
Chapter 9
Case Study of Network-Based Unsupervised
Learning: Stochastic Competitive Learning
in Networks

Abstract Many business and day-to-day problems that arise in our lives must be
dealt with under several constraints, such as the prohibition of external interven-
tions of human beings. This may be due to high operational costs or physical
or economical impossibilities that are inherently involved in the process. The
unsupervised learning—one of the existing machine learning paradigms—can be
employed to address these issues and is the main topic discussed in this chapter. For
instance, a possible unsupervised task would be to discover communities in social
networks, find out groups of proteins with the same biological functions, among
many others. In this chapter, the unsupervised learning is investigated with a focus
on methods relying on the complex networks theory. In special, a type of competitive
learning mechanism based on a stochastic nonlinear dynamical system is discussed.
This model possesses interesting properties, runs roughly in linear time for sparse
networks, and also has good performance on artificial and real-world networks.
In the initial setup, a set of particles is released into vertices of a network in a
random manner. As time progresses, they move across the network in accordance
with a convex stochastic combination of random and preferential walks, which are
related to the offensive and defensive behaviors of the particles, respectively. The
competitive walking process reaches a dynamic equilibrium when each community
or data cluster is dominated by a single particle. Straightforward applications are
in community detection and data clustering. In essence, data clustering can be
considered as a community detection problem once a network is constructed from
the original data set. In this case, each vertex corresponds to a data item and pairwise
connections are established using a suitable network formation process.

9.1 A Quick Overview of the Chapter

Competition is a natural process observed in nature and in many social systems
that have limited resources, such as water, food, mates, territory, recognition, etc.
Competitive learning is an important machine learning approach that is widely
employed in artificial neural networks to realize unsupervised learning. Early
developments include the famous self-organizing map (SOM—Self-organizing
Map) [19], differential competitive learning [20], and adaptive resonance theory
(ART—Adaptive Resonance Theory) [6, 14]. From then on, many competitive

© Springer International Publishing Switzerland 2016
T.C. Silva, L. Zhao, Machine Learning in Complex Networks,
DOI 10.1007/978-3-319-17290-3_9

241



242 9 Case Study of Network-Based Unsupervised Learning

learning neural networks have been proposed [1–3, 16, 17, 24, 25, 28, 31, 39] and a
wide range of applications has been considered. Some of these application include
data clustering, data visualization, pattern recognition, and image processing [4, 7,
9, 10, 22, 41]. Without a doubt, competitive learning represents one of the main
successes of the unsupervised learning development.

The network-based unsupervised learning technique that we present here is one
type of competitive learning process. In essence, the model relies on a competitive
mechanism of multiple homogeneous particles originally proposed in [32]. There-
after, the particle competition technique has been enhanced and formally modeled
by a stochastic nonlinear dynamical system and applied to data clustering tasks
in [35]. In this chapter, we explore the particle competition algorithm by providing
several empirical and analytical analyses. In this investigation, we attempt to show
the potentialities and shortcomings of the particle competition technique. Given that
the models of interactive walking processes correspond to many natural and artificial
systems, and due to the relative lack of theory for such systems, the analytical
analysis of this model is an important step to understanding such systems.

Once the fundamental idea and the model definition are properly presented,
several applications that use the particle competition model are discussed in various
interesting problems indicated in the literature. One of these problems is the creation
of efficient evaluation indices for estimating the most likely number of clusters or
communities in data sets. We show that these indices explore dynamic variables that
are constructed from the competitive behavior of the particles inside the network. In
this way, the evaluation of these indices is embedded within the mechanics of the
particle competition process. As a result, if one takes into account that the number
of clusters is far less than the quantity of data items, the process of determining the
most likely number of clusters does not increase the model’s time complexity order.
Since the determination of the actual number of clusters is an important issue in
data clustering [38, 40], the particle competition model also presents a contribution
to this topic.

Following the same line, an index for detecting overlapping cluster structures is
also discussed, which, under some assumptions, may also not increase the model’s
time complexity order due to its embedded nature within the competitive process.

With all these tools at hand, the chapter is finalized by investigating how the
model behaves in an application of handwritten digits and letters clustering. Therein,
we see that the competitive model is able to satisfactorily cluster several variations
and distortions of the same handwritten digits and letters into their corresponding
clusters.

9.2 Description of the Stochastic Competitive Model

In this section, the competitive dynamical system consisting of multiple parti-
cles [35] is discussed.
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Section 9.2.1 provides the intuition behind the mechanics of the model. Sec-
tion 9.2.2 builds on the caveats for constructing the transition matrix of the
stochastic dynamical system that the particle competition model relies on. Sec-
tion 9.2.3 formally defines the corresponding dynamical system. Section 9.2.4
explores the application of estimating the most likely number of communities or
groups in a data set. Section 9.2.5 introduces another application of detecting
overlapping vertices and communities. Section 9.2.6 supplies a parameter sensitivity
analysis of the model’s parameters. Finally, Sect. 9.2.7 analyzes convergence issues
of the particle competition algorithm.

9.2.1 Intuition of the Model

Consider a network G D hV ;E i, where V is the set of vertices and E � V � V
is the set of links (or edges). There are V D jV j vertices and E D jE j edges in
the network. In the competitive learning model, a set of particles K D f1; : : : ; Kg
is inserted into the vertices of the network in a random manner. Essentially, each
particle can be conceived as a flag carrier whose goal is to conquer new vertices,
while defending its current dominated vertices. Given that we have a finite number
of vertices, competition among particles naturally occurs. Note that the vertices
play the role as valuable resources in this competition process. When a particle
visits an arbitrary vertex, it strengthens its own domination level on that vertex
and, at the same time, weakens the domination levels of all of the other rival
particles on the same vertex. Finally, it is expected that each particle will be confined
within a subnetwork corresponding a community. In this way, the communities are
uncovered. Figure 9.1a, b portray a possible initial condition, in which particles
are randomly inserted into network vertices, and the expected long-run dynamic of
the particle competition system for an artificial clustered network with three well-
defined communities.

Due to the competition effect, a particle is either in the active or in the exhausted
state. Whenever the particle is active, it navigates in the network guided by a combi-
nation of two orthogonal walking rules: the random and the preferential movements.
The random walking term permits particles to randomly visit neighboring vertices
regardless of their current conditions and the neighborhood. Therefore, the random
walking term is an unconditional rule that depends only on the immutable network
topology and hence is responsible for the particle’s exploratory behavior. On the
contrary, the preferential walking term accounts for the defensive behavior of the
particles by favoring particles to revisit and reinforce their dominated territory
rather than to visit non-dominated vertices. This walking term is a conditional rule
that depends on the particles’ domination levels on the neighborhood. Therefore,
while the movement distribution that models the exploratory behavior is fixed, that
distribution that describes the defensive behavior is mutable, being dependent both
on the particles and the time dimension.
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a b

Fig. 9.1 Illustration of the initial conditions and long-run dynamic of the particle competition
model. (a) Possible initial setup, (b) expected long-run dynamic

In the particle competition process, each particle carries a time-dependent energy
variable that reflects its instantaneous exploration ability. The energy variable
increases when the particle is visiting a vertex that it dominates, and decreases
whenever it visits a vertex dominated by a rival particle. If the energy variable
drops below a minimum threshold, the particle becomes exhausted and it is brought
back to one of the vertices that it dominates. With this mechanism, the network
always has a constant number of particles and frequent intrusions of particles to
regions dominated by rival particles can be avoided. The exhaustion of particles in
the learning process can be related to the smoothness assumption of unsupervised
learning algorithms, because this process delimits the community borders that each
particle dominates.

9.2.2 Derivation of the Transition Matrix

During the competition process, each particle k 2 K performs two distinct types of
movements:

• a random movement term, modeled by the matrix P.k/
rand, which allows the particle

to venture throughout the network, without accounting for the defense of the
previously dominated vertices; and

• a preferential movement term, modeled by the matrix P.k/
pref, which is responsible

for inducing the particle to reinforce vertices that the particle dominates,
effectively creating a preferential visiting rule to dominated vertices rather than
random ones.



9.2 Description of the Stochastic Competitive Model 245

Consider the random vector p.t/ D Œp.1/.t/; p.2/.t/; : : : ; p.K/.t/�, which denotes
the location of the set of K particles presented to the network. Its k-th entry,
p.k/.t/, indicates the location of particle k in the network at time t, i.e., p.k/.t/ 2
V ; 8k 2 K . With the intent of keeping track of the current states of all particles,
we introduce the random vector S.t/ D ŒS.1/.t/; : : : ; S.K/.t/�, where the k-th entry,
S.k/.t/ 2 f0; 1g, indicates whether particle k is active (S.k/.t/ D 0) or exhausted
(S.k/.t/ D 1) at time t. When a particle is active, it performs the combined
random-preferential movements; when it is exhausted, the particle switches its
movement policy to a new transition matrix, here referred to as P.k/

rean.t/. This matrix
is responsible for taking the particle back to its dominated territory, in order to
reanimate the corresponding particle by recharging its energy. This sequence of
steps is called the reanimation procedure. After the particle’s energy has been
properly recharged, it again walks in the network. With these notations at hand,
we can define a transition matrix that governs the probability distribution of
the movement of the particles to the immediate future state p.t C 1/ D Œp.1/

.t C 1/; p.2/.t C 1/; : : : ; p.K/.t C 1/� as follows:

P.k/
transition.t/ , .1 � S.k/.t//

h
�P.k/

pref.t/ C .1 � �/P.k/
rand

i
C S.k/.t/P.k/

rean.t/; (9.1)

in which k is the particle index, � 2 Œ0; 1� modulates the desired fraction of
preferential and random movements. Larger values of � favor preferential walks
in detriment to random walks. The entry P.k/

transition.i; j; t/ indicates the probability
that particle k performs a transition from vertex i to j at time t. Now we define the
random and the preferential movement matrices.

Each entry .i; j/ 2 V � V of the random movement matrix is given by:

P.k/
rand.i; j/ , AijP

u2V Aiu
; (9.2)

in which Aij denotes the .i; j/-th entry of the adjacency matrix A of the network.
It means that the probability of an adjacent neighbor j to be visited from vertex i
is proportional to the edge weight linking these two vertices. The matrix is time-
invariant and it is the same for every particle in the network; therefore, whenever
the context makes it clear, we drop the superscript k for convenience.

In order to derive the preferential movement matrix, P.k/
pref.t/, we introduce the

following random vector:

Ni.t/ , ŒN.1/
i .t/; N.2/

i .t/; : : : ; N.K/
i .t/�T ; (9.3)

in which dim.Ni.t// D K � 1, T denotes the transpose operator, and Ni.t/ registers
the number of visits received by vertex i up to time t by each of the particles in the
network. Specifically, the k-th entry, N.k/

i .t/, indicates the number of visits made by
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particle k to vertex i up to time t. Then, the matrix that contains the number of visits
made by each particle in the network to all the vertices is defined as:

N.t/ , ŒN1.t/; N2.t/; : : : ; NV.t/�T ; (9.4)

in which dim.N.t// D V �K. Let us also formally define the domination level vector
of vertex i, NNi.t/, according to the following random vector:

NNi.t/ , Œ NN.1/
i .t/; NN.2/

i .t/; : : : ; NN.K/
i .t/�T ; (9.5)

in which dim. NNi.t// D K � 1 and NNi.t/ denotes the relative frequency of visits of
all particles in the network to vertex i at time t. In particular, the k-th entry, NN.k/

i .t/,
indicates the relative frequency of visits performed by particle k to vertex i at time
t. Then, the matrix form of the domination level of all vertices is defined as:

NN.t/ , Œ NN1.t/; NN2.t/; : : : ; NNV.t/�T ; (9.6)

in which dim. NN.t// D V � K. Mathematically, each entry of NN.k/
i .t/ is defined as:

NN.k/
i .t/ , N.k/

i .t/P
u2K N.u/

i .t/
: (9.7)

With these notations at hand, the preferential movement rule can be defined as:

P.k/
pref.i; j; t/ ,

Aij NN.k/
j .t/

P
u2V Aiu NN.k/

u .t/
: (9.8)

Equation (9.8) defines the probability of a single particle k to perform a transition
from vertex i to j at time t, using solely the preferential movement term. It can
be observed that each particle has a different transition matrix associated to its
preferential movement. Moreover, each matrix is time-varying with dependence on
the domination levels of all of the vertices ( NN.t/) at time t. Since the preferential
movement term of particles directly depends on their visiting frequency to a specific
vertex, as more visits are performed by a particle to a determined vertex, the higher
is the chance for that particle to repeatedly visit the same vertex. Furthermore, if the
domination level of the visiting particle on a vertex is strengthened, the domination
levels of all other particles on the same vertex are consequently weakened. This
feature occurs on account of the normalization process in (9.7): if one domination
level increases, all of the others must go down, so that the overall sum still
produces 1.

For didactic purposes, we now summarize and consolidate the key concepts
introduced so far in a simple example given in the following.
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Fig. 9.2 A typical situation where the red (dark gray) particle, presently located at vertex 1, has
to choose a neighbor to visit in the next iteration. For illustration purposes, the domination level
vector for each vertex is displayed, in which the two entries represent the domination levels of the
red (dark gray) and the blue (gray) particles, in that order. In this example, there are two particles,
red (dark gray) and blue (gray). The beige (light gray) color denotes vertices that are not being
dominated by any particles in the system at time t

Example 9.1. Consider the network portrayed in Fig. 9.2, where there are
two particles, namely red (dark gray) and blue (gray), and four vertices.
For illustrative purposes, we only depict the location of the red (dark gray)
particle, which is currently visiting vertex 1. In this example, the role that
the domination level plays in determining the resulting transition probability
matrix is presented. Within the figure, we also didactically supply the
domination level vector of each vertex at time t. Note that the ownership of the
vertex (in the figure, the color of the vertex) is set according to the particle that
is imposing the highest domination level on that specific vertex. For instance,
in vertex 1, the red (dark gray) particle is imposing a domination of 60 %, and
the blue (gray) particle, of only 40 %. The goal here is to derive the transition
matrix of the red particle in agreement with (9.1). Suppose at time t the red
particle is active, therefore, S.red/.t/ D 0. Consequently, the second term of
the convex combination in (9.1) vanishes. On the basis of (9.2), the random
movement term of the red particle is given by:

P.red/
rand D

2
664

0 1=3 1=3 1=3

1 0 0 0

1 0 0 0

1 0 0 0

3
775 ; (9.9)

(continued)
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Example 9.1 (continued)
and the preferential movement matrix at the immediate posterior time t C 1,
according to (9.8), is given by:

P.red/
pref .t C 1/ D

2
664

0 0:57 0:07 0:36

1 0 0 0

1 0 0 0

1 0 0 0

3
775 : (9.10)

Finally, the transition matrix associated to the red particle is determined by
a weighted combination of the random (time-invariant) and the preferential
matrices at time t C 1, given that the particle is active (see (9.1)). If � D 0:8,
then such matrix is given by:

P.red/
transition.t C 1/ D 0:2

2
664

0 1=3 1=3 1=3

1 0 0 0

1 0 0 0

1 0 0 0

3
775 C 0:8

2
664

0 0:57 0:07 0:36

1 0 0 0

1 0 0 0

1 0 0 0

3
775

D

2
664

0 0:52 0:12 0:36

1 0 0 0

1 0 0 0

1 0 0 0

3
775 : (9.11)

Therefore, the red particle, which is currently in vertex 1, has a higher
chance to visit vertex 2 (52 % chance of visiting) than the others. This
behavior can be controlled by adjusting the � parameter. A large value of
� induces particles to perform mostly preferential movements, i.e., particles
keep visiting their dominated vertices in a frequent manner. A small value of
�, in contrast, provides a larger weight to the random movement term, making
particles resemble traditional Markovian walkers as � ! 0 [8]. In the extreme
case, i.e., when � D 0, the mechanism of competition is turned off and the
model reduces to multiple non-interactive random walks. In this way, we can
see that the particle competition model generalizes the dynamical system of
multiple random walks, according to the parameter �.

Now we define P.k/
rean.t/ matrix that is responsible for transporting an exhausted

particle k 2 K back to its dominated territory, with the purpose of recharging its
energy (reanimation process). Suppose particle k is visiting vertex i when its energy
is completely depleted. In this situation, the particle must regress to an arbitrary
vertex j of its possession at time t, according to the following expression:
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P.k/
rean.i; j; t/ ,

1�
arg max

m2K

� NN.m/
j .t/

�
Dk

�

P
u2V 1�

arg max
m2K

� NN.m/
u .t/

�
Dk

� ; (9.12)

in which 1Œ:� is the indicator function that yields 1 if the argument is logically true

and 0, otherwise. The operator arg max
m2K.:/ returns an index M, where NN.M/

u .t/ is the

maximal value among all NN.m/
u .t/ for m D 1; 2; : : : ; K. We note that (9.12) reduces

to a uniform distribution when we take the subset of vertices that are dominated by
particle k. For all of the non-dominated vertices, the transition probability is zero.
Observe also that the transition probability is independent of the network topology.
If no vertex is being dominated by particle k at time t, we put it in any vertex of the
network in a random manner (uniform distribution on the whole network).

Example 9.2. Figure 9.3 illustrates how the reanimation scheme takes place.
Consider that the red (dark gray) particle is exhausted possibly because it
has visited several non-dominated vertices, which led to the depletion of its
energy. The reanimation procedure consists in transporting back that particle
to one of its dominated vertices, regardless of the network topology. The
intuition of this procedure is that, with a relatively high probability, its energy
will be renewed in the next iterations, for the neighborhood is expected to be
dominated by the same particle.

Let also the random vector E.t/ D ŒE.1/.t/; : : : ; E.K/.t/� represent the energy
that each particle holds. In special, its k-th entry, E.k/.t/ denotes the energy level of
particle k at time t. In view of these definitions, the energy update rule is given by:

Fig. 9.3 Illustration of the reanimation scheme. The red (dark gray) particle is exhausted and is
forced to be transported back to its dominated territory. The transition probability follows a uniform
distribution on the dominated vertices
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E.k/.t/ D
(

min.!max; E.k/.t � 1/ C �/; if owner.k; t/

max.!min; E.k/.t � 1/ � �/; if :owner.k; t/
(9.13)

in which the parameters !min and !max characterize the minimum and maximum
energy levels, respectively, that a particle may possess. Therefore, E.k/.t/ 2
Œ!min; !max�. The owner.k; t/ is defined as:

owner.k; t/ D
�

arg max
m2K

� NN.m/

p.k/.t/
.t/

�
D k

�
(9.14)

is a logical expression that essentially yields true if the vertex that particle k
visits at time t (i.e., vertex p.k/.t/) is being dominated by that same visiting
particle, and results in a logical false otherwise; dim.E.t// D 1 � K; � > 0

symbolizes the increment or decrement of energy that each particle receives at
time t. The first expression in (9.13) represents the increment of the particle’s
energy and occurs whenever particle k visits a vertex p.k/.t/ that it dominates, i.e.,

arg max
m2K

� NN.m/

p.k/.t/
.t/

�
D k. Similarly, the second expression in (9.13) indicates the

decrement of the particle’s energy that happens when it visits a vertex dominated
by rival particles. Therefore, in this model, particles are given a penalty if they are
wandering in rival territory, so as to minimize aimless navigation trajectories in the
network.

The term S.t/ is responsible for determining the movement policy of each particle
at each time t. It is really a switching function and defined as follows:

S.k/.t/ D 1ŒE.k/.t/ D !min�; (9.15)

in which dim.S.t// D 1 � K. Specifically, S.k/.t/ D 1 if E.k/.t/ D !min and 0,
otherwise.

In the following, we apply the concepts introduced so far in a concise and simple
example.

Example 9.3. Consider the network depicted in Fig. 9.4. Suppose there are
two particles, namely, red (dark gray) and blue (gray), each of which located
at vertices 13 and 1, respectively. As both particles are visiting vertices whose
owners are rival particles, their energy levels drop. Consider, in this case, that
both particles have reached the minimum allowed energy, i.e., !min, at time t.
Therefore, according to (9.15), both particles are exhausted. Consequently,
S.red/.t/ D 1 and S.blue/.t/ D 1, and the transition matrix associated to
each particle reduces to the second term in the convex combination of (9.1).
According to the mechanism of the dynamical system, these particles are

(continued)
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Fig. 9.4 Illustration of the reanimation procedure in a typical situation. There are two particles,
namely red (dark gray) and blue (gray), located at vertices 13 and 1, respectively, at time t. The
network encompasses 15 vertices. As both particles are visiting vertices whose owners are rival
particles, their energy levels drop. In this example, suppose both energy levels of the particles
reach the minimum possible value, !min. The vertex color represents the particle that is imposing
the highest domination level at time t. The beige (light gray) denotes a non-dominated vertex

Example 9.3 (continued)
transported back to their dominated territory to recharge their energy levels.
The transition occurs regardless of the network topology. This mechanism
follows the distribution in (9.12). In view of that, the transition matrix for the
red (dark gray) particle at time t is:

P.red/
transition.i; j; t/ D 1

7
; 8i 2 V ; j 2 fv1; v2; : : : ; v7g; (9.16)

P.red/
transition.i; j; t/ D 0; 8i 2 V ; j 2 V n fv1; v2; : : : ; v7g; (9.17)

and the transition matrix associated to the blue (gray) particle at time t is
written as:

P.blue/
transition.i; j; t/ D 1

6
; 8i 2 V ; j 2 fv10; v11; : : : ; v15g; (9.18)

P.blue/
transition.i; j; t/ D 0; 8i 2 V ; j 2 V n fv10; v11; : : : ; v15g: (9.19)

One can verify that exhausted particles are transported back to their
territory (set of dominated vertices) regardless of the network topology. The
determination of which of the dominated vertices to visit follows a uniform
distribution. In this way, vertices are equally probable to receive only those
particles that dominate them.
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Looking at (9.1), we see that each particle has a representative transition matrix.
For compactness, we can join all of them together into a single representative
transition matrix that we refer to Ptransition.t/, which models the transition of the
random vector p.t/ to p.t C 1/. This global matrix will prove useful in Sect. 9.3.
Given the current system’s state at time t, one can see that p.k/.t C 1/ and p.u/.t C 1/

are independent for every pair .k; u/ 2 K � K ; k ¤ u. Another way of looking
at this fact is that, given the immediate past position of each particle, it is clear
that, via (9.1), the next particle’s location is only dependent on the topology of
the network (random term) and the domination levels of the neighborhood in the
previous step (preferential term). In this way, Ptransition.t/ can be written as:

Ptransition.t/ D P.1/
transition.t/ ˝ : : : ˝ P.k/

transition.t/; (9.20)

in which ˝ denotes the Kronecker tensor product operator. In this way, Eq. (9.20)
completely specifies the transition distribution matrix for all of the particles in the
network.

Essentially, when K � 2, p.t/ is a vector and we would no longer be able to
conventionally define the row p.t/ of matrix Ptransition.t/. Owing to this, we define
an invertible mapping f W V K 7! N. The function f simply maps the input vector
to a scalar number that reflects the natural ordering of the tuples in the input vector.
For example, p.t/ D Œ1; 1; : : : ; 1; 1� (all particles at vertex 1) denotes the first state;
p.t/ D Œ1; 1; : : : ; 1; 2� (all particles at vertex 1, except the last particle, which is at
vertex 2) is the second state; and so on, up to the scalar state VK . Therefore, with
this tool, we can fully manipulate the matrix Ptransition.t/.

Remark 9.1. The matrix Ptransition.t/ in (9.20) possesses dimensions VK �VK , which
are undesirably high. In order to save up space, one can use the individual transition
matrices associated to each particle (therefore, we maintain a collection of K
matrices), as shown in (9.1), each of which with dimensions V � V , to model
the dynamic of the particles’ transition with no loss of generality, by using the
following method: once every transition of the collection of K matrices has been
performed, one could concatenate the new particle positions to assemble the random
vector that denotes the particles’ localization, p.t C 1/, in an ordered manner. With
this technique, the spatial complexity would not surpass O.KV/, provided that we
implement the matrices in a sparse mode.

9.2.3 Definition of the Stochastic Nonlinear Dynamical System

We can stack up all of the dynamic variables that have been introduced in the
previous section to make up the dynamical system’s state X.t/ as follows:

X.t/ D

2
664

p.t/
N.t/
E.t/
S.t/

3
775 ; (9.21)
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and the dynamical system that governs the particle competition model is given by:

� W

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

p.k/.t C 1/ D j; j � P.k/
transition.t/

N.k/
i .t C 1/ D N.k/

i .t/ C 1Œp.k/.tC1/Di�

E.k/.t C 1/ D
(

min.!max; E.k/.t/ C �/; if owner.k; t/

max.!min; E.k/.t/ � �/; if :owner.k; t/

S.k/.t C 1/ D 1ŒE.k/.tC1/D!min�

(9.22)

The first equation of system � addresses the transition rules from i to a neighbor
j, in which j is determined according to the time-varying transition matrix in (9.1). In
other words, the acquisition of p.t C1/ is performed by generating random numbers
following the distribution of the transition matrix P.k/

transition.t/. The second equation
updates the number of visits that vertex i has received by particle k up to time t.
The third equation is used to update the energy levels of all of the particles inserted
in the network. Finally, the fourth equation indicates whether the particle is active
or exhausted, depending on its actual energy level. Note that system � is nonlinear.
This occurs on account of the indicator function, which is nonlinear.

Observe that system � can also be written in matrix form as:

� W

8̂
<̂
ˆ̂:

p.t C 1/ D fp.p.t//; fp.p.t// � Ptransition.t/
N.t C 1/ D fN.N.t/; p.t C 1//

E.t C 1/ D fE.N.t C 1/; p.t C 1//

S.t C 1/ D fS.E.t C 1//

; (9.23)

in which fp.:/, fN.:/, fE.:/, and fS.:/ are suitable random matrix functions, whose
entries have been defined in (9.22). An important characteristic of system � is its
Markovian property (see Proposition 9.1).

Now we discuss how to settle the initial condition of the dynamical system’s
state X.0/. Firstly, the particles are randomly inserted into the network, i.e., the
values of p.0/ are randomly set. A desirable and interesting feature of the particle
competition method is that the initial positions of the particles do not affect the
community detection or data clustering results, due to the competition nature. This
behavior occurs even when particles are put together at the beginning of the process.

Each entry of matrix N.0/ is initialized according to the following expression:

N.k/
i .0/ D

(
2; if particle k is generated at vertex i:

1; otherwise:
(9.24)

Remark 9.2. The initialization of N.0/ may be awkward, but there is a mathematical
reason behind it. The domination level matrix, NN.0/, is a row-normalization of N.0/.
Therefore, if all entries of a same row are zero, then (9.8) is undefined. In order to
overcome this problem, all entries of matrix N.0/ are evenly set to 1, with exception
of those in which the particles are initially spawned, whose starting values are 2. In
this setup, a consistent initial configuration for the competitive scheme is provided.
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Since a fair competition among the particles is desired, all particles k 2 K start
out with the same energy level:

E.k/.0/ D !min C
�!max � !min

K

�
: (9.25)

Lastly, all particles are active in the beginning of the competitive process, i.e.:

S.k/.0/ D 0: (9.26)

9.2.4 Method for Estimating the Number of Communities

The particle competition algorithm described by the dynamical system � produces
a large quantity of useful information. Some of these dynamical variables can be
used to solve other kinds of problems beyond community detection. In this section,
we review the method for determining the most likely number of communities or
clusters in a data set presented in [35]. In order to do so, an efficient evaluator index
called average maximum domination level hR.t/i 2 Œ0; 1� that monitors the informa-
tion generated by the competitive model itself is constructed. Mathematically, this
index is given by:

hR.t/i D 1

V

X
u2V

max
m2K

� NN.m/
u .t/

	
; (9.27)

in which NN.m/
u .t/ indicates the domination level that particle m is imposing on vertex

u at time t (see (9.7)) and max
m2K

� NN.m/
u .t/

�
yields the maximum domination level

imposed on vertex u at time t.
The basic idea can be described as follows. For a given network with K real

communities, if we put exactly K particles in the network, each of them will
dominate a community. Thus, one particle will not interfere much in the acting
region of the other particles. As a consequence, hR.t/i will be large. In the extreme
case when each vertex is completely dominated by a single particle, hR.t/i reaches 1.
However, if we add more than K particles in the network, inevitably more than one
particle will share the same community. Consequently, they will dispute the same
group of vertices. In this case, one particle will lower the domination levels imposed
by the other particles, and vice versa. As a result, hR.t/i will be small. Conversely,
if we insert in the network a quantity of particles less than the number of real
communities K, some particles will attempt to dominate more than one community.
Again, hR.t/i will be small. In this way, the actual number of communities or
clusters can be effectively estimated by checking for each K the index hR.t/i is
maximized.
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As it turns out, the optimal number of particles K to be inserted into a network is
exactly the number of real communities that it has. In this way, the index hR.t/i is
employed both to estimate the actual number of communities or clusters and also the
number of particles K. The last point will be made precise in Sect. 9.2.6, where we
study the sensitivity of the parameters that compose the particle competition model.

9.2.5 Method for Detecting Overlapping Structures

A measure that detects overlapping structures or vertices in a given network has been
proposed in [36]. For this purpose, the domination level matrix NN.t/ generated by
the particle competition process is employed. The intuition is as follows. When the
maximum domination level imposed by an arbitrary particle k on a specific vertex
i is much larger than the second maximum domination level imposed by another
particle on the same vertex, then we can conclude that this vertex is being strongly
dominated by particle k and no other particle is influencing it in a relevant manner.
Therefore, the overlapping nature of such vertex is minimal. In contrast, when these
two quantities are similar, then we can infer that the vertex in question holds an
inherently overlapping characteristic. In light of these considerations, we can model
this behavior as follows: let Mi.x; t/ denote the xth greatest domination level value
imposed on vertex i at time t. In this way, the overlapping index of vertex i, Oi.t/ 2
Œ0; 1�, is given by:

Oi.t/ D 1 � .Mi.1; t/ � Mi.2; t// ; (9.28)

i.e., the overlapping index Oi.t/ measures the difference between the two greatest
domination levels imposed by any pair of particles in the network on vertex i.

9.2.6 Parameter Sensitivity Analysis

The particle competition model requires a set of parameters to work. In special, we
need to set the number of particles (K), the desired fraction of preferential movement
(�), the energy that each particle gains or loses (�), and a stopping factor (�). In this
section, we give the intuition on how to choose all of these parameters based on the
type of data set we are dealing with.

In this section, we also discuss candidates as termination criteria.

9.2.6.1 Impact of the Parameter �

Parameter � is responsible for counterweighting the proportion of preferential and
random walks performed by all particles in the network. Recall that the preferential
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Fig. 9.5 Community detection rate vs. parameter �. We fix � D 0:15. Taking into account the
steep peek that is verified and the large negative derivatives that surround it, one can see that
the parameter � is sensible to the overall model’s performance. Results are averaged over 30

simulations. Reproduced from [36] with permission from Elsevier. (a) � D 2 and ˇ D 1, (b)
� D 2 and ˇ D 2, (c) � D 3 and ˇ D 1, (d) � D 3 and ˇ D 2

term is related to the defensive behavior of the particles, while the random term
is associated to the exploratory behavior. If we have small values for �, we favor
randomness over preferential visiting. As we increase �, the tendency is to prefer
reinforcing dominated territories instead of exploring new vertices. The two terms
serve different and important roles in the community detection task and, in this
section, we show that a combination of randomness and preferential behavior can
really improve the performance of community detection tasks.

To study the role of � in the learning process, we use artificial clustered networks
that are generated following the benchmark of Lancichinatti et al. [21], which we
have introduced in Sect. 6.2.4. We fix V D 10;000 vertices and the average network
degree or network connectivity as Nk D 15. Recall that the benchmark consists in
varying the mixing parameter � while evaluating the attained community detection
rates.

Figure 9.5a–d portray the community detection rate of the particle competition
model as a function of �. We vary the counterweighting parameter � from 0 (pure
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random walks) to 1 (pure preferential walks) for different values of � and ˇ, which
are the exponents of the power-law degree and community size distributions.

We can observe that the community detection rate of the particle competition
algorithm is very sensitive to parameter �. Though choosing several different
values for � and ˇ, we can see a very clear behavior from these pictures: when
� D 0 or � D 1, the particle competition algorithm does not produce satisfactory
results. These values correspond to walks with only random or preferential terms,
respectively. This observation suggests that a mixture of these two terms can
improve the algorithm’s performance to a significant extent. One reason for that
is because each of these terms serve a different role in the community detection
process: while the random term expands community borders, the preferential term
guarantees that community cores stay strongly dominated. The tradeoff between the
speed of expanding community borders and guaranteeing the control of the subset of
dominated vertices is performed by tuning parameter �. By our results, we see that
the particle competition algorithm provides good results when we have a sustainable
increase and defense of the community borders, which happens when we select
intermediate values for �.

As a rule-of-thumb, the model gives good community detection rates in networks
with well-defined communities when 0:2 � � � 0:8.

9.2.6.2 Impact of the Parameter �

Parameter � is responsible for updating the particles’ energy levels as described
in (9.13). We use the same type of artificial clustered networks as in the previous
analysis. Figure 9.6a–d display the community detection rate of the particle compe-
tition model as a function of �. Again, we see that the competitive model does not
behave well for extremal values of parameter �. The intuition for that is as follows.
When � is very small, particles are not penalized enough and hence they do not get
exhausted often. Consequently, particles are expected to frequently visit vertices that
should belong to rival particles, possibly getting into the core of other communities.
Therefore, all of the vertices in the network will be in constant competition and no
community borders will be established and consolidated. As such, the algorithm’s
performance is expected to be poor. On the other extreme, when � is very large,
particles are expected to be constantly exhausted once they visit vertices dominated
by rival particles, thus frequently returning to their community core. In this setup,
the initial positions of the particles become sensitive to the competitive model. Once
we randomly put the particles inside the network at t D 0, they are expected to not
venture far away from their initial positions due to the reanimation procedure. As
such, whenever we put particles near each other, the community detection rate will
be poor. In this way, it is unattainable for the particles to switch the ownership of
already conquered vertices. We can conceive this phenomenon as an artificial “hard
labeling.”

Another interesting characteristic that can be extracted from the sensitivity curves
in Fig. 9.6a–d is that the competitive model becomes robust against variations of �
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Fig. 9.6 Community detection rate vs. parameter �. We fix � D 0:6. Taking into account the
large steady region around 0:1 � � � 0:4, one can see that the parameter � is conditionally not
sensible to the overall model’s performance. Results are averaged over 30 simulations. Reproduced
from [36] with permission from Elsevier. (a) � D 2 and ˇ D 1, (b) � D 2 and ˇ D 2, (c) � D 3

and ˇ D 1, (d) � D 3 and ˇ D 2

when we are in the region 0:1 � � � 0:4, i.e., it is conditionally not sensitive to
� in this relatively wide interval. In this way, as a rule-of-thumb, we should choose
intermediate but small values of �.

9.2.6.3 Impact of the Parameter K

Parameter K quantifies the number of particles that are inserted into the network
to perform the community detection process. In comparison to all of the other
parameters of the particle competition algorithm, K is the most sensitive parameter
for the model’s performance. Hence, the correct determination or at least estimation
of K stands as an important problem when employing the particle competition
model. Considering that, in the long-run dynamic, each particle dominates a single
community, the heuristic presented for estimating the actual number of clusters or
communities in Sect. 9.2.4 is a perfect candidate for estimating the proper value for
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the K parameter. That is, we estimate the number of particles K as the estimated
number of communities in the data set using the index hR.t/i. Mathematically, we
choose a candidate K, Kcandidate, such as to maximize the measure hR.t/i, hR.t/maxi,
as follows:

K D fKcandidate 2 N W hR.t/i D hRmax.t/ig; (9.29)

in which hR.t/maxi is given by:

hR.t/maxi D arg max
jK j2N

1

V

X
u2V

max
m2K

� NN.m/
u .t/

	

/ arg max
jK j2N

X
u2V

max
m2K

� NN.m/
u .t/

	
: (9.30)

In computational terms, we iterate the particle competition algorithm using K D
2 up to a small positive number, while maintaining the best K associated to the
maximum achieved hR.t/maxi. We do not need to try large values for K because the
number of communities is often far less than the number of data items.

9.2.7 Convergence Analysis

In this section, we present two possible stopping criteria for the particle competition
model. Both of them assume that the particle competition converges. The termina-
tion criteria stands as an important issue as we are dealing with a dynamical system
that can evolve indefinitely. In essence, we investigate the properties of the indices
hR.t/i and j NN.t C 1/ � NN.t/j1 when employed as stopping criteria. We inspect their
behavior as a function of time and conclude for the convergence of the dynamical
system using an empirical analysis. Based on convergence issues, we give evidences
favoring j NN.t C 1/ � NN.t/j1 in detriment to hR.t/i.

In our analysis in this section, we use the synthetic data sets shown in Fig. 9.7a–c,
which is composed of two communities: the red or “circle” and the green or “square”
communities. The two groups in Fig. 9.7a are well-posed as their distributions are
distinct and do not overlap. Figure 9.7b portrays an intermediate situation, in which
the two groups slightly overlap. Finally, Fig. 9.7c depicts an ill-posed situation,
in which the groups largely overlap. In the latter, the clustering task is extremely
difficult since the smoothness and cluster assumptions do not hold.
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a b

c

Fig. 9.7 Scatter plot of artificial databases constituted by two groups. The data is constructed using
two bi-dimensional Gaussian distributions with varying mean and unitary covariance. Reproduced
from [36] with permission from Elsevier. (a) Well-posed groups, (b) somewhat well-posed groups,
(c) not well-posed groups

Now, we investigate how the index hR.t/i, which has been introduced in
Sect. 9.2.4, behaves as the competitive dynamical system progresses in time. The
simulation results with regard to the synthetic data sets displayed in Fig. 9.7a–c
are depicted in Fig. 9.8a–c, respectively. In all of these plots, we have explicitly
indicated two important dynamical properties: (1) ts, which is the time to reach the
“almost-stationary” state of the model and (2) the diameter of the region in which the
almost-stationary state is confined within. Note that, since the competition is always
taking place, the model never reaches a perfect stationary state. Rather, the dynamic
variables float around quasi-stationary states because of the constant visits that
particles perform on vertices of the network. These fluctuations are expected, since
the random walk behavior of the particles, which is denoted by the second term in
Eq. (9.1), compels particles to visit vertices that they do not dominate. This behavior
creates oscillations in the domination levels between rival particles. However, if we
conduct walks with no random behavior, i.e., with only preferential movements,
these fluctuations are expected to be eliminated, since the exploratory behavior of
the particles would cease to exist. In this case, only the defensive behavior would
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Fig. 9.8 Convergence analysis of the particle competition algorithm when hR.t/i is used. The
algorithm is run against the binary artificial databases in Fig. 9.7. Here, we inspect how the index
hR.t/i varies as a function of time. Reproduced from [36] with permission from Elsevier. (a) hR.t/i
for Fig. 9.7a, (b) hR.t/i for Fig. 9.7b, (c) hR.t/i for Fig. 9.7c

be used by particles. However, each of the two kinds of movements (random and
preferential) has its role in the competition process, in a such a way that disabling
one or another would drastically affect the community or cluster detection. As such,
good values for � must reside between 0 and 1 and not in the extremes.

From Fig. 9.8a–c, we see that the time to reach the almost-stationary state
ts lingers to be established as the overlapping region of the groups gets larger.
In this respect, ts is roughly 150; 430; 650 for Fig. 9.8a–c, respectively. This is
because competition in the community border regions gets stronger as the overlap
width increases. As a consequence, the dominance of each particle takes longer
to be established. Another interesting phenomenon is that of the diameter of the
confinement region of hR.t/i, which grows larger as the overlap width increases. In
these simulations, the diameters of such regions are roughly 0:06; 0:07; 0:08. This is
expected by the same reasons stated before.
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Fig. 9.9 Convergence analysis of the particle competition algorithm when j NN.t C 1/ � NN.t/j1 is
used. The upper theoretical limit is shown in the blue curve when c D K. The algorithm is run
against the binary artificial databases in Fig. 9.7. Here, we inspect how j NN.t C 1/ � NN.t/j1 varies
as a function of time. Reproduced from [36] with permission from Elsevier. (a) j NN.tC1/� NN.t/j1
for Fig. 9.7b, (b) j NN.t C 1/ � NN.t/j1 for Fig. 9.7b, (c) j NN.t C 1/ � NN.t/j1 for Fig. 9.7b

Figure 9.9a–c shows the variation term j NN.t C 1/ � NN.t/j1 as a function of time
when applied to the data sets in Fig. 9.7a–c. We see that the variation of NN.t C 1/ in
relation to NN.t/ reduces as time evolves. This happens because the total number of
visits performed by particles always increases, since each particle must visit at least
a vertex in any given time. Looking at Eq. (9.7), we see that the denominator always
increases faster than the numerator. Therefore, it provides an upper limit for NN.t/.
In view of this, the variations from one iteration to another, i.e., j NN.t C 1/ � NN.t/j1,
tend to vary less and less. Analytically, we can verify that, when the particles start
to walk, i.e., when t D 1, the maximum variation of j NN.t C 1/ � NN.t/j1 is given by:

j NN.1/ � NN.0/ j1� c

�
2

V
� 1

V C 1

�
; (9.31)
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in which c is a real positive constant which depends on the level of competitiveness,
which in turn is directly proportional to �. Such upper limit expression translates
the maximum variation that occurs from time t D 0 to t D 1, which happens when,
at t D 0, a vertex is not receiving any visits, but, at time t D 1, it is being visited by
exactly one particle. Generalizing this equation for an arbitrary t, j NN.tC1/� NN.t/j1
is always bounded by the following expression:

j NN.t C 1/ � NN.t/ j1� c

�
t C 2

V C t
� t

V C t C 1

�
; (9.32)

which demonstrates that, as the previous case, for any t � 1, the model presents
fluctuations around a quasi-stationary state. From this analysis, it is clear that the
j NN.t C 1/ � NN.t/j1 can be used as a termination criterion.

In summary, we find that the particle competition algorithm does not converge
to a fixed point, but the dynamics of the system gets confined within a small finite
sub-region in the space. The intuition behind that is, though in the long-run the
communities have already being established, the competition among particles is
always occurring. In this way, the domination levels of vertices keep changing,
though with less magnitude as time progresses due to the accumulative effect that
the number of visits plays in establishing the vertices’ domination levels.

9.3 Theoretical Analysis of the Model

In this section, a mathematical analysis of the competitive system is supplied. Also,
we show that the competitive system reviewed in the previous section reduces to
multiple independent random walks when a special situation occurs. Some of the
results have been presented in [37] and others are new results. In this book, we
present the mathematical analysis in a self-contained manner.

9.3.1 Mathematical Analysis

To estimate the long-run dynamic of the stochastic competitive learning model, we
first need to derive the transition probabilities between the different states in the
dynamical system. Let the transition probability function of system � be P.X.tC1/ j
X.t//. Observe that the marginal probability of the system’s state P.X.t// can be
written in terms of the joint probability of each of the components of the system’s
state, meaning P.X.t// D P.N.t/; p.t/; E.t/; S.t//. Thus, applying the product rule
on the transition probability function, we have:
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P.X.t C 1/ j X.t//

D P.N.t C 1/; p.t C 1/; E.t C 1/; S.t C 1/ j N.t/; p.t/; E.t/; S.t//

D P.S.t C 1/ j N.t C 1/; p.t C 1/; E.t C 1/; N.t/; p.t/; E.t/; S.t//

� P.N.t C 1/; p.t C 1/; E.t C 1/ j N.t/; p.t/; E.t/; S.t//

D PS.tC1/P.E.t C 1/ j N.t C 1/; p.t C 1/; N.t/; p.t/; E.t/; S.t//

� P.N.t C 1/; p.t C 1/ j N.t/; p.t/; E.t/; S.t//

D PS.tC1/PE.tC1/P.N.t C 1/ j p.t C 1/; N.t/; p.t/; E.t/; S.t//

� P.p.t C 1/ j N.t/; p.t/; E.t/; S.t//

D PS.tC1/PE.tC1/PN.tC1/Pp.tC1/:

(9.33)

in which:

PS.tC1/ D P.S.t C 1/ j N.t C 1/; p.t C 1/; E.t C 1/; X.t//; (9.34)

PE.tC1/ D P.E.t C 1/ j N.t C 1/; p.t C 1/; X.t//; (9.35)

PN.tC1/ D P.N.t C 1/ j p.t C 1/; X.t//; (9.36)

Pp.tC1/ D P.p.t C 1/ j X.t//: (9.37)

Next, the algebraic derivations of these four quantities are explored.

9.3.1.1 Discovering the Factor Pp.tC1/

Observing that the random vector p.t C 1/ is directly evaluated from Ptransition.t/
given in (9.20), which in turn only requires p.t/ and N.t/ to be constructed (X.t/ is
given), then the following equivalence holds:

Pp.tC1/ D P.p.t C 1/ j X.t// D Ptransition.N.t/; p.t//: (9.38)

Here, we have used Ptransition.N.t/; p.t// to emphasize the dependence of the
transition matrix on N.t/ and p.t/.

9.3.1.2 Discovering the Factor PN.tC1/

In this case, taking a close look at PN.tC1/ D P.N.t C 1/ j p.t C 1/; X.t//, we can
verify that, besides the previous state X.t/, we also know the value of the random
vector p.tC1/. By a quick analysis of the update rule given in the second expression
of system �, it is possible to completely determine N.t C 1/, since p.t C 1/ and N.t/
are known. Owing to that, the following equation holds:
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PN.tC1/ D P.N.t C 1/ j p.t C 1/; X.t//

D 1ŒN.tC1/DN.t/CQN .p.tC1//�;
(9.39)

in which QN.p.tC1// is a matrix with dim.QN/ D V �K and dependent on p.tC1/.
The .i; j/-th entry of QN.p.t C 1// is given by:

QN.p.t C 1//.i; k/ D 1Œp.k/.tC1/Di�; (9.40)

The argument in the indicator function shown in (9.39) is essentially the first
expression of system �, but in a matrix notation. In brief, Eq. (9.39) results in 1 if
the computation of N.tC1/ is correct, given p.tC1/ and N.t/, i.e., it is in compliance
with the dynamical system rules; and 0, otherwise.

9.3.1.3 Discovering the Factor PE.tC1/

For the third term, PE.tC1/, we have knowledge of the previous state X.t/, as well as
of p.tC1/ and N.tC1/. By (9.7), we see that NN.tC1/ can be directly calculated from
N.t C 1/, i.e., having knowledge of N.t C 1/ permits us to evaluate NN.t C 1/, which,
probabilistically speaking, is also a given information. In light of this, together
with (9.13), one can see that E.t C 1/ can be evaluated if we have information
of E.t/, p.t C 1/, and NN.t C 1/, which we actually do. On account of that, PE.tC1/

can be surely determined and, analogously to the calculation of the PN.tC1/, is given
by:

PE.tC1/ D P.E.t C 1/ j N.t C 1/; p.t C 1/; X.t//

D 1ŒE.tC1/DE.t/C��QE.p.tC1/;N.tC1//�;
(9.41)

in which QE .p.t C 1/; N.t C 1// is a random vector with dim.QE/ D 1 � K and
dependence on N.t C 1/ and p.t C 1/. The k-th entry, k 2 K , of such matrix is
calculated as:

Q.k/
E .p.t C 1/; N.t C 1// D 1Œowner.k;tC1/� � 1Œ:owner.k;tC1/�: (9.42)

Note that the argument of the indicator function in (9.42) is essentially (9.13)
in a compact matrix form. Indicator functions were employed to describe the
two types of behavior that this variable can have: an increment or decrement
of the particle’s energy. Suppose that particle k 2 K is visiting a vertex that
it dominates, then only the first indicator function in (9.42) is enabled; hence,
Q.k/

E .p.t C 1/; N.t C 1// D 1. Similarly, if particle k is visiting a vertex that is being
dominated by a rival particle, then the second indicator function is enabled, yielding
Q.k/

E .p.t C 1/; N.t C 1// D �1. This behavior together with (9.41) is exactly the
expression given by (9.13) in a compact matrix form.



266 9 Case Study of Network-Based Unsupervised Learning

9.3.1.4 Discovering the Factor PS.tC1/

Lastly, for the fourth term, PS.tC1/, we have knowledge of E.tC1/, N.tC1/, p.tC1/,
and the previous internal state X.t/. By a quick analysis of (9.15), one can verify
that the calculation of the k-th entry of S.t C 1/ is completely characterized once
E.t C 1/ is known. In this way, one can surely evaluate PS.tC1/ in this scenario as
follows:

PS.tC1/ D P.S.t C 1/ j E.t C 1/; N.t C 1/; p.t C 1/; X.t//

D 1ŒS.tC1/DQS.E.tC1//�; (9.43)

in which QS.E.t C 1// is a matrix with dim.QS/ D 1 � K and has dependence on
E.t C 1/. The k-th entry, k 2 K , of such matrix is calculated as:

Q.k/
S .E.t C 1// D 1ŒE.k/.tC1/D!min�: (9.44)

9.3.1.5 The Transition Probability Function

Substituting (9.38), (9.39), (9.41), and (9.43) into (9.33), we are able to encounter
the transition probability function of the competitive dynamical system:

P.X.t C 1/ j X.t// D 1ŒN.tC1/DN.t/CQN .p.tC1//�

� 1ŒS.tC1/DQS.E.tC1//�

� 1ŒE.tC1/DE.t/C�QE.p.tC1/;N.tC1//�

� Ptransition.N.t/; p.t//

D 1ŒCompliance.t/�Ptransition.N.t/; p.t//;

(9.45)

in which Compliance.t/ is a logical expression given by:

Compliance.t/ D ŒN.t C 1/ D N.t/ C QN.p.t C 1//�

^ ŒS.t C 1/ D QS.E.t C 1//� ^ ŒE.t C 1/

D E.t/ C �QE.p.t C 1/; N.t C 1//� ; (9.46)

i.e., Compliance.t/ encompasses all the rules that have to be satisfied in order to all
the indicator functions in (9.45) produce 1. If all the values provided to (9.45) are
in compliance with the dynamic of the system, then Compliance.t/ D true and the
indicator function 1ŒCompliance.t/� yields 1; otherwise, if there is at least one measure
that does not satisfy the system, then, from (9.46), the chain of logical-AND
produces false. As a consequence, Compliance.t/ D false and the indicator function
1ŒCompliance.t/� in (9.45) yields 0, resulting in a zero-valued transition probability.
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9.3.1.6 Discovering the Distribution P.N.t//

With the transition probability function derived in the previous section, we now turn
our attention to determining the marginal distribution P.N.t// for a sufficiently large
t. First, the Markovian property of system � is demonstrated as follows.

Proposition 9.1. fX.t/ W t � 0g is a Markovian process.

Proof. We seek to infer that system � is completely characterized by only the
acquaintance of the present state, i.e., it is independent of all the past states. Having
that in mind, the probability expression to make a transition to a specific event XtC1

(a set with an element representing an arbitrary next state) in time t C 1, given the
complete history of the state trajectory, is denoted by:

P .X.t C 1/ 2 XtC1 j X.t/; : : : ; X.0//

D P

0
@ptC1 W

2
4

fN.N.t/; ptC1/

fE.N.t C 1/; ptC1/

fS.E.t C 1//

3
5 2 XtC1 j X.t/; : : : ; X.0/

1
A :

(9.47)

Noting that the determination of ptC1 only depends on N.t/ and p.t/, then:

P

0
@ptC1 W

2
4

fN.N.t/; ptC1/

fE.N.t C 1/; ptC1/

fS.E.t C 1//

3
5 2 XtC1 j X.t/; : : : ; X.0/

1
A

D P

0
@ptC1 W

2
4

fN.N.t/; ptC1/

fE.N.t C 1/; ptC1/

fS.E.t C 1//

3
5 2 XtC1 j X.t/

1
A

D P .X.t C 1/ 2 XtC1 j X.t// : (9.48)

Therefore, in view of (9.48), fX.t/ W t � 0g is a Markovian process, since it only
depends on the present state to specify the next state and, hence, the past history of
the system’s trajectory is irrelevant. �

The strategy to calculate the distribution P.N.t// is to marginalize the joint
distribution of the system’s states, i.e., P.X.0/; : : : ; X.t//, with respect to N.t/ (a
component of X.t/). Mathematically, using Proposition 1 on this joint distribution
P.X.0/; : : : ; X.t//, we get:

P.X.0/; : : : ; X.t// D P.X.t/ j X.t � 1//

� P.X.t � 1/ j X.t � 2//

� : : : � P.X.1/ j X.0//P.X.0//: (9.49)



268 9 Case Study of Network-Based Unsupervised Learning

Using the transition function that governs system �, as illustrated in (9.45), to
each shifted term in (9.49), we get:

P.X.0/; : : : ; X.t// D P.X.0//

t�1Y
uD1

�
1ŒCompliance.u/�Ptransition.N.u/; p.u//

�
; (9.50)

in which P.X.0// D P.N.0/; p.0/; E.0/; S.0//. But, we are interested
in knowing the marginal distribution N.t/ as t ! 1. We can obtain
it from the joint distribution calculated in (9.50), summing over all the
possible values of random variables with no relevance in the analysis, i.e., N
.t � 1/; : : : ; N.0/; p.t/; : : : ; p.0/; E.t/; : : : ; E.0/; S.t/; : : : ; S.0/. In doing so, it is
worth studying the limits of N.t/ for an arbitrary t, because the domain that an entry
of N.t/ can take is Œ1; 1/. With this study, we expect to find the reachable values of
every entry of matrix N.t/ for any t. In this way, values which exceed these limits
are guaranteed to happen with probability 0. Lemma 9.1 precisely supplies this
analysis.

Lemma 9.1. The maximum reachable value of N.k/
i .t/, 8.i; k/ 2 V �K ; t 2 N, is:

N.k/
imax

.t/ D

 ˙

tC1
2

� C 1; if t � 0 and aii D 0

t C 2; if t � 0 and aii > 0
: (9.51)

Proof. The proof is based on encountering the particle’s trajectory that increases
N.k/

i .t/ in the quickest manner. In this situation, we suppose particle k is generated
in vertex i; otherwise, the maximum theoretical value would never be reached in
view of the second expression in (9.24). For the sake of clarity, consider two specific
cases, both depicted in Fig. 9.10: (1) networks without self-loops and (2) networks
with self-loops.

Fig. 9.10 An arbitrary network constructed with the purpose of obtaining the largest feasible entry
of N.t/ for a given t. (a) A network without the presence of self-loops; (b) a network with self-loops
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For the first case, 8i 2 V W aii D 0. By hypothesis, particle k starts in vertex i
at t D 0. The quickest manner to increase N.k/

i .t/ happens when particle k visits a
neighbor of vertex i and immediately returns to vertex i. Repeating this trajectory
until time t, N.k/

i .t/ precisely matches the first expression in (9.51).
For the second case, 9i 2 V W aii > 0. By hypothesis, particle k starts in vertex i

at t D 0. It is clear that the quickest manner to increase N.k/
i .t/ occurs when particle

k always travels through the self-loop for all t. In view of this, the maximum value
that N.k/

i .t/ can reach is given by the second expression in (9.51). The “+2” factor
appears because the particle initially spawns at vertex i, according to the second
expression in (9.24). �

In what follows, we analyze the properties of the random vector E.t/. The upper
limit of the k-th entry of E.t/ is always !max. Thus, provided that !max < 1, the
upper limit is always well-defined. However, this entry does not only accept integer
values in-between !min and !max. Lemma 9.2 provides all reachable values of E.t/
within this interval.

Lemma 9.2. The reachable domain of E.k/.t/,8k 2 K ; t 2 N, is:

DE ,
n
!min C !max � !min

K
C n�; n D f�bnic; : : : ; bnmcg

o

[
n
!min C n�; n D

n
1; 2; : : : ;

j!max � !min

�

koo

[
n
!max � n�; n D

n
1; 2; : : : ;

j!max � !min

�

koo
; (9.52)

in which ni D !max�!min
K�

� 0 and nm D !max�!min
�

�
1 � 1

K

	 � 0.

Proof. We divide this proof in three main steps, namely the three sets that appear
in the expression in the caput of this lemma. The first set accounts for supplying all
values that are multiples of � with the offset E.k/.0/ D !min C�

!max�!min
K

	
, 8k 2 K

(see (9.25)). The minimum reachable value is given when n D ni:

ni D
�
!min C !max�!min

K

	 � !min

�
D !max � !min

K�
; (9.53)

whereas the maximum reachable value is given when n D nm:

nm D !max � �
!min C !max�!min

K

	

�
D !max � !min

�

�
1 � 1

K

�
: (9.54)

After some time, the particle k might reach one of the two possible extremes of
energy value: !min or !max. On account of the max.:/ operator in (9.13), it is also
necessary to list all multiple numbers of � with these two offsets. The second and
third sets precisely fulfill this aspect when the offsets are !min and !max, respectively.
Once the particle enters one of these sets, it never leaves them. Hence, all values
have been properly mapped. �
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Lastly, the upper limit of an arbitrary entry of S.t/ is 1, since it is a boolean-
valued variable. Observing now that P.X.0/; : : : ; X.t// D P.N.0/; p.0/; E.0/; S.0/;

: : : ; N.t/; p.t/; E.t/; S.t//, we marginalize this joint distribution with respect to N.t/
as follows:

P.N.t// D
X

�N.t/

P.X.0/; : : : ; X.t//; (9.55)

in which � N.t/ means that we sum over all the possible values of X.0/; : : : ; X.t/,
except for N.t/ which is inside X.t/ D ŒN.t/ p.t/ E.t/ S.t/�T . Using (9.50) in (9.55),
we are able to obtain P.N.t// as follows:

P.N.t// D
X

�N.t/

(
P.X.0//

t�1Y
uD1

h
1ŒCompliance.u/�Ptrans.N.u/; p.u//

i)
: (9.56)

Expanding (9.56) using Lemmas 9.1 and 9.2, we have:

P.N.t// D
X

p.1/.0/2V

X

p.2/.0/2V
: : :

X

p.K/.0/2V
: : :

X

p.K/.t/2V

�
N

.1/
1max

.0/X

N
.1/
1 .0/D1

N
.2/
1max

.0/X

N
.2/
1 .0/D1

: : :

N
.K/
Vmax .0/X

N
.K/
V .0/D1

: : :

N
.K/
Vmax .t�1/X

N
.K/
V .t�1/D1

�
X

E.1/.0/2DE

X

E.2/.0/2DE

: : :
X

E.K/.0/2DE

: : :
X

E.K/.t/2DE

�
1X

S.1/.0/D0

1X

S.2/.0/D0

: : :

1X

S.K/.0/D0

: : :

1X

S.K/.t/D0

(
P.X.0//

t�1Y
uD1

h
1ŒCompliance.u/�Ptrans.N.u/; p.u//

i)
: (9.57)

The summations in the first line of (9.57) account for passing through all possible
values of p.0/; : : : ; p.t/. The summations in the second line are responsible for
passing through all reachable values of N.0/; : : : ; N.t � 1/, where the upper limit
is set with the aid of Lemma 9.1. The third line supplies the summation over all
possible values of E.0/; : : : ; E.t/, in which it is utilized the set DE defined in
Lemma 9.2. Lastly, the fourth line summations cover all the values of S.0/; : : : ; S.t/.
Note that the logical expression Compliance.u/ and the transition matrix inside the
product are built up from all these summation indices previously fixed.
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Remark 9.3. An interesting feature added by this theoretical analysis is that the
particle competition model can also accept uncertainty revolving around its initial
state, i.e., P.X.0// D P.N.0/; p.0/; E.0/; S.0//. In other terms, the particles’ initial
locations can be conceptualized as a true distribution itself.

9.3.1.7 Discovering the Distribution of the Domination Level Matrix
P.N.t//

The distribution of the domination level matrix NN.t/ is the fundamental information
needed to group up the vertices. First, one can observe that positive integer multiples
of N.t/ compose the same NN.t/. Therefore, the mapping N.t/ ! NN.t/ is not
injective; hence, not invertible. Below, an illustrative example shows this property.

Example 9.4. Consider a network with 3 particles and 2 vertices. At time t,
suppose that the random process is able to produce two distinct configurations
for N.t/, as follows:

N.t/ D
�

1 1 1

1 2 3

�
;

N0.t/ D
�

2 2 2

2 4 6

�
:

(9.58)

Then, the setups in (9.58) applied to (9.7) make clear that both configura-
tions yield the same NN.t/ given by:

NN.t/ D
�

1=3 1=3 1=3

1=6 1=3 1=2

�
: (9.59)

In view of this, the mapping N.t/ ! NN.t/ cannot be injective nor invertible.

Before proceeding further with the deduction of how to calculate NN.t/ from N.t/,
let us present some helpful auxiliary results.
Lemma 9.3. For any given time t, the following assertions hold 8.i; k/ 2V �K :

(a) The minimum value of NN.k/
i .t/ is:

NN.k/
imin

.t/ D 1

1 C P
u2K n fkg N.u/

imax
.t/

: (9.60)
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(b) The maximum value of NN.k/
i .t/ is:

NN.k/
imax

.t/ D N.k/
imax

.t/

N.k/
imax

.t/ C .K � 1/
: (9.61)

Proof. (a) According to (9.7), the minimum value occurs if three conditions are
met: (i) particle k is not initially spawned at vertex i; (ii) particle k never visits
vertex i; and (iii) all other K � 1 particles u 2 K n fkg visit vertex i in the
quickest possible manner, i.e., they follow the trajectory given in Lemma 9.1.
In this way, vertex i is visited

P
u2K n fkg N.u/

imax
.t/ times by other particles.

However, having in mind the initial condition of N.0/ shown in the second
expression of (9.24), we must add 1 to the total number of visits received
by vertex i. By virtue of that, it is expected that the total number of visits
to be 1 C P

u2K n fkg N.u/
imax

.t/. In view of this scenario, applying (9.7) to this
configuration yields (9.60).

(b) The maximum value happens if three conditions are satisfied: (i) particle k
initially spawns at vertex i; (ii) particle k visits i in the quickest possible
manner; and (iii) all of the other particles u 2 K n fkg never visit i. In this
scenario, vertex i receives N.k/

imax
.t/C .K �1/ visits, where the second term in the

summation is due to the initialization of N.0/, as the second expression in (9.24)
reveals. This information, together with (9.7), implies (9.61). �

Remark 9.4. If the network does not have self-loops, then (9.60) reduces to:

NN.k/
imin

.t/ D 1

1 C .K � 1/N.k/
imax

.t/
: (9.62)

The following Lemma provides all reachable elements that an arbitrary entry of
NN.t/ can have.

Lemma 9.4. Denote num=den as an arbitrary irreducible fraction. Consider that the
set It retains all the reachable values of NN.k/

i .t/, 8.i; k/ 2 V � K , for a fixed t.
Then, the elements of It are composed of all elements satisfying the following
constraints:

(a) The minimum element is given by the expression in (9.60).
(b) The maximum element is given by the expression in (9.61).
(c) All the irreducible fractions within the interval delimited by (a) and (b) such

that:

I. num; den 2 N�;
II. num � N.k/

imax
.t/;

III. den � P
u2K N.u/

imax
.t/.
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Proof. (a) and (b) Straightforward from Lemma 9.3; (c) Firstly, we need to
remember that N.k/

i .t/ may only take integer values. According to (9.7), NN.k/
i .t/ D

num=den is a ratio of integer numbers. As a consequence, num and den must be
integers and clause I is demonstrated. In view of (9.7), num only registers visits
performed by a single particle. Therefore, the upper bound of it is established by
Lemma 9.1, i.e., N.k/

imax
.t/. Hence, clause II is proved. Looking at the same expression,

observe that den registers the number of visits performed by all particles. Again,
using Lemma 9.1 proves clause III. �

Another interesting feature of the set It is elucidated in the following Lemma.

Lemma 9.5. Given t � 1, the set It indicated in Lemma 9.4 is always finite.

Proof. In order to demonstrate this lemma, it is enough to verify that each set
appearing in the caput of Lemma 9.4 is finite.

(a) are (b) are scalars, hence, they are finite sets. (c) Clause I indicates a lower
bound for the numerator and the denominator. Clauses II and III reveal upper
bounds for the numerator and denominator, respectively. Also from clause I, it can
be inferred that the interval delimited by the lower and upper bounds is discrete.
Therefore, the number of irreducible fractions that can be made from these two
limits is finite.

As all the sets are finite for any t, since It is the union of all these subsets, it
follows that It is also finite for any t. �

Lemma 9.4 supplies the reachable values of an arbitrary entry of NN.t/ by means
of the definition of the set It. Next, we simply extend this notion to the space
spawned by the matrices NN.t/ with dimensions V � K, in such a way that each entry
of it must be an element of It as follows:

Mt , f NN W NN.k/
i .t/ 2 It; 8.i; k/ 2 V � K g: (9.63)

In light of all these previous consideration, we can now provide a compact way of
determining the distribution of NN.t/. Following the aforementioned strategy, P. NN.t//
can be calculated by summing over all multiples of uN.t/, u 2 f1; : : : ; tg such that
f .uN.t// D NN.t/, where f is the normalization function defined in (9.7). On account
of this, we have:

P
� NN.t/ D U W U 2 Mt

	 D
tX

uD1

P
�
f .uN.t// D U

	
; (9.64)

in which the upper limit provided in summation of (9.64) is taken using a
conservative approach. Indeed, the probability for events such that N.k/

i .t/ > N.k/
imax

.t/
is zero. By virtue of that, we can stop summing whenever any entry of matrix uN.t/
exceeds this value. We have omitted this observation from (9.64) for the sake of
clarity.
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As t ! 1, P. NN.t// provides enough information for grouping the vertices. In
this case, they are grouped accordingly to the particle that is imposing the highest
domination level. Since the domination level is a continuous random variable, the
output of this model is fuzzy.

9.3.2 Linking the Particle Competition Model and the Classical
Multiple Independent Random Walks System

Multiple random walks are modeled as dynamical systems and have been exten-
sively studied by the literature [8]. In these systems, particles cannot communicate
with each other. In effect, the model of multiple random walks can be understood as
a system with multiple single random walks stacked up. The particle competition
model that we have explored in this chapter, however, permits communication
between different particles. The communication is modeled via the domination
level matrix, which encodes the fraction of visits each vertex has received from
particles in the network. This happens because the fraction of visits is computed
by a normalization procedure that effectively entangles the walking dynamic of all
particles with one another.1

The interaction or communication between particles, nonetheless, can be turned
off when � D 0 and � D 0. This is equivalent to saying that the particle competitive
model investigated in this chapter is a generalization of the classical dynamical
system of multiple independent random walkers. Whenever � > 0, the competitive
mechanism is enabled and the combination of random-preferential interacting walks
occurs. In this case, the reanimation feature is presented depending on the choice
of �.

We now prove the assertion that when � D 0 and � D 0 holds, the particle
competition model produces the same dynamics of multiple independent random
walks.

Proposition 9.2. If � D 0 and � D 0, then system � reduces to the case of multiple
independent random walks.

Proof. First, note that, when � D 0, the influence of the transition matrix that
encodes the preferential movement, Ppref.t/, is taken away. Indeed, when � D 0,
the coupling between N.t/ and p.t/ ceases to exist, because the calculation step of
Ppref.t/ (responsible for the coupling) can be skipped. Moreover, if � D 0, then the
particles can never get exhausted. In view of these characteristics, the dynamical
system � can be easily described by a traditional Markovian process given by:

p.t C 1/ D p.t/Ptransition; (9.65)

1Recall the evaluation of each entry of the domination matrix in (9.7).
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in which Ptransition D Prand ˝ Prand ˝ : : : ˝ Prand and p.t/ is an enumerated state
encompassing all the particles, as described before. Here, the independence among
the particles is demonstrated by showing that the generated N.t/ by system � is
exactly the same as the one produced by the potential matrix of the Markov chains
theory as introduced in Definition 2.68. In other words, N.t/ can be implicitly
calculated from the stochastic process fp.t/ W t � 0g.

We now find a closed expression for N.t/ in terms of N.0/. This can be easily
done if we iterate the matrix equation N.t C 1/ D N.t/ C Q, where Q is as given
in (9.40). In doing so, we get:

N.t/ D

2
6664

1 � � � 1

1 � � � 1
:::

: : :
:::

1 � � � 1

3
7775 C

tX
iD0

2
66664

1Œp.1/.i/D1� � � � 1Œp.K/.i/D1�
1Œp.1/.i/D2� � � � 1Œp.K/.i/D2�

:::
: : :

:::

1Œp.1/.i/DV� � � � 1Œp.K/.i/DV�

3
77775

: (9.66)

Since this process is stochastic, it is worth determining the expectation of the
number of visits N.t/ given the particle’s initial location p.0/. Noting that EŒ1ŒA�� D
P.A/, we have:

EŒN.t/ j p.0/� D

2
6664

1 � � � 1

1 � � � 1
:::

: : :
:::

1 � � � 1

3
7775 C

tX
iD0

2
6664

Pi.p1.0/; 1/ � � � Pi.pK.0/; 1/

Pi.p1.0/; 2/ � � � Pi.pK.0/; 2/
:::

: : :
:::

Pi.p1.0/; V/ � � � Pi.pK.0/; V/

3
7775; (9.67)

in which Pi.pj.0/; 1/ denotes the .pj.0/; 1/-entry of Ptransition to the i-th power.
But, from the Markov chains theory, we have that the so-called truncated potential
matrix [8] is given by:

Rt.v; k/ ,
tX

iD0

Pi
transition.v; k/: (9.68)

By virtue of (9.68), each entry of the matrix equation in (9.67) can be rewritten as:

EŒN.j/
i .t/ j p.0/� D 1 C Rt.pj.0/; i/: (9.69)

From (9.69), we can infer that each particle does perform an independent random
walk according to a Markov Chain. Thus, we are able to conclude that, for � D 0

and � D 0, all the states of system � follow a traditional Markov Chain process,
except for a constant, as demonstrated in (9.69). �

Proposition 9.2 states that system � reduces to the case of multiple random walks
when � D 0 and � D 0, i.e., we could think that there is a blind competition among
the participants. Alternatively, when 0 < � � 1, some orientation is given to the
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participants, in the sense of defending their territory and not only keep adventuring
through the network with no strategy at all. In either case, the reanimation procedure
is enabled depending on the choice of �.

9.3.3 A Numerical Example

For the sake of clarity, we provide an example showing how to use the theoretical
results supplied in the previous section. We limit the demonstration for a single
iteration, which is the transition from t D 0 to t D 1. The simple example is
composed of a trivial 3-vertex regular network, identical to the one in Fig. 9.10a.
For the referred example, suppose there are K D 2 particles into the network, i.e.,
K D f1; 2g. Let particle 1 be spawned at vertex 1 and particle 2 at vertex 2, i.e., we
have certainty about the initial locations of the particles at t D 0:

P.X.0// D P

0
@N.0/ D

2
4

2 1

1 2

1 1

3
5 ; p.0/ D Œ1 2� ; E.0/; S.0/

1
A D 1; (9.70)

i.e., there is 100 % chance (certainty) that particles 1 and 2 are generated at vertices
1 and 2, respectively. Observe that N.0/, E.0/, and S(0) are chosen such as to
satisfy (9.24), (9.25), and (9.26), respectively. Otherwise, the probability should be
0, in view of (9.45). It is worth emphasizing that the competitive model accepts
uncertainty about the initial location of the particles, in a way that we could
specify different probabilities to each particle to spawn at different locations. This
characteristic is not present in [32], in which it must be fixed a certain position for
each particle.

From Fig. 9.10a we can deduce the adjacency matrix A of the network and,
therefore, determine the transition matrix associated to the random movement term
for a single particle. Recall that the random matrix is the same for all of the particles.
Then, applying (9.2) on A, we get:

Prand D
2
4

0 0:50 0:50

0:50 0 0:50

0:50 0:50 0

3
5 : (9.71)

Given N.0/, we can readily establish NN.0/ with the aid of (9.7):

NN.0/ D
2
4

0:67 0:33

0:33 0:67

0:50 0:50

3
5 : (9.72)
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Using (9.8) we are able to calculate the matrices associated to the preferential
movement policy for each particle in the network as:

P.1/
pref.0/ D

2
4

0 0:40 0:60

0:57 0 0:43

0:67 0:33 0

3
5 ; (9.73)

P.2/
pref.0/ D

2
4

0 0:57 0:43

0:40 0 0:60

0:33 0:67 0

3
5 : (9.74)

In order to ease the calculations, let us assume that � D 1, so that (9.20)
reduces to Ptransition.0/ D P.1/

pref.0/ ˝ P.2/
pref.0/ at time t D 0,2 which is a matrix

with dimensions 9 � 9 that is given by:

Ptransition.0/ D

2
666666666666664

0 0 0 0 0:228 0:172 0 0:342 0:258

0 0 0 0:160 0 0:240 0:240 0 0:360

0 0 0 0:132 0:268 0 0:198 0:402 0

0 0:325 0:245 0 0 0 0 0:245 0:185

0:228 0 0:342 0 0 0 0:172 0 0:258

0:188 0:382 0 0 0 0 0:142 0:288 0

0 0:382 0:288 0 0:188 0:142 0 0 0

0:268 0 0:402 0:132 0 0:198 0 0 0

0:221 0:449 0 0:109 0:221 0 0 0 0

3
777777777777775

:

(9.75)

Since in the initial condition depicted in (9.70) particles 1 and 2 start out at vertices
1 and 2, respectively, the enumerated scalar state for the matters of calculating
p.t C 1/ is .1; 2/ ! 2. Hence, we turn our attention to the second row of
Ptransition.0/, which completely characterizes the transition probabilities for the next
state of the dynamical system. A quick analysis of the second row in (9.75) shows
that, out of the 9 possible “next states” of the system, only 4 are plausible. (The
remaining states have probability 0 to be reached.) In this way:

P

0
@N.1/ D

2
4

2 2

2 2

1 1

3
5 ; p.1/ D �

2 1



; E.1/; S.1/ j X.0/

1
A D 0:160; (9.76)

P

0
@N.1/ D

2
4

2 1

2 2

1 2

3
5 ; p.1/ D �

2 3



; E.1/; S.1/ j X.0/

1
A D 0:240; (9.77)

2Recall that all particles are active at the initial state in view of (9.26).
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P

0
@N.1/ D

2
4

2 2

1 2

2 1

3
5 ; p.1/ D �

3 1



; E.1/; S.1/ j X.0/

1
A D 0:240; (9.78)

P

0
@N.1/ D

2
4

2 1

1 2

2 2

3
5 ; p.1/ D �

3 3



; E.1/; S.1/ j X.0/

1
A D 0:360; (9.79)

in which X.0/ is as given in (9.70). Equations (9.76)–(9.79) match our intuition
if we take a careful look at Fig. 9.10a: self-looping is not allowed, so the state
space that is probabilistically possible of happening can only be these previous 4

states. In other terms, starting from vertex 1, there are only two different choices
that the particle can make: either visit vertex 2 or 3. The same reasoning can be
applied when we start at vertex 2. Since it is a joint distribution, we multiply
these factors, which totalizes 4 different states. Furthermore, as we have fixed
� D 1, it is expected that the transition probabilities will be heavily dependent
on the domination levels imposed on the neighboring vertices. In this case, strongly
dominated vertices constitute repulsive forces that act against rival particles. In this
regard, the preferential or defensive behavior of these particles prevents particles
from visiting these type of vertices. This is exactly symbolized in (9.79), which
denotes the transition probability .1; 2/ ! .3; 3/ and also possesses the highest
transition probability, in account of the neutrality of vertex 3, as opposed to the
remaining two vertices.

Remark 9.5. Alternatively, we could have used the collection of two matrices 3�3,
as given in (9.73) and (9.74) with no loss of generality. Here, we clarify this concept
by calculating a single entry of Ptransition.0/ using this methodology. Consider we
are to calculate the probability according to (9.76), i.e., particle 1 performs a
transition from vertex 1 to vertex 2 and particle 2 executes a transition from vertex
2 to vertex 1. For the former case, according to the particle 1’s transition matrix
(see (9.73)) we have P.1/

pref.0/.1; 2/ D 0:40. Likewise, for the last case (see (9.74)),

we have P.2/
pref.0/.2; 1/ D 0:40. Remembering that p.0/ D Œ1 2� in a scalar form

corresponds to the second state of Ptransition and p.1/ D Œ2 1� corresponds to the
fourth state, then Ptransition.0/.2; 4/ D P.1/

pref.0/.1; 2/�P.2/
pref.0/.2; 1/ D 0:40�0:40 D

0:16, which is equal to the corresponding entry of the matrix in (9.75).

Before doing the calculation of the marginal distribution P.N.1//, we are
required to fix an upper limit for an arbitrary entry of the matrix N.1/. This is readily
evaluated from (9.51), which results in N.k/

imax
.1/ D N.k/

imax
.1/ D 2, 8.i; k/ 2 V � K ,

implying that we are only needed to take all numerical combinations for the matrix
N.0/ such that each entry may only take the values f1; 2g, since larger values
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yield probability 0 according to Lemma 9.1. Moreover, we need to iterate through
every feasible value of every entry of E.0/ and E.1/. In order to do so, we fix
� D 0:25, !min D 0, and !max D 1. With that, we are able to make use of
Lemma 9.2, which yields E.t/ 2 f0; 0:25; 0:5; 0:75; 1g. The limits of the remaining
system variables S.0/ and S.1/ are straightforward. In the present conditions, we
have enough information to calculate the marginal distribution P.N.1//, according
to (9.57):

P

0
@N.1/ D

2
4

2 2

2 2

1 1

3
5

1
A D 1 � 0:160 D 0:160; (9.80)

P

0
@N.1/ D

2
4

2 1

2 2

1 2

3
5

1
A D 1 � 0:240 D 0:240; (9.81)

P

0
@N.1/ D

2
4

2 2

1 2

2 1

3
5

1
A D 1 � 0:240 D 0:240; (9.82)

P

0
@N.1/ D

2
4

2 1

1 2

2 2

3
5

1
A D 1 � 0:360 D 0:360: (9.83)

As the last goal, our task is to determine the distribution P. NN.1//. According to
the specified steps in the previous section, we need to find all irreducible fractions
that lie within the interval Œ0; 1� with the constraints derived in the previous section.
This means that we only have to consider entries of matrix NN.t/ that contain
elements of I1; the remainder NN.t/ are infeasible and, thus, occur with probability 0.
In view of the constraints previously enumerated, I1 D f1=4; 1=3; 1=2; 2=3; 3=4g.
Observing that we have the complete distribution of N.1/, it is an easy task to
apply (9.64), as follows:

P

0
@ NN.1/ D

2
4

1=2 1=2

1=3 2=3

1=2 1=2

3
5

1
A D 0:160; (9.84)

P

0
@ NN.1/ D

2
4

2=3 1=3

1=2 1=2

1=3 2=3

3
5

1
A D 0:240; (9.85)

P

0
@ NN.1/ D

2
4

1=2 1=2

1=3 2=3

2=3 1=3

3
5

1
A D 0:240; (9.86)
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P

0
@ NN.1/ D

2
4

2=3 1=3

1=3 2=3

1=2 1=2

3
5

1
A D 0:360: (9.87)

It is noteworthy to reinforce that the mapping between the probabilities of N.t/
and NN.t/ is not bijective: in this special simple case that we are studying, we did
not have distinct N.t/ that could generate the same NN.t/, but as t increases, this is
likely to happen quite frequently. This process is repeated until a sufficiently large t
or until the system converges to a quasi-stationary state of NN.t/, as discussed in the
empirical section.

9.4 Numerical Analysis of the Detection of Overlapping
Vertices and Communities

In this section, some simulation results are presented with the purpose of assessing
the effectiveness of the particle competition technique on detecting overlapping
vertices and communities. Note that the index that estimates the overlapping nature
of each network vertex is computed using (9.28). The obtained results are also
compared to classical overlap vertex measures [11, 12].

9.4.1 Zachary’s Karate Club Network

First, the particle competition technique is applied to detect fuzzy community
structure in the Zachary’s “karate club” network [42]. This is a well-known
network from the social science literature, which has become a benchmark test for
community detection algorithms. This network exhibits the pattern of friendship
among 34 members of a club at an American University in the 1970s. The members
are represented by vertices and an edge exists between two members if they know
each other. Shortly after the formation of the network, the club dismembered in
two as the consequence of an internal dispute, making it an interesting problem
for detecting communities. Figure 9.11 shows the outcome of the community
detection task. The red (dark gray) and blue (gray) colors denote the communities
detected by the algorithm. Only vertex 3 (the yellow or light gray vertex) is
incorrectly grouped as a member of the red (dark gray) community. In the literature,
vertices 3 (e.g., see [13]) and 10 (e.g., see [29]) are often misclassified by many
community detection algorithms. This happens because the number of edges that
they share between the two communities is the same, i.e., they are inherently
overlapping, making their clustering a hard problem. We apply the overlapping
index of the particle competition model and report the results in Fig. 9.12. We see
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Fig. 9.11 Community detection result in the Zachary’s karate club network when we apply the
particle competition method. The red (dark gray) and blue (gray) colors denote the detected
communities. Only the yellow or light gray vertex (vertex 3 in the original database) is incorrectly
grouped. Reproduced from [36] with permission from Elsevier
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Fig. 9.12 Result of the calculation of the overlapping index for all vertices in the Zachary’s “karate
club” network. Reproduced from [36] with permission from Elsevier

that vertices 3 and 10 show the highest overlapping indices, confirming the previous
analysis. Moreover, vertices 9, 14, 20, 29, and 32 also present a significant level of
overlapping characteristics, since these are placed in the borders of each community.
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Fig. 9.13 Dolphin Social Network observed by Lusseau. K D 2 and � D 0:6. The five vertices
with the highest overlapping structure are displayed with larger sizes. Reproduced from [36] with
permission from Elsevier

9.4.2 Dolphin Social Network

The Dolphin Social Network [26] is composed of 62 bottlenose dolphins living
in Doubtful Sound, New Zealand. In this case, we consider that the dolphins
represent the vertices, whereas edges between dolphin pairs are established by
observation when there is a statistically significant frequent association between
them. Figure 9.13 indicates the community detection outcome of the particle
competition technique. The five most overlapping vertices are displayed in larger
sizes. In this case, the number of particles that maximizes hR.t/i is K D 2, which
corresponds to the division of the real problem indicated by Lusseau. The split into
two communities seems to match the known division of the dolphin community,
except for the dolphin “PL,” which is a member of the blue (gray) community.
Based on a 2-year research period, Lusseau reported that the bottlenose dolphins
segregated into two communities, apparently by virtue of the disappearance of the
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dolphins located at the boundaries of each of the communities. When some of
these dolphins later reappeared, the two halves of the network joined together once
more. Surprisingly, these border dolphins are the ones that the particle competition
algorithm captures as the vertices with the most overlapping nature, as we can
verify in Fig. 9.13 from the larger vertices, i.e., “DN63,” “Knit,” “PL,” “SN89,” and
“SN100.”

9.4.3 Les misérables Novel Network

Les Misérables is an interaction network between major characters comprising the
Victor Hugo’s sprawling novel of crime and redemption in post-restoration France.
Using the list of 77 character appearances by scene, compiled by Knuth [18], the
network was constructed in a way that vertices represent characters and an edge
between two vertices represents co-appearance of the corresponding characters in
one or more scenes [30]. In this case, the quantity hR.t/i is maximized when K D 6.
Figure 9.14 shows the outcome of the particle competition technique, along with
the 10 most overlapping vertices portrayed in larger sizes. The communities clearly
reflect the subplot structure of the book. As one can expect, the protagonist Jean
Valjean and his nemesis, the police officer Javert, are captured as being the 2 most
overlapping vertices of the network, since they are central to the Hugo’s play and
form the hubs of communities composed of their respective adherents.

Fig. 9.14 Hugo’s sprawling novel of crime and redemption in post-restoration France entitled
Les Misérables. K D 6 and � D 0:6. The 10 vertices with the highest overlapping structure are
depicted with larger sizes. Reproduced from [36] with permission from Elsevier
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9.5 Application: Handwritten Digits and Letters Clustering

In order to give a concrete vision of the particle competition model, we here review
the application in data clustering for the particle competitive method presented in
[36]. We employ three real-world data sets that are composed of handwritten digits
and letters, which are the USPS, the MNIST, and the Letter Recognition data sets.

Section 9.5.1 briefly discusses on the employed data sets. Section 9.5.2 applies
the index for estimating the most likely number of groups in these three data sets.
Finally, Sect. 9.5.3 provides the data clustering results.

9.5.1 Brief Information of the Handwritten Digits
and Letters Data Sets

The data sets in which the particle competition model is tested against are given in
the following:

• USPS data set: Comprised of 9298 images of handwritten digits. The digits 0

to 9 have 1553, 1269, 929, 824, 852, 716, 834, 792, 708, and 821 samples
respectively. The US Postal Service (USPS) digits data were gathered at the
Center of Excellence in Document Analysis and Recognition (CEDAR) at SUNY
Buffalo, as part of a project sponsored by the US Postal Service. For more details
about this data set, refer to [15]. Each image has dimensions of 16 � 16 pixels,
with 256 grey levels per pixel. We employ the weighted eigenvalue similarity
measure as defined in Sect. 8.6.3. Instead of using 16 eigenvalues, we only
work with the four greatest ones. In this case, we use the following ˇ function:
ˇ.x/ D 16 exp. x

3
/.

• MNIST data set: Originally composed of images with dimensions 28 � 28. We
only use the public set composed of 10;000 vertices. Moreover, we make use of
the dissimilarity measure based on the first 4 eigenvalues of each image out of 28

eigenvalues. The same ˇ function employed in the USPS data set is used here.
More information is given in Sect. 8.6.2.

• Letter Recognition data set: Composed of characteristic vectors with 16 entries.
There are 20;000 vertices.

Since none of these data sets are in a network form, the methodology is divided
into two general steps: the network formation and the data clustering tasks. In
the first, we use the k-nearest neighbor network formation technique with k D 3

after we apply a preprocessing step. In this preprocessing, we standardize the data
such as to have zero mean and unitary standard deviation. As for the distance
measure, we either use the weighted eigenvalue dissimilarity (for the first two data
sets above) or the Euclidean distance (for the last one). The reason behind not
using the weighted eigenvalue on the third data set is because the samples are not
provided as images, but as image descriptors. Since the latter is formed by merely
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scalars, we cannot apply the dissimilarity measure. In the second step, the data
clustering algorithm based on particle competition is applied. As we are dealing
with unsupervised learning, we do not use any external information, such as labels or
exogenous knowledge. Instead, we limit ourselves to discovering explicit or implicit
relationships among the data by the mechanism of particle competition.

9.5.2 Determining the Optimal Number of Particles
and Clusters

Figure 9.15a–c show the determination of the optimal K for the USPS, MNIST, and
Letter Recognition data sets, respectively. One can verify that hR.t/i is maximized
exactly when the number of particles is equal to the number of clusters in the
network, confirming the effectiveness of such heuristic.

9.5.3 Handwritten Data Clustering

Here, we show “digit” and “letter” cluster detection results using the particle
competition algorithm. Table 9.1 supplies details about the algorithms chosen for
comparison matters. The genetic algorithm implemented in the Global Optimization
Toolbox of MATLAB is used to optimize the parameters of the particle competition
algorithm. Specifically, the � parameter is optimized over the range 0:2 � � � 0:8

and its optimal values for the USPS, MNIST, and Letter Recognition data sets are
0:58, 0:60, 0:60, respectively. The number of particles to be inserted is determined
according to the previous analysis, i.e., we choose the number of particles that
maximizes the quantity hR.t/i measure, which are 10, 10, and 26 for the USPS,
MNIST, and Letter Recognition data sets, respectively.

Table 9.2 presents the data clustering rate reached by the particle competition
method and the aforementioned competing algorithms. Some of these results are
readily extracted from [33] and [23]. Within this table, we have provided the
Average Rank of each algorithm, which is calculated as follows: (1) for each data
set we rank the algorithms according to their average performance (average data
clustering accuracy), i.e., the best algorithm is ranked as 1, the second best one is
ranked as 2, and so on; (2) for each algorithm, the Average Rank is given by the
average value of its rank achieved in all the data sets. As we can verify by looking
at the Average Rank column, the stochastic competition algorithm has reached one
of the best positions, showing the effectiveness of the particle competition scheme.

In order to further verify the robustness of the particle competition method, we
inspect the samples that compose a same cluster. Specifically, Figs. 9.16 and 9.17
show some samples of the clusters representing the pattern “2” and “5”, respectively,
of the MNIST data set. These samples are captured using the following strategy: we
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Fig. 9.15 Determination of the optimal number of particles K (the optimal number of clusters)
in real-world data sets. The number of classes that each data set originally possesses are: (a) the
USPS data set has 10 clusters (each cluster corresponding to a number from “0” to “9”); (b) the
MNIST data set has 10 clusters (each cluster corresponding to a number from “0” to “9”); and
(c) the Letter Recognition data set has 26 clusters (each cluster corresponding to a letter from
the English alphabet (“A” to “Z”)). 20 independent runs are performed and the average value is
reported. Reproduced from [37] with permission from Springer

Table 9.1 Description of the competing state-of-the-art data clustering
techniques

Technique Reference

Gaussian mixture Model (GMM) [5]

K-Means [27]

Locally consistent Gaussian mixture Model (LCGMM) [23]

Spectral clustering algorithm with normalized cut (Ncut) [34]

Ncut embedding all (NcutEmbAll) [33]

Ncut embedding maximum (NcutEmbMax) [33]

Reproduced from [37] with permission from Springer
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Table 9.2 Data clustering accuracy reached by the particle competition technique and
the competing methods listed in Table 9.1

USPS MNIST Letter recognition Avg. rank

LCGMM 73.83 73.60 93.03 2.33

GMM 67.30 66.60 91.24 5.33

K-Means 69.80 53.10 87.94 6.33

NCut 69.34 68.80 88.72 5.67

NCutEmbAll 72.72 75.10 90.07 3.67

NCutEmbMax 72.97 75.63 90.59 2.67

Particle competition technique 80.46 74.53 91.37 2.00

For the stochastic methods, such as the particle competition method, thirty independent
runs were performed and the corresponding mean is provided. Reproduced from [37]
with permission from Springer

Fig. 9.16 A broad set of samples that were classified as being member of the cluster representing
the pattern “2”. Note that samples that are adjacent are similar with regard to the weighted
eigenvalue dissimilarity function. The transitions from the sample (a)–(g) were captured from the
maximum geodesic distance between two vertices in the cluster representing pattern 2. In this
case, the diameter of such cluster is 17. We have only provided 7 representative samples above.
Reproduced from [37] with permission from Springer

Fig. 9.17 A broad set of samples that were classified as being member of the cluster representing
the pattern “5”. Likewise the previous figure, adjacent samples are more similar to each other than
distance samples. Reproduced from [37] with permission from Springer

compute the vertices that compose the maximum geodesic distance of the cluster
representing each pattern (cluster diameter). Now, we select a representative subset
of vertices composing the cluster diameter trajectory for illustrative purposes. In
these figures, samples that are adjacent are more similar than those distant from one
to another. On the basis of this analysis, we conclude that the graph representation
has successfully captured several variations of these number patterns each of which
in a single representative cluster, showing the robustness of the model.
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9.6 Chapter Remarks

In this chapter, a rigorous definition of a competitive learning scheme in complex
networks has been studied, whose foundations are biologically inspired by the
competition process taking place in many nature and social systems. In this model,
several particles navigate in the network to explore their territory and, at the same
time, attempt to defend their territory from rival particles. If a particle frequently
visits a specific vertex, it occurs that the domination level of the visiting particle
on that vertex is strengthened. Concurrently to that, the domination levels of all of
the other particles on the same vertex are weakened. In the long-run dynamic, each
particle is expected to be confined within a community of the network.

The particle competition model is nonlinear and stochastic. Owing to the
mathematical formality that the model is built upon, theoretical and empirical
analyses have been conducted to better understand the underlying properties of the
competitive model. A convergence analysis has shown that the dynamical system
presents structural stability rather than asymptotic stability. This is a welcomed
characteristic, since it better describes the uncertainty that revolves around real-
world problems, which have noise and uncontrolled variables. In addition, due
to this analysis, we have found that the model is a generalization of the process
of single independent random walkers in a network. Specifically, we have shown
that the model’s behavior acts as multiple interacting walkers in a network.
The interaction is molded in a competitive way, by using a probabilistic convex
combination of random and preferential walks. Such generalization is realized by
calibrating the values of the parameter � and � of the system. If � D 0, the model
reduces to multiple non-interacting random walks; but, when � > 0, the interaction
among particles is turned on.

Furthermore, measures for detecting overlapping structures and for estimating
the number of actual clusters or communities in a network have been discussed,
whose calculations are embedded into the model’s own algorithm. This permits their
calculation to be performed in an efficient way.

Simulations have been carried out with the purpose of quantifying the robustness
of the particle competition scheme on artificial and real-world data sets for the
tasks of data clustering and community detection. Computer simulations have
revealed that the model works well for community detection and for data clustering
tasks. Finally, an application on handwritten digits and letters recognition has
been provided and high clustering accuracies have been obtained. Moreover, we
have analyzed the composition of the clusters formed in the MNIST data set and
have verified that, within a specific cluster, several variations of the same pattern
can be encountered, confirming the robustness of the model.
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