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Firefly Algorithm for Power Economic
Emission Dispatch

Chao-Lung Chiang

Abstract This work proposes a firefly algorithm for the optimal economic emission

dispatch (EED) of the hydrothermal power system (HPS), considering non-smooth

fuel cost and emission level functions. The firefly algorithm (FA) can efficiently

search and actively explore solutions. The multiplier updating (MU) is introduced to

handle the equality and inequality constraints of the HPS, and the ε-constraint
technique is employed to manage the multi-objective problem. To show the advan-

tages of the proposed algorithm, one example addressing the best compromise is

applied to test the EED problem of the HPS. The proposed approach integrates the

FA, the MU, and the ε-constraint technique, revealing that the proposed approach

has the following merits—ease of implementation; applicability to non-smooth

fuel cost and emission level functions; better effectiveness than the previousmethod,

and the requirement for only a small population in applying the optimal EED

problem of the HPS.

Keywords Firefly algorithm • Multiplier updating • Economic emission dispatch

2.1 Introduction

Traditionally, in the short-term scheduling of a fixed water head, the variation of the

net head can be ignored only for relatively large reservoirs, in which case power

generation depends only on the discharge of water [1]. Recently, Basu [2] modeled

the HPS problem as a multi-objective problem and solved it using a weighted

combination. Nevertheless, the weighting method linearly combined the objectives

as a weighted sum. The objective function thus formed may lose significance

because the various multiple noncommensurable factors are incorporated into a

single function. This study employs the ε-constraint technique [3] to handle the

multi-objective problem.
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Firefly algorithm (FA) was developed by Yang [4]. It is a new metaheuristic

nature-inspired algorithm, based on the flashing light of fireflies has been success-

fully applied to solve different engineering problems [5–7]. This chapter throws a

light on how well the firefly algorithm is utilized to solve the EED problems. The

EED problem is very difficult to be solved by direct approach and thus creates

prominent damage to the power system operation and planning in the existing

scenario, so a metaheuristic approach such as FA is generally preferred for optimal

EED solutions.

2.2 Problem Formulation

The following objectives and constraints of the HPS with Ni thermal units and Nh

hydro plants over M time subintervals are considered.

2.2.1 Economic Objective F1

The fuel cost function of each thermal unit considering the valve-point loadings is

realistically expressed as the superposition of a quadratic function and a sinusoidal

function. The total fuel cost can be accurately denoted in terms of real power output

as a non-smooth cost function:

F1 ¼
XM
m¼1

XNi

i¼1

tm ai þ biPmi þ ciP
2
mi þ

��ei sin f i P
min
i � Pmi

� �� ���� � ð2:1Þ

where F1 is the total cost of generation; Pmi is the generation of the ith thermal unit

in the mth subinterval; ai, bi, and ci are coefficients of the cost curve of the ith
generator; ei and fi are fuel cost coefficients of the ith unit with valve-point loadings,
and tm is the generating duration.

2.2.2 Emission Objective F2

Fossil-based generating stations are the primary sources of nitrogen oxides, so the

Environmental Protection Agency has strongly urged them to reduce their emissions.

In this study, the amount of emitted nitrogen oxides is taken as the selected index

from the perspective of environmental conservation. The emission from each
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generator is given as a function of its output, which is the sum of a quadratic and

exponential functions. The emission objective can be mathematically modeled as [1]:

F2 ¼
XM
m¼1

XNi

i¼1

tm αi þ βiPmi þ γiP
2
mi þ ξie

ζiPmið Þ
h i

ð2:2Þ

where αi, βi, γi, ξi, and ζi are coefficients of generator emission characteristics.

2.2.3 System Constraints

The power balance and water availability equality constraints of the HPS are

imposed.

2.2.3.1 Power Balance Equality Constraints

XNi

i¼1

Pmi þ
XNh

h¼1

Pmh � PmD � PLm ¼ 0, m ¼ 1, . . . ,M ð2:3Þ

The power balance constraints (2.3) areM equalities, where Pmh is the generation of

the hth hydro plant in the mth subinterval, and PmD is the total demand in the mth
subinterval. The PLm is the real power loss of the transmission lines in the mth
subinterval, and is given as follows:

PLm ¼
XNiþNh

i¼1

XNiþNh

j¼1

PmiBijPmj ð2:4Þ

2.2.3.2 Water Availability Equality Constraints

XM
m¼1

tm a0h þ a1hPmh þ a2hP
2
mh

� ��Wh ¼ 0, h ¼ 1, . . . ,Nh ð2:5Þ

The water availability constraints (2.5) are Nh equalities; a0h, a1h, and a2h are

characteristic coefficients of the hth hydro unit, and Wh is the water availability

of the hth hydro unit.

2 Firefly Algorithm for Power Economic Emission Dispatch 11



System limits. The inequality constraints of the HPS imposed on unit output are

(2.6) and (2.7), respectively:

Pmin
i � Pi � Pmax

i ð2:6Þ

Pmin
h � Ph � Pmax

h ð2:7Þ

where Pmin
i and Pmax

i are the minimum and maximum limits of the ith thermal

generator, and Pmin
h and Pmax

h are the minimum and maximum bounds of the hth
hydro unit.

2.3 The Proposed Algorithm

2.3.1 The ε-Constraint Technique

The ε-constraint technique [3] is used to generate pareto-optimal solutions for the

multi-objective problem. To proceed, one of the objective functions constitutes the

primary objective function and all other objectives act as constraints. To be more

specific, this procedure is implemented by replacing one objective in the EED

problem with one constraint. Reformulate the problem as follows:

min
Pmi m¼1, ...,M and i¼1, ...,NiþNhð Þ

F j Pmið Þ, j ¼ 1 or 2

Subject to Fk Pmið Þ � εk; k ¼ 1 or 2, and k 6¼ j

XNi

i¼1

Pmi þ
XNh

h¼1

Pmh � PmD � PLm ¼ 0

XM
m¼1

tm a0h þ a1hPmh þ a2hP
2
mh

� ��Wh ¼ 0

Pmin
i � Pi � Pmax

i , i ¼ 1, . . . ,Ni

Pmin
h � Ph � Pmax

h , h ¼ 1, . . . ,Nh

ð2:8Þ

where Fj(Pmi) and Fk(Pmi) are the objective functions to be minimized over the set

of admissible decision vector Pmi. Where εk is the maximum tolerable objective

level. The value of εk is chosen for which the objective constraints in problem (2.8)

are binding at the optimal solution. The level of εk is varied parametrically to

evaluate the impact on the single objective function Fj(Pmi).
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2.3.2 The FA

FA is naturally inspired from flashing light of fireflies. For a given optimization

problem, the objective function of FA is affiliated to the intensity of light. This

assists the swarm of fireflies to relocate to more brighter and attractive places for

efficient optimal solutions. Although, the FA has various resemblances with other

swarm intelligence algorithms, namely Artificial Bee Colony (ABC), Ant Colony,

Cuckoo Search, and Particle Swarm optimization (PSO), but its simplicity both in

conceptualwise and implementation makes it distinct from other algorithms.

According to [4] the characteristic feature of the FA is the fact that it simulates a

parallel independent run strategy, where in every iteration, a swarm of n fireflies has
generated n solutions. Each firefly works almost independently and as a result the

algorithm will converge very quickly with the fireflies aggregating closely to the

optimal solution [5–7].

2.3.3 The MU

Herein, the MU [8] is introduced to handle this constrained optimization problem.

Such a technique can overcome the ill-conditioned property of the objective

function.

Considering the nonlinear problem with general constraints as follows:

min
x

F xð Þ
subject to hk xð Þ ¼ 0, k ¼ 1, . . . ,me

gk xð Þ � 0, k ¼ 1, . . . ,mi

ð2:9Þ

where hk(x) and gk(x) stand for equality and inequality constraints, respectively.

The augmented Lagrange function (ALF) [6] for constrained optimization prob-

lems is defined as:

La x; ν; υð Þ ¼ f xð Þ þ
Xme

k¼1

αk hk xð Þ þ νk½ �2 � ν2k

n o

þ
Xmi

k¼1

βk gk xð Þ þ υkh i2þ � υ2k

n o
ð2:10Þ

where αk and βk are the positive penalty parameters, and the corresponding

Lagrange multipliers ν ¼ ν1; . . . ; νme
ð Þ and υ ¼ υ1; . . . ; υmi

ð Þ � 0 are associated

with equality and inequality constraints, respectively.

The contour of the ALF does not change shape between generations while

constraints are linear. Therefore, the contour of the ALF is simply shifted or biased
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in relation to the original objective function, f(x). Consequently, small penalty

parameters can be used in the MU. However, the shape of contour of La is changed
by penalty parameters while the constraints are nonlinear, demonstrating that large

penalty parameters still create computational difficulties. Adaptive penalty param-

eters of the MU are employed to alleviate the above difficulties. More details of the

MU are found in [8].

2.4 System Simulations

An HPS was employed to demonstrate the effectiveness of the proposed approach,

as determined by the quality of the solutions obtained. This test system includes two

hydro plants and four thermal generators whose characteristics are the same as

those in [2]. The short-term scheduling of this HPS is divided into four subintervals

and involves four subinterval demands. For the purpose of comparing the previous

method [2] with the same situations, the duration of each subinterval is 12 h. The

transmission loss (PLm) in each subinterval was represented using B-coefficient
method. The proposed algorithm was compared with Non-dominated Sorting

Genetic Algorithm-II (NSGA-II) [2], Strength Pareto Evolutionary Algorithm-2

(SPEA2) [2], and Multi-objective Differential Evolution (MODE) [2] in the best

compromise. The computation was implemented on a personal computer

(P5-3.0 GHz) in FORTRAN-90. Setting factors utilized in this case were as follows:

the population size Np was set to 5, and iteration numbers of the outer loop and

inner loop were set to (outer, inner) as (50, 5,000) for the proposed FA-MU. The

implementation of this example can be described as follows:

La x; ν; υð Þ ¼ f xð Þ þ
X4
k¼1

αk hk xð Þ þ νk½ �2 � ν2k

n o

þ
X3
k¼1

βk gk xð Þ þ υkh i2þ � υ2k

n o
ð2:11Þ

SCV ¼
X4
k¼1

jhkj þ
X2
k¼1

maxfgk, 0:0g ð2:12Þ

where

F1 ¼
X4
m¼1

X4
i¼1

tm ai þ biPmi þ ciP
2
mi þ

��ei sin f i P
min
i � Pmi

� �� ���� �
$ð Þ ð2:13Þ

F2 ¼
X4
m¼1

X4
i¼1

tm
�
αi þ βiPmi þ γiP

2
mi þ ξie

ζiPmið Þ� lbð Þ ð2:14Þ
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And subject to

h1 � h4 :
X4
i¼1

Pmi þ
X2
h¼1

Pmh � PmD � PLm ¼ 0 ð2:15Þ

g1, g2 :
X4
m¼1

tm a0h þ a1hPmh þ a2hP
2
mh

� ��Wh � 0 ð2:16Þ

g3 : F2 � Elim � 0 ð2:17Þ

This scheduling of the best compromise includes the prime function (2.11) with

24 variables (P11, . . ., P16, P21, . . ., P26, P31, . . ., P36, P41, . . ., P46), 4 equality

constraints (h1, . . ., h4), and 3 inequality constraints (g1, g2, g3). The g3 stands

the violation of emission criterion for the expected ε2. For comparison, the sum

of the equality and inequality constraint violations defined as SCV ¼
X4

k¼1
hkj j

þ
X2

k¼1
max gk; 0:0f g is used to evaluate the effect of the equality and inequality

constraints on the final solutions. SCV doesn’t take g3 into account for the purpose

of directly using results obtained from the previous algorithms.

Table 2.1 lists the compared results of the best compromise obtained by NSGA-

II [2], SPEA2 [2], MODE [2], and the proposed FA-MU. The cost (F1) obtained by

the proposed approach is satisfactory, in relation to those obtained by NSGA-II [2],

SPEA2 [2], and MODE [2]. The proposed FA-MU completely meets the system

constraints (SCV¼ 0.00). It is superior to NSGA-II [2], SPEA2 [2], and MODE [2]

in the quality of solutions. Results in this case, with SCV are 3.89 and 5.84,

obtained by NSGA-II [2] and SPEA2 [2], respectively. There are infeasible solu-

tions. Consequently, the proposed FA-MU is more effective and efficient than the

previous methods.

Table 2.1 Compared results of the previous methods and FA-MU

Method item NSGA-II [2] SPEA2 [2] MODE [2] FA-MU

h1 0.00 0.00 0.00 0.00

h2 0.00 0.00 0.00 0.00

h3 0.00 0.00 0.00 0.00

h4 0.00 0.00 0.00 0.00

g1 1.90 3.03 �3.18 0.00

g2 1.99 2.81 �3.84 0.00

g3 – – – 0.00

SCV 3.89 5.84 0.00 0.00

F1 ($) 68,332.9417a 68,392.3888a 68,388.1897 67,027.0135

F2 (lb) 25,278.2860 26,005.7492 25,759.3182 25,278.2308

CPU_time (s) – – – 9.47
aInfeasible solution
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2.5 Conclusions

The proposed FA-MU yields optimal values, taking into account different objectives,

and the pareto-optimal set represents the trade-off between the objectives. The

proposed approach integrates the FA, the MU and the ε-constraint technique,

showing that the proposed algorithm has the following merits—(1) ease of imple-

mentation; (2) applicability to non-smooth fuel cost and emission level functions;

(3) better effectiveness than the previous method, and (4) the need for only a small

population. System simulations have shown that the proposed approach has the

advantages mentioned above for solving optimal EED problems of the HPS.
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