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      Computational Approaches 
to Identifi cation of Aggregation 
Sites and the Mechanism 
of Amyloid Growth 
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    Abstract  

  This chapter describes computational approaches to study amyloid 
 formation. The fi rst part addresses identifi cation of potential amyloido-
genic regions in the amino acid sequences of proteins and peptides. Next, 
we discuss nucleation and aggregation sites in protein folding and mis-
folding. The last part describes up-to-date kinetic models of amyloid 
fi brils formation. Numerous studies show that protein misfolding is initi-
ated by specifi c amino acid segments with high amyloid-forming propen-
sity. The ability to identify and, ultimately, block such segments is very 
important. To this end, many prediction algorithms have been developed 
which vary greatly in their effectiveness. We compared the predictions for 
30 proteins by using different methods and found that, at best, only 50 % 
of residues in amyloidogenic segments were predicted correctly. The best 
results were obtained by using the meta-servers that combine several inde-
pendent approaches, and by the method PASTA2. Thus, correct prediction 
of amyloidogenic segments remains a diffi cult task. Additional data and 
new algorithms that are becoming available are expected to improve the 
accuracy of the prediction methods, particularly if they use 3D structural 
information on the target proteins. At the same time, our understanding of 
the kinetics of fi bril formation is more advanced. The current kinetic mod-
els outlined in this chapter adequately describe the key features of amyloid 
nucleation and growth. However, the underlying structural details are less 
clear, not least because of the apparently different mechanisms of amyloid 
fi bril formation which are discussed. Ultimately, the detailed  understanding 
of the structural basis for amyloidogenesis should help develop rational 
therapies to block this pathogenic process.  
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9.1         Introduction 

 More than 40 human diseases are currently 
known to critically involve protein misfolding 
and deposition as amyloid fi brils in organs and 
tissues (Chiti and Dobson  2006 ). These diseases, 
collectively called amyloidoses, differ in their 
etiology and clinical presentation and can be 
classifi ed as primary  vs.  secondary, acquired  vs . 
hereditary, and systemic  vs . focal diseases. 
Primary amyloidosis is caused by the deposition 
of a specifi c protein. An example is AL amyloi-
dosis caused by deposition of immunoglobulin 
light chains that are overproduced in plasma cells 
(Hayman et al.  2001 ). Secondary amyloidosis 
occurs as a consequence of another underlying 
disorder. For example, AA amyloidosis, which is 
a common complication of chronic infl amma-
tion, involves deposition of a proteolytic frag-
ment of serum amyloid A (SAA) that is 
overproduced in infl ammation. In contrast to AL 
and AA that are acquired diseases, most other 
amyloidoses have a genetic origin and involve 
autosomal dominant mutations that make a nor-
mally soluble globular protein amyloidogenic. 
Examples include mutations in proteins such as 
transthyretin, apolipoproteins A-I and A-II, gel-
solin, lysozyme, cystatin, fi brinogen, etc. 
(Benson  2003 ). These types of amyloidosis are 
usually systemic diseases affecting multiple tis-
sues and organs (kidney, liver, heart, etc.). In con-
trast, focal diseases are localized and affect a 
single organ where amyloid fi bers are deposited, 
such as brain in neurodegenerative diseases. The 
best known of such disorders involve depositions 
of amyloid-beta (Aβ) peptide in Alzheimer’s dis-
ease and of prion proteins in Creutzfeld-Jakob 
and Mad Cow diseases. To modulate and, ulti-
mately, block the pathologic transition from the 
native functional protein conformation into amy-
loid, it is essential to unravel the properties of the 

protein sequence and structure underlying this 
transition. 

 To form amyloid, a protein molecule must 
undergo major conformational changes. In fact, 
the fi bril core always consists of β-sheets in 
which individual β-strands are oriented perpen-
dicular to the main axis of the fi bril (Jiménez 
et al.  1999 ), whereas the native protein may or 
may not contain the β-sheet structure. Conversion 
of amyloidogenic proteins into fi brils is often 
associated with cytotoxicity (Bucciantini et al. 
 2004 ). Notably, immature water-soluble fi brils, 
pre- fi brillar aggregates and oligomers are typi-
cally more toxic to cells than mature insoluble 
amyloid fi brils (Bucciantini et al.  2004 ). The 
structures of fi bril precursors, which are rich in 
β-sheet, and the mechanisms of their toxic action 
were proposed to be similar for different pro-
teins. This idea is based on the observation that 
specifi c antibodies that bind to toxic protofi brils 
of the Aβ peptide can also bind to fi bril precur-
sors formed by other proteins with unrelated 
amino acid sequences, suggesting structural sim-
ilarity of these precursors (Kayed et al.  2003 ). 

 Importantly, numerous experimental studies 
show that the ability to form fi brils is not limited 
to amyloidogenic proteins associated with dis-
eases, but is an inherent property of various struc-
turally unrelated proteins (Chiti et al.  1999 ; 
Fändrich et al.  2001 ). Moreover, an increasing 
number of proteins are found to form functional 
amyloid  in vivo  (Fowler et al.  2007 ). These fi nd-
ings raise a question: what factors trigger protein 
misfolding into amyloid? Is it a particular amino 
acid sequence of a protein, its structural proper-
ties, interactions with ligands (such as lipids and 
heparan sulfate proteoglycans, which are ubiqui-
tous components of amyloid deposits  in vivo ), or 
the lack thereof? What mechanisms can protect 
normal globular proteins from becoming 
amyloidogenic? 
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 Evolutionary selection against aggregation 
resulted in an increased content of amino acids 
that inhibit protein aggregation (Tartaglia et al. 
 2005 ), such as Pro that disrupts the β-sheet struc-
ture, Gly that confers mobility to the polypeptide 
chain and thereby increases the entropic cost for 
ordering (Rauscher et al.  2006 ), as well as the 
increased content of charged residues (Kovacs 
et al.  2010 ) that confer protein solubility. 
However, the demands for protein folding 
(described in part 4 of this chapter) as well as the 
functional requirements can make it diffi cult to 
fully eliminate protein misfolding. In this chap-
ter, we address the basic properties of the pri-
mary, secondary and tertiary protein structure 
that confer amyloidogenic properties, and 
describe the computational methods that enable 
one to predict amyloidogenic regions in proteins 
and peptides and to understand the kinetic steps 
and the underlying physical processes involved 
in amyloid fi bril formation.  

9.2     Identifi cation of Protein 
Sites Responsible 
for Amyloid Formation 

9.2.1     Structural Determinants 
of Amyloidogenic Propensity 
of Proteins and Peptides 

 Although it is currently accepted that most if not 
all proteins can form amyloid fi bers under certain 
conditions  in vitro  (Chiti and Dobson  2006 ), it 
remains a major challenge to predict whether or 
not a given protein or peptide actually forms 
amyloid at near-physiologic conditions. The dif-
fi culty stems, in part, from a wide range of exter-
nal and internal factors that can infl uence protein 
misfolding and amyloid formation  in vivo  and  in 
vitro . External factors such as the local pH and 
the interactions (or lack thereof) with various 
ligands can critically modulate protein folding 
and shift the balance towards misfolding and 
aggregation (Fändrich et al.  2001 ). Protein muta-
tions and post-translational modifi cations can 
also importantly infl uence amyloid formation. 
Another crucial determinant is the protein con-

centration determined by the balance between the 
generation of a potentially amyloidogenic protein 
or peptide and its proteolysis and clearance. 
Among the major internal determinants are the 
overall stability of the native protein conforma-
tion (addressed below) and the presence of local 
protein regions with high propensity to initiate 
the misfolding. The latter aspect is addressed 
later in parts 2 and 3 of this chapter. 

  In vivo  and  in vitro  studies consistently show 
that reduced structural stability of globular pro-
teins tends to promote amyloid fi bril formation 
(Chiti and Dobson  2006 ).  In vitro  studies demon-
strate that mildly denaturing conditions leading 
to partial protein unfolding promote fi bril growth 
(Fändrich et al.  2003 ), perhaps due to increased 
solvent accessibility of the aggregation-prone 
regions (Dobson  1999 ). This idea is supported by 
the observation that many naturally occurring 
mutations and variations associated with amyloid 
diseases reduce protein stability (Gertz and 
Rajkumar  2010 ). However, exceptions from this 
general trend have also been observed in various 
proteins, such as immunoglobulin light chains or 
apolipoprotein A-I (Sánchez et al.  2006 ; 
Klimtchuk et al.  2010 ; Das et al.  2014 ), suggest-
ing that fi bril formation by a mutant protein does 
not always correlate with its reduced stability. 
Thus, although partial protein destabilization is 
necessary for amyloid fi ber formation, it is appar-
ently not suffi cient. 

 Notably, many amyloid diseases involve 
natively unfolded proteins or peptides. Examples 
described in this volume include Aβ peptide in 
Alzheimer’s disease, α-synuclein in Parkinson’s 
disease, amylin in type 2 diabetes, serum amy-
loid A in infl ammation-linked amyloidosis, and 
several small apolipoproteins such as apoA-II or 
apoC-II that readily form amyloid fi brils  in vivo  
and/or  in vitro . Partial folding of these intrinsi-
cally disordered proteins is believed to be prereq-
uisite for their β-aggregation (see Chap.   2     by 
Uversky in this volume). Thus, the current para-
digm in the fi eld is that amyloid formation is ini-
tiated by the partially folded structural 
intermediates. However, such partial folding 
alone is often insuffi cient to form amyloid, sug-
gesting that additional factors are involved. 
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 Extensive experimental evidence accumulated 
since 1990s suggests that protein misfolding is 
usually initiated by specifi c amino acid sequence 
motives that, when exposed to solvent, are more 
liable to aggregation than the rest of the polypep-
tide sequence (Tenidis et al.  2000 ; von Bergen 
et al.  2000 ; Ivanova et al.  2004 ). A protein can 
become non-amyloidogenic upon deletion of 
such motifs (Ivanova et al.  2004 ); in addition, 
certain mutations in these sensitive motives can 
either diminish or amplify the amyloidogenic 
propensity of a protein (Ivanova et al.  2004 ). 
Furthermore, synthetic peptide fragments corre-
sponding to these amyloidogenic regions, which 
are sometimes as short as fi ve residues (López de 
la Paz and Serrano  2004 ), can form amyloid 
fi brils similar to those formed by the full-length 
proteins (Thompson et al.  2000 ). Identifi cation of 
such regions in proteins and peptides is crucial 
for understanding the mechanism of amyloid for-
mation and, ultimately, for developing targeted 
therapies to modulate or block amyloidosis.  

9.2.2     Development of Prediction 
Methods for Amyloidogenic 
Regions 

 One of the earlier prediction methods of amy-
loidogenic regions is based on the idea that pro-
tein misfolding is initiated by the packing defects 
in the tertiary structure, which lead to increased 
solvent accessibility of the backbone hydrogen 
bonds, termed “insuffi cient wrapping” 
(Fernández et al.  2003 ). The authors reported that 
10 % of protein structures deposited to the Protein 
Data Bank have such packing defects, and pro-
posed an algorithm to search for such potentially 
labile structural regions. Obviously, this method 
requires detailed knowledge of the 3D structure 
of the target protein, which is not always 
available. 

 Most other prediction methods do not rely on 
the 3D structural information of the target protein 
and use the primary structure as an input. Since 
fi bril formation involves conformational changes 
leading to an increased β-sheet content (Jiménez 
et al.  1999 ; Yoon and Welsh  2004 ), a  computational 

algorithm was proposed to search for polypeptide 
chain segments with high propensity to form 
β-sheet. This approach can identify short seg-
ments with β-sheet propensity, yet it cannot pre-
dict whether or not a given protein is likely to 
form amyloid. 

 Another method to predict possible amyloido-
genic regions in the primary sequence is based on 
the experimental studies of amyloidogenic prop-
erties of six-residue synthetic peptides with vari-
ous amino acid sequences (López de la Paz and 
Serrano  2004 ). The authors determined the hexa-
peptide sequence (STVIIE) that has the highest 
propensity to form amyloid fi brils  in vitro , and 
used this motif to search for amyloidogenic 
regions in other proteins. Interestingly, amyloid 
fi ber formation was observed upon insertion of 
the hexapeptide STVIIE at the N-terminus of the 
SH3-domain of α-spectrin, a water-soluble pro-
tein that normally does not form fi brils (Esteras- 
Chopo et al.  2005 ). Thus, the combined 
computational and experimental studies sup-
ported the idea that the amyloidogenic propensity 
of a protein can be localized in short residue 
segments. 

 This idea was further supported in studies of 
murine β 2 -microglobulin that normally does not 
form amyloid. The variable segment in residues 
83–89 was substituted for a seven-residue 
sequence (NHVTLSQ) from human β 2 - 
microglobulin that forms amyloid. The substitu-
tion induced amyloid formation by the murine 
protein  in vitro  (Ivanova et al.  2004 ). Importantly, 
this synthetic amyloidogenic heptapeptide 
(NHVTLSQ) forms amyloid in solution, whereas 
the peptide with a similar amino acid composi-
tion but scrambled sequence (QVLHTSN) does 
not. Studies such as this clearly show that not 
only the composition of the amino acids but also 
their order determines the amyloidogenic proper-
ties. Furthermore, on the basis of their experi-
mental studies the authors proposed a structural 
model of β 2 -microglobulin amyloid in which a 
β-zipper spine is decorated with the remaining 
part of the protein molecule that partially retains 
its native fold (Ivanova et al.  2004 ). 

 Many other studies addressed the link between 
the amino acid sequence of a protein and its 

N.V. Dovidchenko and O.V. Galzitskaya



217

 ability to form amyloid (Idicula-Thomas and 
Balaji  2005 ). The authors reported that proteins 
with low thermal stability and increased life time 
have increased propensity to form amyloid fi brils 
 in vivo , and determined characteristics of the 
amino acid sequence which correlate with the 
fi bril formation. Their results showed that a 
seven-residue peptide with a high β-sheet pro-
pensity, which was inserted into an α-helix, 
increased the propensity of this helix to convert 
into a β-sheet under mildly denaturing condi-
tions. These studies support the idea that a par-
ticular composition and sequence of short amino 
acid stretches is crucial for amyloid formation. 
The authors proposed a function for predicting 
amyloidogenic properties of proteins on the basis 
of their amino acid sequences, and tested it by 
using the SwissProtein data base. The results 
suggested that 32 % of all proteins in the data-
base were amyloidogenic; further, of the 54 pro-
teins that readily formed fi brils, 75 % were 
correctly identifi ed as amyloidogenic.  

9.2.3     FoldAmyloid Algorithm 

 Several research groups have developed methods 
for identifying regions within polypeptide chains 
that are responsible for amyloid formation. One 
of such methods proposed by our team is 
FoldAmyloid (Galzitskaya et al.  2006 ; 
Garbuzynskiy et al.  2010 ). FoldAmyloid is based 
on the well-known concept of enthalpy-entropy 
compensation stating that a suffi cient number of 
contacts between residues, which provide favor-
able enthalpy contribution to the free energy of 
protein stability, is required to compensate for the 
loss of conformational entropy upon protein 
arrangement into a more organized compact state 
(Galzitskaya et al.  2000 ). Since the enthalpy is 
determined by the combined strength of the 
short-range packing interactions, we hypothe-
sized that if the mean expected packing density, 
which determines the average number of residue 
contacts within a given distance, is lower than the 
threshold (i. e. the normal packing density for 
globular proteins), the protein will remain 
unfolded. Alternatively, if the mean expected 

packing density exceeds the threshold, resulting 
in an increased number of residue contacts, this 
will favor amyloid formation. In fact, since amy-
loid fi brils are thermostable, insensitive to prote-
ases, and rich in β-sheet (Kajava et al.  2004 ), they 
are expected to contain such densely packed 
regions. 

 We tested this hypothesis computationally and 
demonstrated that the ability of proteins to fold 
and form such densely packed regions is often 
responsible for amyloid formation (Garbuzynskiy 
et al.  2010 ). In addition to the packing density for 
individual amino acids (contact scale), we 
obtained the probability scales inferred from the 
statistical analyses of protein structures, such as 
the scale for the main chain hydrogen bond for-
mation (donor scale). These scales were incorpo-
rated into server FoldAmyloid (  http://bioinfo.
protres.ru/FoldAmyloid    ) for predicting amy-
loidogenic regions in a protein sequence. 

 The server was tested on a database (  http://
bioinfo.protres.ru/fold-amyloid/amyloid_base.
html    ) containing 144 peptides that readily form 
amyloid as well as 263 peptides that do not. The 
contact scale correctly identifi ed 75 % of 
amyloid- forming peptides and 74 % of peptides 
that did not form amyloid. The donor scale cor-
rectly determined 69 % of peptides that formed 
amyloid and 78 % of those that did not. Using 
these scales with an equal weight, we created a 
hybrid scale that predicted correctly 80 % of 
amyloid-forming peptides and 72 % of peptides 
that did not form amyloid (Garbuzynskiy et al. 
 2010 ).  

9.2.4     Other Prediction Methods 

 During the last decade, several algorithms for 
predicting amyloidogenic segments have been 
developed and improved. One of such algorithms, 
Zyggregator (Tartaglia and Vendruscolo  2008 ), 
uses side chain hydrophobicity, the tendency to 
form α-helices and β-sheets, and the protein net 
charge to determine the aggregation profi le of a 
protein and predict its folding rate (Chiti et al. 
 2003 ). This method is available online at   http://
www-vendruscolo.ch.cam.ac.uk/ggt23.html    . 
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 The method Tango (Fernandez-Escamilla et al. 
 2004 ), preceded by Agadir (Muñoz and Serrano 
 1994 ), predicts the protein’s probability to form a 
particular secondary structure. Agadir uses a statis-
tical analysis of the empirical properties of amino 
acids based on 3D protein structures to calculate 
the relative probability of amino acid stretches to 
fold into a helical or globular conformation. Tango 
employs a similar approach but considers four pos-
sible structural states: α-helix, β-turn, α-helical and 
β-sheet aggregates, as well as the unfolded (ran-
dom coil) state (Fernandez-Escamilla et al.  2004 ). 
This method is available online at   http://tango.crg.
es/protected/academic/calculation.jsp    . 

 Several more recent methods such as Waltz 
employ machine-learning algorithms and are 
trained on the data sets of peptides with empiri-
cally determined amyloidogenic properties 
(Maurer-Stroh et al.  2010 ). Waltz was trained on 
the database of hexapeptides about one half of 
which tends to form amyloid at neutral pH. In 
contrast to black-box methods where the weights 
assigned to individual amino acids have no physi-
cal meaning, the weights is Waltz generally rep-
resent the amyloid-forming propensity of amino 
acids. To obtain the weight values, the authors 
aligned the training set onto itself and created a 
position-specifi c scoring matrix, which refl ects 
the probability of a given type of amino acid to be 
found in a particular position in the amyloido-
genic hexapeptide. Interestingly, the results 
showed that hydrophobic and aromatic residues 
are favored in the middle of the hexapeptide; this 
contrasts with the overall tolerance for placement 
of charged and polar amino acids. The resultant 
algorithm is based on a combination of the 
position- specifi c scoring matrices and additional 
empirical information on the amyloid-forming 
propensity obtained from the physicochemical 
analyses of the designed set of hexapeptides. In 
addition, the authors proposed to distinguish the 
aggregates by their morphology as either fi bril- 
like or amorphous, as the properties of peptides 
that tend to form such aggregates distinctly differ. 
In general, Waltz was reported to achieve better 
prediction results than its predecessor, Tango 
(Maurer-Stroh et al.  2010 ). 

 The SecStr method (Hamodrakas et al.  2007 ) 
is based on the hypothesis that regions with a 

high predisposition to form α-helices as well as 
β-sheets, as determined by at least three methods 
for secondary structure prediction, can act as 
conformation switches that tend to promote amy-
loid formation. The program is available online at 
  http://biophysics.biol.uoa.gr    . 

 Among the amyloid prediction methods, a 
special place belongs to AmylPred2, a meta- 
server for consensus analysis (Tsolis et al.  2013 ). 
The server combines 11 methods including 
FoldAmyloid, Tango, and Waltz. The authors 
show that, judging from the Matthews correlation 
coeffi cient that measures the quality of binary 
classifi cations in machine learning, AmylPred2 
outperforms its composite methods. However, 
the results suggest that the overall sensitivity of 
all methods is relatively low (~50 % for the best 
cases, ~40 % for AmylPred2) due to signifi cant 
overprediction of amyloidogenic regions. Other 
problems emerging from the analysis of certain 
target proteins where that the predictions by vari-
ous methods vary greatly. Nevertheless, with 
inclusion of more experimental data and addi-
tional prediction methods, the server can become 
very useful in fi nding consensus among various 
algorithms and predicting amyloidogenic segments 
with greater reliability. This server is available at 
  http://biophysics.biol.uoa.gr/onlinetools.html    . 

 PASTA2 is a good example of a support vector 
machine method, which is based on the regression 
analysis to build a model that divides a given 
dataset into classes on the basis of the training 
examples. This method shows an excellent poten-
tial for identifying amyloidogenic regions. 
PASTA2 is an extension of the PASTA method 
that calculates the propensity of a polypeptide 
segment to form a cross-β structure on the basis of 
hydrogen-bonding statistics found in the 
β-strands. The authors used the training set con-
sisting of ~2,500 protein domains, each under 100 
a. a. long, with known high-resolution structures 
(<1.8 Å resolution). In addition to the energetic 
parameters, PASTA2 predicts structural features 
such as the secondary structure (e. g. parallel or 
antiparallel β-sheet) and intrinsic disorder. 
According to the authors’ data, this approach can 
outperform AmylPred2; however, overprediction 
of amyloidogenic segments remains an issue with 
PASTA (Trovato et al.  2006 ; Walsh et al.  2014 ). 
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The PASTA 2.0 server can be accessed at   http://
protein.bio.unipd.it/pasta2/    . 

 One of the recently proposed methods, termed 
GAP, is a result of advances in machine learning 
(Thangakani et al.  2014 ). The method is based on 
the idea of “paired frequencies” postulating that, 
since the N and N + 2 side chains are similarly 
oriented in any β-strand, amyloid-forming 
sequences are expected to have position-specifi c 
amino acid propensities similar to those found in 
the secondary structures of globular proteins. 
GAP has been tested on 310 amyloid-forming 
peptides. In spite of its relatively poor perfor-
mance on amyloidogenic proteins (described in 
the next section), the method yielded several 
interesting results. For example, the propensities 
for β-structure formation in globular proteins dif-
fered from those in amyloid-forming peptides 
(Thangakani et al.  2014 ). The authors also found 
that, in spite of the partial overlap, there was a 
distinct difference in the pairing propensities of 
the amino acids for the peptides forming amyloid 
fi brils versus amorphous β-structured aggregates. 

 The growing volume of experimental data on 
amyloid formation by proteins and peptides, 
combined with the development of new computa-
tional approaches, leads to continuous improve-
ment in the accuracy of the predictions. Still, 
these predictions have inherent limitations that 
are discussed below.   

9.3     Experimental Verifi cation 
of Theoretical Amyloid 
Predictions 

9.3.1     Two Types of Amyloidogenic 
Segments 

 The locations of amyloidogenic regions have 
been determined by experimental methods, such 
as mass spectrometry, for a number of globular 
proteins and peptides that readily form fi bers  in 
vivo  or  in vitro . Many of these proteins and pep-
tides are listed in Table  9.1 . In addition, several 
hundred artifi cial peptides have been shown to 
form fi brillar aggregates  in vitro ; most of these 
peptides were derived from the amyloidogenic 
segments of natural proteins. Our analysis of the 

available experimental data from these proteins 
and peptides revealed that most amyloidogenic 
segments have one common property: they have 
an elevated content of hydrophobic residues 
(Galzitskaya et al.  2006 ).
   The only notable exception are prion domains of 
yeast proteins, such as Sup35 and Ure2, which 
have a high content of polar residues, particularly 
asparagine (N) and glutamine (Q) (Nelson et al. 
 2005 ). The X-ray crystal structure of the 
GNNQQNY peptide responsible for Sup35 aggre-
gation was determined by (Nelson et al.  2005 ). 
The results revealed that hydrogen bonds formed 
by the protein backbone and the side chains are 
important for structural stabilization. Aggregates 
of a similar type can be formed in numerous dis-
ease-related proteins containing long polygluta-
mine tracts (up to several dozen Gln) whose length 
varies among the patients; particularly long polyQ 
tracts lead to protein aggregation (Yang et al. 
 2014 ) in disorders such as Huntington’s disease. 

 In sum, there are two distinct types of amy-
loidogenic regions found in naturally occurring 
proteins. The fi rst type is rich in hydrophobic resi-
dues and stabilizes the fi bril via the hydrophobic 
interactions. The second type contributes to fi bril 
formation via the hydrogen bonds formed by polar 
residues such as Gln and Asn in prion- like domains 
and in polyQ proteins. Most amyloid prediction 
methods, including FoldAmyloid (Galzitskaya 
et al.  2006 ; Garbuzynskiy et al.  2010 ), are designed 
to search for the regions of the fi rst type, which 
have been subjects of extensive experimental stud-
ies. Although FoldAmyloid potentially allows for 
identifi cation of amyloidogenic regions of the sec-
ond type, the existing experimental data are insuf-
fi cient to test this aspect of its performance.  

9.3.2     Performance of Prediction 
Algorithms Using 30 
Amyloidogenic Proteins 

 To test the performance of various sequence- 
based prediction methods, we used experimen-
tally defi ned amyloidogenic regions in proteins 
which were originally compiled and tested by 
(Walsh et al.  2014 ). Two methods, Waltz and 
FoldAmyloid, which were not included in the 
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      Table 9.1    Prediction results for 30 amyloidogenic proteins by using seven methods: Comparison with experimental 
data              

 (continued)
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Table 9.1 (continued)

 (continued)
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Table 9.1 (continued)

 (continued)
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original work, were added with some modifi ca-
tions. For MetAmyl, which is a meta-server that 
predicts amyloidogenic regions by using a com-
bination of four methods, we inherited the results 
from the original analysis that showed good per-
formance by this method (Emily et al.  2013 ). We 
excluded the FISH-Amyloid (Gasior and 
Kotulska  2014 ) and FoldAmyloid hybrid meth-
ods whose predictions were less accurate. 
Further, we excluded four prion proteins from the 
test set since their amyloidogenic regions have a 
distinct amino acid composition, which necessi-
tates specialized prediction algorithms such as 
that proposed by (Alberti et al.  2009 ). The fi nal 
test set consisted of 30 amyloidogenic proteins 
and peptides listed in Table  9.1 . 

 Our analysis has two limitations. First, for 
practical reasons, only a subset of the peptide 
fragments of the test proteins has been studied 
experimentally. Therefore, in many cases it is not 
known whether (i) all predicted  non- amyloidogenic 

residues are truly  non- amyloidogenic (except for 
the experimentally verifi ed amyloidogenic 
regions predicted as non- amyloidogenic, i. e. 
false negatives); (ii) all regions predicted to form 
amyloid actually do so. However, one should 
keep in mind that proteins are not expected to 
have many amyloidogenic regions. Second, the 
average length of the experimentally verifi ed 
amyloidogenic regions in the test proteins is 
much larger than the polypeptide segments actu-
ally forming the amyloid core (usually 5–11 
amino acids) (Gilead and Gazit  2005 ), which 
increases the probability of predicting correct 
amyloidogenic regions. 

 With these caveats, our analysis clearly 
showed that, despite high prediction performance 
stated in many publications, the actual perfor-
mance is not very good as judged by the number 
of total true positives. As expected, the best pre-
dictors are meta-servers that combine several 
independent approaches. The top predictor, 

Table 9.1 (continued)

 The numbers of amyloidogenic residues correctly identifi ed are in blue (True Positives, TP) and the numbers of missed 
residues are in red (False Negatives, FN). In black are the false positives regions incorrectly  identifi ed as amyloidogenic 
(False Residues). Total sums up the results for all proteins. All methods were used under conditions of optimal specifi c-
ity; FoldAmyloid was used with a sliding window of seven residues (Note: The original table (Walsh et al.  2014 ) had a 
minor error for calcitonin (region 15–19 includes 5 residues, not 6), which did not bias the fi nal results) 
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MetAmyl, yielded more than half correctly 
 predicted amyloidogenic residues (661 out of 
986). However, it also had the highest overpre-
diction rate: almost four times more regions have 
been predicted to be amyloidogenic than experi-
mentally confi rmed. Notably, MetAmyl, which is 
based on a consensus of four methods, predicts 
more true positives than another meta-server, 
AmylPred2, which uses 11 methods. Among the 
non-meta-servers, PASTA2 and FoldAmyloid 
yielded the best results; notably, the results for 
PASTA2 were close to those for the meta-servers. 
This relatively good performance may be due to 
the fact that both PASTA2 and FoldAmyloid use 
averaged structural information on globular pro-
teins to optimize the prediction performance, 
although the protein datasets for these methods 
are different. 

 Several methods such as Waltz, Tango and 
GAP were trained on the database of peptides 
that form amyloid fi brils  in vitro . The description 
of GAP states that ~90 % true positives were 
obtained by using the peptides database 
(Thangakani et al.  2014 ). However, our test of the 
proteins listed in Table  9.1  suggests that GAP 
signifi cantly overpredicts the amyloidogenic 
regions; for example, GAP predicted ~150 amy-
loidogenic regions for the fi rst target protein, pro-
lactin, which is unrealistically high. Because of 
this high overprediction rate, GAP was not 
included in our fi nal analysis. 

 Waltz was tested in two regimes, the best per-
formance and the maximal specifi city regime. In 
the regime of maximal specifi city, Waltz pro-
duced fewer overpredictions than other methods. 
The obvious drawback of such high specifi city is 
missed amyloidogenic regions, i.e. relatively few 
true positives and many false negatives. Moreover, 
comparison of the prediction results by Waltz and 
its ancestor, Tango, showed that the performance 
of these two methods is not signifi cantly different 
(Table  9.1 ). 

 The general reason for the limited accuracy of 
various prediction methods (~50 % correctly pre-
dicted residues in amyloidogenic regions by our 
estimate) is that these methods do not take into 
account the actual 3D structural information on 
individual proteins. As a result, the prediction 

methods are expected to underestimate the infl u-
ence of long-range interactions among residues 
that are distant in the primary sequence but close 
in 3D space. These and other structural features 
may be crucial, at least for some proteins (for 
example, see the lipid surface-binding proteins 
apoA-I and apoA-IV described in Chap.   8     by Das 
and Gursky in this volume). The effect is further 
exacerbated when the training dataset for the 
machine learning algorithms contains only poly-
peptides but no globular proteins, as was the case 
with GAP. Another reason for the limited perfor-
mance may be attributed to particular amino acid 
sequences giving rise to various types of aggre-
gates, e.g. β-sheet rich amorphous aggregates 
versus fi brils, as suggested by the peptide studies 
(Thangakani et al.  2014 ).  

9.3.3     Peptide Test Case: Huntingtin- 
Based 17-Residue Sequences 

 To improve the performance of the prediction 
methods, their results should be compared with 
the experimental data obtained from a wide range 
of proteins and peptides. Such a comparison is 
reported in many recent studies. One example is 
the study using the amino acid sequence of a 
17-residue N-terminal peptide of huntingtin, a 
polyQ-containing protein that forms amyloid in 
Huntington’s disease (Roland et al.  2013 ). The 
N-terminal 17-mer peptide of huntingtin forms 
highly α-helical aggregates that do not spontane-
ously convert into β-sheet-rich fi bers under near- 
physiologic conditions. The authors generated 15 
peptides with scrambled sequences and analyzed 
the aggregation properties of these peptides as 
well as their ability to form β-sheet-rich fi brils. 
The experimentally determined amyloidogenic 
properties were compared with the properties of 
the scrambled sequences predicted with 
Zyggregator, Waltz, Zipper, and Tango. Although 
the peptide that was predicted to be particularly 
amyloidogenic readily formed amyloid fi brils  in 
vitro , the general quality of the predictions was 
not very high. Individual methods varied in the 
number of the predicted amyloidogenic sequences 
and in their ability to correctly identify the 
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fi bril- forming peptides. Most methods overpre-
dicted the peptide amyloidogenicity. The authors 
proposed that this discrepancy between the the-
ory and the experiment may be due, in part, to 
experimental limitations (e. g. low micromolar 
peptide concentrations used in these experiments 
might have been insuffi cient for fi ber formation 
by some peptides), as well as to the limited fun-
damental understanding of the link between the 
primary peptide structure and the process of 
amyloid formation. At the same time, underpre-
diction of two out of fi ve amyloid-forming pep-
tides by all four methods demonstrated that, 
evidently, there are certain amino acid sequences 
whose propensity to form amyloid is not suffi ciently 
accounted for by these prediction methods.  

9.3.4     Protein Test Case: Glucan 
Transferase Bgl2p 

    Glucan transferase Bgl2p (230 amino acids) is the 
major thermostable protein in the yeast cell wall. 
Amyloidogenic regions in Bgl2p were initially 
predicted by using FoldAmyloid (Galzitskaya 
et al.  2006 ; Garbuzynskiy et al.  2010 ), followed 
by the experimental demonstration that this pro-
tein readily forms amyloid fi brils  in vitro  
(Kalebina et al.  2008 ). The protein was predicted 
to have a strong amyloid-forming potential (seven 
amyloidogenic segments); this explains why the 
mutational analysis of this protein by using sev-
eral amino acid substitutions could not reduce its 
amyloidogenic potential  in vitro . 

 Next, we used a consensus analysis to predict 
amyloidogenic peptides in Bgl2p. To do so, we 
used six programs: PASTA, Tango, Waltz, 
Aggrescan (de Groot et al.  2012 ), DHPred 
(Zimmermann and Hansmann  2006 ), and 
FoldAmyloid. Residue segments that were pre-
dicted to be amyloidogenic by at least four out of 
six methods were chosen for the peptide synthe-
sis; another peptide, which was predicted by 
three methods (Aggrescan, DHPred, and 
FoldAmyloid), has also been synthesized; fi nally, 
an additional synthetic peptide fragment was 
used as a non-amyloidogenic control. Thus, four 
10-residue peptides have been synthesized 

(Fig.  9.1 , gray highlight): (1) AEGFTIFVGV 
(residues 80–89, predicted by up to 5 methods), 
(2) VDSWNVLVAG (residues 166–175, up to 3 
methods), (3) VMANAFSYWQ (residues 187–
196, up to 4 methods), and (4) NDVRSVVADI 
(residues 141–150, 0 methods, non- 
amyloidogenic) (Bezsonov et al.  2013 ). 
Aggregation properties of these peptides and of 
the full-length protein were studied in the pH 
range 4.4–7.5. Fluorescence spectroscopy (ThT 
binding) and fl uorescence microscopy clearly 
showed that peptide 4, which was predicted to be 
non-amyloidogenic, actually did not form fi brils 
under any experimental conditions explored. 
Peptides 1 and 3, which were predicted by up to 
fi ve methods, readily formed amyloid fi brils in 
all experiments. Peptide 2 predicted by up to 
three methods formed amyloid at acidic pH but 
not at pH 7.5. Full-length protein Bgl2p also 
readily formed amyloid at pH 4.7 but not at pH 
7.5, suggesting a positive correlation in the aggre-
gation behavior of Bgl2p and peptide 2 (Bezsonov 
et al.  2013 ). Notably, peptide fragments corre-
sponding to all amyloidogenic regions that were 
predicted by the consensus methods formed amy-
loid fi brils, demonstrating the utility of the con-
sensus methods for predicting amyloidogenic 
properties  in vitro .  

 A more important and, arguably, more chal-
lenging task is to identify amyloidogenic seg-
ments that are critical to amyloid formation in a 
biological context, and to predict the effects of 
protein mutations and modifi cations on amyloid- 
forming propensity  in vivo . To this end, (Belli 
et al.  2011 ) compared the aggregation propensity 
predicted by different methods with the limited 
experimental data available on the aggregation 
propensities of several wild-type and mutant pro-
teins from  E. coli . The data were based on the 
quantitative measurements of the levels of mutant 
proteins found in inclusion bodies relative to the 
wild type (Carrió et al.  2005 ; Wang et al.  2008 ). 
The authors concluded that, despite limited abil-
ity to predict amyloid formation in a biological 
context, “algorithms that have been developed to 
predict amyloid formation  in vitro  also offer a 
considerable degree of accuracy for predicting 
amyloid propensity  in vivo .”   
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  Fig. 9.1    Potential amyloidogenic determinants in glucan 
transferase Bgl2p from  Saccharomyces cerevisiae  cell 
wall (UniProtKB/TrEMBL entry number P15703). Amino 
acids that were predicted by individual algorithms to be 
located in amyloidogenic segments (*); amino acids that 
were predicted by four or more methods to be amyloido-
genic are  boxed . The N-terminal signal sequence is in 
 light gray letters . Generally, the signal sequences which 

bind lipid are largely hydrophobic and are predicted to be 
amyloidogenic. Sequences of the four peptides that have 
been synthesized and experimentally investigated are 
highlighted in  gray . “aa” indicates residue numbers; “seq” 
shows protein amino acid sequence. The number in brack-
ets relates to the serial number of synthesized peptide 
mentioned in the text (Figure is modifi ed from (Bezsonov 
et al.  2013 ))       
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9.4     Nucleation and Aggregation 
Sites in Protein Folding 
and Misfolding 

 Since polypeptide chain can either fold into a 
native structure or misfold and form aggregates 
or amyloid fi brils, these processes compete, and 
the outcome can depend on the rate-limiting tran-
sition states as well as the folding and misfolding 
intermediates. For some proteins such as human 
acylphosphatase, the transition states in folding 
and aggregation are structurally unrelated (Chiti 
et al.  2002 ), suggesting structurally distinct path-
ways for folding and aggregation. In other pro-
teins such as β 2 -microglobulin, partially unfolded 
species that resemble folding intermediates have 
been implicated in amyloid formation (Jahn et al. 
 2006 ), suggesting that the free-energy landscapes 
for folding and misfolding of these proteins may 
be related. Identifi cation of a folding intermedi-
ate as the key precursor of β 2 -microglobulin fi bril 
elongation under physiological conditions pro-
vided direct experimental evidence that the fold-
ing and aggregation landscapes for this protein 
coincide, at least initially, and diverge only at the 
level of a native-like folding intermediate that 
resembles the immunoglobulin fold (Jahn et al. 
 2006 ). Thus, there is no single rule describing the 
relationship between the regions important for 
folding of the native structure and for amyloid 
formation. 

 A crucial rate-limiting event in protein folding 
is the formation of a folding nucleus, which is a 
structured part of the polypeptide chain in the 
high-energy transition state. A detailed analysis 
of the formation and evolution of the folding 
nucleus in amyloidogenic proteins may help 
understand what properties make these proteins 
amyloidogenic. However, experimental data 
delineating both the folding nucleus and the amy-
loidogenic regions in the same protein are often 
lacking. Since the folding nucleus is unstable, it is 
diffi cult to investigate it experimentally. An 
elaborate experimental approach, called Φ-analysis, 
has been developed to indirectly assess the structure 
of the folding nuclei (Matouschek et al.  1989 ). By 
introducing point mutations into a protein 

 structure, it is possible to fi nd residues whose 
mutations have a similar destabilizing effect on 
the transition state and on the native state. The 
Φ-value for a mutation in residue  r  is defi ned as:

 Φ = Δ  r  [ F ( T ) −  F ( U )] / Δ  r  [ F ( N ) −  F ( U )] (9.1)

Here Δ  r  [ F ( N ) −  F ( U )] is the mutation- induced 
change in the free energy difference between 
the native ( N)  and the unfolded ( U)  state, and 
Δ  r  [ F ( T ) −  F ( U )] is the mutation-induced change 
in the free energy difference between the transi-
tion ( T ) state (which is the high-energy rate- 
limiting state in protein unfolding) and the 
unfolded ( U ) state. Most Φ-values vary from 0 to 
1; Φ = 1 indicates that the mutated residue is in 
the folding nucleus. The values of Φ < 0 or Φ > 1 
are rare and indicate non-native contacts in the 
transition state. 

 Since the Φ-analysis is very labor-intensive, 
there is general paucity of experimental data iden-
tifying folding nuclei in amyloidogenic proteins. 
To overcome this problem, we used the available 
data to compare: (i) the experimentally identifi ed 
amyloidogenic regions with the predicted folding 
nuclei (Galzitskaya and Finkelstein  1999 ; 
Garbuzynskiy et al.  2004 ) (for proteins with 
experimentally identifi ed amyloidogenic regions), 
and (ii) the experimentally identifi ed folding 
nuclei with the predicted amyloidogenic regions 
(for proteins with experimentally identifi ed fold-
ing nuclei). The results revealed that most experi-
mentally determined amyloidogenic segments 
(12 regions, Table  9.2 ) overlap the predicted 
folding nuclei (Fig.  9.2 ), and most predicted amy-
loidogenic segments overlap the experimentally 
determined folding nuclei (Galzitskaya and 
Garbuzynskiy  2008 ; Galzitskaya  2009 ,  2011a ). 
On average, Φ-values for residues in amyloido-
genic regions were signifi cantly greater than those 
outside these regions. This implies that the 
 amyloidogenic regions tend to overlap the folding 
nucleus of a native protein structure. Consequently, 
amyloidogenic regions can nucleate either the 
normal protein folding or the misfolding into 
amyloid fi brils, thus playing a key role in the 
competition between these processes.
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  Fig. 9.2    Distribution of the predicted Φ-values (Galzitskaya 
and Finkelstein  1999 ; Garbuzynskiy et al.  2004 ) in protein 
regions that have been demonstrated experimentally to be 
amyloidogenic ( black bars ) or non- amyloidogenic ( gray 

bars ). The regions from seven proteins have been used for 
this analysis: acylphosphatase (1aps), β 2 -microglobulin 
(1im9), gelsolin (1kcq), transthyretin (1bm7), lysozyme 
(193l), myoglobin (1wla), and human prion (1qm0)       

   Table 9.2    Proteins with experimentally determined 3D structures and amyloidogenic regions   

 Protein  PDB ID 

 No. amino acids  Experimentally determined 
amyloidogenic regions  Context  Protein  3D structure used a  

 Acylphosphatase  1aps b   98  98 (1–98)  16–31 (Chiti et al.  2002 )   in vitro  

 87–98 (Chiti et al.  2002 ) 

 β2-microglobulin  1im9  99  99 (1–99)  20–41 (Kozhukh et al.  2002 )   in vivo & in vitro  

 59–71 (Jones et al.  2003 ) 

 83–89 (Ivanova et al.  2004 ) 

 Gelsolin  1kcq  104  104 (158–261)  52–62 (Maury and Nurmiaho-
Lassila  1992 ) 

  in vitro  

 Transthyretin  1bm7  127  114 (10–123)  10–19 (Chamberlain et al.  2000 )   in vivo & in vitro  

 105–115 (Jaroniec et al.  2002 ) 

 Lysozyme  193l  130  129 (1–129)  49–64 (Krebs et al.  2000 )   in vivo & in vitro  

 Myoglobin  1wla  153  153 (1–153)  7–18 (Picotti et al.  2007 )   in vitro  

 101–118 (Fändrich et al.  2003 ) 

 Human prion  1qm0  253  143 (125–228)  169–213 (Lu et al.  2007 )   in vivo & in vitro  

   a Numbers in brackets correspond to those in the PDB entry 
  b Amyloidogenic regions were determined experimentally for human acylphosphatase. Although the 3D structure of this 
protein is unknown, the 3D structure of a highly homologous horse acylphosphatase (95 % sequence identity) has been 
determined (PDB ID 1aps)  
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    Furthermore, our sequence and structural 
analysis suggests that these regions usually con-
tain clusters of large apolar side chains, leading 
to restricted motions of the polypeptide back-
bone and thereby helping nucleate the ordered 
structure. Since protein folding nuclei are deter-
mined based on the Φ-value analysis, while the 
amyloidogenic regions are predicted from the 
analysis of the primary structure, the overlap 
between the two regions observed in our studies 
enables us to predict the nucleation sites for pro-
tein folding on the basis of the primary structure 
analysis (Galzitskaya and Garbuzynskiy  2008 ; 
Galzitskaya  2009 ,  2011a ). 

 As fi rst proposed by Eisenberg’s group, amy-
loid formation can involve domain swapping 
whereby two or more polypeptide chains swap 
identical structural elements to form oligomers 
(Bennett et al.  1994 ,  1995 ). Proteins with a wide 
range of unrelated amino acid sequences and 
structures can oligomerize via the domain swap-
ping (Galzitskaya  2011b ). The residues from 
such swapped regions acquire their stable confor-
mation early in the folding process, suggesting 
that these regions are important for correct pro-
tein folding as well as misfolding. We compiled a 
data base of proteins that contain swapped 
domains as well as the proteins that have been 
crystallized in the monomeric form. The folding 
nuclei were determined based on the monomeric 
protein structures with the experimental error for 
Ф-value of ±0.1, and the amyloidogenic seg-
ments were predicted using the amino acid 
sequence analysis by FoldAmyloid. Together, the 
results showed that, in 11 out of 17 proteins, the 
regions with Ф > 0.5 that are probably responsi-
ble for folding overlapped with the swapped 
regions of the polypeptide chain. Furthermore, in 
11 out of 17 proteins, the swapped regions over-
lapped with the predicted amyloidogenic regions 
(Galzitskaya  2011b ). These results support the 
idea that protein regions undergoing domain 
swapping are often critical for correct protein 
folding as well as in misfolding.  

9.5     Possible Mechanisms 
and Kinetic Models 
of Amyloid Growth 

9.5.1     Linear Nucleation-Elongation 
Model  

 A commonly used method to study amyloid 
 formation is to monitor the time course of amy-
loid growth by tracking the binding of diagnos-
tic dyes Thiofl avin T (ThT) or Congo Red (CR). 
Binding to amyloid-like aggregates increases 
fl uorescence intensity of these dyes, which can 
be used to track the increase in concentration of 
amyloid- like aggregates in real time (Buxbaum 
and Linke  2012 ). Such kinetic experiments 
using fl uorescence can be performed relatively 
easily (e. g. see the Chap.   4     by Singh et al. on 
amylin in this volume) and can help dissect the 
complex multistep pathways of amyloid fi ber 
formation. 

 Amyloid formation can be considered as a 
polymerization reaction. Most quantitative mod-
els for linear polymerization stem from the work 
performed more than half a century ago (Oosawa 
et al.  1959 ) proposing a kinetic model for actin 
polymerization. The experimental data showed 
that actin polymerization is akin to a condensa-
tion reaction that takes place only if the concen-
tration of the initial reactant (actin) exceeds the 
critical threshold. The highly cooperative charac-
ter of the reaction was supported by two observa-
tions: (i) increase in actin concentration resulted 
in a higher reaction rate at early stages; (ii) addi-
tion of a nucleus with a pre-formed aggregate led 
to rapid polymerization of free actin. 

 The linear polymerization (i. e. nucleation – 
consecutive elongation) model was used to 
explain protofi bril formation by hemoglobin in 
sickle-cell anemia (Hofrichter et al.  1974 ). The 
reaction had a high free energy barrier for nucle-
ation. The authors defi ned a nucleus as the least 
thermodynamically stable oligomer that can initi-
ate further growth of protofi brils. 
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 Frieden and Goddette ( 1983 ) developed addi-
tional aspects of the linear model of actin polymer-
ization. They noted that each event of monomer 
attachment to the growing polymer chain has its 
own rate constant, and that the reaction begins with 
the monomer activation, which in the case of actin 
involved Mg 2+ -induced conformational changes. 

 Goldstein and Stryer ( 1986 ) further explored 
the linear model of protein polymerization. They 
defi ned the nucleus as a “primer” of a certain size 
whose formation led to changes in kinetic con-
stants. The goal was to explore numerical meth-
ods for optimal fi tting of various experimental 
data to the model; important improvements in the 
experimental approach have also been proposed.  

9.5.2     Exponential Growth Model 

 Even though the nucleation-consecutive elonga-
tion is a common mechanism of protein polymer-
ization, many experimental data on protein 
polymerization and fi bril formation cannot be 
adequately described by this simple model 
(Foderà et al.  2008 ; Xue et al.  2008 ; Cohen et al. 
 2013 ). To describe these data, an “exponential 

growth” mechanism was proposed. This mecha-
nism refl ects an increased number of sites for 
monomer attachment upon fi bril growth in 
 processes such as fi bril fragmentation, secondary 
nucleation, branching, etc. (Fig.  9.3 ).  

 The fi rst experiments that were aimed to test 
the exponential growth model addressed the 
kinetics of actin polymerization. Reagents such 
as Ca 2+  and Mg 2+  were known to disassemble 
actin fi laments, but the mechanism of their action 
was unclear. Wegner and Savko demonstrated 
that actin fi laments can undergo spontaneous 
fragmentation during polymerization reaction. 
This explained why the nucleation-consecutive 
elongation model failed to adequately fi t the data 
(Wegner and Savko  1982 ). Only when fi bril frag-
mentation was accounted for, the model could 
adequately approximate the kinetic data. 

    Ferrone et al. ( 1980 ) developed a model of 
heterogeneous nucleation to explain the effect of 
“extreme autocatalysis” and the strong 
concentration- dependence observed in aggrega-
tion of sickle-cell hemoglobin. This two-step 
model assumed that, fi rst, regular nucleation 
leads to the formation of a protofi bril; next, addi-
tional protofi brils are formed on its surface. This 

  Fig. 9.3    General scheme for amyloid formation depicting 
linear and exponential growth models.  M  monomer,  O  
oligomer,  O   n*   oligomer of critical size  n * that forms the 
nucleus that is the transient species with high free energy, 
 P  amyloid aggregate,  k   m+   rate constant of monomer 
attachment to the oligomer,  k   m−   rate constant of monomer 

dissociation from the oligomer,  k   n+   rate constant of amy-
loid seed formation (the least stable specie on the reaction 
pathway),  k   exp   rate constant of the exponential growth 
event (bifurcation, fragmentation etc.),  k   p   rate constant of 
monomer attachment to the growing amyloid aggregate,  α  
non-cross-beta aggregate,  β  cross-beta aggregate       
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model included two equations describing homo-
geneous nucleation at the fi rst stage and 
 heterogeneous nucleation at the second stage; the 
system of equations was solved numerically. The 
results suggested that the surface available for 
addition of monomers increases mainly due to 
the increase in the size of the aggregate, as the 
protofi bril surface can provide new nucleation 
sites. The concept of heterogeneous nucleation 
was novel and has importantly contributed to the 
theory of protein aggregation. 

 More recently, Miranker and colleagues 
explored amyloid fi bril formation by amylin, a 
small polypeptide hormone that deposits in type 
2 diabetes (also see    Chap.   4     by Singh et al. in this 
volume). Kinetic studies showed that nucleation 
can proceed via two pathways: protofi bril- 
independent (primary) and protofi bril-dependent 
(secondary). The balance between the two 
depends on the external interface. In the presence 
of such an interface, the primary mechanism is 
dominant; alternatively, the secondary mecha-
nism dominates (Ruschak and Miranker  2007 ). 

 Normally, amyloid fi brils are unbranched lin-
ear polymers. Interestingly, fi bril branching (i. e. 
growth in a tree-like structure) was observed dur-
ing amyloid formation by a small hormone glu-
cagon; in these studies, single fi bril growth was 
monitored in real time by using TIRF microscopy 
(Andersen et al.  2009 ). Clearly, such branching 
can lead to exponential growth kinetics.  

9.5.3     Mixed Models 

 Exponential growth model predicts a longer lag 
phase (nucleation) and/or a faster propagation 
phase (growth) as compared to the nucleation- 
consecutive elongation model. Notably, in the latter 
model, the number of fi bers during linear growth is 
roughly proportional to the number of nuclei 
formed during the lag phase, because fi ber growth 
is energetically more favorable than the nucleation. 
Therefore, after a certain time, the number of fi brils 
becomes constant. In contrast, the number of fi brils 
continues to increase upon fragmentation (which 
commonly occurs in amyloid fi brils), branching 
(which is uncommon in amyloid) and other expo-

nential growth scenarios. This difference is the key 
distinction between the nucleation-consecutive 
elongation and the exponential growth models. 
Since certain experimental data cannot be ade-
quately described by either model alone (Wegner 
and Savko  1982 ), several mixed models for protein 
polymerization have been proposed based on a 
combination of the nucleation at the fi rst stage and 
exponential growth at the second stage. In case of 
amyloid, the most probable mechanism of expo-
nential growth in the second stage is fi bril fragmen-
tation (Serio et al.  2000 ; Xue et al.  2008 ). 

 Radford and colleagues approximated the 
aggregation kinetics of β 2 -microglobulin with a 
modular system of kinetic equations (Xue et al. 
 2008 ). A set of modules describing various steps 
in the aggregation mechanism was selected, and 
various combinations of these modules were used 
to fi t the experimental data obtained by ThT fl uo-
rescence. The best fi t was obtained by using a 
model that included a module for polymerization 
with a consecutive monomer attachment, and 
another module for fragmentation. 

 Morris, Finke and colleagues proposed a simple 
model to describe the process of amyloid aggrega-
tion where exponential growth model incorporated 
a linear relationship between the “ends” of the 
growing aggregate and its mass (Morris et al. 
 2009 ). Although the non-quadratic mass accumu-
lation during early stages of growth can be 
described by this model, the analytical solution 
represents a sigmoid curve. Hence, the model did 
not apply to proteins displaying non- sigmoid reac-
tion kinetics (Giehm and Otzen  2010 ). 

 Knowles and colleagues analytically solved 
equations describing fi ber formation with frag-
mentation (Knowles et al.  2009 ). Their model 
included the nucleation stage and the exponential 
growth stage with fragmentation; the latter was 
essential for the accurate approximation of the 
experimental data. The authors reported that 
nearly all proteins showed linear scaling in the 
logarithmic coordinates of relative concentration 
versus relative lag time, with the constant expo-
nential coeffi cient (i.e. the dependence lnT lag  ~ 
 const  + γln[C], with a constant γ = −0.5). The 
nature of such “scaling” was addressed by Cohen 
et al. ( 2011 ) who expanded the model by adding 
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secondary nucleation, i.e. nucleus formation on 
the surface of growing fi brils, and solved the 
equations analytically. The authors report that γ 
depends on the size  n  of the secondary nucleus, 
γ = −( n  + 1)/2. In the exponential growth model in 
the absence of bifurcation,  n  = 0 and hence, 
γ = −0.5, which is the “scaling” constant (Knowles 
et al.  2009 ). Thus γ refl ects the specifi c mecha-
nism of the amyloid formation and can poten-
tially be used to assess the exponential growth 
mechanism on the basis of the kinetic data. 

 Recently, we reported a detailed analysis of 
various kinetic mechanisms of amyloid growth 

(Dovidchenko et al.  2014 ). A useful parameter in 
this analysis is L rel  which describes the ratio 
between the duration of the lag phase and the 
time required to include all monomers into the 
growing polymer (Fig.  9.4 ). We found that: (i) the 
linear growth corresponds to a very narrow range 
of L rel  ≤ 0.2 and occurs only if L rel  is independent 
of the initial monomer concentration; (ii) these 
limitations do not apply to the exponential 
growth. Further, we showed that L rel  is deter-
mined by the size of the primary nucleus ( n *), 
which is the smallest least stable aggregate on the 
reaction pathway, and of the secondary nucleus 

  Fig. 9.4    Alternative scenarios for amyloid growth and 
the corresponding kinetic parameters. T 2  is the time of 
inclusion of all monomers into the aggregate, L rel  is the 
ratio between the duration of the lag phase and the time of 

inclusion of all monomers into the growing polymer, 
[M ∑ ] is the total monomer concentration,  n * is the size of 
the primary nucleus, and  n  2  is the size of the secondary 
nucleus       
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( n  2 ), which mediates branching on the surface of 
the growing fi bril. We determined the depen-
dence of L rel  on the initial monomer concentra-
tion and used it to calculate  n * and  n  2 . Notably, 
we found that the scaling effect described by 
(Knowles et al.  2009 ) is a general feature of the 
polymerization reaction which refl ects both the 
nucleus size and the specifi c scenario for amyloid 
growth (illustrated in Fig.  9.4 ).  

 To determine the sizes of the primary and sec-
ondary nuclei and the mechanism of amyloid 
growth, we used this model to approximate the 
experimental kinetic data recorded from eight 
proteins: insulin, β2-microglobulin, yeast prion 
Sup35, yeast prion Ure2p, murine WW domain, 
A β 42, TI I27, and apolipoprotein C-II. The 
results are summarized in Table  9.3 .

   Interestingly, in most cases of exponential 
growth, the size of the primary nucleus,  n *, was 
close to 1, suggesting that the protein monomer is 
suffi cient to initiate amyloid formation. 
Alternatively,  n * ≅ 1 may relate to a group of pro-
tein molecules that act as a single entity in solu-
tion; another alternative is that a protein monomer 
initiates fi bril growth from an aggregated state. 
Thus, kinetic data alone are insuffi cient to unam-
biguously determine the fi brillation mechanisms. 
Since molecular mechanisms of amyloid forma-
tion can vary from protein to protein, one ought 
to use additional experimental techniques (e.g. 

various types of microscopy, ultracentrifugation, 
etc.) to carefully rule out alternative scenarios 
before deciding on the precise mechanism of 
fi brillation. An example of a combined kinetic 
and structural approach that utilizes atomic force 
microscopy to determine the detailed mechanism 
of amylin fi brillation is described by Jeremic and 
his team in Chap.   4     of this volume. 

 In sum, substantial progress has been made in 
our understanding of the kinetic aspects of amy-
loid formation. In some cases (such as Aβ42 or 
apolipoprotein C-II, Table  9.3 ) it is possible to 
determine the mechanism of aggregation solely 
on the basis of the kinetic data, while in many 
other cases additional structural information is 
required. By combining computational and 
experimental approaches, one can determine the 
size of the primary nucleus, which is the critical 
state in the fi brillation pathway.   

9.6     Concluding Remarks 

 Despite recent advances in the development and 
improvement of the sequence-based amyloid pre-
diction algorithms, much remains to be done in 
this area. The results of our comparative analysis, 
expanded and averaged in Table  9.4 , show that, 
despite current improvements, individual algo-
rithms have limited accuracy and specifi city.

    Table 9.3    Kinetic parameters of fi ber formation   

    Protein or peptide  L rel  (min–max)  lnT 2  (min–max)   n * ± ε  n *    n  2  ± ε n  2  

  “Exponential” growth with fragmentation/bifurcation  

 Insulin a   5.17–5.56  −0.49–0.08   0.81  ± 0.54  − 0.04  ± 0.13 

 β2-microglobulin b   1.48–3.86  0.79–2.28   1.58  ± 0.58  − 0.06  ± 0.18 

 Yeast Prion Sup35 c   0.29–0.70  4.62–5.52   1.09  ± 0.20  − 0.51  ± 0.45 

 Yeast Prion Ure2p d   0.76–1.02  1.79–2.39   0.96  ± 1.52  − 0.23  ± 1.40 

 Murine WW domain e   1.56–2.10  4.76–6.02   1.21  ± 1.27   0.05  ± 1.02 

  “Exponential” growth with bifurcation  

 Aβ42 f   0.53–0.67  −0.51–1.44   2.64  ± 0.11   1.72  ± 0.05 

 TI I27 g   0.14–0.34  5.93–7.85   2.86  ± 0.30   2.04  ± 0.29 

  “Linear” growth  

 Apolipoprotein C-II h   0.06–0.10  2.77–4.82   4.44  ± 0.38  – 

  Tabulated    parameters include L rel  and lnT 2  described in the text, and the sizes of the nuclei,  n * (primary nucleus) and  n  2  
(secondary nucleus) 
 The parameters were determined by applying our kinetic model to approximate the experimental kinetic data recorded 
by using ThT fl uorescence of eight proteins:  a (Selivanova et al.  2014 ),  b (Xue et al.  2008 ),  c (Collins et al.  2004 ),  d (Zhu 
et al.  2003 ),  e (Ferguson et al.  2003 ),  f (Cohen et al.  2013 ),  g (Wright et al.  2005 ),  h (Binger et al.  2008 )  
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   The recent improvements are illustrated by 
comparing two best-performing individual meth-
ods, FoldAmyloid (which is a relatively old and 
simple approach) and PASTA2 (a new more 
sophisticated approach that performs best among 
the non-meta-servers). As evident from Table  9.4 , 
the accuracy and sensitivity of PASTA2 predic-
tions are clearly better than those of FoldAmyloid. 
At the same time, comparison of the overall pre-
diction quality shows only modest improvement, 
which is due to low sensitivity partly caused by 
overprediction and partly by the coarseness of the 
methods. Even the incorporation of several meth-
ods into the meta-servers MetAmyl and 
AmylPred2 does not drastically improve the 
results. Apparently, the methods that are entirely 
sequence-based are approaching their limit. 

 The problem may perhaps be partially over-
come by using the training sets containing small 
proteins and their domains rather than short pep-
tides forming the amyloid core. However, a 
greater problem is that the existing prediction 
methods do not incorporate 3D structural infor-
mation of the target proteins. Because sequence- 
based prediction of the 3D structure of globular 
proteins is still unattainable, accurate prediction 
of the native environment of the peptides forming 
the amyloid core is also unattainable. The situa-
tion is somewhat analogous to the prediction of 
the antibody-binding protein epitopes on the 
basis of the primary structure: in both instances, 
the properties of interest depend on the 3D pro-
tein structure and hence, cannot be accurately 
predicted based on the amino acid sequence 
alone. We believe that, to qualitatively improve 
the amyloid prediction methods, it is perhaps 
necessary to incorporate additional information 
that critically infl uences proteins’ propensity to 
form amyloid, such as the native 3D structure. In 
fact, a prediction test carried out on natively-
unfolded amyloidogenic proteins and peptides 
(Ahmed and Kajava  2013 ) showed much better 
performance than the analysis of folded proteins 
reported in this chapter. Ultimately, in addition to 
3D structure, other important factors such as the 
protein dynamics and the environmental condi-
tions (e. g. the presence of lipid membranes) 
should also be considered. 

 Signifi cant progress has been achieved in our 
understanding of the link between the normal 
folding and the misfolding of proteins, and in 
elucidating the kinetic features of protein mis-
folding and aggregation. Sophisticated kinetic 
models have been proposed to accurately describe 
the complex pathways of protein fi brillation, 
which include nucleation, branching, fragmenta-
tion, and growth from the surface. However, 
detailed structural understanding of these reac-
tion steps is still lacking for most proteins. Such 
a detailed structural understanding may possibly 
provide a key element to improve the accuracy of 
amyloid prediction. 

 Prediction of protein fi brillation  in vivo  
remains a major challenge, since a wide array of 
environmental factors can infl uence fi ber nucle-
ation and growth in the biological context. For 
example, most amyloid deposits found  in vivo  
contain additional components (such as lipids, 
cell membrane components such as heparan sul-
fate proteoglycans, and apolipoproteins), and the 
complex role of these components in amyloido-
genesis is far from clear. Moreover, some pro-
teins form so-called functional amyloids in living 
cells, wherein the assembly and disassembly of 
fi brils occurs in response to biological clues 
(Chiti and Dobson  2006 ). Understanding the 
mechanisms of fi bril assembly and disassembly 
 in vivo  and  in vitro  is not only of fundamental 
scientifi c importance, but may also help develop 
new therapeutic targets against amyloidosis.     
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