Cyclic Generalized Separable (L, G) Codes

Sergey Bezzateev

Abstract A new class of cyclic generalized separable (L, G) codes is constructed.
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1 Introduction

A classical Goppa code [1] is determined by two objects: a Goppa polynomial G (x)
with coefficients from G F(g™) and location set L of codeword positions

L ={a,0,...,a,} SGF(@"),G(o;) #0, Ya; € L.

Definition 1 A g-ary vectora = (a14az...a,) is a codeword of (L, G)-code if and
only if the following equality is satisfied

. 1
Zai =0 mod G(x).
X — U

i=1

Definition 2 Goppa code is called separable if the polynomial G(x) does not have
multiple roots.

In [1] V.D. Goppa proved that the primitive BCH codes are the only sub-
class of Goppa codes that are cyclic with G(x) = (x — y)',y € GF(q™),
L € GF(¢g™) \ {y}. Accordingly, the only one class of separable Goppa codes
with G(x) = (x —y),y € GF(¢™), L € GF(q™) \ {y} defined as cyclic.

In 1973 in [2] and later in [3—11] a subclasses of extended separable Goppa codes
and subclasses of separable Goppa codes with Goppa polynomials of degree 2 and
additional parity check were proposed. It was proved that these codes are cyclic.
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However, the existence among separable Goppa codes any subclass of cyclic codes
remained an open problem ([12] Ch.12, Corollary 9, Research Problem 12.3).

In 2013 in [13] the subclass of cyclic separable Goppa codes with a special choice
of location set L and and Goppa polynomial G(X) of degree 2 was suggested.

L={a;.....00-1,0,} C{GF(g*)\ GF(¢™)} {1},
a, = l,a?m =o' =a,,n=q"%1,
G(x)=(x—-PB)x—B"), BeGF(g*™). B+ B € GF(g™).

G(oj) #0,0; #aj, Vi, je{l,....n}, 1 # .

A generalized Goppa code [14] can be constructed by using the following general-
ization of location set L:

P AN AC)
A A® T R@

where f;/(x) is a formal derivative of f;(x) in GF(q) and

ey

fix)=xt+ai x4+ +aix + aio,ai; € GF(g"),
ged(fi(x), f3(x)) =1, ged(fi(x), G(x)) =1, Vi, j, i # J.

Definition 3 g-ary vector a = (aa;...a,) is a codeword of generalized (L, G)-
code if and only if the following equality is satisfied

Za,- ]}/((;c)) =0 mod G(x). 2)
i=1 !

Generalized Goppa codes have allowed to expand a class of cyclic Goppa codes
with G(x) = (x —y)". Many cyclic (n, k, d) codes can be described as generalized
Goppa codes [15] with

fi(x) = flad'x), f(x)=x"+arx* " +... +ax+ao, a,a; € GF(g"),
ap 7é Ovan = 1’ nl(qﬂ - 1)v ng(ﬁ(x)v f](x)) = lv Vi?j? i 75]

and
G(x) = x'.

For such codes the design bound for minimum distance dg > % and the
corresponding decoding algorithm were determined [16, 17]. However, a subclass
of cyclic generalized separable Goppa codes is still remained limited by polynomial
G(x) = (x —y).y € GF(g").
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2 Two Subclasses of Binary Cyclic Generalized Separable
Goppa Codes

In this paper we will consider a binary case with two variants of separable Goppa
polynomial

G(x) =x"—land G(x) = x(x" — 1). (3)

We will need the following definitions.
Definition 4 For any integers n, n|(2” — 1) and /, 0 <[ < n a cyclotomic coset
m is given by

m; ={12) modn,Vj=0,1,..., 4 —1},

where A; is the smallest integer greater than 0 such that /2 =/ mod n.

Definition 5 The minimal polynomial M;(x) of element o’ € GF(2") is given by

Mi(x) = [] (x—a/). degMi(x) = A;.

JjEm|

Definition 6 The generator polynomial of a cyclic (n, k, d) code C is given by

g)= [[x—a)). D= Jmy andg(x)= [] My, (x). degg(x)= [[ &, =n—k.

jeD j=1 j=1 j=1

where D is the set containing the indices of the zeros of the generator polynomial
g(x). The size of set D is equal ton — k.

For some D let’s consider a binary linear (1, k, 7) code C; with the length 7,
dimension x, minimum distance t and parity-check matrix Hy,

.1/'1 /34'1
G(B1) ~°" G(By)

ﬂ./z J2
H, — | @0 Gy | A€ GF@O\{0.1), GF) N GFR™) = {0, 1},
- I"N=4{Ljn.... ik, NUD ={0,1,...,n—1}.

Ji Ji
ﬂk Uk

G(B) " G(By

“

Letb = (by by ... by byyy ... by) withh; = 1,Vi =1,...tandb; = 0,Vi =
T+ 1,...,7n be a codeword of this code. Then for this vector b and parity-check
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matrix H; we obtain

Bl B

b-H” =0and bj—— = L _=0,Vli=1,...,k. (5)
; G(:) ; G(:)

As in [17] we will call C; as non-zero- locator code for cyclic code C with the set

D ifforanym; C D exists j : j € m;, Z G(ﬁ ) # 0. We associate with codeword

b of this non-zero-locator code C, the followmg locator polynomial

JO) =& =B)x =P (x=po), B; € GF2"), j=1,....7,
filx) = (x —a'B)(x —a'fo) - (x —&' fr), € € GF(2™), " =1, (6)
ged(fi(x), fi(x) =1, Vi #j, i.j=1....n

Theorem 7 Generalized (L, G) code with Goppa polynomial G(x) (3) and locator
set L (1) defined by non-zero-locator code Cy, (4),(5) and by associated locator
polynomial f(x) (6) is a cyclic code C with the set D of indices of zeroes of
generator polynomial.

Proof Parity-check matrix Hg for this code is:

T
Z G(ﬁl Z <, ' '
= i=l ' oy
L

0o Zc(ﬁ)"' Z: e e
¢ . I BT (7

’ Ls Ls

0 T ﬂlég o T ﬂl(g [0 2RI 0 A8

@ Zl Gy o Zl G
L 1= 1= -
where {£1,¢,,...,4s} C D.

o

Note 8 By Definition 6 dimension of this code is k = n — || D||, where | D] is a
size of the set D.

For the case G(x) = x(x" — 1) we will obtain a similar theorem.

Theorem 9 Generalized (L, G) code with Goppa polynomial GA(x) (3) and locator
set L (1) defined by non-zero-code Cy. (4),(5) is a cyclic code C with the set D C
D U m_, of indices of zeroes of generator polynomial.
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Proof Parity-check matrix H g for this code is:

T T =
-1y 1 —1y 1
o ; GGy % l.; G(B)
T 0 T 4

91 Bi 4 B
G X Gy % X G

6 T
P 2 Bi l Bi =
Hg =1 oy Zl Gy M Zl G
2 =

Hg,if —1eDor0O€N,

a7l e

[1 n ],1f—l¢Dand0¢N.
Hg

®)
8]

Theorem 10 From (2), (3) and (6) we obtain the following estimation for minimal
distance of binary cyclic generalized separable Goppa code:

2 1
de > n for G(x) = x" —1
T
and
2 3 o
de > nt for G(x) = x(x" —1).

T

3 Trace Non-zero-Locator Code

As example of non-zero-locator code let’s consider a binary linear code with length
n , parity-check matrix

ﬁfl ﬁzjl /3711'1
el N G o .
ﬁ(jf;) Gﬁ(gz) ﬁ(,gz”) B anmve élement in GF(2%),
_ | ©® Gy G tr(p/) =0,vi=1,... k,
H; = , .. . )
N:{jlijssjk}v
Bk Bk Bk NuUD={0,1,...,n—1}.

GB) G(B?) " G

and codeword

b= (biby...by).wi(b)=pandby =by=bhy =...=by1=1.
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Now we can rewrite matrix Hg (7) in the following form

Gop (B ¢ i)
C(l tr (G(gﬁ)) ...O{nltr (G(gﬁ) afl aﬁ]
afztr (ﬂ(—;)) coabtr (ﬂ(—;)) otf2 ol
Hg = =
: " : oL (10)
Gy (B9 typ (£ L
Oll tr Tﬁ) B¢ s tr Tﬁ)) n
L .
where zr(Gﬂ(ﬂ)) £0i=1,....8 {{b,... Ls)CD.

For such trace non-zero-locator code we have locator polynomial f(x) from (6):
) = (x=B)x—p>) - (x—p"") = 21(x), 21(x) € Fa[x], deg 2i(x) = p,

£2(x) is a minimal polynomial of element 8 € GF(2").
From Theorem 10 we obtain the following estimation for minimal distance of
binary cyclic generalized separable Goppa code with trace non-zero-locator code:

2 1
do > 2 for Gx) = x" — 1
and
2 3 N
dg > nt for G(x) = x(x" —1).
4 Examples
1.

n=21,G(x) =x(x? —1),a € GF(25),a* = 1,8 € GF(2),
) =x"+x+x+x+1, fi(x) =" x" +a%x® +a*x* +a'x + 1,

x041 o x4 4504020
L= {x7+x6+x4+x+1 ol xTHabx0+atxtax+17 " aldxT+alB3x0417x44+020x 41 }’
L) 1 i
tr (é(?) 1.i=0.3.46.712.14,21,
tr (%) —0,i=1258.91011,13,15,16,17.18.19,20.

Therefore from Theorem 9 we have (21,6,7) cyclic code with generator
polynomial g(x) = m;(x)msms(x). From Theorem 10 we obtain the following
estimation for minimum distance for this generalized separable (L, G) code:

2 3 45
dg > n = — >6andwehavedg =d = 7.

"
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5

n=21,G(x) =x 1,0 € GF(2%,a* = 1,8 € GF(2"),
f(x):x7+x6+x4+x2+l’ﬁ(x):a7ix7+a6ix6+a4ix4+a2ix2+1,

L= X6 o7 x6 w64 g

P {-x7+xé+x4+x2+1 T T e T el T e )
f;‘) — 1=

tr(G(?) 1,i=2,3,56,11,13,20,

i (Gfm) =0,i=0,1,4,7,8,910,12,14,15,16,17,18, 19.

From Eq.(10) and Theorem 7 we have (21,6,7) cyclic code with generator
polynomial g(x) = m;(x)m3(x)ms(x). From Theorem 10 we obtain the
following estimation for minimum distance for this generalized separable (L, G)
code:

2 1 43
dg > " :7>6andwehavedé:d:7.

n

Conclusion

The new subclasses of cyclic generalized separable Goppa codes with Goppa
polynomials x” — 1 and x(x" — 1) are proposed. The parameters and examples
of the codes from these subclasses are shown.
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