup cost for SF has approximately 10% fewer Ops than Chol .

Solve Cost. When solving using Chol , the number of Ops is on the order of
the number of nonzeros. CG with no precondition requires O(n1.5) Ops to solve
the model problem [8]. George and Liu [2] state ΓChol

solve = 31/4k2 log2 k + O(k2).
SF performs sparse Cholesky on the leaf nodes and a fixed number of CG

steps on the parent nodes. These parent nodes correspond to the Schur comple-
ments, and these nodes have a bounded condition number less than that of the
whole system. For the model problem, the condition number is O(h−2), and the
condition number for our Schur complement will be less than O(h−1) ≈ k [9].
Additionally, we know that CG will theoretically converge to a solution in

√
δ(A)

with exact arithmetic [8]. Using these two facts, we set our fixed number of iter-
ations to γ = β

√
k where β > 0 is some unknown constant. For SF , the cost for

a solve is
ΓSF

solve =
31
4

k2 log2 k + (c − 2)k2 + 2βk5/2 (8)

where c is the constant from ΓChol
solve .

Number of Solves. Despite slightly more Ops during solving, SF has fewer
Ops for factorization and solving some m RHS. The m is easily seen to be
23
24k3 ≈ 2βk5/2m, which translates to m ≈ 23

48β k1/2. In Fig. 1, the number of
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right-hand side vectors solved is plotted that can be solved while costing less
than or equal to a direct method using sparse Cholesky. Each line represents the
variation due to the number of iterations needed.

Fig. 1. Number of right-hand sides solved

Number of Nonzeros. SF has the same number of nonzeros as full sparse
Cholesky minus the nonzeros to store L33 ,L66, and L77. The number of nonzeros
in a full sparse Cholesky is ΨChol ≈ 32

4 k2 log2 k − 73
3 k2 + 24k log2 k + O(k) [10].

The reduction of nonzeros would be equal 7
4k2 resulting in

ΨSF ≈ 32
4

k2 log2 k − 271
12

k2 + 24k log2 k + O(k). (9)

For k = 1000, the number of nonzeros would reduce by approximately 5.9%.

5 Experiments and Evaluation

In this section, we present numerical experimentation of SF . SF is constructed
using DSCPACK [12] for factorization, and using WSMP [13] for CG. The code
is constructed using C and FORTRAN, and compiled using gnu 4.7.2 compilers
with O3 optimization. GotoBLAS2 [14] is used by all solvers. We compare Ops
to DSCPACK (DSC), the direct symmetric WSMP, and the hybrid solver from
Booth et al. [6] (DI). However, we only compare times against DSC and WSMP,
since DI is coded in MATLAB. Additionally, we compare SF against WSMP for
preconditioned CG.

All measurements are taken on a Linux SUSE 12 system. This system con-
tains a 2nd generation Intel i7 processor and 2 GB of DDR3 DRAM. All runs
are done in serial with hyperthreading and Turbo-Boost turned off.

Test Suites. Our experimentation evaluates SF over a collection of 2D and 3D
problems. Test matrices are divided into two test suites. Test suite A comprises
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Table 1. Test suite A

Matrix n nonzeros

2DL300 90,000 448,800

2DL500 250,000 1,248,000

2DL700 490,000 2,447,200

Table 2. Test suite B

Matrix n nonzeros

3DL40 64,000 401,896

3DL50 125,000 802,376

Brick20 13,860 1,912,944

Brick30 44,640 6,500,784

of k × k 5-point stencil Laplacian problems (2DL) of varying size. Test suite A
evaluates the analysis of the previous section using perfect separators similar to
those in the analysis. Test suite B contains 3D problems, and uses separators
found using a multi-level partitioning scheme from WSMP. Test suite B com-
prises of 3D regular grid Laplacian problems (3DL) and stiffness matrices for a
brick in 3D using 20 node serendipity elements and the equations of linear elas-
ticity (Brick). Brick is generated using ex10.c from PETSc [15]. These matrices
are found in Tables 1 and 2.

Metrics for Evaluation. We evaluate methods in terms of the number of Ops
and time to factorand solve (T). When comparing Ops, we will commonly use
relative improvement (ROps(x)) to compare method x to WSMP, and compare
the time for setup and solving m RHS for method x to WSMP as RTime(x),

i.e., ROps(x) = Ops(WSMP)−Ops(x)
Ops(WSMP) , RTime(x) = T(WSMP)−T(x)

T(WSMP) .

Evaluation of Test Suite A: 2D Laplacian Problems. We evaluate our cost
analysis of the 2D stencil problem in Figs. 2 and 3 using 1 and 20 solves. For this
evaluation, we assume that β is 1/2 and therefore use the fixed number of 1/2

√
k

CG iterations. For all RHS, the solution found with SF has error on the same
order of magnitude as WSMP. We notice in Fig. 2 that SF reduces the number
of Ops similar to predicted in the analysis section by approximately 10%. The
slight increase of reduced Ops with size comes from Ops reduction during solve.
This growing reduction with problem size demonstrates the usefulness of SF for
large problems, and this is further demonstrated in Fig. 3. Figure 3 demonstrates
the Ops for solving 20 RHS will be better for SF on larger problems than Chol .
Note from our analysis and assumption of β, the number of RHS while costing
less is ≈ .96

√
k.

In further investigation, we examine the execution time for solving 1 and 20
RHS in Figs. 4 and 5. We first notice SF ’s improvement over other methods
when performing one solve and how SF ’s improvement increases with the size
of the problem from 21% to 31%. Even when solving 20 RHS, our method
outperforms sparse Cholesky when k > 500.

Additionally, we examine the memory reduction for using SF compared to
sparse Cholesky. In particular, we consider the metric

RNNZ(x) =
NNZ(WSMP ) − NNZ(x)

NNZ(WSMP )
(10)
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Fig. 2. ROps 1RHS Fig. 3. ROps 20RHS

Fig. 4. RTime 1RHS Fig. 5. RTime 20RHS

in order to validate our memory analysis. The resulting RNNZ for test suite A
is found in Table 3. We observe that the number of nonzeros reduced decreases
as the grid size increases.

Table 3. The relative decrease in the number of nonzeros need by SF compared to
sparse Cholesky.

Matrix 2DL300 2DL500 2DL700

RNNZ 7.80 % 6.70 % 6.10 %

Evaluation of Test Suite B: 3D Laplacian and Brick. Our second set
of problems represents a key area, because they aremore difficult for iterative
methods, e.g., CG, and ND using multi-level partitioning schemes may have
larger separators. For this set, the fix number of CG iterations is set to 1000
based on observed condition number, however we allow CG to stop if the relative
error of the solution is below O(10−12). All the solutions have error similar in
magnitude to Chol .

Figures 6 and 7 present the relative time for SF and DSC relative to WSMP
for 1 and 50 RHS. We first notice the execution times are better than those from
test suite A. The execution time is greater than 40% for all matrices solving
once. This better performance is in part due to the larger Schur complement in
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Fig. 6. RTime 1 RHS Fig. 7. RTime 50 RHS

the top levels of our tree. For Brick30, the top level separator dimension is 3960
where the largest 2D top level separator dimension is 700.

Additionally, we observe that 3D problems allow SF to solve a greater number
of RHS while costing less than sparse Cholesky. In Fig. 7, SF solves 50 RHS
before costing more than sparse Cholesky, and demonstrates a trade-off between
the number of solves and the number of nonzeros.

Experimentation with Iterative Solvers. SF outperforms DI which is shown
to be better for multiplesolves than precondition CG in Booth et al. [6]. Here we
demonstrate that SF does better than preconditioned conjugate gradients with
level-0 incomplete (PCG). We demonstrate SF outperforms PCG for both test
suites reordered with reverse Cuthill-McKee (RCM) by examining the relative
time improvement over PCG, i.e.,

RTimeI(x) =
T (PCG) − T (x)

T (PCG).
(11)

In Fig. 8, the RTimeI for test suite A is given for 1 RHS, and we notice that the
savings can be as high as 57.9 %. In Fig. 9, the RTimeI for test suite B is given
for 1 RHS, and we notice that the savings are not as large as only 14.9 %. For
both test suite A and B, the relative time improvement decreases as the size of
the problem increases.

Fig. 8. RTimeI 1 RHS Test Suite A Fig. 9. RTimeI 1 RHS Test Suite B
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6 Substituted Factorization Contributions

SF provides two improvements from the work Booth et al. [6]. First, we con-
struct a direct method by bounding the number of iterations and using CG.
Second, we provide a new formulation that allows for the factorization of the
off-diagonal entries, thus removing the need for both forward/backward solves
at multiple steps. Additionally, the off-diagonal entries allow for our method to
expand terms related to A33 from Eq. 1 into submatrices that will be solved
using our derived substitutions. This expansion reduces Ops and provides better
matrix conditioning as observed in the experimental section.

7 Conclusions

Finding the most efficient solutions of sparse linear systems arising from finite
discretization of second-order elliptic PDEs is very important to the performance
of scientific codes. We have developed substituted factorization (SF) that finds
solutions with the robustness of direct methods in less time than a direct solution
based on sparse Cholesky factorization for a given number of solves. Specifically,
the number of floating-point operations during factorization will reduce by 10%
for the k × k finite-difference problem. Additionally, experiments on our test
suites demonstrate that execution time may reduce by as much as 48.9% on 3D
problems and 31.7% on our 2D problems. SF method provides a needed method
between sparse Cholesky and CG in terms of the number of solves needed to
amortize factorization or preconditioning cost.
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Abstract. To solve sparse systems of linear equations,multifrontal meth-
ods rely on dense partial LU decompositions of so-called frontal matri-
ces; we consider a parallel asynchronous setting in which several frontal
matrices can be factored simultaneously. In this context, to address
performance and scalability issues of acyclic pipelined asynchronous fac-
torization kernels, we study models to revisit properties of left and right-
looking variants of partial LU decompositions, study the use of several
levels of blocking, before focusing on communication issues. The gen-
eral purpose sparse solver MUMPS has been modified to implement the
proposed algorithms and confirm the properties demonstrated by the
models.

1 Introduction

Multifrontal methods [2] are widely used to solve sparse systems of equations
of the form Ax = b, where A is a sparse matrix, b is the right-hand side and x
the unknown. They cast the factorization of the sparse matrix A into a series of
partial factorizations of smaller dense matrices, called fronts, or frontal matri-
ces. The dependency graph between those partial dense factorizations is a tree
(the assembly tree), processed from the leaves to the root, such that the Schur
complement so called contribution block (CB) produced after the partial factor-
ization of a front is used at the parent node to build the front of the parent in a
so-called assembly operation, before the parent node is in turn partially factored.

In this paper, we focus on the dense factorization kernels used in multifrontal
methods for unsymmetric matrices where an LU decomposition is applied. For
more information on multifrontal methods, we refer the reader to [11,15]. Much
work has been done and is being done by the dense linear algebra community
on LU factorizations, using for example static 2D block-cyclic data distribu-
tions [8], sometimes 2.5D communications [19], or DAG-based tiled algorithms
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 156–169, 2015.
DOI: 10.1007/978-3-319-17353-5 14
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in both shared memory [1,7] and distributed-memory environments [5]. Recent
asynchronous approaches often rely on a task scheduling engine [4,6] and on
fine-grain parallelism for an efficient utilization of the computing resources. Most
often, the choice of using an asynchronous approach with fine-grain parallelism in
both directions (2D) implies relaxed pivoting strategies (such as tournament piv-
oting, typically used in communication-avoiding algorithms [13]). This is because
neither full rows nor full columns are available to test for pivots stability. This
is especially the case in distributed-memory environments, with the exception
of the (synchronous) ScaLAPACK library [8].

In multifrontal-based, asynchronous, distributed-memory sparse factoriza-
tion methods, many dense frontal matrices may be factorized simultaneously.
Processes might thus be involved in more than one dense factorization, depend-
ing on dynamic scheduling decisions based on current CPU load and memory
usage of each process and this is thus quite difficult to predict. We are also con-
cerned with numerical accuracy and thus want to maintain standard numerical
threshold pivoting [10] even in a distributed-memory context, which is quite a
unique feature for a general purpose distributed-memory solver. In this context,
a one-dimensional distribution of the dense factorization of fronts makes sense
and has been adapted [3]. We are thus interested in analyzing and pushing the
limits of this one-dimensional distribution. As we will show, analytical mod-
els can be complex because of the discrete nature of the phenomena. We have
therefore also developed simulator that models parallel executions for standard
blocked variants (so-called left and right-looking [12]) of the dense factorization
of multifrontal fronts. We note that our objective here is to model the individual
dense multifrontal kernels and not an entire sparse multifrontal factorization,
although the findings will have an impact on the overall peformance of a sparse
multifrontal factorization. Although cyclic pipelined factorizations have been
modeled in the past [9], we are not aware of a clear illustration of the natural
and intuitive properties of left-looking and right-looking approaches in a context
comparable to ours, with acyclic factorizations, and where the process in charge
of factorizing rows of the matrix does it either in an LL or RL way whereas other
processes always perform their updates as soon as possible in a RL manner. For
ScaLAPACK which relies on a 2D block cyclic distribution, right-looking is pre-
ferred over left-looking [8]; however, with our 1D technique, our conclusion is
different, as will be illustrated in this paper.

The paper is organized as follows. In Sect. 2, we first study the theoretical
behaviour of left-looking and right-looking variants for both one and two levels
blocked algorithms. In order to better reveal and illustrate some of the intrinsic
properties of those algorithms, we first consider a network with infinite bandwith.
Communication models are then studied in more detail in Sect. 3 where we also
analyse buffer memory requirements, cost of asynchronous one-to-many commu-
nications and impact on the blocked variants. This analysis has been used to
modify the general purpose distributed-memory solver MUMPS [3] and to illus-
trate in Sect. 4 the benefits of the proposed approach in a distributed-memory
environment.
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2 Modeling Left-Looking and Right-Looking
Computations

We consider a distributed-memory dense partial factorization relying on a dyna-
mic asynchronous pipelined algorithm. A one-dimensional (1D) data distribution
is used to allow for efficient pivot searches without synchronization between
processes. In order to partially factorize the first npiv rows/columns of a front
of order nfront using nproc MPI processes, one process designated as the master
will handle the factorization of the npiv rows and the nproc-1 other processes
(called workers) will manage the update of the so called CB rows of size ncb =
nfront−npiv (see Fig. 1). The master uses a blocked LU algorithm with threshold
partial pivoting: pivots are checked against the magnitude of the row but pivots
can only be chosen within the first npiv ×npiv block. After factorizing a panel of
size npan, the master sends it to the workers in a non-blocking way, along with
pivoting information. The master can immediately update its remaining non-
factored rows (right-looking approach) or postpone this to when the next panel
will start (left-looking approach). In parallel, the workers update all their rows at
each panel reception. Thus, the behaviour of the workers always follows a right-
looking scheme. The factorization operations rely on BLAS1 and BLAS2 routines
inside panels, whereas update operations (both on master and workers) rely on
BLAS3 routines, where TRSM is used to update columns of newly eliminated
pivots and GEMM is used to update the remaining columns. For the sake of
clarity, we consider that CB rows are uniformly distributed over the workers.

Fig. 1. Partial factorization of a front of order nfront, with npiv variables to eliminate
by panels of npan rows, and ncb = nfront − npiv rows to be updated.

We have first modeled the factorizations analytically. Figure 2 shows the con-
text and main notations. We have used the MAPLE software to help in this task,
due to the complexity of the equations arising when solving problems such as
finding optimal parameters of the factorizations.



Modeling 1D Distributed-Memory Dense Kernels 159

Equation 1 represents the number of floating-point operations necessary for
the factorization of a panel of k rows and k + n columns.

Wf(k, n) →
(

2
3

)
k3 +

(
n − 1

2

)
k2 −

(
n +

1
6

)
k (1)

This is the result of the sum of the floating-point operations of the factoriza-
tion of each row:

Wf(k, n) →
0∑

i=k−1

i + 2 ∗ i ∗ (i + n) (2)

Fig. 2. Illustration of the factorization of a panel of size k× (k + n) on the master and
the corresponding update on a worker. The light and dark gray areas represent the
pieces of the front on a worker on which a TRSM and GEMM are applied respectively.

Equation. 3 represents the number of floating-point operations necessary for
the update of a block (factorization of the L factors and update of the contribu-
tion part) of m rows and k + n columns by a panel of k rows and k + n columns
(we thus assume a right-looking algorithm).

Wu(m,n, k) → WTRSM (m, k) + WGEMM (m,n, k) (3)

with
WTRSM (m, k) → mk2 (4)

and
WGEMM (m,n, k) → 2mnk (5)

– Given a GFlops/s rate β for update operations (TRSM and GEMM), MUi,
the time of update related to the ith panel by the master is given by:

MUi = β × Wu (npiv − min (npiv , i ∗ npan) ,npiv + ncb− ,

min (npiv , i ∗ npan) min (npan,npiv − (i − 1)npan)) (6)
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– SUi, the time of update related to the ith panel by a worker is given by:

SUi = β × Wu
(

ncb
nslave

,npiv + ncb − min (npiv , i ∗ npan) ,

min (npan,npiv − (i − 1)npan)
)

(7)

– Given a GFlops rate α for the panel factorization (including some BLAS2
operations), MFi+1, the time of factorization of the (i + 1)th panel (if it
exists) by the master is given by:

MFi+1 = α × Wf
(

min
(
npan,npiv − npan min

(
i,floor

(
npiv
npan

)))
,

npiv + ncb − (i + 1) ∗ npan
)

(8)

The total factorization time of a RL factorization is then given by Eq. 9:

TRight = MF1 +
ceil( npiv

npan )∑
i=1

max (SUi,MUi + MFi+1) (9)

An algorithm where the master uses an LL factorization can be modeled in
a similar way. Furthermore, communication costs can also be taken into account
in Formula 9 in a simple manner. At the price of complicated formulas it is
then possible with the help of Maple to build analytical formulas to express
some properties (efficiency, speed-up, . . . ). However, we have preferred to con-
sider the implementation of a simpler Python simulator for distributed-memory
factorizations. Our simulator is naturally able to take into account varying com-
munication and computation models and to produce Gannt-charts of the fac-
torization. In order to illustrate some intrinsic properties of the algorithms that
do not depend on the network bandwidth, we consider, to start with, that com-
munications take place on a network with infinite bandwidth γ and that com-
putations take place at a constant GFlops rate (α = β). Because the messages
sent are always reasonably large, we consider that the network latency is always
negligible.

Right-Looking and Left-Looking Algorithms. In order to better charac-
terize the main properties of our algorithms, we consider here a situation where
the number of floating-point operations (flops) on the master is equal to that
of each worker. Figure 3 represents the Gantt charts for nfront = 10000 and
nproc = 8 (in this case npiv = 2155 to equilibrate flops) using both right-looking
(RL) and left-looking (LL) blocked factorizations on the master, while workers
perform their updates at each received panel, in a right-looking way. In each
subfigure, the Gantt chart on the top represents the activity of the master and
the bottom one that of a single worker. Because all workers theoretically behave
the same way, only one worker is represented in the Gantt chart. Figure 3(a)
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Fig. 3. Gantt chart of the RL and LL algorithms. Factorization in green, updates in
blue and idle times in red (Color figure online).

clearly illustrates the weakness of the RL approach. Given that npiv balances
the total amount of work (flops) between master and workers, one would expect
all processes to finish at the same time. However, the workers finish much later
because they have idle phases that sum up to the gap between master and
workers completion times. When computing the first panels, the master process
performs more update operations than the workers, which makes them become
idle. The amount of update operations relative to each panel decreases faster on
the master process than on the workers, and idle times decrease. When panels
get smaller, the master process performs less operations than the workers and
sends panels to the workers quicker than the workers manage to perform the
corresponding updates; the workers then work continuously, desperately trying
to catch up with their delay. As the consumption of factored panels is critical on
the workers, the master should produce panels as soon as possible, delaying its
own updates as much as possible. A solution consists in applying on the master
a left-looking algorithm instead, resulting in the perfect Gantt chart of Fig. 3(b).
In the following subsections, we compare the behavior of both variants.

Load Balance and Scalability. Although the ratio between npiv and nfront
is mainly defined by the sparsity pattern of the matrix to be factored, we will
show at the end of this section that we have some leeway to modify this ratio;
in Fig. 4(a), we study the influence of npiv for a fixed nfront. We distinguish
three parts, depending on npiv. In the first part, for npiv under a certain value
npiv0 (npiv0 ≈ 5000), LL and RL algorithms behave exactly the same: workers
are the bottleneck because they have much more work than the master. For
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npiv > npiv0, LL becomes better than RL: npiv0 is the value above which the
time to apply the update (RL) of the first panel and factorize the second one on
the master becomes bigger than time to apply the update associated to the first
panel on the worker. Both variants reach their peak speed-up but for different
values of npiv. Then, for large values of npiv, the master has much more work
to do than the workers and becomes the bottleneck, leading to an asymptotic
speed-up of one.

Fig. 4. Influence of npiv on LL and RL algorithms with 2 (left) and 4 (right) processes:
speed-ups with respect to the serial version (nfront = 10000).

When nproc is larger — Fig. 4(b), the maximum speed-ups of RL and LL
tend to get closer. LL reaches its maximum speed-up when all processes (master
and worker) get the same amount of computations Flops equilibrium (eqFlops),
so that neither the master nor the workers are bottlenecks to each other. On
the other hand, RL reaches its maximum speed-up when all processes (master
and worker) are roughly assigned the same number of rows Rows equilibrium
(eqRows). This latter approximation relies on the fact that this keeps workers
always busy, leading to a speed-up at least equal to nproc − 1.

The previous theoretical model showed interesting results. However, in order
to benefit from them, we must first ensure that some fundamental hypotheses
hold true in practice. We show here the observed discrepancies and the algo-
rithms and techniques we applied to fix or reduce them.

Generalization to Multiple Levels of Panels and to Arbitrary Front
Shapes. The previous models showed that front factorizations are efficient when
the ratio npiv

nfront respects eqRows and eqFlops for RL and LL, respectively. In order
to improve locality and BLAS3 effects on the master, recursive algorithms can be
used [20]. However, at the first level of recursion, the update of the second block
with the first one would take a significant amount of time, possibly making the
workers idle for a huge period. The adopted solution consists in using multiple
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levels of blocking (in our case, two levels), which means computing an external
panel using internal ones. Because the GFlops rate on the master may still be
slightly lower than on the workers, corresponding to a smaller value of α than β
in the models, one must slightly modify the eqFlops ideal npiv

nfront ratio (for LL)
in order to obtain flopsmaster

GFlops ratemaster
= flopsworker

GFlops rateworker
.

Another issue is that in practice, the multifrontal method results in frontal
matrices that often have an npiv

nfront ratio larger than the ideal one, especially
for large nproc. Fortunately, assembly trees are not rigid entities and can be
reshaped, for example using two standard operations known as amalgamation
and splitting. Amalgamation consists in merging two related fronts into a single
one (a child and its parent, usually). It has the advantage of generating larger
fronts, which increases factorizations efficiency, sometimes at the cost of extra
fill-ins, inducing more computations and memory requirements. Contrarily, split-
ting consists in cutting a front into a so called split chain of fronts such that in
the chain, the Schur complement of a child is considered as a new, parent, front.
We note that remapping may have to be done between two successive fronts in a
chain, and that, although we consider nproc constant in our models and exper-
iments, dynamic scheduling strategies may imply variations of nproc between
two successive pipelined factorizations. Lost processes can be assigned to other
fronts in other subtrees; vice versa, new processes can be assigned to parent
fronts in the chain. In both cases, the shape of the fronts and the length of the
chain should be modified accordingly, with the aim to obtain a correct balance
of the work between master and workers in all intermediate fronts (except, pos-
sibly, for the last one). Simple models of such chains were discussed in [16] and
have been revisited in [17]. In Fig. 5, we report the simulated speed-ups with
varying npiv when this generalized approach is applied, with eqRows for RL and
eqFlops for LL. For both RL and LL, the speed-ups are much less sensitive to

Fig. 5. Simulated generalized 1D fac-
torization (nfront =10000,nproc =8)
with varying npiv. LL (resp. RL) uses
eqFlops (resp. eqRows).

Fig. 6. Amount of data sent but not
ready to be received using RL an LL
algorithms with eqFlops (nproc =8,
nfront =10000, npiv =2155).
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npiv (compared to Fig. 4) because each intermediate 1D factorization is now
well-balanced. RL speed-ups are not as good as LL ones because of idle times
on the master. When targeting an entire sparse matrix factorization rather than
focusing on a single front or a chain of fronts, new kinds of load balancing issues
arise, which are handled in our context study by a dynamic and asynchronous
scheduling approach, which adapts to the load of the processes.

3 Modeling Communications

Memory for Communication. Assuming that sends are performed as soon
as possible, Fig. 6 represents the evolution of the memory utilization in the send
buffer for LL and RL factorizations, both with eqFlops. This send buffer is the
place in memory where panels computed by the master are temporarily stored
(contiguously) and sent using non-blocking primitives; when the workers start
receiving, send buffer can often be freed. This allows for an overlap of computa-
tions and communications, and allows the main process to manage its memory
independently of the advancement of communications. The memory utilization
in the send buffer then represents the volume of data that has been sent and that
is not received yet. Its size needs to be controlled and limited: a full send buffer
implies in practice that the sender will wait for receptions to occur before being
able to perform a new send. Most of the time, the buffer in the RL variant only
contains one panel, immediately consumed by the workers; When master com-
putations shrink (for the last panels), the master rapidly produces many panels
that cannot be consumed immediately. In contrast, the LL variant always has
enough panels ready to be sent. This is because RL with eqFlops is not able
to correctly feed the workers, whereas the LL does. Second, the peak of buffer
memory used for RL is 36 MB while it is 41 MB for LL. The scheduling advan-
tage of LL thus comes at the price of a higher buffer memory usage. However,
this additional memory becomes significant in comparison to the total memory
used by the master process for the factorization (nfront ∗ npiv ∗ sizeof(double)
= 172 Mb). Send buffers may have a given limited size in practice, smaller than
the peaks from Fig. 6 (36 MB and 41 MB for RL and LL variants, respectively).
If only a few panels can fit in buffer memory, the master must wait when the
send buffer is full, leading to some performance loss. Instead, we prefer to copy
new panels to the send buffer only when space is available in the buffer, indepen-
dently of the fact that many more panels may have been computed. This study
also shows that, in order to control buffer memory, messages should not be sent
as soon as possible (but should still be sent early enough so that receivers do
not have to wait).

Limited Bandwidth and Asynchronous Collective Communications.
We observed experimental results to be very similar to those of the model, as long
as the ratio between computations and communications remains large enough
(nfront relatively large compared to nproc). Strong scaling, i.e., increasing nproc
for a given nfront, globally increases the amount of communications while keeping
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the amount of computations identical. The master process sends a copy of each
panel to more workers, decreasing the bandwidth dedicated to the transmission
of a panel to each worker: the maximal master bandwidth is divided by nworkers
in this one-to-many communication pattern, making the communication of the
panels from master to workers a possible bottleneck.

Many efficient broadcast implementations exist for MPI [21], and asynchro-
nous collective communications are part of the MPI-3 standard. However the
semantic of these operations requires that all the processes involved in the col-
lective operation call the same function (MPI IBCAST). This is constraining for
our asynchronous approach which is such that any process, at any time, receives
and treats any kind of message and task: we want to keep a generic approach
where processes do not know in advance if the next message to receive in the main
reception buffer is a factored panel or some other message. Furthermore, we need
an asynchronous, pipelined broadcast algorithm which means that a binomial
broadcast tree would not be appropriate since once a process has received a panel
and forwarded it, its bandwidth will be needed to process next panel. For these
reasons, we have designed our own asynchronous pipelined broadcast algorithm
based on MPI ISEND calls using a classical w-ary broadcast tree, as illustrated
in Fig. 7(b). The Gantt charts of Fig. 7 show the impact of the communica-
tion patterns with limited bandwidth per process, using our Python simulator.
With the baseline communication algorithm, the workers are most often idle,
spending their time waiting for the communications to finish, before doing the
corresponding computations, whereas the tree-based (here using a binary tree)
has a perfect behaviour: the Gantt chart of the worker is only slightly translated

Fig. 7. Influence of the IBcast communication pattern with a limited bandwidth per
proc (γ=1.2 Gb/s, α=10 GFlops/s) on LL algorithm with nfront = 10000, npan = 32,
nproc = 32 and npiv chosen to balance work (idle times in red) (Color figure online).
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in time (due to the time it takes to receive the first panel) and the remaining
communications overlap well with computations. When further increasing nproc
or with more cores per process, we did not always observe such a perfect overlap
of communications and computations, but the tree-based algorithm always led
to an overall transmission time for each panel of nfront×npan×w×logw(nproc)

γ , much

smaller than that of the baseline algorithm nfront×npan×(nproc−1)
γ . An IBcast-like

scheme is thus of great importance when the number of processes grows.

4 Preliminary Experimental Results

In order to study the left-looking and right-looking variants of the 1D pipelined
factorization algorithm from Sect. 2 on arbitrary fronts, we generalized the asyn-
chronous factorization algorithms available in the MUMPS solver [3] in order to
implement left-looking and right-looking variants with several levels of blocking.
We use a Sandy Bridge-based cluster with 4×8 core nodes (ada, from IDRIS) as
well as a Xeon-based SGI Altix ICE 8200 with 2 × 4 core nodes (hyperion, from
CALMIP) Intel BLAS (MKL) and MPI libraries are used and, because asyn-
chronous communications only progressed inside MPI calls, we use a progress
thread [14] to force MPI TEST calls every milisecond.

Figures 8(a) and 8(b) show the Gantt-charts of executions of a dense partial
right-looking LU factorization on a front of size nfront = 10000 with nproc =
8 MPI processes, with a number of pivots to be eliminated following eqFlops
and eqRows, respectively. We can see that Fig. 8(a) is very similar to what our
model predicted (See Fig. 3). Moreover, we can see on Fig. 8(b) that the fact of
respecting eqRows in the RL variant makes the workers wait much less than in
the eqFlops case, which confirms the observations made thanks to our models.

(a) eqFlops (b) eqRows

Fig. 8. Gannt-chart of execution of a dense partial right-looking LU factorization on
a front of size nfront = 10000 with nproc = 8 MPI processes, with a number of pivots
to be eliminated either respecting eqFlops (on the left) or eqRows (on the right), on a
shared-memory node (to validate the communication-less model).

Other experiments with real-life Gantt charts confirmed that eqRows is more
adapted to RL and eqFlops is more adapted to LL. However, and as mentioned
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before, due to the fact that computations on the master (that partly uses BLAS2)
are slower than on the workers, eqFlops (in case of LL) has to be slightly modified
and was replaced by eqTime, such that flopsmaster

GFlopsratemaster
= flopsworker

GFlopsrateworker
.

Table 1 confirms the interest of a tree-based pipelined IBcast algorithm. It
also illustrates the interest of using two levels of panels. In all cases, we used a
RL algorithm for internal panels, that was observed to be more efficient than
LL on small blocks. Also, and as predicted in the models, eqFlops (and eqTime)
led to bad results for RL; this is why we use eqRows in that table. Remark that,
although eqTime would have been better suited to LL, we used eqRows even for
LL in order to be able to compare the times of RL and LL on a front with the
same characteristics.

Table 1. Influence of IBcast and of double-blocking on the factorization time (seconds)
of a front, for RL and LL variants on the most external panels; “-” in column npan2
indicates that a single level of panels is used.

Machine nfront nproc (ncores) IBcast tree npan1 npan2 RL LL

ada 100000 64 (512) No IBcast 32 - 35.7 29.8

ada 100000 64 (512) depth 2 32 - 22.8 26.2

ada 100000 64 (512) binary 32 - 21.8 22.0

ada 100000 64 (512) binary 64 - 21.2 21.1

ada 100000 64 (512) binary 32 64 20.5 19.8

hyperion 64000 8 (64) binary 32 - 203 204

hyperion 64000 8 (64) binary 128 - 117 110

hyperion 64000 8 (64) binary 64 128 97 93

Table 2 shows the impact of the asynchronous broadcast algorithm on the
performance for a generalized frontal matrix with a binary IBcast tree when two
levels of panels are used. It is interesting to note that IBcast gains are larger when
more cores are used per process, showing that communications become more
critical in that case. When considering the factorization of an entire sparse matrix
in a limited-memory environment [16], more workers have to be mapped on each
front of the assembly tree. On 128 MPI processes of hyperion, on the factorization
of an entire sparse matrix arising from a 3D finite-difference Laplacian problem

Table 2. Influence of IBcast on hyperion with nfront =npiv =64000. Factorization
times in seconds.

Cores Cores/ MPI process Without With

64 1 1702 1341

512 8 1380 404
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on a 1283 grid, we observed a time reduction from 805 to 505 s thanks to IBcast
(see [17] for further results).

5 Conclusion

We modeled a dense asynchronous kernel for multifrontal factorizations, target-
ing large matrices and large numbers of cores. We studied both communication
and computation aspects. The approach allows for standard threshold numer-
ical pivoting, and can be integrated in a fully asynchronous environment with
dynamic, distributed schedulers. Such an environment is precisely the one of the
MUMPS solver [3], on which this work was shown to have a strong performance
impact.

In the future, we plan to further optimize multithreaded kernels (inside each
MPI process), and optimize the communication volume when remapping needs to
be done between two successive pipelined factorizations. Topology-aware broad-
cast algorithms [18] are also a promising approach to further improve the cost
of broadcasting factorized panels. Moreover, comparisons between models and
experiments of dense factorizations will allow us to improve the performance
results on full sparse multifrontal factorizations. Comparison with techniques
used in HPL1 would also be interesting.
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Abstract. HYDRA simulates a variety of experiments carried out at
the National Ignition Facility and other high energy density physics
facilities. It has packages to simulate radiation transfer, atomic physics,
hydrodynamics, laser propagation, and a number of other physics effects.
HYDRA has over one million lines of code, includes MPI and thread-level
(OpenMP and pthreads) parallelism, has run on a variety of platforms
for two decades, and is undergoing active development.

In this paper, we demonstrate that HYDRA’s thread-based load bal-
ancing approach is very effective. Hardware counters from IBM Blue
Gene/Q runs show that none of HYDRA’s packages are memory band-
width limited, a few come close to the maximum integer instruction issue
rate, and all are well below the maximum floating point issue rate.

Keywords: Large-scale simulations in CS&E · Multiscale and multi-
physics problems · Performance analysis

1 HYDRA - A Multi-physics Simulation Code

The goal of this paper is to introduce readers to a complex “multi-physics”
code, discuss some of the techniques used to improve performance, and use data
from hardware counters to provide insight into the bottlenecks controlling the
performance. We chose HYDRA [5,6], which is used to simulate experiments
conducted at the National Ignition Facility (NIF) [7] and other pulsed laser
facilities, as our test code. The laser deposits a large amount of energy in a
small volume, so HYDRA is focused on simulating the processes of high energy
density physics.

HYDRA is a “multi-physics” simulation code. Figure 1 shows the many physics
packages in HYDRA and their interconnections. HYDRA has characteristics sim-
ilar to other multi-physics codes at LLNL. It consists of over a million lines of
code, has run on a variety of platforms for two decades, and is still undergoing
active development. HYDRA runs a wide range of simulations and only a subset
of the physics packages are used in any given run.
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Physical processes modeled by the HYDRA code 

for ICF simulations 

Laser light 
Magnetic fields 

Burn products 

3D ray tracing 

Spherical DD 

raytrace

3D MHD Resistive 

General circuit model 

TN reactions 

Multi-group diffusion CP 

Free streaming neutron transport 

Monte Carlo transport of 

neutrons, gammas, 

charged particles 

Ion beams 

3D ray tracing 

Monte Carlo 

Radiation 

Single group diffusion 

Multi-group diffusion 

1D/2D multigroup  SN 

IMC 

Electrons 

Thermal conduction 

Multigroup  non-local 

Relativistic PIC (link) 

Atomic physics 

Analytic EOS 

Tabulated EOS 

Inline QEOS 

Tabulated LTE opacity 

TABOP 

Inline LTE & non-LTE 

XSN 

DCA NLTE 

Hydrodynamics 

Lagrange + ALE 

Automatic mesh motion 

Block structured mesh 

Reduced & enhanced 

Connectivity 

Shape generation lib. 

Isotropic strength 

Atomic mix model 

Ions 

Thermal conduction 

Fig. 1. HYDRA has many physics packages so that it can simulate a broad range of
experiments, including those performed on the National Ignition Facility Laser.

This is the first paper to present a performance analysis of HYDRA. Single-
physics codes may have a single loop which consumes over 90 % of the run time.
HYDRA and other multi-physics codes have dozens of “hot loops”, and the hot
loops change from one run to the next. Multi-physics codes use a program-
ming approach focused on portability and programmer productivity. Perfor-
mance is very important, but optimizations need to work for a variety of systems.
Modifying the code to increase the percentage of stride one accesses or enable
generic SIMD utilization is worthwhile, but tuning for a particular SIMD unit
is not.

HYDRA solves a set of coupled partial differential equations (PDEs) for
time-dependent fields on a grid in three spatial dimensions. A large number of
zones are often required to resolve small features. The temperature, density,
and velocity depend only on the spatial coordinates, but the radiation field also
depends on the photon energy. Simulations often use 100–200 energy bins so the
radiation field and opacity arrays may dominate memory usage. The equations
are solved using the method of operator splitting [2]. This essentially means
having one function call (or one loop nest) for each term in the PDEs.

There is synchronization between all MPI processes at the end of each oper-
ator. This approach is referred to as “bulk synchronous” programming [9]. Bulk
synchronous programs have loops which are much simpler than if all terms were
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evaluated in a single very large loop. This makes the code easier to write and
maintain. Each team member specializes in a few areas of physics and rarely
needs to look at code related to other physics packages.

The operators in HYDRA are applied to full domains and the arrays they
operate on are large compared to cache. That means each operator pulls its input
arrays from DRAM into the cache. It then performs calculations, and stores the
updated arrays back to DRAM. Most fields are used by multiple operators, so
they may make multiple round trips between DRAM and cache every time step.
Operators using iterative methods may pull arrays into cache multiple times.
A system needs to have enough memory bandwidth to fetch arrays in a time
short compared to the compute time for a single operator, not the compute time
for a whole time step.

2 HYDRA Characterization

HYDRA uses a block structured mesh. The mesh has one or more user blocks
which correspond to major components of the object being simulated. For exam-
ple, the capsule might be the first user block and the hohlraum wall the second
user block in a NIF simulation. User blocks have curvilinear coordinates and a
regular 3D grid topology. This is sometimes referred to as an “ijk grid”. There is
a one-to-one match of faces on adjacent user blocks. Most zones are surrounded
by exactly 26 other zones. The number of neighboring zones may be more or less
than 26 at the corner of a user block (“enhanced” and “reduced” connectivity).
HYDRA uses domain decomposition of the spatial grid to implement MPI par-
allelism. User blocks are decomposed into multiple ijk MPI domains.

All major physics packages also have thread-level parallelism. In the case of
hydrodynamics and some other packages, threading is over domains. If there are
4 hardware threads available per MPI process, the user requests 4 domains per
process and one thread handles each domain. This threading is implemented via
OpenMP directives and is done at a level high enough that OpenMP thread syn-
chronization time is not an issue. There are a number of important physics pack-
ages where the computational cost of updating a zone varies by large amounts
from domain to domain. The regions with the highest work load shift through-
out the course of a run. Some HYDRA packages use a more complex threading
approach to deal with this type of load imbalance.

The DCA package computes frequency-dependent opacities for all zones.
Some zones require more work than others, particularly when the matter is
not in local thermodynamic equilibrium. The DCA package varies the number
of OpenMP threads per domain (based on timing from the last time step) so
that the work per thread is roughly constant. As an example, HYDRA might
have 8 MPI domains on an Intel Sandy Bridge node with 16 cores and 32 hard-
ware threads. If one domain has much more DCA work than the other seven, it
might be assigned 32 threads while the other domains have one thread each. This
approach evens out the work per hardware thread on a single node, but it does
not help when there is a large imbalance in the DCA work on different nodes.
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Threads are statically bound to processes on a BGQ system, so the dynamic
load balancing in DCA is turned off.

The threads in HYDRA’s laser ray trace and IMC (Implicit Monte Carlo)
packages cooperatively process a set of domains. On Linux clusters, two MPI
processes per node are typically designated as “masters”. The other processes on
a node send their domains to the master processes and then become inactive. On
Blue Gene/Q systems, each process makes several “replicates” of its domain. The
IMC particles or laser rays for a domain are split among the replicates. In either
case, the active processes have several domains. A genetic algorithm shuffles
domains around until each process has a nearly constant amount of work (based
on the last time step). A process assigned a “difficult” domain is also assigned
several “easy” domains. Load balancing works well with 4 or more domains per
active process.

These packages use pthreads with thread specialization. Each active process
has a thread which handles all MPI message passing, so a thread safe MPI is
not required. Another thread handles all updates of the energy deposition array
(recording the net transfer of energy between the matter in a zone and the laser
rays or IMC particles passing through it), so locks on the deposition array are
not required. The remaining threads push IMC photons or trace laser rays.

3 Dynamic Load Balancing

The physics equations solved by HYDRA often require more work in some zones
than in others. If the problem is divided up into equal sized domains and no
provision is made for load imbalance, the run time will be much longer than for
a well balanced job. The dynamic load balancing results presented below were
obtained from a standard NIF hohlraum simulation on a cluster with dual socket
Intel Sandy Bridge nodes and an Infiniband QDR interconnect.

Table 1. This table shows the time without and with dynamic load balancing for the
laser, IMC, and DCA packages during a HYDRA NIF simulation. The speedup for the
laser package was greater earlier in the run. The final line is the total physics time for
the run. A 50 % speedup in the physics time is much appreciated by HYDRA’s users.

Package Time (sec) Time (sec) Speedup ratio

No balance Balanced

Laser 162.2 130.6 1.24

IMC 392.6 234.4 1.68

DCA 6.8 3.6 1.90

Total 557.9 363.4 1.51

The results in Table 1 show that load balancing cuts the run time for some
packages almost in half and reduces the overall run time of the NIF simulation
to roughly two thirds of what it would be without load balancing. This is a large
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improvement compared to what is typically obtained by adjusting compiler opti-
mization flags. The load balance varies from one simulation to the next. In one
recent simulation, DCA load balancing reduced the run time to roughly 10 % of
the time with no load balancing (i.e., a 10X speedup). Other multi-physics codes
might benefit from adopting a load balancing approach like HYDRA’s.

4 Studies on Blue Gene/Q

4.1 BGQ Overview

IBM’s Blue Gene/Q was chosen as the system on which to gather performance
data. The clock speed is 1.6 GHz and the chip uses the Power instruction set.
A BGQ chip has 16 cores with 4 hardware threads each. Two threads per core are
required to reach the maximum instruction issue rate of 16 integer instructions
and 16 floating point instructions per node per cycle. The BGQ has a 4-wide
SIMD floating point unit and has a fused multiply-add (FMA) instruction. Float-
ing point instructions may perform from 1 to 8 floating point operations. The
L1 cache is 16 kB per core. Each core has a 2 MB slice of L2 cache operated
as part of a 32 MB shared cache. It has a high latency (roughly 50 ns) because
it uses eDRAM and requires extra logic to bind the slices together. The Intel
Sandy Bridge has a 11 ns latency to its L3 cache. The integer unit on the BGQ
chip handles loads, stores, integer arithmetic, address computations, and a num-
ber of other instructions. Codes operating on arrays of floating point numbers
issue many integer instructions as they load and store array elements and com-
pute addresses. A BGQ system has a streams bandwidth [3] of 28 GB/s per node.
The memory space is flat, so there is no need to worry about NUMA effects.

4.2 The BGQ Test Codes

HYDRA tests were run with 4 processes per node on 16 BGQ nodes. The 64
hardware threads on a node were equally divided amongst the 4 processes. Data
from three other codes is provided to help assess whether HYDRA has unique
performance bottlenecks.

pF3D [1,4,8] is a massively parallel code which simulates laser-plasma inter-
actions in experiments using the National Ignition Facility laser and other high
power lasers. pF3D has fewer packages than HYDRA, but still has 2 dozen per-
formance critical loops. pF3D operates on 3D arrays which makes it easy to use
stride one memory access in many (but not all) loops.

MCB is a Monte Carlo mini-app used in investigating new computer systems
and new programming approaches. It is dominated by integer computation and
has the erratic branching character of all Monte Carlo radiation transport codes.

microK is a set of simple vector loops used to measure the performance
impact of falling out of cache, speedups due to using SIMD instructions, and
other processor features. The loops in microK are simple so it is fairly easy to
optimize them on a new system. The microK runs used one MPI process with
32 OpenMP threads on a single node.
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Table 2. This table shows performance metrics for two HYDRA test problems. Metrics
from three other codes are shown for reference. The polynomial kernel is the only one
which issues more floating point than integer instructions. The polynomial and dot
product kernels use nearly the full memory bandwidth (28 GB/s) for large vectors, but
all other tests use no more than 11 %. For small vectors, microK runs completely out
of the L2 cache so we do not report any DRAM related numbers.

Package Time Int Instr FP Instr FLOP per DRAM BW DRAM xfer L2 miss

(sec) per cycle per cycle Instr (GB/s) (GB) per line

Hydra hyd607

Advect 0.66 5.74 1.90 1.59 3.21 2.13 1.31

EosOpac 0.32 1.70 0.48 1.32 0.46 0.146 2.17

Econd 0.90 10.03 0.39 1.53 0.94 0.85 0.86

Mtgrdif 17.20 8.74 0.25 1.58 0.85 14.65 0.73

Hydra nifburn

Hydro 0.17 4.38 2.21 1.62 1.89 0.31 1.58

Advect 0.29 4.68 0.58 1.62 2.91 0.72 1.33

Econd 0.32 12.66 0.95 1.66 0.32 0.10 2.89

Laser 2.29 1.69 0.05 1.25 3.02 6.93 4.31

Imc 10.06 1.06 0.21 1.60 1.29 12.93 5.27

Burn 1.65 12.40 0.72 1.60 0.17 0.29 1.03

MCB

Advance 19.52 4.52 0.18 1.31 0.25 4.92 1.01

Pf3d kernels

Couple4 8.43 4.02 1.47 2.81 1.46 12.32 0.45

Absorbdt 1.02 4.61 1.13 1.77 1.21 1.23 0.43

Acadv 5.16 3.56 1.15 2.25 1.87 9.67 0.28

Advancefi 3.47 5.29 1.78 2.12 0.88 3.07 0.48

FFT 0.68 3.02 1.88 1.30 2.64 1.79 0.48

MicroK small

Sdot 0.02 8.16 1.90 8.00

Poly 0.02 4.04 9.28 8.00

MicroK large

Sdot 0.57 1.96 0.46 8.00 23.73 13.48 0.51

Poly 0.51 1.09 2.56 8.00 26.21 13.42 1.42

4.3 Performance Metrics

The HPM library written by Bob Walkup of IBM provides a simple way to gather
the desired hardware counters. HPM start and stop calls were added around calls
to physics packages in the time step loop. HPM reports how many times each
event occurred in a package. An L2 miss is recorded for every 128 byte cache
line loaded and a flush for every line stored. This makes it easy to calculate the
DRAM read and write bandwidth.
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Table 2 reports performance metrics from BGQ runs of the test applications.
Two HYDRA test problems were run to show how the time spent in physics
packages and the set of packages used varies from problem to problem.

The hyd607 test problem performs a capsule-only simulation of a NIF implo-
sion experiment. Most time is spent in the multi-group diffusion package (mtgrdif),
with roughly 10 % of the time spent on electron heat conduction, advection, equa-
tion of state, and opacities. The nifburn test problem performs an integrated
simulation of the capsule and the surrounding hohlraum for a NIF experiment.
Domain replication was employed to allow load balancing of the laser and IMC
packages. Most time is spent in the laser and IMC packages. The hydrodynamics
package, advection associated with ALE remaps, electron heat conduction, and
fusion burn combine to consume about 15 % of the run time.

The BGQ compiler generates a fairly high fraction (30 % or more) of FMA
instructions for all test codes. The BGQ compiler has difficulty generating SIMD
instructions unless the code is annotated with BGQ-specific alignment directives.
The simple loops in microK allowed us to add alignment directives and achieve
nearly a 100 % SIMD fraction. It is impractical to add those directives to a
large code, so the SIMD fraction is low for HYDRA, pF3D, and MCB. Some of
the pF3D kernels deliver more than 2 FLOPs per instruction because they call
IBM’s “hand written” sin, exp, etc. special functions.

Floating point instruction issue rates are not a bottleneck for HYDRA, pF3D,
or MCB. Only the polynomial kernel issues more floating point instructions than
integer instructions (on the BGQ). HYDRA’s econd, burn and mtgrdiff packages
and the dot product of short vectors all execute more than 8 integer instructions
per cycle and their performance may be limited by integer issue rates.

MicroK results are reported for vectors which fit in the L2 cache (64 K ele-
ments per thread) and for vectors large enough (512 K elements per thread) that
they must be fetched from DRAM. The polynomial kernel achieves over 50 %
of the peak floating point performance for short vectors but only 16 % of peak
for long vectors. The microK kernels are memory bandwidth limited for large
vectors (the bandwidth is close to the 28 GB/s streams bandwidth). The high-
est memory bandwidth for HYDRA, pF3D, or MCB is 3.2 GB/s, so memory
bandwidth is not a bottleneck for “production” codes.

The high cache and DRAM latency on a BGQ hurts the performance of the
IMC, laser ray trace, and EOS and opacity lookup packages in HYDRA. The
50 ns latency to the L2 cache on a BGQ is much larger than the 11 ns latency to
the L3 cache on a Sandy Bridge. The L1P unit on a BGQ prefetches from L2 to
L1 to try and hide latency. The L1P hit rate for the IMC and laser packages is
1–2 %. HYDRA suffers a 50 ns delay on almost all L2 accesses, and the effective
bandwidth of L2 will be low. The DRAM latency on a BGQ is 220 ns versus 70 ns
for a Sandy Bridge. The high latency on the BGQ will prevent HYDRA from
achieving full memory bandwidth unless prefetching from DRAM to L2 works
well. We have not measured the DRAM prefetch efficiency. The laser rays and
IMC particles move from zone-to-zone in a manner which is hard to predict, so
we expect that prefetch efficiency will be low.
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The pF3D kernels issue from 3 to 5.3 integer instructions per cycle. That is
low enough that they probably are not bottlenecked on the integer issue rate.
The pF3D kernels all issue at least one floating point instruction per cycle per
node which is several times more than the laser and IMC packages in HYDRA,
but far below the peak. The pF3D kernels have low L2 miss rates because many
inner loops access arrays in stride one order. It is not clear what is the key
performance bottleneck for the pF3D kernels.

The tables include ratios of cache misses to lines read. A cache line is 128 bytes
on a BGQ system. HYDRA performs most computations using double precision
operands, so a line holds 16 numbers. A stride one loop should have one cache
miss per L2 cache line read. A package which accesses large arrays randomly
might have up to 16 misses per line. HYDRA’s IMC package has a higher miss
fraction than any other package in the table. That is not surprising given that
the particle list has photons scattered almost randomly through the grid at the
time the performance counters were read.

4.4 Memory Usage

The hyd607 test problem uses 1.7 GB of heap memory per node. The radiation
diffusion package transfers 14.7 GB between DRAM and the processor during a
time step, which shows that some arrays are read multiple times. The diffusion
package solves a large sparse matrix using Hypre’s iterative CG solver with
hybrid AMG/diagonal pre-conditioner. The iteration is the reason arrays are
fetched multiple times.

The nifburn test problem uses 2.7 GB of heap memory per node. The IMC
package transfers 12.97 GB between DRAM and the processor during a time step,
so some arrays are read multiple times. As the Monte Carlo particles randomly
wander through the grid, they will pull the opacity array in multiple times.

HYDRA either has enough memory bandwidth on the BGQ or (more likely)
is bottlenecked by memory latency. Future systems will have a lower ratio of
DRAM bandwidth to peak performance. To deal with this “memory wall”, these
systems may include some in-package memory (IPM). IPM bandwidth will be
much higher than external DRAM bandwidth, but its latency will be similar. If
memory latency is the key bottleneck for HYDRA, IPM may not help perfor-
mance significantly.

5 Conclusion

Our goal in this work was to investigate the performance characteristics of
HYDRA, a multi-physics simulation code. We expect that other multi-physics
codes from LLNL will have similar characteristics. We demonstrated that
HYDRA’s thread based load balancing strategy is very effective. DRAM band-
width is not a limiting factor for any HYDRA package. The latency of DRAM or
the L2 cache may be a bottleneck. Floating point issue rates are never a limiting
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factor for HYDRA, but integer issue rates may be a limiting factor for a few
packages.

We demonstrated that the total memory traffic between the processor chip
and DRAM is significantly greater than the total amount of memory in use by
HYDRA, indicating that using IPM as a cache may have benefits for HYDRA
on future systems.

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract DE-AC52-
07NA27344. Lawrence Livermore National Security, LLC. Document release
LLNL-PROC-665891.
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Abstract. In the dense nonsymmetric eigenvalue problem, work has
focused on the Hessenberg reduction and QR iteration, using efficient
algorithms and fast, Level 3 BLAS. Comparatively, computation of eigen-
vectors performs poorly, limited to slow, Level 2 BLAS performance with
little speedup on multi-core systems. It has thus become a dominant cost
in the solution of the eigenvalue problem. To address this, we present
improvements for the eigenvector computation to use Level 3 BLAS and
parallelize the triangular solves, achieving good parallel scaling and accel-
erating the overall eigenvalue problem more than three-fold.

1 Introduction

Eigenvalue problems are fundamental for many engineering and physics appli-
cations. For example, image processing, facial recognition, vibration analysis of
mechanical structures, seismic reflection tomography, and computing electron
energy levels can all be expressed as eigenvalue problems. The eigenvalue prob-
lem is to find an eigenvalue λ and eigenvector x that satisfy Ax = λx, where A is
an n×n matrix. When the entire eigenvalue decomposition is computed we have
A = XΛX−1, where Λ is a diagonal matrix of eigenvalues and X is a matrix of
eigenvectors. In this paper we consider the case when A is dense and nonsymmet-
ric. We concentrate on computing all the eigenvectors, and present optimizations
that accelerate the overall eigenvalue problem more than three-fold.

The solution of the eigenvalue problem proceeds in three phases. First, the
matrix is reduced to upper Hessenberg form by applying orthogonal Q matrices
on the left and right, to form H = QT

1 AQ1. The second phase, QR iteration, is an
iterative process that reduces the Hessenberg matrix to upper triangular Schur
form, T = QT

2 HQ2. Being based on similarity transformations, the eigenvalues
of A are the same as the eigenvalues of T , which are simply the diagonal entries
of T . The third phase computes eigenvectors Z of the Schur form T via triangular
solves, and then back-transforms them to eigenvectors X of the original matrix
A. The eigenvectors of A are related to the eigenvectors of T by the orthogonal
transformations used in the Hessenberg reduction and QR iteration as X =
Q1Q2Z. This final phase computing eigenvectors will be the focus of this work.

c© Springer International Publishing Switzerland 2015
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(a) Proportion of time (b) Performance

Fig. 1. Parallel scaling of phases of eigenvector computation in existing LAPACK
implementation, for n = 14000. Parallel speedup for 16 Intel cores compared to 1
core is annotated in right margin.

Figure 1 shows the time for each phase in the existing LAPACK implementa-
tion as the number of cores is increased. The performance of each phase depends
on how many of its operations are done in efficient Level 3 BLAS versus in
memory-bound Level 2 BLAS. The Hessenberg reduction is formulated [1,2]
so that 80 % of its floating point operations (flops) occur in Level 3 matrix-
matrix multiply (gemm), with the remainder in memory-bound Level 2 matrix-
vector multiply (gemv). This 20 % of gemv operations bounds the Hessenberg
performance to less than five times the gemv Gflop/s rate. A recent two-stage
implementation reduces the amount of gemv operations [7]. A GPU accelerated
version [10] is an additional 4 times faster than the 16-core performance. For
large matrices, the Hessenberg reduction accounts for approximately 20 % of
the overall time using 16 cores, achieving close to 50 Gflop/s in Fig. 1b (cyan
diamonds).

For QR iteration, we use the implicit multishift QR iteration [3,4] imple-
mented in LAPACK as hseqr, which takes advantage of Level 3 BLAS for effi-
cient computation. The QR iteration algorithm takes O(n3) flops, but being
an iterative method, the exact count depends heavily on the convergence rate
and techniques such as aggressive early deflation [4], which is also included in
LAPACK’s implementation. For small matrices, it can take 25n3 flops [5], but
we found it to be 10

3 n3 flops for large matrices. Distributed parallel versions of
QR iteration also exist [6]. QR iteration can take over 50 % of the time for small
matrices, but for large matrices this reduces to about 15 % of the time on 16
cores, and achieves 70 Gflop/s as shown in Fig. 1b (green stars).

In contrast to the first two phases, the final phase computing eigenvectors
has previously been implemented only with Level 2 BLAS. In the LAPACK
implementation (trevc), each eigenvector is computed with a triangular solve
(latrs), then back-transformed with a matrix-vector product (gemv). In Fig. 1b,
we see that the performance of the back-transformation (red boxes) is limited
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to 14 Gflop/s, while the specialized latrs routine used for triangular solves (blue
triangles) is not parallelized at all and is limited to 2 Gflop/s. This phase takes
4
3n3 flops, which is the fewest operations of the three phases. However, due to
the lack of parallelization and use of Level 2 BLAS operations, it has the lowest
Gflop/s performance of the three phases, asymptotically taking over 60 % of the
time on 16 cores (red and blue tiers in Fig. 1a).

Thus, despite having the least flops of the three phases, the computation
of eigenvectors has become the dominant cost and limited the overall paral-
lel speedup of the solution of the eigenvalue problem. This paper is there-
fore concerned with accelerating the eigenvector computation through three
improvements. First, for the back-transformation, we block multiple Level 2
gemv products into an efficient Level 3 gemm product, discussed in Sect. 3.
Second, we parallelize the triangular solves using a task-based scheduler, as
described in Sect. 4. Finally, using a GPU, the back-transformation is further
accelerated and done in parallel with the triangular solves, in Sect. 5. Combined,
these improvements significantly increase the performance and scalability of the
overall eigenvalue problem.

2 Eigenvector Computation

When eigenvectors are desired, the third phase computes eigenvectors of the
triangular Schur form T , then back-transforms them to eigenvectors of the orig-
inal matrix A. In LAPACK, this phase is implemented in the trevc (triangular
eigenvector computation) routine. We will assume only right eigenvectors are
desired; the computation of left eigenvectors is similar and amenable to the same
techniques described here. After the Hessenberg and QR iteration phases, the
diagonal entries of T are the eigenvalues λk of A. To determine the corresponding
eigenvectors, we solve Tzk = λkzk by considering the decomposition [5]⎡

⎣T11 u T13

0 λk vT

0 0 T33

⎤
⎦

⎡
⎣ẑ

1
0

⎤
⎦ = λk

⎡
⎣ẑ

1
0

⎤
⎦ , (1)

which yields (T11 − λkI)ẑ = −u. Thus computing each eigenvector zk of T
involves a k − 1 × k − 1 triangular solve, for k = 2, . . . , n. Each solve has a
slightly different T matrix, with the diagonal modified by subtracting λk. The
resulting eigenvector zk of T must then be back-transformed by multiplying
with the Q = Q1Q2 formed in the Hessenberg and QR iteration phases to get
the eigenvector xk = Qzk of the original matrix A.

Note that if two eigenvalues, λk and λj (k > j), are identical, then T11 −
λkI is singular. More generally, T11 − λkI can be badly conditioned. Therefore,
instead of using the standard BLAS triangular solver (trsv), it uses a specialized
triangular solver (latrs) that scales columns to protect against overflow and can
generate a consistent solution for a singular matrix.

This method works in complex arithmetic, however the case in real arithmetic
is more complicated. For a real matrix A, the eigenvalues can still be complex,
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coming in conjugate pairs, λk and λ̄k. The eigenvectors are likewise conjugate
pairs, zk and z̄k. In real arithmetic, the closest that QR iteration can come
to triangular Schur form is quasi-triangular real Schur form, which has 2 × 2
diagonal blocks corresponding to conjugate pairs of eigenvalues. A specialized
quasi-triangular solver is required, which factors each 2×2 diagonal block, as well
as protecting against overflow and dealing with singular matrices. In LAPACK
this solver is implemented as part of the dtrevc routine.

3 Blocking Back-Transformation

It is well established for dense linear algebra that blocked, Level 3 BLAS imple-
mentations — which operate on multiple columns in each BLAS call — achieve
much higher performance than non-blocked, Level 2 BLAS implementations.
Therefore, our first step to improve the eigenvector computation is to block
the n gemv operations for the back-transformation into n/nb gemm operations,
where nb is the block size. This requires two n × nb workspaces: the first, Z, for
the vectors zk, and the second, X, for the back-transformed vectors xk before
copying to the output V .

Pseudocode for the blocked back-transformation is shown in Algorithm1,
which includes the parallel solver described in Sect. 4. For each block, we loop
over nb columns, performing a triangular solve for each column and storing the
resulting eigenvectors zk in workspace Z. After filling up nb columns of Z, a
single gemm back-transforms all nb vectors, storing the result in workspace X.
The vectors are then normalized and copied to V . On input, the matrix V = Q.
Recall from Eq. (1) that the bottom n − k rows of eigenvector zk are 0, so the
last n − k columns of Q are not needed for the gemm. Therefore, we start from
k = n and work down to k = 1, writing each block of eigenvectors to V over
columns of Q after they are no longer needed.

The real case is similar, but has the minor complication that complex conju-
gate pairs of eigenvalues will generate conjugate pairs of eigenvectors, zk = a+bi
and z̄k = a − bi, which are stored as two real columns, a and b, in Z. When the
first eigenvalue of each pair is encountered, both columns are computed; then the
next eigenvalue (its conjugate) is skipped. Once nb − 1 columns are processed,
if the next eigenvector is complex, there is not space to store the two resulting
columns a and b, so it must be delayed until the next block.

4 Multi-threading Triangular Solver

After blocking the back-transform, the triangular solver remains a major bottle-
neck because it is not parallelized. Recall that the triangular matrix being solved
is different for each eigenvector — the diagonal is modified by subtracting λk.
This prevents blocking multiple eigenvectors together using a Level 3 BLAS trsm
operation to solve multiple eigenvectors together.

In the complex case, LAPACK’s ztrevc uses a safe triangular solver, zlatrs.
Unlike the standard ztrsv BLAS routine, zlatrs uses column scaling to avoid
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numerical instability, and handles singular triangular matrices. Therefore, to
not jeopardize the accuracy or stability of the eigensolver, we continue to rely
on zlatrs instead of the optimized, multi-threaded ztrsv. However, processing T
column-by-column prevents internal blocking and parallelizing individual calls
to zlatrs, as is typically done for BLAS functions to achieve high performance.
Instead, we observe that multiple triangular solves can occur in parallel. One
obstacle to solving multiple eigenvectors in parallel is that a different λk is sub-
tracted from the diagonal in each case, modifying T in memory. Our solution
is to write a modified routine, zlatrsd (triangular solve with modified diagonal),
which takes both the original unmodified T11 and the λk to subtract from the
diagonal. The subtraction is done as the diagonal elements are used, without
modifying T in memory. This allows us to pass the same T to each zlatrsd call
and hence solve multiple eigenvectors in parallel, one in each thread.

As previously mentioned, the real case requires a special quasi-triangular
solver to solve each 2 × 2 diagonal block. In the original LAPACK code, this
quasi-triangular solver is embedded in the dtrevc routine. To support multi-
threading, we refactor it into a new routine, dlaqtrsd, a quasi-triangular solver
with modified diagonal. Unlike the complex case, instead of passing λk sepa-
rately, dlaqtrsd computes it directly from the diagonal block of T . If λk is real,
dlaqtrsd computes a single real eigenvector. If λk is one of a complex-conjugate
pair, dlaqtrsd computes a complex eigenvector, as two real vectors. This implies

Algorithm 1. Multi-threaded eigenvector computation (complex-arithmetic).
1: function ztrevc(n, T, V )
2: // T is n × n upper triangular matrix.
3: // V is n × n matrix; on input V = Q, on output V has eigenvectors.
4: // Z and X are n × nb workspaces, nb is column block size.
5: k = n
6: while k ≥ 1
7: j = nb

8: while j ≥ 1 and k ≥ 1
9: λk = Tk, k

10: enqueue latrsd to solve (T1:k−1, 1:k−1 − λkI)Z1:k−1, j = −T1:k−1, k

11: Zk:n, j = [ 1, 0, . . . , 0 ]T

12: j −= 1; k −= 1
13: end
14: sync queue
15: m = k + nb − j
16: for i = 1 to n by �n/p�
17: i2 = min(i + nb − 1, n)
18: enqueue gemm to multiply Xi:i2, j+1:nb = Vi:i2, 1:m ∗ Z1:m, j+1:nb

19: end
20: sync queue
21: normalize vectors in X and copy to V1:n, k+1:k+nb

22: end
23: end function
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an imbalance in time as some instances of dlaqtrsd solve a single real vector,
while other instances solve a complex eigenvector. Also, each triangular solve is
of size k − 1 × k − 1, so they gradually decrease in size as k decrements.

To deal with multi-threading, we use a thread pool design pattern. As shown
in Algorithm 1, the main thread inserts latrsd tasks into a queue. Worker threads
pull tasks out of the queue and execute them. For this application, there are no
dependencies to be tracked between the triangular solves. After a block of nb

vectors has been computed, we back-transform them with a gemm. We could call
a multi-threaded gemm, as available in MKL, but to simplify thread management
and avoid switching between our pthreads and MKL’s threads, we found it more
suitable to use the same thread pool for the gemm as for latrsd. For p threads,
the gemm is split into p tasks, each task multiplying a single block row of Q
with Z. After the gemm, the next block of nb vectors is computed. Within each
thread, the BLAS calls are single threaded.

5 GPU Acceleration

To further accelerate the eigenvector computation, we observe that the triangular
solves and the back-transformation gemm can be done in parallel. In particular,
the gemm can be done on a GPU while the CPU performs the triangular solves.
Data transfers can also be done asynchronously and overlapped with the trian-
gular solves. To facilitate this asynchronous computation, we double-buffer the
CPU workspace Z, using it to store results from latrsd, then swapping with X,
which is used to send data to the GPU while the next block of latrsd solves are
performed with Z. The difference from Algorithm 1 is shown in Algorithm 2.

Algorithm 2. GPU accelerated back-transformation replaces lines 15–21 of
Algorithm 1. Also, V is sent asynchronously to dV at start of ztrevc.
15: // dV is n × n workspace on GPU.
16: // dZ and dX are n × nb workspaces on GPU.
17: swap buffers Z and X
18: async send X to dZ on GPU
19: async gemm dX1:n, j+1:nb = dV1:n, 1:m ∗ dZ1:m, j+1:nb on GPU
20: async receive dX to V1:n, k+1:k+nb on CPU
21: normalize vectors in V

6 Results

6.1 Intel Sandy Bridge and NVIDIA Kepler GPU

We performed tests on a machine with two 8-core, 2.6 GHz Intel Sandy Bridge
Xeon E5-2670 CPUs and an 875 MHz NVIDIA Kepler K40 GPU. All tests used
Intel MKL 11.0.5 for optimized, multi-threaded BLAS and numactl to interleave
memory allocation across the NUMA nodes. Matrices were double precision with
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uniform random entries in (0, 1). Inside our parallel trevc, we launch p pthreads
and set MKL to be single-threaded; outside trevc, MKL uses the same number
of threads, p.

Figure 2 shows the total eigenvalue problem (dgeev) time, broken down into
four phases: QR iteration (bottom, green tier), Hessenberg reduction (2nd, cyan
tier), triangular solves (3rd, blue tier), and back-transformation (top, red tier).
The triangular solves and back-transformation together form the eigenvector
computation. Columns are grouped by number of CPU threads. We compare
results to two reference implementations: the LAPACK CPU version in the first
column, and the MAGMA [8] GPU-accelerated version in the fourth column.

The improvement due to blocking the back-transformation is shown by the
second column of each group in Fig. 2. The blocked back-transformation itself is
up to 14 times faster than the non-blocked back-transformation using 16 threads.
Further, the solid red line (squares) in Fig. 3 shows it has better parallel scaling,
reaching a speedup of 12 times for 16 cores, compared to only 6 times for the
LAPACK implementation. However, as the triangular solves are not yet paral-
lelized, the overall improvement is limited, being at most 1.4 times faster, seen
in the single threaded result in Fig. 2, and the red line (squares) in Fig. 4.

Parallelizing the triangular solves is the third column of each group in Fig. 2.
For one thread, there is of course no parallel speedup, so the results are the
same as the second column. With multiple threads, we see significant parallel
speedup, up to 12.8 times for 16 threads, shown as the solid blue line (triangles) in
Fig. 3. Combined with the blocked back-transformation, these two modifications
significantly improve the solution of the overall eigenvalue problem by up to 2.5
times for 16 cores, shown by the blue line (triangles) in Fig. 4, and annotated

Fig. 2. Execution time of eigenvalue solver (dgeev) for matrix size n = 16, 000.
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Fig. 3. Parallel speedup of each phase by itself, for p = 16, compared to p = 1.

Fig. 4. Overall improvement of eigenvalue solver (dgeev) compared to LAPACK, after
various improvements, using p = 16 threads.

with an arrow in Fig. 2. This is the total improvement available using only CPUs.
Next we will look at the improvement also using GPUs.

The fourth column in Fig. 2 is the MAGMA reference time, which accelerates
the Hessenberg reduction using the GPU. The MAGMA Hessenberg performance
depends on the GPU, so is independent of the number of CPU threads. It is up to
3.4 times faster than the 16-core LAPACK Hessenberg. However, the LAPACK
Hessenberg is only 20 % of the total time, so accelerating it reduces the total
dgeev time by only 1.15 times, shown by the green line (diamonds) in Fig. 4.
When combined with the new blocked back-transform and parallel triangular
solves, the performance substantially increases, as shown by the orange line
(stars) in Fig. 4, being up to 3.8 times faster than LAPACK.

Our final improvement is to move the back-transformation gemm to the GPU,
shown as the fifth column of each group in Fig. 2. The gemm can be almost
entirely overlapped with the triangular solves, practically eliminating time spent
on the back-transformation. This is a minor additional improvement on top of the
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(a) Parallel scaling (b) Memory bandwidth

Fig. 5. Results on AMD Piledriver.

blocked back-transform and parallel solves, shown by the magenta line (circles)
in Fig. 4. The improvement from the MAGMA version using 16 cores is 3.4 times,
while from the LAPACK version is 4.0 times, as annotated in Fig. 2.

6.2 AMD Piledriver

To study scalability to a larger number of cores, we also ran tests on a machine
with four 8-core, 2.5 GHz AMD Piledriver Opteron 6380 CPUs. We compared the
achieved memory bandwidth with the STREAM benchmark [9]. Due to cache
effects, we cannot simply compute the achieved memory bandwidth based on
each triangular solve reading its entire T matrix. Instead, we compute it based
on cache misses, which we obtain from hardware counters using PAPI.

In Fig. 5, we observe near linear speedup on up to 6 cores. On 16 cores, we
obtain similar results as on the 16-core Intel: the blocked back transformation
achieved an 11.6 times speedup, while the parallel triangular solves achieved 10.6
times speedup. For a larger number of cores, we still see improvement, but at a
reduced rate. As the number of cores increases, the memory bandwidth becomes
saturated, causing the increase in speedup to drop off. Notice in Fig. 5b that the
bandwidth for both the STREAM benchmark and the triangular solves flattens
after 16 cores. The achieved bandwidth closely follows the STREAM benchmark
bandwidth. Thus, the results scale up to the available memory bandwidth. To
further improve the parallel scalability of the eigenvector computation, future
work should focus on reusing data to reduce the required memory bandwidth.

7 Conclusion

It has been said that high performance computing is an exercise in chasing bottle-
necks. Previously, the Hessenberg reduction and QR iteration have rightly been
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addressed as major bottlenecks in the solution of the nonsymmetric eigenvalue
problem. Amdahl’s Law requires that all phases of the algorithm receive atten-
tion. Indeed, while the Hessenberg was accelerated by 3.4 times with a GPU,
the overall speedup was previously limited to 15 % (Fig. 4). We accelerated the
remaining eigenvector computation phase by 12 times through introducing Level
3 BLAS and parallelizing the remaining Level 2 BLAS triangular solves. This
improved the overall eigenvalue problem by 2.5 times for CPU-only code and
3.4 times for the GPU-accelerated version. The bottleneck is now moved back to
QR iteration, which is natural as it has the most flops and its iterative nature
makes it the most complicated and difficult phase to parallelize.
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Abstract. Practical simulators require high-performance iterative
methods and efficient boundary conditions, especially in the field of
computational fluid dynamics. In this paper, we propose a novel bit-
representation technique to enhance the performance of such simulators.
The technique is applied to an iterative kernel implementation that treats
various boundary conditions in a stencil computation on a structured grid
system. This approach reduces traffic from the main memory to CPU,
and effectively utilizes Single Instruction–Multiple Data (SIMD) stream
units with cache because of the bit-representation and compression of
matrix elements. The proposed implementation also replaces if-branch
statements with mask operations using the bit expression. This promotes
the optimization of code during compilation and runtime. To evaluate the
performance of the proposed implementation, we employ the Red–Black
SOR and BiCGstab algorithms. Experimental results show that the pro-
posed approach is up to 3.5 times faster than a näıve implementation on
both the Intel and Fujitsu Sparc architectures.

Keywords: Sparse matrix · Boundary condition · SIMD · Bit operation ·
CFD

1 Introduction

Advances in computational capabilities have allowed us to increase the scale of
many problems, and thus obtain more reliable solutions. Computational fluid
dynamics, which is commonly used to design industrial products, involves large-
scale linear systems with sparse matrices given by the pressure Poisson equation
or implicit time integration. Iterative methods for such large-scale sparse matri-
ces are a crucial building block for high-performance physical simulations. Recent
computer architectures have been constructed to have a deep memory hierarchy,

c© Springer International Publishing Switzerland 2015
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which demands effective utilization of the small but high-speed cache for user
programs. However, if a straightforward implementation of an iterative method
is applied to such architectures, the code encounters memory-bandwidth limita-
tions owing to the large number of load/store instructions relative to floating-
point operations in each loop of the source code.

Using the Roofline model [1], which provides useful information for analyzing
the performance of codes, it has been demonstrated that high operational inten-
sity in an algorithm leads to high performance. Thus, one solution to the band-
width limitations is to reduce memory traffic from the main memory to cache.
To this end, many studies have investigated the Compressed Sparse Row (CSR)
data format, run length encoding of CSR [2], and bit-representation schemes [3].

For engineers and researchers, it is essential to predict realistic phenomena
and simultaneously reduce the time cost. Thus, simulations must consider various
boundary conditions that reflect real-world effects as well as high-performance
computation. However, the calculation of boundary conditions is generally com-
plicated, and the presence of if-branch statements, table references, and indirect
memory access makes it difficult to optimize the source code.

This paper presents a bit-representation technique that reduces memory traf-
fic in an efficient implementation of iterative methods and boundary conditions.
This technique expresses both the sparse matrix coefficients and a mask function
that replaces if-branch statements using a bit sequence. The performance of the
proposed approach is investigated on several architectures.

2 Basic Equations and Bit-Representation

We consider a pressure Poisson equation derived from the incompressible Navier–
Stokes equation:

∇ (∇p) = div (
∂u

∂t
) ≡ φ , (1)

where p, u, and φ represent the pressure, velocity vector, and a source term,
respectively. This equation can be discretized using finite-difference or finite-
volume methods on a Cartesian grid system. Hence, the Laplace operator of the
equation is approximated by a 7-point stencil, and generates a linear system that
has a large-scale sparse matrix.

Practical simulators must treat various types of boundary conditions and
arbitrary positions in the computational domain to reproduce various real-world
situations. This issue is another challenge to be addressed in computational
fluid dynamics. In this context, we focus our attention on some basic boundary
conditions. Almost all pressure boundary conditions can be reduced to Dirichlet
or Neumann boundary conditions. For instance, we can substitute Neumann
boundary conditions for ∇p in (1). Thus, introducing the Heaviside function H:

H =

{
0 (Boundary Condition)
1 (Fluid)

(2)
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the pressure variable can be written as:

p = p H + (1 − H) pBC (3)

This expression is a mask function that replaces an if-branch statement in (2),
and will promote optimization during compilation. A semi-discrete form of (1)
can be combined with (2) and (3) to give∑

l

(∇p H N
)
l
n l = h φ −

∑
l

(
1 − H N

l

) ∇pBC
l n l (4)

where h, l, n, and HN denote the grid width, cell face location, outside normal
vector at the cell face, and Heaviside function for the Neumann boundary con-
dition, respectively. We can also introduce a Dirichlet boundary condition into
(4) by replacing the pressure gradient term ∇p with a Heaviside function HD.
Equation (5) represents a Dirichlet condition on the face of cell i, as shown in
Fig. 1.

(∇p H N
)
e

=
1
h

{
p i+1 H D

e +
(
1 − H D

e

)
pBC
i+1 − p i

}
H N

e (5)

Finally, we obtain a linear system in the form Ax = b:

∑
l

(
p H D H N

)
l

− p
∑
l

H N
l

= h2 φ − h
∑
l

(
1 − H N

l

) ∇pBC
l n l −

∑
l

(
1 − H D

l

)
pBC
l H N

l n l

(6)

Fig. 1. Neumann and Dirichlet boundary conditions for two-dimensional cell i. A Neu-
mann BC is applied on the west cell face, which is solidly shaded. A Dirichlet BC is
employed on the east cell face, where the boundary value is given by the pressure pBC

i+1.

The contribution of all boundary conditions is included in the RHS of (6), which
is computed at the start of each iteration. Although the Heaviside function only
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Fig. 2. Bit representation. Several bits required for the bit-representation are encoded
into this array. This example includes diagonal (BC Diag), non-diagonal (BC Ndag x),
Neumann boundary (BC N x), Dirichlet boundary (BC D x), cell state (State), and
activeness (Active) of a cell. Other bits are used for more complicated processes.

outputs a value of one or zero, the boundary values can be exactly reproduced
in the RHS to distinguish between normal and boundary cell states. In (6),
the second and third terms on the RHS can include any Neumann or Dirichlet
conditions. It is obvious that the coefficients of the non-diagonal components
p H D

l H N
l are either 1 or 0, and the diagonal components

∑
H N

l take val-
ues ranging from 0 to 6. Therefore, the coefficients of the non-diagonal com-
ponents can be expressed in 1 bit, and those of the diagonal components can be
expressed in 3 bits. That is, a total of 9 bits are sufficient to represent all coeffi-
cients in updating the pressure value of a cell. These coefficients are encoded in a
4-byte integer array, as shown in Fig. 2, with other functional flags. For instance,
BC Diag and BC Ndag x express the diagonal and non-diagonal elements of the
coefficient in the sparse matrix A, where x denotes the six outward directions of
the cell faces, denoted as W, E, S, N, B, and T. The two types of boundary condi-
tions for each direction are encoded as, e.g., BC N x and BC D x. This bit sequence
is prepared before the flow calculation. Bits can be encoded into an array b using
a simple shift operation, e.g., b|=(0x1<<BC Ndag S) for the south direction of
a cell. Unlike Tang’s approach [3], the proposed method does not require any
extra calculations, as we do not use compression.

This is the key idea for handling matrices with different coefficients in every
row in the stencil computation.

3 Implementation of Iterative Algorithms
with Bit-Compression

Based on the idea described in Sect. 2, we investigated an efficient implemen-
tation of (6) for the conventional Red–Black successive over-relaxation (SOR)
method and the biconjugate gradient stabilized (BiCGstab) method [4].

3.1 Implementation of Red–Black SOR

We present two implementations of the Red–Black SOR method. The first is
the proposed bit-representation (hereafter, bit-reps), and the second is a näıve
code that stores all coefficients in floating-point arrays, where p, b, bp, pn
denote pressure (solution vector x), the RHS vector b of a derived linear system
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Ax = b, a utility array of the mask function for a cell (indicates active or inac-
tive), and the non-zero coefficients of matrix A for the näıve method, respec-
tively. In the case of bit-reps, in particular, the array bp includes compressed
coefficient information. The loop in both codes contains 31 floating-point arith-
metic operations1, whereas there are 5 loads/1 store2 in the bit-reps code and
12 loads/1 store in the näıve system. In the näıve code, the variable array pn
has consecutive memory access, so that the SIMD units work effectively.

Implemented Fortran code of the Red–Black SOR method

[Bit-reps code]

do color=0,1
do k=1,kx
do j=1,jx
do i=1+mod(k+j+color,2), ix, 2

idx = bp(i,j,k)
c_e = real( ibits(idx, BC_Ndag_E, 1) )
c_w = real( ibits(idx, BC_Ndag_W, 1) )
c_n = real( ibits(idx, BC_Ndag_N, 1) )
c_s = real( ibits(idx, BC_Ndag_S, 1) )
c_t = real( ibits(idx, BC_Ndag_T, 1) )
c_b = real( ibits(idx, BC_Ndag_B, 1) )
d0 = real( ibits(idx, BC_Diag+0, 1) )
d1 = real( ibits(idx, BC_Diag+1, 1) )
d2 = real( ibits(idx, BC_Diag+2, 1) )
dd = d2*4.0 + d1*2.0 + d0
pp = p(i,j,k)
ss = c_e * p(i+1,j ,k ) + c_w * p(i-1,j ,k )

+ c_n * p(i ,j+1,k ) + c_s * p(i ,j-1,k )
+ c_t * p(i ,j ,k+1) + c_b * p(i ,j ,k-1)

dp = ( (ss + b(i,j,k) ) / dd - pp ) * omg
p(i,j,k) = pp + dp
res = res + dble(dp*dp) * dble( ibits(idx, Active, 1) )

end do
end do
end do

end do

[Naive code]

do color=0,1

1 Here, we count 1 flop for multiplication, addition, and subtraction operators, and 8
flops for the division operator.

2 The number of loads depends on the size of the cache line. In this case, there are 3
loads for array p owing to the L3 cache.
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do k=1,kx
do j=1,jx
do i=1+mod(k+j+color,2), ix, 2

c_w = pn(i,j,k,1)
c_e = pn(i,j,k,2)
c_s = pn(i,j,k,3)
c_n = pn(i,j,k,4)
c_b = pn(i,j,k,5)
c_t = pn(i,j,k,6)
dd = pn(i,j,k,7)
pp = p(i,j,k)
ss = c_e * p(i+1,j ,k ) + c_w * p(i-1,j ,k )

+ c_n * p(i ,j+1,k ) + c_s * p(i ,j-1,k )
+ c_t * p(i ,j ,k+1) + c_b * p(i ,j ,k-1)

dp = ( (ss + b(i,j,k) ) / dd - pp ) * omg
p(i,j,k) = pp + dp
res = res + dble(dp*dp) * dble( ibits(bp(i,j,k), Active, 1) )

end do
end do
end do

end do

The above code clearly shows the number of arrays required in both imple-
mentations, i.e., ten scalar arrays for the näıve implementation, and just three
for bit-reps. Table 1 shows the memory footprint of both implementations for
the cases evaluated in Sect. 4. It is obvious that the bit-reps implementation
demands one-third of the memory capacity needed by the näıve implementation.
This has a significant impact on the performance of cache-based architectures.

Table 1. Comparison of the memory footprint (MB) required for the näıve and bit-reps
implementations. These memory capacities include the size of the halo region.

Problem size (/w halo = 2) 163 323 643 1283 2563

Näıve 0.3 1.8 12.0 87.7 670.5

Bit-reps 0.1 0.5 3.6 26.3 201.1

3.2 Implementation of BiCGstab

Next, we examined the application of bit-reps to a non-preconditioned BiCGstab
algorithm. The proposed bit-reps technique was applied to BiCGstab, which is a
Krylov subspace method, because our implementation effectively accelerates the
computation of the matrix–vector product Ax. The matrix–vector calculation is
executed in lines 2, 7, and 10 of the following algorithm.

1: Start with an initial guess x0
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2: Compute r0 = b − Ax0

3: Choose an arbitrary vector r∗
0 such that ρ0 = (r∗

0 · r0) �= 0, e.g., r∗
0 = r0

4: p0 = r0
5: k=0
6: repeat
7: q = Apk

8: α = ρk/(r∗
0 · q)

9: s = rk − αq
10: t = As
11: ω = (t · s)/(t · t)
12: xk+1 = xk + αpk + ωs
13: rk+1 = s − ωt
14: ρk+1 = (r∗

0 · rk+1)
15: β = (α/ω)(ρk+1/ρk)
16: pk+1 = rk+1 + β(pk − ωq)
17: ρk ← ρk+1

18: k++
19: until ‖rk+1‖2/‖b‖2 < ε

There are some limitations to our bit-reps implementation in terms of which
preconditioners can be introduced. For instance, the incomplete Cholesky decom-
position preconditioner cannot be employed, because this changes the matrix
coefficients. In addition, straightforward scaling, which is one of the simplest
preconditioning techniques, cannot be used for the same reason. Of course, we
could implement scaling by exploiting an additional array to retain the scal-
ing coefficients, but this will cause a deterioration in performance. Thus, only
Gauss–Seidel smoothers can be applied for preconditioning, and, as described in
Sect. 4.2, these will enhance performance.

4 Evaluation of Proposed Method and Discussion

4.1 Evaluation Problems

The performance of bit-reps is evaluated for two different linear systems, derived
from a simple steady-state heat transfer equation and an unsteady incompress-
ible Navier–Stokes equation.

Heat Transfer Problem. We consider the Laplace equation ∇2ϕ = 0 under
the conditions:

ϕ(x, y, z) =

⎧⎨
⎩

sin(πx)sin(πy) on (x, y, 0)
sin(πx)sin(πy) on (x, y, 1)

0 on other boundaries.
(7)

on the Cartesian grid system, and investigate the convergence rate and perfor-
mance of Red–Black SOR. The exact solution is given by:
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ϕ(x, y, z) =
1

sin(
√

2π)
sin(πx)sin(πy)

{
sinh(

√
2πz) − sinh

(√
2π(z − 1)

)}
. (8)

A norm to determine the convergence is defined by:√∑
i,j,k

(∣∣ϕm − ϕexact

∣∣)
i,j,k

, (9)

where m indicates the number of iterations. The computational space is defined
by the unit cube Ω = [0, 1]3 divided into NX × NX × NX cells, where NX is
the dimension size. Details of the problem setting are given in [5].

Three-DimensionalLid-DrivenCavityFlowProblem. Athree-dimensional
unsteady fluid simulator is employed to examine the performance of Red–Black
SOR and BiCGstab under the bit-reps implementation. The source code is avail-
able from [7]. In this test, the number of iterations is fixed to 100 to compare
the performance of the BiCGstab and Red–Black SOR subroutines.

4.2 Performance of Red–Black SOR

The performance of bit-reps and the näıve implementation was examined on Intel
and Sparc architectures (see Table 2). Three-dimensional unsteady cavity flows
were computed in single precision to evaluate the performance. The Performance
Monitor library (PMlib) [6,8] was employed to measure the GFlops/s attained
by each code. PMlib is designed to calculate performance statistics based on the
user’s declaration of the Flop count and the measured timing between marked
sections in the source code. This approach is not perfect, but offers portability
across many platforms, even with no means of accessing the hardware perfor-
mance counter [6]. Figure 3 shows the serial measured performance for different
problem sizes. In the Intel architectures, we can see that the performance of
the näıve code worsens when the problem size exceeds the cache, i.e., beyond
643 in this case. On the other hand, the bit-reps code maintains the same level
of performance. Because the bit-reps code has lower memory requirements, any
degradation in performance seems to be delayed as the problem size increases.

Table 2. Specification of evaluation machines. TRIAD scores are measured by the
STREAM benchmark [9].
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Fig. 3. Comparison of serial performance of each machine. The problem size varies
from 163 to 2563.

The Sparc architecture produces different behavior to the Intel, as the perfor-
mance tends to improve as the problem size increases. We found that the bit-reps
code produced superior performance to that of the näıve code on Sparc VIIIfx.
In particular, the performance of Sparc VIIIfx is much better than that of Sparc
IXfx. This phenomenon is a result of the assembler code. That is, the compiler
on Sparc VIIIfx is optimized to decode shift operations in order to issue the
SIMD instructions, but this is not the case on Sparc IXfx.

The measured thread performance is shown in Fig. 4. We chose a calculation
size of 2563 so that the data must be placed out of cache. Figure 4 indicates that
memory-bound behavior occurs under the näıve code when there are more than
four threads (Intel) and six threads (Sparc VIIIfx ), but this is not observed on
the Sparc IXfx. Although the performance of the näıve code on Sparc IXfx seems
to have good scalability, this is because of the unoptimized code described above.
In contrast, the bit-reps code exhibits a significant effect from suppressing the
memory traffic, and achieves remarkable performance gain compared to the näıve
implementation in all cases. In particular, the highest performance is mostly
obtained with the maximum number of threads, a direct result of the designed
bit-compression scheme.

Thus, the bit-reps code exhibits higher performance than the näıve code for
all of the architectures evaluated here. We have found that the bit-reps code
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Fig. 4. Comparison of thread parallel performance of each machine with a problem
size of 2563.

significantly improves performance, and achieves over 17 % of the theoretical
peak performance on both Intel and Sparc architectures. One reason for the
higher performance attained by the Intel CPUs is that they have SIMD com-
puting units for integer arithmetic in addition to floating-point arithmetic, and
the optimized compiler enables both to work well.

4.3 Performance of BiCGstab Method

Three-dimensional unsteady cavity flows were computed in single precision to
evaluate the performance of the bit-reps and näıve implementations of BiCGstab.
The measured performance data were compared with those from Red–Black
SOR, as shown in Fig. 5, for various problem sizes. It can be seen that Red–Black
SOR with bit-reps gives the best performance, whereas Red–Black SOR with the
näıve code produces the worst performance. The performance of BiCGstab falls
between these two extremes, with the bit-reps version giving superior perfor-
mance to the näıve version. The benefits of the bit-reps implementation appear
for problem sizes of 643 and above. One possible reason for this is the mem-
ory requirement, because BiCGstab requires more than twice the memory of
Red–Black SOR.

Because the performance difference is observed between problem sizes of 643

and 1283, we investigate the thread performance for these two cases in Fig. 6. In
the case of 643, the performance of BiCGstab approaches that of Red–Black SOR
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Fig. 5. Comparison of single-thread performance for different problem sizes. Sampled
data are taken from the iterative part only.

with bit-reps. As the problem size increases, the performance rapidly degrades,
with the exception of Red–Black SOR with bit-reps.

Next, the performance of BiCGstab sub-tasks such as inner products, matrix–
vector multiplication, and TRIAD calculations was examined. Table 3 shows that
solving the Poisson equation takes more than 90 % of the fluid simulator’s total
execution time. We can see that the sub-tasks involved in calculating Ax and
updating X require almost 60 %. The Byte/Flop (byte per flop) of these tasks is
low, and therefore higher performance is expected. In fact, Fig. 7 reveals that sub-
tasks involved in the Ax computation operate at over 8 GFlops/s. In contrast,
and as expected, high Byte/Flop tasks represent relatively low performance.

Because the BiCGstab algorithm is a combination of sub-tasks, it is not easy
to predict the performance level, especially in multi-thread environments. On the
contrary, the main task in Red–Black SOR is the computation of Ax. Therefore,
it is easy to understand the behavior of the Red–Black SOR code.

Thus far, we have described how to implement the bit-reps code, and demon-
strated its effectiveness in classical and modern iterative methods for Poisson’s
equation, as derived from the incompressible Navier–Stokes equation and the
heat transfer equation. Usually, incompressible flow fields are solved by coupling
Poisson’s equation with other momentum equations. Our bit-reps implementa-
tion can be applied to a linear system derived from Poisson’s equation or from
implicit time integration. Of course, the same idea can be introduced for other
equations, e.g., momentum equations, energy equations, and the equation of
continuity, and a similar effect will be observed.
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Fig. 6. Comparison of multi-thread performance.

Table 3. Ratio of execution time and Byte/Flop for each kernel task in BiCGstab
bit-reps calculation. Data was measured on one Intel Xeon E5-1680 thread with Intel
compiler v.15.0.0.077. Note that “Residual” includes the calculation of Ax.

Sub-task Ratio (%) B/F Line number in Algorithm

Ax 45.9 1.1 7, 10

Dot 18.3 4.0 3, 8, 11, 14

Update X 14.9 1.7 12

Z = aX + Y 8.4 8.0 9, 13

Update P 5.1 4.0 16

Residual 0.3 1.3 2

Others 7.1 — —
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Fig. 7. Performance comparison of sub-tasks in BiCGstab kernels.

5 Concluding Remarks

We have described a novel and effective implementation of the Red–Black SOR
and BiCGstab iterative methods to fully exploit recent cache-based architec-
tures. The proposed bit-reps method represents the coefficients of a large-scale
sparse matrix compactly as a bit sequence. This approach effectively reduces the
volume of memory traffic, which is directly associated with performance. The
performance of the bit-reps code was compared to that of a näıve code on several
architectures. We found that bit-reps improved performance by up to 3.5 times,
and enabled 17 % of the theoretical peak to be achieved on both Intel and Fujitsu
Sparc architectures. In addition to this performance gain, the bit-reps approach
allows us to handle various arbitrary boundary conditions and arbitrary posi-
tions in the computational domain without significant performance degradation.
This feature is particularly favorable for practical simulations.
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Abstract. Modern distributed systems are designed to tolerate
unreliable environments, i.e., they aim to provide services even when
some failures happen in the underlying hardware or network. However,
the impact of unreliable environments can be significant on the per-
formance of the distributed systems, which should be considered when
deploying the services. In this paper, we present an approach to opti-
mize performance of the distributed systems under unreliable deployed
environments, through searching for optimal configuration parameters.
To simulate an unreliable environment, we inject several failures in the
environment of a service application, such as a node crash in the cluster,
network failures between nodes, resource contention in nodes, etc. Then,
we use a search algorithm to find the optimal parameters automatically
in the user-selected parameter space, under the unreliable environment
we created. We have implemented our approach in a testing-based frame-
work and applied it to several well-known distributed service systems.

Keywords: Distributed application · Disturbance action · Performance
optimization

1 Introduction

Cloud computing—the on-demand use of remote hardware or software com-
puting resources over a network—has emerged as one of the primary ways of
deploying new applications and services at scale. Effectively tuning and opti-
mizing performance of distributed services is essential for controlling costs and
improving customer satisfaction. To enable the administrators optimize the per-
formance, distributed applications often provide configuration parameters that
can be tuned for a specific system deployment.

However, finding the best configuration for distributed systems is challeng-
ing. First, the parameter space can be large, and it is hard to find the best
configuration manually. For example, Hadoop contains more than 190 parame-
ters that are specified to control the behavior of a MapReduce job. Second,
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the best configuration can be different under different deploying environments,
or even for different workloads. Third, since distributed services are deployed
on a distributed system of networked computer and storage elements, failures
may occur in the deploying environment. The best configuration can also be
affected by anomalies in the deployed environment, such as in the network
(link failures, link congestions, packet drops), node (process crash, memory con-
tention, deadlocks, CPU overload), or disk (slow response, failures, corruption).
These anomalies can impact both the correctness and performance of distributed
services.

Researchers have proposed several ways to mitigate the above challenges.
Some approaches [15] are proposed to search the optimal configuration automat-
ically for a given workload in large parameter spaces. However, these approaches
only target some specific distributed applications/systems and do not consider
the possible effects of anomalies in the environment (i.e., they assume an ideal
environment without any failures). On the other hand, since modern distributed
applications are designed to tolerate various environmental anomalies to some
extent, some perturbation-based testing approaches [17] are also proposed to
test the robustness or availability of the distributed services under environmen-
tal anomalies. However, such designs or testing approaches focus on robustness
or correctness of the distributed system, but do not consider performance. There
is relatively little work on optimizing the performance of distributed systems in
the presence of various environmental anomalies.

This paper proposes an approach to optimize the performance of distributed
services in the presence of environmental anomalies, such as node VM crashes,
network failure, etc. Our approach injects disturbance actions, which simulate
the environmental anomalies, into the environment. Examples of disturbance
actions include shutting down a node in a cluster or in a cloud, disconnecting
the link between nodes, limiting the resources a node can use, etc. Then, we use a
search algorithm to find the optimal configuration for a distributed system that
is deployed in the disturbed environment we created. Since various disturbed
environments can be created by applying different combinations of disturbance
actions, and it is impractical to optimize performance over all combinations,
we also propose two strategies to select disturbed environments. One is to opti-
mize the disturbed environment that leads to the worst performance (i.e., min-
max game strategy), while the other is to optimize the performance based on the
estimated probabilities of disturbance actions (i.e., weighted average strategy).

The intuition behind our approach is that the environmental anomalies can
affect the performance of distributed systems. The configuration for best perfor-
mance in an ideal environment (i.e., which has no anomalies) is not necessarily
the same as in a real environment (i.e., in which anomalies may happen). Thus,
system administrators should consider the environment anomalies when they are
trying to tune performance.

This paper makes the following contributions:

– We formalize the problem of finding good configuration parameters for perfor-
mance optimization of distributed services in the presence of environmental
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anomalies such as network failures or delays, node crashes, and multi-tenant
resource contentions.

– We have implemented our approach for arbitrary distributed systems in a
framework called RIOT, which is based on an automatic service orchestration
framework Juju [2]. We have extended Juju to allow deployment-time queries
on performance and health of the services, and combine automatic service
deployment with anomaly injections.

– We present promising experiments on some popular distributed applications,
including Apache Hadoop, HBase and ZooKeeper.

2 Problem Definition

In this section, we formalize the problem of optimizing configuration for perfor-
mance of distributed applications in the presence of environmental anomalies.

We consider software performance to include the response time and system
resource (e.g., CPU/memory) consumption [21]. We assume that the perfor-
mance of a distributed application depends on the deployed environment (e.g.,
virtualized or cloud), the workload it runs, and the configuration. Thus, the per-
formance can be denoted by formula (1), in which P is the performance, E is
the environment, Ψ is the workload, and c is the configuration. P is denoted as
a function � of E, Ψ and c, and larger P means worse performance.

P = �(E,Ψ, c) (1)

In our approach, we inject a set of disturbance actions in the environment to
simulate the environmental anomalies. Thus, the environment E can be denoted
by a function Γ over a set a that contains disturbance actions (as shown in
formula (2)). Set aall denotes all the disturbance actions that may occur in the
environment and a can be a subset of aall . Note that the ideal (or undisturbed)
environment is when a = ∅.

E = Γ (a),where a ⊆ aall and aall = {a1, a2, ..., an} (2)

For a given workload Ψ , our objective is to find the optimal configuration
copt which leads to the best performance in the parameter space S, under an
environment E (as shown in formula (3)).

copt = argmin
c∈S

�(E,Ψ, c),where c = {c1, c2, ...} (3)

However, for a disturbance action set of size n, we may need to consider 2n

environments, taking into account all combinations. If we further allow multiple
occurrences of each disturbance action, the combinatorial problem becomes even
worse. It is not practical to find the best configuration for each possible environ-
ment. Thus, we propose two strategies to select the environments to consider.
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For a given action set aall , let A denote a set of disturbance actions whose
elements are subsets of aall (formula 4). A can be selected by a user, based on
her knowledge of the actual deployed environment.

A = {a1,a2, ...,am},where ai ⊆ aall (4)

aworst = argmax
a∈A

�(Γ (a), Ψ, cideal
opt ),where cideal

opt = argmin
c∈S

�(Ei, Ψ, c) (5)

Based on the selected A, we can apply the following strategies:
(1) Min-max game strategy: Optimize configuration for the disturbance set

aworst which leads to the worst performance (aworst ∈ A). aworst can be denoted
by formula 5: given the optimal configuration cideal

opt for the ideal environment
Ei, aworst is the action set that degrades the performance most under config-
uration cideal

opt . Thus, in this strategy, the configuration to find can be denoted
by copt = argmin

c∈S
�(Γ (argmax

a∈A
�(Γ (a), Ψ, cideal

opt )), Ψ, c). We use this strategy in

our experiment, where we set A to {{a1}, {a2}, ..., {an}} (i.e., each action set in
A contains only one action).

(2) Weighted average strategy: Optimize configuration for expected perfor-
mance using probabilistic estimations about the frequency of disturbances. In

this strategy, the performance can be denoted as P =
m∑
i=1

wi ∗ �(Γ (ai ), Ψ, c).

The weight wi can be viewed as the estimated probability that a disturbance set
may occur in the deployed environment.

3 Environment-Sensitive Performance Tuning Framework

In this section, we present our implementation of the technique for environment-
sensitive performance tuning. We first give an overview of the infrastructure.
Then, we introduce the disturbance actions we implemented. Finally, we discuss
the search algorithm and the way to measure performance.

3.1 Infrastructure Overview

Our approach relies on service orchestration frameworks, which automate the
process of deploying, configuring and maintaining distributed services efficiently.
We propose new service orchestration commands that enable us to query per-
formance or correctness of the underlying deployed services. We also integrate
the orchestration framework with disturbance action injection.

In this paper, we use Juju [2] as the service orchestration framework. Juju uses
Charms [3] to deploy the application and supports many popular cloud environ-
ments, such as EC2 and OpenStack. Charms essentially comprise scripts which
define the ways of deploying and managing the distributed services. Currently,
Juju provides a large set of Charms which support hundreds of different distributed
applications. For example, to deploy Hadoop, we have to deploy four Hadoop services:
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hdfs-datanode, hdfs-namenode, mapred-jobtracker and mapred-tasktracker. There
are relations between different services because some services depend on others
(e.g., mapred-jobtracker and mapred-tasktracker depend on hdfs-namenode, while
hdfs-namenode depends on hdfs-datanode). Note that each service can be deployed
on certain number of nodes.

Fig. 1. An overview of RIOT.

Figure 1 shows an overview of RIOT, our framework for testing and tuning
performance of distributed services. In addition to deploying distributed services,
we create a test policy which defines a set of disturbance actions and the frequency
of applying them. After applying the test policy,RIOT runs workloads (i.e., stress
tests) under the disturbed environment, and queries the performance through the
service orchestration commands (performance check in Fig. 1). The information
to query is defined in Juju Charms. For example, in our experiments, we execute a
script to query performance counters from Ganglia [1] in the Charms. Note that we
also propose health checks for checking correctness, availability, or other require-
ments of interest. However, we target performance in this paper. After obtain-
ing the performance in one execution, RIOT reconfigures the services dynamically
through Juju to search for a better configuration, and the above process is repeated
until some time limit.

3.2 Disturbance Actions

As a proof-of-concept, we implement the following disturbance actions in RIOT:

– Shutting down a node, which simulates a node crash in a VM/cluster/cloud.
– Disconnecting two nodes, which simulates a link failure.
– Limiting the available memory in a node, which simulates resource contention

in a node.
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Juju creates Linux LXC containers [5] and deploys the service units in the
containers (i.e., the service processes are created by the containers). We shut
down a node by stopping the corresponding LXC container. To disconnect two
nodes, we use Linux traffic control to drop all packets sent between the two
containers. We use LXC cgroup to limit the available memory, since this com-
mand allows specifying resource limits for a control group of processes. It is
easy to define other disturbance actions, such as link congestions, packet delay
using Linux traffic control tools, for example. Note that to determine which
nodes an action should be injected to, one should consider the actual deploy-
ment scenario. For example, in a Hadoop deployment, suppose the administrator
expects that the mapred-tasktracker service is unstable, she can shutdown one
or some random task tracker nodes, since all task tracker nodes are functionally
equivalent. However, for ZooKeeper, the administrator should distinguish leader
node and follower nodes, since they are not functionally equivalent. All possible
disturbance actions and their combinations constitute aall defined in Sect. 2.

The RIOT framework allows the user to control the frequency of applying
the disturbance actions. A user can inject and remove these disturbance actions
multiple times (along with suitable sleeps in between) during their testing process
to construct various disturbance scenarios. The disturbance actions to apply are
specified in the test policy shown in Fig. 1.

3.3 Searching Configuration Parameters

As mentioned earlier, the search algorithm executes the stress tests repeatedly
within a given time limit to search for the optimal configuration. For efficiency
and effectiveness, the algorithm must minimize the number of stress test exe-
cutions while finding near-optimal configurations. For this purpose, RIOT uses
the Recursive Random Search (RRS) algorithm [23], which has been applied to
black-box optimization problems. RRS first samples the search space randomly
for a certain number of times, to identify regions that contain optimal solutions
with high probability. These regions are then sampled recursively, and are either
moved or shrunk gradually to local optima based on the samples. Then, RRS
restarts random sampling to find better regions based on the result of the last
iteration, and repeats the recursive search.

3.4 Performance Measurement

To compare the performance of different stress test executions, we have to mea-
sure and quantify the performance of an execution. We use Ganglia [1] as our per-
formance measurement tool. Ganglia is a scalable distributed monitoring system
for high-performance computing systems, including clouds. It provides around
50 different performance counters. RIOT deploys Ganglia along with the distrib-
uted services. During the execution of stress tests, RIOT queries the performance
counters from Ganglia (i.e., the “performance check” module in Fig. 1) every 30 s,
and calculates the average of all nodes for each performance counter. Note that
when comparing performance, instead of simply adding absolute values with
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different units (e.g., adding memory usage which is in byte with execution time
which is in second), RIOT first calculates the relative values that are relative to
the first execution for each performance counter, and adds these relative values
by using the weighted average. This weighted average is then used to repre-
sent the performance of one execution. A larger value means worse performance.
Table 1 shows the performance counters and weights used in our experiments.
These performance counters cover the usage of network, cpu, and memory1. Note
that the weights we used are heuristic, and users can select other weights based
on their estimated importance for each performance counter.

For example, suppose we have two executions. For the first execution, the
averages of all nodes for each performance counter are 20 MB (bytes in), 10 MB
(bytes out), 10 % (CPU user), 2 GB (Used memory), 1000 s (execution time);
while for the second execution, the averages are 30 MB, 10 MB, 8 %, 1GB, 2000 s.
Then the relative values of the first execution for each performance counter
(relative to the first execution) are always 1; while for the second execution,
the relative values are 1.5 (byte in), 1 (byte out), 0.8 (CPU), 0.5 (memory), 2
(execution time). Thus, the weighted average for these relative values is 1 for the
first execution and 1.46 (i.e., 0.1 × 1.5 + 0.1 × 1 + 0.2 × 0.8 + 0.1 × 0.5 + 0.5 × 2)
for the second execution, and the performance of the second execution is worse.

Table 1. Ganglia performance counters and weights used in the experiment.

Name Description Weight

Bytes in Number of bytes in per second 0.1

Bytes out Number of bytes out per second 0.1

CPU user Percent of user CPU 0.2

Used memory Amount of used memory 0.1

Execution time Execution time of the stress tests 0.5

4 Experiments

We evaluate RIOT by answering the following research questions:
RQ1: Do the disturbance actions we inject affect the performance of the dis-
tributed systems?
RQ2: Can we optimize the performance for a distributed application deployed
in disturbed environments?

4.1 Experimental Subjects

We applied RIOT on three well-known distributed applications in our exper-
iments: Hadoop, HBase, and ZooKeeper. Hadoop is a framework for distributed
1 Execution time is not obtained from Ganglia, but from Linux time command.
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processing of large data sets using map-reduce programming models, while HBase

is a distributed and scalable big data database for Hadoop. ZooKeeper is a cen-
tralized service for maintaining high-level configuration information, providing
distributed synchronization and group services. We used versions 1.0.2, 0.92.1,
and 3.3.5, respectively.

Table 2. Configuration parameters used in the experiments.

Application # Parameter Values

Hadoop c1 number of datanode 3, 4, 5, 6, 7

c2 number of tasktracker 3, 4, 5, 6, 7

c3 io sort mb 80, 100, 120, 140, 160, 180, 200

c4 io sort factor 8, 9, 10, 11,12

Hadoop & HBase c5 dfs block size (MB) 32, 64, 128, 256

c6 datanode max xcievers 2048, 4096, 6144

c7 namenode handler count 8, 9, 10, 11,12

c8 heap (MB) 512, 1024, 1536, 2048

ZooKeeper c9 number of zookeeper node 3, 4, 5, 6, 7

c10 default group 0, 1, 2, 3, 4

c11 default weight 1, 2, 3, 4, 5

As mentioned in Sect. 3.1, RIOT runs workloads (i.e., stress tests) on the
applications to tune the performance. The workloads we used in experiments
are shown in the first column of Table 3. The first four stress tests are used for
Hadoop. These tests cover different layers of Hadoop: TestDFSIO is a read and write
test for HDFS, TeraSort is a large-scale test that covers both map-reduce and HDFS

layers, NNBench tests the NameNode hardware and configuration, MRBench focuses
on the map-reduce layer by running many small map-reduce jobs. For HBase,
we randomly generated HBase operations as workload, including adding/deleting
tables, adding/deleting tuples, and queries. Each HBase node runs one randomly
generated operation sequence. Similar to HBase, we randomly generated work-
loads for ZooKeeper, including stopping and re-starting the ZooKeeper service,
creating new elements in the shared configuration state, re-setting values, query-
ing some states, or deleting some states.

4.2 Experimental Setup

We did two sets of experiments. In experiment 1, we applied RIOT to the four
stress tests of Hadoop. We ran stress tests with different disturbance actions,
and different number of Hadoop task tracker nodes. As mentioned in Sect. 2, we
injected only one action per execution and did not consider the combination of
actions. Note that the number of nodes can be viewed as configuration para-
meter. Through this experiment, we can find out how the actions affect the
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performance and whether the performance for disturbed environments can be
improved by changing configuration (i.e., number of task tracker nodes). Since
this experiment does not aim to find an optimal configuration, we did not apply
RRS. Instead, we added task tracker nodes manually for each execution.

Fig. 2. Workloads and Results of Experiments 1.

In experiment 2, we applied RIOT to all the three distributed applications to
automatically find optimal configurations for both ideal and disturbed environ-
ments. For each application, we select a set of popular configuration parameters
as parameter space. These configuration parameters are shown in Table 2. Col-
umn 1 shows the application, and Column 2 shows the parameter number (for
ease of reference). Columns 3 and 4 show parameter names and values (i.e.,
parameter space), respectively. Four parameters are used both by Hadoop and
HBase. Note that we consider the number of nodes also as configuration parame-
ters (e.g., number of datanode and number of tasktracker), and for different work-
loads we tune different configuration parameters. Similar to the first experiment,
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Table 3. Workloads and Results of Experiments 2.

we injected three kinds of disturbance actions (described in Sect. 3.1), with one
action per execution (i.e., we did not combine disturbance actions).

In both experiments, we deployed Hadoop with three data nodes and task
trackers, and one name node and job tracker. For TestDFSIO, we read and wrote
10 files of size 1 GB; for TeraSort, we sorted 5 GB data; for NNBench, we created
1000 files of size 1 KB; for MRBench, we ran 50 small map-reduce jobs. For HBase,
in order to focus on the performance of HBase itself, we used a stand-alone HBase

installation with one master server and three region servers, without integrating
it with Hadoop. We deployed ZooKeeper with five nodes. For HBase and ZooKeeper,
we generated workloads with 1000 operations.

All the experiments are run in a cloud where each node has a 2.33 GHz 4-
cores Intel Xeon processor, 2 GB memory and runs Ubuntu 12.04.1. The time
limit for RRS is set to two hours.
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4.3 Experimental Results

Experiment 1. Figure 2 shows the result of the first experiment. The four
charts represent the results of executing the four Hadoop stress tests. The x-axis
is the the number of task tracker nodes while the y-axis is the execution time of
the stress tests. Note that to make the charts more illustrative, we only show the
execution time instead of considering all the performance counters in Table 1.
Each line in the charts represents the executions with one disturbance action (or
no action) but different number of task tracker nodes.

Without injecting any disturbance actions, the performance for each stress
test is relatively the same even if we increased the number of task tracker nodes.
The reason could be the number of task trackers set for the initial ideal environ-
ment is already saturated for the workloads, so adding more task trackers do not
affect the performance much. After we injected disturbance actions, some execu-
tions get an obvious performance degradation. For example, TestDFSIO and Tera-

Sort are affected significantly by action “disconnected two task trackers”, while
NNBench and MRBench are affected most by action “memlimit a task trackers”.
However, for a given benchmark, there are also some disturbance actions which
do not affect performance. Interestingly, for those actions that lead to worse
performance, after adding more task tracker nodes, the performance becomes
better for all the four stress tests.

From this experiment, we make the several observation. First, some dis-
turbance actions affect the performance of the distributed application signifi-
cantly while others do not. Second, different workloads are affect by different
disturbance actions. Thus, performance tuning should target workloads rather
than applications. Third, the performance for a disturbed environment can be
improved by using better configurations.

Experiment 2. The result of the second experiment is shown in Table 3. The first
column shows the workloads, in which the first four are Hadoop stress tests. We use
theMin-max game strategy and setA to {{a1}, {a2}, ..., {an}} in the experiments.
The second column, aworst , is the disturbance action set that leads to the worst
performance. Columns 3–6 show four performance values (i.e., combining the ideal
and disturbed environments Ei, Ed with two optimal configurations cidealopt and
cdisturbedopt , where cidealopt and cdisturbedopt represents the optimal configurations for Ei

and Ed, respectively). Eic
i is the ideal environment with its optimal configuration

cidealopt . Edc
d is the disturbed environment injected by aworst , and uses its new opti-

mal configuration cdisturbedopt . Eic
d is the disturbed environment but uses cidealopt , while

Edc
i is the ideal environment but uses cdisturbedopt . Note that the performance value is

a relative value based on the value of Eic
i , so the performance value of Eic

i is always
1. Columns 7 and 8 show the optimal configurations for Ei and Ed, respectively.
We use the serial numbers in Table 2 to represent the parameter names (e.g., c1
refers to number of datanode). Notice that for each workload, we only search for
the configuration parameters related to it.
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From these results, we make the following observations. First, as expected,
the disturbance actions affect the performance even if we consider multiple per-
formance counters, as seen by comparing Eic

i and Eic
d . This observation conforms

to our first observation from experiment 1. An exception is ZooKeeper, for which
the performance value is almost the same. This is likely because ZooKeeper is
not compute-intensive like Hadoop, and the effect of environment anomalies is
less on its main function of maintaining a quorum. Second, a comparison of
Columns 6 and 7 shows that the optimal configurations for ideal and disturbed
environments are different. Also, different workloads have different optimal con-
figurations. Third, one should consider when to use an optimal configuration
for a disturbed environment. By comparing the performance values, we can see
that although the performance of Edc

d is a bit worse than that of Eic
i , there are

obvious improvements when comparing with Eic
d in almost all cases. Also, from

Edc
i we can observe that using cdisturbedopt in ideal environment only results in a

subtle distinction on performance. This means that using the optimal configu-
ration for a disturbed environment, rather than an ideal environment, can be a
better choice in practice. The RIOT framework provides a flexible platform to
find these configurations.

4.4 Threats to Validity and Limitations

Construct threats: First, different performance counters can be combined to
represent the performance of a distributed application. The weights of the per-
formance counters can differ on the basis of real deployment scenario. RIOT
mitigates this threats by considering five commonly used performance coun-
ters [21] and using heuristic weights. Second, since the time limit for RRS is
set to two hours, the reported configuration by RIOT is the optimal configu-
ration found in two hours. However, a longer time limit may result in a better
configuration. Third, we injected one disturbance action once in each execution.
However, disturbed environments can be categorized on both the action type
and the frequency we injected them. Injecting multiple actions with different
frequencies per execution may give different results. Thus, in practice, we should
construct as many disturbed environments as possible by combining disturbance
actions and injecting them with different frequencies.

Internal threats: RIOT uses RRS to search optimal configurations and Gan-
glia to collect performance counters. The correctness of our implementation
depends on the correctness of RRS and Ganglia. The authors are not aware
of any bugs in RRS, Ganglia or the implementation of the RIOT techniques
that may have affected the results of the experiments.

External threats: As it holds for any experimental study, the selected set
of applications may not be fully representative. Disturbance actions’ affect on
performance may differ for different applications. To mitigate this limitation, we
selected three applications with varying domains. Moreover, for each application,
we used stress tests that test different components of the applications.
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Other limitations: First, RIOT uses min-max game strategy to optimize the
configuration. However, using other strategies, such as weighted average strategy,
may lead to better tuning result. Second, since RIOT uses a black-box approach
to tune the performance, it does not analyze why the performance is affected
by disturbance actions. The reason could be related to an application’s recov-
ery algorithm, load balancing or error handling mechanism, etc. Analyzing the
internal states of an application may also lead to better tuning result. Third,
current RIOT implementation requires users to define test policies manually.
However, we may also automatically generated test policy templates by mining
commonly occurred disturbance actions in cloud.

5 Related Work

The closest related work in performance tuning of distributed systems is by
Babu et al. on StarFish [8,14,15]. StarFish is a self-tuning analytics system
for Hadoop. It uses model-based estimation to predict Hadoop job performance,
and then uses the prediction to find good settings for configuration parameters.
However, StarFish only targets Hadoop and assumes an ideal environment. Our
approach considers the effect of environment anomalies and can be applied to
arbitrary distributed systems.

Various stress testing [4,6,19] or fault injection based methods [7,9,10,12,13,
16–18,20,22] are used to measure performance or test robustness in distributed
applications.

Stress testing frameworks, such as Selenium [6] and LoadRunner [4], test
distributed applications under heavy load conditions to check robustness, avail-
ability, tolerance, error handling, etc. These frameworks are used to check if
the system has noticeable defects under large and unpredictable network delays
and heavy usage. Lubke et al. [19] provide an architecture that allows network
emulation of standard client/server-based architectures. They provide an archi-
tecture, based on Dummynet [11], that allows network emulation of standard
client/server-based architectures. The main goal, as is common for network emu-
lators, is to get precise and accurate performance measurements. Our goal is to
tune performance for arbitrary distributed service architectures.

There have been recent efforts for cloud testing that focus on testing of
recovery functionality by either injecting disk/node/link failures [13] or spec-
ifying failure scenarios via testing policies [18]. To allow testers more control
where faults should be injected, various test description languages have been pro-
posed [9,10,12,16,20]. One such example is the tool LFI [20] for fault-injection
based testing of recovery code when library calls fail. Our implementation also
provides a way to define testing policies and inject failures.

Random fault-injection based methods are also frequently used for distrib-
uted application resiliency testing, such as chaos monkey testing [22] or Game-
Day exercises [7]. One drawback of random application-level fault injection is
that the injected faults may not be justifiable in practice. In our approach,
the disturbance actions we injected guarantee that every observed performance
degradation is justifiable and replicable.
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Our recent work SETSUDO [17] targets robustness testing of cloud applications.
It allows a tester to specify testing policies using application-dependent abstrac-
tion labels that expose internal states of the application. This requires instru-
mentation support and a scheduler that controls the ordering of certain execution
events. Here, we treat the applications as black boxes without knowing the
internal states of the application, and we focus on performance rather than
robustness.

6 Conclusions

In this paper, we proposed a black-box approach to tune the performance of
distributed services along with consideration of environmental anomalies. We
implemented this approach in a framework called RIOT for arbitrary distrib-
uted systems. It extends the automatic service orchestration framework Juju to
simulate and inject disturbance actions, and performs measurements and other
health checks. We performed experiments on some popular distributed service
applications, which show that environmental anomalies can significantly affect
their performance, and the optimal configurations for ideal environment and
disturbed environment are different. We also reported on how our platform is
used to compare the optimal configuration for the ideal environment and an
unreliable environment, and that choosing the latter provides less performance
degradation in many cases. We believe practical deployment of distributed ser-
vices can benefit from considering anomaly-aware configuration search.
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Abstract. The performance optimization of scientific applications usu-
ally requires an in-depth knowledge of the hardware and software.
A performance tuning mechanism is suggested to automatically tune
OpenACC parameters to adapt to the execution environment on a given
system. A historic learning based methodology is suggested to prune the
parameter search space for a more efficient auto-tuning process. This
approach is applied to tune the OpenACC gang and vector clauses for a
better mapping of the compute kernels onto the underlying architecture.
Our experiments show a significant performance improvement against
the default compiler parameters and drastic reduction in tuning time
compared to a brute force search-based approach.

1 Introduction

Accelerators are gradually becoming mainstream in supercomputing as their capa-
bility to significantly accelerate a large spectrum of scientific applications at a
higher power efficiency has been clearly identified and proven. Moreover, with the
introduction of high level programming models such as OpenACC [1] and OpenMP
4.0 [2], these devices are becoming more accessible and practical to use by a larger
scientific community. OpenACC was announced in the ACM/IEEE Supercomput-
ing Conference 2011 as a new standard for parallel programming targeting hard-
ware accelerators. Although the goal of the standard is to increase programmer
productivity by using compiler directives, getting the best performance of the tar-
get device is still tedious and requires a significant effort by the developer to tune
some of the OpenACC annotations and the corresponding parameters. As a matter
of fact, without tuning, a suboptimal performance is recorded on different applica-
tions while using the latest implementations of OpenACC compilers. In this work,
we propose a new methodology for empirical tuning of OpenACC accelerated sci-
entific applications to relieve the end user from this burden. The OpenACC gang
and vector clauses are used to map nested loops to the underlying hardware archi-
tecture. The auto-tuning engine performs a search on the space of possible uses of
these clauses and their corresponding attributes, for a better mapping and thus
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 224–235, 2015.
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to improve the performance of the offloaded kernel. However, when the number of
parameters is quite big, the search space becomes significantly large, and the tun-
ing procedure becomes very expensive and unpractical. We suggest a performance
tuning strategy that reduces the cost of tuning by pruning the search space using
the historic knowledge of previous tuning operations performed on similar prob-
lem sizes. This approach was presented and its effectiveness was demonstrated on
auto-tuning MPI communication operations in the Abstract Data and Communi-
cation Library (ADCL) [3,4].

The remainder of the paper is organized as follows. Section 2 introduces our
methodology to efficiently tune OpenACC clauses using a historic learning app-
roach. In Sect. 3, the experimental setup is described and the performance results
of the proposed tuning strategy are reported. Section 4 presents the related work
in this research area. Finally, Sect. 5 summarizes our findings and ongoing work.

2 Performance Tuning Methodology

The OpenACC standard offers flexibility to the developer to further tune the
loop pragma with the gang and vector clauses and therefore control the mapping
of the nested loops to the underlying hardware compute units; that is the threads
partitioning in the accelerator. The gang clause specifies in how many groups
to aggregate the parallel threads generated by the parallelization of the given
loop, which corresponds to the shape and size of the grid of blocks in the GPU
environment. The vector clause specifies the granularity of the parallel threads
per gang, which translates to the dimensionality and the size per dimension of
each of the thread blocks in NVIDIA hardware. The latest compiler technol-
ogy relies on heuristics to specify these parameters for a given application. Our
analysis showed that a significant improvement could be further obtained by
spending more effort in tuning these parameters. Our methodology for tackling
this particular aspect is described next.

2.1 Tuning Methodology of OpenACC Loop Clauses

The strategy for auto-tuning proposed here is based on empirical evaluation of dif-
ferent uses of the OpenACC clauses gang and vector in nested OpenACC loops as
depicted in Fig. 1 for the case of an OpenACC kernels pragma annotation. If the
OpenACC parallel construct is to be used, the clauses num gang and vector length
are the corresponding clauses for tuning the performance of the offloaded nested
loops. For the first case, the performance tuning procedure is in two steps. In the
first phase, the performance of different placements of the gang and vector clauses
within the nested loops is evaluated and the best performing one is selected. At
this initial phase, we keep the compiler choice of the numbers of gangs and vec-
tors by omitting any specific values. Although, this placement of the gang and
vector clauses is not part of the OpenACC standard, we found that making use of
this feature in the PGI compiler resulted in an enhanced performance. Once the
optimal placement of these clauses is determined, we explore in the second phase
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Fig. 1. Different placements of the gang and vector clauses in three nested loops.

different numbers of gangs and vectors other than the ones chosen by the compiler.
This second phase will be sufficient by itself if the OpenACC parallel construct is
used since only the number of gang and the vector length sizes are to be tuned.
This tuning methodology is referred as the brute force tuning in the experimen-
tal results section. It is worth noting that the set of meaningful configurations is
constrained by the specification of the accelerator. Despite this restriction, this
parameter space can be very huge, and using an exhaustive search on all possible
combinations could be considerably time-consuming and unreasonable. A historic
learning based approach able to shrink the search space and accelerate the tuning
process is detailed next. Without specifying width for last column:

2.2 Historic Learning Approach

Tuning OpenACC gang and vector clauses with an exhaustive search of the full
parameter space is time consuming. In the case of an NVIDIA Kepler GPU, the
total number of combinations of gang and vector values if applied to one level of
the nested loops can easily reach up to 16,384 combinations. We suggest here a
tuning methodology based on the previous tuning results of the same application,
for different problem sizes, on the same hardware. Practically, a learning phase
is needed for building a knowledge database, which consists in the best tuning
parameters for various input sizes. Once such database is constructed, and given
a new problem size PSnew for the same application, the nearest neighbor problem
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size in the knowledge base is identified using the Euclidian distance for example.
This problem size is used as a reference for the suggested tuning approach and
is referred as PSref . The optimal tuning parameters of PSref extracted from
the knowledge base are used to define a subset of the parameters space to be
explored by the tuning engine for PSnew. This search subspace consists in a
smaller range of gang and vector values. The range of these values is centered
on the optimal tuning parameters for PSref and we used five values in each
direction for each tunable parameter in our first experiments. The search space
of possible parameters combinations is then drastically reduced and the tuning
procedure becomes much faster and thus more attractive. The tuning results
of PSnew are then included to enrich the tuning knowledge database for future
reuse. This tuning methodology is referred as the historic learning tuning in the
experimental results section.

2.3 Tuning the Search Subspace Size

The initial results, as it will be detailed in the subsequent section, show that
for few problem sizes, for which the reference problem size PSnew is not close
enough, the performance results of the historic learning approach using the sug-
gested search subspace are not very encouraging. In such cases, we propose to
be less aggressive in the pruning process by using a larger number of values
of each parameter (gang and vector) to define the size of the search subspace.
We empirically identified a threshold of 250 in the Euclidian distance between
PSref and PSnew above which, 10 values of each parameter are used to define
the search subspace instead of the default value of 5 as described previously. Our
experiments show that this approach helps to fill the gap between the speedups
obtained by the brute force and the historic learning tuning approaches, and
better performance is obtained without increasing the tuning time dramatically.

3 Experimental Results

The test bed hardware and software specifications and the test application used
for this performance analysis are first described. Following that, we showcase
the importance of the gang and vector clauses placement within nested loops
to the performance tuning of OpenACC applications. The performance gain of
applying the suggested tuning methodology on the test application as well as
the tuning time reduction by using the historic learning approach is reported.

3.1 Test Bed Specifications and Test Application

The test bed used for our experiments consists in a dual socket CPU system host-
ing four NVIDIA Kepler K20c GPU cards. Each socket is an eight-core Sandy
Bridge Intel(R) Xeon(R) CPU E5-2650, running at a clock speed of 2.00 GHz.
The software stack consists in the PGI compiler version 12.9, and the NVIDIA
CUDA driver 5.0. In our experiments, we used the isotropic finite difference
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kernel, which constitutes the building block for the Reverse Time Migration
(RTM) and the Full Waveform Inversion (FWI) applications, extensively used
by the oil and gas exploration industry for the velocity model building and seis-
mic imaging of the sub-surface. The Reverse Time Migration application consists
in a forward modeling and backward migration using a finite difference kernel
that solves the acoustic wave equation.

1
c2

d2P

dt2
=

d2P

dx2
+

d2P

dy2
+

d2P

dz2

Where c is the velocity of the propagated wave and P is the wavefield pressure. The
3D finite difference stencil scheme is 8th order in space and 2nd order in time.

3.2 Importance of Gang and Vector Placement

The application of the brute force tuning methodology to a set of ten different prob-
lem sizes resulted in a performance improvement of up to 30 % while compared to
the base code version tuned by the compiler. It is emphasized here that the optimal
gang and vector clauses placement varies from one problem size to another. Table 1
shows for each 3D problem size, the chosen grid and block sizes by the compiler
and the corresponding tuned parameters. The color code of each row corresponds
to a different placement of the gang and vector clauses in the three nested loops
as depicted in Fig. 1. We can conclude here that the first phase in the proposed
tuning methodology is crucial as the clauses placement in the nested loops has a
significant importance in the performance tuning of the OpenACC code.

3.3 Performance Tuning Results

In the brute force search-based tuning methodology, the performance of the com-
pute kernel is evaluated with all possible gang and vector values allowed by the

Table 1. Compiler choices versus tuning results for gang and vector placement and
values for different problem sizes.

3D Domain Size Grid/block sizes chosen by PGI Tuned grid/block size

128x128x128 grid:[2x30] block:[64x4] grid:[30x120] block:[64x4]
256x256x256 grid:[4x62] block:[64x4] grid:[248x6] block:[64x6]
512x512x512 grid:[8x126] block:[64x4] grid:[504x63] block:[32x8]
640x640x640 grid:[10x158] block:[64x4] grid:[10x316] block:[64x4x2]
128x128x640 grid:[10x30] block:[64x4] grid:[10x64] block:[64x4]
128x640x128 grid:[2x158] block:[64x4] grid:[4x256] block:[64x4]
640x128x128 grid:[2x30] block:[64x4] grid:[2x316] block:[64x4x2]
640x640x128 grid:[2x158] block:[64x4] grid:[2x316] block:[64x4x2]
640x128x640 grid:[10x30] block:[64x4] grid:[10x316] block:[64x4x2]
28x640x640 grid:[10x158] block:[64x4] grid:[10x316] block:[128x4]



Historic Learning Approach for Auto-tuning OpenACC 229

hardware specification of the K20c GPU. In our experiment, the gang values
were chosen at increments of 2, starting from 2 to 1,024. The vector values were
chosen in multiples of 32 (warp size, as recommended by NVIDIA), starting
from 32 up to 1,024. The total search space consists of 16,384 combinations. The
brute force tuning method is a very time consuming process yet very simple in
finding the best possible gang and vector tuple. The historic learning algorithm
is used to identify a reference problem size PSref with a known solution (i.e.
gang and vector tuple). The search space is then reduced by selecting a subset
range of parameters keeping only the closest ten values of gang and vector with
regard to the reference problem size solution. Therefore, the parameters space to
be explored and evaluated is significantly reduced to only a 100 combinations.
The brute force search tuning method was first applied to 25 problem sizes and
the best tuning parameters are stored in a knowledge base. Then, another set
of eight different problem sizes are tuned using both the brute force search and
the historic learning tuning approaches. The performance speedups in compari-
son to the compiler tuned code version as well as the tuning time are recorded
while using either of the tuning approaches for each of the eight new investi-
gated problem sizes. As shown in Fig. 2, the tuning procedure using either the
brute force search or the historic learning tuning method resulted in a better
performance than the compiler default tuning. Indeed, a performance increase
of up to 80 % is recorded relative to the performance of the base code. Moreover,

Fig. 2. Performance speedup analysis using the different tuning.
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Fig. 3. Tuning time using the brute force and the historic learning tuning approach.

the performance of the code while tuned with the historic learning approach is
in most cases within less than 1.5 % of the best possible performance recorded
while using a brute force search. The two cases where the historic learning tuned
code was not performing as well as the brute force search tuned version are with
the problem size 1500× 400× 400 and 800× 600× 400. The analysis of the data
shows that the main reason for that is the lack of a close enough problem size
in the database used for the prediction of a problem size of reference. Indeed,
the two problem sizes have the highest Euclidian distances to the problem size
of reference used and were above our specified threshold of 250. Figure 3 shows
the required time for tuning a given problem size with the brute force and the
historic learning based tuning methods. Our experiment shows that the tuning
time is reduced dramatically by a factor of 18 to 52 times while using the new
proposed tuning approach. At the same time, a comparable performance to the
brute force search approach is generally achieved as detailed before.

3.4 Impact of Tuning the Search Subspace Size

Figure 4 shows the performance gain while using an extended search subspace
for the cases of 1500× 400× 400 and 800× 600× 400 problem sizes, for which,
the distance to the problem size of reference was 626.78 and 318.09 respectively.
As these numbers are above the specified threshold, the search subspace is then
increased as described previously. The results exhibit additional 15 % and 14 %
performance improvements obtained for the two problem sizes respectively. It is
also to be noted that the cost of this approach in terms of total tuning time is
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Fig. 4. Performance speedup using the different tuning methodologies using the default
and extended subspace for 1500× 400× 400 and 800× 600× 600 problem sizes.

Fig. 5. Tuning time using the brute force and the historic learning tuning approach
using the default and extended subspace for 1500× 400× 400 and 800× 600× 600 prob-
lem sizes.



232 S. Siddiqui et al.

Table 2. Compiler and auto-tuner choices for gang and vector values on different
platforms.

Accelerator type Gangh Vector Speedup

NVIDIA Fermi 256 144 1.29X

NVIDIA K20c 884 96 1.43X

NVIDIA K40 784 128 1.41X

PGI compiler 92 256 -

minimal and the advantage of a much faster tuning with the historic learning app-
roach is still obvious as per the recorded tuning times summarized in Fig. 5. In
order to further validate this approach, we incorporated in the second experiment,
two new problem sizes to the historic data: 1400× 440× 350 and 700× 550× 320.
The Euclidian distances to 1500× 400× 400 and 800× 600× 400 problem sizes
are 118.74 and 137.48 respectively, that is below the specified threshold for extend-
ing the search subspace size. Applying the historic learning approach again with
the default search space size resulted in better performance improvements of 7 %
and 15 % respectively.

3.5 Adaptation to the Underlying Hardware

In this subsection we demonstrates the portability of the proposed auto-tuning
methodology on different platforms. Table 2, shows the different gang and vector
values chosen by the PGI compiler and our auto-tuner using the historic learning
approach on three different generations of NVIDIA GPUs: Fermi, Kepler K20c
and Kepler K40 for the problem size 100× 100× 100. In all different platforms,
the compiler heuristic is always selecting the same gang and vector values, 92 for
the number of gangs and 256 as a vector length. We applied the proposed app-
roach on the three generations of NVIDIA GPUs using historic data generated for
each platform as detailed in previous subsections. The performance results shows
a speedup ranging from 29 % to 43 % relative to the performance of the compiler-
optimized version of the finite difference code. In addition, the gang and vector
values selected by our auto-tuner vary from a GPU generation to another, which
shows the ability of the proposed approach to efficiently adapt to different hard-
ware platforms.

4 Discussion

The historic learning approach proposed in this paper for accelerating the auto-
tuning of OpenACC accelerated kernels, has many advantages and some draw-
backs. The main advantage is that it can cleverly prune the search space using
hints from historic data and therefore reduce the tuning time considerably. It is
to be noted here that the suggested methodology is independent of the used search
algorithm. Another set of experiments is carried out using a random search algo-
rithm applied to the entire search space and the pruned search space using historic
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learning. The results are very similar to what has been shown using the brute force
search and further confirming the validity of the proposed approach.

In addition, the prediction accuracy of the machine learning algorithm used
can improve over time as more data samples are created. However, we have
noticed that with the lack of relevant historic data, the algorithm may result in
a sub-optimal parameter values. As a remedy, we proposed a simple heuristic
that can be applied in our case to tune the size of the pruned search sub-space
depending on the quality of the historic data. Another drawback of this method
is the non-portability of the historic data from a platform to another. The use of
historic data generated on a given accelerator is unlikely to result in performance
improvements on a different hardware.

5 Related Work

A significant research has been conducted in tuning applications written for
GPUs. At the compiler level, another directive-based programming models called
HMPP [6], is presented along with its tuning methodology. The CAPS OpenACC
compiler also includes an auto-tuning driver that can explore the optimization
space to tune kernel regions [15]. At the application level, researchers applied
various tuning mechanisms to GPU codes such as sparse matrix-vector multi-
ply [5], stencil computations [7,11], and computational electromagnetics [14].
Vuduc proposed in [12] a statistical approach for automatic performance tuning
of matrix-matrix multiply operation. AtuneRT [13] is an application-independent
auto-tuner, which optimizes GPU-specific parameters such as block size and
loop-unrolling degree.

The historic learning approach was applied to the runtime tuning of MPI
communications in the abstract data and communication library (ADCL) [8,9].
The notion of historic learning is also implemented to a limited extent in FFTW
[10], namely with a feature called Wisdom. The user can export experiences gath-
ered in previous runs into a file, and reload it at subsequent executions. However,
the wisdom concept in FFTW lacks any notion of related problems, i.e. wisdom
information can only be reused for exactly the same problem size that was used
to generate it.

6 Conclusions and Ongoing Work

A historic learning-based approach for performance tuning of OpenACC acceler-
ated applications is presented. The performance results obtained by the proposed
tuning methodology on a finite difference kernel showed a significant performance
gain relative to the compiler-tuned code and close to the optimal performance
that can be obtained with an exhaustive search. Furthermore, the time needed
for tuning is reduced drastically compared to the brute force tuning technique.
Nevertheless, the main limitation of this approach is its dependency on the his-
toric data that is crucial for a good prediction and therefore for achieving a
performance close to the tuned code with a brute force search. To reduce this
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limitation, we suggested a heuristic for extending the search subspace depending
on the Euclidian distance to the nearest neighbor identified in the historic data.
This approach seems to enhance the performance for such cases with a minimal
overhead on the tuning time.

Our ongoing work includes full automation of the tuning process including
a code generator tool along with a parallel evaluation engine on a cluster with
multiple GPUs. Further experiments will be carried out to validate the approach
for a larger spectrum of scientific applications and on a variety of accelerator
architectures including different NVIDIA GPU generations and Intels Xeon Phi
coprocessors. Furthermore, machine learning algorithms such as K-nearest neigh-
bors, Bayesian classifiers and support vector machines are being investigated to
achieve a better prediction of the most similar problem sizes to use as a reference
to shrink the search space.
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Abstract. Matrix-Matrix Multiplication (MMM) is a fundamental oper-
ation in scientific computing. Achieving the floating point peak with this
operation requires expert knowledge of linear algebra and computer archi-
tecture to craft a tuned implementation, for a given microarchitecture. To
do this an expert follows a mechanical process for implementing MMM,
by deriving an algorithm from models found in the literature. Then, the
expert applies optimizations which are well suited for the target architec-
ture. Lastly, the expert expresses that implementation in assembly code.
In this paper, we argue that this process is mechanical and can be cap-
tured in a rule based program generation system such as Spiral. We then
show that given this machinery, Spiral can produce code for large size
MMM implementations that are competitive with hand tuned code.

1 Introduction

Implementing a high performance implementation of MMM is difficult. A great
body of work provides the mathematical machinery for determining the optimal
blocking strategies analytically [1,2]. However, once this is determined, there
is still the issue of mapping the implementation to the hardware. There are
microarchitecture specific issues that must be addressed in order to reach high
performance.

The Compiler: Compilers fall short of reaching peak performance for MMM
on modern architectures. If a programmer provides a straightforward implemen-
tation of MMM with a triple nested loop (Fig. 1), the code generated by the
compiler will not achieve the same high performance as the code an expert pro-
duces. One reason for this is that compilers are general purpose and trade off
potential performance gains, in the code, for shorter compile times. As a result,
the compiler contains optimizations which are well suited for the general case,
but are not necessarily the optimizations needed for the specific case of MMM.

The Expert: The domain expert acts as a specialized compiler. She uses domain
knowledge to optimize for both the operation and the hardware. How do we
automate the expert? How do we capture this knowledge in an auto-generation
framework? The goal of this paper is to formalize the necessary components that
an expert would use, for generating high performance implementations MMM,
in a rule based framework for automatic program generation.
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 236–244, 2015.
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In this paper, we exploit the fact that the expert uses a mechanical process
for creating high performance MMM kernels and we formalize this process as a
set of rules. We then feed these rules through the Spiral framework [7], which in
turn, produces an autotuned high performance implementation of MMM. This
implementation is comparable performance to an expert produced kernel. We
base our work on the success of existing Automatic Program Generation Systems
which replaced expert programmers in the fields of Digital Signal Processing
(DSP) and Sparse Matrix-Vector Multiplication.

2 Related Work

The goal of our project is to capture the expert knowledge, behind implementing
a high performance MMM, as rules in a rule in a system like Spiral, which in turn
can generate and tune an implementation from those rules. The Spiral project
[7] automates the expert programmer in the DSP field. They do this through a
layering of Domain Specific Languages (DSL) and a database of rules for each
DSL which captures the knowledge of the domain expert. In the case of DSP,
they show that high performance code can be automatically generated for fixed
and general sized operations. In [5], the authors extended Spiral for operations,
like MMM, through a new language called OL. Their generated MMM kernels
performed significantly faster than those produced by optimizing compilers, but
fell short of the expert programmer because they did not capture the necessary
rules that we will show in this paper. LGen [3] also generates high performance
linear algebra kernels using SIMD instructions. They target small problems sizes
for BLAS and BLAS-like operations where the matrices are L1 cache resident.
We differ because we are targeting MMM kernels that are designed to scale to
larger caches and act as primitives for memory resident BLAS operations. The
BTO project [8] also generates linear algebra kernels, but they target sequences
of level 2 and level 1 BLAS calls. By removing the interface into the BLAS
and generating fused kernels they can achieve greater performance than the
original sequence of BLAS calls. Our work is different because we are targeting
MMM kernels whereas they focus on fused Matrix-Vector and Vector-Vector
operations.

The ATLAS project [12], provides a framework for empirically determining
the blocking dimensions for cache and registers for MMM. We differ from their
project because we are generating code from rules given as inputs to a system,
as opposed to using a system that is hard coded for a certain class of problems.
The authors of [1] demonstrated that the algorithm implemented by ATLAS was
not optimal for modern multi-level cache architectures, and presented a novel
blocking strategy that achieves – both in theory and practice – near peak per-
formance. This work was extended by the BLIS Framework [2] for all Level-3
BLAS, by providing a software architecture for minimizing the actual amount of
code that an expert needs to produce for a given architecture. The AUGEMM
project [4] took this last piece of the expert and automated the process of gen-
erating the kernels via templates in a MMM specific framework. We differ from
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their project because we generate our implementation from high level rules that
are selected via search, instead of templates. The rules that we will describe
in the next section capture the insight from these works. In the DxT project
[9,10] the authors also use a rule based system and expert knowledge encoded as
rules to generate optimized BLAS routines, which are built on a set of compute
and memory packing kernel primitives. Our work differs because they are gen-
erating BLAS operations in terms of kernel primitives, whereas we are starting
with and generating those same primitives in terms of SIMD vector instruc-
tions. Our purpose is to capture – in a rule based framework, Spiral– the expert
knowledge that is needed to produce high performance MMM kernels for large
size BLAS operations, with the hopes of exploiting this knowledge in problems
outside of the domain of linear algebra.

3 A New Spiral Operator Language

In this section, We illustrate our language for capturing the knowledge used by
the expert in developing a high performance implementation of matrix-matrix
multiplication (MMM). A matrix matrix multiplication can be mathematically
described as C = AB where A, B and C are general matrices of conformal
sizes. In our operator language, the operation is MMMm,k,n where the subscripts
describe the sizes of the inputs (i.e., A is m × k and B is a k × n matrix).

3.1 A Näıve MMM Implementation

At the heart of our representation in Fig. 1 is the operator Pt(s,A, g) which is our
non-overlapping loop operator (PtA is our overlapping loop, which accumulates
the output). The result of each iteration of computation that is performed is
written to a unique spot in memory. This operator is parameterized by three
major components. The first is an index mapping function, g, for describing how
elements are read from memory at each iteration. The second parameter is an
operation, A, that is performed at each iteration. And the last parameter, is a
second index mapping function, s, which describes how the result of A will be
written to memory.

f o r (p=0; p < K; ++p)
f o r ( i =0; i < M; ++i )

f o r ( j =0; j < N; ++j )
C[ j ∗M+i ] +=

A[ p∗M+i ]∗
B[ j ∗K+p ] ;

MMMM,K,N →
PtA(hN→N

0,[1] ⊗ hM→M
0,[1] ,

Pt(hN→N
0,[1] ⊗ h1→M

0,[1,1],

Pt(h1→N
0,[M,1] ⊗ h1→1

0,[1] ,

P1

h1→1
0,[M ] ⊗ h1→1

0,[1] × h1→N
0,[K,1] ⊗ h1→1

0,[1] ),
,

h1→1
0,[1] ⊗ h1→M

0,[1,1] × hN→N
0,[K] ⊗ h1→1

0,[1] ),

h1→K
0,[M,1] ⊗ hM→M

0,[1] × hN→N
0,[1] ⊗ h1→K

0,[1,1])

Fig. 1. On the left we have a näıve implementation of MMM using a triply nested loop.
The inputs, A and B, are stored in column major ordering. On the right we have a
representation of that implementation of MMM in our language.
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Fig. 2. The Goto/BLIS blocking structure.

For s and g, we use a stride operator [6] which captures the structure of the
input or output. For example, hnb→N

0,[1,1] ⊗hM→M
0,[1] describes an M ×N matrix which

is linearized in memory in column major ordering (M is the leading dimension),
and we are selecting out mb × N adjacent sub-blocks from this matrix. The
key point behind these stride functions is that they capture the structure of the
dataset in memory.

3.2 What an Expert Really Does

The Goto/BLIS algorithm [1,2] which we will implement in our language, achieves
high performance by exploiting several key factors: 1. blocking for last level
cache reuse, 2. packing to minimize Translation Lookahead Buffer (TLB) misses,
3. data layout transformations to minimize Level 1 cache misses, 4. and efficient
use of vector instructions [4]. We will take a step by step approach to show how
we capture these insights in our language (Fig. 2).

Blocking. Blocking, or tiling, is a method for maximizing cache reuse by oper-
ating on blocks of an input rather than operating on scalar elements of the input.
Because MMM is a computationally bounded problem, we want to insure that we
maximize the cache reuse of our inputs so our performance is not restricted by
the cost of moving data from memory into the processor [1]. We achieve blocking
by adding an additional nesting of loop operators, Pt, around a smaller MMM
and by using the stride operators to capture how the sub-blocks fit inside of the
input matrices.

MMMM,K,N →
PtA(hN→N

0,[1] ⊗ hM→M
0,[1] ,

Pt(hN→N
0,[1] ⊗ hmb→M

0,[1,1] ,

Pt(hnr→N
0,[M/mb,1]

⊗ hmb→mb

0,[1] ,

Pt(hnr→nr

0,[M/mb]
⊗ hmr→mb

0,[1,1] ,

MMMmr,kb,nr

hkb→kb

0,[M/mb]
⊗ hmr→mb

0,[1,1] × hnr→nr

0,[K/kb]
⊗ hkb→kb

0,[1] ),
hkb→kb

0,[M/mb]
⊗ hmb→mb

0,[1] × hnr→N
0,[K/kb,1]

⊗ hkb→kb

0,[1] ),
hkb→kb

0,[1] ⊗ hmb→M
0,[1,1] × hN→N

0,[K/kb]
⊗ hkb→kb

0,[1] ),
hkb→K
0,[1,1] ⊗ hM→M

0,[1] × hN→N
0,[1] ⊗ hkb→K

0,[1,1] )
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Using the formula above, we can express the blocking strategy used in the
Goto/BLIS approach. For the sake of consistency we follow the same variable nam-
ing conventions for tile sizes (kb,mb, nr,mr) as those used in [1]. The essence of
this formula, is that we can use the stride functions to express the data layout of
the blocks in memory and use the loop operators to manipulate those blocks.

Packing Blocks into Contiguous Buffers. Packing takes blocking one step
further by copying the sub-blocks into a contiguous buffer in memory. By placing
the working set in a contiguous buffer, fewer TLB entries – a cache for address
translation – are needed to address the working set and therefore fewer costly TLB
misses occur which can severely hinder performance [1]. If we want to pack a mb ×
kb subblock of matrix A which is M × K we can use the following formula:

PackAM,mb,kb
→

Pt(h1→kb

0,[1,1] ⊗ hmb→mb

0,[1] ,

Pt(h1→1
0,[1] ⊗ h1→mb

0,[1,1] ,

I1,

h1→1
0,[M/mb]

⊗ h1→mb

0,[1,1] ),
h1→kb

0,[M/mb,1]
⊗ hmb→mb

0,[1] )

The formula above uses two nested loop operators to copy a sub-block of
A into a contiguous buffer. Following this same construction we can pack an
kb × N subblock of matrix B which has the dimensions K × N . We can then
construct a new rule:

MMMmb,kb,N → MMMmb,kb,N ◦(PackAM,mb,kb
×INkb

)
→ MMMmb,kb,N ◦(Imbkb

× PackBK,kb,N )

If you read these rules from right to left they express the behavior of packing a
sub-block of one input (PackA and PackB) while leaving the other input unmod-
ified (Imbkb

). After that they are passed onto the next step of computation, the
MMM operator.

Fig. 3. The figuring on the left hand side shows how the elements of this sub-block
of A will be stored if no data layout transformation is performed. Unfortunately, this
is not the layout in which the elements will be traversed in the innermost loop of the
MMM operation. We must rearrange the data such that each mr × kb block is stored
contiguously and those blocks are themselves stored contiguously. This is explained in
more detail in [2].
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Data Layout Transformation of Packed Blocks. A data layout transforma-
tion is a reindexing of the inputs such that every memory access to that input is
performed in unit stride. We can improves temporal locality in the cache by rear-
ranging the elements of our sub-blocks of A and B as we pack them. The following
formula captures the packing and data layout transformation where we read our
input with one data layout and write our output in a different layout (Fig. 3):

PackAM,mb,kb
→

Pt(h1→mb/mr

0,[1,1] ⊗ hkb→kb

0,[1] ⊗ hmr→mr

0,[1] ,

Pt(h1→1
0,[1] ⊗ h1→kb

0,[1,1] ⊗ hmr→mr

0,[1] ,

Pt(h1→1
0,[1] ⊗ h1→1

0,[1] ⊗ hmr→1
0,[1] ,

I1,

h1→1
0,[M/mr]

⊗ h1→mr

0,[1,1] ),
h1→kb

0,[M/mr,1]
⊗ hmr→mr

0,[1] ),
hkb→kb

0,[M/mb]
⊗ hmr→mb

0,[1,1] )

We achieve our data layout transformation by modifying our method for pack-
ing through the introduction of a new index striding function for the sub-blocks.
For example, our sub-block A originally has the initial layout described by this
index mapping function, hkb→kb

0,[1] ⊗ hmb→mb

0,[1] . Our goal is to reorder the elements

into this index mapping function h
1→mb/mr

0,[1,1] ⊗hkb→kb

0,[1] ⊗hmr→mr

0,[1] which will allow
us to access the elements in unit stride, in the innermost loop of our kernel Fig. 1.

Minimal Instruction SIMD Vector Broadcast. In order to achieve high
performance on a processor that allows vector operations, we must use those
vector operations. However, in the innermost loop of our MMM we need to
multiply every element from the A matrix with every element from the B matrix.
If we perform this task with vector operations, we would need a way to broadcast
each element of one of the inputs into a vector. On some architectures this
is sufficient, but on others this operation is expensive. An alternative to the
broadcast instruction is to reorder the elements in the vector register for one
input, in such a way that we are ultimately able to multiply each element from
one input with the other. This is discussed in further detail in [4]. We capture
this optimization through the addition of two special permutation operations:
a permuted broadcast on a vector of length v, Yv and a reordering operator that
reverses the permutation, Uv.

MMMM,K,N → Uv◦
PtA(hN→N

0,[1] ⊗ hM→M
0,[1] ,

Pt(hN→N
0,[1] ⊗ h1→M

0,[1,1],

Pt(hv→N
0,[M,1] ⊗ h1→1

0,[1] ,

Pv ◦ (Yv × Iv)
h1→1
0,[M ] ⊗ h1→1

0,[1] × hv→N
0,[K,1] ⊗ h1→1

0,[1] ),
,

h1→1
0,[1] ⊗ h1→M

0,[1,1] × hN→N
0,[K] ⊗ h1→1

0,[1] ),
h1→K
0,[M ] ⊗ hM→M

0,[1] × hN→N
0,[1] ⊗ h1→K

0,[1,1])
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Table 1. Here we have listed the translations between our scalar operators and C
code. Given a formula B, we recursively apply Code (B,y,x, [j]), until we have a final
C coded implementation. The y and x refer to our output and input, and the variable
j refers to loop variable in the current scope.

Operator C Code Translation

Code (A,y,x, [i]) A(y,x,[i]);

Code (A ◦ B, z,x, [i]) Code (A, z,y, [i]); Code (B,y,x, [i]);

Code (A × B,y,x, [i]) Code (A,y0,x0, [i]); Code (B,y1,x1, [i]);

Code (I1,y,x, [i]) *y = *x;

Code (P1,y,x, [i]) *y = *x0 * *x1;

Code (Pt(s,A, g),y,x, [i]) for(j=1; j < rng(s)/dmn(s); ++j)

Code (s, ŷ,y, [j])

Code (g, x̂,x, [j])

Code (A, ŷ, x̂, [j])

Code (f,y,x, [j]) y = &x[f(j)];

The permuted broadcast, Yv, is applied at every iteration of the innermost
loop, which would be the case with a normal vector broadcast, however the
reordering operator, Uv, is applied outside of the inner loop. Depending on the
architecture, the implementation of these operators may vary, however, they
capture the essence that one of the inputs must be broadcasted and that the
order in which it happens need not be preserved, because the results will be
reordered before they are written to memory.

4 Code Generation

Spiral [7] is a rule based system for generating high performance code. Given a
set of breakdown rules, which we described in the previous section, Spiral will
recursively apply those rules until it has a family of fully expanded rule trees,
which describe an implementation. Then, given a set of translation rules for
converting those rule trees into code (Table 1). Lastly, via exhaustive empirical
search, Spiral will find the best implementation in its search space.

5 Results

In this section we use Spiral to generate and optimize our implementation of
MMM from the rules that we have defined. We then compare the performance
achieved by the best generated code, found by Spiral’s exhaustive search, against
Intel’s Math Kernel Libraries (MKL) on several Intel architectures. In order to
achieve high performance, there are several additional optimizations that must
be performed when Spiral is generating the code. This includes: memory prefetch-
ing to minimize the number of last level cache misses, software pipelining [11]
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Fig. 4. Performance comparison of Spiral generated code versus expert written code
on various architectures. In each of the charts, the top line represents that maximum
floating point peak. Top Left: In this chart we show how the addition of a few low
level transformations at code generation time can add the additional performance.
Additionally, we show the performance of a triply nested implementation of MMM,
described in Sect. 3, compiled with the Intel Compiler.

to hide the latency of bringing data elements from the cache, and loop unrolling
which reduces the number of branch instructions and simplifies address com-
putation. For our experiments, we compare the performance of our generated
code against Intel MKL on the following microarchitectures: Intel Sandy Bridge,
Nehalem, Kentsfield and Yorkfield. On the Yorkfield and Nehalem the perfor-
mance of our code is within 5 % of the expert code and on the other architec-
tures it is within 10 %. Further optimizations are necessary in order to match
the expert produced code. Lastly, on the Sandy Bridge, we generated multi-
ple implementations of MMM by incrementally adding additional optimizations.
Starting from the best unoptimized implementation with a permuted broadcast,
we achieve 80 % of the machine’s peak. The addition or prefetching and software
pipelining brings us closer to the expert (Fig. 4).

6 Conclusion

In this paper we suggest that an expert produces an efficient implementation of
MMM via a mechanical process. We demonstrate that given a formal language
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and rule based program generation system one can capture this process in the
form of rules. These rules help express the space of algorithms, which Spiral
uses to generate MMM code. On a representative sample of modern systems, the
code generated is competitive with expert programmers. We have shown that
our language can capture high level optimization, which are described in Sect. 3.
The next step is to capture these transformations as rewrite rules, which are not
tied to a specific operation. In this way, we can extend these techniques on other
operations such as stencil codes or signal processing codes.
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program generation framework for fast kernels. In: Taha, W.M. (ed.) DSL 2009.
LNCS, vol. 5658, pp. 385–409. Springer, Heidelberg (2009)
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Abstract. It is universally known that caching is critical to attain high-
performance implementations: In many situations, data locality (in space
and time) plays a bigger role than optimizing the (number of) arithmetic
floating point operations. In this paper, we show evidence that at least
for linear algebra algorithms, caching is also a crucial factor for accurate
performance modeling and performance prediction.

1 Introduction

In dense linear algebra (DLA), very basic yet highly tuned kernels — such as
the Basic Linear Algebra Subprograms (BLAS) — are used as building blocks
for high level algorithms — such as those included in the Linear Algebra PACK-
age (LAPACK). The objective of our research is to develop performance models
for those building blocks, aiming at predicting the performance of high level
algorithms, w ithout executing them. In a recent article [1], we introduced a
methodology for modeling and predicting performance, and showed its effective-
ness in ranking different algorithmic variants performing the same target opera-
tion. However, to accurately tune algorithmic parameters such as the block-size,
predictions of significantly higher precision are required. Intuitively, one would
attempt to resolve this issue through more accurate performance models. Unfor-
tunately, beyond a certain level, higher accuracy in the models of the building
blocks does not translate into more precise predictions. In this paper we illustrate
that such a mismatch is due to the influence of CPU caching on the performance
of the compute kernels.

Several other works on the influence of caching on DLA performance exist;
some notable examples are given in the following. Whaley empirically tunes the
block-size for LAPACK routines and emphasizes its impact on performance [2].
Lam et al. study caching in the context of blocking within DLA kernels [3].
Iakymchuk et al. model the number of cache misses analytically based on a very
detailed analysis of kernel implementations [4].

The rest of this paper is structured as follows. We introduce the considered
problem and setup in Sect. 2 and establish bounds for the kernel execution times
in Sect. 3. Then, we develop a cache prediction model in Sect. 4 and apply it to
a broader range of scenarios in Sect. 5.
c© Springer International Publishing Switzerland 2015
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2 The Problem

In order to better understand the influence of caching on the performance of
compute kernels, we focus on a specific, yet exemplary algorithm and setup: On
one core of a quadcore Intel Harpertown E5450, we analyze the performance
of LAPACK’s QR decomposition (dgeqrf) linked to OpenBLAS v. 0.2.8 [5], on
a square matrix of size1 n = 1,568. With a size of 18 MB, this matrix exceeds
this CPU’s largest cache (L2), consisting of 6 MBs per 2 cores.

The routine dgeqrf implements a blocked algorithm and traverses the input
matrix diagonally from the top left to the bottom right corner in steps of
a prescribed block-size b. We fix this block-size — this routine’s only opti-
mization parameter — at b = 32. Within each step of the blocked traversal,
dgeqrf executes the following sequence of kernels on operands of decreasing size:
dgeqr2(unblocked QR), dlarft(form triangular factor T for the compact rep-
resentation of Q), b dcopys (together transpose a matrix panel), dtrmmRLNU (tri-
angular matrix-matrix product)2, dgemmTN (matrix-matrix product), dtrmmRUNN,
dgemmNT, and dtrmmRLTU.

To measure the execution time of these kernels within dgeqrf (henceforth
called in-algorithm timings), we manually instrument this routine, and collect
timestamps3 between kernel invocations. The in-algorithm timings computed
from these timestamps are presented in Fig. 1: Along the x-axis, we enumer-
ate the 1,873 kernel invocations; along the y-axis we present timings of each
invocation grouped by the type of kernels. The figure shows that the execution
time is dominated by the two dgemms ; notably, although the size of their
operands is the same, the corresponding timings differ significantly. Our ultimate
goal is to develop performance models that accurately predict such differences
and all other features of the in-algorithm timings.

To focus on the cache related performance features, we here attempt to recon-
struct the in-algorithm timings with a very elementary timing setup: repeated
execution of the kernels independent from each other. In these executions, we use
the same flags and matrix sizes as within dgeqrf and a well separated memory
location for each operand. The relative error in execution time of the median of
100 such independent repetitions compared to the in-algorithm timings is shown
in Fig. 2. While the relative error for dcopy is rather large, the total contribu-
tion of its 1, 536 invocations to the total runtime is below 1%. Not considering
these dcopys4, the absolute errors of the instrumented timings relative to the
in-algorithm timings averaged across kernel invocations (in the following simply
referred to as error) is 4.48%.

1 With n = 1,568 = 25 · 72, we choose a matrix size that is not a power of 2 to avoid
performance artifacts due to the specific problem size.

2 The subscripts R through U are the values of the flag arguments side, uplo, trans,
and diag; they distinguish the form of the operation performed by the kernel.

3 Read from the CPU’s time stamp counter through the assembly instruction rdtsc.
4 The system fluctuations cause variations of the dgeqrf timings of 0.057% on average.
With the exception of the tiny dcopys, these fluctuations are not significant.
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Fig. 1. In-algorithm timings. Along the -axis, we enumerate the 1,873 kernel invoca-
tions within dgeqrf (Color figure online).

For most routines and especially for dtrmmRLTU and dgeqr2 , the repeated
execution underestimates the in-algorithm timings for the first 1,000 kernel invo-
cations. More surprisingly however, dgemmNT is even overestimated — it is faster
within dgeqrf.

3 Cache-Aware Timings

The change in behavior noticeable around the 1,000th kernel invocation (see
Fig. 2) is directly linked to the size of the cache. While traversing the matrix,
dgeqrf only operates on its bottom right quadrant, which becomes smaller at
each iteration. Beyond the 1,000th invocation, the quadrant is small enough to fit
in the L2 cache. As a result, the subsequent runtime measurements of repeated
executions show only minimal differences with respect to the in-algorithm tim-
ings. This confirms the cache as the cause of the discrepancies.

To better understand the scope of this influence we now manipulate the cache
locality of the kernel’s operands in our independent executions. To do so, we
assume a simplified cache replacement policy: a fully associative Least Recently
Used (LRU) algorithm. We consider the two extreme scenarios in which the



248 E. Peise and P. Bientinesi

Fig. 2. In-algorithm timings and comparison with repeated execution. Along the
we enumerate the 1,873 kernel invocations within dgeqrf. (Colour figure online)

operands immediately required by the kernels are either entirely within the L2
cache or not at all. These in- and out-of-cache scenarios serve, respectively, as
lower and upper bounds on the in-algorithm timings.

For kernels with operands whose size is smaller than 6 MBs, repeated exe-
cution suffices to guarantee that the operands are in cache prior to execution.
By contrast, when the aggregate size of all kernel operands exceeds 6 MB (as for
dgemmNT ), different kernel implementations (i.e. different libraries) may ini-
tially access different regions of the operands. An ideal in-cache setup would
place exactly the immediately accessed regions in cache. However, since we do
not assume knowledge about kernel implementation, we restrict our in-cache
setup to fulfill the reasonable assumption that input-only operands are accessed
before input/output and output-oly operands. In order to accordingly prepare
the cache, we touch5 all input operands just before the kernel invocation. This
timing setup yields the runtime estimates shown in Fig. 3. Here, the estimates
are in all cases equal to or underestimating the in-algorithm timings. The error
is 4.51%.

5 By “touching”, we mean a simple read+write access to the data, e.g. .
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Fig. 3. In-cache compared to in-algorithm timings (Color figure online).

Under the assumption of a fully associative LRU cache, to ensure that the
operands are not in the cache, it suffices to touch a section of the main mem-
ory larger than the cache size. This approach yields the runtime estimates pre-
sented in Fig. 4. Now, almost all estimates are equal to or overestimating the
in-algorithm timings. The error is 29.1%.

Not only do the established in-cache and out-of-cache timings indeed serve
as lower and upper bounds on the in-algorithm timings, for most kernel invoca-
tions one of these two bounds is actually attained (see Figs. 3 and 4). Based on
this observation, the next section introduces a cache model to use these in-core
and out-of-core timings to estimate the in-algorithm timings.

4 Modeling the Cache

In order to predict the state of the cache throughout the execution of dgeqrf,
we consider which parts of its operands are accessed by its kernel invocations.
dgeqrf itself receives three operands: the input matrix A ∈ R

n×n, an output
vector τ ∈ R

n, and auxiliary work space W ∈ R
n×b. Algorithm 1 shows where

within these three memory regions the operands of the kernels invoked in one step
of dgeqrf’s blocked algorithm lie. Since we do not consider details of the kernel
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Fig. 4. Out-of-cache compared to in-algorithm timings. The error for dcopy is
around 1,000%. (Color figure online)

implementations, we do not make any assumptions on the patterns in which the
kernels access their operands.

For the assumed fully associative LRU cache replacement policy, identifying
if a memory region is available in cache reduces to the task of counting how
many other data elements were accessed since its last use. To determine this
count (henceforth referred to as access distance), we scan the sequence of kernel
invocations and keep a history of the memory regions they access6. We consider
the cache line as the smallest accessible memory unit: An access to a single
data element means an access to the entire surrounding cache line. For each
operand of a kernel invocation, we go backward through the access history until
(and including) we find its last access; thereby summing the sizes of the accessed
memory regions yields the operand’s access distance. (If the access history does
not reveal a previous access, the access distance is set to ∞.)

6 The length of the list can be safely restricted to the number of kernel calls per
iteration of the blocked algorithm.
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Algorithm 1. QR Decomposition dgeqrf. The shapes on the left illustrate
dgeqrf’s traversal of its data arguments A, τ , and W .

By comparing the obtained access distances to the cache size, we determine
whether the corresponding operand is expected in the cache or not. Given these
expectations, we separately sum the sizes of the in-cache and out-of-cache kernel
operands. These sums are then used to weight the runtime of the corresponding
timings to yield initial estimates of the instrumentation timings, shown in Fig. 5.
Comparing to Figs. 3 and 4, our mechanism chooses (or weights) the in-cache and
out-of-cache timings correctly for most kernels. However, the error is still 4.65%,
because for dtrmmRUNN out-of-cache is erroneously favored over in-cache.

The reason for this flaw is that (see Algorithm 1) dtrmmRUNN is preceded
by the large dgemmTN : This dgemm’s operands, which are together larger than
the cache, are accumulated into dtrmmRUNN’s right-hand-side operand’s access
distance. However, since dtrmmRUNN’s right-hand-side happens to be the output
operand of the very matrix-times-vector-shaped dgemmTN, it appears to be left in
cache. We use this insight to extend our cache model with a crucial assumption:
After a kernel, whose (input-)output operand is significantly smaller than its
input-only operands, we expect the (input-)output operand to be in cache. This
assumption is implemented by splitting the memory accesses of such a kernel
into two parts: The first access contains the large input-only operand(s), while
the second only involves the small (input-)output operand. Therefore, the back-
ward traversal of the access history will encounter the latter separately and, in
case it is the sought operand, terminates before processing the cache-exceeding
accesses. The timing estimates from this modifications (called splitting estimates)
are shown in Fig. 6. Here, all kernels are chosen correctly from the in-cache and
out-of-cache timings. As a result, the error is reduced to 2.27%.
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Fig. 5. Basic estimates compared to in-algorithm timings (Color figure online)

The only remaining deficiency of our estimates is in the form of severe
spikes around the transition from out-of-cache to in-cache, around the 900th
kernel invocation. To avoid such spikes, we apply smoothing of the association
of operands with in-cache and out-of-cache. To determine whether an opera-
tor was in-cache (+1) or out-of-cache (−1), we previously used a step function.
In terms of the relative access distance

r =
(cache size) − (access distance)

cache size
,

this function was sgn(r). We now replace it with

f(r) =
{

tanh(αr), for r≥0

tanh(βr), for r<0
,

where α and β are smoothing coefficients. As shown in Fig. 7, f(r) converges
toward sgn(r) for both large and small values of r and exhibits a smooth tran-
sition from −1 to +1 though the origin. When applied to our estimates with
empirical values of α = 4 and β = 2, we obtain the smoothed estimates shown
in Fig. 8. With all estimates very close to the instrumentation timings, the error
further decreases to 1.84%.
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Fig. 6. Kernel-splitting estimates compared to in-algorithm timings (Color figure
online)

Fig. 7. Smoothing functions.

5 Results

In the previous sections we focused on one specific setup (see Sect. 2). To demon-
strate that our observations and models are more broadly applicable, we now
vary this setup. Before looking at alternative algorithms, we present the obtained
accuracy improvements of our smoothed estimates over the repeated execution
timings for a range of scenarios involving dgeqrf in Table 1.
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Fig. 8. Smoothing estimates compared to in-algorithm timings (Color figure online)

Table 1. Estimation improvements through cache-modeling for various scenarios of
dgeqrf

#Cores BLAS n b Repeated Smoothed Improvement

execution estimates

1 OpenBLAS 1,568 32 4.48% 1.84% ×2.44

1 OpenBLAS 1,568 64 3.15% 1.64% ×1.92

1 OpenBLAS 1,568 128 2.68% 2.13% ×1.26

1 OpenBLAS 2,080 32 5.11% 1.84% ×2.78

1 OpenBLAS 2,400 32 5.23% 1.75% ×2.99

1 ATLAS 1,568 32 3.55% 1.98% ×1.79

1 ATLAS 2,400 32 4.22% 2.51% ×1.68

1 MKL 1,568 32 8.58% 4.40% ×1.95

1 MKL 2,400 32 9.58% 6.22% ×1.54

1 reference 1,568 32 2.31% 1.54% ×1.50

2 OpenBLAS 1,568 32 9.58% 4.63% ×2.07

4 OpenBLAS 1,568 32 22.71% 19.75% ×1.15
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Algorithm 2. Cholesky decomposition dpotrfU (upper triangular storage)

Although the error of our estimates remains above 1.5%, it is in many cases
an improvement of about a factor of 2 over the repeated execution timings. For
both increasing block-size b and matrix size n, with a varying error for repeated
executions timings, our estimates reliably yield an error of around 2%. Changing
the BLAS implementation, one can appreciate that with ATLAS the results
are very much the same as with OpenBLAS; with MKL instead, the error in
both the repeated execution timings and in our estimates increases significantly;
however, the latter is still an improvement over the former. Even for the reference
BLAS implementation, which is not designed for high performance, our estimates
improve the already low error further by a factor of 1.5. When doubling the
number of cores to 2, the error of both estimates increases significantly; yet, our
smoothing estimates provide a factor of 2 improvement over repeated execution.
When we use all 4 cores of our CPU however, the error increases drastically; this
is because every two cores share a separate L2 cache, while our model is designed
for a single large cache. To account for multiple top-level caches, would require
detailed knowledge of the BLAS-implementation and thus substation changes in
our models.

5.1 Cholesky Decomposition: dpotrfU

Next, we consider LAPACK’s Cholesky decomposition for symmetric positive
definite (SPD) matrices: dpotrfU. This routine works entirely in-place (i.e. no
additional work space is required) on one of the symmetric triangular halves of
the input matrix; we present results for the upper triangular case. The algorithm
uses by dpotrfU in this case is shown in Algorithm 2: As in the QR decomposition
dgeqrf, the input matrix is traversed along its diagonal in steps of the block-
size b. As the algorithm unfolds, both the size and the shape of A02 (the largest
operand) change noticeably, as this starts as row panel matrix, then grows to a
square matrix and finally shrinks to a column panel. In each step, the following
kernels are invoked: dsyrkUT (symmetric rank k update), dpotrfU (unblocked
Cholesky), dgemmTN, and dtrsmLUTN (triangular solve with multiple right hand
sides), where dgemmTN is the most compute intensive.
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Fig. 9. dpotrfU: Repeated execution and smoothing estimates compared to in-
algorithm timings (Color figure online)

In our experiments, we execute dpotrfU with single-threaded OpenBLAS, a
matrix size of n = 2400,7 and block-size of b = 32. In Fig. 9, we present the
relative performance difference with respect to instrumentation measurements
for both repeated execution timings and our final estimates. Our estimates show
improvements for the invocation of dsyrkUT ( ) and dpotf2U ( ) in the middle
stage of the traversal involving large matrices. In the very beginning of the tra-
versal, our estimates are generally too pessimistic, because some matrices are
(partially) brought into cache by prefetching, which is not accounted for in our
estimates yet. On average the relative error is reduced from 11.11% to 7.87%
by a factor of 1.41.

5.2 Inversion of a Triangular Matrix: dtrtriLN

We now take a closer look at the routine dtrtriLN, which inverts a lower tri-
angular matrix in place. The blocked algorithm employed by this LAPACK
routine is presented in Algorithm 3 and uses the kernels dtrmmLLNN, dtrsmRLNN,
and dtrti2LN(unblocked inversion of a triangular matrix) on the operands of
decreasing size revealed in each step of the blocked traversal. We invert a matrix
of size n = 2,400 with block-size b = 32 using single-threaded OpenBLAS.
Performance measurements from repeated execution and our estimates are com-
pared to instrumentation-based timings in Fig. 10. The improvements in the
estimation error are most significant in dtrmmLLNN ( ) (which performs the most

7 For n = 2400, the upper triangular portion of the matrix is about twice as large as
the cache size.
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computations) and dtrti2LN ( ) and are reduced from an average of 6.70% to
3.37% for a total improvement of 1.99×.

Algorithm 3. Inversion of a lower triangular matrix dtrtriLN

Fig. 10. dtrtriLN: Repeated execution and smoothing estimates compared to in-
algorithm timings (Color figure online)

In our experiments, we invert a matrix of size n = 2,400 with block-size
b = 32 using single-threaded OpenBLAS. Performance measurements form
repeated execution and our estimates are compared to instrumentation-based
timings in Fig. 10. The improvements in the estimation error are most signifi-
cant in dtrmmLLNN ( ) and dtrti2LN ( ) and are reduced from an average of
6.70% to 3.37% by a factor of 1.99.

6 Conclusion

In this paper, we studied the influence of caching on the execution time of
sequences of dense linear algebra kernels within blocked algorithms. We estab-
lished in-cache and out-of-cache timings as lower and upper bounds on the kernel
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execution times within the algorithm. We then developed a cache tracking model
that, based on a sequence of kernel invocations, identifies which memory regions
are available in cache and which are not. With the help of this model, we were
able to combine the in-cache and out-of-cache timings into highly accurate esti-
mates for the actual kernel execution times. This methodology was shown to
noticeably reduce the average error for our estimates. The insights and results
presented in this paper constitute an important step towards our ultimate goal
of selecting and optimally configuring dense linear algebra algorithms through
performance models of the computational kernels, without ever executing the
algorithms themselves.
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91191 Gif-sur-Yvette, France

3 CEA/DEN/DANS/DM2S, CEA Saclay, 91191 Gif-sur-Yvette, France
4 Lawrence Berkeley National Laboratory, 1 Cyclotron Road,

Berkeley, CA 94720-8150, USA

Abstract. Krylov eigensolvers are used in many scientific fields, such
as nuclear physics, page ranking, oil and gas exploration, etc. In this
paper, we focus on the ERAM Krylov eigensolver whose convergence is
strongly correlated to the Krylov subspace size and the restarting vector
v0, a unit norm vector. We focus on computing the restarting vector v0
to accelerate the ERAM convergence. First, we study different restart-
ing strategies and compare their efficiency. Then, we mix these restarting
strategies and show the considerable ERAM convergence improvement.
Mixing the restarting strategies optimizes the “numerical efficiency” ver-
sus “execution time” ratio as we do not introduce neither additionnal
computation nor communications.

1 Introduction

In the large shade of nuclear physics applications and simulations, solving an
eigenvalue problem is a common occurrence. One of the best example is the
neutron transport equation which is the heart of physical processes in nuclear
reactor simulations: Solving this equation requires to compute the dominant
eigenpair of a large non-Hermitian matrix. In some other cases, we must compute
a subset of eigenpairs as will be illustrated with the Fission matrix [3]: The
more eigenpairs we compute, the more we improve the Monte-Carlo process
convergence. The Krylov methods are good candidates for such problems [1,2],
as they can compute either the dominant or a subset of eigenpairs.

In this paper, we will focus on the Explicitly Restarted Arnoldi Method
(ERAM) [4,5]. The ERAM has some lacks to ensure the system convergence.
Based on the Arnoldi process, it iteratively builds a Krylov subspace Km,v0 =
span{v0, Av0, ..., A

m−1v0} and its associated matrices H ∈ C
(m+1)×m and V ∈

C
n×(m+1) that verify AV = V H, where H is the unitary projection of A

onto Km,v0 [4]. The H eigenvalues may be good approximations of A eigen-
values. We will denote by s ∈ [1,m]N the number of desired eigenpairs and by
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 259–268, 2015.
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θj ∈ C, j ∈ [1, s]N the jth real largest modulus eigenvalue. The H eigenvec-
tors are projected onto Km,v0 basis, leading to approximated eigenvectors cor-
responding to the θj eigenvalue. We will denote the approximated eigenvector
associated to θj by uj ∈ C

n. We then compute the associated residual of approxi-
mated eigenpairs resj = ||Auj−θjuj ||2

|θj | : If this residual is small enough, for each
desired eigenpairs, the ERAM has reached the convergence. Otherwise, we must
restart the process until convergence, by using a new restarting vector v0. This
aims to force the new Krylov subspace Km,v0 convergence to the desired eigen-
subspace. Throughout all the following paper, we will retain these notations. It
is assumed that only a subset of m computed eigenpairs will be a good approx-
imations of the non-Hermitian matrix A ∈ C

n×n eigenpairs [4,5] and many
scientific research has been conducted to fix the s and m values in consequence.
The ERAM is parallel and efficient on actual supercomputers but its convergence
is not ensured, depending on many parameters which are tricky to fix correctly
before the ERAM execution.

One of the most influent parameter of the ERAM convergence is the size m
of Km,v0 . It is assumed that the larger m is, the better the ERAM convergence
is [4,5]. However, increasing m implies two issues that are part of the extreme-
scale computing barriers. Firstly, we increase the data size, especially the V ∈
C

n×(m+1) (dense matrix) size. Secondly, it implies more operations to execute
the Arnoldi process leading to more blocking and global communications. A large
m may rapidly lead to a bottleneck due to the Arnoldi process global/blocking
communications. Many research has been done for the Krylov methods applied
to the linear system resolution to fix the m value such as it optimizes the parallel
time execution versus the numerical convergence ratio of the method [6,7]. In the
context of up-coming exascale computing, optimizing this ratio is fundamental
and implies to re-design algorithms, even mathematical methods themselves [8].

In this paper, we aim to improve the ERAM convergence by changing only
the restarting vector v0, as it influences the ERAM convergence. Regarding the
ERAM, there is no general method to compute v0 and especially no method to
ensure the Km,v0 convergence to the desired eigensubspace. Usually, v0 is a linear
combination of the Ritz vectors uj that are uniformly weighted. In this paper,
we choose to focus on finding a pertinent uj combination to compute a new v0 as
it requires neither parallel communications nor complex operations. In the first
part we propose to use different restarting strategies and study their influence on
the ERAM convergence. In the second part, we will mix the restarting strategies
and show the convergence improvement of the ERAM using mixed restarting
strategies versus the ERAM using a single restarting strategy. All this work
is the basis of an upcoming smart-tuning to dynamically mix the restarting
strategies and obtain better numerical performances without being affected by
additionnal operations neither additionnal communications.

2 The ERAM Restarting Strategies

The ERAM starts its i + 1th restart with a restarting vector v
(i+1)
0 using the last

computed Ritz vectors u
(i)
j , j ∈ [1, s]N. Throughout all the following paper, we
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Table 1. The ERAM restarting strategies: j ∈ [1, s]N and n >> m ≥ s and res
(i)
j =

||Au
(i)
j −θ

(i)
j u

(i)
j ||2

|θ(i)
j |

.

Restarting strategy Abreviation α
(i)
j Value

Default αDef 1

Residual αRes |1 − |res(i)j ||
Linear αLi (s − j + 1)

Linear residual αLiRes (s − j + 1) × |1 − |res(i)j ||
Lambda αLa |θ(i)

j |
Lambda residual αLaRes |θ(i)

j | × |1 − |res(i)j ||

will annotate all previous definitions by their computing restart (i). We introduce
α
(i)
j , the restarting coefficient associated to jth eigenpair for the ith restart. Then,

the restarting vector v
(i+1)
0 is computed as follows:

v
(i+1)
0 =

s∑
j=1

α
(i)
j u

(i)
j , s ∈ [1,m]N (1)

We summarize the restarting strategies used in this paper in the Table 1. Through-
out all this paper, we will refer to the restarting strategy using their restarting
strategies abreviations. In the scientific litterature, αDef is the most commonly
used restarting strategy [5].

3 The ERAM Restarting Strategies Influence

We summarize the target matrices properties in the Table 2. For each figures
presented bellow, we use s = 4 and the Arnoldi process uses a CGSR orthogo-
nalization process [9]. For all results presented in this section, the subspace size
m is fixed during all the ERAM execution.

For each target matrix, we execute the ERAM with exactly the same para-
meters (m, s, the orthogonalization process, the threshold, the number of MPI

Table 2. The target matrices.

Matrix name Size nnz Field

Bayer04 20545 85,537 chemical process simulation problem

Bcspwr09 1723 6,511 power network problem

Ex11 16614 1,096,948 computational fluid dynamics problem

Fission 10000 100,000,000 nuclear physics reactor simulation

Rim dense 22560 508,953,600 computational fluid dynamics problem
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Table 3. Target matrices, ERAM executions using a single restarting strategy, results.
The fission and Rim dense matrices ERAMs have been executed on the PRACE curie
(TGCC saclay france) supercomputer thin nodes.

Matrix name/ERAM param Target machine αDef αRes αLa αLaRes αLi αLiRes

Bayer04, m = 15, tol = 10−14 1 Intel i5-2430M 93 48 118 27 72 106

Bcspwr09, m = 25, tol = 10−14 1 Intel i5-2430M # 454 395 # 125 #

Bcspwr09, m = 30, tol = 10−14 1 Intel i5-2430M 30 34 35 38 25 91

Ex11, m = 20, tol = 10−14 1 Intel i5-2430M 148 45 55 10 229 #

Fission, m = 10, tol = 10−13 400 Intel Sandy Bridge 46 # 80 # 300 #

Rim dense, m = 15, tol = 10−13 480 Intel Sandy Bridge 152 65 135 138 69 309

tasks and the same hardware , cf the Table 3) excepted the restarting strat-
egy. Such executions will emphasize the ERAM convergence with respect to the
restarting strategy used. In this context, we use the number of ERAM restarts
until convergence as the reference metric to compare our results. The restarting
strategies do not impact the execution time per restart but only the number
of restarts to reach the convergence (therefore the global execution time of the
ERAM solver). As an illustration, the execution time per restart using αDef is
the same as αLa and all other restarting strategies.

We first present the results for each ERAM using only one restarting strategy
during its execution (Table 3). The # symbols means the ERAM did not reach
the convergence after 500 restarts.

We will detail the restarting strategy efficiency of the Bayer04 matrix, as the
conclusions can be generalized to all other target matrices. The best restarting
strategy is αLaRes leading to convergence with only 27 restarts. Then αRes con-
verges at restart 48, αLi at restart 70 and αDef at restart 93. αLaRes saves 66
restarts compared to αDef which is the most commonly used restarting strategy.
For this configuration, all ERAMs converge with the parameters fixed before the
runtime execution, however the convergence behavior between the best and the
worst restarting strategies is really different.

The number of restarts to reach the convergence varies for each configuration
and each target matrix: There are no tools to prevent before the runtime execution
which restarting strategy will provide the best convergence scheme. We can not
emphasize a “best restarting strategy” that ensure the best convergence scheme
for all target matrices, as restarting strategies efficiency depends on the matrix
itself and the ERAM execution.

4 The ERAM with Mixed Restarting Strategies

In this paper, we focus on the ERAM using αDef during its complete execution.
The same work has been done for all other restarting strategies, leading to the
same conclusions. We choose to illustrate the mixed restarting strategies based
on ERAM using αDef as it is the most commonly used restarting strategy. All
the following results considering the ERAM with mixed restarting strategies are
executed on the same number of MPI tasks as presented in the Table 3.
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Fig. 1. We execute an ERAM using αDef during the complete execution. We evaluate
its convergence status and retain only the i(th) restarts (that we denote by ik) when a
stagnation or a divergence status has been detected. We re-execute the ERAM using
αDef and change αDef by another restarting strategy at ik restart.

We executed an algorithm that detects the ERAM convergence based on
res

(i)
j analysis (not detailed in this paper). The convergence algorithm detects

the stagnation or divergence states for the ERAM using αDef . We retain the
restarts listed by the convergence algorithm where such divergence or stagnation
status have been detected. We re-executed the ERAM using αDef and switch
αDef by another restarting strategy at the corresponding restarts, leading to an
ERAM using mixed restarting strategies. We experimented different combina-
tions of mixed restarting strategies and operated the switch restarting strategies
at different restarts. The Fig. 1 presents the process used to evaluate the ERAM
with mixed restarting strategy performances versus an ERAM using only αDef .

The following figure shows the ERAM with mixed restarting strategies applied
to the Bayer04 matrix. The results regarding the other target matrices will be
summarized in tables.

We present on Fig. 2 the ERAMs with mixed restarting strategies for the
Bayer04 matrix. As a reference, we added the ERAM using αDef during its
complete execution (blue line). We experimented several switches: at restart 4,
5, 16, 18, 26 and finally 38 according to our convergence algorithm. A diver-
gence or stagnation was detected at these restarts therefore we changed the
restarting strategy in order to avoid such convergence behavior. We re-executed
some of the ERAM with mixed restarting strategies and combined at maximum
three restarting strategies. Throughout all the following tables showing restart-
ing strategies mixed, we indicated the restart where we changed the restarting
strategy in parenthesis. As an illustration, the “Res(4),Def(25)” legend on Fig. 2
means we started with αDef restarting strategy, then switch it by αRes at restart
4 and switch it again by αDef at restart 25.
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Fig. 2. Bayer04 Matrix, m = 15, tol = 10−14. ERAMs (using initially αDef ) with
mixed restarting strategies efficiency compared to the ERAM using αDef only (black
line, Reference). Results have been executed on a single Intel i5-2430M (Color figure
online).

The best configuration is obtained by changing αDef by αLaRes at restart
5 and then by αDef at restart 18 (LaRes(5), Def(18) on Fig. 2): we obtain the
convergence in 39 restarts instead of 93 for the original convergence. All changes
presented on Fig. 2 show a gain from 54 to 10 restarts. Using αLa combined
with other restarting strategies saves 50 restarts (green line, Res(4), Def(25),
La(36) on Fig. 2.), while αLa has the worst convergence on Table 3. One restart-
ing strategy alone may not be very efficient while mixing it with the others may
considerably improve the ERAM convergence.

In what follows, we will present the results for other matrices in tables. All the
ERAM with mixed restarting strategies began their process using αDef . For all
matrices listed onTable 2,wewill compare theERAMusing onlyαDef as restarting
strategy and the ERAM using mixed restarting strategies. One may note that we
executed the same work with the other restarting strategies, id est ERAM using
initially other restarting strategies than αDef . This leads to the same conclusion
that we present in this paper. As αDef is the classic restarting strategy, we choose
to focus on this one in this paper.

On Table 4 we present the mixed restarting strategies convergence for bcspwr09
matrix. As an illustration, αLi(18,10,2) refers to three distinct ERAM switching
their restarting strategy to αLi at respectively restart 18, 10 and 2. We indicate
their restart convergence: the ERAM using αLi at restart 18 converges at restart
245, the ERAM using αLi at restart 10 converges at restart 132 etc. Throughout all
this paper, we will retain this notation. The best scheme is obtained by switching
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Table 4. Bcspwr09 matrix, m = 25, tol = 10−15, ERAMs (using initially αDef ) with
mixed restarting strategy results. Results have been executed on a single intel i5-2430M.

bcspwr09 αLi(18,10,2) αRes(10) αLa(10)

Restart CV 245,132,225 285 300

αDef by restarting strategy αLi at restart 10: the ERAM with these mixed restart-
ing strategies converges in only 132 restarts, while the initial ERAM using αDef

did not reached the convergence (see Table 3). Choosing the right restart is impor-
tant: one may note that switching αDef by restarting strategy αLi at restart 18 has
poor performance compared to the same switch at restart 10. Another observation
is that mixing αDef with αRes or αLa has good performance compared to results
presented in Table 3: αRes and αLa restarting strategies have poor performances
while mixing them may accelerate considerably the ERAM convergence and turn
them to efficient restarting strategies.

Table 5. Bcspwr09 matrix, m = 30, tol = 10−15, ERAMs (using initially αDef ) with
mixed restarting strategy results. Results have been executed on a single intel i5-2430M.

bcspwr09 αLaRes(8,7,5) αLiRes(8) αLi(8,6,5) αLa(8,6,5) αRes(8,6,5)

Restart CV 30,29,34 31 30,26,29 29,29,34 30,34,28

We ran the same tests with a bigger subspace size. The Table 3 shows that
αLiRes has still difficulties to converge. We denote a difference of 10 restarts
only between the best restarting strategy αLi and αLa. αLi provides a gain of
70 restarts compared to αLiRes restarting startegy. On Table 5, we changed the
αDef restarting strategy to evaluate if we can still improve the convergence, even
in case of a strong ERAM convergence. We have a maximum gain of 4 restarts
with mixed restarting strategies compared to the initial configuration. By mixing
restarting strategies, whether we have still a small gain, whether we converge in
a comparable number of restarts.

On Table 3, the ERAM using αLaRes converges in only 10 restarts, while
αDef converges at restart 148. We have a gain of 138 restarts, which is clearly
not negligible in terms of execution time. By mixing the restarting strategies
(Table 6), we obtain in the best configuration a convergence in 29 restarts. This
offers a gain of 119 restarts compared to the original αDef ERAM convergence.

Table 6. Ex11 matrix, m = 20, tol = 10−15, ERAMs (using initially αDef ) with mixed
restarting strategy results. Results have been executed on a single intel i5-2430M.

ex11 αLi(8,2) αLaRes(13,8,7,4,2) αLa(13,5) αRes(8) αLi(1),αLaRes(4)

Restart CV 139,97 84,40,49,39,29 154,104 122 142
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Table 7. Fission matrix, m = 10, tol = 10−13, ERAMs with mixed restarting strategy
results. Results have been executed on 400 Intel sandy bridge from the PRACE curie
supercomputer.

Fission αRes(8,7,2) αLi(7,2)

Restart CV 46,46,56 32,32

Switching αDef by αLa (see Table 6) provides comparable results as the origi-
nal restarting strategy αDef . The best restarting strategy we could find is αLi

initially and then αLaRes at restart 3. This configuration converges in 6 restarts
only, which is even better than αLaRes on Table 3. This means that we can even
accelerate the best ERAM convergence by mixing the restarting strategies all-
together. For this matrix, mixing αLaRes and αDef restarting strategies provide
very satisfiable results in terms of number of restarts to reach the convergence.

On Table 3, the ERAM using αDef as a single restarting strategy converges
in 46 restarts, which is the best configuration for each ERAM using a single
restarting strategy. In Table 7, mixing αDef with αLi converges in 32 restarts
only, which is a considerable gain. On Table 3, one may observe that the ERAM
using αLi restarting strategy alone has a poor convergence. Mixing αLi with
αDef had turned it to a very efficient restarting strategy. Finally, mixing αDef

with αRes at restart 2 considerably improve the ERAM using single restarting
strategy αRes presented in Table 3: the original configuration did not reached
convergence while this new one could.

Table 8. Rim dense matrix, m = 15, tol = 10−13, ERAMs with mixed restarting
strategy results. Results have been executed on 480 Intel sandy bridge from the PRACE
Curie supercomputer.

Rim dense αLaRes(25,4) αLi(26,25) αLiRes(25) αLa(25) αRes(26,4)

Restart CV 94,59 92,72 115 129 137,82

On Table 3, the ERAM using αDef converges at the 152 restart, which is
more than two times worst than αRes (which converges at 65 restart). The best
mixed restarting strategy mixed is obtained by switch αDef by αLaRes at restart
4 (αLaRes(4) on Table 8). Firstly we improve considerably the initial ERAM
configuration, secondly, this configuration is even better than the best ERAM
using a single restarting strategy (Table 3, ERAM using αRes).

5 Conclusion on the ERAM Restarting Strategies

We presented in Sect. 3 diverse ERAM configurations using several restarting
strategies. Their efficiency clearly depends on the matrix and the ERAM con-
vergence itself, as these restarting strategies are using residuals or computed
eigenvalues. There are no tools to fix the ERAM parameters to ensure the con-
vergence or have the optimal ERAM convergence. There is a need to change
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the ERAM parameters during the runtime execution. This first necessitates to
study and affect to the ERAM convergence a status. Does the ERAM converges,
diverges or stagnates? Such status must be detected earliest as possible so we
can improve the ERAM convergence and save execution time. Based on the
ERAM convergence study, we know at which restart we must change the ERAM
restarting strategy. On the presented figures, we changed the restarting strategy
when the ERAM using αDef tends to stagnate or diverge. After an analysis of
each ERAM restarting strategy, we mixed the restarting strategies and improved
the efficiency of the original ERAM, used as a reference to compare our results.
Mixing the ERAM restarting strategies has a great improvement on the ERAM
convergence as we can find better convergence with mixed restarting strategies
compared to the best ERAM using a single restarting strategy.

In this paper, we presented the changes for the ERAM using αDef initially,
but the same work has been done for every restarting strategies id est we ran
the ERAMs using respectively αRes, αLa, αLaRes, αLi and αLiRes to begin their
process, showing promising results, as each restarting strategy can be amelio-
rated. We ran the same tests on other matrices, leading to the same conclusion,
meaning that we can considerably improve the ERAM convergence with respect
to its initial parameters. The next step is to automate the restarting strategies
mix. Our results show promising accelerations for the ERAM convergence with
mixed restarting strategies, but we will automate this process to explore more
restarting strategies mix based on the exisiting results. We are now focused on
the restarting strategy choice: which restarting strategy should we choose when
a stagnation or divergence is detected and how to optmize the restarting strategy
mix? The presented work constitues the basis of the ongoing algorithm to tune
the restarting strategies and ensure the ERAM convergence as fast as possible
in terms of number of restarts and parallel execution time. The most impor-
tant point for this amelioration is the abscence of additionnal operations nor
communications. Computing the restarting vector v

(i+1)
0 is a parallel operation

that requires vectors additions and especially scal operations to weight them with
the restarting coefficients. The restarting coefficients are using already computed
data, we only focus on reusing computed data to improve the ERAM conver-
gence at no cost in terms of memory, number of operations and most of all,
communications. This offers a very good ratio of the ERAM numerical conver-
gence versus parallel time execution, as the first is ameliorated while the second
is unchanged.

There is however a necessity to mix this restarting strategy tuning with the
existing subspace-size tuning for the Krylov solver applied to linear system reso-
lution [6,7], especially in the cases when ERAM do not reach convergence what-
ever the restarting strategy is. We aim to improve the ERAM convergence using
as a priority the restarting strategy tuning and if it is inefficient, we increase the
subspace size. With such restarting strategies and subspace size tuning, we aim
to ensure the ERAM convergence as fast as possible with a low parallel commu-
nication scheme whathever the ERAM initial parameters are.
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Abstract. We consider computing tall-skinny QR factorizations on a
large-scale parallel machine. We present a realistic performance model
and analyze the difference of the parallel execution time between House-
holder QR and TSQR. Our analysis indicates the possibility that TSQR
becomes slower than Householder QR as the number of columns of the
target matrix increases. We aim for estimating the difference and select-
ing the faster algorithm by using models, which falls into auto-tuning.
Numerical experiments on the K computer support our analysis and show
our success in determining the faster algorithm.

1 Introduction

The QR factorization of a tall and skinny matrix, which has many more rows than
columns, appears in many numerical computations. In block subspace projection
methods for sparse linear systems and eigenvalue problems, an orthogonal basis
of the subspace is often calculated via the tall-skinny QR factorization [1–3]. As
these methods are used on large-scale parallel machines, an efficient algorithm for
computing tall-skinny QR factorizations on such machines is strongly required.

Because of the increasing costs of transferring data among distributed proces-
sors over a network, referred to as communication, on today’s parallel machines,
so-called communication-avoiding algorithms have been extensively studied [4].
The lower bound for communication costs of a QR factorization has been derived
by Demmel et al. [5,6]. They have also presented an algorithm named TSQR for
tall-skinny QR factorizations and shown that their algorithm attains the lower
bound but the conventional Householder QR algorithm [7], widely used due to
its excellent numerical stability, does not. In addition, several cases where TSQR
outperforms Householder QR have been actually reported [8,9].

Their [5,6] main interest lies in showing the optimality of TSQR from the
theoretical point of view, and not in estimating the performance of TSQR or
Householder QR accurately. They therefore use a rather simple and abstract
model that does not necessarily reflect the characteristics of actual machines;
e.g. they assume that the effective performance of a floating-point operation
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 269–283, 2015.
DOI: 10.1007/978-3-319-17353-5 23
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is independent of the computing kernel. However, such a simple model would
not be sufficient to estimate the performance difference between TSQR and
Householder QR for a give situation: matrix size and platform. In fact, in our
evaluation of TSQR on the K computer, we have observed several cases where
TSQR is slower than Householder QR, which can hardly be expected from their
performance model.

In this paper, we present a more realistic performance model and analyze the
difference of the parallel execution time between Householder QR and TSQR
based on the model. Our model reflects the dependency of the effective floating-
point performance on computational kernels. Moreover, by using models, we
aim for estimating the difference and selecting the faster algorithm for given
situations, which realizes the automatic algorithm selection. The results of the
numerical experiments on the K computer were in general agreement with our
analysis.

The rest of the paper is organized as follows: in Sect. 2, the problem setting
of computing a tall-skinny QR factorization and two algorithms, namely House-
holder QR and TSQR, are briefly introduced. We then discuss the performance
modeling and analyze the parallel execution time of both algorithms in Sect. 3.
In this section, we also mention a way of estimating the difference of the execu-
tion time and selecting the faster algorithm in advance. We show the results of
the numerical experiments on the K computer in Sect. 4. The conclusion remarks
are give in Sect. 5.

2 Tall-Skinny QR Factorization

Let A be an m × n real matrix and m � n, meaning A is tall and skinny. The
factorization A = QR, where Q is an m×n matrix with orthonormal columns and
R is an n×n upper triangular matrix, is called the thin QR factorization of A [7].
In this paper, P distributed processors connected by a network are assumed to
store A in a one-dimensional block row layout: A = [A�

1 A�
2 · · · A�

P ]�. Then,
the QR factorization of A is considered to be calculated by a parallel algorithm.
Note that mi denotes the number of rows of Ai and that mi ≥ n is assumed for
the reason that A is tall and skinny.

In this paper, we discuss the two parallel algorithms of computing tall-skinny
QR factorizations: the Householder QR algorithm [7], which has been used widely
in practical computations, and the TSQR algorithm, which has been presented
as a communication-avoiding algorithm by Demmel et al. [5,6].

2.1 The Householder QR Algorithm

In the Householder QR algorithm, the target matrix A is transformed into the
upper triangular matrix R by a sequence of the Householder transformations
Hi := I − tiy iy

�
i (i = 1, . . . , n), which implicitly represents Q. This algorithm

consists of the iteration of the two steps: generation of the Householder trans-
formation from the target column vector, and application of the Householder
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Fig. 1. Sketch of the parallel computation of the binary tree based TSQR algorithm
when P = 4.

transformation: HiA = A − tiy i(y�
i A). For details of the Householder QR algo-

rithm, see [7].
In parallel computing, where A is distributed as previously mentioned, at

least two global collective communications, namely MPI allreduce, are required
per iteration: in calculating the 2-norm of a column vector and in a matrix-vector
multiplication y�

i A. Thus, 2n global communications are totally necessary in the
whole algorithm.

2.2 The TSQR Algorithm

The TSQR algorithm [5,6] is an algorithm based on the idea that A = QR can
be given by

A =
[
A1

A2

]
=

[
Q1R1

Q2R2

]
=

[
Q1 O
O Q2

] [
R1

R2

]
=

([
Q1 O
O Q2

]
Q12

)
R,

where Q1 and Q2 are m
2 × n orthogonal, R1 and R2 are n × n upper triangular

and Q12 is 2n × n orthogonal. It is clear that this idea is recursively applica-
ble to the QR factorizations of A1 and A2 while m ≥ 2n. In TSQR, the QR
factorizations of the partitioned matrices are first calculated, and the obtained
Ri (i = 1, . . . , P ) are then reduced into R by the QR factorizations of the matri-
ces built by coupling two upper triangular matrices, which we call structured QR
factorization. Although there are several reduction trees to calculate R [5,6], we
assume that P is a power of two (for the simplicity) and that a binary reduction
tree is used.

In parallel computing (see Fig. 1), each processor first compute the QR fac-
torization Ai = QiRi, which we call generall QR factorization. After that, one
repeats sending/receiving one’s R to/from one’s neighbor by a point-to-point
communication and calculating a structured QR factorization. Through this
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computation, only log2 P point-to-point communications are required. One can
calculate a structured QR factorization with much less floating-point operations
than a general 2n × n QR factorization by exploiting the triangular structure
appearing in structured QR. Therefore, TSQR is considered to be superior to
Householder QR from the viewpoint of communication-avoiding.

3 Analysis of the Parallel Execution Time Based
on a Realistic Model

In this section, we first present a performance model that is more realistic than
the model used in previous studies. Based on our model, we mainly analyze the
difference of the parallel execution time between the Householder QR algorithm
and the TSQR algorithm. We also aim for estimating the difference and selecting
the faster algorithm for given situation

3.1 Performance Modeling

In the previous studies by Demmel et al. [5,6], an execution time on a parallel
machine is modeled as

T = γ · (#flops) + α1to1 · (#msgs) + β1to1 · (#words), (1)

where

– γ: the time per floating-point operation (i.e., the inverse of the floating-point
performance)

– α1to1: the setup cost of a point-to-point communication,
– β1to1: the inverse of the network bandwidth of a point-to-point communi-

cation.

This model seems to be appropriate enough to theoretically discuss the commu-
nication optimality of algorithms, which is their main interest.

When comparing the execution time of different algorithms, which is our main
interest in this study, the model in Eq. (1) is less realistic; it ignores the practical
aspect that γ usually depends on the computing kernel. Actual (effective) γ is
some larger than the theoretical one (i.e., the inverse of the theoretical peak
floating-point performance) because of the cost for memory access. Since the
memory access pattern is not necessarily same in each computing kernel, taking
this aspect into account is often crucial for modeling the execution time.

TSQR has at least two kinds of computing kernel: general QR factorization
and structured QR factorization. The memory access pattern (including its opti-
mization) in these kernels seem to be significantly different. Both the size and
structure of the target matrix in each computation are obviously not same. In
addition, high-performance implementation for small and structured matrices is
much less studied than that for general matrices. These facts indicate that γ for
these two kernels should be distinguished.
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The computing kernel in Householder QR is easily verified to be almost equiv-
alent to the kernel of general QR factorization; the main difference is whether it
involves MPI functions or not. Thus, if the cost for MPI fuctions is individually
modeled, as in Eq. (1), it is reasonable to suppose that γ for Householder QR
equals to γ for general QR factorization in TSQR.

As a result of the above discussion, we introduce two kinds of γ:

– γge: the effective time per floating-point operation in general QR factorization,
– γst: the effective time per floating-point operation in structured QR

factorization,

and modify Eq. (1) as

T = γge ·(#flops ge)+γst ·(#flops st)+α1to1 ·(#msgs)+β1to1 ·(#words). (2)

By referring to [5,6], we list the value of #flops ge, #flops st, #msgs and #words
in each algorithm in Table 1, where measurements are made along the critical
path of the parallel execution.

Table 1. Performance models of the Householder QR algorithm and the TSQR algo-
rithm: supposing the case of computing the QR factorization (Q factor is implicit) of
an m×n matrix by using P processes. Measurements are made along the critical path
of the parallel execution. Most lower-order terms are omitted.

Algorithm #flops ge #flops st #msgs #words

Householder 2
m

P
n2 0 2n · log2 P

n2

2
· log2 P

TSQR 2
m

P
n2 − 2

3
n3 2

3
n3 · log2 P log2 P

n2

2
· log2 P

3.2 Analysis

Using the modified model in Eq. (2), we analyze the difference of the parallel
execution time between Householder QR and TSQR. From Table 1, the difference
Tdiff is given as

Tdiff := THouseholderQR − TTSQR

=
2
3
n3(γge − γst · log2 P ) + α1to1 · (2n − 1) log2 P. (3)

We then consider the case that

γst · log2 P − γge � γst · log2 P (4)

and that
2n − 1 � 2n. (5)

The approximation in Eq. (4), which nearly means γst � γge, is acceptable; the
high-performance implementation of structured QR seems to be more difficult
than that of general QR for the following reasons:
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– hiding the latency of memory access is difficult because the total arithmetic
cost is not large,

– exploiting parallelism (i.e., using SIMD architecture and OpenMP) is difficult
because of the matrix size and structure,

– its implementation has not been studied enough because it is regarded as an
operation peculiar to TSQR.

Note that if one does not exploit the triangular structure of the matrix appear-
ing in structured QR, the number of floating-point operations becomes about
quintuple.

In the case that Eqs. (4) and (5) are satisfied, Eq. (3) can be approximated as

Tdiff � (α1to1 · 2n − γst · 2
3
n3) · log2 P. (6)

Equation (6) indicates that

– the sign of Tdiff (i.e., TSQR is faster or not) does not depend on m or P ,
– Tdiff is proportional to log2 P ,
– Tdiff becomes negative (i.e., TSQR is slower) as n grows.

To understand the essence of Eq. (6), it is worth interpreting that TSQR is an
algorithm based on the global reduction on a triangular matrix (see Fig. 1) [10];
the reduction operator is a structured QR factorization. As shown in Table 1, the
amount of data transferred in TSQR is equivalent to that in Householder QR.
TSQR decreases the number of global reduction (2n → 1) but makes the reduc-
tion operation more complicated (addition → structured QR). This essential
difference between Householder QR and TSQR is clearly described in Eq. (6).

3.3 Estimation Toward Automatic Algorithm Selection

Equation (6) indicates an important fact that Tdiff becomes negative, meaning
TSQR becomes slower than Householder QR, as n grows. Precisely,

Tdiff < 0 ⇔ n >

√
3α1to1

γst
. (7)

This is understandable because the arithmetic cost of structured QR factoriza-
tion in TSQR grows in O(n3) whereas the setup cost of the communication in
Househlder QR increases in O(n).

We now consider estimating Tdiff and selecting the faster algorithm between
Householder QR and TSQR in advance when a target matrix is given. In the
following discussion, the platform and implementation of each algorithm are
supposed to be fixed.

Estimation of Tdiff based on Eq. (6) (or estimating only the threshold from
Eq. (7)) is facile because the parameters in the equation are easily measured;
α1to1 can be measured by executing a simple benchmark program (e.g. ping-
pong program), which needs only two processes. γst can be obtained through
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running the kernel of structured QR factorization on one node. The cost for
both measurements is obviously small.

Although the model written in Eq. (2) and resulting Eq. (6) are more realistic
than the model in Eq. (1), they still does not reflect the characteristics of actual
computations sufficiently, which occasionally makes the estimation inaccurate.
First, the effective performance of floating-point operations generally depends on
the size of target matrix. Thus, it is practical to replace the constant parameter
γst with γst(n) that is a function of n. Alternatively using the execution time of
a structured QR factorization Tst(n)(= γst(n) · 2

3n3) itself is also a feasible idea.
Second, the MPI (all)reduce function is sometimes implemented not with a

binary reduction tree based point-to-point communications but in a specialized
way. In such case, modeling the setup cost of the function as α1to1 · log2 P is
not always appropriate. A straightforward solution to this issue is measuring the
setup cost of the function among P processes, which we denote by αall(P ). The
cost for measuring αall(P ) is of course not small, especially when P is large.
However, this idea is less of impractical because the results of MPI benchmarks
are highly reusable.

Based on the above discussion, we present another model

Tdiff � αall(P ) · 2n − Tst(n) · log2 P. (8)

Although the cost using this model is much larger than that for the model in
Eq. (6), the former is expected to give more reliable estimations than the latter.

By using either model, Tdiff can be estimated, and the faster algorithm will
be selected in advance. These procedures are easily automatized, in other words,
an automatic algorithm selection is realizable. To construct this mechanism, the
cost for measuring the parameters (and function values) in each model is initially
required. The mechanism works before the target computation (i.e., tall-skinny
QR factorization) and does nothing while the computation, which means this
approach falls into so-called off-line auto-tuning.

4 Numerical Experiments

We verify our analysis described in the previous section through numerical exper-
iments on the K computer. We examine the behavior of the difference of the
parallel execution time between TSQR and Householder QR. We also estimate
the difference based on our models and attempt to select the faster algorithm
for a given condition: m, n and P .

4.1 Experimental Conditions

Our experiments were conducted on the K computer1. It consists of 88129
computational nodes; each node has one SPARC64 VIIIfx processor (2.0 GHz,

1 Operated at the RIKEN Advanced Institute for Computational Science.
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8 cores) and 16 GB memory. The nodes are connected by the 6D mesh/torus
network (5 GB/sec, per link, bidirectional), namely Tofu interconnect.

We implemented a parallel Householder QR program (denoted House in the
followings) with BLAS routines including DGEMM. We also coded two kinds of
parallel TSQR programs (TSQR 1 and TSQR 2); the difference between TSQR 1
and TSQR 2 resides in the implementation of the kernel of structured QR fac-
torization. The code of TSQR 1 is based on the BLAS routines, while that of
TSQR 2 calls no BLAS routines and is written with simple loop blocking tech-
niques. The kernel of general QR factorization in both TSQR programs employ
BLAS routines. All programs are parallelized with the MPI functions.

As test matrices, we used real matrices whose elements are random numbers
because execution times are independent with the matrix elements. We measured
the execution time for computing the QR factorization of an m × n matrix by
using P nodes, in which the Q factor is implicitly obtained (i.e., the explicit Q is
not formed). We assigned one MPI process per node and used thread parallelized
BLAS routines (eight threads per process). Note that we used the MPI and BLAS
libraries provided from Fujitsu on the K computer.

4.2 Verification of the Analysis on Tdiff

We first present the results on the basic computation kernels and communica-
tion routines. Figure 2(a) shows the effective time per floating-point operation
in each computation kernel in TSQR. The graph clearly indicates the necessity
of distinguishing γ in performance modeling; the effective floating-point perfor-
mance in both implementations of structured QR are far from that of general
QR. The difficulty of high-performance implementation of structured QR can be
seen from the graph, which justifies our assumption in Eq. (4). Figure 2(b) shows
the setup cost of the MPI allreduce function on the K computer. Although the
actual setup cost is a little different from its approximation with point-to-point

Fig. 2. Basic performance data in the numerical experiments on the K computer.
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Fig. 3. Dependency of Tdiff on m: P = 256 and n = 10, 20, . . . , 490, 500.

Fig. 4. Dependency of Tdiff on m: P = 1024 and n = 10, 20, . . . , 490, 500.

Fig. 5. Dependency of Tdiff on P : m = 2, 048, 000 and n = 10, 20, . . . , 490, 500.
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Fig. 6. Dependency of Tdiff on P : m = 8, 192, 000 and n = 10, 20, . . . , 490, 500.

Fig. 7. Breakdown of parallel execution time (P = 256, m = 2, 048, 000): the figure on
each bar is the total execution time.

communication, it is almost proportional to log2 P . Both figures totally support
that our assumptions are reasonable.

We next verify the analysis on Tdiff based on our performance modeling.
Figures 3 and 4 show the dependency of Tdiff on m. These graphs illustrate little
dependency of Tdiff on m, which corroborates our analysis. We suspect that the
exceptional cases in Fig. 3, namely m = 4, 096, 000 and 8, 192, 000, are due to
the largeness of m

P . Figures 5 and 6 give the relationship between Tdiff and P .
We analyzed that Tdiff is proportional to log2 P , and it is basically confirmed
by the graphs. However, Fig. 6 indicates another factor of the difference; the
behavior shown in the graphs seems to be composed of the factor analyzed in
the previous section and another factor that becomes dominant as p decreasing.
Every figure illustrates that Tdiff actually becomes negative as n increases, which
is of importance in the practical use of TSQR.

For more detailed evaluation, we present the breakdown of typical cases
in Fig. 7 (P = 256) and Fig. 8 (P = 1024). In all cases, it can be observed
that Tdiff mainly comes from the difference between the communication time



Performance Analysis of the Householder-Type Parallel Tall-Skinny QR 279

Fig. 8. Breakdown of parallel execution time (P = 1024, m = 2, 048, 000): the figure
on each bar is the total execution time.

Fig. 9. Breakdown of parallel execution time (P = 128, m = 8, 192, 000): the figure on
each bar is the total execution time.

in Householder QR and the arithmetic cost of structured QR factorization in
TSQR. This observation strongly supports our analysis on Tdiff . However, we
need to mention the exceptional cases; their breakdown are shown in Fig. 9. In
these cases, the above factor is much small because P is not large. On the other
hand, the gap in the cost of general QR factorization is not negligible; the arith-
metic cost for this part grows in O(mP ). This result suggests that more careful
modeling and analysis are required for cases that m

P in extremely large.

4.3 Evaluation of the Estimation of Tdiff and Algorithm Selection

We examine the estimation of Tdiff by using models. We compared three ways
of estimating Tdiff :

– estimation 1: using Eq. (6),
– estimation 2: using Eq. (8),
– estimation 3: using Eq. (6) but replacing γst with γge.

In estimation 1, we used γst = 1.43 × 10−10 for TSQR 1 and γst = 2.22 × 10−10

for TSQR 2. In estimation 3, we used γge = 3.30 × 10−11 for TSQR 1 and 2.
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Fig. 10. Estimations of Tdiff (P = 256 and m = 2, 048, 000): est. 1 (by Eq. (6)), est. 2
(by Eq. (8)) and est. 3 (by Eq. (6) but replacing γst with γge). Tc means the commu-
nication time in Householder QR and Tst means the arithmetic time of structured QR
in TSQR.

Fig. 11. Estimations of Tdiff (P = 1024 and m = 2, 048, 000): est. 1 (by Eq. (6)), est. 2
(by Eq. (8)) and est. 3 (by Eq. (6) but replacing γst with γge). Tc means the commu-
nication time in Householder QR and Tst means the arithmetic time of structured QR
in TSQR.

We present typical results of the estimation in Fig. 10 (P = 256) and Fig. 11
(P = 1024). In these graphs, we compare each estimation with actual Tdiff and
the difference between the communication time in Householder QR (Tc) and
the arithmetic cost of structured QR factorization in TSQR (Tst). From these
graphs, we have the following observations:

– Estimation 3 is much far from the actual Tdiff , which is reasonable considering
the gap γst and γge. This estimation often mislead that TSQR is almost always
faster than Householder QR until n is unpractically large.

– Estimation 2 gives very accurate results as we expected in the previous section.
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Fig. 12. Estimations of Tdiff (P = 128 and m = 8, 192, 000): est. 1 (by Eq. (6)), est. 2
(by Eq. (8)) and est. 3 (by Eq. (6) but replacing γst with γge). Tc means the commu-
nication time in Householder QR and Tst means the arithmetic time of structured QR
in TSQR.

Table 2. The number of correct selection of the faster algorithm (House v.s. TSQR 1
or 2): in each combination of P and m, 100 cases (n = 10, 20, . . . , 990, 1000) were
tested. The left figure in each cell is the results of est. 1 (by Eq. (6)) and the right one
is that of est. 2 (by Eq (8)).

– Estimation 1 is more accurate for TSQR 2 than TSQR 1. Figure 2(a) clearly
illustrates the reason for this difference; regarding γst as constant is deemed
to be acceptable for TSQR 2 but not for TSQR 1.

We also show the results for the case that m
P is much large in Fig. 12. In this

case, estimation 1 (for TSQR 1) and estimation 2 (for TSQR 1 and 2) give the
good estimation of Tc−Tst, which are as accurate as in Figs. 10 and 11. However,
Tdiff is far from Tc −Tst. Thus, even estimation 2 is much less accurate from the
viewpoint of estimating Tdiff .

We finally present the results of the algorithm selection based on estima-
tion 1 and 2: for TSQR 1 (Table 2(a)) and for TSQR 2 (Table 2(b)). For each
combination of P and m, we tested 100 cases (n = 10, 20, . . . , 990, 1000) and
list the number of the collect selections. The results in both tables agree with
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the observation described above; estimation 2 is more accurate than estima-
tion 1. The tables also indicate the tendency that the accuracy degenerates as
m
P becomes large, whose reason is already confirmed in Fig. 12.

5 Conclusion

We analyzed the difference of the parallel execution time between the House-
holder QR algorithm and the TSQR algorithm. We suggest that distinguishing
the effective floating-point performance for each computational kernel is vital
in modeling and analyzing the time. Our analysis indicates that TSQR is not
always faster than Householder QR; it becomes slower as n grows. We also con-
sidered estimating the difference based on the models and selecting the faster
algorithm for given matrices, which falls into the category of off-line auto-tuning.
The numerical experiments on the K computer totally supported our analysis
and the realizability of the automatic algorithm selection between Householder
QR and TSQR.

This work implies that structured QR factorization plays a key role in TSQR,
which is reasonable because its arithmetic cost is the drawback in avoiding com-
munication. As shown in this paper, considering its effective performance is
vital when analyzing the performance of TSQR. Practically, improving the per-
formance of structured QR factorization directly makes TSQR more efficient.

To strengthen our results described in the paper, numerical experiments
on other systems than the K computer are required. Particularly, we need to
conduct the experiments on multi-core clusters where the cost of intra-node
communication differs from that of inter-node communication. In addition, com-
parison with other algorithms than Householder QR is also vital; there are sev-
eral state-of-the-art communication avoiding algorithms for computing the QR
factorization [11–13]. In the case that n in not small, these algorithms are pos-
sibly more efficient than both Householder QR and TSQR. Besides, it has been
reported [14] that applying the TSQR algorithm for computing local QR factor-
izations sometimes improves the performance. It requires an additional analysis
on the difference in general QR factorizations, which we did not deal with in this
study.
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Abstract. This paper introduces an automatic tuning method for the
tiling parameters required in an implementation of the three-dimensional
FDTD method based on time-space tiling. In this tuning process, an
appropriate range for the tile size is first determined by trial experi-
ments using cubic tiles. The tile shape is then optimized by using the
Monte Carlo method. The tiled FDTD kernel was multi-threaded and
its performance with the tuned parameters was evaluated on multi-core
processors. When compared with a naively implemented kernel, the per-
formance of the tuned FDTD kernel was improved by more than a factor
of two.

1 Introduction

The three-dimensional (3D) finite-difference time-domain (FDTD) method is
widely used in high-frequency electromagnetic field analysis for the design of
electrical devices [1,2]. The method is based on iterative stencil computations
composed of nested outer temporal and inner spatial loops. In iterative stencil
computations, the number of floating point operations is often relatively small
when compared with the total amount of data transferred between the CPUs
and the main memory. Consequently, the computation time of the 3D FDTD
kernel is often determined by the (effective) memory bandwidth rather than by
the processing core performance. In particular, on computational nodes based
on multi-core processors, the speed-up obtained is seldom proportional to the
number of cores used, despite the fact that the computational kernel of the 3D
FDTD method can be parallelized in a straightforward manner [3]. This is due
to the well-known “memory-wall problem”. In iterative stencil computations,
“time-space” tiling is one possible solution to this problem [4,5].

In time-space tiling, the domain to be analyzed is divided into a number
of smaller regions, i.e. tiles, each of which is so small that it is accommodated
by the cache, and the electromagnetic field variables in each tile are updated
for a certain number of time steps successively. Because most calculations on
the tile are performed in the cache, this technique increases the cache hit ratio
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 284–297, 2015.
DOI: 10.1007/978-3-319-17353-5 24



Automatic Parameter Tuning of Three-Dimensional Tiled FDTD Kernel 285

and thus produces better performance. The application of this technique to a
two-dimensional (2D) FDTD kernel was reported in [6,7]. However, because the
3D FDTD kernel has a more complex stencil shape and loop structure than the
2D case, there are few reports on time-space tiling for the 3D FDTD method.
Under these circumstances, we previously introduced a time-space tiling method
for the 3D FDTD kernel without redundant calculations (3D tiled FDTD), and
confirmed its effectiveness when using a multi-core processor system [8].

In this paper, to achieve further improvements in performance, we describe
a parameter tuning method for the 3D tiled FDTD kernel. The parameters
to be tuned are the shapes of the tiles and the number of time steps of the
successive updates of a tile. We tune these parameters based on the experimental
results from relatively small-sized jobs in which the kernel performs for a small
number of time steps. Numerical tests on multi-core processors of the latest
generation exhibit that the tuned 3D FDTD kernel attains a more than two-fold
performance improvement when compared to the naive implementation of the
kernel.

2 Temporal Tiling of 3D FDTD Method

2.1 Basic Equations and Standard Implementation of 3D FDTD
Method

From Maxwell equations and constitutive equations, the basic equations describ-
ing electromagnetic field phenomena are given by

∇ × E = −μ
∂H

∂t
(1)

and
∇ × H = ε

∂E

∂t
+ σE , (2)

where E , H , ε, μ, and σ denote are the electric field, magnetic field, permit-
tivity, magnetic permeability, and conductivity, respectively. In FDTD method,
the space and time partial derivatives are approximated by the finite difference
scheme. In both space and time domains, the centered finite difference method
based on a staggered grid is used. Consequently, in the time-dependent cal-
culation, the electric and magnetic field variables are alternatively updated as
follows:

En =
1 − {σΔt/2ε}
1 + {σΔt/2ε}E

n−1 +
Δt/ε

1 + {σΔt/2ε} (∇ × H n−1/2), (3)

and
H n+1/2 = H n−1/2 − Δt

μ
(∇ × En), (4)

where the superscripts denote the time step and Δt is the time interval. In the
computation of the space derivatives, a staggered grid, called the Yee cell, is used
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Fig. 1. Outline of 3D FDTD kernel based on naive implementation

to discretize the electric and magnetic fields. Figure 1 shows an outline of the
program code of the 3D FDTD method naively implemented. In the program,
the spatial coefficients in (3) and (4) for each grid point are given through the
array id, which prescribes the type of medium (i.e. material) involved at each
grid point. An analytical model is usually formed by only a few materials even in
practical simulations. In this case, the implementation using indirect addressing
is usually advantageous in regard to total simulation time.

2.2 Time-Space Tiling for 3D FDTD Method

In this subsection, we introduce time-space tiling for the 3D FDTD method. In
this paper, we discuss the single level tiling, i.e. the tiling for the last level cache.
Here, we consider a grid of nx × ny × nz for the analysis, where the subscripts
represent the direction of each axis in the 3D coordinate system. In the tiling
method, the grid is divided into tiles, each of which consists of tx × ty × tz
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Fig. 2. Time-space tiling for FDTD kernel

grid points. For the purposes of the discussions that follow, we introduce 3D
coordinates for the grid points and the tiles, which are written as (i, j, k), (i = 1,
. . ., nx, j = 1, . . ., ny, z = 1, . . ., nz) and (I, J,K) = (�i/tx�, �j/ty�, �k/tz�),
respectively. Then, the tile located at (I, J , K), which is denoted here by TI,J,K ,
is given by

TI,J,K = {(i, j, k)|(I − 1)tx + 1 ≤ i ≤ I · tx, (J − 1)ty + 1 ≤ j ≤ J · ty,

(K − 1)tz + 1 ≤ k ≤ K · tz}. (5)

The time-space tiling involves updating the electric and magnetic field vari-
ables for multiple time steps for each tile. The method is expected to reduce the
number of main memory accesses and increase both the cache hit ratio and the
kernel performance. In the analysis, we use the time-skew algorithm which has
been shown to be applicable to the 3D FDTD method in [8]. In the technique,
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Fig. 3. Outline of 3D tiled FDTD kernel

the tile is moved by one grid point in all negative x-, y-, and z-directions at each
time step to avoid redundant calculations. For a more precise explanation, we
introduce the notation Tu

I,J,K , which represents the moved tile for the u-th step
update and is defined as follows:

Tu
I,J,K = {(i, j, k)|(i + u, j + u, k + u) ∈ TI,J,K ,

1 ≤ i ≤ nx, 1 ≤ j ≤ ny, 1 ≤ k ≤ nz}, (6)

where 1 ≤ u ≤ ts and ts is the number of successive updates of the tile. In
this technique, the electric field in Tu−1

I,J,K and the magnetic field in Tu
I,J,K are

updated in the u-th time step for TI,J,K , as shown in Fig. 2 (a). It should be
noted that the tiles are processed in lexicographical order. Figure 2 (b) shows
the order in which the calculation is performed for each grid point.

Figure 3 shows the simplified sample program of the tiled 3D FDTD method,
where the process for the domain boundaries is excluded for simplicity. In the
present work, the calculations on each tile are parallelized. Because most calcu-
lations on the tile are executed on the cache, sufficient speedup is expected when
using a multi-core processor. The spatial loop for the field variable on each tile
is parallelized using OpenMP directives. In our program, the outer-most spatial
loop with respect to i, which corresponds to the x-direction, is parallelized.

3 Parameter Tuning for 3D Tiled FDTD Kernel

3.1 Tuning Parameters and Preliminary Experiments

In the 3D tiled FDTD kernel, the tuned parameters are given by the number of
grid points of each tile in the x-, y-, and z-directions, which are tx, ty, and tz,
respectively, and the number of time steps of the successive updates of a tile, ts.



Automatic Parameter Tuning of Three-Dimensional Tiled FDTD Kernel 289

100

200

300

400

20 40 60 80 100

C
om

pu
ta

tio
na

l t
im

e 
(s

)

tc

L3 cache size

Fig. 4. Computation times for various cubic tiles

Before determining the tuning strategy, we first consider the general charac-
teristics of the parameters in terms of their effects on the kernel performance.
Since the performance improvement owing to the tiling technique is derived from
the increased cache hit ratio, the tile size must be smaller than the last level cache
size. In addition, as the effect of increasing ts gradually declines, the effects of
setting too many time steps in a tile need not be examined. Therefore, we set
the maximum number for ts at 30.

Next, we conducted preliminary numerical experiments for a better under-
standing of the kernel characteristics, where the experimental condition is the
same as described in Sect. 4.1. Figure 4 shows the computation time for the tiled
FDTD program with cubic tiles, where tc is the number of grid points in a single
tile in one direction. This figure indicates that tiles that are either too small or
too large are ineffective. This is because the use of tiles that are too small causes
increased management costs for the tiles. On the other hand, since the cache is
not usually occupied only by the data for the tile, the appropriate tile size range
spreads below the size perfectly matching the (last-level) cache size.

The preliminary experimental results have also revealed some characteristics
of the tiled FDTD program. In our initial research, although we tried using a
local optimization technique such as the steepest descent method to tune the
parameters, we could not obtain acceptable results. Figure 5 shows the compu-
tation times when ty and tz are varied with tx = 40 and ts = 10. In the figure,
many local minimum points can be observed, which implies that the local opti-
mization techniques have not worked well. Consequently, we chose to use a Monte
Carlo (MC) method in the tuning step, while the search space for the tile shape
was limited to reduce the tuning cost.
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3.2 Design of Automatic Tuning Method

In using the MC simulation for the kernel tuning, we first consider the limitation
on the tile size in the simulation. In our method, we find the appropriate tile size
range, which depends on various factors such as cache architecture and problem
size, from trial experiments using cubic tiles on the computer that is to be
used for the FDTD calculations. Although an analytical model can replace the
trial experiments, the computational cost for the cubic tile optimization is much
smaller than that for the following MC simulation. After determining the optimal
cubic tile, we only search the tile from 95 % to 135 % as large as the optimized
cubic tile in the MC simulation. This limitation is derived from our experiences
of tuning tests. When the tile shape is optimized, the tile tends to be larger than
the optimized cubic tile. This is because the optimized tile uses the (last-level)
cache more efficiently, and thus the tile size ratio with respect to the cache size
increases when compared with the optimized cubic tile. Consequently, we mainly
search a tile larger than the optimized cubic one in the MC simulation.

Although the size of the optimal tile is not guaranteed to be in the range
(between 95–135 % of the optimized cubic tile), the limitation is considered to
be practically useful for the following reason. Generally, the performance of a
memory intensive kernel can vary on a parallel computer. In 3D-tiled FDTD
analyses, roughly 5 % fluctuations in the performance are often observed even
when the same parameter set is used. Therefore, it is practically impossible to
define the best (optimal) parameter set. Considering this, the objective of the
tuning process is given by finding a sufficiently good parameter set. The prelim-
inary experiments indicated that a multiple of good parameter sets satisfying
the above tile-size limitation could be found.

Next, we consider the constraint on the tile shape in the MC simulation. In
our program, the elements of the arrays for the field variables are contiguous on
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the main memory in the z-direction. Therefore, a tile having relatively long edges
along the z-direction has an advantage for contiguous memory access, which is
expected to increase the cache hit ratio. Another requirement is given by the
x-direction spatial loop to be multi-threaded. That is, tx is required to be larger
than the number of threads, and if it is sufficiently large, the load imbalance
among the threads is kept small. Accordingly, we can narrow down the search
space for the tile shape to tiles that satisfy tx > ty and tz > ty.

The numerical results also imply that the number of time steps ts can be
tuned separately from the tile shape parameters. It was noted that the effect
of ts on the calculation time is smaller than that of the tile shape. The numer-
ical results also indicate that the optimized value of ts for a specific tile also
works well for tiles that are similar to the specified tile. Considering the aspects
discussed above, we finally propose the following tuning strategy:

STEP 1. (Cubic tile optimization) Fix ts at 10. Optimize the tile size, tc, subject
to tc = tx = ty = tz. Let t′c denote the optimized value obtained for tc.

STEP 2. Optimize ts ∈ {1, 2, . . ., 30} using the tile size (t′c)
3. Here, let t′s

denote the optimized value of ts.
STEP 3. (Tile shape optimization) Fix ts at t′s. Perform a Monte Carlo search

in the tile-shape space satisfying the following criteria:
(a) 0.95 × (t′c)

3 ≤ tx × ty × tz ≤ 1.35 × (t′c)
3

(b) ty < tx, ty < tz
STEP 4. Optimize ts by using the tile that was obtained in STEP 3.
STEP 5. (Optional) Perform a local search around the parameters obtained in

Step 4.

Although we believe that STEP 5 increases the robustness of the tuning
process, the performance improvement obtained from STEP 5 is often too small
to compensate the computational cost required for the step. Therefore, in the
following numerical experiments, we did not conduct STEP 5 and used the results
of STEP 4 for the final tuned parameters.

4 Numerical Results

4.1 Test Conditions

To examine the performance of the tuned 3D FDTD kernel, we conducted numer-
ical tests using a single processor (socket) of a node of Appro/Cray GreenBlade
8000 in Academic Center for Computing and Media Studies, Kyoto University.
The processor is an 8-core Intel Xeon E5-2670 processor. Because the compu-
tational node has four DDR3 (1600 MHz) channels for each processor, the peak
memory bandwidth per processor is 51.2 GB/s. Moreover, the effective memory
and L3 (last level) cache bandwidth evaluated by the STREAM Triad benchmark
are 35.8 and 174 GB/s, respectively.

In the numerical tests, all array data are allocated to the memory modules
connected to the processor (socket). The Intel C compiler version 12.1.6 was
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Table 1. Performance evaluation of 3D tuned FDTD kernel

used with the option of “-restrict -O3 -xHost -static intel -openmp”. In practical
simulations, the problem size is often large enough to use most of the main
memory spaces of the computer. Thus, the domain to be analyzed is given by a
cubic grid space of 8003, which is much larger than the last level cache size. The
total number of time steps is 90, which is much less than that for the practical
simulation, but large enough to evaluate the kernel performance. The number of
trial tasks in STEP 3 of the tuning process is 500.

In the proposed tuning method, a number of trial jobs should be managed.
For this purpose, we used Xcrypt [9], which is a Perl-based script language for
job-level parallel processing on batch-queuing parallel computers. The Xcrypt
(Perl) program automatically generates the set of parameters for each tuning
step, to be swept by many jobs in parallel, from the results of the previous step.

4.2 Numerical Results

Table 1 provides a performance comparison between the tuned tiled 3D FDTD
program and the program based on the naive implementation. In both sequential
and parallel computation, the tuned version of the program is approximately 2.3
times as fast as the naive implementation. The number of trial jobs is about
600 and the tuned parameter is expected to be effective for all analyses with the
same problem size and the same number of threads. Consequently, the proposed
tuning method is expected to be useful for practical simulations in which many
time steps are solved.

The tuned FDTD program is about 1.3 times as fast as the tiled FDTD
program with the optimized cubic tile. The final tuned tile has relatively long
edges in the z-direction, which corresponds to the contiguous memory access.
The final tuned tile is larger than the optimized cubic tile obtained in STEP 2.
In parallel computation, the sizes of the optimized cubic and tuned tiles are
16.3 % and 19.5 % of the cache size, respectively. This result indicates that the
tile shape optimization promotes efficient use of the cache.
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Table 2. Evaluation results of the tuned kernel on various computational conditions

Machine # Threads Problem size Naive implementation (s) Tuned version (s)

XE6 16 6003 124 73.3

XE6 16 8003 292 140

XE6 16 10003 632 268

Xeon E5 8 6003 97.5 44.5

Xeon E5 8 10003 503 213

Figure 6 shows the relative (parallel) speedup when compared with the sequen-
tial FDTD kernel based on the naive implementation. Figure 6 confirms that the
tuned kernel attains good parallel performance achieving 8-thread speedup of 6.6-
fold and 15.2-fold over the sequential executions of its own and of the naive
kernel. In the 8-thread execution, the data transfer (load and store) rate of the
tuned program measured 106 GB/s.

Next, we examine the quality of our tuning method and the obtained result.
In the analysis, there are about 46 billions candidates (search space) for the
parameter set. In our tuning algorithm, the search space of MC simulation is
greatly narrowed down to about 6.6 million times as small as the whole search
space. Although we have conducted 60K MC iterations with the only limitation
being that the tile size is smaller than the last level cache size, the obtained result
(elapsed time=186 s) is still inferior to our tuning result. Moreover, in perform-
ing our tuning method several times with an increased number of trial jobs in
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STEP 3, the best elapsed time was 102 s. Although this result is the best result
among many trial jobs that we have conducted in our research period, it is only
2 % better than the result shown in Table 1. When considering the fluctuations
of the kernel performance on a parallel computer, the proposed tuning method
is thought to be useful for getting a sufficiently good parameter set.

Finally, for further confirmation of the effectiveness of the proposed tuning
method, we conducted additional numerical tests using different problem sizes
and other computational nodes. One of the computational nodes of the Cray
XE6 system was used for these tests. The XE6 node consists of two 16-core
AMD Opteron processors, and one of these processors was used in the analysis.
The Cray C compiler version 5.26 was used with the option of “-h omp -O3 -h
pic -dynamic”. Table 2 shows a comparison between the results from the tuned
3D FDTD program and those from the naive implementation. It was confirmed
that the tuned kernel outperformed the naive kernel in all cases. The tuned kernel
was mostly more than twice as fast as the naive implementation. The numerical
results indicate that the use of time-space tiling with the tuned parameters is
effective in obtaining better performance on multi-core processors.

5 Related Works

Tuning of the computational kernel that is used in various application programs
is an important research target for high performance computing. Here, we briefly
introduce recent research activities on tuning for computational kernels, espe-
cially for the (iterative) stencil computation, in which 3D FDTD method is
categorized.

Software tools such as ATLAS [10] and OSKI [11] that automatically tune
a computational kernel are well known. The former is the auto-tuning tool
for the BLAS library, and the latter tunes sparse matrix vector multiplication
kernels. In the area of high-performance stencil computation, K. Datta et al.
reported on their developed automatic optimizer for various multicore proces-
sors in [12]. Their optimizer for the stencil computation includes NUMA-aware
allocation, multi-level blocking, and loop unrolling. These optimization (tuning)
processes are divided into four parts (1) Problem decomposition, (2) Data alloca-
tion, (3) Bandwidth optimizations, and (4) In-core optimizations. The optimizer
attains significant performance improvement on various multicore processors and
a GPU. Moreover, in [13], K. Datta et al. reported auto-tuning of more com-
plex 27 stencil computations. In [14], J. Shirako presented analytical bounds
for appropriate tile size which are effectively used to prune the search space in
empirical tile optimization for general tiling techniques.

To develop a high-performance stencil code for multiple computational nodes,
which should be based on multi-process programming model, Maruyama et al.
presented a high-level programming framework based on DSL, Physis [15]. The
framework specially focused on the execution of the generated code on a GPU
cluster. Because the communication between GPU nodes involves additional data
copies between GPU and CPU memory, the communication greatly affects the
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stencil kernel performance. The Physis framework is equipped with an optimizer
for communications,which effectively overlaps computations and communications.

Next, we describe research works on temporal tiling (blocking) for the itera-
tive stencil computation. Although there are many reports dealing with the topic,
we introduce here only recent activities. G. Wellein et al. presented a pipelined
wavefront parallelization approach for the stencil computation. Their technique
well combines temporal blocking and multithreading on a multicore processor
having a shared cache [16]. Moreover, M. Wittmann et al. discussed the pipelined
temporal blocking method more generally and reported results obtained on a
distributed memory parallel environment in [17]. In [18], D. Orozco and G. Gao
reported an efficient implementation of FDTD method on the many-core chip
architecture of a IBM Cyclops-64. They discussed temporal tiling and its opti-
mization of a 1D FDTD method application. In [7,19], U. Bondhugula et al.
presents an automatic source-to-source transformation framework including par-
allelization and locality optimization, PLuto. PLuto can automatically generate
multithreaded and optimized iterative stencil code using temporal tiling and
other optimization techniques. In [6], R. Strzodka proposed the cache oblivious
algorithm, called CORALS, for iterative stencil computations. In their method,
the entire time-space grid is recursively divided into parallelograms. In each par-
allelogram, computations are performed by the time-skewing scheme. In 2D and
3D stencil computations, the program code based on CORALS outperforms the
optimized code automatically generated by PLuto.

Temporal blocking is also examined in the context of GPU computing. In
[20], A. Nguyen presented 3.5-D (2.5D-spatial and temporal) blocking method
for stencil computations and a lattice Boltzmann simulation run on CPUs or
GPUs. Moreover, in [21], G. Jin examined the effectiveness of temporal blocking
on minimizing the cost for data transfer between CPU and GPU in a stencil
computation with a large analysis domain, the size of which exceeded the GPU
memory capacity.

The difference between our work and the above related works is in examining
the temporal tiling and its optimization in the context of the 3D FDTD method.
Most of the techniques introduced above can be applied in principle to the 3D
FDTD method. However, the effectiveness of temporal blocking in 3D FDTD
kernel has not been fully examined, although results for 2D FDTD have been
reported for example in [6,7]. Because the 3D FDTD method has more complex
stencil shape and requires more memory footprints than the 2D version, its
performance prediction is not straightforward. Consequently, temporal tiling in
the 3D FDTD method is worth examining.

6 Conclusions

In this paper, we summarized a 3D tiled FDTD method and proposed an auto-
tuning technique for the tiling parameters to enhance the performance of the
method. In the tuning step, we first find the appropriate tile size range by per-
forming trial jobs with cubic tiles. Next, the tile shape is optimized by using the
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Monte Carlo method. To reduce the total number of trial jobs, we enforce limi-
tations with respect to the tile size and shape in this tuning step. The resulting
tuned FDTD kernel is about twice (up to 2.36 times) as fast as the naive kernel
in both serial and parallel computations on two types of multi-core processors
of the latest generation.

In future works, we target improving the kernel performance and the tun-
ing process. Although we exploited inner-tile parallelism in the present study,
there is a possibility to improve the performance by introducing inter-tile par-
allelism. Moreover, in our program code, SIMD instructions are not used effec-
tively because of indirect addressing. With future processors equipped with a
wider SIMD width than in current generation processors, strategies for effective
use of SIMD instructions in a practical 3D FDTD program need developing.
Furthermore, we will examine the hierarchical tiling for other levels cache or
TLB. To improve the tuning process, we will compare our tuning method with
other tuning algorithms and examine it in the context of other iterative stencil
computations.
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Abstract. As future HPC systems become larger, the failure rates and
the cost of checkpointing to the global file system are expected to increase.
Hierarchical incremental CPR is a promising approach to solve this prob-
lem. It utilizes a hierarchical storage system of local and global stor-
ages and performs incremental checkpointing by writing only updated
memory pages between two consecutive checkpoints. In this paper, we
response to an open question; how to optimize the checkpoint interval
when the checkpoint overheads are changing with time as in hierarchical
incremental CPR. We propose a runtime checkpoint interval autotun-
ing technique to optimize the efficiency of hierarchical incremental CPR.
Evaluation results show that the efficiency can be significantly increased
if the storage hierarchy can be exploited with appropriate checkpoint
intervals.

1 Introduction

The computational power of high-performance computing (HPC) systems is
exponentially growing every year and hence enables finer-grained scientific simu-
lations. However, the exponentially-increasing number of components of the HPC
systems causes an increase in the overall failure rate. Future HPC systems are
predicted to experience a failure every tens of minutes [1]. Thus, fault-tolerance
has become more important than ever for future HPC systems.

Checkpointing and rollback recovery (CPR) is the most widely-used fault-
tolerance mechanism for HPC systems. CPR writes the state of a running process
to a checkpoint file, and recovers the previous state later by loading the check-
point file when necessary. These checkpoint files are generally stored in a stable
storage, typically a global file system. In this work, we define the efficiency of a
CPR mechanism as the ratio of original execution time to total execution time.
Here, original execution time is the execution time of an application itself if the
application encounters no failures and takes no checkpoints, while total execu-
tion time is the total execution time of the application and CPR when a CPR
mechanism is implemented and the occurrence of failures is considered.
c© Springer International Publishing Switzerland 2015
M. Daydé et al. (Eds.): VECPAR 2014, LNCS 8969, pp. 298–309, 2015.
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Since the computational capabilities are increasing faster than the band-
width to the global file system, the checkpointing overhead to the global file
system still can dominate the total execution time even if the checkpointing
is performed infrequently. The incremental checkpointing [2] can be one of the
promising technologies to decrease the huge overhead caused by checkpointing.
The incremental checkpointing reduces the data size to be written into a check-
point file at every checkpoint by writing only updated data or updated memory
pages between two consecutive checkpoints. The changed data/memory pages
will be marked as dirty and only the dirty memory pages are transferred during
the checkpointing.

Another promising approach to efficient CPR is the hierarchical checkpointing
[3,15] that exploits a hierarchical storage system of local and global storages. Each
storage has different degrees of resiliency and checkpointing cost. The hierarchi-
cal checkpointing relies on node-local storages for restarting from more common
transient failures and the global file system for less frequent hardware failures. In
hierarchical checkpointing, failures are clasified into two; local failures and global
failures. Local failures include any transient failures (a.k.a., software failures) and
can be recovered by local checkpoints stored in local storages. On the other hand,
global failures include all hardware failures and must be recovered by global check-
point stored in the global file system. By frequently taking inexpensive node-local
checkpoints and less frequently taking expensive system-wide global checkpoints,
applications can achieve both high reliability and efficiency.

Both the incremental checkpointing and the hierarchical CPR mechanism can
potentially reduce the timing overhead of CPR if some parameters are adjusted
properly. One of the important parameters that can significantly affect perfor-
mance is the checkpoint interval [3]. The optimal checkpoint interval depends
not only on the system configuration but also on the application to be check-
pointed. This is because some information which is required to determine the
optimal checkpoint interval, such as the growth speed of the number of dirty
memory pages, is application-specific and dynamic. Therefore, a runtime auto-
tuning technique is required because this information is unknown in advance of
the execution.

In this paper, we consider a hierarchical incremental CPR mechanism that
consists of two different checkpoint implementations, local incremental check-
pointing and global incremental checkpointing. We focus on how to optimize the
checkpoint intervals of each checkpoint implementation by constructing a per-
formance model to find the optimal solution through an in-depth analysis of
the performance model. Then, a runtime autotuning technique that can fit the
hierarchical incremental CPR mechanism is introduced.

The rest of this paper is organized as follows. Section 2 describes the hierar-
chical incremental CPR mechanism and a performance model that is to be used
for its optimization. Section 3 discusses an optimization technique and a runtime
autotuning technique to find the optimal checkpoint interval for the hierarchi-
cal incremental CPR mechanism. Section 4 shows the evaluation results. The
conclusion of this paper is stated in Sect. 5.
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2 A Hierarchical Incremental Approach for High
Performance Checkpointing

In this section, we describe an incremental approach as a CPR mechanism to
reduce the amount of data transferred to a checkpoint file on a system with a
hierarchical storage of local storages and global storages. Then, we formulate
our research as an optimization problem based on a hierarchical CPR model.

2.1 A Hierarchical Incremental CPR Mechanism

This paper focuses on a hierarchical incremental CPR mechanism. The CPR
mechanism, which uses local and global storages. The local storage is used for
local incremental checkpointing and the global storage for global incremental
checkpointing.

When the initial checkpoint request comes, a full checkpoint, i.e., the whole
memory data of an application, is first taken and dumped to both local and global
storages. After this initial checkpoint, the type of checkpointing conducted, i.e.,
local incremental checkpointing or global incremental checkpointing, is deter-
mined by their intervals.

When the local incremental checkpoint is performed, only the dirty mem-
ory pages are transferred to the local storage. The full checkpoint file that has
previously been saved at the local storage during the initial checkpoint is then
updated using the transferred dirty memory pages. Similarly, global incremental
checkpointing is performed by updating the full checkpoint file in the global
storage with the global incremental data.

2.2 Performance Model

We first consider a general hierarchical CPR model of local and global check-
points that is used for our proposed autotuning technique. This model is related
to the two-level recovery schemes studied by Vaidya [4] and Dong et al. [5].

Suppose the total execution time of an application running with hierarchical
CPR as TE and divide it into the following four parts:

TE = TS + TC + TL + TG. (1)

Here TS is the original execution time, TC is the total time spent for checkpoint-
ing, TL is the time lost due to local failures and TG is the time lost due to global
failures.

We assume that, in general, an application user can estimate with a certain
high precision his/her own application original execution time, TS , based on
experiential analysis [6]. Note that TS does not include any other failure-related
costs such as checkpoint overhead and time lost due to failures.

Figure 1 presents the overall scheme of the hierarchical CPR model with two
failure cases (local failure and global failure), where nL refers to the number
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Fig. 1. Scheme of the hierarchical checkpointing model

of local checkpoints and nG refers to the number of global checkpoints during
the period of TS . For simplicity of explanation, this figure does not present
checkpoint overheads and restart overheads.

In this model, the total time spent for checkpointing, TC , can be expressed
as follows,

TC = CLnL + CGnG, (2)

where CL is the local checkpoint overhead and CG is the global checkpoint
overhead.

The expected number of local failures (denoted by FL) and the expected
number of global failures (denoted by FG) during the execution of an HPC
application can be predicted from the historical statistic data of the mean time
between local failures (MTBFL) and the mean time between global failures
(MTBFG) as the following equations.

FL =
TS

MTBFL
, (3)

FG =
TS

MTBFG
. (4)

On average, failures will occur halfway through any checkpoint interval [7].
Hence, the time lost due to local failures, TL, can be expressed as follows,

TL =
(

TS

2nL
+ RL

)
× FL, (5)

where RL is the local restart overhead.
The time lost due to global failures is different from the time lost due to

local failures. The time lost due to global failures has to also include all local
checkpoint overheads. For example, as shown in Fig. 1, when a global failure
happens, the application must return further back to its latest global checkpoint
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and hence two local checkpoint overheads should also be counted in the time
lost. Here, the average number of local checkpoints between a global failure and
the latest global checkpoint can be represented as TS/(2nG)

TS/nL
= nL

2nG
. Hence, the

time lost due to global failures, TG, can be expressed as follows,

TG =
(

TS

2nG
+

nL

2nG
CL + RG

)
× FG, (6)

where RG is the global restart overhead.
Finally, by substituting terms of Eq. (1) with Eqs. (2), (5), and (6), we can

predict the total execution time of an application running with hierarchical CPR
by

TE = TS +CLnL +CGnG +
(

TS

2nL
+ RL

)
×FL +

(
TS

2nG
+

nL

2nG
CL + RG

)
×FG.

(7)
Our objective is to minimize TE for each given application. In this work,

the minimization problem is divided into two; one is to minimize the checkpoint
overhead, and and the other is to minimize the time lost due to failures. The
local and global incremental checkpoints are used to minimize the checkpoint
overheads, CL and CG, by transferring only dirty memory pages to a checkpoint
file. Note that the restart overheads, RL and RG, cannot be minimized since a
full checkpoint is required for restarting from any failure. Then, to minimize the
time lost due to failures, we need to determine the optimal values of nL and nG.
We will discuss this in the following section.

3 Runtime Autotuning for Hierarchical Incremental CPR

3.1 Checkpoint Interval Optimization for Hierarchical CPR

We first need to find the optimal values of nL and nG to minimize the total
execution time given by Eq. (7). To this end, we check whether TE has a unique
minimum point by checking its second derivatives. The second derivatives of TE

are as follows,

∂2TE

∂nL
2

=
TS

nL
3

× FL > 0,
∂2TE

∂nG
2

=
TS + CLnL

nG
3

× FG > 0. (8)

Hence, there exist a unique minimum point where ∂TE

∂nL
= 0 and ∂TE

∂nG
= 0. We

can derive two first derivative equations as follows,

∂TE

∂nL
= CL − TS

2nL
2 × FL +

CL

2nG
× FG, (9)

∂TE

∂nG
= CG − TS + CLnL

2nG
2 × FG. (10)
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Therefore, we can get the optimal interval of local checkpoints and global check-
points as long as the following two simultaneous equations are solved.

CL − TS

2nL
2 × FL +

CL

2nG
× FG = 0, (11)

CG − TS + CLnL

2nG
2 × FG = 0. (12)

Solving the above equations directly will lead us to a polynomial equation
with degree five as shown in Eq. (13). The Abel-Ruffini theorem (also known as
Abel’s impossibility theorem) states that there is no general algebraic solution
to polynomial equations with a single variable of degree five or higher [8].

2CL
3nL

5 +
(
2TSCL

2 − CGFGCL
2
)
nL

4 − 2TSFLCL
2nL

3 − 2TS
2FLCLnL

2

+ TS
2FL

2CLnL + TS
3FL

2 = 0. (13)

Since there is no formula to directly solve Eq. (13), we use an iterative method
[9], which is commonly used to solve a system of linear equations. First, we
convert Eqs. (11) and (12) to Eqs. (14) and (15).

nL =

√√√√ FL × TS

CL ×
(
2 + FG

nG

) . (14)

nG =

√
FG × (TS + CLnL)

2CG
, (15)

From the above equations, we can derive iterative functions, nL
(k+1) and nG

(k+1),
as follows,

nL
(k+1) =

√√√√ FL × TS

CL ×
(
2 + FG

nG
(k)

) , (16)

nG
(k+1) =

√
FG × (TS + CLnL

(k))
2CG

. (17)

The computation of nL
(k+1) and nG

(k+1) requires the values of nL
(k) and

nG
(k). Hence, we need to guess an initial values of nL

(0) and nG
(0), and then

iteratively compute Eqs. (16) and (17) until Eqs. (11) and (12) approximately
hold with small errors. We use Young’s optimal checkpoint interval approxima-
tion [10] as our initial guesses of nL

(0) and nG
(0). Young’s equation stated that

the optimal checkpoint interval is actually a function of systems MTBF (Mean
Time Between Failures) and the time to write checkpoint file C, as shown in
Eq. (18).

intervalopt =
√

2 × C × MTBF. (18)
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Hence, we set nL
(0) and nG

(0) as follows,

nL
(0) =

TS√
2CLMTBFL

, (19)

nG
(0) =

TS√
2CGMTBFG

. (20)

Suppose that we are running a large scale HPC application with the original
execution of two weeks with local and global checkpoints. The overheads for
local and global checkpoints are 200 and 3000 s, respectively. We assume that the
restart overheads are equal to the checkpoint overheads and the numbers of local
failures and global failures are 30 and 10, respectively. Under these conditions,
the number of iterative steps used in the iterative method so that Eqs. (11) and
(12) hold with an error less than 10−15 is only 9 steps. This indicates that such an
iterative method is simple but fast enough for computing suboptimal checkpoint
intervals at runtime.

3.2 Runtime Autotuning for Hierarchical Incremental CPR

In Sect. 3.1, we have discussed a method to compute the suboptimal checkpoint
intervals by computing the optimal numbers of local checkpoints and global
checkpoints. In Sect. 3.2, we mainly focus on how to apply this optimization
technique to our target CPR mechanism, i.e., the hierarchical incremental CPR.

In the case of incremental checkpointing, CL and CG are actually functions
of time since the number of dirty memory pages transferred to a checkpoint file
is changing with time. Hence, in order to minimize the total execution time,
the growth rate of the dirty memory pages must be monitored and the optimal
number of local and global checkpoints must be automatically tuned at runtime
based on the monitored information. In this work, we measure the checkpoint
overhead during the incremental checkpointing processes to obtain the growth
rate of the dirty memory pages. The pseudo-code of our autotuning technique is
shown in Algorithm 1.

In this algorithm, first we input the original execution time TS , the expected
number of local failures FL, and the expected number of global failures FG. As
discussed in Sect. 2.1, when the initial checkpoint request comes, a full checkpoint
is dumped to both local and global storages. We record the time overheads for
performing this full checkpoint, CL0 and CG0, and use these obtained information
to set the initial values of nL and nG.

After the initial checkpoint, the type of checkpointing conducted will be either
local incremental checkpointing or global incremental checkpointing. When the i-
th local incremental checkpointing is taken, we record its time overhead, CLi, and
calculate CL

∗. Here, CL
∗ is a weighted moving average (WMA) [11] of CL. We use

WMA to give a greater weight to more recent CL so that it can react more quickly
to a sudden change in the growth rate of the dirty memory pages. Similar com-
putation is also conducted for global incremental checkpointing to calculate CG

∗.
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Algorithm 1. Autotuning Algorithm for Hierarchical Incremental CPR
1: Input: original execution time TS , expected number of local failures FL, expected

number of global failures FG

2: while application is running
3: if Initial checkpoint taken
4: Record CL0 and CG0

5: Compute optimal nL and nG based on CL0 and CG0

6: Set initial nL and nG

7: if i-th local incremental checkpoint taken
8: Record CLi

9: CL
∗ =

iCLi+(i−1)CL(i−1)+...+2CL2+CL1
i+(i−1)+...+2+1

10: TS
∗ ← remaining time of TS

11: Recompute optimal nL based on CL
∗ and TS

∗

12: Adjust nL

13: if i-th global incremental checkpoint taken
14: Record CGi

15: CG
∗ =

iCGi+(i−1)CG(i−1)+...+2CG2+CG1
i+(i−1)+...+2+1

16: TS
∗ ← remaining time of TS

17: Recompute optimal nG based on CG
∗ and TS

∗

18: Adjust nG

Then, we recompute optimal nL and nG using the iterative method for the remain-
ing time left of the original execution time, TS

∗, and readjust their values at
runtime. This process is repeated until the application reachs its end.

4 Evaluation

In this paper, the efficiency defined in Sect. 1 is used as the performance metric
to evaluate the impact of the proposed autotuning technique on the hierarchical
incremental CPR mechanism for a particular application and system configura-
tion. We present the obtained results by analyzing the growth rate of the dirty
memory pages of an HPC application called CTH [12], which frequently runs at
very large scale for weeks at a time, and hence is prone to failures.

Figure 2 shows the percentage of dirty memory pages transferred to a check-
point file when running CTH for two days and saving its state every 15 m using
hash-based incremental checkpoint [13]. The upper bound of the shaded region
in Fig. 2 represents the average percentage of dirty memory pages transferred
to a checkpoint file using a page-protection based incremental checkpoint [14].
In this work, we assume that hash-based incremental checkpoint is used rather
than page-based incremental checkpoint due to its higher accuracy on detecting
dirty memory pages. Also, we assume that no same memory page is updated
twice before the whole memory pages are all updated.

The evaluation is conducted via a simulation running CTH for two days with
16 GB memory footprint by assuming that a RAM disk and a Lustre system
are used as the local storage and the global storage, respectively. The write
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Fig. 2. Percent of dirty memory pages transferred to a checkpoint file during incre-
mental checkpointing at CTH [13].

bandwidth data in [15] and the failure data in [16] are used as a reference to
set several parameters in this evaluation. Accordingly, the bandwidth to local
storage, the bandwidth to global storage, the mean time between local failure,
and the mean time between global failure are set to 8 Gbps, 250 Mbps, 15 h and
3 days, respectively.

In order to show that the autotuning technique can increase the efficiency
of hierarchical incremental CPR, we perform an efficiency comparison of the
hierarchical incremental CPR with and without the proposed autotuning tech-
nique. When autotuning is not used, the values of nL and nG are set using the
Young equation based on the checkpoint overheads recorded during the initial
full checkpoint.

Figure 3 presents the efficiency comparison of the hierarchical incremental
CPR mechanism with and without the autotuning technique. The results with
the autotuning technique implemented are labeled auto-inc and those without
the autotuning technique as inc. As future HPC systems become larger, the
expected number of failures and the cost of accessing the global storage are
expected to increase. To explore these effects, the number of failures and the
global checkpointing overheads are increased by factors of two, ten, and fifty.
The groups of bars along the x-axis correspond to the number of failures that
are one, two, ten, and fifty times higher than the base value. Within each group,
the global checkpointing overhead is increased to be one, two, ten, and fifty times
higher than the base value.

In all the cases, the autotuning technique results in a higher efficiency as
shown in Fig. 3. Moreover, the advantage increases with either increasing the
number of failures or a higher global storage checkpoint overhead. The gain in
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Fig. 3. Hierarchical incremental CPR’s efficiency comparison with and without auto-
tuning.

efficiency ranges from 4 % to 35 %. When, the number of failures is low (failure 1×
and failure 2×), the autotuning technique successfully detected that the mean
time between global failures is much longer than the original execution time
of the application and decided not to perform any global checkpoint. Hence, it
boosts the efficiency of the system to an extremely high value of more than 90 %.
These results highlight the benefits of the proposed autotuning technique.

The results in Fig. 3 show that even with systems that are 50× less reliable,
the efficiency achieved by the proposed approach exceeds 70 % as long as the
global storage performance is unchanged. On the other hand, a higher number
of failures cannot be tolerated if the overhead of global checkpointing increases.
In particular, if a system becomes 50× less reliable and if the overhead of saving
application state to the global storage rises by 50×, even with the proposed app-
roach, the application will not be able to finish its computation (efficiency = 0).

Accordingly, our proposed autotuning technique is essential for future HPC
systems. Even if the systems are ten times less reliable compared to current
systems, our autotuning technique can guarantee the completion of their com-
putation even though their efficiency degrades below 10 %. However, a more
sophisticated technique is required for systems that are extremely prone to
failures.

5 Conclusions

This paper proposed a runtime autotuning technique to reduce the timing over-
head of hierarchical incremental CPR mechanism. The autotuning technique uses
a fast iterative method to calculate optimal local and global intervals and adjusts
them at runtime. The iterative method converges only in several steps resulting



308 A. Amrizal et al.

in an ignorable overhead for runtime autotuning. The evaluation results show
that the runtime autotuning technique can increases system efficiency from 4 %
to 35 %. Also, the runtime autotuning technique is beneficial for future extreme
scale HPC systems which are predicted to be more prone to failures.

In the future work, this technique will be extended to account for additional
features of CPR such as checkpoint compression.
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