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Abstract In this paper we consider a special class of 2D convolutional codes
(composition codes) with encoders G.d1; d2/ that can be decomposed as the product
of two 1D encoders, i.e., G.d1; d2/ D G2.d2/G1.d1/. In case that G1.d1/ and
G2.d2/ are prime we provide constructions of syndrome formers of the code,
directly from G1.d1/ and G2.d2/. Moreover we investigate the minimality of 2D
state-space realization by means of a separable Roesser model of syndrome formers
of composition codes, where G2.d2/ is a quasi-systematic encoder.

Keywords Encoders and syndrome forms • 2D composition codes • 2D
state-space models

1 Introduction and Preliminary Concepts

Minimal state-space realization of convolutional codes play an important role in effi-
cient code generation and verification. This question has been widely investigated in
the literature for 1D codes [3, 6], however it is still open for the 2D case. Preliminary
results concerning 2D encoder and code realizations have been presented in [10]. In
this paper we study the syndrome former realization problem for a special class of
2D codes.
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We consider 2D convolutional codes constituted by sequences indexed by Z
2

and taking values in F
n, where F is a field. Such sequences fw.i; j /g.i;j /2Z2 can be

represented by bilateral formal power series

Ow.d1; d2/ D
X

.i;j /2Z2

w.i; j /d i
1d

j
2 :

For n 2 N, the set of 2D bilateral formal power series over Fn is denoted by
F n

2D . This set is a module over the ring FŒd1; d2� of 2D polynomials over F. The set
of matrices of size n � k with elements in FŒd1; d2� will be denoted by F

n�kŒd1; d2�.
Given a subset C of sequences indexed by Z

2, taking values in F
n, we denote by

OC the subset of F n
2D defined by OC D f Ow j w 2 C g.

Definition 1 A 2D convolutional code is a subset C of sequences indexed by Z
2

such that OC is a submodule of F n
2D which coincides with the image of F k

2D (for
some k 2 N) by a polynomial matrix G.d1; d2/, i.e.,

OC D im G.d1; d2/ D f Ow.d1; d2/ j Ow.d1; d2/ D G.d1; d2/Ou.d1; d2/; Ou.d1; d2/ 2 F k
2Dg:

It follows, as a consequence of [Theorem 2.2, [7]], that a 2D convolutional
code can always be given as the image of a full column rank polynomial matrix
G.d1; d2/ 2 F

n�kŒd1; d2�. Such polynomial matrix is called an encoder of C . A
code with encoders of size n � k is said to have rate k=n.

A 2D convolutional code C of rate k=n can also be represented as the kernel
of a .n � k/ � n left-factor prime polynomial matrix (i.e. a matrix without left
nonunimodular factors), as follows from [Theorem 1, [12]].

Definition 2 Let C be a 2D convolutional code of rate k=n. A left-factor prime
matrix H.d1; d2/ 2 F

.n�k/�nŒd1; d2� such that

OC D ker H.d1; d2/;

is called a syndrome former of C .

Note that w is in C if and only if H.d1; d2/ Ow D 0.

Remark 3 This means that whereas codewords are output sequences of an encoder,
they constitute the output-nulling inputs of a syndrome former of the code.

Given an encoder G.d1; d2/ of C , a syndrome former of C can be obtained
by constructing a .n � k/ � n left-factor prime matrix H.d1; d2/ such that
H.d1; d2/G.d1; d2/ D 0. Moreover all syndrome formers of C are of the form
U.d1; d2/H.d1; d2/, where U.d1; d2/ 2 F

.n�k/�.n�k/Œd1; d2� is unimodular.
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2 Composition Codes and Their Syndrome Formers

In this section we consider a particular class of 2D convolutional codes generated by
2D polynomial encoders that are obtained from the composition of two 1D polyno-
mial encoders. Such encoders/codes will be called composition encoders/codes. Our
goal is to characterize the syndrome formers of such codes. The formal definition of
composition encoders is as follows.

Definition 4 An encoder G.d1; d2/ 2 F
n�kŒd1; d2� such that

G.d1; d2/ D G2.d2/G1.d1/; (1)

where G1.d1/ 2 F
p�kŒd1� and G2.d2/ 2 F

n�pŒd2� are 1D encoders, is said to be a
composition encoder.

Note that the requirement that Gi .di /, for i D 1; 2, is a 1D encoder implies the
condition that Gi .di / is a full column rank matrix. Moreover this requirement
clearly implies that G2.d2/G1.d1/ has full column rank, hence the composition
G2.d2/G1.d2/ of two 1D encoders is indeed a 2D encoder.

The 2D composition code C associated with G.d1; d2/ is such that

OC D im G.d1; d2/ D G2.d2/.im G1.d1//

D f Ow.d1; d2/ j 9 Oz.d1; d2/ 2 im.G1.d1// such that Ow.d1; d2/ D G2.d2/Oz.d1; d2/g:

We shall concentrate on a particular class of composition codes, namely on
those that admit a composition encoder G.d1; d2/ as in (1) with G2.d2/ and G1.d1/

both right-prime encoders (i.e., they admit a left polynomial inverse), and derive
a procedure for constructing the corresponding syndrome formers based on 1D
polynomial methods. This procedure will be useful later on for the study of state-
space realizations.

It is important to observe that as G2.d2/ and G1.d1/ are both assumed to have
polynomial inverses, then G.d1; d2/ also has a 2D polynomial left inverse (given
by the product of the left inverses of G1.d1/ and G2.d2/) and therefore G.d1; d2/

is right-zero prime1(rZP). Recall that if a 2D convolutional code admits a right-
zero prime encoder then all its rFP encoders are rZP. Moreover, the corresponding
syndrome formers are also lZP (see Prop. A.4 of [4]).

1A polynomial matrix G.d1; d2/ is right/left-zero prime (rZP/lZP) if the ideal generated by the
maximal order minors of G.d1; d2/ is the ring FŒd1; d2� itself, or equivalently if and only if
admits a polynomial left/right inverse. Moreover right/left-zero primeness implies right/left-factor
primeness(rFP/lFP).
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Since G2.d2/ 2 F
n�pŒd2� is right-prime there exists a unimodular matrix U.d2/ 2

F
n�nŒd2� such that

U.d2/G2.d2/ D
�
Ip

0

�
:

We shall partition U.d2/ as

U.d2/ D
�

L2.d2/

H2.d2/

�
; (2)

where L2.d2/ has p rows.
It is easy to check that, if H1.d1/ 2 F

.p�k/�pŒd1� is a syndrome former of
the 1D convolutional code im G1.d1/ (i.e., H1.d1/ is left-prime and is such that
H1.d1/G1.d1/ D 0), then

�
H1.d1/L2.d2/

H2.d2/

�
G2.d2/G1.d1/ D 0: (3)

This reasoning leads to the following proposition.

Proposition 5 Let C , with OC D im G.d1; d2/, be a composition code with
G.d1; d2/ 2 F

n�kŒd1; d2� such that G.d1; d2/ D G2.d2/G1.d1/, where G2.d2/ 2
F

n�pŒd2� and G1.d1/ 2 F
p�kŒd1� are both right-prime 1D encoders. Let further

H1.d1/ be a .p � k/ � p 1D syndrome former of im G1.d1/ and define

�
L2.d2/

H2.d2/

�
as

in (2). Then

H.d1; d2/ D
�
H1.d1/L2.d2/

H2.d2/

�

is a syndrome former of C .

Proof Since (3) is obviously satisfied and H.d1; d2/ has size .n � k/ � n, we only
have to prove that H.d1; d2/ is left-factor prime. Note that as H1.d1/ is left-prime,
there exists R1.d1/ 2 F

p�.p�k/Œd1� such that H1.d1/R1.d1/ D Ip�k . Now it is easy
to see that

R.d1; d2/ D U.d2/
�1

�
R1.d1/ 0

0 In�p

�
:

constitutes a polynomial right inverse of H.d1; d2/. Consequently H.d1; d2/ is left-
zero prime which implies that it is left-factor prime as we wish to prove. ut
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3 State-Space Realizations of Encoders and Syndrome
Formers

In this section we recall some fundamental concepts concerning 1D and 2D state-
space realizations of transfer functions, having in mind the realizations of encoders
and syndrome formers.

A 1D state-space model

(
x.t C 1/ D Ax.t/ C Bu.t/

w.t/ D Cx.t/ C Du.t/

denoted by ˙1D.A; B; C; D/ is a realization of dimension m of M.d/ 2 F
s�r Œd �

if M.d/ D C.Im � Ad/�1Bd C D. Moreover, it is a minimal realization if the
size of the state x is minimal among all the realizations of M.d/. The dimension
of a minimal realization of M.d/ is called the McMillan degree of M.d/ and is

given by �.M / D int deg

�
M.d/

Ir

�
, where int deg M.d/ is the maximum degree of

its r-order minors [11].
As for the 2D case, there exist several types of state-space models [1, 2]. In

our study we shall consider separable Roesser models [13]. These models have the
following form:

8
ˆ̂<

ˆ̂:

x1.i C 1; j / D A11x1.i; j / C A12x2.i; j / C B1u.i; j /

x2.i; j C 1/ D A21x1.i; j / C A22x2.i; j / C B2u.i; j /

y.i; j / D C1x1.i; j / C C2x2.i; j / C Du.i; j /

(4)

where A11, A12, A21, A22, B1, B2, C1, C2 and D are matrices over F, with suitable
dimensions, u is the input-variable, y is the output-variable, and x D .x1; x2/ is
the state variable where x1 and x2 are the horizontal and the vertical state-variables,
respectively. The dimension of the system described by (4) is given by the size of x.
Moreover either A12 D 0 or A21 D 0. The separable Roesser model corresponding
to Eqs. (4) with A12 D 0 is denoted by ˙2D

12 .A11; A21; A22; B1; B2; C1; C2; D/,
whereas the one with A21 D 0 is denoted by ˙2D

21 .A11; A12; A22; B1; B2; C1; C2; D/.
The remaining considerations of this section can be stated for both cases when

A12 D 0 or A21 D 0, however we just consider A12 D 0; the case A21 D 0 is
completely analogous, with the obvious adaptations.

Definition 6 ˙2D
12 .A11; A21; A22; B1; B2; C1; C2; D/ is said to be a realization of

the 2D polynomial matrix M.d1; d2/ 2 F
s�r Œd1; d2� if

M.d1; d2/ D �
C1 C2

� �
I � A11d1 0

�A21d2 I � A22d2

��1 ��
B1

0

�
d1 C

�
0

B2

�
d2

�
C D:
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As it is well known different realizations of M.d1; d2/ may not have the same
dimension. For the sake of efficient implementation, we are interested in studying
the realizations of M.d1; d2/ with minimal dimension. Such realizations are called
minimal. The Roesser McMillan degree of M.d1; d2/, �R.M /, is defined as the
dimension of a minimal realization of M.d1; d2/.

Note that every polynomial matrix M.d1; d2/ 2 F
s�r Œd1; d2� can be factorized as

follows:

M.d1; d2/ D M2.d2/M1.d1/; (5)

where M2.d2/ D
h
In j � � � j Ind `2

2

i
N2 2 F

s�pŒd2� and M1.d1/ D
N1

h
Ik : : : Ikd

`1

1

iT 2 F
p�r Œd1�, with N2 and N1 constant matrices.

If N2 has full column rank and N1 has full row rank we say that (5) is an optimal
decomposition of M.d1; d2/. As shown in [8, 9], if (5) is an optimal decomposition,
given a minimal realization ˙1D.A11; B1; NC1; ND1/ of M1.d1/ (of dimension �.M1/)
and a minimal realization ˙1D.A22; NB2; C2; ND2/ of M2.d2/ (of dimension �.M2/)
then the 2D system ˙2D

12 .A11; A21; A22; B1; B2; C1; C2; D/, where A21 D NB2
NC1,

B2 D NB2
ND1, C1 D ND2

NC1 and D D ND2
ND1, is a minimal realization of

M.d1; d2/ of dimension �R.M / D �.M1/ C �.M2/. A similar reasoning can
be made if we factorize M.d1; d2/ D NM1.d1/ NM2.d2/, where NM1.d1/ 2 F

s� NpŒd1�

and NM2.d2/ 2 F
Np�r Œd2�, for some p 2 N, to obtain a minimal realization

˙2D
21 .A11; A12; A22; B1; B2; C1; C2; D/ of M.d1; d2/.
Note that, since both encoders and syndrome formers are (2D) polynomial

matrices, they both can be realized by means of (4). However, when considering
realizations of an encoder G.d1; d2/ D G2.d2/G1.d1/ we shall take A12 D 0 and
y D w; on the other hand when considering realizations of a syndrome former
H.d1; d2/ D H1.d1/H2.d2/, we shall take A21 D 0, u D w and y D 0, (cf.
Remark 3).

4 Minimal Syndrome Former Realizations of a Special Class
of Composition Codes

In the sequel the composition codes C to be considered are such that OC D
im G.d1; d2/, where the encoder G.d1; d2/ is as in (1) and satisfies the following
properties:
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(P1) G1.d1/ is a minimal 1D polynomial encoder2 (for instance, prime and
column reduced3), with full row rank over F;

(P2) G2.d2/ is a quasi-systematic 1D polynomial encoder, i.e., there exists an

invertible matrix T 2 F
n�n such that T G2.d2/ D

�
Ip

NG2.d2/

�
, NG2.d2/ 2

F
.n�p/�pŒd2�.

Note that both G1.d1/ and G2.d2/ are minimal encoders of the corresponding
1D convolutional codes. Moreover, G.d1; d2/ is a minimal encoder of C , i.e., it has
minimal Roesser McMillan degree among all encoders of C , [9, 10], in the sequel
we denote this minimal degree by �.C /.

In what follows, we shall derive a syndrome former construction for the code C ,
based on Proposition 5. Define

H1.d1/ D
�
L1.d1/ 0

0 I

�
2 F

.n�k/�nŒd1� and H2.d2/ D
�

I 0

� NG2.d2/ I

�
T 2 F

n�nŒd2�;

where L1.d1/ 2 F
.p�k/�pŒd1� and

�� NG2.d2/ I
� 2 F

.n�p/�nŒd2� are 1D syndrome
formers of the 1D convolutional codes im G1.d1/ and im G2.d2/, respectively. Let

H.d1; d2/ D H1.d1/H2.d2/ (6)

D
�

L1.d1/ 0

� NG2.d2/ I

�
T: (7)

It is easy to see that H.d1; d2/ is a syndrome former of C . It can be shown that it
is possible to assume, without loss of generality, that (6) is an optimal decomposition
of H.d1; d2/. Then

�R.H/ D �.H1/ C �.H2/ D �.L1/ C �.� NG2/ D �.L1/ C �.G2/:

Note that since L1.d1/ is a syndrome former of the 1D convolutional code im G1.d1/

and G1.d1/ is a minimal encoder of im G1.d1/, it follows that �.L1/ � �.G1/,
[5, 6], and hence �R.H/ � �R.G/. Moreover, �.L1/ D �.G1/ if L1.d1/ has
minimal McMillan degree among all syndrome formers of im G1.d1/, for instance,
if L1.d1/ is row reduced, [5, 6], (which can always be assumed without loss of
generality, since otherwise pre-multiplication of H.d1; d2/ by a suitable unimodular
matrix U.d1/ yields another syndrome former for C , with L1.d1/ row reduced); in
this case �R.H/ D �R.G/.

2A minimal 1D encoder is an encoder with minimal McMillan degree among all the encoders of
the same code.
3A full row (column) rank matrix M.d/ 2 F

n�kŒd � is said to be row (column) reduced if
int deg M.d/ is equal to the sum of the row (column) degrees of M.d/; in that case �.M / D
int deg M.d/.
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Thus given the encoder G.d1; d2/ we have constructed a syndrome former
H.d1; d2/, as in Proposition 5. Moreover, based on the special properties of
G.d1; d2/, we have shown that the minimal realizations of H.d1; d2/ have dimen-
sion �R.H/ D �R.G/ D �.C / (recall that G.d1; d2/ is a minimal encoder).

We next show that �R.H/ is minimal among the McMillan degree of all
syndrome formers of C with similar structure as H.d1; d2/.

Theorem 7 Let C , with OC D im G.d1; d2/, be a 2D composition code, and assume
that G.d1; d2/ D G2.d2/G1.d1/, where G1.d1/ and G2.d2/ satisfy properties

(P1) and (P2), respectively. Let further QH.d1; d2/ D
�

X1.d1/ 0

X21.d2/ X22.d2/

�
T be a

syndrome former of C , where X1.d1/ 2 F
.p�k/�pŒd1�, X21.d2/ 2 F

.n�p/�pŒd2�,
X22.d2/ 2 F

.n�p/�.n�p/Œd2� and T 2 F
n�n as in (P2). Then �R. QH/ � �.C /.

Proof Note that QH.d1; d2/G.d1; d2/ D 0 if and only if

(
X1.d1/G1.d1/ D 0
�
X21.d2/ C X22.d2/ NG2.d2/

	
G1.d1/ D 0:

(8)

Then X1.d1/ must be a syndrome former of the 1D convolutional code im G1.d1/

and consequently �.X1/ � �.G1/ [6]. On the other hand we have that X21.d2/ C
X22.d2/ NG2.d2/ D 0, that is equivalent to

�
X21.d2/ X22.d2/

� �
I

NG2.d2/

�
D 0, and

therefore
�
X21.d2/ X22.d2/

�
is a syndrome former of the 1D convolutional code�

I
NG2.d2/

�
. Hence �

��
X21 X22

�	 � �

��
I
NG2

��
, since

�
I

NG2.d2/

�
is a minimal en-

coder of im

�
I

NG2.d2/

�
. Now, since QH.d1; d2/ D

�
X1.d1/ 0

0 I

� �
I 0

X21.d2/ X22.d2/

�
T ,

it is not difficult to see that

�R. QH / D �.X1/ C �
��

X21 X22

�	 � �.G1/ C �

��
I
NG2

��

D �.G1/ C �

�
T �1

�
I
NG2

��
D �R.G/ D �.C /:

ut
Corollary 8 Using the notation and conditions of Theorem 7, the syndrome former
of C given by (7) has minimal Roesser McMillan degree among all syndrome
formers of the same structure.
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