
Chapter 4
Network Construction Techniques

Abstract In many areas of machine learning, networks are used to model local
relationships between data points and to build global structures from local infor-
mation. Building networks is often a necessary step when dealing with problems
arising from applications in machine learning or data mining. This fact becomes
crucial when we want to apply network-based learning methods to vector-based
data sets, in which a network must be constructed from the input data set using
some convenient network formation criteria. In this chapter, we review the main
ingredients that are needed to construct a graph from non-networked data. In special,
we discuss transformation of vector-based and time series data. Several similarity
functions are also discussed.

4.1 Introduction

Networks are essential for encoding information, and data in network format is
increasingly abundant in fields ranging from computational biology to computer
vision. The transformation from unstructured data to a network data representation
can always be performed in a lossless manner. The inverse transformation, however,
is often a lossy one. Let us give an example. Consider the WWW that is inherently
represented by a network format. In such a network, pages are vertices and links
exist between different pages if one page references another one. Now suppose
we desire to extract a vector-based data out of this network. A very difficult task
would be to model the recursiveness of cycles in the network topology when we
now go to a vector-based format. Moreover, the local and global topologies of the
pages relationships would probably be distorted by the transformation. In addition,
considering that there are more than one network component, then some shortest
paths between members of different components would be infinity in the network.
To model this extreme dissimilarity in a vector-based format would be difficult,
because the information of whether or not vertices are in the same component is
structural and depends on the topology of the data relationships, which in turn is not
easily modeled in a vector-based format.

From that example, it is clear that networks embed more information than vector-
based data sets. This additional information is made up of several ingredients,
among which the most important one is the structural or topological information

© Springer International Publishing Switzerland 2016
T.C. Silva, L. Zhao, Machine Learning in Complex Networks,
DOI 10.1007/978-3-319-17290-3_4

93

94 4 Network Construction Techniques

Unstructured data

Network data

Fig. 4.1 Differences of vector- and network-based machine learning tasks. We illustrate using
a semi-supervised learning classification. Colored vertices denote labeled data, while gray
data symbolize unlabeled data. Network formation methods interface between unstructured and
structured network data

of the data relationships. In this way, the network topology is able to encode in
an elegant manner interactions of the data items in a systematic manner, going
from local to global structural information. Thus, a natural question that arises
is how can we build networks from unstructured or vector-based data, such that
the resulting network encodes as much information as possible? The structure, in
principle, must be estimated using the network formation technique based on some
heuristics. In this chapter, we discuss the problem of network formation, a task that
serves as interface between unstructured and structured network data.

Figure 4.1 illustrates where network formation techniques stand in an overall
machine learning scheme. We illustrate using a semi-supervised learning task.1

First, we see that there is a one-to-one correspondence of X and V , i.e., each data
item in the data set is a vertex in the resulting network. Edges are created using
some heuristics that capture similarity among data items. Note these edges that
naturally encode similarity are only explicitly modeled in a network environment.
Thus, they are estimated by the network formation procedure that interfaces between
unstructured and structured network data.

Following our previous notation on general machine learning tasks, given a set of
N data points X D fx1; : : : ; xNg that is not in a networked format, we can transform
it into a network G that consists of (1) the vertex set V D fv1; : : : ; vVg and (2) the

1Recall that, in a semi-supervised setting, the goal is to propagate the labels from the labeled to the
unlabeled set.

4.1 Introduction 95

edge set E , which is a subset of V �V . The transformation is performed a mapping
procedure g W X ! G D hV ;E i. We now discuss how the sets V and E that
compose the network are obtained.

In relation to the vertex set, for the majority of machine learning applications,
V D X holds, i.e., each data item exactly corresponds to a vertex in the resulting
network. To illustrate, in a handwritten digits recognition, each digit in X would
correspond to a vertex in V . Some learning techniques, however, may use reduced or
expanded sets of the data items. For example, we can compact several very similar
date items in X into a super-vertex that essentially represents in a summarized
manner all of those data items.

We have been using N to denote the cardinality or number of data items in X .
In a network setting, the number of vertices in V is symbolized as V D jV j, which
is not necessarily (but often is) equal to N, as we have previously discussed.

Now we discuss how to obtain the set of edges E . We process the decision of
establishing or not edges in E in accordance with two factors:

• A proper similarity function s: the similarity function s W V � V 7! R enables
us to quantify how different or similar two data items are with respect to their
attributes. That is, the similarity function transforms two data items2 into a scalar
value. Applying the similarity function to all of the pairs of vertices, we are able
to construct (1) the similarity matrix S, in which Sij D s.vi; vj/, where vi; vj 2 V ,
or (2) equivalently the dissimilarity matrix Dij D d.vi; vj/.

• A network formation technique: we decide whether or not to add a link between
vi and vj by using some rules applied on the similarity matrix S or on the
dissimilarity matrix D.

In this chapter, we discuss these two ingredients that are needed to build up a
network from non-networked data. First, we review the theory behind the definition
of similarity functions as well as some well-known examples. Following that we
show network formation techniques that are applied to vector-based data, in which
each data item is represented by a feature vector.3 After, we deal with the issue
of constructing networks from time series. In this case, there is an additional
caveat of temporal data dependency that introduces some complexity in the network
formation process.

2The term data item is used in a wide sense. It may denote feature vectors, time series, graphical
objects, among many other types of objects.
3Essentially, the representation of data in the format of feature vector covers a wide spectrum of
applications in the real world. In image-based applications, for instance, where each data item
is symbolized by an image, we can always extract some features from that image and construct
a feature vector. Normally, face recognition systems and image processing tools do this for
robustness (due to relative uniqueness and invariance between different images) and computational
efficiency reasons.

96 4 Network Construction Techniques

4.2 Similarity and Dissimilarity Functions

The concepts of similarity and dissimilarity are widely employed in the artificial
intelligence domain. Among the several fields that they appear, we highlight
applications in data mining, information retrieval, pattern matching, genetics,
drug discovery, and fuzzy logic [1, 2, 21, 30, 33, 48]. In a general sense, similarity
and dissimilarity express a comparison between two elements. Though intuitive,
several different formalizations of similarity and dissimilarity exist in the literature.
Another prominent characteristic is the duality linking the similarity and dissim-
ilarity concepts, which are opposite terms yet somehow interrelated. This duality
also extends to properties of the data items, which could be very useful if properly
exploited. Thus, every property of a similarity should have a correspondence with
one property of a dissimilarity and vice versa.

Several researches have tried to formalize these concepts but the main properties
of similarity or dissimilarity are still under discussion [13, 40]. The lack of basic
common theory underlying these two functions leads to incompatible definitions or
results. Duality is often neglected and there are few studies about how transforma-
tions of similarity to dissimilarity functions can alter their properties [40]. If the
similarity function s is well-behaved, one way to calculate its dual, the dissimilarity
function d, is:

d.xi; xj/ D
q

s.xi; xi/ C s.xj; xj/ � 2s.xi; xj/; (4.1)

in which xi and xj are two arbitrary data items.
Similarity measures are peculiar kinds of indicators that are mainly descriptive

coefficients and not estimators of some statistical parameter. We note that it
is difficult to give reliable confidence intervals for most measures of similarity
and probable errors can be estimated only by certain types of randomization
procedures [28, 49].

4.2.1 Formal Definitions

Similarity and dissimilarity express the degree of coincidence or divergence
between two elements of a given domain. Thus, it is reasonable to treat them as
functions since the objective is to measure or calculate this value between any two
elements of the domain. We first define a similarity function in the following [38].

Definition 4.1. Similarity function: Let X be a non-empty set where an equality
relation is defined. If s is a similarity function, then s is upper bounded, exhaustive,
and total, whose domain and range are as follows:

s W X � X 7�! Is � R; (4.2)

4.2 Similarity and Dissimilarity Functions 97

in which Is is upper bounded by construction, since we assumed s is upper bounded,
where maxR Is D smax. Moreover, the similarity function s satisfies the following
properties:

1. Reflexivity: s.x; x/ D smax.
2. Strong reflexivity: s.x; y/ D smax ” x D y.
3. Symmetry: s.x; y/ D s.y; x/.
4. Boundedness4: s is lower bounded when 9a 2 R W s.x; y/ � a; 8x; y 2 X . This

statement is equivalent to affirm that s D smin D minR Is exists.
5. Closedness5: This property assures the existence of a lower bound. In special, the

closedness property asks for the existence of x; y 2 X W s.x; y/ D smin.
6. Transitivity: If �s is a transitivity operator, then the following must hold: s.x; y/ �

�s.s.x; z/; s.z; y//, 8x; y; z 2 X .

We see that s takes as input two data items from X and outputs a bounded real-
valued scalar value. The more similar two objects are, the greater is the similarity
value between them. In the next paragraph, we define the concept of dissimilarity or
distance function [38].

Definition 4.2. Dissimilarity function: Let X be a non-empty set where an
equality relation is defined. If d is a dissimilarity function, then d is lower bounded,
exhaustive, and total, whose domain and range are as follows:

d W X � X 7�! Id � R; (4.3)

in which Id is lower bounded by construction, since we assumed d is lower bounded,
where minR Id D dmin. Moreover, the dissimilarity or distance function d satisfies
the following properties:

1. Reflexivity: d.x; x/ D dmin.
2. Strong reflexivity: d.x; y/ D dmin ” x D y.
3. Symmetry: d.x; y/ D d.y; x/.
4. Boundedness: d is upper bounded when 9a 2 R W d.x; y/ � a; 8x; y 2 X . This

statement is equivalent to affirm that d D dmax D maxR Id exists.
5. Closedness: This property assures the existence of an upper bound. The closed-

ness property asks for the existence of x; y 2 X W d.x; y/ D dmax.
6. Transitivity: If �d is a transitivity operator, then the following must hold: d.x; y/ �

�d.d.x; z/; d.z; y//, 8x; y; z 2 X .

4Recall that a set S 2 R
m, m > 0, is bounded if there exists a number B such that kxk � B; 8x 2

S , that is, if S is contained in some ball in R
m.

5Recall that a set S 2 R
m, m > 0, is closed if, whenever fxng1nD1 is convergent sequence

completely contained in S , its limit is also contained in S . For example, the sets R
m and

f.x; y/ 2 R
2 W xy D 1g are closed but not bounded.

98 4 Network Construction Techniques

We see that d takes as input two data items from X and outputs a bounded
real-valued scalar value. The more dissimilar are two objects, the greater is the
dissimilarity value between them.

Besides those mathematical properties, there are two desirable attributes of
all similarity measures. First, the measure should be independent of sample size
and of the number of classes in the population [49]. Second, the measure should
increase smoothly from some fixed minimum to a fixed maximum, as the samples
become more similar. We refer to the researches in [11, 12, 14, 40, 49, 50] for an
extensive analysis of the properties of similarity functions.

4.2.2 Examples of Vector-Based Similarity Functions

In this section, we show some traditional examples of similarity/dissimilarity
functions. Assume we have a data set X D fx1; : : : ; xNg with N > 1 data items.
Moreover, we characterize each data item with a feature vector xi D Œxi1; : : : ; xiP�

with P > 0 features or attributes. Data items xi and xj are both members of X .
Before we start to explore examples of similarity functions, we give an overall

intuition of the types of features or attributes that we can face.
A feature or attribute can be classified as one of the following types:

• Categorical or nominal attribute: a categorical feature is one that has two or
more categories with no intrinsic ordering. For example, gender is a categorical
variable having two categories (male and female) and there is no intrinsic
ordering to the categories. Hair color is also a categorical variable having a
number of categories (blonde, brown, brunette, red, etc.) and there is no agreed
way to order these from highest to lowest. A purely categorical variable is one
that simply allows you to assign categories but you cannot clearly order the
variables.

• Ordinal attribute: An ordinal variable is similar to a categorical variable. The
difference between the two is that there is a clear ordering scheme for ordinal
variables. For example, suppose you have a variable, economic status, with three
categories: low, medium, and high. In addition to being able to classify people
into these three categories, you can order the categories as low, medium, and
high. Now consider a variable like educational experience with values such as
elementary school graduate, high school graduate, some college, and college
graduate. These also can be ordered as elementary school, high school, some
college, and college graduate.

• Numerical or quantitative attribute: The values of a quantitative variable can be
ordered and measured. Height and weight are examples of numerical attributes.

Categorical and ordinal attributes are also termed as qualitative attributes, as
we cannot numerically operate on them (multiplication and division, for instance,

4.2 Similarity and Dissimilarity Functions 99

are not defined). Numerical attributes, in contrast, are classified as quantitative
attributes, since mathematical operations can be performed on these types of
features.

In the next section, we provide some representative similarity and distance
measures. For a comprehensive review, see [33].

4.2.2.1 Numerical Data

In this section, we suppose that the attributes in xi and xj are all numerical. They are
called feature vectors and have an arbitrary dimension of P > 0. The notation xi.k/,
k 2 f1; : : : ; Pg, indexes the k-th component of the attribute vector xi. There are a
total of N data items.

Definition 4.3. Euclidean distance: The Euclidean distance between xi and xj is:

dEuclidean.xi; xj/ ,

vuut PX
kD1

�
xi.k/ � xj.k/

�2
: (4.4)

Definition 4.4. Weighted Euclidean distance: The weighted Euclidean distance
between xi and xj is:

dWEuclidean.xi; xj/ ,

vuut PX
kD1

Wk
�
xi.k/ � xj.k/

�2
; (4.5)

in which Wk denotes the weight given for the k-th attribute.

Remark 4.1. If we give unitary weight for all of the attributes in the feature vector,
then the weighted Euclidean distance reduces to the traditional Euclidean distance.

Definition 4.5. Manhattan or city-block distance: The Manhattan or city-block
distance between xi and xj is:

dManhattan.xi; xj/ ,
PX

kD1

ˇ̌
xi.k/ � xj.k/

ˇ̌
: (4.6)

Definition 4.6. Chebyshev or supremum distance: The Chebyshev or supremum
distance between xi and xj is:

dSupremum.xi; xj/ , max
�ˇ̌

xi.1/ � xj.1/
ˇ̌
; : : : ;

ˇ̌
xi.P/ � xj.P/

ˇ̌�
: (4.7)

100 4 Network Construction Techniques

Definition 4.7. Minkowski distance (L� metric): The Minkowski distance or L�

metric, � � 1, between xi and xj is:

dMinkowski.xi; xj/ ,
"

PX
kD1

ˇ̌
xi.k/ � xj.k/

ˇ̌�

1
�

: (4.8)

Remark 4.2. The family of Minkowski functions is obtained by varying � over 1

to 1. The Minkowski distance is a generalization of the previous discussed metrics.
We list them in the following:

• L1 metric: Manhattan or city-block distance as in Definition 4.5.
• L2 metric: Euclidean distance as in Definition 4.3.
• L1 metric: Chebyshev or supremum distance as in Definition 4.6.

Definition 4.8. Mahalanobis distance: The Mahalanobis distance between xi and
xj is:

dMahalanobis.xi; xj/ ,

vuut PX
kD1

�
xi � xj

�T
˙ �1

�
xi � xj

�
; (4.9)

in which ˙ is the P � P sample covariance matrix, whose .i; j/-th entry, ˙ ij, is
given by:

˙ ij ,
1

N � 1

NX
kD1

.xi.k/ � Nxi/
�
xj.k/ � Nxj

�
; (4.10)

in which Nxi and Nxj are the sample means that in turn are expressed as:

Nxi ,
1

N

NX
kD1

xi.k/: (4.11)

In the next example, we provide the intuition behind the definition of the
Mahalanobis distance.

Example 4.1. Consider the problem of estimating the probability that a test point in
an Euclidean space belongs to a set of training data points. A natural first step would
be to find the average or center of mass of these training data points. Intuitively, the
closer the test point in question is to this center of mass, the more likely it is to
belong to the set.

A simple refinement would be to quantify if the set is spread out over a large
or a small range, so that we can decide whether a given distance from the center is
noteworthy or not. The simplistic approach is to estimate the standard deviation of
the distances of the sample points from the center of mass. If the distance between

4.2 Similarity and Dissimilarity Functions 101

the test point and the center of mass of the training set is less than one standard
deviation, then we might conclude that it is highly probable that the test point
belongs to the set of training data points. The further away it is, the more likely
that the test point should not be classified as belonging to the set.

This intuitive approach can be made quantitative by defining the normalized
distance between the test point and the set of training data points as x��

�
, where �

is the sample average and � , the sample standard deviation of the set. By plugging
these values into the normal distribution, we can derive the probability of the test
point belonging to the set.

The drawback of the above approach is that we assume that the points in
the training data set are distributed around the center of mass in a spherical
manner. If we were dealing with a non-spherical distribution, such as the ellipsoidal
distribution, then we would expect the membership probability of that test point to
depend not only on the distance from the center of mass, but also on the direction.
In those directions in which the ellipsoid has a short axis, the test point is expected
to be closer if it is really a member of that set, while in those directions where the
axis has large amplitude, the test point can be further away from the center.

Putting this on a mathematical basis, the ellipsoid that best represents the
probability distribution of the training data set can be estimated by building the
covariance matrix of the samples. The Mahalanobis distance is simply the distance
of the test point from the center of mass divided by the width of the ellipsoid in the
direction of the test point. This behavior is mathematically represented by (4.9).

Definition 4.9. Gaussian kernel similarity (radial basis function or heat
kernel): The Gaussian kernel similarity between xi and xj is:

sGaussian.xi; xj/ , a exp

�
�k xi � xj k2

2�2

�
; (4.12)

in which � > 0 is the variance of bandwidth of the Gaussian function and a is
scaling constant. The term k xi � xj k is the Euclidean norm between xi and xj.

Definition 4.10. Harmonic mean similarity: The harmonic mean similarity
between xi and xj is:

sHarmonic.xi; xj/ , 2

PX
kD1

xi.k/xj.k/

xi.k/ C xj.k/
: (4.13)

Definition 4.11. Cosine similarity: The cosine similarity between xi and xj is:

sCosine.xi; xj/ ,
PP

kD1 xi.k/xj.k/

kxikkxjk D hxi; xji
kxikkxjk ; (4.14)

in which h:; :i denotes the inner product operator and k:k is the Euclidean norm.

102 4 Network Construction Techniques

Definition 4.12. Pearson correlation similarity: The Pearson correlation
similarity between xi and xj is:

sPearson.xi; xj/ ,
PP

kD1 .xi.k/ � Nxi/.xj.k/ � Nxj/

kxi � Nxikkxj � Nxjk

D hxi � Nxi; xj � Nxji
kxi � Nxikkxj � Nxjk

D sCosine.xi � Nxi; xj � Nxj/: (4.15)

Remark 4.3. Cosine similarity can be applied to deal with document similarity and
image similarity. It should be noted that cosine similarity is affected by vector
translation. The Pearson correlation similarity, however, addresses this problem by
being translation-invariant due to the demeaning process. In addition, cosine and
Pearson correlations are scale-invariant due to the normalization process.

Definition 4.13. Dice similarity [36]: The Dice similarity between xi and xj is:

sDice.xi; xj/ ,
2

PP
kD1 xi.k/xj.k/PP

kD1 xi.k/2 C xj.k/2
: (4.16)

Definition 4.14. Kumar-Hassebrook similarity [29]: The Kumar-Hassebrook
similarity between xi and xj is:

sKH.xi; xj/ ,
PP

kD1 xi.k/xj.k/PP
kD1 xi.k/2 C xj.k/2 � xi.k/xj.k/

: (4.17)

4.2.2.2 Categorical Data

In this section, we deal with categorical data. We consider that each entry of the
P-dimensional feature vectors xi and xj can assume either a present or an absent
value (dichotomous feature). If there are multiple categories, we define the category
of interest as present, while all of the others are considered to be in the absent class.
Therefore, when comparing the vectors xi and xj, we can face four different scenarios
that are delineated in Table 4.1. We see that:

• M11 denotes the number of occurrences of coincident present values in xi and xj.
• M01 is the number of occurrences in which there is an absence in xi and a presence

in xj.
• M10 represents the number of occurrences in which there is a presence in xi and

an absence in xj.
• M00 symbolizes the number of occurrences of coincident absent values in xi

and xj.

4.2 Similarity and Dissimilarity Functions 103

Table 4.1 Possible outcomes
when comparing two entries
of categorical data

xj

Present Absent
xi Present M11 M10

Absent M01 M00

Definition 4.15. Hamming distance: The Hamming distance between xi and xj is

dHamming.xi; xj/ ,
PX

kD1

1Œxi.k/¤xj.k/� D M01 C M10; (4.18)

i.e., the Hamming distance is defined as the minimum number of replacements that
are needed to transform xi into xj.

Definition 4.16. Jaccard similarity [26]: The Jaccard similarity between xi

and xj is

sJaccard.xi; xj/ ,
M11

M11 C M01 C M10

: (4.19)

Remark 4.4. In the Hamming distance, each value is equally important. In some
applications, however, it may be interesting to give more importance to some classes
in detriment to others. In light of that, suppose we have a problem where there is
a feature vector of P movies and we want to compute the similarity of movie taste
of two persons. In this case, if there are several movies that they have not watched,
we can not say two persons are similar simply because none of them watched any
movies in the feature vector. In contrast, if these two persons have seen a significant
quantity of common watched movies, we can say they are similar to some extent.
That is, we give more weight to those entries in which both persons have mutually
watched the film in detriment to other configurations. This is a kind of weighted
Hamming distance that is known as Jaccard similarity.

Definition 4.17. Sørensen similarity [45]: The Sørensen similarity between xi

and xj is

sSørensen.xi; xj/ ,
2M11

2M11 C M01 C M10

: (4.20)

Remark 4.5. As opposed to Jaccard similarity, the matches in the Sørensen sim-
ilarity are given more importance than mismatches. Deciding between the two is
a matter of the type of data we have at hand. If many entries are present in the
population but are not present in the sample, it may be useful to use Sørensen
coefficient rather than Jaccard.

104 4 Network Construction Techniques

Definition 4.18. Simple matching similarity: The simple matching similarity
between xi and xj is

sSM.xi; xj/ ,
M11 C M00

M11 C M00 C M01 C M10

: (4.21)

Remark 4.6. Simple matching similarity is a good option to choose when absent
and present values are equally valuable in the data.

Definition 4.19. Baroni-Urbani and Buser similarity [4]: The Baroni-Urbani and
Buser similarity between xi and xj is

sBUB.xi; xj/ ,
p

M11M00 C M11p
M11M00 C M11 C M01 C M10

: (4.22)

Remark 4.7. The square root term in (4.22) is introduced to help in removing the
size bias common in other similarity measures, such as the Jaccard.

4.3 Transforming Vector-Based Data into Networks

Given the similarity matrix S or the dissimilarity matrix D, one direct approach
of building a network would be to establish links between pairs of vertices with
weights according to Sij or, equivalently, to some function on the reciprocal of Dij.
This approach would frequently lead to the emergence of almost complete networks.
Generally speaking, a good network satisfies the following criteria: (1) it should
possess a giant component to mantain the vertices connected; (2) it should be as
sparse as possible in order to better reveal the relationships between the vertices. The
existence of links with very small weights, however, may lead to poor results if used
by network-based algorithms. Sparsification, hence, is important because it leads to
improved efficiency in the learning stage, better accuracy, and robustness to noise.
We can think of small-valued links as noises that would just jeopardize the learning
process, providing misleading information to the machine learning algorithm by
connecting two distant vertices. Therefore, the resulting network topology would
be largely distorted by these noisy links. The removal of these links stands as
an important pre-processing step for enhancing the efficiency of network-based
learning algorithms.

Following that reasoning, the two most traditional types of nearest neighbor
networks that sparsify the similarity or dissimilarity matrices are [5]:

• k-nearest neighbors network (k-NN): this is, in general, a directed network. An
edge from vi to vj exists if and only if vj is among the k most similar elements
to vi. In computational terms, we have to sort, in an independent manner, all of
the rows of D in ascending order. Once sorted, given a row i, links are established

4.3 Transforming Vector-Based Data into Networks 105

among vertex i and the first k entries that are in the sorted list corresponding to
the elements in the i-th row of D.

• �-radius network: this is an undirected network whose edge set consists of pairs
.vi; vj/ such that Dij � �, where � 2 RC.

The k-nearest neighbors network is, in general, a directed network because vj can
be one of the k nearest neighbors of vi, but the converse may not be true. In contrast,
the �-radius network is by construction an undirected network, because Dij D Dji,
as we evaluate each entry of the distance matrix using a distance function. In this
way, if Dij < �, it must be the case that Dji < �. Hence, the existence of links always
occurs in both directions.

The k-nearest neighbors and the �-radius techniques are considered as static
network formation methods. This is because they treat in a uniform manner data
items that are in dense and sparse regions. We now list a set of network formation
techniques that employ adaptive or dynamical information:

• Network formation using combinations of the k-nearest neighbors and �-radius
techniques [43, 44]: we can devise a network formation technique that employs
both heuristics based on one or more criteria. For instance, we can activate the
k-nearest neighbors network when we are at sparse regions. Conversely, we can
employ the �-radius technique in dense regions.

• b-matching network [27]: As opposed to the k-NN network, the b-matching
network ensures that each vertex in the graph has the same number of edges
and therefore produces a balanced or regular graph. It relies on an optimization
process.

• Linear neighborhood network [47]: the idea is to approximate the entire network
by a series of overlapped linear neighborhood patches, and the edge weights
in each patch are determined by a standard quadratic programming procedure.
The initial neighborhoods of the vertices are set in a static way. Then, the linear
embedding makes dynamical adjustments in the edge weights.

• Relaxed linear neighborhood network [10]: it approximates the entire network
by a series of overlapped linear neighborhood patches, where the neighborhood
of any vertex is captured dynamically based on the density/sparsity of its
surrounding. Moreover, the relaxed linear neighborhood technique explores the
degree of neighborhood during the reconstruction method rather than using fixed
assignments. As a consequence, it does not get affected by outliers, producing
networks that are more robust.

• Network formation using clustering heuristics [15]: this method uses data
clustering heuristics to perform the network formation process. Specifically, it
employs the single-link method, which is a clustering heuristic that is capable of
constructing connected and sparse networks, while also maintaining the cluster
structure of the original data set.

• Network formation using overlapping histogram segments [42]: this technique
uses overlapping histogram segments to perform the network construction.
The resulting network always produces a connected graph with vertices of the
same community densely interconnected and with vertices of different commu-

106 4 Network Construction Techniques

nities sparsely interconnected. In essence, it is based on the k-NN technique, but
with adaptive k values that are learned from the data distribution.

In the following section, we discuss in detail each of the mentioned techniques.

4.3.1 Analysis of k-Nearest Neighbors and �-Radius Networks

We supply in Fig. 4.2a, b the geometrical intuition of the k-nearest neighbors and the
�-radius networks, respectively. In the k-NN, once set a reference vertex, we simply
sort all of the remainder vertices in accordance with the selected distance function,
thus ranking those vertices. With the selected parameter k, we only establish links
with those vertices that are ranked below that threshold k. In Fig. 4.2a, note that
k D 2. Now, in the �-radius network formation technique, we only establish links to
those vertices whose similarities to the reference vertex are within the threshold �.
A noticeable difference between these two techniques is in the number of links that
emerges from a reference vertex. In the �-radius technique, the number of links is
not pre-determined: the network formation process keeps establishing links as long
as there are vertices within the range �. Both techniques have their advantages and
shortcomings that we discuss further.

Parameters k and � play an important role in transforming the raw data into a
corresponding network, since these parameters are sensitive to the local structure of
the data. Thus, depending on the choices of k and �, the resulting network topology
may not reliably maintain the properties of the underlying data distribution.

We first discuss that caveat for k-NN. When k is large enough, it forces the
creation of links between pairs of vertices that are not similar at all. To give
an example, consider the data in Fig. 4.3a, in which we build a network with
k D 3. Even though it is apparent that two well-behaved clusters exist in the data,
the reference vertex is forced to connect to distant members of the other cluster.
Conversely, if we choose k too small, we may sparsify the link structure in such a
way that clusters are not formed in regions where the underlying data distribution
seems to have real clusters. As an example, consider Fig. 4.3b, where we want to

4

5

6

2

3

1

Reference
vertex Reference

vertex

a b

Fig. 4.2 Geometrical intuition of the k-nearest neighbor and �-radius techniques, (a) 2-nearest
neighbors, (b) �-radius

4.3 Transforming Vector-Based Data into Networks 107

4

5

6

2

3

1

Reference
vertex

7

4

5

6

2

3

1

Reference
vertex

a b

Fig. 4.3 Limitations of the k-nearest neighbors network formation technique. (a) Too large k
(k D 3). (b) Too small k (k D 2)

Reference
vertex

a b

Fig. 4.4 Limitations of the �-radius network formation technique. (a) Too large �. (b) Too small �

build a network with k D 2. Now, we have the opposite picture: the k-NN breaks
into two apparent well-behaved clusters due to the small value of k. Note also that,
provided that k > 0, no singletons6 will arise in the network.

As we have pointed out, parameter � also plays a major role in correctly
translating the raw data into a proper network topology. Depending on the data
distribution, a small increase on the value of � may increase the network density
to a large extent. Therefore, the network topology is very sensitive to the selected
value of �. Consider Fig. 4.4a, in which we employ the �-radius to construct a
network with a large �. If we slightly reduce the value of �, we get the network
portrayed in Fig. 4.2b. We see here that a small increase on � is responsible for an
explosive increase in the number of connections established by the reference vertex.
Conversely, if we choose a small value for �, we may end up getting singletons in
the network, as we can see in Fig. 4.4b. In both extremes, the resulting network may
not represent well the true data distribution.

Some studies point that the network constructed using k-nearest neighbors and �-
radius techniques have dramatic influences on clustering techniques [34]. The k-NN
network remains the more common approach since it is more adaptive to scale and
data density.

6Singletons are those vertices that do not have connections to other vertices.

108 4 Network Construction Techniques

4.3.2 Combination of k-Nearest Neighbors and �-Radius
Network Formation Techniques

Recall that the �-radius technique creates a link between two vertices if they are
within a distance �, while the k-NN sets up a link between vertices i and j if i is one
of the k nearest neighbors of j. Both approaches have their limitations when sparsity
or density is a concern. For sparse regions, the k-NN forces a vertex to connect
to its k nearest vertices, even if they are far apart. In this scenario, one can say
that the neighborhood of this vertex would contain dissimilar points. Equivalently,
improper � values could easily result in disconnected components, subgraphs, or
isolated singleton vertices.

In order to combine the strengths of both approaches, a suitable combination
(among many others) is given as follows. If N .vi/ denotes the neighborhood of vi,
then:

N .vi/ D
(

�-radius.vi/; if j�-radius.vi/j > k

k-NN.vi/; otherwise
(4.23)

in which ��radius.vi/ returns the set fvj; j 2 V W Dij <D �g, and k-NN.vi/ returns
the set containing the k nearest of vertex vi. Note that the �-radius technique is
used for dense regions (j�-radius.vi/j > k), while the k-NN is employed for sparse
regions.

Figure 4.5 portrays how the combination of k-NN and �-radius can transform
vector-based data into networked data. In the example, we use k D 3 and desire
to evaluate the neighbors of the colored vertices. Recall that k is employed as a
threshold when defining whether vertices are located in sparse or dense regions.
Whenever the number of neighbors within a radius � of a given reference vertex is

Reference
vertex

Declared as in a sparse region:
Uses -NN

Declared as in a dense region:
Uses -radius

Fig. 4.5 Combination of the k-NN and �-radius technique as a network formation technique. In
the example, we use k D 3 and the � is geometrically depicted within the figure

4.3 Transforming Vector-Based Data into Networks 109

smaller than k, we use the k-NN, which effectively forces the reference vertex to
find more distant neighbors. When the number of neighbors is larger than k, then
we declare the reference vertex as in a dense region. In this case, it connects to all
of the neighbors within the radius �, as governed by the �-radius technique. One
nice property of this network formation technique is that it adapts the heuristics of
network formation depending on local density of data items. As it uses the k-NN
in sparse regions, the combination of k-NN and �-radius methods as a network
formation technique tend to prevent the emergence of many network components.7

4.3.3 b-Matching Networks

The b-matching method is introduced in [27]. As opposed to the k-NN network, the
b-matching network ensures that each vertex in the network has the same number
of edges and therefore produces a balanced or regular network.

For a non-weighted adjacency matrix A, the b-matching network formation
technique relies on an optimization framework as follows:

min
A

X
i;j2V

AijDij

s:t:
X
j2V

Aij D b;

Aii D 0;

Aij D Aji;

(4.24)

8i; j 2 V . D denotes the dissimilarity matrix in which Dij represents the dissimilar-
ity between the i-th and j-th feature vectors. We can use any of the discussed metrics
in Sect. 4.2 to construct D. Note that the search space is on all binary matrices with
the same dimension as of A. The first restriction forces every vertex to link to exactly
b other vertices. The second constraint prevents the emergence of self-loops. The
third restriction guarantees that the resulting network is symmetric.

The k-NN network formation technique can also be stated as an optimization
framework similar to that in (4.24), except for the third restriction. At the end of the
network formation, the k-NN technique may not necessarily construct symmetric
matrices. Though the out-degree of each of the vertices matches parameter k due
to the first restriction, the in-degree varies (is at least k). This arises due to the
asymmetrical behavior of the k-NN technique, in the sense that we can have vertex
j as one of the k-nearest neighbors of vertex i and the converse may not hold.
By introducing the third restriction, we are effectively forcing symmetry in the

7Note, however, that more than one network component may arise when k is small.

110 4 Network Construction Techniques

adjacency matrix. Consequently, the out- and in-degree are exactly equal to b
(regular network).

The optimization framework described in (4.24) can be efficiently implemented
using the algorithm of loopy belief propagation [25].

4.3.4 Linear Neighborhood Networks

The linear neighborhood network is introduced in [47]. The building block of the
linear neighborhood network is based on the locally linear embedding technique,
which we first explore before going to the referred network formation technique.

Locally linear embedding (LLE) is a dimensionality reduction technique [39].
The motivation behind the introduction of this class of methods is as follows.
Our mental representations of the world are formed by processing large numbers
of sensory inputs. Pixel intensities of images, power spectra of sounds, and
the joint angles of articulated bodies are clear examples of these inputs. While
complex stimuli can be represented by points in a high-dimensional vector space,
they typically have a much more compact description. Coherent structure in the
world leads to strong correlations between inputs (such as between neighboring
pixels in images), generating observations that lie on or close to a smooth low-
dimensional manifold. The dimensionality reduction problem involves mapping
high-dimensional inputs into a low-dimensional summarizing space with as many
coordinates as observed modes of variability. Dimensionality reduction techniques
are widely employed in real-world applications, such as in the pre-processing of
images of faces, spectrograms of speech, and other multidimensional signals in
general. In essence, they are able to compress the signals in size and to discover
compact representations of their variability.

The LLE algorithm is based on simple geometric intuitions. Suppose the data
consist of V real-valued vectors xi,8 each with dimension P, sampled from some
smooth underlying manifold. Provided there are sufficient data (such that the
manifold is well-sampled), we expect that each data point and its neighbors will
lie on or close to a locally linear patch of the manifold.

Instead of using pairwise relations between data items such as the k-NN
and the �-radius network formation techniques, the linear neighborhood network
technique [47] uses locally linear embedding in the network formation step.
Thus, the algorithm employs neighborhood information of the data items when
establishing links. Therefore, each data point is optimally reconstructed using a
linear combination of its neighbors [39]. With this simplification, we define the
network formation process in terms of a constrained optimization process, whose
goal is to minimize the following objective function:

8Each data item here exactly corresponds to a vertex, so that N D V .

4.3 Transforming Vector-Based Data into Networks 111

C.A/ D
X
i2V

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇxi �

X
j2N .xi/

Aijxj

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
2

; (4.25)

in which Aij is the contribution or edge weight of xj to xi in the weighted adjacency
matrix A of the network, N .xi/ represents the neighborhood of xi, and k:k is the
Euclidean norm. The initial neighborhoods of all of the vertices are set in a static
way. For instance, we can use k-nearest neighbors or �-radius techniques.

Note that we can rewrite (4.25) in terms of the individual contributions of each
vertex to the objective function, as follows:

C.A/ D
X
i2V

Ci.A/; (4.26)

in which:

Ci.A/ D
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇxi �

X
j2N .xi/

Aijxj

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
2

; (4.27)

In the optimization process, we apply the following constraints:

X
j2N .xi/

Aij D 1;8i 2 V

Aij � 0; i; j 2 V

: (4.28)

The weight Aij increases as xj and xi become more similar. In the extreme case,
when xi D xk 2 N .xi/, then Aik D 1 and Aij D 0, j ¤ k, xj 2 N .xi/, is the
optimal solution. Thus, we can employ Aij to measure the similarity of xj to xi. As
the neighborhoods of xj and xi may differ, then Aij ¤ Aji may hold in the general
case. Applying some algebraic manipulations on (4.27), we see that:

Ci.A/ D
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇxi �

X
j2N .xi/

Aijxj

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
2

D
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

X
j2N .xi/

Aij.xi � xj/

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
2

D
X

j;k2N .xi/

AijAik.xi � xj/
T.xi � xk/

D
X

j;k2N .xi/

AijGi
jkAik; (4.29)

112 4 Network Construction Techniques

in which Gi
jk represents the .j; k/-th entry of the local Gram matrix

Gi
jk D .xi � xj/

T.xi � xk/ (4.30)

at point xi. Thus, the reconstruction weights of each data item can be solved by the
following standard quadratic programming problems:

min
A

X
j;k2N .xi/

AijGi
jkAik (4.31)

s.t.
X

j2N .xi/

Aij D 1; Aij � 0; 8i 2 V

Intuitively, the way we construct the entire network A is to first shear the whole
network into a series of overlapped linear patches, and then paste them together.

4.3.5 Relaxed Linear Neighborhood Networks

This method is introduced in [9]. It is an extension of the linear neighborhood
network discussed in the previous section.

The noticeable advantage of this method is that it uses dynamic neighborhood
information, as opposed to fixed k neighbors of [47]. In summary, the technique
approximates the entire network by a series of overlapped linear neighborhood
patches, where the neighborhood N .xi/, 8xi 2 V , is captured dynamically via
the data density in the vicinities.

Instead of finding fixed k neighbors of each vertex xi, the relaxed linear neigh-
borhood method captures the boundary of each vertex B.xi/ based on neighborhood
information and declares as neighbors vertices within this boundary. We can capture
this dynamic feature by using a combination of the k-NN and �-radius approaches
to define the neighborhood between any xi and xj as:

NxiIk;�.xj/ D
(

1; jN�.xi/j > k

NxiIk.xj/; otherwise
; (4.32)

in which jN�.xi/j denotes the number of neighbors if we apply the �-radius
technique in xi, and NxiIk.xj/ 2 f0; 1g returns 1 if xj in is the k-nearest neighborhood
of xi, and 0 otherwise. Thus if there is a large enough number of vertices in the
�-vicinity (> k), then the boundary is identified. Otherwise, we employ k-NN. We
define the boundary set of any xi as:

B.xi/ D ˚
j 2 V W NxiIk;�.xj/ D 1

�
: (4.33)

4.3 Transforming Vector-Based Data into Networks 113

It must be noted that we may run into problems if we only consider the
established radius and density of the neighborhood. For instance, if we fix large
values for k and �, vertices located at dense regions would include more vertices than
necessary. Conversely, for small values of k and �, weak neighborhood bonds would
be established in sparse regions. An adaptive algorithm that can handle a wide range
of changing interval would be advantageous. It should also include information
provided by neighboring vertices closest to the corresponding vertex, which can
take neighborhood relations into consideration in a more intelligent way. One way
to accomplish that is to extend the neighborhood definitions in (4.32) and (4.33) and
account for the data sensitivity with varying distances to neighbor points based on
the parameter k > 0:

Nxi.xj/ D max

	
1 � k

d.xi; xj/

dmax
; 0

; (4.34)

in which dmax is the network diameter whose definition we recall:

dmax D max
xi;xj2V

d.xi; xj/; (4.35)

and d.xi; xj/ is a suitable dissimilarity or distance function, such as those defined in
Sect. 4.2. Parameter k plays the role in determining the neighborhood radius and is
adjusted as follows:

1 � k
�

dmax
D 0) k D dmax

�
: (4.36)

The new boundary set of any given xi includes:

B.xi/ D ˚
xj 2 V W Nxi.xj/ 2 .0; 1�

�
: (4.37)

Instead of measuring pairwise relations, neighborhood information to represent
the network is employed. Similarly to the studies in [39, 47], each vertex is re-
constructed using a linear combination of its dynamic neighbors:

min
A

X
i2V

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇxi �

X
j W xj2N .xi/

Nxi.xj/Aijxj

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
2

(4.38)

s.t.
X
j2V

Aij D 1; Aij � 0; 8i 2 V ;

in which Nxi.xj/ 2 Œ0; 1� is the degree of neighborhood to the boundary set B.xi/

and Aij is the degree of contribution of xj to xi. When Nxi.xj/ D 0, no links exist.

114 4 Network Construction Techniques

4.3.6 Network Formation Using Clustering Heuristics

This network formation technique is introduced in [15]. Recall that k-NN and
�-radius network formation methods generate either disconnected or densely con-
nected networks. Neither of the two situations is desirable for the majority of data
mining and machine learning tasks. For example, Fig. 4.6 shows a data set with
300 data samples and the resulting networks generated using the k-NN method with
various values of k. Note that the generated networks become connected only when
k � 33. This means that sometimes we need a very large k to generate a connected
network. In these cases, the generated networks are dense, which in turn can cause:
inefficiency in the processing procedure that leads to high computational time; the
weak performance of the algorithm due to the homogeneity of the network or even
both.

4

3

2

1

0

−1

−2

−3
−4 −3 −2 −1 0 1 2 3

−4 −3 −2 −1 0 1 2 3

4

3

2

1

0

−1

−2

−3

a

c

−4 −3 −2 −1 0 1 2 3

−4 −3 −2 −1 0 1 2 3

4

3

2

1

0

−1

−2

−3

4

3

2

1

0

−1

−2

−3

b

d

Fig. 4.6 Networks formed by the k-NN in a data set with three distinct groups. (a) Original
network with 300 vertices. Results for k-NN when (b) k D 5, (c) k D 20, and (d) k D 33.
Reproduced from [31] with permission from the author

4.3 Transforming Vector-Based Data into Networks 115

In [15], the authors proposed a method that is based on data clustering heuristic
to perform the network formation process. Specifically, they employ the single-
link method to overcome the aforementioned problem that happens with traditional
network formation techniques. The clustering heuristics for network formation is
capable of constructing connected and sparse networks and, at the same time, tends
to keep the cluster structure of the original data set. The method consists of the
following steps:

1. Generate an initial totally disconnected network, where each vertex represents a
data instance. In this way, we have V vertex groups (each vertex is in an isolated
group).

2. Construct a dissimilarity matrix using any distance measure, for example, the
Euclidean distance, to represent distances between all pairs of groups. According
to the single-linkage criteria, the dissimilarity between two groups is computed
as the dissimilarity between the two closest vertices.

3. Identify the two closest groups and denote them by G1 and G2, respectively.
4. Calculate the average dissimilarity among vertices (data instances) within each

group G1 and G2, and denote them by d1 and d2, respectively.
5. Select the k-most similar pairs of vertices between G1 and G2, and generate an

edge between each of the k selected pairs if their dissimilarity is smaller than the
threshold: dc D � max.d1; d2/, where � > 0.

6. Update the dissimilarity matrix considering the merging result in Step 5.
7. If the number of groups is larger than one, return to Step 3;

The condition in Step 7 guarantees that the final network is connected.
In order to illustrate the effectiveness of the method, Fig. 4.7 shows the resulting

networks for an artificial data set composed of three clusters of different sizes and
densities. In this simulation, the following values for k are used: 3, 5 and 20. We
see that the generated networks are connected and relatively sparse. At the same
time, the original cluster features are well preserved. Figure 4.8 shows the network
construction results by varying the threshold parameter �. Again, we see the good
performance of the method.

4.3.7 Network Formation Using Overlapping Histogram
Segments

This network formation technique is introduced in [42]. The network formation
using overlapping histogram segments always produces a connected graph with
vertices of the same community densely interconnected and with vertices of
different communities sparsely interconnected.

As we have discussed, the k-NN network formation technique is widely
employed in the machine learning domain. However, it suffers from several
problems, among which we can highlight: (1) the constructed network may not

116 4 Network Construction Techniques

4

3

2

1

0

−1

−2

−3
−4 −3 −2 −1 0 1 2 3

−4 −3 −2 −1 0 1 2 3

4

3

2

1

0

−1

−2

−3

a

c

−4 −3 −2 −1 0 1 2 3

−4 −3 −2 −1 0 1 2 3

4

3

2

1

0

−1

−2

−3

4

3

2

1

0

−1

−2

−3

b

d

Fig. 4.7 Networks formed by the application of the network formation technique based on
clustering heuristics on the data set in Fig. 4.6a with � D 3. (a) k D 1, (b) k D 3, (c) k D 5,
(d) k D 20. Reproduced from [15] with permission from Elsevier

necessarily be connected, and even worse (2) the constructed network may not
reliably represent the data distribution. For instance, consider a data set with
two clusters: a very large cluster and another very small. If we select a large k
value, these two clusters would be heavily interconnected, as each of the vertices
belonging to the small cluster would be compelled to connect to vertices from the
large cluster. Conversely, if k is small, the large cluster may get fragmented into
several small communities. Both situations are undesirable in data analysis. The
network formation using overlapping histogram segments addresses these problems.

Define a mapping function h W X 7! Œ0; 1�, which receives a data item with
P > 0 attributes and converts it into a scalar value in the unitary interval.9 The
function h should be smooth in the sense that similar items receive approximately

9We use the unitary interval with no loss of generality.

4.3 Transforming Vector-Based Data into Networks 117

4

3

2

1

0

−1

−2

−3
−4 −3 −2 −1 0 1 2 3

−4 −3 −2 −1 0 1 2 3

4

3

2

1

0

−1

−2

−3

a

c

−4 −3 −2 −1 0 1 2 3

−4 −3 −2 −1 0 1 2 3

4

3

2

1

0

−1

−2

−3

4

3

2

1

0

−1

−2

−3

b

d

Fig. 4.8 Networks formed by the application of the network formation technique based on
clustering heuristics on the data set in Fig. 4.6a with k D 5. (a) � D 1, (b) � D 2, (c) � D 4, (d)
� D 8. Reproduced from [31] with permission from the author

similar scalar values. For instance, in a gray-level image in which each vertex is a
pixel, P D 1 and h is simply the identity function. When P > 1, we can use for
instance a linear weighted combination of the attributes in the feature vector.

Once transformed the vector-based data set, we construct the histogram of
distribution h that resides inside the interval Œ0; 1� by definition. We also define the
set of overlapping intervals I that are constructed using overlapping histogram
segments as follows:

I D fŒ0; d�I Œd � �; 2d�I : : : I Œ.M � 1/ � d � �; 1�g; (4.39)

in which M denotes the number of intervals, d > 0 is the non-overlapping window
width over adjacent intervals, and � � 0 is the overlapping factor. The overlapping
factor � is essential for the network formation. It serves the purpose of not letting
the resulting network become disconnected.

118 4 Network Construction Techniques

1 = 11, 12, … ,

2 = 21, 22, … , 2

 = , , … ,

(1) = 1

(2) = 2

() =

0

H
is

to
gr

am
of

di
st

rib
ut

io
n

= 1

−

2 −

A

B

C

A

B

C

receives large

receives intermediate

receives smallD
EC

IS
IO

N

Vector-based data set

Transformed data set

Fig. 4.9 Illustration of the network formation using overlapping histogram segments. In the
histogram, we have d D 3 and � D 1

Let Si represent the quantity of vertices that is inside interval i 2 I . The network
is formed by connecting each vertex in i to its ki most similar neighbors. That is, ki

is adaptive as it varies from interval to interval. Mathematically, ki is given by:

ki D S2
max � .Smax � Si/

2; (4.40)

in which Smax D max.S1; S2; : : : ; SM/. Note that vertices in regions with several
vertices are given a large k.10 Vertices inside regions that have few other vertices are
given a small k. In our previous example, the vertices in the large clusters would have
large k and those in the small cluster, small k. This behavior gives two nice properties
for the resulting network: (1) the number of intercommunity links is expected to be
small and (2) the large cluster is not fragmented.

We illustrate the entire network formation process in Fig. 4.9.
We follow the methodology in [42] and apply the network formation process in

pixel clustering. In this case, each pixel in the image corresponds to a vertex. We
use grayscale images, so h is the identity function. For the clustering technique, we
use the greedy modularity function.11

10Read k in the sense of the k-nearest neighbors in which k is global and static.
11In brief, the modularity measures how good a particular network division is in terms of
communities. It ranges from 0 to 1. The larger the modularity, the better defined are the
communities. See Chap. 6 for more information.

4.3 Transforming Vector-Based Data into Networks 119

Fig. 4.10 Pixel clustering of a human brain. (a) Brain image. (b) Results for five clusters.
(c) Results for four clusters. (d) Results for three clusters. The colors in (b)–(d) represent the
clusters. We use d D 0:008 and � D 0:5d

We illustrate the potentialities of the network formation technique based on
overlapping histogram segments with pixel clustering tasks. Figure 4.10 shows the
results for pixel clustering of a human brain. As the greedy modularity technique is a
hierarchical technique, we can see the communities at different levels of granularity.
Figures 4.10b–d portray the clustering results for five, four, and three communities,
respectively. The network formation process attains a maximum modularity of 0:81

when there are five communities, suggesting that the network communities are well-
defined. The histogram of the human brain is supplied in Fig. 4.11. To note the
difference of the discussed technique with the k-nearest neighbors technique, we
plot the number of vertices as a function of k values in Fig. 4.12. In the original
k-NN, the k value is static and global. In contrast, the network formation technique
based on overlapping histogram segments has adaptive k.

As another illustrative pixel clustering example, consider the image in Fig. 4.13,
in which there are two dogs in the grass. We use a grayscale version of this
image in our simulations. The pixel clustering results are given in Fig. 4.14a–d. The
maximum modularity is 0:74 and is achieved when four communities are found.
The histogram of Fig. 4.13 in grayscale is displayed in Fig. 4.15. To inspect how the
underlying network is formed, we also plot the value of k assumed by the vertices
in Fig. 4.16. Note that there are two peaks corresponding to the dogs’ color and the
background composed of grass. Note that the great advantage of this technique is
that it can adapt k in terms of community sizes such as to construct well-defined
communities (large modularity).

4.3.8 More Advanced Network Formation Techniques

In the previous section, we have presented the k-nearest neighbor, �-radius and
other dynamical network formation techniques. The way that they have been
introduced assumes that we have no information about the data relationships
except the raw data set itself. This hypothesis is consistent with unsupervised

120 4 Network Construction Techniques

0

200

400

600

800

1000

1200
N

um
be

r
of

 p
ix

el
s

0 50 100 150 200 250

Fig. 4.11 Histogram of the human brain image in Fig. 4.10a. We rescale the h function to the usual
pixel interval Œ0; 255� to facilitate the understanding of the grayscale tones. For instance, the black
color in a pixel is represented by the value 0 and the white color is denoted by 255

learning techniques. Methods that lie in the semi-supervised and supervised learning
paradigms, however, are provided with additional information, other than the data
set itself. As we have seen, we term that additional (external) information as labels
or targets. Each data item has a corresponding label indicating the specific class to
which it belongs in the analyzed domain. When these labels are discrete, we have a
semi-supervised or supervised classification task. When the labels are continuous,
we term the learning process as semi-supervised or supervised regression.

A natural refinement in these network formation techniques is to also consider
the labels of the data items when creating links. For instance, we may be interested
in creating links between pairs of vertices that only belong to the same class. This
constraint would lead to the emergence of more than one network component,
each of which with vertices of the same class. In other applications, it would be
desirable to have connections between members of different classes. In this case,
each network component would possibly have a mixture of members of several
different classes.

The way we employ different constraints in our network formation proce-
dure defines the topological properties of the resulting network. In addition, the
constraints that we are able to bring are not limited to the labels in case of semi-
supervised or supervised learning techniques. For instance, if we have a technique
that potentially can create several network components, we can create links if

4.4 Transforming Time Series Data into Networks 121

0 10 20 30 40 50

k

60 70 80 90
0

50

100

150

200

250

300

350

400

N
um

be
r

of
 v

er
tic

es

Fig. 4.12 Number of vertices as a function of their assumed k value (network formation
parameter) for the human brain image depicted in Fig. 4.10a

the new member that is being tested meets some topological requirements of all
of the current members of that component. The topological requirements can be
fashioned using local, mixed, and global information. Examples of local information
are similar in- and out-degree or in- and out-strength. Network measurements
that carry mixed information include similar clustering coefficient, closeness, and
betweenness values. Among examples of global information, we can highlight
assortativity, network diameter, and the rich club effect.12 In fact, in one of our
case studies in Chap. 8, we discuss more advanced network formation techniques
that use both network topological aspects and labels of the data items to construct
and to evolve the network in a self-learning process.

4.4 Transforming Time Series Data into Networks

Various time series network construction techniques have been studied in [17].
A time series is a sequence of data points, normally consisting of successive
measurements made over a time interval [22]. Examples of time series are ocean
tides, counts of sunspots, and the daily closing values of stock markets. Time series

12C.f. Sect. 2.3.5 for a more comprehensive classification of network measurements.

122 4 Network Construction Techniques

Fig. 4.13 Picture of two dogs in the grass. Photo by Liang Zhao

Fig. 4.14 Pixel clustering results of the image portrayed in Fig. 4.13. We use d D 0:008 and
� D 0:5d. (a) Community 1. (b) Community 2. (c) Community 3. (d) Community 4

are largely employed in any domain of applied science and engineering that involves
temporal measurements, such as in: statistics, signal processing, pattern recognition,
econometrics, mathematical finance, weather forecasting, intelligent transport and

4.4 Transforming Time Series Data into Networks 123

0

2000

4000

6000

8000

10000
N

um
be

r
of

 p
ix

el
s

0 50 100 150 200 250

Fig. 4.15 Histogram of the image in Fig. 4.13. We rescale the h function to the usual pixel interval
Œ0; 255� to facilitate the understanding of the grayscale tones. For instance, the black color in a
pixel is represented by the value 0 and the white color is denoted by 255

trajectory forecasting, earthquake prediction, electroencephalography, control engi-
neering, astronomy, and communications engineering [6, 7, 19, 22, 32, 46].

One interesting phenomenon arising in time series analysis is of state recurrence.
Formally, in dynamical systems that model time series, there is recurrence of state xi

whenever that system reaches state xj at another time j that is sufficiently similar to
that initial state (xi � xj). Normally, time series data is a sequence in the phase space
T D fxi 2 R

Pg1
iD0 that is periodically sampled at intervals 	i, where xi denotes the

time series state in an arbitrary P-dimensional phase space. The set T is termed as
the trajectory of the phase space representing the time series.

Suppose we have that trajectory of the dynamical system in its phase space.
The corresponding recurrence plot (RP) is represented by the following recurrence
matrix:

Rij D
(

1; if kxi � xjk <D �

0; otherwise
(4.41)

in which � > 0 is a constant that enables state equality up to a small error.
Essentially, the recurrence matrix compares the system states at times i and j. If they
are similar enough, then Rij D 1. Conversely, when states i and j are rather different,
the corresponding entry in the recurrence matrix is Rij D 0. So the recurrence matrix
tells us when similar states of the underlying system occur.

124 4 Network Construction Techniques

3 4 7 8 9 12 13 14 15 16 17 18 21 22
0

200

400

600

800

1000

1200

1400

N
um

be
r

of
 v

er
tic

es

Fig. 4.16 Number of vertices as a function of their assumed k value (network formation
parameter) for the image depicted in Fig. 4.13

Several approaches for transforming time series data into complex network have
been proposed in the literature. The main approaches are the proximity networks and
the transition networks [17]. The former is constructed using mutual proximity of
different segments of a time series, while the latter considers transition probabilities
between discrete states. The network connectivity of proximity networks is defined
in a data-adaptive local fashion, where distinct regions centered at an arbitrary
reference vertex in the phase space are considered. The idea can be understood
as an adaptive �-radius technique, which we have seen in Sect. 4.3. For transition
networks, in contrast, the corresponding regions are rigid, i.e., they are determined
by a fixed coarse-graining parameter evaluated in the phase space. In turn, proximity
networks are characterized using mutual closeness or similarity of the time series
trajectory.

In the following, we briefly discuss some network formation techniques for time
series data.

4.4.1 Cycle Networks

The research by Zhang and Small [53] was pioneering in studying topological
features of pseudo-periodic time series. In their technique, individual cycles in
a time series are identified by the vertices of an undirected network. Links are
established between pairs of vertices if cycles behave similarly. Zhang et al. [54]

4.4 Transforming Time Series Data into Networks 125

introduce a generalization of the correlation coefficient applicable to cycles of
possibly different lengths to quantify the proximity of cycles in the phase space.
The correlation index is defined as the maximum of the cross-correlation between
two signals when the shortest of both is slid relative to the longest one. Suppose
we compare two cycles C1 D fx1; x2; : : : ; x˛g and C2 D fy1; y2; : : : ; yˇg, where
˛ � ˇ.13 Then, we compute:

.C1; C2/ D max
iD0;:::;ˇ�˛

h.x1; x2; : : : ; x˛/; .y1Ci; y2Ci; : : : ; y˛Ci/i; (4.42)

in which h:; :i represents the standard correlation coefficient of two ˛-dimensional
vectors. In this case, we evaluate the .i; j/-th entry of the adjacency matrix A of the
network as follows:

Aij D �
�

.Ci; Cj/ �
max

� � 1ŒiDj�; (4.43)

in which �.:/ is the Heaviside function that outputs 1 if the argument is positive
and 0, otherwise. 1Œ:� is the Kronecker delta function that yields 1 if the argument
is true and 0, otherwise.
max is the maximum attainable correlation between any
two given cycles (vertices). The Kronecker delta function is introduced to prevent
self-loops in the resulting network. Another measure to quantify the proximity of
cycles is based on phase space distance [53], which is expressed as:

D.C1; C2/ D min
iD0;:::;ˇ�˛

1

˛

X̨
jD1

k xj � yjCi k: (4.44)

Using the phase space distance, we compute the adjacency matrix as:

Aij D �
�
Dmax � D.Ci; Cj/

� � 1ŒiDj�: (4.45)

Cycle networks are robust against additive noise and have the advantage that
explicit time delay embedding is avoided.

4.4.2 Correlation Networks

Consider each time series represented by a state vector xi. That is, we have a set of
time series for which we want to construct a representative network. The Pearson
correlation coefficient can be calculated:

13We set the length assumption without loss of generality. If it is not the case, we can simply
re-define C1 and C2 such as that the hypothesis holds true.

126 4 Network Construction Techniques

rij D cov.xi; xj/

�xi�xj

; (4.46)

in which cov.xi; xj/ denotes the covariance between the time series vectors xi and xj,
and �xi , the standard deviation of vector xi.

The factor 1 � rij therefore is a proximity or similarity measure in the context
of time series data. In order to construct the network, we establish a link between
states or vertices i and j whenever 1 � rij is larger than a given threshold r [20, 51]:

Aij D �
�
r � rij

� � 1ŒiDj�: (4.47)

4.4.3 Recurrence Networks

Recurrence networks are complex networks whose adjacency matrices are given
by the recurrence matrices of time series, as computed in (4.41). We define the
adjacency matrix of a recurrence network by:

Aij D Rij � 1ŒiDj�: (4.48)

Because the recurrence matrix can be defined in different ways, there are distinct
subtypes of recurrence networks that are characterized by somewhat different
structural properties, such as the k-nearest neighbors networks and �-recurrence net-
works [18, 20, 35]. In k-nearest neighbors networks, we consider every observation
vector as a vertex i, which is then connected to its k nearest neighbors in the phase
space. In �-recurrence networks, the neighborhood of a vertex (time series) is all
times series within a predefined phase space distance �.

4.4.4 Transition Networks

In this method, we build a network from a single time series. The first step in
order to build transition networks from time series is to find the amplitude of the
analyzed time-varying signal. With that interval at hand, we then discretize it into
a suitable set of K classes S D fS1; : : : ; SKg. The transition probabilities measure
the likelihood of the signal jumping from one class (region) to another [37, 41].
Mathematically, �˛ˇ D P.xiC1 D Sˇjxi D S˛/ indicates the probability of the signal
to reach region Sˇ given that it is currently at region S˛ . This approach is equivalent
to applying a symbolic discretization with static grouping [16] to the phase space of
the studied system.

Unlike proximity networks, the resulting transition networks explicitly make use
of the temporal order of observations, i.e., their connectivity represents causality
relationships contained in the dynamics of the observed system. By introducing a

4.5 Classification of Network Formation Techniques 127

cutoff p < 1 to the transition probability �˛ˇ between pairs of discrete states S˛

and Sˇ , we obtain a non-weighted network representation, which is, however, still
directed. Note that for a trajectory that does not leave a finite volume in phase space,
there is only a finite number of discrete states Si with a given minimum size in phase
space. This implies the presence of absorbing or recurrent states in the resulting
transition network.

The transition probability approach is well suited for identifying the states that
have a special importance for the causal evolution of the studied system in terms of
betweenness centrality and related measures. However, its main disadvantage is a
significant loss of information on small amplitude variations [16].

4.5 Classification of Network Formation Techniques

In this section, we classify the network formation techniques with respect to the
type of information they use in their construction processes. The types of network
formation techniques are classified as using:

• Quasi-local information: these techniques are often restricted to geometrical
issues of the data, such as shortest distances between pairs of vertices. In this
way, they only employ information from a small set of vertices to construct the
links.

• Long-range information: these techniques use not only local geometrical infor-
mation, but long-range information such as the trajectory of shortest paths.
That is, we not only account for distances between the endpoints of pairwise
shortest paths, but we also use information from the trajectory itself from those
shortest paths. In contrast, note that network formation techniques classified as
using quasi-local information would only use the distance of the shortest path.

• Global information: these techniques use information from all of the data items
at once to construct the network. For instance, it may rely on the data distribution
itself to adjust parameters of the network formation process.

Tables 4.2 and 4.3 report the classification of the vector-based and time series
network formation techniques, respectively. Techniques that are classified as using
quasi-local information often share properties such as simplicity and generality, as
they can be applied to any data set and for any machine learning task. In this way,
they ignore global characteristics that are embedded within the data relationships
and are not specialized to a domain-specific task. Techniques that are classified as
using long-range and global information are more sophisticated in the sense that
they are able to capture local and global characteristics of the data relationships.
However, they are often employed to specific purpose tasks. For instance, the
network formation technique using clustering heuristics tends to construct a network
with the goal of data clustering. In other words, these techniques anticipate the
desired result in the network construction phase (before the inference or clustering
phases). Techniques that use global information are a tendency in this research topic.

128 4 Network Construction Techniques

Table 4.2 Classification of vector-based network formation techniques

Definition Description Classification

Section 4.3.1 k-NN Quasi-local information

Section 4.3.1 �-radius Quasi-local information

Section 4.3.2 Combination of k-NN and �-radius Quasi-local information

Section 4.3.3 b-matching networks Long-range information

Section 4.3.4 Linear neighborhood networks Long-range information

Section 4.3.5 Relaxed linear neighborhood networks Long-range information

Section 4.3.6 Network formation using clustering heuristics Long-range information

Section 4.3.7 Network formation using overlapping histogram segments Global information

The classes are designed using the type of information these techniques employ in the construction
process

Table 4.3 Classification of time series network formation tech-
niques

Definition Description Classification

Section 4.4.1 Cycle networks Quasi-local information

Section 4.4.2 Correlation networks Quasi-local information

Section 4.4.3 Recurrence networks Quasi-local information

Section 4.4.4 Transition networks Quasi-local information

The classes are designed using the type of information these
techniques employ in the construction process

4.6 Challenges in Transforming Unstructured Data
to Networked Data

In this chapter, we have discussed several network formation techniques. When
applying network-based machine learning methods to given sets of data points,
there are several choices to be made: the type of the network to be constructed and
the network formation parameters. However, the question how these choices should
be made has received little attention in the literature. This is not so severe in the
domain of supervised learning, where parameters can be set using cross-validation.
However, it poses a serious problem in unsupervised and semi-supervised learning.
While different researchers use different heuristics to set these parameters, few
systematic empirical studies have been conducted. For instance, it is important
to know how sensitive the results are to the parameters that define the network
formation technique. The problem becomes even more severe when we try to find
theoretical models that justify the use of one parameter value in detriment to others.

In the domain of unsupervised learning, the study in [34] analyzes clustering
measures, such as the normalized cut, in nearest neighbors networks (k-nearest
neighbors and �-radius). The investigation shows that, depending on the selected
criteria to construct the network, the normalized cut criterion converges to different
limit results. The fact that all of these nearest neighbors networks lead to different
clustering criteria shows that we cannot study these criteria isolated from the
network that they are applied to.

4.6 Challenges in Transforming Unstructured Data to Networked Data 129

The picture is not different in the semi-supervised learning domain. Accord-
ing to [55], there is no reliable approach for model selection if only a few
labeled instances are available. Unfortunately, this is often the case as labeling is
expensive. We find a plethora of studies that deal with regularization frameworks
that essentially solve constrained optimization processes. These frameworks are
roughly composed of two abstract terms: the loss and the regularization functions.
While the loss function penalizes decisions that flip labels of labeled vertices,
the regularization function models the costs of propagating labels to unlabeled
instances. These algorithms mainly adjust or propose new ways of modeling these
two functions [56, 57]. The label propagation process, which strongly depends on
the network topology, has been extensively studied in the literature. Up to now, little
has been done for the network topology analysis per se, which is a product of a
network formation process. Therefore, a relevant question that arises is whether the
resulting network really represents the transformed (vector-based) data. If it is not
the case, then the label diffusion process will probably be flawed, as the network
topology will be incorrect. Even though most of them lack theoretical framework,
we find some few empirical investigations in the literature about network formation,
as follows [56]:

• Construction of networks using domain knowledge. For instance, the research
in [3] builds networks for video surveillance using strong domain knowledge,
where the network of web-camera images consists of time edges, color edges and
face edges. Such networks reflect a deep understanding of the problem structure
and how unlabeled data is expected to help. We note that constructing domain
knowledge requires an active work of human experts. Recall that the labeling
process of human experts is expensive and time-consuming. Moreover, edge
construction process is even more slower as it is a problem with a mapping
function of the type V � V 7! R, i.e., we consider the weight of every potential
edge between arbitrary pairwise vertices.14 In this way, even though domain
knowledge may improve the performance of machine learning algorithms, it
definitely turns into an unfeasible procedure as the number of the data items
grows.

• Construction of nearest neighbors networks. Empirically, weighted k-NN net-
work with small k tends to perform better. We can also build near complete
networks, using, for instance, correlation or kernel Gaussian functions as simi-
larity functions. In the sparsification process, we can apply several tricks. The
investigation in [8] builds robust networks from multiple minimum spanning
trees by perturbation and edge removal. When using a Gaussian function as edge
weights, the bandwidth of the Gaussian needs to be carefully chosen. In turn,
the study in [52] derives a cross-validation approach to tune the bandwidth for

14In contrast, the vertex labeling is a mapping task V 7! Y , which is much quicker than edge
labeling.

130 4 Network Construction Techniques

each feature dimension, by minimizing the leave-one-out mean squared error of
predictions and given labels on labeled points.

• Construction of networks using local fit procedures. The investigation in [23, 24]
proposes an algorithm to de-noise points sampled from a manifold. That is, data
points are assumed to be noisy samples of some unknown underlying manifold.
They used the de-noising algorithm as a preprocessing step for network-based
semi-supervised learning, so that the network can be constructed from better
separated data points. Such preprocessing results in better semi-supervised
classification accuracy.

4.7 Chapter Remarks

In this section, we have reviewed the main ingredients involved in constructing
networks from vector-based and time series data. In special, we have seen that
we need a proper similarity function and a suitable strategy for creating links in
the network. Several similarity functions have been discussed. The shortcomings
and advantages of the most well-known network formation techniques have been
explored. We have also visited the inherent challenges that we face when building
networks that reliably maintain the data distribution.

References

1. Aggarwal, C.C.: Mining text data. In: Data Mining, pp. 429–455. Springer International
Publishing, New York (2015)

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, New York
(1999)

3. Balcan, M.F., Blum, A., Choi, P.P., Lafferty, J., Pantano, B., Rwebangira, M.R., Zhu, X.: Person
identification in webcam images: an application of semi-supervised learning. In: ICML 2005
Workshop on Learning with Partially Classified Training Data, vol. 2. ACM Press (2005)

4. Baroni-Urbani, C., Buser, M.W.: Similarity of binary data. Syst. Zool. 25, 251–259 (1976)
5. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representa-

tion. Neural Comput. 15(6), 1373–1396 (2003)
6. Bloomfield, P.: Fourier Analysis of Time Series: An Introduction. Wiley, New York (1976)
7. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, New York

(1996)
8. Carreira-Perpiñán, M.A., Zemel, R.S.: Proximity graphs for clustering and manifold learning.

In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems,
MIT Press, Cambridge, MA, vol. 17, pp. 225–232 (2004)

9. Celikyilmaz, A., Hakkani-Tur, D.: A graph-based semi-supervised learning for question
semantic labeling. In: Proceedings of the NAACL HLT 2010 Workshop on Semantic Search,
pp. 27–35. Association for Computational Linguistics, Los Angeles, CA (2010)

10. Celikyilmaz, A., Thint, M., Huang, Z.: A graph-based semi-supervised learning for question-
answering. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume
2 - Volume 2, ACL ’09, pp. 719–727. Association for Computational Linguistics (2009)

References 131

11. Cha, S.H.: Comprehensive survey on distance/similarity measures between probability density
functions. Int. J. Math. Models Methods Appl. Sci. 1, 300–307 (2007)

12. Chao, A., Chazdon, R.L., Colwell, R.K., Shen, T.J.: Abundance-based similarity indices and
their estimation when there are unseen species in samples. Biometrics 62(2), 361–371 (2006)

13. Cock, M.D., Kerre, E.: On (un)suitable relations to model approximate equality. Fuzzy Sets
Syst. 133, 137–153 (2003)

14. Colwell, R., Coddington, J.: Estimating terrestrial biodiversity through extrapolation. Philos.
Trans. R. Soc. B Biol. Sci. 345, 101–118 (1994)

15. Cupertino, T.H., Huertas, J., Zhao, L.: Data clustering using controlled consensus in complex
networks. Neurocomputing 118, 132–140 (2013)

16. Donner, R., Hinrichs, U., Scholz-Reiter, B.: Symbolic recurrence plots: A new quantitative
framework for performance analysis of manufacturing networks. Eur. Phys. J. Spec. Top.
164(1), 85–104 (2008)

17. Donner, R.V., Small, M., Donges, J.F., Marwan, N., Zou, Y., Xiang, R., Kurths, J.: Recurrence-
based time series analysis by means of complex network methods. Int. J. Bifurcation Chaos
21(4), 1019–1046 (2010)

18. Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J.: Recurrence networks – a novel
paradigm for nonlinear time series analysis. New J. Phys. 12, 033025 (2010)

19. Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods. Oxford University
Press, Oxford (2001)

20. Gao, Z., Jin, N.: Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase
flow in complex networks. Phys. Rev. E 79, 066303 (2009)

21. Giguère, S., Laviolette, F., Marchand, M., Tremblay, D., Moineau, S., Liang, X., Biron, A.,
Corbeil, J.: Machine learning assisted design of highly active peptides for drug discovery.
Public Libr. Sci. Comput. Biol. 11(4), e1004074 (2015)

22. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton, NJ (1994)
23. Hein, M., Maier, M.: Manifold denoising. In: Advances in Neural Information Processing

Systems, vol. 19, pp. 561–568. MIT Press, Cambridge (2007)
24. Hein, M., Maier, M.: Manifold denoising as preprocessing for finding natural representations

of data. In: Association for the Advancement of Artificial Intelligence, pp. 1646–1649. AAAI
Press, San Jose (2007)

25. Huang, B.C., Jebara, T.: Loopy belief propagation for bipartite maximum weight b-matching.
In: International Conference on Artificial Intelligence and Statistics, pp. 195–202 (2007)

26. Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et des Jura.
Bull. Soc. Vaud. Sci. Nat. 37, 547 (1901)

27. Jebara, T., Wang, J., Chang, S.F.: Graph construction and b-matching for semi-supervised
learning. In: Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, pp. 441–448. ACM, New York, NY (2009)

28. Koleff, P., Gaston, K.J., Lennon, J.J.: Measuring beta diversity for presence-absence data.
J. Anim. Ecol. 72(3), 367–382 (2003)

29. Kumar, B.V.K.V., Hassebrook, L.G.: Performance measures for correlation filters. Appl. Opt.
29, 2997–3006 (1990)

30. Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and genomics. Nat.
Rev. Genet. 16, 321–332 (2015)

31. Lopez, J.P.H.: Análise de dados utilizando a medida de tempo de consenso em redes complexas
(2011). Master Thesis, Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo (USP)

32. Luetkepohl, H.: Introduction to Multiple Time Series Analysis. Springer, New York (1991)
33. MacCuish, J.D., MacCuish, N.E.: Clustering in Bioinformatics and Drug Discovery. CRC

Press, Boca Raton (2010)
34. Maier, M., von Luxburg, U., Hein, M.: Influence of graph construction on graph-based

clustering measures. Neural Inf. Process. Syst. 22, 1025–1032 (2009)
35. Marwan, N., Donges, J.F., Zou, Y., Donner, R.V., Kurths, J.: Complex network approach for

recurrence analysis of time series. Phys. Lett. A 373, 4246–4254 (2009)

132 4 Network Construction Techniques

36. Morisita, M.: Measuring of interspecific association and similarity between communities.
Mem. Fac. Sci. Kyushu Univ. Ser E (Biology) 3, 65–80 (1959)

37. Nicolis, G., Cantú, A.G., Nicolis, C.: Dynamical aspects of interaction networks. Int. J.
Bifurcation Chaos 15(11), 3467–3480 (2005)

38. Orozco, J., Belanche, L.: Towards a mathematical framework for similarity and dissimilarity.
Technical Report, University of Sevilla (2005)

39. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290, 2323–2326 (2000)

40. Santini, S., Jain, R.: Similarity measures. IEEE Trans. Pattern Anal. Mach. Intell. 21(9),
871–883 (1999)

41. Shirazi, A.H., Reza Jafari, G., Davoudi, J., Peinke, J., Tabar, M.R.R., Sahimi, M.: Mapping
stochastic processes onto complex networks. J. Stat. Mech: Theory Exp. 2009, P07046 (2009)

42. Silva, T.C., Zhao, L.: Pixel clustering by using complex network community detection
technique. In: Proceedings of 7th International Conference on Intelligent Systems Design
and Applications, pp. 925–932. IEEE Computer Society (2007)

43. Silva, T.C., Zhao, L.: Network-based high level data classification. IEEE Trans. Neural Netw.
Learn. Syst. 23(6), 954–970 (2012)

44. Silva, T.C., Zhao, L.: High-level pattern-based classification via tourist walks in networks.
Inf. Sci. 294(0), 109–126 (2015). Innovative Applications of Artificial Neural Networks in
Engineering

45. Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based
on similarity of species and its application to analyses of the vegetation on Danish commons.
Biol. Skr. 5, 1–34 (1948)

46. Tsay, R.S.: Analysis of Financial Time Series. Wiley Series in Probability and Statistics. Wiley-
Interscience, Hoboken, NJ (2005)

47. Wang, F., Zhang, C.: Label propagation through linear neighborhoods. IEEE Trans. Knowl.
Data Eng. 20(1), 55–67 (2008)

48. Williams, J., Steele, N.: Difference, distance and similarity as a basis for fuzzy decision support
based on prototypical decision classes. Fuzzy Sets Syst. 131, 35–46 (2002)

49. Wolda, H.: Similarity indices, sample size and diversity. Oecologia 50(3), 296–302 (1981)
50. Xu, Z., Xia, M.: Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 181(11),

2128–2138 (2011)
51. Yang, Y., Yang, H.: Complex network-based time series analysis. Physica A 387, 1381–1386

(2008)
52. Zhang, X., Lee, W.S.: Hyperparameter learning for graph based semi-supervised learning

algorithms. In: The Conference on Neural Information Processing Systems (NIPS) (2006)
53. Zhang, J., Small, M.: Complex network from pseudoperiodic time series: topology versus

dynamics. Phys. Rev. Lett. 96, 238701 (2006)
54. Zhang, J., Luo, X., Small, M.: Detecting chaos in pseudoperiodic time series without

embedding. Phys. Rev. E 73, 016216 (2006)
55. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global

consistency. In: Advances in Neural Information Processing Systems, vol. 16, pp. 321–328.
MIT Press, Cambridge (2004)

56. Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, Computer
Sciences, University of Wisconsin-Madison (2005)

57. Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, San Francisco
(2009)

	4 Network Construction Techniques
	4.1 Introduction
	4.2 Similarity and Dissimilarity Functions
	4.2.1 Formal Definitions
	4.2.2 Examples of Vector-Based Similarity Functions
	4.2.2.1 Numerical Data
	4.2.2.2 Categorical Data

	4.3 Transforming Vector-Based Data into Networks
	4.3.1 Analysis of k-Nearest Neighbors and ε-Radius Networks
	4.3.2 Combination of k-Nearest Neighbors and ε-Radius Network Formation Techniques
	4.3.3 b-Matching Networks
	4.3.4 Linear Neighborhood Networks
	4.3.5 Relaxed Linear Neighborhood Networks
	4.3.6 Network Formation Using Clustering Heuristics
	4.3.7 Network Formation Using Overlapping Histogram Segments
	4.3.8 More Advanced Network Formation Techniques

	4.4 Transforming Time Series Data into Networks
	4.4.1 Cycle Networks
	4.4.2 Correlation Networks
	4.4.3 Recurrence Networks
	4.4.4 Transition Networks

	4.5 Classification of Network Formation Techniques
	4.6 Challenges in Transforming Unstructured Data to Networked Data
	4.7 Chapter Remarks
	References

