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Abstract In this paper, we present an input-state-output representation of a convo-
lutional product code; we show that this representation is non minimal. Moreover,
we introduce a lower bound on the free distance of the convolutional product code
in terms of the free distance of the constituent codes.
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1 Introduction

The class of convolutional codes generalizes the class of linear block codes in a
natural way. In comparison to the literature on linear block codes, there are only
relatively few algebraic constructions of convolutional codes which have a good
designed distance. There are several methods for constructing convolutional codes,
for example by extending the constructions known for block codes to convolutional
codes, such as the ones based on cyclic or quasi-cyclic constructions on block codes
[7, 8, 10, 19].

Combining known codes is a powerful method to obtain new codes with
better error correction capability avoiding the exponential increase of decoding
complexity. For convolutional codes, we can find in the literature some powerful
combining methods as woven convolutional codes [21, 22] and turbo codes [18].
More recently, as a natural extension of the direct product codes introduced by Elias
[3], Bossert, Medina and Sidorenko [1] introduce the product of convolutional codes
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and they show that every convolutional product code can be represented as a woven
convolutional code (see also [11]).

On the other hand, it is well-known that there exists a close connection between
linear systems over finite fields and convolutional codes. Rosenthal [13] provides
an excellent survey of the different points of view about convolutional codes. By
using the input-state-output representation of convolutional codes introduced by
Rosenthal and York [16], Climent, Herranz and Perea [2] and Herrnaz [4] introduce
the input-state-output representation of different serial and parallel concatenated
convolutional codes, and by using them, they also present a construction of new
codes with prescribed distance.

The rest of the paper is structured as follows. In Sect. 2 we present the basic
notions and previous results related to convolutional codes and convolutional
product codes. Then, in Sect. 3, we introduce two input-state-output representations
of a convolutional product code and prove that none of them is minimal. Moreover
we introduce a lower bound on the free distance of the convolutional product code.

2 Preliminaries

Let F be a finite field and denote by FŒz� the polynomial ring on the variable z with
coefficients in F. A convolutional code C of rate k=n is a submodule of FŒz�n that
can be described as (see [17, 20])

C D imFŒz�.G.z// D fv.z/ 2 FŒz�n j v.z/ D G.z/u.z/ with u.z/ 2 FŒz�kg

where u.z/ is the information vector, v.z/ is the corresponding codeword and G.z/
is an n � k polynomial matrix with rank k called generator or encoder matrix of
C . Two full column rank matrices G1.z/; G2.z/ 2 FŒz�n�k are said to be equivalent
encoders if and only if there exists a unimodular matrix P.z/ 2 FŒz�k�k such that
G2.z/ D G1.z/P.z/. The complexity of a convolutional code C is the highest degree
of the full size minors of any encoder of C . A generator matrix of a convolutional
code is called minimal if and only if the complexity is equal to the sum of the
column degrees.

A generator matrix is said to be catastrophic [6] if there exists some input
sequence u.z/ with infinite nonzero entries which generates a codeword v.z/ D
G.z/u.z/ with a finite nonzero entries. A convolutional code C is observable if
one, and therefore any, generator matrix G.z/ is right prime (see [14]). Furthermore,
if G.z/ is a generator matrix of an observable convolutional code, then G.z/ is a
noncatastrophic generator matrix (see [14]).

Let v.z/ 2 C and assume that v.z/ D v0z� C v1z��1 C � � � C v��1z C v� with

vt 2 F
n, for t D 0; 1; : : : ; � � 1; � . If we consider vt D

�
yt

ut

�
, where yt 2 F

n�k and

ut 2F
k, then the convolutional codeC is equivalently described by the .A; B; C; D/
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representation (see [13, 16, 17, 20])

xtC1 D Axt C But ;

yt D C xt C Dut ;

�
; t D 0; 1; 2; : : : ; x0 D 0:

For each instant t , we say that xt is the state vector, ut is the information vector,
yt is the parity vector, and vt is the codeword. In the linear systems theory, this
representation is known as the input-state-output (ISO) representation.

If C is a rate k=n convolutional code with complexity ı, we call C an
.n; k; ı/-code, and in that case, it is possible (see [9]) to choose matrices A, B , C

and D of sizes ı �ı, ı �k, .n�k/�ı and .n�k/�k, respectively. In convolutional
coding theory, an ISO representation .A; B; C; D/ having the above sizes is called
a minimal representation and it is characterized through the condition that the pair
.A; B/ is controllable, that is (see [16]),

rank
�
B AB � � � Aı�1B

� D ı:

Moreover, if .A; B/ is controllable, then the convolutional code defined by the
matrices .A; B; C; D/ is an observable code if and only if .A; C / is an observable
pair (see [12]). Recall that .A; C / is an observable pair if .AT ; C T / is a controllable
pair.

The free distance of a convolutional code C can be characterized (see [5]) as

dfree.C / D min

 1X
tD0

wt.ut / C
1X

tD0

wt.yt /

!

where the minimum has to be taken over all possible nonzero codewords and where
wt denotes the Hamming weight. The free distance of an .n; k; ı/-code C is always
upper-bounded (see [15]) by the generalized Singleton bound

dfree.C / � .n � k/

��
ı

k

�
C 1

�
C ı C 1:

In addition, the convolutional code C is called maximum-distance separable
(MDS) if its free distance is equal to the generalized Singleton bound.

To finish this section, we introduce the product of two convolutional codes
called “horizontal” and “vertical” codes respectively. Assume that Ch and Cv are
horizontal .nh; kh; ıh/ and vertical .nv; kv; ıv/ codes respectively. Then, the product
convolutional code (see [1, 11]) C D Ch ˝ Cv is defined to be the convolutional
code whose codewords consist of all nv � nh matrices in which columns belong to
Cv and rows belongs to Ch. It is an .nhnv; khkv; ıhkv C khıv/.
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Encoding of the product convolutional code C can be done as follows (see
[1, 11]). Let Gv.z/ and Gh.z/ be generator matrices of the component convolutional
codes Cv and Ch, respectively. Denote by U.z/ a kv � kh information matrix. Now,
we can apply row-column encoding; i.e., every column of U.z/ is encoded using
Gv.z/, and then every row of the resulting matrix Gv.z/U.z/ is encoded using Gh.z/
as .Gv.z/U.z//Gh.z/T . We can also apply column-row encoding; i.e., every row
of U.z/ is encoded using Gh.z/, and then every column of the resulting matrix
U.z/Gh.z/T is encoding using Gv.z/ as Gv.z/.U.z/Gh.z/T /. As a consequence of
the associativity of the product of matrices, we get the same matrix in both cases.
So, the codeword matrix V.z/ is given by

V.z/ D Gv.z/ U.z/ Gh.z/T ;

and by using properties of the Kronecker product, we have

vect .V .z// D .Gh.z/ ˝ Gv.z// vect .U.z//

where vect .�/ is the operator that transforms a matrix into a vector by stacking the
column vectors of the matrix below one another. So, the generator matrix G.z/ of
the product convolutional code C is the Kronecker product

G.z/ D Gh.z/ ˝ Gv.z/

of the generator matrices of the horizontal and vertical codes.

3 ISO Representation of a Product Convolutional Code

Assume that .Ah;Bh;Ch;Dh/ and .Av;Bv;Cv;Dv/ are the ISO representations of the
.nh; kh; ıh/ horizontal and .nv; kv; ıv/ vertical codes Ch and Cv, respectively.
Assume also that the kv � kh matrix Ut is the information matrix of the product
code C D Ch ˝ Cv.

By using the ISO representation of the horizontal code Ch we can encode the
information vector ut D vect .Ut / as

xh
tC1 D .Ah ˝ Ikv /x

h
t C .Bh ˝ Ikv /ut

yh
t D .Ch ˝ Ikv /x

h
t C .Dh ˝ Ikv /ut

�
; vh

t D
�

yh
t

ut

�
; t D 0; 1; 2; : : : ; xh

0 D 0: (1)

Analogously, by using the ISO representation of the vertical code Cv we can encode
the same information vector ut as

xv
tC1 D .Ikh ˝ Av/xv

t C .Ikh ˝ Bv/ut

yv
t D .Ikh ˝ Cv/xv

t C .Ikh ˝ Dv/ut

�
; vv

t D
�

yv
t

ut

�
; t D 0; 1; 2; : : : ; xÍ0 D 0; (2)
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Then we encode the parity vector yh
t (respectively, yv

t ) by using the vertical code Cv

(respectively, the horizontal code Ch) as

xv
tC1 D .Inh�kh ˝ Av/x

v
t C .Inh�kh ˝ Bv/yh

t

yv
t D .Inh�kh ˝ Cv/x

v
t C .Inh�kh ˝ Dv/yh

t

)
; vv

t D
 
yv

t

yh
t

!
; t D 0; 1; 2; : : : ; xv

0 D 0;

(3)

xh
tC1 D .Ah ˝ Inv�kv /xh

t C .Bh ˝ Inv�kv /yv
t

yh
t D .Ch ˝ Inv�kv /xh

t C .Dh ˝ Inv�kv /yv
t

)
; yh

t D
 
yh

t

yv
t

!
; t D 0; 1; 2; : : : ; xh

0 D 0;

(4)

Then, by using properties of the Kronecker product we obtain the following
result.

Theorem 1 For the vectors yv
t and yh

t defined by expressions (3) and (4) respec-
tively, it follows that yv

t D yh
t , for t D 0; 1; 2; : : :

Proof By induction over t . ut
Next result establishes that the ISO representations defined by matrices in

expressions (1)–(4) are minimal ISO representations.

Theorem 2 Let us assume that .Ah; Bh; Ch; Dh/ and .Av; Bv; Cv; Dv/ are minimal
ISO representations of the .nh; kh; ıh/ horizontal and .nv; kv; ıv/ vertical codes Ch

and Cv, respectively. Then

1. The matrices .Ah ˝ Ikv ; Bh ˝ Ikv ; Ch ˝ Ikv ; Dh ˝ Ikv/ in expression (1) define a
minimal ISO representation of an .nhkv; khkv; ıhkv/ convolutional code Ch.kv/.

2. The matrices .Ikh
˝ Av; Ikh

˝ Bv; Ikh
˝ Cv; Ikh

˝ Dv/ in expression (2) define a
minimal ISO representation of an .khnv; khkv; khıv/ convolutional code Cv.kh/.

3. The matrices .Inh�kh
˝ Av; Inh�kh

˝ Bv; Inh�kh
˝ Cv; Inh�kh

˝ Dv/ in expres-
sion (3) define a minimal ISO representation of an ..nh�kh/nv; .nh�kh/kv; .nh�
kh/ıv/ convolutional code Cv.nh � kh/.

4. The matrices .Ah˝Inv�kv ; Bh˝Inv�kv ; Ch˝Inv�kv ; Dh˝Inv�kv/ in expression (4)
define a minimal ISO representation of an .nh.nv � kv/; kh.nv � kv/; ıh.nv � kv//

convolutional code Ch.nv � kv/.

Proof The result follows from the fact that .Ah; Bh; Ch; Dh/ and .Av; Bv; Cv; Dv/

are minimal ISO representations and the properties of the Kronecker product of
matrices. ut

It is not difficult to show that the codes Ch.kv/ and Ch.nv � kv/ (respectively,
Cv.kh/ and Cv.nh � kh/) correspond to the block parallel concatenation of convolu-
tional codes described in [4, Section 5.3], and therefore

dfree .Ch.kv// D dfree .Ch.nv � kv// D dfree .Ch/ ;

dfree .Cv.kh// D dfree .Cv.nh � kh// D dfree .Cv/ :
(5)

Now, by using the second model of serial concatenated convolutional codes
introduced in [2, 4] we have the following result.
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Theorem 3 With the same notation as in Theorem 2.

1. If S1 is the rate khkv=..nh � kh/nv C khkv/ convolutional code defined by the
serial concatenation of Ch.kv/ and Cv.nh � kh/, then .A1; B1; C1; D1/, with

A1 D
	

Inh�kh
˝ Av Ch ˝ Bv

O Ah ˝ Ikv



; B1 D

	
Dh ˝ Bv

Bh ˝ Ikv



;

C1 D
	

Inh�kh
˝ Cv Ch ˝ Dv

O Ch ˝ Ikv



; D1 D

	
Dh ˝ Dv

Dh ˝ Ikv



;

is an ISO representation of S1.
2. If S2 is the rate khkv=.nh.nv � kv/ C khkv/ convolutional code defined by the

serial concatenation of Cv.kh/ and Ch.nv � kv/, then .A2; B2; C2; D2/, with

A2 D
	

Ah ˝ Inv�kv Bh ˝ Cv

O Ikh
˝ Av



; B2 D

	
Bh ˝ Dv

Ikh
˝ Bv



;

C2 D
	

Ch ˝ Inv�kv Dh ˝ Cv

O Ikh
˝ Cv



; D2 D

	
Dh ˝ Dv

Ikh
˝ Dv



;

is an ISO representation of S2.

Proof The result follows from Theorem 9 of [2]. ut
In general the ISO representations .A1; B1; C1; D1/ and .A2; B2; C2; D2/ intro-

duced in the above theorem are not minimal (see [2, 4]). In [2, 4] we can find some
sufficient conditions to ensure the minimality of the above ISO representations.

Now, by Theorem 15 of [2] we have that

dfree .S1/ � dfree .Ch/ and dfree .S2/ � dfree .Cv/ : (6)

As a consequence of Theorem 1, by using the second model of parallel
concatenation (see [4, Section 5.2]) we have the following result.

Theorem 4 With the same notation as in Theorems 2 and 3.

1. If P1 is the rate .khkv=nhnv/ convolutional code defined by the parallel
concatenation of S1 and Cv.kh/, then .A1;B1;C1;D1/ with

A1 D
2
4 Inh�kh

˝ Av Ch ˝ Bv O

O Ah ˝ Ikv O

O O Ikh
˝ Av

3
5 ; B1 D

2
4Dh ˝ Bv

Bh ˝ Ikv

Ikh
˝ Bv

3
5

C1 D
2
4 Inh�kh

˝ Cv Ch ˝ Dv O

O Ch ˝ Ikv O

O O Ikh
˝ Cv

3
5 ; D1 D

2
4Dh ˝ Dv

Dh ˝ Ikv

Ikh
˝ Dv

3
5

is an ISO representation of P1.
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2. If P2 is the rate .khkv=nhnv/ convolutional code defined by the parallel
concatenation of S2 and Ch.kv/, then .A2;B2;C2;D2/ with

A2 D
2
4Ah ˝ Inv�kv Bh ˝ Cv O

O Ikh
˝ Av O

O O Ah ˝ Ikv

3
5 ; B2 D

2
4Bh ˝ Dv

Ikh
˝ Bv

Bh ˝ Ikv

3
5

C2 D
2
4Ch ˝ Inv�kv Dh ˝ Cv O

O Ikh
˝ Cv O

O O Ch ˝ Ikv

3
5 ; D2 D

2
4Dh ˝ Dv

Ikh
˝ Dv

Dh ˝ Ikv

3
5

is an ISO representation of P2.

Note that, according to expressions (1)–(4) and Theorem 1, P1 is the product
convolutional code C D Ch ˝ Cv. Moreover, since A1 is a matrix of size
.nhıv C ıhkv/ � .nhıv C ıhkv/ and the complexity of C is khıv C ıhkv, we can
ensure that the ISO representation .A1;B1;C1;D1/ provided by part 1 of Theorem 4
is nonminimal. By an analogous argument P2 is the product convolutional code
C D Ch ˝ Cv and the ISO representation .A2;B2;C2;D2/ provided by part 2 of
Theorem 4 is nonminimal.

Next result introduces a lower bound on the free distance dfree of the convolu-
tional product code in terms of the constituent convolutional codes.

Theorem 5 If Ch and Cv are .nh; kh; ıh/ and .nv; kv; ıv/ codes, respectively, then,

dfree.Ch ˝ Cv/ � max
˚
dfree.Cv/; dfree.Ch/

�
:

Proof With the same notation as in Theorem 4, as a consequence of Theorem 5.8
of [4] we have that

dfree .P1/ � max
˚
dfree .S1/ ; dfree .Cv/

�
;

dfree .P2/ � max
˚
dfree .S2/ ; dfree .Ch/

�
:

The result follows now by expressions (5) and (6) an the fact that P1 D P2 D
Ch ˝ Cv. ut
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