
Chapter 6
Network-Based Unsupervised Learning

Abstract In this chapter, we present representative state-of-the-art unsupervised
learning techniques that rely on networked environments to conduct the learning
process. In a typical unsupervised task, no external knowledge is presented to the
algorithm. As such, the learning process is guided by the provided data, since no
prior knowledge about the existing groups is supplied. For network-based methods,
the learning procedure is performed by navigating in networks that are constructed
from the input data set according to some similarity criterion. As networks naturally
embody topological information of data relationships, network-based methods take
advantage over algorithms that make use of raw, vector-based data. Moreover,
network-based methods can be conceived as a general solution for unsupervised
learning tasks even for data sets that are not represented by networks. In this case, we
can apply network formation techniques on that data set to generate a network from
the input data. Once the network is constructed, all of the network-based techniques
described in this chapter can effectively be employed.

6.1 Introduction

In this chapter, we shift our attention to network-based unsupervised methods.
The data representation as networks enables us to systematically investigate the
topology and function of data relationships using well-understood graph-theoretical
concepts that can be employed to uncover structural and dynamical properties of the
underlying constructed network.

One of the main tasks of unsupervised learning is data clustering. In essence,
data clustering can be considered as a community detection problem once a
network is constructed from the original data set. In this transformation, each
vertex corresponds to a data item and connections are established according to a
certain similarity measure. The clusters in a community detection task are often
denominated communities. A community is defined as a subgraph whose vertices
are densely connected within itself, but sparsely connected with the remainder of the
network. Figure 6.1 illustrates typical processes in data clustering and in community
detection. In the former, unstructured or raw data are received by a data clustering
procedure that finds similar groups in accordance with a similarity criterion. In the
latter, the community detection procedure uncovers communities in the network.

© Springer International Publishing Switzerland 2016
T.C. Silva, L. Zhao, Machine Learning in Complex Networks,
DOI 10.1007/978-3-319-17290-3_6

143

144 6 Network-Based Unsupervised Learning

Unstructured data

Network data

Fig. 6.1 Similarities between data clustering and community detection tasks. The dotted hori-
zontal line represents the frontier of unstructured data and networked data. A network formation
method interfaces between unstructured and networked data. Note that each of the data items is
represented by a vertex in the networked domain

Topological information of the data, such as direct or indirect neighborhoods, can
be readily employed by the community detection method. Observe that the network
formation method serves as interface between unstructured and networked data.

Network-based methods are specially useful when we deal with clusters of arbi-
trary shape, proximity, orientation, and varying densities [36]. Since in unsupervised
learning methods we usually do not know how the clusters are shaped nor how many
of them exist, network-based methods stand as good candidates for tasks related
to data clustering. Consider that we use as input the data set depicted in Fig. 6.2a
in the schematic shown in Fig. 6.1. For the data clustering method in unstructured
data, we choose the well-known K-Means procedure with a number of clusters
calibrated to 2. For the community detection task in networked data, we use the
Chameleon technique [36], which is a network-based unsupervised learning method
that we discuss in this chapter. We employ the k-nearest neighbor technique with
k D 7 as the network formation technique that interfaces between unstructured
and networked data. The clustering result for the K-Means technique is displayed
in Fig. 6.2b, while the outcome of Chameleon is portrayed in Fig. 6.2c. While K-
Means has difficulty in clustering arbitrary-shaped clusters due to its strong bias on
circular-shaped items, network-based methods can provide robust results as they are
guided by the network topology in the learning process. This is because network-
based methods use the network topology to derive its decisions, in a way that we do
not need assumptions about the data distribution nor about the number of clusters or
communities. Consequently, we prevent the insertion of wrong biases over the data
distributions that can severely hamper the quality of the learning process.

6.1 Introduction 145

Fig. 6.2 Comparison of
vector- and network-based
methods in data clustering
and community detection
tasks, respectively. We use the
K-Means algorithm with
K = 2 in Fig. 6.2b. In
Fig. 6.2c, we first construct
the network from the
unstructured data in Fig. 6.2a
using k D 7 and then apply
the Chameleon. (a) Initial
state (vector-based data);
(b) Results for vector-based
learning method; (c) Results
for network-based learning
method

a

b

c

146 6 Network-Based Unsupervised Learning

6.2 Community Detection

In this section, we introduce the main concepts of community detection, as well as
a brief description of the related state-of-the-art techniques. In addition, we present
some broadly accepted community detection benchmarks.

6.2.1 Relevant Concepts and Motivations

Complex networks are found in fields as diverse as the Internet, the World Wide
Web, food webs, and biological and social organizations [7]. Even though the main
features of complex networks have been properly described at the microscale level,
such as strict-local properties of network vertices, and also at the macroscale level,
such as global properties of the entire network, some of the characteristics lying at
a mesoscale level are still elusive.

Nonetheless, modern science related to networks brought a substantial advance
in understanding complex networks. One of the features evident and prominent in
complex networks is the presence of mesoscale structures called communities. These
communities can carry functional, relational, or even social common concepts.
Though the formal definition of a community is controversial in the literature, the
essence of a community is straightforward: each community is defined as a subgraph
whose vertices are densely interconnected, and, at the same time, these vertices
have few links with the remainder of the network. Figure 6.3 portrays a network
in which four well-defined communities can be observed, because the quantity
of edges between members of the same community is perceptively larger than
the number of edges connecting different communities. The community detection
task in complex networks has become an important topic in graphs and data
mining [16, 22, 57]. In graph theory, community detection corresponds to the graph
partitioning problem, which is an NP-complete problem [22].

The study of community detection is very important for understanding various
phenomena in complex networks [32]. Modular structure introduces important
heterogeneities in complex networks. Each module, for example, can have different
local statistics [55]; some modules may have many connections, while other
modules may be sparse. When there is large variation among communities, global
values of statistical measures can be misleading. The presence of modular structure
may also alter the way in which dynamical processes (e.g. spreading processes and
synchronization [3]) unfold on the network. In biological networks, communities
correspond to functional modules in which module members function coherently
to perform essential cellular tasks. Both metabolic networks [69] and protein
phosphorylation networks [35], for instance, have modular structures.

A promising computational approach to discovering functions of genes and
proteins is to identify functional modules in biological networks. Since modules
are sets of genes or proteins that perform biological processes together, it is

6.2 Community Detection 147

Fig. 6.3 A network that presents four well-defined communities. The different vertices’ colors or
formats denote the communities to which each of them belong

possible to classify proteins with unknown functions by determining to what module
they belong [63]. Correct identification of functional modules has also important
biotechnological and drug design applications. In many cases, the deletion of a
certain function may be necessary and this can be achieved by removing the entire
functional module.

Several distinct ways of detecting modules in complex networks have been
proposed [22]. One popular approach considers communities as sets of adjacent
motifs [63], other methods are inspired by information theory [71], message
passing [26], or Bayesian principles [34, 58]. A widely used class of algorithms
is based on the optimization of a quantity called modularity [57].

Another important aspect related to community structure is of the hierarchical
organization displayed by most networked systems in the real world [22]. Real
networks are usually composed of communities including smaller communities,
which in turn include even smaller communities, and so on. The human body offers a
paradigmatic example of hierarchical organization: it is composed by organs, organs
are composed by tissues, tissues by cells, etc. Another example is represented by
business firms, which are characterized by a pyramidal organization, going from the

148 6 Network-Based Unsupervised Learning

workers to the president, with intermediate levels corresponding to work groups,
departments and management. Other example is the network formed by all human
acquaintances. While at a local scale we expect to find many communities formed
by families and friends, on a larger scale, the expected communities turn into
cities, regions, followed by countries, and, finally, probably continental areas. The
generation and evolution of systems organized in interrelated stable subsystems are
much quicker than unstructured systems. One evidence corroborating this fact is
that it is much easier to assemble the smallest sub-parts of a structured system
first and then use them as building blocks to build up larger structures, until the
entire system is assembled. In view of these examples, it is clear that the study of
community presence in networks plays an important role in understanding natural
concepts encountered in various branches of science.

Another interesting topic is of overlapping communities. We have seen that
the identification of modules and their boundaries enables us to classify vertices
according to their structural positions in those modules. So, vertices with a central
position in their clusters, i.e., which share large numbers of edges with other
group partners, may have important functions of control and stability within the
group. Notwithstanding, vertices lying at the boundaries between these modules
also play an important role of mediation and lead the relationships and exchanges
between different communities. These kinds of vertices are termed as overlapping
vertices [22].

Formally, overlapping vertices are defined as those vertices that are members of
more than one community or class at the same time [63]. For example, in a network
of semantic association concepts [38], the term “brilliant” may be a member of
several classes, such as the one representing the concepts related to “light,” to
“astronomy,” “color,” and so on [63]. In a social network, each person naturally
belongs to the company where he/she works and also to the group representing the
members of his/her family. Given this scenario, the discovery of overlapping vertices
and communities is important for data analysis in general.

6.2.2 Mathematical Formalization and Fundamental
Assumptions

Unsupervised learning methods are guided exclusively by the intrinsic structure of
the data items throughout the learning process, i.e., without any sort of external
knowledge. Consider that X D fx1; x2; : : : ; xNg is a data set, where N D jX j is
the total number of data items involved in the learning process. Techniques that are
members of the network-based unsupervised learning paradigm always accept as
input a network. In this respect, we can face the following scenarios:

6.2 Community Detection 149

• The items in the data set are already in the network format, i.e., the vertex set
V coincides with the set of data items X and the set of edges E is given.
In this case, no preprocessing is needed. Well-known examples that already are in
the form of networks include: WWW, Internet, transport and financial networks.
Data sets of this type are inherent candidates to serve as input to network-based
unsupervised learning methods.

• The items in the data set are presented in a raw, vector-based format. Normally,
X D V , but we can also use compacted or expanded sets of X to build
up V . The edge set E is unknown and must be estimated using a network
construction technique. Normally, the set of edges is constructed according to
some similarity criteria that are imposed by the network construction process.
Figure 6.1 illustrates this process. In Chap. 4, we have presented several manners
to deal with this problem. Here, we assume that there exists such a function of
network formation technique that simply transforms the vector-based format to a
network.

Suppose the network G D hV ;E i is obtained from the input data items.
Then, the unsupervised learning problem is now posed in a network-based form.
Recall that data clustering turns into a community detection task when the network
structure of the data distribution is well-conditioned.

Though intuitive at first sight, the problem of community detection is actually
not well defined. The main elements that make up the community detection task
per se, that is, the concepts of community and partition, are not rigorously defined.
In view of that, one must accept some degree of arbitrariness or common sense [22].
In fact, some ambiguities are hidden and there are often many equally legitimate
ways of resolving them. It is not surprising, thus, that there are plenty of recipes
in the literature and that people do not even try to ground the problem on shared
definitions.

One point that is at least common sense in the literature is of the identification
of the structural constraint for the existence of communities. In this regard, the
existence of structural and well-defined communities is only possible when graphs
are sparse. Sparseness arises when the number of edges E is of the order of the
number of vertices V in non-weighted graphs, i.e. E D O.V/. If E � V , the
distribution of edges among the vertices is too homogeneous for communities to
make sense. In this case, the problem turns into something rather different, close
to data clustering, as the network structure does not convey relevant information
to identify the community structures. The main difference between a community
detection and data clustering task is that, while communities in graphs are related,
explicitly or implicitly, to the concept of edge density (inside versus outside the
community), in data clustering communities are sets of points which are “close” to
each other, with respect to a measure of distance or similarity, defined for each pair
of points [22].

150 6 Network-Based Unsupervised Learning

6.2.3 Overview of the State-of-the-Art Techniques

Given that the task of accurately solving a problem of community detection
is NP-complete, many efforts have been expended towards the development
of approximate and efficient solutions. Some of these solutions include the
spectral method [54], the betweenness-based technique [57], modularity greedy
optimization [52], detection of communities based on the Potts model [70],
synchronization [3], information theory [24], and random walks [92]. A thorough
review on this topic is presented in [22].

Regarding the techniques which aim at detecting overlapping vertices and
communities, various methods have been proposed in the literature [19, 43, 59, 63,
77, 79, 90]. In the research in [90], the authors combine the idea of the modularity
function Q, spectral relaxation, and fuzzy C-Means clustering in order to build a
new modularity function based on a generalized Newman and Girvan’s Q function,
which is an approximate mapping of the network vertices into the Euclidean space.
In the study in [63], the community structure is uncovered by means of a k-clique
percolation and the overlaps among communities are guaranteed by the fact that one
vertex can participate in more than one clique. However, the k-clique percolation
method gives rise to an incomplete cover of the network, i.e., some vertices may not
belong to any community. In addition, the hierarchical structure may not be revealed
for a given k. In contrast, the investigation in [43] introduces an algorithm that
concomitantly finds both overlapping communities and the hierarchical structure
based on a fitness function and a resolution parameter. In turn, the research
in [19] proposes a method to recognize the overlapping community structure by
partitioning a graph built from the original network. A perceptive drawback of the
majority of these techniques resides in the fact that the detection of the overlapping
characteristics of the input network is performed as a separated or dedicated process
apart from the standard community detection technique. In this way, additional
computational time is required. As a result, the whole process may have high
computational complexity.

6.2.4 Community Detection Benchmarks

In this section, we introduce two community detection benchmarks, which are
frequently used for comparing different competing techniques.

Benchmark of Girvan and Newman [28] This benchmark uses an agglomerative
method that groups V initially isolated vertices into M communities. This is
managed by creating links between two vertices with probability pin, if they
belong to the same community, or with probability pout, if they belong to distinct
communities. The values of pin and pout can be arbitrarily chosen to control the

6.3 Representative Network-Based Unsupervised Learning Techniques 151

number of intracommunity and intercommunity links, zin and zout, respectively,
for an arbitrary average network degree Nk. On the basis of these parameters, we
are able to define the fraction of intracommunity links zin=Nk and, likewise, the
fraction of intercommunity links zout=Nk. The quantity zout=Nk defines the mixture of
the communities, i.e., as zout=Nk increases, the communities become more mixed and
harder to be identified.

The benchmark works by varying the mixture of communities, i.e., zout=Nk, for
a fixed network comprising V vertices and M communities. For each run, the
community detection accuracy is registered. After all of the runs have been properly
performed, a curve is plotted in a two-dimensional graph. This curve serves the
purpose of comparing the community detection performance of a control algorithm
in relation to competing techniques.

Benchmark of Lancichinatti et al. [42] The Girvan-Newman’s benchmark in its
original form suffers from several drawbacks, among which we can highlight:

• Each community has necessarily a random network topology. Therefore, the
vertices have similar degrees and therefore have trivial link relationships; and

• Communities are forced to be of the same size.

Motivated by the fact that real-world networks are characterized by heteroge-
neous distributions of vertex degree, whose tails often decay as power laws, the
benchmark of Lancichinatti et al. generates artificial networks with properties that
overcome the size homogeneity of communities and the random network topology
of the Girvan-Newman’s benchmark.

The constructed networks assume that both degree and community size distribu-
tions follow a power law function, with exponents � and ˇ, respectively. Typical
values of real-world networks are: 2 � � � 3 and 1 � ˇ � 2. Moreover, a mixing
parameter � is employed to interconnect communities in the following manner: each
vertex shares a fraction 1 � � of its links with other vertices of the same community
and a fraction � with vertices of other communities.

The benchmark process consists in varying the mixing parameter � and evalu-
ating the normalized mutual information index, which is a similarity measure of
partitions borrowed from the information theory [16] that measures the mutual
dependence of different random variables.

6.3 Representative Network-Based Unsupervised
Learning Techniques

In the following, we present representative techniques that are members of the
network-based unsupervised learning.

152 6 Network-Based Unsupervised Learning

6.3.1 Betweenness

A natural strategy to identify communities in a network is to detect and subsequently
remove those edges that connect vertices of different communities, so that the com-
munities eventually get disconnected from each other. In this case, the number of
network components represents the number of communities. This is the philosophy
of divisive algorithms. The crucial point resides in finding useful properties of
intercommunity edges that could allow for their identification.

The most popular algorithm is that proposed by Girvan and Newman [28, 57].
In the edge removal process, the algorithm selects edges according to the values of
edge centrality, estimating the importance of edges according to some property or
process running on the network. The steps of the algorithm are:

1. Computation of the centrality for all of the edges;
2. Removal of the edge with the largest centrality: in case of ties with other edges,

one of them is picked at random;
3. Recalculation of centralities on the modified network (network without that

removed edge);
4. Iteration of the cycle from Step 2.

Girvan and Newman focused on the concept of betweenness, which is a
variable expressing the frequency of the participation of edges to a process. They
considered three alternative definitions: geodesic edge betweenness, random-walk
edge betweenness and current-flow edge betweenness. In the following we shall
refer to them as edge betweenness, random-walk betweenness and current-flow
betweenness, respectively.

The betweenness of an edge is the number of shortest paths between all of the
vertex pairs that run along that edge. It is an extension to edges of the popular
concept of site betweenness, introduced by Freeman in 1977 [25] and expresses the
importance of edges in processes like information spreading, where information
usually flows through shortest paths. It is intuitive that intercommunity edges
have large values of edge betweenness, because many shortest paths connecting
vertices of different communities pass through them. As in the calculation of vertex
betweenness, if there are two or more geodesic paths with the same endpoints that
run through an edge, the contribution of each of them to the betweenness of the
edge must be divided by the multiplicity of the paths, as one assumes that the
signal/information propagates equally along each geodesic path.

In random-walk betweenness, one could imagine that signals flow across random
rather than geodesic paths. In this case, the betweenness of an edge is given by
the frequency of passages of a random walker across that edge. A random walker
moving from a vertex follows each adjacent edge with equal probability. The
algorithm works by first choosing a pair of vertices at random, say s 2 V and t 2 V .
The walker starts at s and keeps moving until it finally reaches t, where it stops. We
then compute the probability that each edge in the network is crossed by that random
walker. We perform this process for every given pair of network vertices s and t and

6.3 Representative Network-Based Unsupervised Learning Techniques 153

take the average values. In this process, it is meaningful to compute the net crossing
probability, which is proportional to the number of times the walk crossed an edge
in one direction. In this way one neglects back and forth passages that are accidents
of the random walk and tell us nothing about the centrality of that edge.

In current-flow betweenness, the network is considered as a resistor network,
with edges having unit resistance. If a voltage difference is applied between any two
vertices, each edge carries some amount of current, that can be calculated by solving
Kirchoff’s equations. The procedure is repeated for all of the possible vertex pairs:
the current-flow betweenness of an edge is the average value of the current carried
by the edge. It is possible to show that this measure is equivalent to random-walk
betweenness, as the voltage differences and the random walks net flows across the
edges satisfy the same equations [53].

In practical applications, the Girvan-Newman algorithm with edge betweenness
gives better results than adopting the other centrality measures and is also much
faster to compute than current-flow or random walk betweenness [51]. Nevertheless,
the algorithm is still quite slow and is not applicable to large-scale graphs. In the
original version of the Girvan-Newman algorithm [28], the authors had to deal with
the entire hierarchy of partitions, as they had no procedure to say which partition
is the best. In a successive refinement [57], they incorporate the process of selecting
the best partition into the algorithm by employing the largest value of modularity.

Chen and Yuan [10] pointed out that considering all of the possible shortest
paths in the evaluation of the edge betweenness may lead to unbalanced partitions,
with communities of very different sizes. In order to overcome that problem, they
proposed to count only non-redundant paths, i.e. those paths whose endpoints are
all different from each other: the resulting betweenness yields better results than
standard edge betweenness for mixed clusters on the benchmark graphs of Girvan
and Newman.

6.3.2 Modularity Maximization

The scientific community considers the modularity algorithm as a seminal work in
community detection. This class of algorithms relies on the fact that maximizing
modularity is a good strategy for obtaining well-established communities. Before
we discuss some representative methods that maximize modularity, we first recap
the concept of network modularity, which has already been introduced in Defini-
tion 2.50.

The modularity measure quantifies how good a particular division of a network
is [13, 55] and is designed to measure the strength of division of a network
into modules (also called groups, clusters or communities). Generally, it ranges
from 0 to 1. When the modularity is near 0, it means that the network does not
present community structure, suggesting that the links are disposed at random in
the network. As the modularity grows, the community structure gets more and
more defined, that is, the mixture between communities gets smaller and therefore

154 6 Network-Based Unsupervised Learning

the fraction of links inside communities is larger than that between different
communities. Mathematically, the network modularity is given by:

Q D 1

2E

X

i;j2V

�
Aij � kikj

2E

�
1ŒciDcj�; (6.1)

in which E represents the total number of edges in the network; Aij indicates
the edge weight linking i to j; ki stands for the degree of the vertex i; ci is the
community of vertex i; and 1ŒciDcj� indicates the Kronecker’s Delta or the indicator
function, which produces 1 if ci D cj and 0, otherwise. Essentially, the modularity
captures how well the network structure fits to a given set of communities. In the
computation, random chances are canceled out by subtracting the edge quantity that
is expected within a community from an equivalent random network.

Modularity has been used to compare the quality of the partitions obtained
by different methods, but has also been used as an objective function to be
optimized [52]. Unfortunately, exact modularity optimization is a problem that
is computationally hard [6] and so approximation algorithms are necessary when
dealing with large networks.

The first proposed method to perform modularity optimization was done by
Clauset et al. [13]. Since then, several other versions have been proposed [6, 11, 31,
66, 83]. The greedy algorithm proposed by Clauset et al. may produce modularity
values that are significantly lower than what can be found by using, for instance,
simulated annealing [31]. Moreover, the method proposed in [13] has a tendency
to produce super-communities that contain a large fraction of the vertices, even
on synthetic networks that have no significant community structure. This artefact
also has the disadvantage to slow down the algorithm considerably and makes it
inapplicable to networks of more than a million vertices. The Louvain method [6]
is the fastest modularity optimization algorithm proposed so far. In addition, the
mechanism underlying the Louvain algorithm circumvents the undesired effect of
unbalanced communities encountered in Clauset et al. by introducing tricks in order
to balance the size of the communities being merged, thereby speeding up the
running time and making it possible to deal with networks that have a few million
vertices.

In the following, we first discuss the traditional modularity optimization method
proposed by Clauset et al. [13] and then the Louvain method [6].

6.3.2.1 Clauset et al. Algorithm

At each time step of the modularity maximization, the algorithm of Clauset
et al. [13] chooses to merge two communities that lead to the largest increase in
the modularity Q, i.e., it finds the largest modularity increment �Q. In the initial
step, the increment in the network modularity if communities i and j are joined is:

6.3 Representative Network-Based Unsupervised Learning Techniques 155

�Qij D
(

1
2E � kikj

.2E/2 ; if i and j are connected.

0; otherwise.
(6.2)

Two communities, say i and j, are merged, in such a way that their merge causes
the largest increment (or the least decrement) of the modularity at a particular step.
The algorithm is agglomerative and each vertex represents a community in the initial
configuration. If one wants to stop the merges when the network configuration
reaches its maximum modularity, one can use the stop criterion as follows: once
a negative increment is encountered in this greedy process, the maximum global
value associated to the modularity has been reached and subsequent merges will
only monotonically decrease the modularity of the network. Therefore, by looking
at the signal of �Qij at each iteration, it is sufficient to know when to stop merging.
In addition, no restrictions on the communities to be merged are specified by the
original model.

A major advantage of the modularity greedy algorithm is that no model selection
is required, as no parameters need to be adjusted. Moreover, we have a nice stopping
criterion for the algorithm due to the behavior of the modularity curve.

A drawback of the original modularity algorithm is in its resolution limit. Several
studies have shown that it is unable to detect very small communities [23, 39, 41].
Roughly speaking, the modularity compares the number of edges inside a commu-
nity with the expected number of edges that one would find in the community if
the network were a random network with the same number of vertices, each of
which with the same degree, but with edges randomly reattached. This random
null model implicitly assumes that each vertex can get attached to any other vertex
of the network. Such assumption is however unreasonable if the network is very
large, as the horizon of a vertex includes a small part of the network, ignoring
most of it. Moreover, this null model implies that the expected number of edges
between two groups of vertices decreases if the size of the network increases.
So, if a network is large enough, the expected number of edges between two
groups of vertices in the modularity’s null model may be smaller than one. If this
happens, a single edge between the two communities would be interpreted by
modularity as a sign of a strong correlation between these two communities, and the
modularity optimization procedure would lead to the merge of them, independently
of the communities’ features. So, even weakly interconnected complete graphs,
which have the highest possible density of internal edges, and represent the best
identifiable communities, would be merged by the modularity optimization process
if the network is sufficiently large. For this reason, optimizing modularity in large
networks would fail to identify small communities, even when they are well defined.
This bias is inevitable for methods like modularity optimization, which rely on a
global null model.

156 6 Network-Based Unsupervised Learning

6.3.2.2 Louvain Algorithm

The Louvain algorithm [6] is divided into two phases that are repeated iteratively.
Assume that we start with a weighted network of V vertices. First, we assign a
different community to each vertex. So, in this initial partition, there are as many
communities as there are vertices. Then, for each vertex i, we consider the neighbors
j of i and we evaluate the gain of modularity that would take place by removing
i from its community and by placing it in the community of j. Vertex i is then
placed in the community for which this gain is maximum, but only if this gain is
positive. If no positive gain is possible, vertex i stays in its original community.
This process is applied repeatedly and sequentially for all of the vertices until no
further improvement can be achieved. When the equilibrium is reached, the first
phase of the Louvain algorithm is then complete. Note that a vertex may be, and
often is, considered several times in this community flipping process. This first
phase stops when a local maximum of the modularity is attained, i.e., when no
individual move can improve the modularity. One should also observe that the
output of the algorithm depends on the order in which the vertices are processed.
Preliminary results on several test cases seem to indicate that the ordering of the
vertices does not have a significant influence on the achieved maximum modularity.
However, the ordering can influence the computation time. The problem of choosing
an order is thus worth studying since it could give good heuristics to enhancing the
computation time.

Part of the efficiency of the algorithm results from the fact that the gain in
modularity �Q obtained by moving an isolated vertex i into a community m can
easily be computed by:

�Q D
"

˙in C si;in

2E
�
�

˙tot C si

2E

�2
#

�
"

˙in

2E
�
�

˙tot

2E

�2

�
� si

2E

�2

#
; (6.3)

in which ˙in is the sum of link weights inside community m, ˙tot is the sum of
link weights incident to vertices in community m, si is the sum of the link weights
incident to vertex i (in-strength), si;in is the sum of link weights from i to vertices in
community m, and E is the sum of link weights in the network. A similar expression
is used to evaluate the change of modularity when i is removed from its community.
In practice, one therefore evaluates the modularity change by removing i from its
community and then by moving it into a neighboring community.

The second phase of the algorithm consists in building a new network whose
vertices are now the communities found during the first phase. To do so, the weights
of the links between the new vertices are given by the sum of the link weights
vertices in the corresponding two communities [4]. Links between vertices of the
same community lead to self-loops for this community in the new network. Once
this second phase is completed, it is then possible to reapply the first phase of
the algorithm to the resulting weighted network and to iterate.

6.3 Representative Network-Based Unsupervised Learning Techniques 157

This simple algorithm has several advantages. First, the procedure is intuitive
and easy to implement, and the outcome is unsupervised. Moreover, the algorithm is
extremely fast, i.e., computer simulations on large ad-hoc modular networks suggest
that its complexity is linear on typical and sparse data. This is due to the fact that the
possible gains in modularity are easy to compute with the above formula and that
the number of communities decreases drastically just after a few passes so that most
of the running time is concentrated on the first iterations. The so-called resolution
limit problem of modularity is also circumvented due to the intrinsic multi-level
nature of the algorithm.

6.3.3 Spectral Bisection Method

Spectral graph theory is concerned with graph properties such as its characteristic
polynomial, eigenvalues, and eigenvectors of matrices associated to the adjacency
matrix or the Laplacian matrix of the graph. We define the spectrum of a finite graph
G as the spectrum of the adjacency matrix A, that is, its set of eigenvalues and
their multiplicities together with the set of orthonormal eigenvectors. The Laplace
spectrum of a finite undirected graph without loops is the spectrum of the Laplace
matrix L.

An undirected network with real-valued edges, for example, has a symmetric
adjacency matrix and therefore has real eigenvalues. The set of all of these
eigenvalues and the corresponding complete set of orthonormal eigenvectors make
up the graph spectrum. While the adjacency matrix depends on the vertex labeling
or ordering, its spectrum is graph invariant. The spectral bisection method is one
type of algorithm that falls into this category.

Spectral methods for graph partitioning have been known to be robust but
computationally expensive.

The use of spectral methods to compute cuts in graphs was first considered by
Donath and Hoffman [18] who first suggested using the eigenvectors of adjacency
matrices of graphs to find partitions. Fiedler [12] associated the second smallest
eigenvalue of the Laplacian matrix with its connectivity and suggested partitioning
the graph by splitting vertices according to their values in the corresponding
eigenvector. Thus, the eigenvector corresponding to the second smallest eigenvalue
(i.e., the algebraic connectivity) of the Laplacian matrix of a graph G is termed
as the Fiedler vector, while the corresponding eigenvalue, the Fiedler value. Since
then, spectral methods for computing and analyzing graph properties have received
increasing attention by the community [2, 37, 56, 91].

In one of these spectral methods [54], the spectral bisection method defines the
cut size R of a graph partition into two groups as:

R D 1

2

X

i;j2V
Aij1Œci¤cj�; (6.4)

158 6 Network-Based Unsupervised Learning

in which the indicator function makes sure that only those edges crossing different
communities are considered in the computation of the cut size R.

Consider the index vector s, whose component si is C1 if vertex i is in one group
and �1 if it is in the other group:

si D
� C1; if vertex i belongs to group 1.

�1; if vertex i belongs to group 2.
(6.5)

Then, R can be rewritten as:

R D 1

4

X

i;j2V
.1 � sisj/Aij: (6.6)

As the degree of vertex i is ki D P
j2V Aij, then we have

P
i;j2V Aij D P

i2V ki DP
i2V s2

i ki D P
i;j2V sisjki1ŒiDj�.

Then, R can be rewritten as:

R D 1

4

X

i;j2V
sisj.ki1ŒiDj� � Aij/: (6.7)

In matrix form, we have:

R D 1

4
sTLs; (6.8)

in which sT is the transpose of s and L D ki1ŒiDj� � Aij is the Laplacian matrix.
Let us write s as a linear combination of the orthonormal eigenvectors vi of the

Laplacian:

s D
X

i2V
aivi; (6.9)

in which ai D vT
i s. The normalization implies sTs D V and

P
i2V a2

i D V , where V
is the number of network vertices. Then, we have:

R D
X

i2V
aiv

T
i L
X

j2V
aivi D

X

i;j2V
aiaj�j1ŒiDj� D

X

i2V
a2

i �i; (6.10)

in which �i is the eigenvalue of L corresponding to the eigenvector vi and we have
made use of vT

i vj D 1ŒiDj�.
Assume that the eigenvalues are labeled in increasing order �1 � �2 � : : : � �V .

The task of minimizing R can then be equivalently equated as the task of choosing
nonnegative quantities a2

i , in a way to place larger weights to the components that
correspond to the smallest eigenvalues in the sum of R.

6.3 Representative Network-Based Unsupervised Learning Techniques 159

The sum of every row (and column) of the Laplacian matrix is zero:
P

j2V Lij DP
j2V .ki1ŒiDj� � Aij/ D P

j2V ki � ki D 0. Thus, the vector .1; 1; : : : ; 1/ is always
an eigenvector of the Laplacian with eigenvalue zero. The Laplacian is symmetric
and hence its eigenvalues are all squares of real vectors, i.e., all eigenvalues of the
Laplacian are nonnegative, i.e., 0 D �1 � �2 � : : : � �V .

Since the eigenvectors are orthogonal, a good approximate solution can be
obtained by choosing s to be as close to parallel with v2 as possible, i.e., minimizing:

jvT
2 sj D j

X

i2V
v

.2/
i sij �

X

i2V
jv.2/

i j: (6.11)

A simple choice for defining the clusters (C1 or �1) is:

si D
(

C1; if v
.2/
i � 0:

�1; if v
.2/
i < 0:

(6.12)

6.3.4 Community Detection Using Particle Competition

This technique is proposed in [68]. The evolution of this model is very similar
to various natural and social processes, such as resource competition, territory
exploration by animals, election campaigns, etc. In this model, particles explore a
network by combining roles of random and deterministic moving. The investigation
of the behavior of this technique reveals that the introduction of a certain level
of randomness can yield a big gain in the learning process. This phenomenon
is analogous to stochastic resonance in which the performance of a nonlinear
deterministic system can be largely enhanced by a certain level of noise. The study
shows that learning techniques consisting of only deterministic rules are insufficient.
This is because the number of rules required to completely describe even a very
specific environment can be prohibitively high. In a dynamical environment, the
situation gets worse because the system should keep acquiring new knowledge over
time. In this way, a certain level of randomness or chaos is essential for the learning
process. The random term models the “I don’t know” state and serves as a novelty
finder. It can also help learning agents, like particles in this model, in escaping from
traps in the physical or learning spaces.

The technique relies on the competition of several particles in a networked
environment to identify communities. These particles navigate in the network with
the purpose of dominating new vertices, while also trying to defend their previous
dominated territory. In the long run, the subsets of vertices that each particle
dominates represent the communities.

Two dynamical variables for the j-th particle, denoted by �j, are maintained:

• �v
j .t/: it represents the vertex that particle �j is visiting at time t.

160 6 Network-Based Unsupervised Learning

• �!
j .t/ 2 Œ!min; !max�: it indicates the exploration potential of particle �j at time t,

where !min and !max are scalars that define the minimum and maximum potential
that each particle can reach in the learning process, respectively.

The update rules that govern the movement and the exploration potentials of the
particles are given by:

�!
j .t C 1/ D

8
<̂

:̂

�!
j .t/ if v

�
i .t/ D 0

�!
j .t/ C .!max � �!

j .t//�� if v
�
i .t/ D �j ¤ 0

�!
j .t/ � .�!

j .t/ � !min/�� if v
�
i .t/ ¤ �j ¤ 0

; (6.13)

in which �� controls the exploration level variation that each particle gains or loses,
depending on the nature of the vertex that it visits. Specifically, if it visits an already
dominated vertex, then the particle’s exploration level is strengthened; otherwise,
it is decremented. The location of particle �j at t C 1, �v

j .t C 1/, is determined by
sampling from a mixture of deterministic and random walk distributions.

Each vertex vi in the network is represented by three scalar variables:

• v
�
i .t/: it defines the proprietary particle of the vertex vi at time t.

• v!
i .t/: it indicates the level of domination imposed by proprietary particle v

�
i .t/

on vertex vi at time t.
• v

�
i .t/: it symbolizes whether or not vertex vi is being visited by any of the

particles at time t.

With the help of these variables, the dynamical behaviors of the quantities related
to the vertices in the network are governed by the following set of equations:

v
�
i .t C 1/ D

�
�j if v

�
i .t/ D 1 and v!

i .t/ D !min

v
�
i .t/ otherwise

; (6.14)

v!
i .t C 1/ D

8
<

:

v!
i .t/ if v

�
i .t/ D 0

maxf!min; v!
i .t/ � �vg if v

�
i .t/ D 1 and v

�
i .t/ ¤ �j

�!
j .t C 1/ if v

�
i .t/ D 1 and v

�
i .t/ D �j

; (6.15)

in which �v denotes the exploration level fraction lost by a vertex, if a rival particle
visits it.

The detection algorithm begins by putting K particles into random vertices.
At the beginning of the dynamical process, each particle �j and each vertex vi

have their potentials set to �!
j .0/ D !min and v!

i .t/ D !min, respectively. At each
iteration, each particle travels to a neighboring vertex, in accordance with a
movement policy that consists in a combination of deterministic and random walks.
In the former, the particle randomly visits the neighbors of the currently visited
vertex. In the latter, the particle prefers to visit vertices that are already being

6.3 Representative Network-Based Unsupervised Learning Techniques 161

dominated by the same particle. In the following, we illustrate cases that can be
faced when a particle j, �j, is on the process of choosing the next vertex to visit:

• If the visited vertex vi still does not belong to any particles, then initially v
�
i .t/ D

0. In this case, such vertex starts to be dominated by the visiting particle, i.e.,
v

�
i .t/ D �j. The particle’s potential �!

j .t/ is not altered and the vertex’s potential
receives the particle’s potential: v!

i .t/ D �!
j .t/;

• If the visited vertex is dominated by the same particle, the visiting particle’s
potential is incremented and vi receives the new potential of that particle: v!

i .t/ D
�!

j .t/;
• If the visited vertex belongs to a rival particle, then the particle’s and the vertex’s

potentials are weakened. If the particle’s potential �!
j .t/ reaches a value lower

than !min, then this particle is reset to a new randomly chosen vertex. If the
potential of the vertex v!

j .t/ reaches a value lower than !min, then the vertex
becomes no longer owned by the previous particle, i.e., it regresses to the free,
non-dominated state: v!

j .t/ D 0.

Thus, the vertex’s level of domination increases if it is visited by the same particle
that dominates it at the present moment. In contrast, during the visit of a rival
particle, the domination level imposed by the current dominating particle on that
vertex is weakened. If this domination is not strong enough, the proprietary particle
loses its domination over that vertex. In the long run, it is expected that each particle
will dominate a community in the network.

The model proposed in [68] has two noticeable features: (1) high community
detection rates and (2) low computational complexity. However, in its original
form, only a procedure of particle competition is introduced, without any formal
definitions. This precludes any further analyses or predictions on the model’s
behavior. In Chap. 9, we show a rigorous model for particle competition that is
governed by a stochastic competitive dynamical system. That same model is also
adapted to a semi-supervised learning environment in Chap. 10, where we also
investigate the relevant problem of imperfect learning.

6.3.5 Chameleon

This is a well-known method in the network-based community for data cluster-
ing [36]. In general, existing clustering algorithms use static models of the clusters
and do not use information about the nature of individual clusters as they are
merged or divided. Furthermore, while some schemes ignore the information about
the aggregate interconnectivity of data items in two clusters, other schemes ignore
information about the closeness of two clusters as defined by the similarity of the
closest items across two clusters. By only considering either interconnectivity or
closeness, these algorithms can easily select and merge the wrong pair of clusters.

Chameleon is an agglomerative hierarchical clustering algorithm that employs
both interconnectivity and closeness features in identifying the most similar pairs

162 6 Network-Based Unsupervised Learning

of clusters. It is designed to overcome the major limitation of learning methods that
assume a static, user-supplied interconnectivity model. Such models are inflexible
and can easily lead to incorrect merge decisions when the model under- or
overestimates the interconnectivity of the data set or when different clusters exhibit
different interconnectivity characteristics. For that, Chameleon uses a combined
approach to model the degree of interconnectivity and closeness between each pair
of clusters. This approach considers the internal and adaptive characteristics of the
clusters themselves. Thus, it does not depend on a static, user-supplied model and
can automatically adapt to the internal characteristics of the merged clusters.

Given a vector-based data set, Chameleon first constructs a network using the
k-nearest neighbors method, that is, each data sample is represented by a vertex and
it is connected to the other k most similar data samples using a similarity metric.
Then, Chameleon finds the initial partition of the network using an algorithm that
partitions the network into several communities in a way to minimize the edge cut.
Since each edge in the k-nearest neighbor graph represents the similarity among
data points, a partitioning that minimizes the edge cut effectively minimizes the
relationship (affinity) among data points across the partitions. After finding sub-
clusters, Chameleon switches to an algorithm that repeatedly combines these small
subclusters, using the cluster similarity measures, which determine the similarity
between pairs of clusters by looking at their Relative Interconnectivity (RI) and
Relative Closeness (RC). The definitions of these two internal indices are given in
the following.

• Relative interconnectivity. Relative interconnectivity between clusters Ci and
Cj, denoted as RI.Ci; Cj/, is defined as the absolute interconnectivity between
Ci and Cj normalized with respect to the internal interconnectivity of the two
clusters Ci and Cj. The absolute interconnectivity between a pair of clusters Ci

and Cj, symbolized as EC.Ci; Cj/, is defined as the sum of the weight of the edges
that connect vertices in Ci to vertices in Cj. This is essentially the edge-cut of the
cluster containing both Ci and Cj such that the cluster is broken into Ci and Cj.
The internal interconnectivity of a cluster Ci can be easily captured by the size of
its min-cut bisector EC.Ci/, which is the weighted sum of edges that partition the
graph into two roughly equal parts. Thus, the relative interconnectivity between
Ci and Cj is:

RI.Ci; Cj/ D jEC.Ci; Cj/j
jEC.Ci/jCjEC.Ci/j

2

: (6.16)

• Relative closeness. The closeness of clusters of Ci and Cj, RC.Ci; Cj/, is the
average weight of the edges that connect vertices in Ci to those in Cj. It provides
a good measure of the affinity between the data items along the interface layer of
the two clusters. At the same time, this measure is tolerant to outliers and noise.
To get a cluster’s internal closeness, we take the average of the edge weights
across a min-cut bisection that splits the cluster into two roughly equal parts. The
relative closeness between a pair of clusters is the absolute closeness normalized

6.3 Representative Network-Based Unsupervised Learning Techniques 163

with respect to the internal closeness of the two clusters:

RC.Ci; Cj/ D
NSEC.Ci; Cj/

jCij
jCijCjCjj NSEC.Ci/ C jCjj

jCijCjCjj NSEC.Cj/
; (6.17)

where NSEC.Ci/ and NSEC.Cj/ are the average weights of the edges that belong in the
min-cut bisector of clusters Ci and Cj, and NSEC.Ci; Cj/ is the average weight of
the edges that connect vertices in Ci and Cj. Terms jCij and jCjj are the number of
data points in each cluster. This equation also normalizes the absolute closeness
of the two clusters by the weighted average of the internal closeness of Ci and Cj.
This feature discourages merges of small sparse clusters into large dense clusters.

Chameleon selects pairs to merge for which both RI and RC are high. That is,
it selects clusters that are well interconnected as well as close together. The merge
scheme implemented in Chameleon uses a function to combine the relative inter-
connectivity and relative closeness. For this purpose, Chameleon selects the pair of
clusters that maximizes

RI.Ci; Cj/ � RC.Ci; Cj/
˛; (6.18)

where ˛ is a user-specified parameter. If ˛ > 1, then Chameleon gives a higher
importance to the relative closeness, and when ˛ < 1, it gives a higher importance
to the relative interconnectivity.

The algorithm is well suited for applications in which the volume of the available
data is large. For large V , the worst-case time complexity of the algorithm is
O.V.log2 V C M//, where M is the number of clusters formed after completion
of the first phase of the algorithm.

The good performance of the Chameleon is recognized when applied to low-
dimensional spaces. However, the performance of Chameleon in high-dimensional
spaces is still not thoroughly clarified [87]. The time complexity of the Chameleon
algorithm in high-dimensional spaces is O.V2/.

6.3.6 Community Detection by Space Transformation
and Swarm Dynamics

We describe the technique introduced in [17, 61], which is based on collective
dynamics. Much interest has been spent in the study of collective motion of
biological entities, like schools of fish, flocks of birds, herds of hoof animals or
swarms of insects. Swarm behavior is a collective behavior exhibited by animals
of similar size that aggregate together, perhaps milling about the same spot or
perhaps moving en masse or migrating in some direction. The swarm approach
seeks methods consisting of a large number of simple and locally interacting agents

164 6 Network-Based Unsupervised Learning

that collectively present macroscopically complex organizations [29, 81]. Swarm
behavior techniques have been successfully applied to solve various optimization
problems [14].

The community detection algorithm using space transformation and swarm
dynamics uses collective dynamics in a networked environment and consists of two
serial steps. In the first step, the method determines how data items are represented
as a network. In the second step, it detects clusters or communities by partitioning
that constructed network using rules built on neighborhood agreements. This is a
divisive hierarchical algorithm, in which we initially consider the entire network as
a large cluster and we split it into smaller clusters, until each vertex corresponds
to a cluster. Due to its hierarchical nature, we can illustrate the algorithm’s result
using a dendrogram, a special kind of tree where each vertex represents a cluster.
A horizontal cut on the dendrogram represents a partition of the data set.

We summarize these two steps in the following:

1. Network formation: In this step, a weighted complete network is constructed
using the input data set, in which each vertex represents a data sample. Then,
a non-weighted network is generated using the k-NN method, i.e., each vertex
is connected to its k most similar vertices. The similarity is determined by
calculating the Euclidean distance between pairs of data samples.1

2. Angle’s updating rule: After the network is constructed, the algorithm organizes
the vertices on a circle. The displacement of vertices is conducted in a random
manner. Thus, each vertex vi has an initial angle �i.t D 0/ that is randomly
chosen over the range Œ0; 2	/. While the angle’s updating rule approximates
vertices that belong to the same cluster, it also separates vertices that belong
to different clusters. At each time step t, the method updates the angle of each
vertex according to the angles of its neighbors. We define the angle’s updating
rule by the following equation:

�i.t C 1/ D �i.t/ C
i.t/
h P

j2N .vi/
Aij�j.t/P

j2N .vi/
Aij

� �i.t/
i

; (6.19)

in which N .vi/ is the set of neighbors of vertex vi,
i.t/ is the moving rate of vi

at time step t, and Aij is the weight that represents the influence of neighbor vj

on vi.
The edge weight Aij aims at approximating vertices that belong to the same

cluster. It is composed of two parts: CN.vi; vj/ and SN.vi; vj/. Mathematically,
Aij is expressed as:

Aij D CN.vi; vj/ � SN.vi; vj/: (6.20)

The idea of the term CN.vi; vj/ is to model physical proximity between vi

and vj. As such, it gives more importance to vertex vj the closer vi and vj are. This

1See Chap. 4 for a thorough review on network formation methods and similarity functions.

6.3 Representative Network-Based Unsupervised Learning Techniques 165

kind of behavior can effectively be captured by modeling CN.vi; vj/ according
to the following rule:

CN.vi; vj/ D e�˛d.vi;vj/; (6.21)

in which parameter ˛ controls for the penalization decay rate of the Euclidean
distance d.vi; vj/ from vi to vj. The algorithm can change the relative importance
of a neighbor by adjusting ˛. The angle’s updating rule can also be applied
to non-weighted networks. In this case, CN.vi; vj/ D 1 for all of the pairs of
neighbors vi and vj.

In contrast to that, the term SN.vi; vj/ models the topology similarity between
vi and vj. The hypothesis is: whenever two vertices belong to the same cluster,
they are likely to share a large number of common neighbors. With that in mind,
we can write SN.vi; vj/ as follows:

SN.vi; vj/ D c.vi; vj/

jN .i/j ; (6.22)

in which c.vi; vj/ is the number of common neighbors shared by vi and vj and
jN .i/j is the number of neighbors of i. In this way, SN.vi; vj/ yields large values
for vertices that share a large portion of common neighbors, regardless of the
physical distance. Conversely, if they share only a small fraction of common
neighbors, SN.vi; vj/ outputs small values.

Intuitively, the term CN.vi; vj/ forces angles of neighbor vertices to approx-
imate to that of vi and SN.vi; vj/ stops such an approximation between pairs
of vertices that possibly belong to different clusters. However, these two mech-
anisms still cannot eliminate interference between different groups, which may
cause the angles of all of the network vertices to approach each other. To mitigate
this problem, one solution is to reduce the moving rate
i.t/ in (6.19) as a function
of how quickly the angles change as follows:

i.t/ D exp �
�

ˇ

�.vi/

�
; (6.23)

in which �.vi/ is the standard deviation of the angle distribution and ˇ is a user-
defined parameter to scale the updating process of
i.t/ as a function of �.vi/.

The moving rate parameter
i.t/ decreases as the standard deviation �.vi/

among angles decreases. At the beginning, each angle takes a random value. In
this way, the standard deviation of the angles distribution �.vi/ is expected to
be high in such a way that
i.t/ assumes large values, say
i.t/ � 1. In this
situation, angles of neighboring vertices approximate freely to form angle bands.
As time progresses, �.vi/ and consequently
i.t/ assume smaller values. When

i.t/ reaches a very small value, say
i.t/ � 0, all of the angles remain steady
and a stable state is reached.

166 6 Network-Based Unsupervised Learning

To illustrate the algorithm, we use a random clustered network with three
unbalanced communities. We inspect the evolution of the angle’s update process
in Fig. 6.4. In this case, the algorithm identifies three communities in the network as
there are three perceptive angle bands in the time series.

Now, we see the performance of the method in a real-world data set, which is
a social network describing the associations (interactions) among dolphins [46].
This network has 62 vertices and 159 edges without weights. It presents two well-
known communities, formed by 21 and 41 elements, respectively. Inspecting how
the vertices’ angles are updated in Fig. 6.5, it is possible to identify two distinct
groups or communities of angles. In Fig. 6.6, we see the same simulation results
but through a dendrogram perspective, where the color of each vertex indicates the
community to which it originally belongs.

300

200

100

0
0 5 10 15 20

t

25 30 35 40

(t
)

Fig. 6.4 Evolution of the angle’s updating process. In the first iterations, the vertices’ angles
are disordered due to the random arrangements. After some iterations, they converge to stable
subgroups. Reproduced from [62] with permission from the author

300

200

100

0
0 20 40 60 80 100 120 140 160

maxDiff=5.2538

t

(t
)

Fig. 6.5 Evolution of the angle’s updating process for the social network presented in [46]. Two
communities can be clearly identified by inspecting the time series. Reproduced from [62] with
permission from the author

6.3 Representative Network-Based Unsupervised Learning Techniques 167

Fig. 6.6 Dendrogram showing the community detection results for the social network presented
in [46]. The dendrogram reveals the division of data into two original communities, indicated by
41 green elements and 21 red elements. Reproduced from [62] with permission from the author

6.3.7 Synchronization Methods

Physicists have given increasing attention to the dynamics of a diversity of complex
systems. In special, several studies have investigated the paradigmatic analysis
of large populations of coupled oscillators [40, 64, 78, 85]. The emergence of
synchronization patterns in these systems is closely related to the underlying
topology of interactions. In this section, we discuss methods that rely on dynamical
processes towards synchronization. In this respect, these models show different
patterns over time that are intrinsically connected to the hierarchical organization
of communities in complex networks. The ubiquity of synchronization phenomena
in the real world makes this approach interesting from a physical and biological
perspectives [3].

One of the most successful attempts to understanding synchronization phenom-
ena comes from Kuramoto [40], who analyzed a model of phase oscillators coupled
by the sine of their phase differences. The model is rich enough to display a large
variety of synchronization patterns and sufficiently flexible to be adapted to many
different contexts [1].

The Kuramoto model consists of V coupled phase oscillators, in which the phase
of the i-th unit, denoted by �i.t/, evolves in time according to the following dynamic:

d�i

dt
D !i C

X

j2V
Aij sin.�j � �i/; (6.24)

for i 2 V . The term !i stands for the natural frequency of the i-th oscillator and
Aij describes the coupling between units. The coupling weights are extracted from a
network, in which each vertex is an oscillator and edge weights denote the coupling
strength between different oscillators.

In particular, some works have shown that highly interconnected sets of oscil-
lators synchronize more easily that those with sparse connections [48, 60]. This
scenario suggests that, for a complex network with nontrivial connectivity patterns,
starting from random initial conditions, those highly interconnected units forming
local clusters will synchronize first. Then, in a sequential process, larger and larger
spatial structures will do the same until we reach a final state in which the entire

168 6 Network-Based Unsupervised Learning

1

0.5

−0.5

−0.5 0 10.5

si
n

(q
)

cos(q)

#iteration = 0

m = 0.1

−1
−1

0

cos(q)

m = 0.1

#iteration = 420

si
n

(q
)

−0.5 0 10.5−1

1

0.5

−0.5

−1

0

m = 0.1

#iteration = 2000

−0.5 0 10.5
cos(q)

−1

si
n

(q
)

1

0.5

−0.5

−1

0

a b

c

Fig. 6.7 States assumed by the population of coupled oscillators. (a) Random initial configuration;
(b) Intermediate state (four communities); (c) Final global synchronization state

population has the same phase. This process is expected to occur at different
time scales whenever clear community structures exist. Thus, the dynamical route
towards the global attractor reveals different topological structures, presumably
those which represent communities.

For an artificial random clustered network with four communities, Figs. 6.7a–c
show, respectively, the initial configuration of the oscillators, the formation of four
synchronized communities of oscillators, and the global synchronization state.

Li et al. [44] has shown that communities are delineated by interface or overlap-
ping vertices [63], in which the oscillating frequency is intermediate among different
modules, in such a way that synchronization techniques cannot clearly group
these interface vertices into a single community. From this reported shortcoming,

6.3 Representative Network-Based Unsupervised Learning Techniques 169

Wu et al. [86] has developed an alternative method that is capable of detecting
these overlapping vertices. Contrasting to the result of Arenas et al. [3], in which
the stable state is necessarily reached only by a global synchronization, in the
research of Wu et al. [86], the synchronization may occur within modules. Thus,
after the method synchronizes the oscillators between different communities, we
can understand the phases that are in the valley between different modules to be
the overlapping vertices. In order to do so, besides the global coupling supplied
by the traditional Kuramoto model, another type of coupling, which is negative,
between oscillators that are not connected is applied. The network dynamic can be
mathematically expressed as:

d�i

dt
D !i C Kp

V

X

j2V
Aij sin.�j � �i/ � Kn

V

X

j2V
.1 � Aij/ sin.�j � �i/: (6.25)

In this adapted format, the phases of the interconnected oscillators i and j are
modeled by a positive coupling (with coupling strength Kp) in accordance with the
original expression in (6.24). Thus, their phases evolve together. Non-connected
vertices in the network, in contrast, tend to have opposite phases, on account
of the negative coupling forced by Kn. In summary, after reaching the dynamic
equilibrium, oscillators that make up the same community in the network will
indicate similar phase values. Opposed to that, oscillators that represent overlapping
vertices will have their phases in-between different modules [44].

6.3.8 Finding Overlapping Communities

The community structure is a fundamental property of most real-world networks,
i.e., it is commonly observed that groups of vertices are densely interconnected.
It would be oversimplifying, however, if we assumed that communities are well-
defined partitions over the entire network. This is a strong assumption that may not
be fulfilled in many cases. First, it is very natural for a vertex to participate in more
than one community at a time; i.e., communities often overlap. Second, some ver-
tices might not participate in any community; i.e., we might have outliers [33]. An
outlier is not necessarily solitary, and it might have some negligible connection with
some communities. Finally, some vertices of a community might be special in the
sense that they are linked with almost all of the others. In the literature, these vertices
are known as hubs, leaders, or centers. Since many real-world networks are huge,
the analysis usually starts from the identification of the underlying communities
possibly with overlapping characteristics. Needless to say, the community structure
will greatly benefit from the simultaneous detection of hubs and outliers [9].

We can easily find overlapping communities in real-world networks. A person,
for instance, can be member of a social network, of his/her family community, and
also of his/her institutional community. In community detection or network-based

170 6 Network-Based Unsupervised Learning

data clustering, the detection of overlapping communities is specially interesting for
fuzzy clustering.

In this section, we present some popular overlapping community detection
techniques.

6.3.8.1 Clique Percolation

The most popular community detection with overlapping vertices is the Clique
Percolation Method (CPM) [63]. CPM relies on the assumptions that communities
consist of overlapping sets of fully connected subgraphs and that it is unlikely the
existence of cliques in intercommunity edges. The general idea of the method is
to detect communities by searching for adjacent cliques. It begins by identifying
network cliques of size k, termed as k-cliques. Once these have been identified, a
new collapsed graph is constructed in such a way that each vertex represents each
of these k-cliques. Two vertices in the collapsed graph are connected if the k-cliques
that represent them share k � 1 members. In this case, we say that these two k-
cliques are adjacent. The union of adjacent k-cliques is called k-clique chain. Finally,
a k-clique community is the largest connected subgraph obtained by the union of a
k-clique and of all k-cliques that are connected to it.

Since a vertex can be in multiple k-cliques simultaneously, the identification of
overlapping communities is possible. CPM is suitable for networks with densely
connected parts. Empirically, small values of k (typically between 3 and 6) often
give good results [30, 42, 63].

CPM has been extended to weighted, directed, and bipartite graphs. For weighted
graphs, in principle, one can follow the standard procedure of thresholding the
edge weights, and of applying the method on the resulting graph, treating them
as non-weighted. Farkas et al. [20] has proposed to threshold the weight of cliques,
defined as the geometric mean of the weights of all edges of the clique. The value
of the threshold is chosen slightly above the critical value at which a giant k-clique
community emerges, in order to get the richest possible variety of clusters.

CPM has a notable drawback in that it assumes that the network has a large
number of cliques [22]. As such, CPM may fail to give meaningful covers for
graphs with few cliques, like technological networks and some social networks.
In contrast, if the network presents many cliques, the method may deliver trivial
community structure, like a cover consisting of the entire network as a single giant
cluster. A more fundamental issue is the fact that the method does not look for
actual communities, consistent with the shared notion of dense subgraphs, but for
subgraphs “containing” many cliques, which may be quite different objects than
communities. (For instance, they could be “chains” of cliques with low internal
edge density.) Another problem is that there are considerable fractions of vertices
in real networks that are left out of the communities, like leaves or singletons. One
could think of some postprocessing procedure to include them in the communities,
but for that it is necessary to introduce a new criterion, outside the framework that
inspired the method. Furthermore, besides empirical work, it is not clear a priori

6.3 Representative Network-Based Unsupervised Learning Techniques 171

which values of k one has to choose to identify meaningful structures. Finally, the
criterion to choose the threshold for weighted networks and the definition of directed
k-cliques are also rather arbitrary.

6.3.8.2 Bayesian Nonnegative Matrix Factorization Algorithm

This method has been described in various works [9, 21, 67, 75]. It relies on a
centrality matrix of vertices and a degree matrix of communities. The importance of
a vertex to a community is represented by its centrality. The centrality matrix, hence,
carries the vertices’ importance in each community. An element of the degree matrix
of communities, which is diagonal, indicates the degree of the community, and is
equivalent to the summation of the expected degree of all vertices of that community.
The algorithm then learns these two quantities by the multiplicative updating rule
using a nonnegative matrix factorization style. These matrices enable us to rank each
vertex’s centrality in each community, and use the community degree as a cutting off
criterion. Since the communities are retrieved independently, when we are working
on a new community, we do not need to care whether or not its vertices belong to
previously identified communities. The overlapping communities are thus handled
naturally. The importance of a hub in a community ensures that it gets ranked at the
top of the community. After all of the communities have been decided, those vertices
that have not been included in any of them are declared as outliers. In summary, this
algorithm is capable of identifying overlapping communities as well as detecting
hubs and outliers simultaneously.

Mathematically, Bayesian nonnegative matrix factorization is an adaptation
of the nonnegative matrix factorization technique used in machine learning for
dimensionality reduction and feature extraction [89]. This technique factorizes
the matrix V 2 R

V�VC into two matrices W 2 R
V�MC and H 2 R

M�VC , whose
elements are nonnegative, such that A � WH. Within the context of community
detection, A is the adjacency matrix of the network, V is the number of vertices
and M is the pre-defined number of communities. Each element of the i-th line
or the j-th column of matrix W is the statistical dependence between a vertex i
to community j. Due to matrix multiplication, the traditional nonnegative matrix
factorization procedure is inefficient with respect to time and memory restrictions.
In [9], a hybrid optimization algorithm that relies on a Bayesian optimization
process is proposed. In essence, this algorithm optimizes an objective function
expressed in terms of the above-mentioned matrices and user-supplied parameters
ˇ 2 R

M D Œˇ1; : : : ˇM�, which represent the importance of communities on the
interactions of the adjacency matrix. The algorithm involves consecutive updates
of W, H, and ˇ until these parameters achieve convergence or until a maximum
number of iterations is processed. Matrices W, H and the user-supplied parameters
ˇ are calculated as follows:

H D
�

H
WT1 C BH

�
�
�

WT

�
V

WH

��
; (6.26)

172 6 Network-Based Unsupervised Learning

W D
�

W
1HT C WB

�
�
��

V
WH

�
HT

�
; (6.27)

ˇi D V C a � 1

1
2

�P
i W2

ik CP
j W2

ij

�
C b

; (6.28)

in which a and b are fixed parameters of a Gamma distribution and matrices W, H
are initialized with random values. Finally, the columns of W (or lines H) containing
elements with only zero values are removed and the number of communities is given
by the number of columns of W (or the number of lines of H) obtained after the
removal.

6.3.8.3 Fuzzy Partition Algorithm

The fuzzy partition algorithm is introduced in [49]. The procedure runs as a con-
strained optimization problem. In that study, the expression “overlapping vertices” is
conceived as “bridges” in the context of social networks, in which it is very common
to find individuals that are members of multiple communities at the same time. In
a social network context, “bridges” then can be defined as those vertices that cross
structural holes between discrete groups of people [8]. It is therefore important to
define a quantity that measures the commitment of a vertex to several communities
in order to obtain a more realistic view of these networks.

The intuitive meaning of a bridge vertex may differ in different types of networks
that exist beyond sociometrics. In protein interaction networks, proteins with
multiple roles can be seen as bridge vertices. In cortical networks containing brain
areas responsible for different modalities, the cortical areas that assume integrative
roles and that provide higher level processing of sensory signals are the bridges
vertices. In word-association networks, words with multiple meanings are likely to
be bridges.

The overlapping condition is modeled via a fuzzy partition algorithm. A conve-
nient representation of a given partition is the partition matrix U D Œuik�, where i
indexes for the fuzzy membership across clusters k, for the data items. In this way,
matrix U has V columns and M rows, where M is the number of subsets or clusters.
We observe that uik D 1 if and only if vertex k belongs to the i-th subset in the
partition; otherwise, it is zero. For a complete partitioning algorithm,

PM
iD1 uik D 1,

8k 2 f1; : : : ; Vg must hold. The size of community i can then be calculated asPV
kD1 uik, and for any meaningful partition, we can assume that 0 <

PV
kD1 uik < V .

These partitions are traditionally called hard or crisp partitions, because a vertex can
belong to one and only one of the detected communities.

The generalization of the hard partition follows by allowing uik to attain any real
value from the interval Œ0; 1�. The constraints imposed on the partition matrix remain
the same.

6.3 Representative Network-Based Unsupervised Learning Techniques 173

It should be observed that a meaningful partition should group vertices that are
somehow similar to each other in the same community. It is reasonable to assume
that an edge between vertex v1 and v2 implies the similarity of v1 and v2, and
likewise, the absence of an edge implies dissimilarity. Define s.U; i; j/ as a similarity
function that respects the following restrictions:

• s.U; i; j/ 2 Œ0; 1�;
• s.U; i; j/ is continuous and differentiable 8uij; i 2 f1; : : : ; cg; j 2 f1; : : : ; Ng;
• s.U; i; j/ increases as i and j are more similar. Therefore, s.U; i; j/ assumes

its maximum value, s.U; i; j/ D 1, when i and j are as similar as possible.
Conversely, s.U; i; j/ D 0 when i and j are totally dissimilar.

As a shorthand, consider that sij D s.U; i; j/. Suppose we have a prior assumption
about the actual similarity of vertices i and j, denoted by Qsij. Define the fitness of a
given partition U of the graph by quantifying how precisely it approximates the
prescribed similarity values to sij:

DG.U/ D
VX

iD1

VX

jD1

wij.Qsij � sij/
2; (6.29)

in which wij are optional weights. Say that W D 	
wij

, S.U/ D 	

sij

, and QS.U/ D	Qsij

. From now on, we assume that QS D A, the adjacency matrix of the graph, which

is in accordance with our assumption that the similarity of connected vertex pairs
should be close to 1 and the similarity of disconnected vertex pairs should be close
to zero. Consider that the similarity function sij is given as follows:

sij D
VX

iD1

MX

kD1

ukiukj D UTU: (6.30)

The community detection problem in this framework boils down to the opti-
mization of DG.U/ defined in accordance with (6.29). We note that the goal is to
find a matrix U such that it minimizes DG.U/. The number of clusters c, the weight
matrix W and the desired similarity matrix S, which is often the adjacency matrix of
the network, are supplied by the user. This is a nonlinear constrained optimization
problem. Although there exists a set of necessary conditions that restrict the set
of possible matrices U worth evaluating [73], the computationally most feasible
approach to optimize DG.U/ is to use a gradient-based iterative optimization method
(e.g., simulated annealing).

174 6 Network-Based Unsupervised Learning

Consider the following objective function:

DG.U/ D
VX

iD1

VX

jD1

wij.Qsij � sij/
2 C

VX

iD1

�i

MX

kD1

uki � 1

!
; (6.31)

in which � D Œ�1; : : : ; �N � are Lagrangian multipliers that simply force the total
membership degree for each vertex to be 1 (complete partitioning).

Now we need to find S to minimize DG.U/ satisfying the above constraints. The
partial derivative of DG.U/, with respect to ukl is therefore:

@DG.U/

@ukl
D 2

VX

iD1

.eil C eli/

�
1

M
� uki

�
; (6.32)

in which eij D wij.Qsij � sij/.
The simplest gradient-based algorithm for finding a local minimum of DG is then

the following:

1. Start from an arbitrary random partition U.0/ and let t D 0.
2. Calculate the gradient vector of DG according to (6.32) and the current U.t/.

3. If maxk;l

ˇ̌
ˇ @DG.U/

@ukl

ˇ̌
ˇ < �, stop the iteration and declare U.t/ a solution.

4. Otherwise, calculate the next partition in the iteration with the following
equation:

u.tC1/
ij D u.t/

ij C ˛.t/ @DG.U/

@uij
; (6.33)

in which ˛.t/ is a small step size constant chosen appropriately.
5. Increase t and continue from step 2.

6.3.9 Network Embedding and Dimension Reduction

Dimension reduction is an important pre-processing in data analysis and machine
learning. It can be considered as a procedure to produce a compact low-dimensional
encoding of a given high-dimensional data set [47, 74, 84]. Dimension reduction is
specially interesting when we deal with data sets that have many more variables
than data samples. For example, microarray data sets usually are composed by
thousands of variables (genes) in dozens of samples. The most famous dimension
reduction technique is the Principal Component Analysis (PCA) that dates back to
Karl Pearson in 1901 [65]. The basic idea is to find a new coordinate system via a
linear or a nonlinear transformation in which the input data can be expressed with
many less variables without a significant loss. Isomap [80] was originally proposed

6.3 Representative Network-Based Unsupervised Learning Techniques 175

as a generalization of multidimensional scaling [15]. An alternative method known
as Locally Linear Embedding (LLE) [72] was developed that solved a consecutive
pair of linear least square optimizations. The kernel method, including graph kernel
method, has also been proposed for nonlinear dimension reduction by performing
linear operations on kernel mapping functions. Graph kernel methods for data
analysis and machine learning are an active research topic and are not covered in
this book. The interested readers may refer to [5, 27, 45, 50, 76, 82]. In this book,
we just present one technique on this topic. In [88], a graph embedding method has
been proposed and is briefly reviewed in the following paragraph.

Consider that it is given a data set X D fx1; x2; : : : ; xVg. Each data sample
is described by P attributes, that is, a feature vector xi D .xi1; xi2; : : : ; xiP/T .
Consider X as the matrix whose columns denote each data item in X . The goal
of the technique is to perform dimensionality reduction in the data items’ feature
vectors to a smaller number P0 of projected attributes. For example, the feature
dimension P of images is usually very high, and transforming the data from the
original high-dimensional space to a low-dimensional space can alleviate the curse
of dimensionality problem. To accomplish that, a technique should find a mapping
function F that transforms each feature vector x 2 R

P into the desired low-
dimensional representation y, so that y D F.x/, y 2 R

P0

. By using an underlying
network to find such function F, the dimensionality reduction process can be viewed
as a graph-preserving criterion of the following form:

Y� D arg minY

X

i;j2V
i¤j

Aijkyi � yjk2

D arg minY YTLY; (6.34)

constrained to YTBY D d. In this formulation, d is a constant vector, A is the
adjacency matrix of the network, B is the constraint matrix, and L is the Laplacian
matrix. Recall that the Laplacian matrix can be found via the following operation:

L D D � A; (6.35)

in which:

Dii D
X

j2V
j¤i

Aij; (6.36)

8i 2 V .
The constraint matrix B can be viewed as the adjacency matrix of a penalty

network AP, so that B D LP D DP � AP. The penalty network conveys information
about which vertices should not be linked together, that is, which instances should
be far apart after the dimensionality reduction process. The similarity preservation
property from the graph-preserving criterion has a twofold explanation. For larger

176 6 Network-Based Unsupervised Learning

similarity between samples xi and xj, the distance between yi and yj should be
smaller to minimize the objective function. Likewise, smaller similarity between
xi and xj should lead to larger distances between yi and yj for minimization. Assume
that the low-dimensional attribute space can be found by using a linear projection
such as Y D XTw, where w is the projection vector. The objective function in (6.34)
becomes:

w� D arg minw

X

i;j2V
i¤j

AijkwTxi � wTxjk2

D arg minw wTXTLXw; (6.37)

constrained to wTXTLXw D d. By using the Marginal Fisher Criterion and the
penalty network constraint, Eq. (6.35) becomes:

w� D arg minw
wTXTLXw

wTXLPXTw
; (6.38)

which can be solved by the generalized eigenvalue problem by using the equation
XLXTw D �XLPXTw.

6.4 Chapter Remarks

Clustering is the unsupervised grouping of patterns, such as observations, data
items, or feature vectors. The clustering task has been addressed in many contexts
and by researchers in many disciplines; this diversity reflects its broad appeal and
usefulness as one of the steps in exploratory data analysis. Intuitively, patterns
within the same cluster are more similar to each other than they are to a pattern
belonging to a different cluster. Clustering is useful in several exploratory tasks,
such as in data mining, document retrieval, image segmentation, and pattern clas-
sification. Often, there is little prior information (e.g., statistical models) available
about the data, and the learning algorithm must make as few assumptions about
the data as possible. It is under these restrictions that clustering methodology is
particularly appropriate for the exploration of interrelationships among the data
points.

In this chapter, we have focused on data clustering in a networked environment,
which is often termed as community detection. The study of community detection is
very important for understanding various phenomena in complex networks. Modular
structure introduces important heterogeneities in complex networks. Each module,
for example, can have different local statistics; some modules may have many
connections, while other modules may be sparse. When there is large variation
among communities, global values of statistical measures can be misleading. The
presence of modular structure may also alter the way in which dynamical processes

References 177

unfold on the network. In biological networks, communities correspond to func-
tional modules in which module members function coherently to perform essential
cellular tasks. Hence, the development of efficient community detection methods
stands as an important topic in the agenda for the complex network and machine
learning communities. Due to that importance, this chapter has dedicated a great
part of it to the study of several representative community detection algorithms.
For each of them, we have explained the main idea behind the community detection
mechanism and also the potentialities and shortcomings of the methods. Community
detection benchmarks have also been explored.

The topic of detection of overlapping communities has also been discussed.
We can easily find overlapping communities in real-world networks. A person, for
instance, can belong to a social network, in his/her family community, and also
in his/her institutional community. In network-based unsupervised learning, the
detection of overlapping communities is especially interesting for fuzzy clustering.
Some representative methods have also been explored.

References

1. Acebrón, J.A., Bonilla, L.L., Vicente, P.C.J., Ritort, F., Spigler, R.: The kuramoto model:
A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

2. Alpert, C.J., Kahng, A.B., Yao, S.Z.: Spectral partitioning with multiple eigenvectors. Discret.
Appl. Math. 90(1-3), 3–26 (1999)

3. Arenas, A., Guilera, A.D., Pérez Vicente, C.J.: Synchronization reveals topological scales in
complex networks. Phys. Rev. Lett. 96(11), 114102 (2006)

4. Arenas, A., Duch, J., Fernández, A., Gómez, S.: Size reduction of complex networks preserving
modularity. New J. Phys. 9(6), 176 (2007)

5. Borgwardt, K.M.: Graph kernels. Ph.D. thesis, Ludwig-Maximilians-Universitöt München,
Germany (2007)

6. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On
modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008)

7. Buchanan, M.: Nexus: Small Worlds and the Groundbreaking Theory of Networks. W.W.
Norton, New York (2003)

8. Burt, R.S.: Structural holes: the social structure of competition. Harvard University Press,
Cambridge, MA (1992)

9. Cao, X., Wang, X., Jin, D., Cao, Y., He, D.: Identifying overlapping communities as well as
hubs and outliers via nonnegative matrix factorization. Sci. Rep. 3, 2993 (2013)

10. Chen, J., Yuan, B.: Detecting functional modules in the yeast protein–protein interaction
network. Bioinformatics 22(18), 2283–2290 (2006)

11. Chen, M., Kuzmin, K., Szymanski, B.: Community detection via maximization of modularity
and its variants. IEEE Trans. Comput. Soc. Syst. 1(1), 46–65 (2014)

12. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics,
vol. 92. American Mathematical Society, Providence, RI (1997)

13. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks.
Phys. Rev. E 70(6), 066111+ (2004)

14. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

15. Cox, T.F., Cox, M.: Multidimensional Scaling. Chapman & Hall/CRC, London/Boca Raton
(2000)

178 6 Network-Based Unsupervised Learning

16. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identifica-
tion. J. Stat. Mech. Theory Exp. 2005(09), P09008 (2005)

17. de Oliveira, T., Zhao, L.: Complex network community detection based on swarm aggregation.
In: International Conference on Natural Computation, vol. 7, pp. 604–608. IEEE, New York
(2008)

18. Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM J. Res. Dev.
17(5), 420–425 (1973)

19. Evans, T.S., Lambiotte, R.: Line graphs, link partitions, and overlapping communities. Phys.
Rev. E 80(1), 016105 (2009)

20. Farkas, I., Ábel, D., Palla, G., Vicsek, T.: Weighted network modules. New J. Phys. 9(6), 180
(2007)

21. Févotte, C., Bertin, N., Durrieu, J.L.: Nonnegative matrix factorization with the itakura-saito
divergence: with application to music analysis. Neural Comput. 21(3), 793–830 (2009)

22. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
23. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci.

104(1), 36–41 (2007)
24. Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures based on

information centrality. Phys. Rev. E 70(5), 056104 (2004)
25. Freeman, L.C.: A set of measures of centrality based upon betweenness. Sociometry 40, 35–41

(1977)
26. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315,

972–976 (2007)
27. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explor. 5(1), 49–58 (2003)
28. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc.

Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)
29. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller,

H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D.: Molecular classification of
cancer: class discovery and class prediction by gene expression monitoring. Science 286,
531–537 (1999)

30. Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys.
12(10), 103018 (2010)

31. Guimera, R., Sales-Pardo, M., Amaral, L.: Modularity from fluctuations in random graphs and
complex networks. Phys. Rev. E 70, 025101 (2004)

32. Gulbahce, N., Lehmann, S.: The art of community detection. BioEssays 30(10), 934–938
(2008)

33. Gupta, M., Gao, J., Aggarwal, C., Han, J.: Outlier detection for temporal data: a survey. IEEE
Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014)

34. Hofman, J.M., Wiggins, C.H.: Bayesian approach to network modularity. Phys. Rev. Lett.
100(25), 258701+ (2008)

35. Jin, J., Pawson, T.: Modular evolution of phosphorylation-based signalling systems. Philos.
Trans. R. Soc. Lond. Ser. B Biol. Sci. 367(1602), 2540–55 (2012)

36. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic model-
ing. Computer 32(8), 68–75 (1999)

37. Kawamoto, T., Kabashima, Y.: Limitations in the spectral method for graph partitioning:
detectability threshold and localization of eigenvectors. Phys. Rev. E 91, 062803 (2015)

38. Kiss, G.R., Armstrong, C., Milroy, R., Piper, J.R.I.: An associative thesaurus of English and its
computer analysis. In: The Computer and Literary Studies. University Press, Edinburgh (1973)

39. Kumpula, J.M., Saramäki, J., Kaski, K., Kertész, J.: Limited resolution in complex network
community detection with Potts model approach. Eur. Phys. J. B 56 (2007)

40. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (1984)
41. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection.

Phys. Rev. E 84, 066122 (2011)
42. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community

detection algorithms. Phys. Rev. E 78(4), 046110(1–5) (2008)

References 179

43. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical
community structure in complex networks. New J. Phys. 11(3), 033015 (2009)

44. Li, D., Leyva, I., Almendral, J.A., Sendina-Nadal, I., Buldu, J.M., Havlin, S., Boccaletti, S.:
Synchronization interfaces and overlapping communities in complex networks. Phys. Rev.
Lett. 101(16), 168701 (2008)

45. Liu, W., Principe, J.C., Haykin, S.: Kernel Adaptive Filtering: A Comprehensive Introduction.
Wiley, New York (2010)

46. Lusseau, D.: The emergent properties of a dolphin social network. Proc. R. Soc. B Biol. Sci.
270(Suppl 2), S186–S188 (2003)

47. Ma, Y., Zhu, L.: A review on dimension reduction. Int. Stat. Rev. 81(1), 134–150 (2013)
48. Moreno, Y., Vazquez-Prada, M., Pacheco, A.F.: Fitness for synchronization of network motifs.

Physica A 343, 279–287 (2004)
49. Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept of

bridgeness in complex networks. Phys. Rev. E 77, 016107 (2008)
50. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines.

World Scientific, River Edge, NJ (2007)
51. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004)
52. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E

69(6), 066133 (2004)
53. Newman, M.E.J.: A measure of betweenness centrality based on random walks. Soc. Networks

27, 39–54 (2005)
54. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices.

Phys. Rev. E 74(3), 036104 (2006)
55. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci.

103(23), 8577–8582 (2006)
56. Newman, M.E.J.: Spectral methods for community detection and graph partitioning. Phys.

Rev. E 88, 042822 (2013)
57. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys.

Rev. Lett. 69, 026113 (2004)
58. Newman, M.E.J., Leicht, E.A.: Mixture models and exploratory analysis in networks. Proc.

Natl. Acad. Sci. USA 104(23), 9564–9569 (2007)
59. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity

to directed graphs with overlapping communities. J. Stat. Mech. Theory Exp. 2009(03), 03024
(2009)

60. Oh, E., Rho, K., Hong, H., Kahng, B.: Modular synchronization in complex networks. Phys.
Rev. E 72, 047101 (2005)

61. de Oliveira, T., Zhao, L., Faceli, K., de Carvalho, A.: Data clustering based on complex network
community detection. In: IEEE Congress on Evolutionary Computation, pp. 2121–2126. IEEE,
New York (2008)

62. Oliveira, T.B.S.: Clusterização de dados utilizando técnicas de redes complexas e computação
bioinspirada (2008). Master Thesis. Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo (USP)

63. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure
of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

64. Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in
networks of coupled oscillators. Nonlinearity 28(3), R67 (2015)

65. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6),
559–572 (1901)

66. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph
Algorithms Appl. 10, 284–293 (2004)

67. Psorakis, I., Roberts, S., Ebden, M., Sheldon, B.: Overlapping community detection using
bayesian non-negative matrix factorization. Phys. Rev. E 83, 066114 (2011)

68. Quiles, M.G., Zhao, L., Alonso, R.L., Romero, R.A.F.: Particle competition for complex
network community detection. Chaos 18(3), 033107 (2008)

180 6 Network-Based Unsupervised Learning

69. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organiza-
tion of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

70. Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with
a potts model. Phys. Rev. Lett. 93(21), 218701(1–4) (2004)

71. Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving community
structure in complex networks. Proc. Natl. Acad. Sci. 104(18), 7327–7331 (2007)

72. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290, 2323–2326 (2000)

73. Ruszczyński, A.P.: Nonlinear optimization. Princeton University Press, Princeton, NJ (2006)
74. Sarveniazi, A.: An actual survey of dimensionality reduction. Am. J. Comput. Math. 4, 55–72

(2014)
75. Schmidt, M.N., Winther, O., Hansen, L.K.: Bayesian non-negative matrix factorization. In:

Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) Independent Component Analysis
and Signal Separation. Lecture Notes in Computer Science, vol. 5441, pp. 540–547. Springer,
Berlin, Heidelberg (2009)

76. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University
Press, New York (2004)

77. Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical community
structure in networks. Physica A 388(8), 1706–1712 (2009)

78. Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York
(2003)

79. Sun, P.G., Gao, L., Shan Han, S.: Identification of overlapping and non-overlapping community
structure by fuzzy clustering in complex networks. Inf. Sci. 181, 1060–1071 (2011)

80. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

81. Topaz, C.M., Andrea, Bertozzi, L.: Swarming patterns in a two-dimensional kinematic model
for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)

82. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J.
Mach. Learn. Res. 11, 1201–1242 (2010)

83. Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks:
[extended abstract]. In: Proceedings of the 16th International Conference on World Wide Web,
WWW ’07, pp. 1275–1276 (2007)

84. Wang, F., Sun, J.: Survey on distance metric learning and dimensionality reduction in data
mining. Data Min. Knowl. Disc. 29(2), 534–564 (2015)

85. Winfree, A.T.: The Geometry of Biological Time. Springer, Berlin (2001)
86. Wu, Z., Duan, J., Fu, X.: Complex projective synchronization in coupled chaotic complex

dynamical systems. Nonlinear Dyn. 69(3), 771–779 (2012)
87. Xu, R., II, D.W.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678

(2005)
88. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extensions:

a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell.
29(1), 40–51 (2007)

89. Zarei, M., Izadi, D., Samani, K.: Detecting overlapping community structure of networks based
on vertex-vertex correlations. J. Stat. Mech. Theory Exp. 11, P11013 (2009)

90. Zhang, S., Wang, R.S., Zhang, X.S.: Identification of overlapping community structure in
complex networks using fuzzy C-Means clustering. Physica A 374(1), 483–490 (2007)

91. Zhang, X., Nadakuditi, R.R., Newman, M.E.J.: Spectra of random graphs with community
structure and arbitrary degrees. Phys. Rev. E 89, 042816 (2014)

92. Zhou, H.: Distance, dissimilarity index, and network community structure. Phys. Rev. E 67(6),
061901 (2003)

	6 Network-Based Unsupervised Learning
	6.1 Introduction
	6.2 Community Detection
	6.2.1 Relevant Concepts and Motivations
	6.2.2 Mathematical Formalization and Fundamental Assumptions
	6.2.3 Overview of the State-of-the-Art Techniques
	6.2.4 Community Detection Benchmarks

	6.3 Representative Network-Based Unsupervised Learning Techniques
	6.3.1 Betweenness
	6.3.2 Modularity Maximization
	6.3.2.1 Clauset et al. Algorithm
	6.3.2.2 Louvain Algorithm

	6.3.3 Spectral Bisection Method
	6.3.4 Community Detection Using Particle Competition
	6.3.5 Chameleon
	6.3.6 Community Detection by Space Transformation and Swarm Dynamics
	6.3.7 Synchronization Methods
	6.3.8 Finding Overlapping Communities
	6.3.8.1 Clique Percolation
	6.3.8.2 Bayesian Nonnegative Matrix Factorization Algorithm
	6.3.8.3 Fuzzy Partition Algorithm

	6.3.9 Network Embedding and Dimension Reduction

	6.4 Chapter Remarks
	References

