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Abstract Power decoding, or “decoding by virtual interleaving”, of Reed–
Solomon codes is a method for unique decoding beyond half the minimum distance.
We give a new variant of the Power decoding scheme, building upon the key
equation of Gao. We show various interesting properties such as behavioural
equivalence to the classical scheme using syndromes, as well as a new bound on the
failure probability when the powering degree is 3.
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1 Introduction

Power decoding was originally developed by Schmidt, Sidorenko and Bossert for
low-rate Reed–Solomon codes (RS) [5], and is usually capable of decoding almost
as many errors as the Sudan decoder [8] though it is a unique decoder. If an answer
is found, this is always the closest codeword, but in some cases the method will
fail; in particular, this happens if two codewords are equally close to the received.
With random errors this seems to happen exceedingly rarely, though a bound for the
probability has only been shown for the simplest case of powering degree 2 [5, 10].

The algorithm rests on the surprising fact that a received word coming from a
low-rate RS code can be “powered” to give received words of higher-rate RS codes
having the same error positions. For each of these received words, one constructs a
classical key equation by calculating the corresponding syndromes and solves them
simultaneously for the same error locator polynomial.

Gao gave a variant of unique decoding up to half the minimum distance [1]:
in essence, his algorithm uses a different key equation and with this finds the
information polynomial directly. We here show how to easily derive a variant of
Power decoding for Generalised RS (GRS) codes, Power Gao, where we obtain
multiple of Gao’s type of key equation, and we solve these simultaneously.
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We then show that Power Gao is equivalent to Power syndromes in the sense
that they will either both fail or both succeed for a given received word. Power Gao
has some “practical” advantages, though: it extends Power decoding to the case of
using 0 as an evaluation point (which Power syndromes does not support); and the
information is obtained directly when solving the key equations, so finding roots of
the error locator and Forney’s formula is not necessary.

The main theoretical advantage is that Power Gao seems easier to analyse: in
particular, we show two new properties of Power decoding: (1) that whether Power
decoding fails or not depends only on the error and not on the sent codeword; and
(2) a new bound on the failure probability when the powering degree is 3.

We briefly sketched Power Gao already in [2], but its behaviour was not well
analysed and its relation to Power syndromes not examined. In Sect. 2 we derive
the powered Gao key equations, and in Sect. 3 we describe the complete algorithm
and discuss computational complexity issues. In Sect. 4 we show the behavioural
equivalence to Power syndromes as well as the new properties on Power decoding.
Section 5 describes an explicit family of errors for which Power decoding will fail.

2 The Key Equations

Consider some finite field F. The Œn; k; d � Generalised Reed-Solomon (GRS) code
is the set

C D ˚�
ˇ1f .˛1/; : : : ; ˇnf .˛n/

� j f 2 FŒx� ^ degf < k
�

where ˛1; : : : ; ˛n 2 F are distinct, and the ˇ1; : : : ; ˇn 2 F are non-zero (not
necessarily distinct). The ˛i are called evaluation points and the ˇi column
multipliers. C has minimum distance d D n � k C 1 and the code is therefore
MDS.

Consider now that some c D .c1; : : : ; cn/ was sent, resulting from evaluating
some f 2 FŒx�, and that r D .ˇ1r1; : : : ; ˇnrn/ D c C .ˇ1e1; : : : ; ˇnen/ was the
received word with (normalised) error e D .e1; : : : ; en/. Let E D fi j ei ¤ 0g and
� D jE j. In failure probability considerations, we consider the jFj-ary symmetric
channel.

Introduce G ,
Qn
iD1.x � ˛i /, and for any integer t � 1, let R.t/ be

the Lagrangian polynomial through the “powered” r, i.e. the minimal degree
polynomial satisfying R.t/.˛i / D rti for i D 1; : : : ; n. Naturally, we have
degR.t/ � n � 1 and R.t/ can be directly calculated by the receiver. As usual for
key equation decoders, the algorithm will revolve around the notion of error locator:
� D Q

j2E .x � ˛j /. Choose now some ` 2 N subject to `.k � 1/ < n. Then we
easily derive the powered Gao key equations:
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Proposition 1 �R.t/ � �f t mod G

Proof Polynomials are equivalent modulo G if and only if they have the same
evaluation at ˛1; : : : ; ˛n. For ˛i where ei ¤ 0, both sides of the above evaluate
to zero, while for the remaining ˛i they give �.˛i /ri t D �.˛i /f .˛i /

t . ut

3 The Decoding Algorithm

The key equations of Proposition 1 are non-linear in � and f , so the approach for
solving them is to relax the equations into a linear system, similarly to classical key
equation decoding. We will ignore the structure of the right hand-sides and therefore
seek polynomials � and  .1/; : : : ;  .`/ such that �R.t/ �  .t/ mod G as well as
deg�C t.k � 1/ � deg .t/ for t D 1; : : : ; `. We will call such .�;  .1/; : : : ;  .`//
a solution to the key equations.

Clearly .�;�f; : : : ; �f `/ is a solution. There are, however, infinitely many
more, so the strategy is to find a solution such that deg� is minimal; we will call this
the minimal solution. Thus decoding can only succeed when � has minimal degree
of all solutions. The probability of this occurring will be discussed in Sect. 4.

Conceptually, Power Gao decoding is then straightforward: pre-calculate G and
from the received word, calculate R.1/; : : : ; R.`/. Find then a minimal solution
.�;  1; : : : ;  `/ with � monic. If this has the valid structure of .�;�f; : : : ; �f `/,
then return f . Otherwise, declare decoding failure.

For Power syndromes, the key equations are similar to ours except that the
modulo polynomials are just powers of x. In this case, finding a minimal solution is
known as multi-sequence shift-register synthesis, and the fastest known algorithm
is an extension of the Berlekamp–Massey algorithm [5] or the Divide-&-Conquer
variant of this [6]. These can not handle the modulusG that we need, however.

A generalised form of multi-sequence shift-register synthesis was considered
in [2], and several algorithms for finding a minimal solution were presented. The
key equations for our case fit into this framework. We refer the reader to [2] for
the details on these algorithms, but the asymptotic complexities when applied to
Power Gao decoding are given in Table 1. The same complexities would apply to
Power syndromes and also match the algorithms [5, 6] mentioned before. The other

Table 1 Complexities of
solving the key equations for
the three approaches
discussed in [2]

Algorithm O-complexity

Mulders–Storjohann `2n2

Alekhnovich `3n log2 n log logn

Demand–Drivena `n2Œlogn log logn�
aIf C is cyclic, then G D xn � 1 since the
˛i form a multiplicative group, and in this
case the log-factors in square brackets can
be removed.
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steps of the decoding are easily seen to be cheaper than this; e.g. the calculation of
R.1/; : : : ; R.`/ by Lagrangian interpolation can be done trivially in O.`n2/ or using
fast Fourier techniques in O.`n log2 n/ [9, p. 231]. Thus Power Gao decoding is
asymptotically as fast as Power syndromes.

4 Properties of the Algorithm

Power Gao will fail if .�;�f; : : : ; �f `/ is not the found minimal solution, so the
question is when one can expect this to occur. Since the algorithm returns at most
one codeword, it must fail for some received words whenever � � d=2. Whenever
an answer is found, however, this must correspond to a closest codeword: any
closer codeword would have its own corresponding error locator and information
polynomial, and these would yield a smaller solution to the key equations.

We first show that Power syndromes is behaviourally equivalent to Power Gao.
We will need to assume that the evaluation points ˛i ¤ 0 for all i , which is a
condition for Power syndromes decoding. This implies x − G. We will use a
“coefficient reversal” operator defined for any p 2 FŒx� as p D xdegpp.x�1/.

In Power syndromes decoding, one considers r.t/ D .ˇ1r
t
1; : : : ; ˇnr

t
n/ for t D

1; : : : ; ` as received words of GRS codes with parameters Œn; t.k�1/C1; n� t.k�
1/�, resulting from evaluating f t ; these “virtual” codes have the same evaluation
points and column multipliers as C . The r .t/ will therefore have the same error
positions as r , so the same error locator applies. For each t , we can calculate the
syndrome S.t/ corresponding to r .t/, which can be written as

S.t/ D
� nX

iD1

r ti �i

1 � x˛i mod xn�t .k�1/C1
�

where �i D Q
j¤i .˛i � ˛j /

�1; see e.g. [4, p. 185]. By insertion one sees that

�S.t/ � ˝.t/ mod xn�t .k�1/C1; t D 1; : : : ; `

where ˝.t/ is a certain polynomial satisfying deg˝.t/ < deg�. Note that we are
using � reversed; indeed, one often defines error-locator as

Q
i2E .1 � x˛i / D �

when considering the syndrome key equation. The decoding algorithm follows
simply from finding a minimal degree polynomial � such that !.t/ D .�S.t/ mod
xn�t .k�1/C1/ satisfies deg� > deg!.t/ for all t . The decoding method fails if
� ¤ ��;8� 2 F. We now have:

Proposition 2 Decoding using Power Gao fails if and only if decoding using Power
syndromes fails.

Proof Note first that R.t/ D Pn
iD1 r ti �i

Q
j¤i .x � ˛j /. By insertion we get

S.t/ � R
.t/
G

�1
mod xn�t .k�1/C1 (since x − G). Power Gao fails if there is
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some � 2 FŒx� which is not a constant times � and such that deg� � deg� and
 .t/ D .�R.t/ mod G/ has deg .t/ < deg�C t.k � 1/C 1 for each t D 1; : : : ; `.
This means there must be some !.t/ with deg!.t/ � deg� � 1 such that

�R.t/ � !.t/G D  ”
�R

.t/ � !.t/G D  
.t/
xdegGCdeg��1�.deg�Ct .k�1// H)

�R
.t/ � !.t/G mod xn�t .k�1/�1

Dividing by G, we see that � and the !.t/ satisfy the congruences necessary to form
a solution to the Power syndromes key equation, and they also satisfy the degree
bounds. Showing the proposition in the other direction runs analogously. ut
Corollary 3 (Combining [5] and Proposition 2) Power Gao decoding succeeds if
� < d=2. Let

�.`/ D `
`C1n � 1

2
`.k � 1/� `

`C1

Then decoding will fail with high probability if � > �. Ò/, where 1 � Ò � ` is chosen
to maximise �.`/.1

Between the above two bounds, Power decoding will sometimes succeed and
sometimes fail. Simulations indicate that failure occurs with quite small probability.
The only proven bound so far is for ` D 2 where for exactly � errors occurring, we
have Pf .�/ < .q=q�1/�q3.���.2//=.q � 1/, [5, 10].

We will give a new bound for Pf .�/ when ` D 3, but we will first show a
property which allows a major simplification in all subsequent analyses.

Proposition 4 Power Gao decoding fails for some received word r if and only if it
fails for r C Oc where Oc is any codeword.

Proof We will show that Power Gao decoding fails for r D c C e if and only if it
fails for e as received word; since c was arbitrary, that implies the proposition.

Let R.t/e be the power Lagrangians for e as received word, i.e. R.t/e .˛i / D eti for
each i and t , and letRe D R

.1/
e . Consider a solution to the corresponding Power Gao

key equations .�;  1; : : : ;  `/; i.e. �R.t/e �  t mod G and deg�C t.k � 1/C 1 >

deg t . Let as usual R.t/ be the power Lagrangians for r as received word and
R D R.1/. Note now that R.t/ � Rt mod G since both sides of the congruence
evaluate to the same at all ˛i ; similarly R.t/e � Rte mod G. Since ri D f .˛i /C ei
linearity implies that R D f CRe . Define  0 D � and note that then also for t D 0

we have deg� C t.k � 1/ C 1 > deg t . We then have the chain of congruences
moduloG:

�R.t/ � �Rt � �.f CRe/
t � �

Pt
sD0

�
t
s

�
f sRt�se � Pt

sD0
�
t
s

�
f s t�s mod G

1Decoding may succeed in certain degenerate cases, see [3, Proposition 2.39]. Failure is certain
when using the method of [5] since what it considers “solutions” are subtly different than here.
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Each term in the last sum has degree s degf C deg t�s < s.k � 1/C deg�C .t �
s/.k � 1/C 1 D deg�C t.k � 1/C 1, which means that

�
�;

P1
sD0

�
1
s

�
f s 1�s ; : : : ;

P`
sD0

�
`
s

�
f s `�s

�

is a solution to the Power Gao key equations with r as a received word. The same
argument holds in the other direction, so any solution to one of the key equations
induces a solution to the other with the same first component; obviously then, their
minimal solutions must be in bijection, which directly implies that they either both
fail or neither of them fail. ut

For the new bound on the failure probability, we first need a technical lemma:

Lemma 5 Let U 2 FŒx� of degreeN , and let K1 < K2 < K3 < N be integers. Let
S D f.f1; f2; f3/ j f1f3 � f 2

2 mod U; f2 monic ; 8t: degft < Kt g. Then

jS j � 3K2�1qK2 if K1 CK3 � 2 < N
jS j � 2K1CK3�2qK1CK2CK3�N�2 if K1 CK3 � 2 � N

Proof If K1 CK3 � 2 < N , then f1f3 � f 2
2 mod U implies f1f3 D f 2

2 . We can
choose a monic f2 in .qK2 � 1/=.q � 1/ ways. For each choice, then f2 has at most
K2 � 1 prime factors, so the factors of f 2

2 can be distributed among f1 and f3 in at
most 3K2�1 ways. Lastly, the leading coefficient of f1 can be chosen in q � 1 ways.

If K1 CK3 � 2 � N , then for each choice of f2, the product f1f3 can be among
ff 22 CgU j degg � K1CK3�2�N g. This yields at most qK1CK2CK3�N�2=.q�1/
candidates for f1f3; each of these has at most K1 C K3 � 2 unique prime factors,
which can then be distributed among f1 and f3 in at most 2K1CK3�2 ways. Again,
the leading coefficient of f1 leads to a factor q � 1 more. ut
Proposition 6 For ` D 3, the probability that Power decoding (Gao or Syndrome)
fails when � > d=2 is at most

.q=.q�1//�.3=q/2��.n�2kC1/q3.���.2//Ck�1 if � < �.2/ � 1
3
k C 1

.q=.q�1//�22.2��d/C2.k�1/q4.���.3//�2 if � � �.2/� 1
3
k C 1

Proof By Proposition 4, we can assume that c D 0, i.e. that r D e. That means
R.t/.˛i / D 0 for i … E , so we can writeR.t/ D E.t/	 for someE.t/ with degE.t/ <

�, where 	 D G=� is the “truth-locator”. Power Gao decoding fails if and only if
there exists .�;  1;  2;  3/ such that � ¤ �, deg� � deg�, deg�C t.k�1/C1 >
deg t for t D 1; 2; 3 as well as

�R.t/ �  t mod G ” �E.t/ � O t mod �

where O t D  t=	 . Note that  t must be divisible by 	 since both the modulus and
the left-hand side of the first congruence is.
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Denote by E the unique polynomial with degree less than � having E.˛i / D
ei for i 2 E . For any i 2 E then .�E.t//.˛i / D �.˛i /	 .˛i /

�1eti , which means
�E.t/ � O�Et mod � for some polynomial O�.

After having chosen error positions, drawing error values uniformly at random
is the same as drawing uniformly at random from possible E . So given the error
positions, the probability that Power decoding will fail is T�=.q � 1/�, where T� is
the number of choices of E such that there exist O�; O 1; O 2; O 3 having

O�Et � O t mod �; t D 1; 2; 3

as well as deg O t < deg�C t.k � 1/C 1� .n� deg�/ D 2�� .n� t.k � 1/� 1/.
Note that these congruences imply O 1 O 3 � O 22 mod �. Denote by OT� the

number of triples . O 1; O 2; O 3/ 2 FŒx�3 satisfying just this congruence as well as the
above degree bounds. Then OT� � T�: for if gcd. O�;�/ D 1 then two different values
ofE could not yield the same triple sinceE � O 2= O 1 mod � uniquely determines
E . Alternatively, if gcd. O�;�/ D g ¤ 1 then the congruences imply g j O t for all
t , so that E � . O 2=g/=. O 1=g/ mod �=g. This leaves a potential qdeg g possible
other choices of E yielding the same triple; but all these possibilities are counted
in the triples since .t 1=g; t 2=g; t 3=g/ will be counted for any t 2 FŒx� with
deg t < degg.

In fact, we have OT� � .q � 1/T�, since whenever . O 1; O 2; O 3/ is counted, so is
.ˇ O 1; ˇ O 2; O 3/, and this doesn’t change the fraction O 1= O 2. Thus, we over-estimate
instead OT�=.q � 1/ by counting the number of triples where O 2 is monic. Lemma 5
gives an upper bound for exactly this number, setting N D � and Kt D 2� �
.n � t.k � 1/ � 1/. Divided by .q � 1/� , this is then an upper bound on the failure
probability given the error positions. But since this probability is independent of the
choice of �, it is also the failure probability over all errors vectors of weight �. ut

By experimentation, one can demonstrate that the bound is not tight: for instance,
for a Œ250; 30; 221� GRS code, the bound is greater than 1 for � > 143, while
simulation indicate almost flawless decoding up to 147 errors. However, in a relative
and asymptotic sense the above bound is strong enough to show that up to �.3/
errors can be corrected with arbitrary low failure probability:

Corollary 7 Having ` D 3, then for any ı > 0, with n ! 1 while keeping q=n,
k=n and �=n constant, the probability that Power decoding fails goes to 0 when
�=n < �.3/=n� ı.

Proof (Proof sketch) We consider only the high-error failure probability of Propo-
sition 6. For n ! 1, the failure probability bound will approach

22.2��d/C2.k�1/q4.���.3// � .qn/4.�=n��.3/=n/C.2.2�=n�d=n/C2k=n/= log q

The contribution .2.2�=n � d=n/ C 2k=n/= logq goes to 0 as n ! 1, leaving
.qn/a for a D 4.�=n� �.3/=n/ < �4ı. ut
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5 A Family of Bad Errors

Power decoding will usually fail when the powered key equations are linearly
dependent; in particular, it will fail if one of the key equations is trivially satisfied.

An anonymous reviewer of this paper suggested the following construction of
errors where, for a given sent codeword, the second key equation will be trivial: let
F be a non-binary field, and let Oc 2 C be some non-zero codeword, obtained as
the evaluation of Of with deg Of < k. Choose d=2 � � � �.2/ positions for which
Oc is non-zero. Let then e D .e1; : : : ; en/ be given by ei D �2 Oci when i is one
of the chosen position, and ei D 0 otherwise. If Or D Oc C e is received, then the
second Lagrangian OR.2/ equals Of 2, i.e. deg OR.2/ < 2k � 1 (in other words, we have
Or.2/ D Oc.2/ so the squared received word is a codeword in the “squared” GRS code).
That means that for any � 2 FŒx�, then deg.� OR.2/ mod G/ � deg�C 2k � 1, and
so the second key equation is useless.

Clearly then, if Or is received, then almost surely2 Power decoding will fail when
` D 2, and it is easy to show that it will also fail when ` > 2.

From Proposition 4 it follows that decoding will also fail when receiving c C e

for any sent codeword c 2 C ; in particular when sending 0 and receiving e. This
might at first seem counter-intuitive since the second LagrangianE.2/ when e is the
received word does not have low degree (i.e. e.2/ is not in the squared GRS code).
However, in this case the key equation involvingE.2/ will be linearly dependent on
that involvingE D E.1/, and so will not add further requirements. This can be seen
directly as follows: since e D Or� Oc then e.2/ D Or .2/C Oc.2/�2 Oc? Or D 2 Oc.2/�2 Oc? Or ,
where ? is the component-wise product. Thus E.2/ � 2 Of 2 � 2 Of R mod G. So if
� 2 FŒx� satisfies the first key equation, i.e. deg.�E mod G/ � deg�C k � 1, then
we get

deg.�E.2/ mod G/ D deg.� Of 2 C �E Of mod G/ � deg�C 2.k � 1/

So � satisfies the second key equation.
The “bad error” construction can easily be generalised for higher ` whenever F

has `’th roots of unity different from 1: then ei can be chosen as .
i � 1/ Oci where

i ¤ 1 is any of those roots of unity. Then for Or D Oc C e we get Or .`/ D Oc.`/ and so
degR.`/ � `.k � 1/.

A full Power Gao decoder has been implemented in Sage v5.13 [7] and is
available for download at http://jsrn.dk/code-for-articles. Also implemented is
randomly constructing “bad errors” e as above (for any `), and a demonstration
that Power decoding fails for Or , e and c C e for any random codeword c.

2As in Theorem 3, failure is not certain but extremely unlikely for just a few errors beyond d=2.

http://jsrn.dk/code-for-articles
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