Cyclic Generalized Separable (L, G) Codes

Sergey Bezzateev

Abstract A new class of cyclic generalized separable (L, G) codes is constructed.

Keywords Generalized (L,G) codes • Goppa codes • Cyclic codes

1 Introduction

A classical Goppa code [1] is determined by two objects: a Goppa polynomial G(x) with coefficients from $GF(q^m)$ and location set L of codeword positions

$$L = {\alpha_1, \alpha_2, \dots, \alpha_n} \subseteq GF(q^m), G(\alpha_i) \neq 0, \ \forall \alpha_i \in L.$$

Definition 1 A q-ary vector $\mathbf{a} = (a_1 a_2 \dots a_n)$ is a codeword of (L, G)-code if and only if the following equality is satisfied

$$\sum_{i=1}^{n} a_i \frac{1}{x - \alpha_i} \equiv 0 \mod G(x).$$

Definition 2 Goppa code is called separable if the polynomial G(x) does not have multiple roots.

In [1] V.D. Goppa proved that the primitive BCH codes are the only subclass of Goppa codes that are cyclic with $G(x) = (x - \gamma)^t$, $\gamma \in GF(q^m)$, $L \subseteq GF(q^m) \setminus \{\gamma\}$. Accordingly, the only one class of separable Goppa codes with $G(x) = (x - \gamma)$, $\gamma \in GF(q^m)$, $L \subseteq GF(q^m) \setminus \{\gamma\}$ defined as cyclic.

In 1973 in [2] and later in [3–11] a subclasses of extended separable Goppa codes and subclasses of separable Goppa codes with Goppa polynomials of degree 2 and additional parity check were proposed. It was proved that these codes are cyclic.

S. Bezzateev (⊠)

However, the existence among separable Goppa codes any subclass of cyclic codes remained an open problem ([12] Ch.12, Corollary 9, Research Problem 12.3).

In 2013 in [13] the subclass of cyclic separable Goppa codes with a special choice of location set L and and Goppa polynomial G(X) of degree 2 was suggested.

$$L = \{\alpha_{1}, \alpha_{2}, \dots, \alpha_{n-1}, \alpha_{n}\} \subset \{GF(q^{2m}) \setminus GF(q^{m})\} \bigcup \{1\},\$$

$$\alpha_{n} = 1, \alpha_{i}^{q^{m}} = \alpha_{i}^{-1} = \alpha_{n-i}, n = q^{m} \pm 1,\$$

$$G(x) = (x - \beta)(x - \beta^{-1}), \ \beta \in GF(q^{2m}), \ \beta + \beta^{-1} \in GF(q^{m}),\$$

$$G(\alpha_{i}) \neq 0, \alpha_{i} \neq \alpha_{i}, \ \forall i, j \in \{1, \dots, n\}, \ i \neq j.$$

A generalized Goppa code [14] can be constructed by using the following generalization of location set *L*:

$$L = \left\{ \frac{f_1'(x)}{f_1(x)}, \frac{f_2'(x)}{f_2(x)}, \dots, \frac{f_n'(x)}{f_n(x)} \right\},\tag{1}$$

where $f'_i(x)$ is a formal derivative of $f_i(x)$ in GF(q) and

$$f_i(x) = x^{\ell} + a_{i,\ell-1}x^{\ell-1} + \dots + a_{i,1}x + a_{i,0}, a_{i,j} \in GF(q^{\mu}),$$

 $gcd(f_i(x), f_j(x)) = 1, gcd(f_i(x), G(x)) = 1, \forall i, j, i \neq j.$

Definition 3 q-ary vector $\mathbf{a} = (a_1 a_2 \dots a_n)$ is a codeword of generalized (L, G)-code if and only if the following equality is satisfied

$$\sum_{i=1}^{n} a_i \frac{f_i'(x)}{f_i(x)} \equiv 0 \mod G(x).$$
 (2)

Generalized Goppa codes have allowed to expand a class of cyclic Goppa codes with $G(x) = (x - \gamma)^t$. Many cyclic (n, k, d) codes can be described as generalized Goppa codes [15] with

$$f_i(x) = f(\alpha^i x), \ f(x) = x^{\ell} + a_{\ell-1} x^{\ell-1} + \dots + a_1 x + a_0, \ \alpha, a_j \in GF(q^{\mu}),$$

 $a_0 \neq 0, \alpha^n = 1, \ n | (q^{\mu} - 1), \ \gcd(f_i(x), f_j(x)) = 1, \ \forall i, j, i \neq j$

and

$$G(x) = x^t$$
.

For such codes the design bound for minimum distance $d_G \ge \frac{t+1}{\ell}$ and the corresponding decoding algorithm were determined [16, 17]. However, a subclass of cyclic generalized separable Goppa codes is still remained limited by polynomial $G(x) = (x - \gamma), \gamma \in GF(q^{\mu})$.

2 Two Subclasses of Binary Cyclic Generalized Separable Goppa Codes

In this paper we will consider a binary case with two variants of separable Goppa polynomial

$$G(x) = x^n - 1$$
 and $\hat{G}(x) = x(x^n - 1)$. (3)

We will need the following definitions.

Definition 4 For any integers n, $n|(2^m-1)$ and l, $0 \le l < n$ a cyclotomic coset m_l is given by

$$m_l = \{l2^j \mod n, \forall j = 0, 1, \dots, \lambda_l - 1\},\$$

where λ_l is the smallest integer greater than 0 such that $l2^{\lambda_l} \equiv l \mod n$.

Definition 5 The minimal polynomial $M_l(x)$ of element $\alpha^l \in GF(2^m)$ is given by

$$M_l(x) = \prod_{j \in m_l} (x - \alpha^j), \operatorname{deg} M_l(x) = \lambda_l.$$

Definition 6 The generator polynomial of a cyclic (n, k, d) code C is given by

$$g(x) = \prod_{j \in D} (x - \alpha^j), \ D = \bigcup_{j=1}^{\nu} m_{l_j} \text{ and } g(x) = \prod_{j=1}^{\nu} M_{l_j}(x), \ \deg g(x) = \prod_{j=1} \lambda_{l_j} = n - k,$$

where D is the set containing the indices of the zeros of the generator polynomial g(x). The size of set D is equal to n - k.

For some D let's consider a binary linear (η, κ, τ) code C_L with the length η , dimension κ , minimum distance τ and parity-check matrix H_L

$$H_{L} = \begin{bmatrix} \frac{\beta_{1}^{j_{1}}}{G(\beta_{1})} \cdots \frac{\beta_{\eta}^{j_{1}}}{G(\beta_{\eta})} \\ \frac{\beta_{1}^{j_{2}}}{G(\beta_{1})} \cdots \frac{\beta_{\eta}^{j_{2}}}{G(\beta_{\eta})} \\ \vdots & \ddots & \vdots \\ \frac{\beta_{1}^{j_{k}}}{G(\beta_{1})} \cdots \frac{\beta_{\eta}^{j_{k}}}{G(\beta_{\eta})} \end{bmatrix}, \beta_{i} \in GF(2^{\mu}) \setminus \{0, 1\}, \ GF(2^{\mu}) \cap GF(2^{m}) = \{0, 1\}, \\ N = \{j_{1}, j_{2}, \dots, j_{k}\}, N \cup D = \{0, 1, \dots, n-1\}.$$

$$(4)$$

Let $\mathbf{b} = (b_1 \ b_2 \dots b_{\tau} \ b_{\tau+1} \dots b_{\eta})$ with $b_i = 1, \forall i = 1, \dots \tau$ and $b_i = 0, \forall i = \tau + 1, \dots, \eta$ be a codeword of this code. Then for this vector \mathbf{b} and parity-check

matrix H_L we obtain

$$\mathbf{b} \cdot H^T = 0 \text{ and } \sum_{i=1}^{\eta} b_i \frac{\beta_i^{j_i}}{G(\beta_i)} = \sum_{i=1}^{\tau} \frac{\beta_i^{j_i}}{G(\beta_i)} = 0, \forall l = 1, \dots, k.$$
 (5)

As in [17] we will call C_L as non-zero-locator code for cyclic code C with the set D if for any $m_i \subset D$ exists $j: j \in m_i$, $\sum_{i=1}^{\tau} \frac{\beta_i^j}{G(\beta_i)} \neq 0$. We associate with codeword \mathbf{b} of this non-zero-locator code C_L the following locator polynomial

$$f(x) = (x - \beta_1)(x - \beta_2) \cdots (x - \beta_{\tau}), \ \beta_j \in GF(2^{\mu}), \ j = 1, \dots, \tau,$$

$$f_i(x) = (x - \alpha^i \beta_1)(x - \alpha^i \beta_2) \cdots (x - \alpha^i \beta_{\tau}), \ \alpha \in GF(2^m), \ \alpha^n = 1,$$

$$\gcd(f_i(x), f_j(x)) = 1, \ \forall i \neq j, \ i, j = 1, \dots, n.$$
(6)

Theorem 7 Generalized (L, G) code with Goppa polynomial G(x) (3) and locator set L (1) defined by non-zero-locator code C_L (4),(5) and by associated locator polynomial f(x) (6) is a cyclic code C with the set D of indices of zeroes of generator polynomial.

Proof Parity-check matrix H_G for this code is:

$$H_{G} = \begin{bmatrix} \alpha_{1}^{\ell_{1}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{1}}}{G(\beta_{i})} \dots \alpha_{n}^{\ell_{1}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{1}}}{G(\beta_{i})} \\ \alpha_{1}^{\ell_{2}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{2}}}{G(\beta_{i})} \dots \alpha_{n}^{\ell_{2}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{2}}}{G(\beta_{i})} \\ \vdots & \ddots & \vdots \\ \alpha_{1}^{\ell_{\delta}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{\delta}}}{G(\beta_{i})} \dots \alpha_{n}^{\ell_{\delta}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{\delta}}}{G(\beta_{i})} \end{bmatrix} = \begin{bmatrix} \alpha_{1}^{\ell_{1}} \dots \alpha_{n}^{\ell_{1}} \\ \alpha_{1}^{\ell_{2}} \dots \alpha_{n}^{\ell_{1}} \\ \vdots & \ddots & \vdots \\ \alpha_{1}^{\ell_{\delta}} \dots & \alpha_{n}^{\ell_{\delta}} \end{bmatrix},$$

$$\text{where } \{\ell_{1}, \ell_{2}, \dots, \ell_{\delta}\} \subset D.$$

$$(7)$$

Note 8 By Definition 6 dimension of this code is k = n - ||D||, where ||D|| is a size of the set D.

For the case $\hat{G}(x) = x(x^n - 1)$ we will obtain a similar theorem.

Theorem 9 Generalized (L, \hat{G}) code with Goppa polynomial $\hat{G}(x)$ (3) and locator set L (1) defined by non-zero-code C_L (4),(5) is a cyclic code \hat{C} with the set $\hat{D} \subseteq D \cup m_{-1}$ of indices of zeroes of generator polynomial.

Proof Parity-check matrix $H_{\hat{G}}$ for this code is:

$$H_{\hat{G}} = \begin{bmatrix} \alpha_{1}^{-1} \sum_{i=1}^{\tau} \frac{1}{G(\beta_{i})} \dots \alpha_{n}^{-1} \sum_{i=1}^{\tau} \frac{1}{G(\beta_{i})} \\ \alpha_{1}^{\ell_{1}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{1}}}{G(\beta_{i})} \dots \alpha_{n}^{\ell_{1}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{1}}}{G(\beta_{i})} \\ \alpha_{1}^{\ell_{2}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{2}}}{G(\beta_{i})} \dots \alpha_{n}^{\ell_{2}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{2}}}{G(\beta_{i})} \\ \vdots & \ddots & \vdots \\ \alpha_{1}^{\ell_{\delta}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{\delta}}}{G(\beta_{i})} \dots \alpha_{n}^{\ell_{\delta}} \sum_{i=1}^{\tau} \frac{\beta_{i}^{\ell_{\delta}}}{G(\beta_{i})} \end{bmatrix} = \begin{cases} H_{G}, & \text{if } -1 \in D \text{ or } 0 \in N, \\ \left[\alpha_{1}^{-1} \dots \alpha_{n}^{-1} \right], & \text{if } -1 \notin D \text{ and } 0 \notin N. \end{cases}$$

$$\begin{bmatrix} \alpha_{1}^{-1} \dots \alpha_{n}^{-1} \\ H_{G} \end{bmatrix}, & \text{if } -1 \notin D \text{ and } 0 \notin N. \end{cases}$$

$$(8)$$

Theorem 10 From (2), (3) and (6) we obtain the following estimation for minimal distance of binary cyclic generalized separable Goppa code:

$$d_G \ge \frac{2n+1}{\tau}$$
 for $G(x) = x^n - 1$

and

$$d_{\hat{G}} \ge \frac{2n+3}{\tau} \text{ for } \hat{G}(x) = x(x^n-1).$$

3 Trace Non-zero-Locator Code

As example of non-zero-locator code let's consider a binary linear code with length η , parity-check matrix

$$H_{L} = \begin{bmatrix} \frac{\beta^{j_{1}}}{G(\beta)} & \frac{\beta^{2j_{1}}}{G(\beta^{2})} & \cdots & \frac{\beta^{nj_{1}}}{G(\beta^{n})} \\ \frac{\beta^{j_{2}}}{G(\beta)} & \frac{\beta^{2j_{2}}}{G(\beta^{2})} & \cdots & \frac{\beta^{nj_{2}}}{G(\beta^{n})} \\ \vdots & \ddots & \vdots \\ \frac{\beta^{j_{k}}}{G(\beta)} & \frac{\beta^{2j_{k}}}{G(\beta^{2})} & \cdots & \frac{\beta^{nj_{k}}}{G(\beta^{n})} \end{bmatrix}, \quad \beta - \text{ primitive element in } GF(2^{\mu}), \\ tr(\beta^{j_{i}}) = 0, \forall i = 1, \dots, k, \\ N = \{j_{1}, j_{2}, \dots, j_{k}\}, \\ N \cup D = \{0, 1, \dots, n-1\}. \end{cases}$$
(9)

and codeword

$$\mathbf{b} = (b_1 b_2 \dots b_{\eta}), wt(\mathbf{b}) = \mu \text{ and } b_1 = b_2 = b_{2^2} = \dots = b_{2^{\mu-1}} = 1.$$

Now we can rewrite matrix H_G (7) in the following form

$$H_{G} = \begin{bmatrix} \alpha_{1}^{\ell_{1}} tr\left(\frac{\beta^{\ell_{1}}}{G(\beta)}\right) \dots \alpha_{n}^{\ell_{1}} tr\left(\frac{\beta^{\ell_{1}}}{G(\beta)}\right) \\ \alpha_{1}^{\ell_{2}} tr\left(\frac{\beta^{\ell_{2}}}{G(\beta)}\right) \dots \alpha_{n}^{\ell_{2}} tr\left(\frac{\beta^{\ell_{2}}}{G(\beta)}\right) \\ \vdots & \ddots & \vdots \\ \alpha_{1}^{\ell_{\delta}} tr\left(\frac{\beta^{\ell_{\delta}}}{G(\beta)}\right) \dots \alpha_{n}^{\ell_{\delta}} tr\left(\frac{\beta^{\ell_{\delta}}}{G(\beta)}\right) \end{bmatrix} = \begin{bmatrix} \alpha_{1}^{\ell_{1}} \dots \alpha_{n}^{\ell_{1}} \\ \alpha_{1}^{\ell_{2}} \dots \alpha_{n}^{\ell_{2}} \\ \vdots & \ddots & \vdots \\ \alpha_{1}^{\ell_{\delta}} \dots & \alpha_{n}^{\ell_{\delta}} \end{bmatrix},$$
where
$$tr\left(\frac{\beta^{\ell_{i}}}{G(\beta)}\right) \neq 0, i = 1, \dots, \delta, \quad \{\ell_{1}, \ell_{2}, \dots, \ell_{\delta}\} \subseteq D.$$

$$(10)$$

For such trace non-zero-locator code we have locator polynomial f(x) from (6):

$$f(x) = (x - \beta)(x - \beta^2) \cdots (x - \beta^{2^{\mu - 1}}) = \Omega_1(x), \ \Omega_1(x) \in \mathbb{F}_2[x], \ \deg \Omega_1(x) = \mu,$$

 $\Omega_1(x)$ is a minimal polynomial of element $\beta \in GF(2^{\mu})$.

From Theorem 10 we obtain the following estimation for minimal distance of binary cyclic generalized separable Goppa code with trace non-zero-locator code:

$$d_G \ge \frac{2n+1}{\mu}$$
 for $G(x) = x^n - 1$

and

$$d_{\hat{G}} \ge \frac{2n+3}{\mu}$$
 for $\hat{G}(x) = x(x^n-1)$.

4 Examples

1.

$$\begin{array}{l} n=21, \hat{G}(x)=x(x^{21}-1), \alpha\in GF(2^6), \alpha^{21}=1, \beta\in GF(2^7),\\ f(x)=x^7+x^6+x^4+x+1, f_i(x)=\alpha^{7i}x^7+\alpha^{6i}x^6+\alpha^{4i}x^4+\alpha^ix+1,\\ L=\{\frac{x^6+1}{x^7+x^6+x^4+x+1}, \frac{\alpha^7x^7+\alpha^6x^6+\alpha^4x^4+\alpha x+1}{\alpha^7x^7+\alpha^6x^6+\alpha^4x^4+\alpha x+1}, \ldots, \frac{\alpha^{14}x^6+\alpha^{20}}{\alpha^{14}x^7+\alpha^{15}x^6+\alpha^{17}x^4+\alpha^{20}x+1}\},\\ tr\left(\frac{\beta^i}{\hat{G}(\beta)}\right)=1, \ i=0,3,4,6,7,12,14,21,\\ tr\left(\frac{\beta^i}{\hat{G}(\beta)}\right)=0, \ i=1,2,5,8,9,10,11,13,15,16,17,18,19,20. \end{array}$$

Therefore from Theorem 9 we have (21, 6, 7) cyclic code with generator polynomial $g(x) = m_1(x)m_3m_5(x)$. From Theorem 10 we obtain the following estimation for minimum distance for this generalized separable (L, \hat{G}) code:

$$d_G \ge \frac{2n+3}{\mu} = \frac{45}{7} > 6$$
 and we have $d_G = d = 7$.

2.

$$\begin{split} n &= 21, \hat{G}(x) = x^{21} - 1, \alpha \in GF(2^6), \alpha^{21} = 1, \beta \in GF(2^7), \\ f(x) &= x^7 + x^6 + x^4 + x^2 + 1, f_i(x) = \alpha^{7i} x^7 + \alpha^{6i} x^6 + \alpha^{4i} x^4 + \alpha^{2i} x^2 + 1, \\ L &= \{ \frac{x^6}{x^7 + x^6 + x^4 + x^2 + 1}, \frac{\alpha^7 x^6}{\alpha^7 x^7 + \alpha^6 x^6 + \alpha^4 x^4 + \alpha^2 x^2 + 1}, \dots, \frac{\alpha^{14} x^6 + \alpha^{20}}{\alpha^{14} x^7 + \alpha^{15} x^6 + \alpha^{17} x^4 + \alpha^{19} x^2 + 1} \}, \\ tr\left(\frac{\beta^i}{\hat{G}(\beta)} \right) &= 1, \ i = 2, 3, 5, 6, 11, 13, 20, \\ tr\left(\frac{\beta^i}{\hat{G}(\beta)} \right) &= 0, \ i = 0, 1, 4, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19. \end{split}$$

From Eq. (10) and Theorem 7 we have (21,6,7) cyclic code with generator polynomial $g(x) = m_1(x)m_3(x)m_5(x)$. From Theorem 10 we obtain the following estimation for minimum distance for this generalized separable (L,G) code:

$$d_{\hat{G}} \ge \frac{2n+1}{\mu} = \frac{43}{7} > 6$$
 and we have $d_{\hat{G}} = d = 7$.

5 Conclusion

The new subclasses of cyclic generalized separable Goppa codes with Goppa polynomials $x^n - 1$ and $x(x^n - 1)$ are proposed. The parameters and examples of the codes from these subclasses are shown.

References

- 1. Goppa, V.D.: A new class of linear error-correcting codes. Probl. Inf. Trans. 6(3), 24–30 (1970)
- Berlecamp, E.R., Moreno, O.: Extended double-error-gorrecting binary Goppa codes are cyclic. IEEE Trans. Inf. Theory 19(6), 817–818 (1973)
- Tzeng, K.K., Zimmermann, K.: On extending Goppa codes to cyclic codes. IEEE Trans. Inf. Theory 21(6), 712–716 (1975)
- Tzeng, K.K., Yu, C.Y.: Characterization theorems for extending Goppa codes to cyclic codes. IEEE Trans. Inf. Theory 25(2), 246–250 (1979)
- 5. Moreno, O.: Symmetries of binary Goppa codes. IEEE Trans. Inf. Theory **25**(5), 609–612 (1979)
- 6. Vishnevetskii, A.L.: Cyclicity of extended Goppa codes. Probl. Pered. Inf. 18(3), 14–18 (1982)
- 7. Stichenoth, H.: Wich extended Goppa codes are cyclic? J. Comb. Theory A 51, 205–220 (1989)
- 8. B erger, T.P.: Goppa and related codes invariant under a prescribed permutation. IEEE Trans. Inf. Theory **46**(7), 2628–2633 (2000)
- Berger, T.P.: On the cyclicity of Goppa codes, parity-check subcodes of Goppa codes, and extended Goppa codes. Finite Fields Appl. 6, 255–281 (2000)
- 10. Berger, T.P.: Quasi-cyclic Goppa codes. In: Proceedings of ISIT2000, Sorrente, p. 195 (2000)
- Berger, T.P.: New classes of cyclic extended Goppa codes. IEEE Trans. Inf. Theory 45(4), 1264–1266 (1999)

12. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

- 13. Bezzateev, S., Shekhunova, N.: Subclass of cyclic Goppa codes. IEEE Trans. Inf. Theory 59(11), 7379–7385 (2013)
- 14. Shekhunova, N.A., Mironchikov, E.T.: Cyclic (L,g)-codes. Probl. Pered. Inf. 17(2), 3–9 (1981)
- Bezzateev, S.V., Shekhunova, N.A.: One generalization of Goppa codes. In: Proceedings of ISIT-97, Ulm, p. 299 (1997)
- 16. Zeh, A., Wachter-Zeh, A., Bezzateev, S.: Decoding cyclic codes up to a new bound on the minimum distance. IEEE Trans. Inf. Theory **58**(6), 3951–3960 (2012)
- 17. Zeh, A., Bezzateev, S.: A new bound on the minimum distance of cyclic codes using small-minimum-distance cyclic codes. Designs Codes Cryptogr. **71**, 229–246 (2014)