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Preface

Machine learning stands as an important research area that aims at developing
computational methods capable of improving their performances with previously
acquired experiences. Although a large amount of machine learning techniques
has been proposed and successfully applied in real systems, there are still many
challenging issues that need to be addressed. In the last years, an increasing
interest in techniques based on complex networks (large-scale graphs with nontrivial
connection patterns) has been verified. This emergence is explained by the inherent
advantages that the data representation as networks provides. They allow for
capturing spatial, topological, and functional relations of the data. This book
presents the features and possible advantages offered by complex networks in the
machine learning domain. In the first part, we give an introduction to the machine
learning and complex networks areas, supplying necessary background materials.
Then, we present a comprehensive description on network-based machine learning.
In the second part, we describe some specific techniques based on complex networks
for supervised, unsupervised, and semi-supervised learning as case studies with
the purpose of showing detailed know-how on network-based machine learning.
Particularly, we explore a particle competition technique for both unsupervised
and semi-supervised learning using a stochastic nonlinear dynamical system. We
also walk through analytical aspects of the competitive system, enabling us to
predict the behavior of the technique. Additionally, we deal with the problem of
imperfect learning, exploring data reliability issues in semi-supervised learning and
adapting the competitive system to withstand flawed training sets. Identifying and
preventing error propagation have practical importance and are found to be of little
investigation in the literature. Still in the second part of this book, we present a
hybrid supervised classification technique that combines both low and high orders of
learning. The low-level term is implemented by traditional classification techniques,
while the high-level term is realized by extracting features of the underlying network
constructed from the input data. The general idea of the model is that the low-level
term classifies test instances by their physical features, while the high-level term
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measures the compliance of test instances with the pattern formation of the data.
We show that the high-level technique can realize classification according to the
semantic meaning of the data.

This book intends to bridge two widely studied research areas: machine learning
and complex networks. Therefore, we hope it will generate broad interests to
the scientific community. This book is intended to be employed by researchers
and students who are interested in machine learning and complex networks. To
accomplish that, not only have we included classic knowledge but also recent
research results. This book is aimed to be self-contained and to give interested
readers insights on modeling, analysis, and applications of network-based machine
learning techniques. We also provide pointers to the literature for further reading
on each explored topic. Moreover, numerous illustrative figures and step-by-step
examples help readers to understand the main ideas and implementation details.
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Chapter 1
Introduction

Abstract When we say “learning,” one of the words that comes into our mind may
be “mystery”; when we talk about “large scale networks,” we may associate it to
the word “complexity.” What happens when we put together these two concepts? In
this chapter, we present an overview on complex network-based machine learning.
Throughout the entire book, we show the diversity of approaches for treating such a
subject.

1.1 General Background

Human beings are born with the fascinating gift of learning. With the aid of such
ability, they absorb and assimilate knowledge throughout their entire life. In an
attempt to simulate such notorious characteristic in a computational environment,
the research area entitled machine learning arose, which aims at developing
computational methods that are capable of “learning” with past accumulated
experiences [11, 19, 33].

Based on the computational data representation obtained from a wide range of
domains, machine learning techniques can generate models apt to organize the
existing knowledge or, yet, mimic the behavior of a human expert in an auto-
matically manner. Generally speaking, these techniques are traditionally divided
into two paradigms: the supervised and the unsupervised learning [11, 19]. In the
supervised learning case, the goal is to infer concepts regarding the data using both
the data distribution and external knowledge in the form of labels. In essence, the
supervised learning process aims to construct a mapping function conditioned to the
provided training data set. When these labels comprise discrete values, the inference
problem is denominated classification, whereas when label values are continuous,
regression. In contrast, in the unsupervised learning case, the main task consists
in finding intrinsic data structures. The learning process, in this case, is solely
guided by the data relationships as no external knowledge about the existing labels
is required [33].

Supervised learning requires a labeled data set for training. However, the task
of manual labeling is, in the majority of the cases, a cumbersome and expensive
process, which usually involves the work of human experts. In order to soften
this shortcoming, a third learning paradigm denominated semi-supervised learning
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2 1 Introduction

has emerged. The main distinct feature of semi-supervised algorithms is that they
employ both labeled and unlabeled data in the prediction process by means of, for
example, a diffusive labeling process. Frequently in real-world situations, data sets
consist of a great amount of unlabeled data and a few labeled data. In this way, semi-
supervised learning can considerably reduce human experts’ efforts. Moreover,
empirical results have shown that the usage of unlabeled data can improve the
performance of fully supervised classification [15, 50].

Over the last decade, there has been an increasing interest in network research,
with the focus drifting away from analyzing small graphs to considering large-
scale graphs, called complex networks. Such networks have emerged as a unified
representation of complex systems in various branches of science. In general, they
are used to model systems that have nontrivial topologies and are composed of a
large amount of vertices [1, 8, 36].

The study of networks began with the development of the graph theory, inaugu-
rated by Leonhard Euler in 1736 with the solution of the seven bridges problem
of Königsberg, today Kaliningrad, Russia. The problem, much discussed at the
time, recorded that there were seven bridges crossing the river Pregel, with two
intermediate islands. The residents desired to know whether it was possible to
cross all of these seven bridges, without repetition, and then return to the starting
point. Euler demonstrated, in an analytical manner, for the Russian Academy of
Sciences in St. Petersburg, that it was not possible to complete such a walk. For
this end, he made use of a graphical representation consisting of points and curves
connecting these points. It was the beginning of the formal representation of a
graph or network,1 known until today, with vertices and edges. Thereafter, many
researchers began studying this branch of research in search of new theories and
applications [36].

In fact, the first major step in the study of complex networks was driven by Paul
Erdös and Alfréd Réyni, who analyzed a certain type of network called random
networks in their work published in 1959 [20]. That investigation opened doors to
a novel area of study termed the theory of random networks, which represents a
mixture of the graph and probabilistic theories to generate and analyze large-scale
graphs.

Following the chronology, in 1967, Stanley Milgram decided to accept the chal-
lenge posed by Frigyes Karinthy, which, inspired by the conjectures of Guglielmo
Marconi in 1909, dared one to find another person to whom he/she could not be
transitively connected by using at most five intermediate people [32]. And it was
exactly because of this problem that the concept denominated separation in six
degrees was born, which was the first seed for the study of the small-world networks.
To address this challenge, Milgram conducted experiments in order to try to discover
the probability of any two arbitrary people to know each other. For this, letters were
sent to random people living in predetermined regions of the United States, whose
inner content dealt with information about any other arbitrary person. If the person

1Since graph and network share the same definition, these two terms are interchangeable in this
book.
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referred to in the letter was known by the reader, then he/she would mail the letter for
the recipient. On the other hand, if he/she did not know, then the letter should be sent
to someone else known. At the end of experiment, Milgram found that the average
number of referrals of one person to another reached 5:5 persons. He was, therefore,
empirically discovering the property of small world, which states that even though
there are millions of persons interconnected in a social network, the average distance
between them is only a small amount, in the example, 5:5 persons [32].

Despite of the findings of Milgram, it was only in the late 1990s that surveys
on this field were retaken. In 1998, Watts and Strogatz found that the average
shortest paths in a network can be drastically reduced by a random alteration of few
links, starting from a regular network [56]. The resulting network is called small-
world network, which, as we have seen, had already been empirically discovered
by Milgram. In 1999, Barabási and Albert discovered that many real networks
have a degree distribution of vertices that obeys a power law: P.k/ � k�� , where
k is the number of connections of a randomly chosen vertex and � is a scaling
exponent [7]. This heterogeneous distribution describes the existence of a small
number of vertices that has a large number of connections, while the majority only
shares few connections. Such networks are called scale-free networks.

Driven by the technological advances and also by the increasing number of data
to be jointly analyzed, the complex networks area has emerged as a unifying topic
in complex systems and is present in various branches of science [13]. Structurally,
complex networks are represented by a graph G D hV ;E i, where V represents the
set of vertices and E , the set of edges. Complex networks can be conceived as a
general modeling scheme for heterogenous systems with arbitrary sizes [3], as they
naturally incorporate the usual nontrivial aspects of the system agents.

Evidences of complex networks in real-world settings abound. Among some
examples of real-world systems in which the network representation is perfectly
plausible, we can highlight: the Internet [22], the World Wide Web [2], biological
neural networks [52, 57], financial networks [14, 43, 51], information networks [59],
social networks among individuals [27, 46] and between companies and organi-
zations [34], food webs [35], metabolic networks [16, 26] and distribution as the
bloodstream [58], protein-protein networks [55], postal delivery and electricity
distribution networks [3] etc.

The data representation in complex networks inherently presents some positive
characteristics of which we can cite [53]:

• The structural complexity—which translates into the heterogeneous and nontriv-
ial data connections that are shared between vertices in the network. This feature
can be easily understood by taking into account the difficulty in visualizing the
network properties.

• The evolution—which marks the constant changes in the network structure due
to the inclusion and removal of vertices and connections [18].

• The diversity of connections—because the connections between vertices can have
various physical meanings, such as capacity, length, width and direction. These
features are often operationalized via multilayer networks [12]. These networks
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have several network layers, each of which representing different aspects of the
possible connections.

• The dynamical nature—which affects, at a large scale, the states of a network,
as can be construed as traffic information [63], occurrences of failures in
communications [60, 61, 63], similarity relations between vertices, the distribu-
tion of functions [36], among others.

1.2 Focus of This Book

Machine learning and data mining techniques using complex networks have trig-
gered increased attention. This is because networks are ubiquitous in nature and
everyday life, as several real-world problems can be directly represented in terms
of networks. Moreover, many other kinds of data sets can be transformed into
network representations using a suitable network formation technique. For instance,
a set of items described by feature (or attribute) vectors can be transformed into a
network by simply connecting each sample to its k nearest neighbors. In addition,
the complex network representation unifies the structure, dynamics, and functions of
the system that it represents. It does not only describe the interaction among vertices
(structure) and the evolution of such interactions (dynamics), but also reveals how
the structure and dynamics affect the overall functions of the network [39]. For
example, it is well known that there is a strong connection between the structure
of protein-protein interaction networks and protein functions [42]. The main
motivation of network research is the ability of describing topological structures
of the original system. In the machine learning domain, it has been shown that
the topological structure is quite useful to detect clusters of arbitrary forms in data
clustering [23, 29].

This book brings as main goals the review and the development of machine
learning techniques that are based on complex networks. Our intention is twofold:

1. To provide a thorough coverage on this topic. In this way, the book not only gives
a general vision on this topic but also facilitates the effort of readers in finding out
relevant materials for their own development. For this purpose, comprehensive
reviews on complex networks and network-based machine learning are explored
in the first part of this book.

2. To describe and bridge the connection between machine learning and complex
networks. To this end, we focus on several up to date developments of these two
topics in the second part of the book (the last three chapters). Here, the three
branches of the machine learning area are explored, i.e., the unsupervised, the
semi-supervised, and the supervised learning areas.

In the first part of the book, we give an overview of relevant concepts and
some technical details on network-based machine learning. Since both complex
networks and machine learning are well developed and multidisciplinary research
areas, we would like to follow this feature and present diversity of ideas. However,
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due to the vast research results developed so far, we must make choices on the
content of the book. For example, synchronization in complex networks has not
been reviewed in this book. We have not gone to technical details on some topics,
for examples, epidemic spreading and graph kernels. The interested readers may get
further knowledge with specific materials cited in this book.

In the review of complex networks in Chap. 2, we first introduce basic concepts
and notations on graphs, then we present the classic complex network models. The
focus of this chapter is to provide a comprehensive review on network measures
in a categorized way. Many such measures have been applied to develop machine
learning techniques, while others may be used for future developments probably by
the readers of this book and can be easily found in classical materials.

Then we go to the review of machine learning in Chap. 3, where we introduce
the three traditional paradigms: supervised, unsupervised, and semi-supervised
learning. When exploring them, we pay attention to the basic concepts and
characterization of machine learning instead of technical details, which are out of
the scope of this book.

Many data sets are not already in a network format. In order to apply network-
based techniques for data analysis, it is necessary to transform the original data
sets into networks. Intuitively, a single data set can be represented by different
networks, which may lead to different qualities of final results. Therefore, network
construction from original data sets is a crucial issue for data mining and machine
learning. For this reason, Chap. 4 is dedicated to reviewing and compiling various
methods that can be employed for network construction. It is worth mentioning
that network construction is still at its infant stage and there is a large space for
exploration. The readers are invited to contribute to this interesting topic.

Given the background knowledge of complex networks and machine learning,
we start to present to the readers an overview of network-based machine learning.
As we will see, the majority of the supervised and semi-supervised learning
techniques is within-network methods, i.e., probabilistic or deterministic inference
of class labels of some vertices takes place through finding out the “best” route
from the labeled to unlabeled vertices within the network. (In the second part of
this book, we will present an across-network supervised learning technique, in
which global information of the underlying network is taken into account). We
will also show that network-based unsupervised learning is really a community
detection task. The presence of communities is a striking phenomena of complex
networks. The notion of community in networks is straightforward: each community
is defined as a subnetwork whose vertices are densely connected within itself,
but sparsely connected with the rest of the network. Community detection in
complex networks has turned out to be an important topic in graph mining and
in data mining [17, 23, 30, 40]. In graph theory, community detection corresponds
to graph partition, which is an NP-complete problem [23]. For this reason, a
lot of efforts has been spent to developing efficient but suboptimal solutions,
such as the spectral method [38], the technique based on the “betweenness”
measure [40], modularity optimization [37], community detection based on the Potts
model [45], synchronization [6], information theory [24], and random walks [64].
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As community detection is directly related to unsupervised learning, a review of this
topic will be presented in Chaps. 2 and 6.

The second part of this book is devoted to presenting concrete ideas and technical
details on specific realizations of the three machine learning paradigms. When
investigating these developments, we are concerned in addressing:

• The development of novel computational methods in machine learning are
expected to be equipped, whenever possible, with an underlying mathematical
framework. The construction of models that rely on mathematical grounds opens
way to characterizing the short- and long-run behaviors of these techniques
in a concise and formal manner. We believe that this is an important step to
better understand the dynamics of the models and, as a consequence, to better
enable one to perceive the potentialities and the shortcomings offered by them.
Nonetheless, whenever it is possible, empirical studies are likewise conducted to
consolidate and to confirm the validity of the analytical predictions.

• The design of these machine learning techniques, in contrast to traditional meth-
ods, is expected to provide alternative and novel ways to solve the challenging
problems posed by the machine learning area. In this way, novel and efficient
algorithms modeled for tasks of clustering and classification are explored. In
other words, we intend to investigate new features and possible advantages
offered by complex networks in the machine learning domain. In fact, we do
show that the network-based approach really brings interesting features for
machine learning.

• Having in mind the possibility of utilizing the methods described herein in
real-world applications, we also take into account the design of techniques
that are complementary in terms of performance and computational complexity.
Consequently, we must find equilibrium between quality and efficiency when
designing network-based machine learning techniques.

In order to give a concrete vision and present some know-hows on designing
complex network-based machine learning techniques, this book details the follow-
ing up to date developments:

• With regard to the unsupervised learning area:

1. The fundamental mechanism and technical details of the particle competition
model in complex networks are presented. The particle competition model
was originally proposed and applied in community detection in [44]. Then,
it was reformulated in a formal dynamical system and extended to solve
data clustering problems by [49]. The model consists of several particles
walking within the network and competing with each other to occupy as
many vertices as possible, while attempting to reject intruder particles. The
particle’s walking rule is composed of a stochastic combination of random
and preferential movements. As we will see in Chap. 9, computer simulations
reveal that this model presents high community detection rates, as well as
low computational complexity. One strong argument for delving into the
process of particle competition is that of its similarity to many social and
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natural processes, such as: competition among animals, territorial exploration
by humans (animals), election campaigns, among others. Furthermore, the
random-preferential movement incorporated into the particles’ movement
policy can substantially improve the model’s performance, as we will see in
Chap. 9 and 10. This model corroborates the importance of the randomness
role in evolutionary systems whose primary function is to prevent particles
from falling into local traps in an automatic manner. Besides that, it endows
particles with the ability to explore unknown territories. Therefore, a certain
amount of randomness is essential for the learning process. This randomness
is charged with representing the state “I do not know” and lends itself as an
effective “explorer of new features.”

2. The particle competition model is constructed under a stochastic nonlinear
dynamical system. In this regard, we provide an analytical analysis of the
model, deriving probabilistic expressions that are able to predict the model’s
behavior as time progresses. A numerical validation confirms the theoretical
predictions. In addition, we show that the model generalizes the process of
single random walks to multiple interacting random-preferential walks in a
competitive way. Such generalization is realized by calibrating the parameters
of the model. A convergence analysis of the particle competition model is
supplied. Therein, we show that the model does not converge to a fixed
point, but instead it is confined within a certain region with a finite diameter.
Furthermore, an upper bound of this region is estimated. Such a feature
is similar to real-world systems due to the presence of noises and other
uncontrolled variables.

3. A fuzzy index for detecting overlapping cluster or community structures in the
network is explored. Most of the traditional community detection methods
aim at assigning each vertex to a single community [23]. However, in real
networks, vertices are often shared among different communities [23]. For
example, in the language network composed of words as vertices, the word
“bright” might be a member of several communities, such as those repre-
senting words related to the following subjects: “light,” “astronomy,” “color,”
“intelligence,” and so on [42]. In a social network, each person naturally
belongs to the communities of the company where he/she works and also
to the community of his/her family at the same time. Therefore, uncovering
overlapping community structure is important not only for network mining,
but also for data analysis in general, once a data set is transformed into a
network [21, 31, 41, 42, 47, 54, 62]. A drawback of traditional techniques
that identify overlapping communities is that the overlap detection procedure
is performed as a separated or dedicated process apart from the standard
community detection technique. In this way, additional computational time
is often required. As a result, the entire process may have high computational
complexity. As we will see, the particle competition technique detects overlap
community structures during the community detection procedure by using the
dynamic variables generated by the particle competition process. As a result,
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the particle competition method does not increase the overall model’s time
complexity order when employed to identify overlapping structures.

• With regard to the semi-supervised learning area:

1. The model based on cooperation and competition of multiple particles is
reviewed in detail [48]. This technique performs semi-supervised learning
for classification tasks, as we will see in Chap. 10. A rigorous definition
is provided, in which the particle competition is formally modeled from a
stochastic nonlinear dynamical system. In essence, particles of the same class
navigate in the network in a cooperative manner to propagate their labels,
while particles of different classes compete with each other to determine class
borders. Given that the model of several interacting particles corresponds
to many natural and artificial systems, the study of this topic stands as an
important task.

2. Another interesting feature is that the particle competitive-cooperative model
has a local label-spreading behavior. This property arises due to the compet-
itive mechanism in which particles only visit portions of vertices potentially
belonging to their teams. This can be roughly understood as a “divide-and-
conquer” effect embedded in the scheme of competition and cooperation.
In this way, many long-range redundant operations are avoided. As a result,
the method has low computational complexity order. In contrast, traditional
techniques of network-based semi-supervised learning normally rely on
minimizing cost functions that ultimately lead to several matrix multiplication
operations. Thus, the computational complexity of these techniques is usually
of the order O.V3/ or higher [9, 10, 65], in which V is the number of
vertices. Even though methods for enhancing matrix multiplication have been
extensively studied,2 the minimization of cost functions, which are usually
based on a regularization framework, slows down the entire process [65]. It
is expected that the models generated using competition of particles will be
more efficient, which is important to treat large-scale databases.

3. Since we construct the underlying network, in which the learning process
is conducted, directly from the input data set, the correspondence between
the input data and the processing result (the final network) is maintained.
Consequently, the “black box” effect of artificial neural networks can be
avoided to a large extent.

4. The reliability of the labels is a crucial factor in a semi-supervised learning
environment, because mislabeled samples may propagate wrong labels to
a portion of or even to the entire data set. Here, we address the error
propagation problem originated by these mislabeled samples by presenting
detection and prevention processes embedded within the particle competition-
cooperation model. Though this is an important topic, it has not received

2For instance, c.f. the generalized iterated matrix-vector multiplication technique, GMIV-M,
proposed by [28].
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much attention from researchers and there are still few works devoted to
the study of semi-supervised learning from imperfect training data [4, 5, 25].
Usually, in supervised or semi-supervised learning, the input label information
of the training data set is supposed to be completely reliable. However, in
real situations, this is not always true and mislabeled samples are commonly
found in the data sets due to instrumental errors, corruption from noise, or
even human mistakes in the labeling process. For example, in a medical
diagnostic system, the diagnostic results in the training set provided by
doctors may be wrong. If these kinds of wrong labels are used to further
classify new data (in the supervised learning case) or are propagated to
unlabeled data (in the semi-supervised learning case), severe consequences
may occur. This situation becomes more critical in autonomous learning, in
which no external or minimal external intervention is involved. Thus, if the
prior knowledge presented to the autonomous learning system contains errors,
the performance of the learning system will get worse and worse because
of the error propagation. Therefore, considering and designing mechanisms
to prevent error propagation is important in the machine learning study and
especially in the autonomous learning. Specifically, the prevention of error
propagation can benefit the learning systems from two different aspects:

– Improvements of the performance of the learning system, i.e., the system
can learn from errors;

– Avoidance of a system’s catastrophe by limiting the spreading of wrong
labels (input and generated errors).

To our knowledge, many semi-supervised learning techniques have been
proposed [15], but the great majority considers that the label information of
the labeled set is totally correct, i.e., there is no error prevention mechanism.
In this way, such a mechanism make a clear contribution to general machine
learning and especially to autonomous learning research.

• With regard to the supervised learning area:

1. A hybrid supervised learning framework composed of a convex combination
of low- and high-level classifiers is studied in Chap. 8. Traditional super-
vised data classification considers only physical features (e.g., distance or
similarity) of the input data. Here, this type of learning is called low-level
classification. The human (animal) brain, in contrast, performs both low and
high orders of learning and it has facility in identifying patterns according
to the semantic meaning of the input data. Data classification that considers
not only physical attributes but also the pattern formation is here referred to
as high-level classification. The idea behind introducing the high-level term
in a learning process is that data items often have patterns or organizational
features that are left hidden within the numerous interrelationships among
them. These, in turn, are not very well explored by traditional low-level
classification techniques, as they are concerned with smoothness or cluster
assumptions, which are in essence physical constraints. The high-level term
precisely comes into play to fill in this gap by trying to find organizational
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or structural features among different classes. Thus, it abstracts its decisions
from physical constraints. As we will see, both the low- and high-level
classifiers are often necessary to provide good accuracy rates, suggesting that
they are complementary in the learning process.

2. Motivated by the intrinsic ability to describe topological structures among
the data items, two types of high-level classification techniques have been
proposed, all of which running in a networked environment. As a common
goal, both realize the prediction scheme by extracting the features of the
underlying network constructed from the input data. The high-level classi-
fication techniques are comprised of:

– Three classical network measures borrowed from the complex network
theory: assortativity, clustering coefficient, and network connectivity. The
combination of these three measures can capture local to global structural
patterns from the network topology, when utilized with reasonable low-
level classifiers.

– A weighted linear combination of tourist walks processes with different
memory lengths. For this end, variations of dynamic variables generated
by this deterministic process, the transient and cycle lengths, for different
values of the tourist’s memory length are employed. We show that, by
adjusting the memory length of the tourist walker, we can systematically
capture structural network features that range from local to global.

3. An interesting phenomenon uncovered using this hybrid classification frame-
work is that, as the class complexity increases, a larger portion of the
high-level term is required to get correct classification. The class complexity
may be understood in terms of the mixture or overlap that exists among
different classes. This feature confirms that the high-level classification has
a special importance in complex situations of classification.

1.3 Organization of the Remainder of the Book

The remainder of this book is organized as follows. In Chap. 2, we review the
complex network theory and dynamic processes that run in networks. In Chap. 3, we
present the basic definitions of the machine learning area. These two first chapters
elucidate the fundamental concepts that make way for the understanding of the
developments reviewed and developed in this book.

Once the elementary theory is presented, in Chap. 4, we discuss the problem of
constructing a network from unstructured data, which is a required step whenever
we are dealing with data that is not yet in a network format. This task is crucial for
network-based learning methods. Following that, we give a comprehensive review
on network-based supervised learning, unsupervised learning, and semi-supervised
learning in Chaps. 5–7, respectively.
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In the second part of this book, we present the new developments of
network-based machine learning in Chaps. 8–10. In Chap. 8, we delve into the
supervised learning domain by showing a hybrid classification framework that
derives its decision based on a convex combination of low- and high-level classifiers.
This method is a pioneer across-network supervised learning technique. The model
is analyzed in an empirical way and significant results are obtained. A real-
world application (handwritten digits recognition) is supplied. In Chap. 9, we
explore the unsupervised learning domain using a technique that is based on a
particle competition model. Several experiments and mathematical investigations
are performed, as well as a real-world application (handwritten digits and letters
clustering). In Chap. 10, the particle competition model is extended to the semi-
supervised learning domain. Likewise the previous chapter, we also display
many experiments and mathematical investigations, as well as another real-world
application (detection and prevention of mislabeled vertices).
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Chapter 2
Complex Networks

Abstract Complex network comprises an emerging interdisciplinary research area
that triggers much attention from physicists, mathematicians, biologists, engineer-
ing, computer scientists, among many others. Complex network structures describe
a wide variety of systems of high technological and intellectual importance, such as
the Internet, World Wide Web, coupled biological and chemical systems, financial,
social, neural, and communication networks. The desire to understand such inter-
woven systems summed with their inherent complexity are factors that explain the
increasing interest in enhancing complex network tools. The data representation
in complex networks permits us to unify the structural complexity and vertex
and connection diversities. Several relevant questions arise when investigating
dynamics in complex networks, such as learning how large ensembles of dynamical
systems that interact through a complex wiring topology can behave collectively.
In this way, the network topology plays an important role in that it affects the
functions of the represented system. As an example, the structure of social networks
affects the information and disease propagation speeds, the topology of a financial
network may amplify shocks in different manners, and the disposition of power
grids in networks may affect the robustness and stability of power transmission. Due
to the rapid evolution and the large amount of developed theories and techniques, it
becomes prohibitive to make a comprehensive review on this topic. In this chapter,
we present the basic concepts and ideas of complex networks that are useful in
machine learning. We start out by presenting the main concepts of networks. Since
complex networks and graphs share the same definition, we first present the basic
notations of graph theory. Afterwards, we explore the evolution line and milestones
of the complex network research. Following that, a comprehensive list of network
measurements is discussed, which enables us to capture structural features of the
networks in a systematic manner. Finally, we present some well-known dynamical
processes that are defined within the complex networks framework.

2.1 Basic Concepts of Graphs

In this section, we discuss fundamental concepts of the graph theory.
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2.1.1 Graph Definitions

We here present the main terminology employed by the literature of graphs or
networks theory. In this book, the words graphs and networks convey the same
type of information and are used interchangeably. In the same spirit, the data
relationships that make up a graph are termed structure, topology, or anatomy of
the network.

In the following, we present the formal definition of a graph [8, 21, 35].

Definition 2.1. Graph: A graph G is defined as an ordered pair hV ;E i, where V is
a finite nonempty set of vertices or nodes and E is the set of edges or links between
the vertices E � f.u; v/ j u; v 2 V g. Some special graphs are defined as follows:

• Graph with no self-loops: When the relation E is irreflexive, meaning that 8v 2
V ; .v; v/ … E , the graph is said to be free of self-loops. This means that there is
no way of traveling to the same vertex in a single transition.

• Graph with self-loops: When the relation E satisfies the following restriction
9v 2 V ; .v; v/ 2 E , the graph is said to have self-loops. This means that one can
travel back to the same vertex through an edge without leaving it.

Moreover, we denote by V D jV j and E D jE j the number of vertices and edges,
respectively, of the graph.

For example, in the graph G portrayed in Fig. 2.1, the vertex set is V D
f1; : : : ; 5g and the edge set is E D f.1; 2/; .1; 3/; .2; 3/; .3; 3/; .3; 4/g. We often
label the edges with letters or numbers. In the same example, another possible edge
labeling is E D fe1; e2; e3; e4; e5g, where e1 D .1; 2/, e2 D .1; 3/, e3 D .2; 3/,
e4 D .3; 3/, e5 D .3; 4/. We can check from Definition 2.1 that the existence of the
edge e4 D .v3; v3/ turns G into a graph with self-loops.

Some well-known graph topologies are discussed in the following.

Definition 2.2. Complete graph: A complete graph is a graph in which links exist
between each pair of vertices. The complete graph with V vertices is denoted by KV .

A complete graph can also be further classified into with or without self-loops,
in accordance with Definition 2.1.

Fig. 2.1 An example of
graph that is undirected,
non-weighted, and with
self-loops
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Fig. 2.2 An example of
complete graph that is
non-weighted and with no
self-loops

Fig. 2.3 An example of null
graph

For example, Fig. 2.2 shows a complete graph K5, where every pair of vertices is
connected by an edge. As there are no self-loops, the graph is considered a complete
graph with no self-loops.

Definition 2.3. Null graph: A null graph is a graph containing no edges, that is,
E D ;.

Figure 2.3 illustrates a null graph with 5 vertices. We highlight that, even though
the edge set is empty, that is, E D ;, the vertex set cannot be empty. Otherwise, we
would not have a formal graph in view of Definition 2.1.

Graphs can also be classified with respect to their edge types. In the next, we
discuss the main edge types encountered in the literature.

Definition 2.4. Undirected graph: When the relation E is symmetric, meaning
that 8.u; v/ 2 E ) .v; u/ 2 E , it is said that the graph is undirected. In other
terms, when there is an edge linking vertices u to v, so there will be a link from
v to u.
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Fig. 2.4 An example of a
graph that is directed
(digraph), non-weighted, and
with self-loops

In the illustrative graph in Fig. 2.1, we note that besides the edge set E1 D
f.1; 2/; .1; 3/; .2; 3/; .3; 3/; .3; 4/g, the set E2 D f.2; 1/; .3; 1/; .3; 2/; .3; 3/; .4; 3/g
is also present. Therefore, the graph in Fig. 2.1 is undirected.

Commonly, when the edge .u; v/ 2 E is drawn with no arrows in its endpoints, it
is assumed that the edge is undirected, implying the existence of the opposite edge
.v; u/ 2 E . This pictorial distinction is made clear with the definition of directed
graphs in the following.

Definition 2.5. Directed graph (digraph): When the relation E satisfies the
following restriction: 9.u; v/ 2 E j .v; u/ … E , it is said that the graph is directed
(digraph). In other terms, this kind of graph must have at least an arbitrary edge
linking u to v, with an absence of the opposite link.

Figure 2.4 gives an example of a directed graph. In this case, each edge has
its direction, which is conveyed by the visual illustration of the graph itself. The
directness of the graph implies that there exists at least one edge .u; v/ 2 E such
that .v; u/ … E . This holds true in Fig. 2.4 for several cases. Among them, we can
see that the edge .1; 2/ 2 E , but .2; 1/ … E .

There is a special type of graph known as weighted graph, whose definition is
given as follows. The same graph categories discussed in Definition 2.1 can be
applied to it [13, 32].

Definition 2.6. Weighted graph: A weighted graph G is defined as a triple G D
hV ;E ; Wi, where V and E are the sets of vertices and edges, respectively, and W is
a matrix that carries the edge weights. For example, the entry Wuv D w; .u; v/ 2 E ,
fixes as w > 0 the weight of the edge linking vertices u to v. If .u; v/ … E )
Wuv D 0.

Figure 2.5 shows an example of a weighted graph where each edge is associated
to a value. Often, when no edge weight is specified, it is assumed that the weight is
unitary.

The weights can convey various types of meanings in different applications. For
example, each value (weight) may represent the distance from vertex (location) i
to j, or it may also represent traffic flow and so on. By setting the edge weight with
large or small values, we are effectively adjusting the importance of that edge for the
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Fig. 2.5 An example of a graph that is weighted, directed (digraph), and with no self-loops

application that we are dealing with. For instance, in graph-based machine learning,
each weight frequently represents the similarity degree between two vertices (data
samples). As such, large values denote a close proximity of those vertices and,
hence, a high importance is given to that relationship in the learning process.

Remark 2.1. When W is a binary matrix, then the weighted graph reduces to a non-
weighted graph, which is the special graph supplied in Definition 2.1.

Definition 2.7. Bipartite graph: A bipartite graph is a graph whose set of vertices
V can be split into two disjoint non-empty subsets V1 and V2, V = V1

S
V2, in such

a way that .u; v/ 2 E ) u 2 V1; v 2 V2. Therefore, no edge exists between pairs
of vertices in the same subsets V1 and V2.

Remark 2.2. Note that, if G is a bipartite graph, then G cannot have self-loops.

Remark 2.3. We say that G is a complete bipartite graph KM;N when jV1j D M and
jV2j D N and 8.v; u/ 2 V1 � V2; .v; u/ 2 E .

When modeling relations between two different classes of objects, bipartite
graphs very often arise naturally. Some examples are:

• The graph of football players and clubs, in which an edge exists between a player
and a club if that player has played for that club, is a natural example of an
affiliation network, a type of bipartite graph used in social network analysis.

• The graph that represents job allocation in a company. A boss must allocate in a
company N open jobs for M workers. Each worker is qualified to do some of the
N jobs, but not others. Links will exist between a worker and his/her specified
qualified jobs.

Figure 2.6 depicts a bipartite graph with V D 5 vertices, where V1 D f1; 2; 3g
and V2 D f4; 5g. Note that the existence of links only occurs between vertices of V1

and V2.
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Fig. 2.6 An example of a
graph that is bipartite,
non-weighted, and directed
(digraph)

2.1.2 Connectivity

In this section, we introduce common terms related to graph connectivity, which are
used throughout this book [8, 13, 21, 32, 35].

Definition 2.8. Adjacent vertices: Two vertices u 2 V and v 2 V are called
adjacent if they share a common edge, in which case the common edge is said to
join the two vertices.

Remark 2.4. In undirected graphs, if u is adjacent to v, then v must be adjacent to
u as well.

Remark 2.5. In digraphs, u adjacent to v does not imply that v is adjacent to u.
Specifically, if .u; v/ 2 E and .v; u/ … E , then v is adjacent to u, but the opposite
does not hold.

For instance, in the undirected graph portrayed in Fig. 2.7a, vertices 1 and 3 are
adjacent to each other. In contrast, vertex 1 is not adjacent to 4. Now, in the directed
graph depicted in Fig. 2.7b, vertex 1 is adjacent to 3, but the converse is not true.

Definition 2.9. Neighborhood of a vertex: The neighborhood of a vertex v 2 V ,
in a graph G is the set of vertices adjacent to v. The neighborhood is denoted by
N .v/ and is formally given by N .v/ D fu W .v; u/ 2 E g.

For illustrative purposes, in the undirected graph shown in Fig. 2.7a, the neigh-
borhood of vertex 1 is N .1/ D f2; 3g. Now, in the directed graph exhibited in
Fig. 2.7b, N .1/ D f2g.

Remark 2.6. Some authors further distinguish the neighborhood of a vertex in open
and closed neighborhoods. The open neighborhood of v never includes v itself. The
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a b

Fig. 2.7 Illustrative non-weighted graphs for exemplifying basic graph concepts. (a) Undirected
graph. (b) Directed graph

closed neighborhood extends the previous one by adding v itself into N .v/, i.e.,
N .closed/.v/ D N .v/

S fvg. In this book, we opt not to discriminate between these
classes of neighborhood, because in some machine learning algorithms, self-loops
are allowed to prevent transition to other vertices. Therefore, if v 2 N .v/ ”
.v; v/ 2 E . That is, the condition of v being neighbor to itself only depends on
the existence of a self-loop in v. We find that this notation is more intuitive and
consistent with the machine learning literature.

Definition 2.10. Degree (valency or connectivity) of a vertex: In an undirected
graph, the degree of a vertex v is the total number of vertices adjacent to v.
The degree of a vertex v is denoted by kv . We can equivalently define the degree
of a vertex as the cardinality of its neighborhood set and say that, for any vertex v,
kv D jN .v/j, i.e.,

kv D jN .v/j D jfu W .v; u/ 2 E gj D
X

u2V
1Œ.v;u/ 2 E �; (2.1)

in which 1ŒK� represents the Kronecker delta or indicator function that yields 1 if the
logical expression K is true; otherwise, it returns 0.

Remark 2.7. The feasible values of kv are within the discrete-valued interval
f0; : : : ; V � 1g if self-loops are not allowed, and in f0; : : : ; Vg if self-loops are
permitted.

Remark 2.8. When kv D 0, then v is said to be a singleton or isolated vertex.

Remark 2.9. When kv assumes relative large values than the remainder of the
vertices in the network, we say that v is a hub.
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In the undirected graph depicted in Fig. 2.7a, vertices 7 and 8 are singleton, for
k7 D k8 D 0. In contrast, vertex 3 is considered as a hub, for its degree is relative
large in relation to the remainder vertices of the network.

We have so far discussed definitions mostly suited to undirected graphs. For
directed graphs, some of the previously defined connectivity measures suffer slight
modifications, mainly due to the fact that distinctions in the edge endpoints must
be brought into consideration. In special, a directed edge has two distinct ends:
an origin and a destination. The measures use these two endpoints independently.
In light of these considerations, we now extend the connectivity definitions to the
case of directed networks.

Definition 2.11. In-degree and out-degree: In a directed graph, the notion of
vertex degree can be further extended into the in-degree, k.in/

v , and out-degree, k.out/
v ,

as follows:

k.in/
v D

X

u2V
1Œv 2 N .u/� D

X

u2V
1Œ.u;v/ 2 E �; (2.2)

k.out/
v D

X

u2V
1Œu 2 N .v/� D

X

u2V
1Œ.v;u/ 2 E �; (2.3)

kv D k.in/
v C k.out/

v : (2.4)

Remark 2.10. The domains of k.out/
v and k.in/

v are f0; : : : ; V � 1g if self-loops are not
allowed, and f0; : : : ; Vg if self-loops are permitted. Therefore, kv may assume the
values f0; : : : ; 2.V � 1/g when no loops are present and f0; : : : ; 2Vg when loops are
allowed.

Remark 2.11. Note that k.out/
v D jN .v/j.

For example, in the directed graph exhibited in Fig. 2.7b, k.out/
3 D 5, k.in/

3 D 0,

and k3 D 5 C 0 D 5. In addition, k.out/
1 D 1, k.in/

1 D 2, and k1 D 1 C 2 D 3.

Definition 2.12. Average network degree: The average degree of the network, or
network connectivity, is given by:

Nk D 1

V

X

v2V
kv D 1

V

X

.v;u/2V 2

1Œ.v;u/ 2 E �: (2.5)

For instance, in the undirected graph exhibited in Fig. 2.7a, the average degree is:

Nk D 1

8
Œk1 C : : : C k8� D 1

8
Œ2 C 2 C 5 C 1 C 1 C 1 C 0 C 0� D 1:5;

i.e., on average, a vertex belonging to that network has 1:5 links.

Definition 2.13. Average in-degree and out-degree: In a directed graph, the aver-
age in-degree and out-degree have the same numerical value and are evaluated as:



2.1 Basic Concepts of Graphs 23

Nk.in/ D Nk.out/ D 1

V

X

v2V
k.in/

v D 1

V

X

v2V
k.out/

v : (2.6)

In the example shown in Fig. 2.7b, the average in- and out-degree are given by:

Nk.in/ D 1

8

h
k.in/

1 C : : : C k.in/
8

i
D 1

8
Œ2 C 2 C 0 C 1 C 1 C 1 C 0 C 0� D 7

8
;

Nk.out/ D 1

8

h
k.out/

1 C : : : C k.out/
8

i
D 1

8
Œ1 C 1 C 5 C 0 C 0 C 0 C 0 C 0� D 7

8
:

In the rest of this section, we define some connectivity measurements that are
useful for weighted graphs.

Definition 2.14. Strength: In an undirected weighted graph, the strength of a
vertex v 2 V , indicated by sv , represents the total sum of weighted connections
of v towards its neighbors.

sv D
X

u2V
Wvu; (2.7)

in which Wvu is the edge weight of v to u, as introduced in Definition 2.6.

In the graph exhibited in Fig. 2.8a, s1 D 3 C 2 D 5, and s2 D 3 C 5 C 10 D 18.

Definition 2.15. In-strength and out-strength: In a directed weighted graph, the
notion of vertex strength can be further extended into the in-strength, s.in/

v , and out-
strength, s.out/

v , as follows:

s.in/
v D

X

u2V
Wuv; (2.8)

s.out/
v D

X

u2V
Wvu; (2.9)

a b

Fig. 2.8 Illustrative weighted graphs for exemplifying basic graph concepts. (a) Undirected graph.
(b) Directed graph
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sv D s.in/
v C s.out/

v ; (2.10)

in which Wvu is the edge weight linking v to u.

In the example supplied in Fig. 2.8b, for vertex 1, we have s.in/
1 D 3 C 2 D 5 and

s.out/
1 D 0. Similarly, for vertex 2, s.in/

2 D 5 C 10 D 15 and s.out/
2 D 3 C 5 D 8.

With the basic connectivity concepts introduced, we present another well-known
graph topology in the following.

Definition 2.16. Regular graph: A graph is regular if all of the graph vertices have
the same degree. In particular, if the degree of each vertex is k, G is said to be
k-regular.

Remark 2.12. If G is a complete graph with V vertices, then it is .V � 1/-regular.
An example is the complete graph in Fig. 2.2, which is 4-regular with 5 vertices.

Examples of regular graphs that are not complete are supplied in Fig. 2.9. In
special, Fig. 2.9a has six vertices and is a 2-regular network, while Fig. 2.9b has ten
vertices and is a 3-regular network.

2.1.3 Paths and Cycles

Definition 2.17. Walk: Let v1; : : : ; vK 2 V , K � 2. A walk W is an ordered
sequence of edges: W D f.v1; v2/; .v2; v3/; : : : ; .vK�1; vK/g, such that 8k 2
f2; : : : ; Kg W .vk�1; vk/ 2 E . In this case, v1 and vk are called the walk’s origin
and destination, respectively. Note that vertices can be revisited in the same walk.

a

b

Fig. 2.9 Examples of regular graphs that are not complete. (a) 2-regular graph. (b) 3-regular graph
(Petersen graph)
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Remark 2.13. A walk is called closed if v1 D vK and open otherwise.

Remark 2.14. A walk consisting of a single vertex is called a trivial walk.

Definition 2.18. Trail: A trail is a walk in which no edge is repeated. Trails can
also be further classified into open and closed trails, according to Remark 2.13.

Definition 2.19. Tour or circuit: A tour is a closed trail.

Definition 2.20. Walk length: The length of a walk W D f.v1; v2/; .v2; v3/; : : : ;

.vK�1; vK/g, K � 2, is the number of edges that the walk traverses, i.e., jW j D
K � 1 � 1.

In the undirected graph portrayed in Fig. 2.10, W1 D f.1; 3/; .3; 4/; .4; 6/; .6; 7/;

.7; 4/g is an open walk. In contrast, W2 D f.1; 3/; .3; 4/; .4; 6/; .6; 7/; .7; 4/; .4; 3/;

.3; 1/g is a closed walk. There are no trivial walks, as the graph in Fig. 2.10 has no
self-loops. W3 D f.5; 8/; .8; 7/g is an open trail and W4 D f.5; 8/; .8; 7/; .7; 5/g is a
closed trail or a tour. The lengths of these walks are: jW1j D 5, jW2j D 7, jW3j D 2,
and jW4j D 3. There are no walks that visit vertex 10.

Definition 2.21. Path: A path P is a non-trivial walk in which all vertices (except
possibly the first and last) are distinct.

Remark 2.15. A path is always a walk.

Definition 2.22. Cycle: A cycle is closed path.

In Fig. 2.10,P1 D f.1; 2/; .2; 5/; .5; 7/g is a path andP2 D f.1; 2/; .2; 5/; .5; 7/;

.7; 4/; .4; 3/; .3; 1/g is a cycle. Note that P3 D f.5; 8/; .8; 7/; .7; 6/; .6; 4/; .4; 7/;

.7; 5/; .5; 8/g is a walk and tour but not a cycle, because it is not even a path.

Definition 2.23. Walk or path distance: The distance d of the walk W D
f.v1; v2/; .v2; v3/; : : : ; .vK�1; vK/g, K � 2 is given by:

Fig. 2.10 Illustrative
undirected graph to introduce
graph traversal measures
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d.W / D
KX

kD2

j.vk�1; vk/j D
KX

kD2

Wk�1;k; (2.11)

in which j.vk�1; vk/j is the edge weight linking vertex vk�1 to vk.

Definition 2.24. Shortest path (geodesic path) between vertices: The shortest
path between u 2 V and v 2 V , denoted here as duv , is given by the path starting
from u and ending at v with the least distance. Mathematically,

duv D min
Wu!v

d.Wu!v/; (2.12)

in which Wu!v represents walks starting from u and ending at v.

Remark 2.16. For measures that require two inputs, such as the shortest path
between vertices, we use duv when the subscripts are variables and d1;2 when they
are numbers. That is, we maintain the notation as succinct as possible. The comma
is employed for clarity when numbers are indexed.

Definition 2.25. Distance between vertices: The distance duv between two ver-
tices u and v is always their shortest path distance.

Remark 2.17. Note that duv is always evaluated from a path. That is, the distance
between u and v cannot be a walk that is not a path.

Remark 2.18. The distance between any vertex and itself is 0.

Remark 2.19. If there is no path from u to v, then duv D 1.

In Fig. 2.10, the distance between 1 and 3 is d1;3 D 1, since the shortest path
from 1 to 3 is f.1; 3/g. The distance from vertex 10 to itself is d10;10 D 0. Moreover,
the distance from vertex 1 to 10 is d1;10 D 1, as no paths nor walks exist between
1 and 10.

2.1.4 Subgraphs

Definition 2.26. Reachability: We say that v2 2 V is reachable from v1 2 V if
dv1v2 is finite. Alternatively, v1 reaches v2 if there is at least a walk that starts from
v1 and ends at v2.

Definition 2.27. Connectedness: GraphG is connected if, for every pair of vertices
v1 and v2, v2 is reachable from v1 or v1 is reachable from v2.

Definition 2.28. Strong connectedness: Graph G is strongly connected if, for
every pair of vertices v1 and v2, v2 is reachable from v1 and v1 is reachable from v2.
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Remark 2.20. Strong connectedness implies connectedness.

Remark 2.21. In undirected graphs, connectedness implies strong connectedness.
This holds true because if v1 reaches v2, then the converse must be true, for edges
are two-way in undirected graphs.

Remark 2.22. In directed graphs, connectedness does not imply strong connected-
ness.

In the undirected graph depicted in Fig. 2.11a, the graph is strongly con-
nected and, hence, each pair of vertices is mutually reachable. In contrast, in the
directed graph exhibited in Fig. 2.11b, the graph is connected but not strongly
connected. For instance, v1 reaches v6 but the converse is not true. The graphs in
Fig. 2.11c, d are not strongly connected nor connected. For example, v1 and v8 are
mutually non-reachable.

a b

c d

Fig. 2.11 Illustrative graphs for exemplifying subgraph concepts. (a) Undirected graph (1 compo-
nent). (b) Directed graph (1 component). (c) Undirected graph (2 components). (d) Directed graph
(2 components)
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Definition 2.29. Graph component: The subgraph GC of G is a component if:

• GC is connected;
• All of the proper subsets of GC are not connected.

Alternatively, GC is a graph component if any two of its vertices are reachable at
least from one to another, and if its vertex members are connected to no additional
vertices in the remainder of the graph.

Remark 2.23. A connected graph has always a single component.

In Fig. 2.11a, b, there is a single component that is the graph itself. In contrast,
in Fig. 2.11c, d, two components exist: G1 D f1; 2; 3; 4; 5; 6; 7g and G2 D f8; 9g.

Definition 2.30. Clique: A clique in an undirected graph is a subset of vertices such
that every two vertices in the subset are connected by an edge. Cliques therefore are
subgraphs or graphs that are complete.

In Fig. 2.11a, there are two cliques: one comprises the vertices f4; 5; 7g, while
the other, f2; 4; 5g.

2.1.5 Trees and Forest

Definition 2.31. Tree graph: A tree is a connected graph that has no cycles. In a
tree, a leaf is a vertex of degree 1. An internal vertex is a vertex of degree at least 2.

Definition 2.32. Forest: A forest is an undirected graph in which all of its
connected components are trees.

Remark 2.24. Note that a forest is a graph consisting of a disjoint union of trees.

Remark 2.25. All trees are forests, but the converse is not always true.

Remark 2.26. Special cases of forests include: a single tree and a graph with only
singleton vertices (empty graph).

Figure 2.12a illustrates a tree, while Fig. 2.12b exemplifies a forest with two
trees.

Definition 2.33. Spanning tree: If G is a connected graph, the spanning tree in G
is a subgraph of G which includes every vertex of G and is also a tree graph.

For example, Fig. 2.13b shows a possible spanning tree from the graph exhib-
ited in Fig. 2.13a. In this transformation process, we have removed the edges
.2; 3/; .2; 4/; .3; 5/; .4; 5/; .6; 7/.
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a b

Fig. 2.12 Examples of special types of graphs: trees and forests. (a) A tree. (b) A forest with two
trees

a b

Fig. 2.13 Transformation of a graph in (a) into a spanning tree in (b)

2.1.6 Graph Representation

Mathematically, a non-weighted graph G D hV ;E i or weighted graph G D
hV ;E ; Wi are frequently represented by an adjacency matrix A that is constructed
from the vertex and edge sets. A formal definition of the adjacency matrix is given
as follows.

Definition 2.34. Adjacency matrix: Let G D hV ;E ; Wi be an weighted graph.
Then, the adjacency matrix A is defined as follows:

• The number of vertices jV j D V serves to establish the dimension of the
adjacency matrix, which is always V � V;

• The edge set contributes to defining the entry values of the adjacency matrix in
the following manner. The .i; j/-th entry of A is denoted as Aij D aij D Wij,
where Wij is the weight of the edge linking i to j. Formally, 8.i; j/ 2 E W aij ¤ 0

and 8.i; j/ … E W aij D 0.
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a b

Fig. 2.14 Illustrative graphs introduced for evaluating their adjacency matrices. (a) Undirected
graph. (b) Directed graph

Usually, the adjacency matrix A takes the following matrix form:

A D

0

B
B
B
@

a1;1 a1;2 : : : a1;V

a2;1 a2;2 : : : a2;V
:::

:::
: : :

:::

aV;1 aV;2 : : : aV;V

1

C
C
C
A

: (2.13)

Remark 2.27. If G is non-weighted, then Aij 2 f0; 1g, 8i; j 2 V .

Remark 2.28. If the graph G is undirected, then A is symmetric. This fact implies
that if Aij D 1, then Aji D 1.

Remark 2.29. Contrasting to the previous Remark, directed graphs may not have
symmetric adjacency matrices, as j can be a neighbor of i and the converse may not
hold.

For instance, the undirected graph shown in Fig. 2.14a has the following adja-
cency matrix:

A D AT D

0

B
B
B
B
B
B
B
@

0 1 1 1 0 0

1 0 0 0 1 0

1 0 0 0 1 0

1 0 0 0 1 0

0 1 1 1 0 1

0 0 0 0 1 1

1

C
C
C
C
C
C
C
A

: (2.14)

in which the superscript T denotes the transpose operator.
In addition, note that the matrix in (2.14) is symmetric, i.e., A D AT , as the graph

in Fig. 2.14a is undirected.
In contrast, the directed graph exhibited in Fig. 2.14b has the following adjacency

matrix:
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Fig. 2.15 Illustrative
weighted graph introduced
for evaluating the weighted
matrix

A D

0

B
B
B
B
B
B
B
@

0 1 1 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

1

C
C
C
C
C
C
C
A

: (2.15)

In this case, the matrix in (2.15) is not symmetric.
For weighted graphs, the entries in the adjacency matrix can assume arbitrary

values. For instance, the (weighted) adjacency matrix of the weighted undirected
graph portrayed in Fig. 2.15 is:

A D AT D

0

B
B
B
B
B
@

0 1 2 3 0

1 0 0 0 5

2 0 0 0 0

3 0 0 0 4

0 5 0 4 0

1

C
C
C
C
C
A

: (2.16)

2.2 Complex Network Models

With the expectation of studying topological properties that are linked to real
networks, several network models have been proposed. Some of these models even
have inspired an extensive study due to its features of great interest. As examples
of important categories of networks, one can list: random networks, small-world
networks, clustered random networks, scale-free networks, and core-periphery
networks. In the next sections, we review these models in detail.
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Fig. 2.16 An example of random networks of Erdös and Réyni. (a) A network constructed by
means of the random approach proposed by Erdös e Réyni; and (b) the degree distribution of a
network consisting of V D 15; 000 constructed using the Erdös and Réyni methodology with
p D 0:01

2.2.1 Random Networks

In the article dated back to 1959, Erdös and Réyni [24] developed a model that
generates random networks consisting of V vertices and E edges. Starting from V
vertices completely disconnected (no edges in the network), the network is built
from the gradual addition of L edges randomly created, in such a way that self-
looping is avoided. Another similar model sets V vertices in a network, and there is
a probability p > 0 of connecting each possible pair of vertices. The latter model
is widely recognized as the model of Erdös and Réyni. Figure 2.16a depicts an
example of this type of network. Note that no spacial relation between the vertices
is used. In this network formation, we merely create edges in a uniform probabilistic
way, regardless of the similarity between vertices.

Since, for each vertex i 2 V of the network (a total of V), there are V �1 different
possibilities of connections with other vertices, it follows that the cardinality of
the sample space, j˝j, which quantifies the maximum theoretical number of edges
between the vertices, is given by:

j˝j D V.V � 1/

2
; (2.17)

in which the division by 2 comes from the fact that we are considering that the
graph is undirected, i.e., the edges are always bidirectional in relation to both linked
vertices. In general, the presence of these two edges represents the occurrence of
the same probabilistic event, on account of the inherent coupling (bidirectionally).
Having in mind that an arbitrary edge is present in a random network with
probability p and is absent with probability 1 � p, and remembering that there are
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�V�1
k

�
ways of choosing k vertices over V � 1 in total, and pk denotes the joint

probability of these k vertices to possess exactly k connected vertices,1 then
�V�1

k

�
pk

provides the probability of these k vertices to have exactly k other interconnected
vertices. However, in this analysis, it should be imposed that there are no more
edges beyond these k, i.e., for the reminiscent quantity of vertices, V � 1 � k,
the complementary probabilistic event of existing edges, that is, .1 � p/.V�1�k/,
must happen. In view of this reasoning, the degree distribution follows a Binomial
distribution with parameters Binomial.V � 1; p/, whose equation is governed by the
following expression:

P.k/ D
 

V � 1

k

!

pk.1 � p/.V�1/�k: (2.18)

Given that V ! 1 and p � 1, one can show that a Binomial distribution
parameterized with Binomial.V � 1; p/ asymptotically approximates a Poisson
distribution with parameter Poisson.�/ [52], with the following linking condition:

.V � 1/p D �: (2.19)

Recall from the probability theory that the mean, �, and the variance, �2, of a
Poisson.�/ are given by � D �2 D �. If we construct an artificial random network
using the discussed methodology with V D 15; 000 e p D 0:01, we get the degree

distribution that is displayed in Fig. 2.16b. Note that the resulting degree distribution
really approximates the Poisson distribution with mean (peak) around � D .V �
1/p D .15; 000 � 1/0:01 � 150.

Moreover, the average shortest path hdi is small in random networks. This
quantity increases proportionally to the logarithm of the network size, i.e.,
hdi � ln.V/

ln.hki/ , where hki is given by the average value of the Poisson distribution
(mean degree), meaning that hki D � D .V � 1/p, [20].

The big discovery of Erdös and Réyni was that many important properties
of a random network may be unveiled as one modifies the parameters of a
Binomial.V � 1; p/. In their study, they showed that, for values of the connecting
probability p larger than a critical probability pc, almost all of the random networks
present a specific property Q with probability 1. That same property is not verified
whenever p 	 pc. For example, if p is larger than a certain value of pc, the random
networks can present a single connected component. But, for values below this
critical threshold, the random networks no longer present a single component, but
instead several unconnected subgraphs. Many other interesting properties have been
discussed in the literature and some of them are reviewed in [55].

1The joint probability is evaluated taking into account that the existence or absence of links are
independent from each other in the random network model.
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Fig. 2.17 Network behavior as we increase the parameter p, which is responsible for the relocation
frequency of the edges

2.2.2 Small-World Networks

Several real-world networks exhibit the small-world property, i.e., most vertices can
be reached by others by means of a small number of intermediate steps (edges). This
characteristic is found, for example, in social networks, where virtually everyone in
the world can be reached by a short chain of people [73, 74].

In order to build a network that presents the small-world property, one can use
the following network formation process introduced in [74]:

• Initially, the network is regular, comprising V vertices, as shown in the left-most
network in Fig. 2.17, in which each vertex connects to its k nearest neighbors in
each direction, totalizing 2k connections;

• Then, each edge is randomly relocated, i.e., given an arbitrary vertex i 2 V ,
we randomly choose one of its original 2k connections. The selected edge, say
linking vertices i and j 2 V , is randomly relocated, such that the destination from
j is switched to another vertex u 2 V , j ¤ u, with probability p.

When p D 0, no rearrangements are performed and, therefore, the network
continues to be regular. Conversely, when p ! 1, all of the edges are effectively
relocated [74]. Figure 2.17 brings a schematic of the behavior of the parameter p,
responsible for the relocation frequency of the edges. Note that, for p D 0, the
resulting network is virtually a regular one. As p increases (but still remains small),
the property of small-world becomes apparent. When p D 1, the network turns
out to be random. In this case, the peak of the degree distribution, following this
approach, is situated close to 2k [73, 74].

The immediate implication for networks that have the property of small world
is that the spread of any information, given that it was generated at any arbitrary
vertex of the network, is very fast. For example, in viral contagion networks with
the small-world property, given that a person has contracted some virus, then it is
expected that, in a short time, many people will be infected by this virus due to the
network topology that favors rapid propagation.
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2.2.3 Scale-Free Networks

In a study conducted by Barabási and Albert [5], they noticed that some networks
have a small number of vertices with large degrees, while most of them have very
small degrees. With this observation in mind, in 1999, they proposed a new type of
network denominated scale-free networks, in which the degree distribution obeys a
power-law, as follows:

P.k/ � k�� ; (2.20)

in which � is a scaling exponent. Note that, by setting a fixed value for � , as the
degree k grows, the number of vertices that have degree k decreases. Thus, it is
expected that P.k/ will have a large value for small values of k and a small value for
large values of k, which is consistent with the observation found by Barabási and
Albert.

The scale-free property strongly correlates with the network robustness to failure.
In a scale-free network topology, it turns out that major hubs are closely followed
by smaller ones. These smaller hubs, in turn, are followed by other vertices with an
even smaller degree and so on until we reach peripheral or terminal vertices. This
hierarchy allows for a fault tolerant behavior. If failures occur at random and the vast
majority of vertices are those with small degree, the likelihood that a hub would be
affected is almost negligible. Even if a hub-failure occurs, the network generally
does not lose its connectedness, due to the remaining hubs. On the other hand, if we
choose a few major hubs and take them out of the network, the network is turned
into a set of rather isolated graphs. Thus, hubs are both a strength and a weakness
of scale-free networks. In view of that, the literature often terms scale-free networks
as robust to random attacks yet fragile to intentional attacks. These properties have
been studied analytically using percolation theory by Cohen et al. [16, 17] and by
Callaway et al. [11].

The formation of scale-free networks happens due to preferential attachment
of vertices. This behavior can be understood in terms of network growth. Growth
in this context means that the number of vertices in the network increases over
time. Preferential attachment means that the more connected a vertex is, the more
likely it is to receive new links. Vertices with larger degree have stronger ability
to grab links added to the network. Intuitively, the preferential attachment can be
understood if we think in terms of social networks connecting people. Here a link
from A to B means that person A “knows” or “is acquainted with” person “B.”
Heavily linked vertices represent well-known people with lots of relations. When a
newcomer enters the community, he or she is more likely to become acquainted with
one of those more visible people rather than with a relative unknown. Similarly, on
the web, new pages link preferentially to hubs, i.e., very well-known sites such as
Google or Wikipedia, rather than to pages that hardly anyone knows. If someone
selects a new page to link to by randomly choosing an existing link, the probability
of selecting a particular page would be proportional to its degree. This explains
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the preferential attachment probability rule. Preferential attachment is an example
of a positive feedback cycle where initially random variations are automatically
reinforced, thus greatly magnifying differences.

Albert and Barabási [5] proposed an algorithm to generate scale-free network
with this preferential attachment mechanism. The network begins with an initial
connected network of V0 vertices. New vertices are added to the network one at a
time. Each new vertex is connected to V 	 V0 existing vertices with a probability
that is proportional to the number of links that the existing vertices already have.
Formally, the probability pi that the new vertex is connected to vertex i is:

pi D ki
P

j2V kj
; (2.21)

in which ki is the degree of vertex i. Heavily linked vertices or hubs tend to quickly
accumulate even more links, while vertices with only a few links are unlikely to be
chosen as the destination for a new link. The new vertices have a “preference” to
attach themselves to the already heavily linked vertices.

Figure 2.18 shows an illustrative network that shares the scale-free properties.
Note that there are very few vertices with large degree, while the great majority
(terminal vertices) has small degree.

Fig. 2.18 Schematic of a scale-free network. The hubs (vertices with large degrees) have been
evidenced. Note that there are very few vertices with large degrees, while the great majority
(terminal vertices) has small degrees
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2.2.4 Random Clustered Networks

Some real-world networks, such as social and biological ones, present modular
structures called communities [31]. These communities consist of sets of vertices
that satisfy a simple rule: vertices belonging to the same community have many
interconnecting edges, while different communities share relatively few edges
interconnecting each other. A model for generating such communities was proposed
in [31]. This agglomerative method groups V initially isolated vertices into M
communities. This is managed by creating a link between two vertices with
probability pin, if they belong to the same community, or with probability pout, if
they belong to distinct communities. The values for pin and pout can be arbitrarily
chosen to control the number of intracommunity and intercommunity links, zin and
zout, respectively, for an arbitrary average network degree hki.

High values of pin and low values of pout refer to networks with well-defined
communities, i.e., there is a high concentration of edges confined within each
community and very few edges interconnecting different communities. Conversely,
low values of pin and high values of pout contribute to the appearance of communities
highly mixed with each other. On the basis of these parameters, we can define the
fraction of intracommunity links zin=hki and, likewise, the fraction of intercommunity
links zout=hki. The quantity zout=hki defines the mixture among different communities.
Essentially, as zout=hki increases, the communities become more mixed and harder
to be identified. As we will further see in Sect. 6.2.4, these quantities are usually
employed to compare different competing community detection techniques using
the Girvan-Newman’s benchmark, which adopts the random clustered networks
discussed here.

Empirically, pout � pin must be satisfied in order to guarantee the presence of
communities in the network. Figure 2.19 illustrates a network with four communi-
ties. Observe that the communities in this figure are well-defined, since the number
of edges connecting vertices of the same community is much larger than the number
of edges interconnecting those of different communities.

2.2.5 Core-Periphery Networks

Networks can be described using a combination of local, global, and intermediate-
scale (mesoscale) perspectives. In this aspect, one of the key objectives of network
theory is the identification of statistical summaries for large networks in order
to develop frameworks that serve to analyze and compare complex structures. In
such efforts, the algorithmic identification of mesoscale graph structures makes it
possible to uncover features that might not be apparent neither at the local level of
vertices and edges nor at the global level of statistical summaries.

In particular, several efforts have gone into the algorithmic identification and
investigation of a particular type of mesoscale structure known as community



38 2 Complex Networks

Fig. 2.19 Schematic of a random clustered network with four well-defined communities. Each
community is distinguished by a unique color or format

structure, in which cohesive groups called communities consist of vertices that are
densely interconnected and connections between vertices in different communities
are comparatively sparse.

Although researches of community structure have been very successful [28], the
investigation of other types of mesoscale structures—often in the form of different
“block models” [26, 28]—have received much less attention in the literature. In
this section, we deal with another kind of mesoscale network structure known
as core-periphery structure. The qualitative notion that social networks can have
such a structure makes intuitive sense and has a long history in subjects like
sociology [22, 45], international relations [12, 70], and economics [42]. The most
popular quantitative method to investigate core-periphery structure was proposed by
Borgatti and Everett in 1999 [10].

By computing a network core-periphery structure, one attempts to determine
which vertices are part of a densely connected core and which are part of a sparsely
connected periphery. Core vertices should also be reasonably well-connected to
peripheral vertices, but the latter are not well-connected to a core nor to each other.
Hence, a vertex belongs to a core if and only if it is well-connected both to other
core vertices and to peripheral vertices. A core structure in a network is thus not
merely densely connected but also tends to be “central” to the network (e.g., in
terms of short paths through the network). The goal of quantifying various notions
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of “centrality,” which are intended to measure the importance of a vertex or other
network component [58, 72], also helps in distinguishing core-periphery structure
from community structure. Additionally, networks can have nested core-periphery
structure as well as both core-periphery structure and community structure [46], so
it is desirable to develop algorithms that allow one to simultaneously examine both
types of mesoscale structure.

Hubs, which are vertices that have large degree, occur in many real-world
networks and can pose a problem for community detection, as they often are
connected to vertices in many parts of a network and can thus have strong ties
to several different communities. For instance, such vertices might be assigned to
different communities when applying different computational heuristics using the
same notion of community structure [69]. Therefore, it becomes crucial to consider
their strengths of membership across different communities (e.g., by using a method
that allows overlapping communities) [1]. In such situations, the usual notion of
a community might not be ideal for achieving an optimal understanding of the
mesoscale network structure that is actually present, and considering hubs to be
part of a core in a core-periphery structure might be more appropriate [46]. For
example, one can consider communities as tiles that overlap to produce a network
core [68, 75].

Figure 2.20 illustrates a perfect core-periphery network. We observe that core
vertices are strongly interconnected to each other and also considerably connected
to the remainder of the peripheral network. Peripheral vertices, in turn, are only
connected to the core.

Fig. 2.20 Schematic of a
core-periphery network. The
core member are depicted in
square-shaped vertices (cyan
color) and the peripheral
members, in circle-shaped
vertices (yellow color)
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2.3 Complex Network Measures

In this section, we review network measurements that have been proposed in the
complex networks literature.

2.3.1 Degree and Degree-Correlation Measures

Definition 2.35. Density: the network density D measures how strong the vertices
of a graph are connected. It is defined as the fraction of actual connections over the
total possible connections.

For a directed network, the density D is defined as:

D D E

2
�V

2

� D 2E

2V.V � 1/
D E

V.V � 1/
; (2.22)

in which 2
�V

2

�
denotes the total number of possible connections in a directed

graph. In special, the binomial accounts for getting the total number of pairwise
combinations between two vertices in the network. We multiply by two because the
ordering (start and destination vertices) of those pairwise connections matters in a
directed graph.

For an undirected network, the density D is:

D D E
�V

2

� D 2E

V.V � 1/
; (2.23)

in which, in this case, the ordering of the pairwise connections does not matter.
The density assumes values in the interval Œ0; 1�. When D D 0, we say that G is

an empty graph. Conversely, when D D 1, G is said to be a complete or maximal
clique graph.

Remark 2.30. Often in the literature, networks can also be classified as sparse,
when D assumes values near 0, and dense, otherwise. As a rule of thumb, when
the number of edges in the networks is of the order of the number of vertices, i.e.,
E D O.V/, the network is considered sparse. As we will see, the density of networks
has profound implications on the time complexity of the majority of the machine
learning algorithms. As such, it is a common practice in the literature to state the
time complexity of machine learning techniques both in terms of sparse and dense
networks.

Definition 2.36. Network assortativity: The network assortativity captures, in a
structural sense, the preference of vertices to attach to others that are similar or
different in terms of the degree [54]. Assortativity is often operationalized as a
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degree correlation among vertices. The assortativity coefficient r is essentially the
Pearson correlation coefficient of degree between pairs of linked vertices. Hence,
positive values of r indicate a correlation between vertices of similar degree, while
negative values indicate relationships between vertices of different degrees [53].
In general, r lies between �1 and 1. When r D 1, the network is said to have
perfect assortative mixing patterns, while at r D �1 the network is completely
disassortative.

Many studies have been conducted and some conclusions have been drawn
on some types of real-world networks. For example, social networks often have
apparent assortative mixing. On the other hand, the technological, biological, and
financial networks frequently appear to be disassortative [53].

Considering that ue and ve are the degrees of the two vertices at the endpoints of
the e-th edge of a non-empty graph G , and that E D jE j is the number of edges of
G , the network assortativity r is evaluated as follows [53]:

r D
E�1

P
e2E ueve �

h
E�1

2

P
e2E .ue C ve/

i2

E�1

2

P
e2E .u2

e C v2
e / �

h
E�1

2

P
e2E .ue C ve/

i2
: (2.24)

Definition 2.37. Local assortativity: Local assortativity can be used to analyze
assortative or disassortative tendencies at local level [65]. Local assortativity,
denoted by rlocal, has been defined as the individual contribution of each vertex to
the network assortativity. The local assortativity of a vertex u with degree j C 1 is
given by [65, 66]:

rlocal.u/ D .j C 1/.jNk � �2
q/

2E�2
q

; (2.25)

in which Nk is the average remaining degree of the neighbors of u, E is the number of
links in the network, �q and �q are the mean and standard deviation of the remaining
degree distribution of the network. It follows that the network assortativity r can be
retrieved using the following expression:

r D
X

u2V
rlocal.u/: (2.26)

Definition 2.38. Non-normalized rich-club coefficient: The rich-club coefficient
first appeared in the literature as an unscaled metric parametrized by vertex degree
ranks [82]. More recently, this has been updated to be parameterized in terms
of vertex degrees k, indicating a degree cut-off. The rich-club coefficient mea-
sures the structural property of complex networks called “rich-club” phenomenon.
This property refers to the tendency of vertices with large degree (hubs) to be
tightly connected to each other, thus forming clique or near-clique structures.
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This phenomenon has been discussed in several instances in both social and
computer sciences. Essentially, vertices with a large number of links, usually known
as rich vertices, are much more likely to form dense interconnected subgraphs
(clubs) than vertices with small degree. Considering that E>k is the number of edges
among the N>k vertices that have degree larger than a given threshold k � 0, the
scaled version of the rich-club coefficient is expressed as [19, 51, 61]:

	.k/ D 2E>k

N>k .N>k � 1/
; (2.27)

in which the factor N>k.N>k�1/=2 represents the maximum feasible number of edges
that can exist among N>k vertices. We note that, while the network assortativity
captures how connected similar vertices are in terms of degree connectivity, the rich-
club coefficient can be viewed as a more specific notation of associativity, where
we are only concerned with the connectivity of vertices beyond a certain richness
metric. For example, if a network consists of a collection of hub and spokes, where
the hubs are well connected, such a network would be considered disassortative.
However, due to the strong connectedness of the hubs in the network, the network
would demonstrate a strong rich-club effect.

Definition 2.39. Normalized rich-club coefficient: A criticism of the above non-
normalized rich-club coefficient is that it does not necessarily imply the existence
of the rich-club effect, as it is monotonically increasing even for random networks.
This is true because vertices with larger degree are naturally more likely to be more
densely connected than vertices with smaller degree, simply due to the fact that they
have more incident edges. In fact, for certain degree distributions, it is not possible
to avoid connecting hubs with large degrees. As a result, for a proper evaluation of
this phenomenon, we must normalize out this factor. This point was raised in [19],
which derived an analytical expression for the rich-club coefficient of uncorrelated
large-size networks at large degrees. To account for this, it is necessary to compare
the above metric to the same metric on a degree distribution that preserves the
randomized version of the network. This updated metric is defined as [19, 51, 61]:

	norm.k/ D 	.k/

	rand.k/
; (2.28)

in which 	.k/ is the non-normalized rich-club coefficient of the network under
analysis and 	rand.k/ is the non-normalized rich-club coefficient evaluated on a max-
imally randomized network with the same degree distribution P.k/ of the network
under study. This new ratio discounts unavoidable structural correlations that are a
result of the degree distribution, giving a better indicator of the significance of the
rich-club effect. For this metric, if for certain values of k we have 	norm.k/ > 1, this
denotes the presence of the rich-club effect.
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Remark 2.31. Networks with strong disassortative mixing patterns that have rich-
club regions composed of vertices with large degrees point for the existence of
core-periphery structures (cf. Sect. 2.2.5). The number of cores, in this case, is
defined as the number of graph components that results when applying the procedure
to evaluate the rich-club coefficient.

2.3.2 Distance and Path Measures

Definition 2.40. Diameter: The diameter of G , T, is the length of the largest
pairwise distance in G . Formally, it is given by:

T D max
u;v2V duv: (2.29)

For a non-weighted graph, the feasible values of T are Œ0; V � 1�. The diameter
can be interpreted as the largest intermediation chain in the network.

Definition 2.41. Vertex eccentricity: The eccentricity of u 2 V , eu, is the largest
distance from u to any other vertex v 2 V nfug, i.e.:

eu D max
v2V nfug

duv: (2.30)

Definition 2.42. Radius: The network radius, 
, is its minimum eccentricity, i.e.:


 D min
u2V eu: (2.31)

Definition 2.43. Wiener index: The Wiener index, �, is defined as the sum of
geodesic distances between each pair of vertices in the graph. Mathematically, it
is given by:

� D 1

2

X

u;v2V
u¤v

duv: (2.32)

One problem of this measure is its divergence for disconnected graphs, because at
least one geodesic distance is infinity. Such a problem can be avoided by computing
only pairs of connected vertices. However, it introduces distortion if the graph
has many pairs of disconnected vertices. The following network measures, global
efficiency and average harmony, are defined in a way to solve this problem.

Definition 2.44. Global efficiency: The global efficiency, GE, considers that the
efficiency of sending information between two vertices u and v is inversely
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proportional to the geodesic distance [2], i.e.:

GE D 1

V .V � 1/

X

u;v2V
u¤v

1

duv

: (2.33)

Definition 2.45. Average Harmony: The average harmony, h, is the reciprocal of
the overall global efficiency, i.e.:

h D 1

GE
: (2.34)

The average harmony does not present the problem of divergence shown by
Wiener index, so it is suitable for graphs with unconnected vertices [20].

2.3.3 Structural Measures

Definition 2.46. Clustering Coefficient: The clustering coefficient measure quan-
tifies the degree to which local vertices in a network tend to cluster together.
Evidence suggests that in many real-world networks, and in particular social
networks, vertices tend to create tightly knit groups characterized by a relatively
high density of ties [74]. Several generalizations and adaptations of such measure
have been proposed in the literature [44, 60]. Here, we define the measure originally
proposed by Watts and Strogatz [74]. The local clustering coefficient of a vertex in
a graph quantifies how close its neighbors are to being a clique (complete graph).
Mathematically speaking, the local clustering coefficient of vertex i is given by:

CCi D 2jeij
ki .ki � 1/

; (2.35)

in which jeij the number of links shared by the direct neighbors of vertex i (number
of triangles formed by vertex i and any of its two neighbors) and ki is the degree of
vertex i. By (2.35), we see that CCi 2 Œ0; 1�.

Definition 2.47. Network clustering coefficient: We can also evaluate the network
clustering coefficient, which gives us a sense of quasi-local connectivity between
vertices, as follows:

CC D 1

V

X

i2V
CCi; (2.36)

in which V symbolizes the number of vertices and CC 2 Œ0; 1�. Roughly speaking,
the clustering coefficient tells how well-connected the neighborhood of the vertex is.
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If the neighborhood is fully connected, the clustering coefficient is 1 and a
value close to 0 means that there are hardly any triangular connections in the
neighborhood.

Definition 2.48. Cyclic Coefficient: This coefficient characterizes the degree of
circulation in complex networks by considering cycles of all orders from 3 up to
infinity [39]. The cyclic coefficient �i of vertex i is the average of the inverse size of
the smallest cycle that connects that vertex and any of two of its neighbor vertices.
Mathematically, it is calculated as follows [39]:

�i D 2

ki .ki � 1/

X

j;k2N .i/

1

Si
jk

; (2.37)

in which Si
jk is the smallest size of the closed shortest path that passes through vertex

i and its two neighbor vertices j and k. Note that the sum goes over all of the neighbor
pairs .j; k/ of i. If vertices j and k are directly linked to each other, then vertices i, j,
and k form a triangle. It is a cycle of order 3 and Si

jk D 3, which is the smallest value
of Si

jk. If no paths exist that connect vertices j and k except for that one that crosses
vertex i, then vertices i, j, and k form a tree structure. In this case, there is no closed
loop passing through the three vertices i, j, and k, in a way that Si

jk D 1.

Definition 2.49. Global cyclic coefficient: The global cyclic coefficient, � , is equal
to the average of cyclic coefficients of all of the vertices, as follows [39]:

� D 1

V

X

i2V
�i: (2.38)

The global cyclic coefficient takes a value between 0 and 1=3, where 0 means the
network has a tree structure in which no cycle can be found, and the opposite case
(� D 1=3) indicates that there is a connection between all pairs of vertices, in which
case the clustering coefficient is 1.

Definition 2.50. Modularity: The modularity measure quantifies how good a
particular division of a network is [15, 57] and is designed to measure the strength
of division of a network into modules (also called groups, clusters or communities).
Generally, it ranges from 0 to 1. When the modularity is near 0, it means that
the network does not present community structure, suggesting that the links are
disposed at random in the network. As the modularity grows, the community
structure gets more and more defined, that is, the mixture between communities
gets smaller and therefore the fraction of links inside communities is larger than
that between different communities.

Besides the network, the modularity takes as input a hypothesis about the
membership of each vertex towards a community. It then tests how those vertices
inside the given network fit into well-defined communities using the aforementioned
notion. Mathematically, the modularity in non-weighted networks is expressed as:



46 2 Complex Networks

Q D 1

2E

X

i;j2V

�

Aij � kikj

2E

�

1ŒciDcj�; (2.39)

in which E represents the total number of edges in the network; ki stands for the
degree of the vertex i; ci is the community of vertex i; and Aij is the edge weight
linking vertex i to j. The summation term is composed of two factors, all of which
are computed only for vertices of the same community due to the indicator function.
That is, cross-community links do not contribute to the modularity measure. The
first term, Aij

2E , counts the fraction of links inside pairs of vertices that are members of

the same community. From that, we subtract kikj

.2E/2 , the second term, which accounts
for removing the fraction of edges that are expected to occur due to randomness,
using a random network model (recall Sect. 2.2.1). Nonzero values of the modularity
index indicate deviations from randomness and values around 0:3 or more usually
indicate good divisions.

We can also define the modularity for weighted networks [56]. In this case, the
terms denoting the degree ki in (2.39) are exchanged for the strength measures si, as
introduced in Definition 2.14, and E is given by:

E D 1

2

X

i2V
si: (2.40)

The main idea of modularity is to calculate the fraction of edges that fall within
the given groups minus the expected value if edges were distributed at random. For
a given division of the network vertices into some modules, modularity reflects the
concentration of vertices within modules compared to a random distribution of links
between all vertices, regardless of modules.

Definition 2.51. Topological overlap: The topological overlap index measures
to what extent two vertices are connected to roughly the same group of other
vertices in the network. In essence, the topological overlap measure evaluates how
similar the direct and indirect neighborhoods of two vertices are. To calculate the
topological overlap of a pair of vertices, their connections to all of the other vertices
in the network are compared. If these two vertices share similar direct and indirect
neighborhoods, then they have a high “topological overlap.” We can adjust the depth
of the neighborhood which is used in the comparison. That is, we can only compare
the direct neighborhood of two vertices, up to the second order neighborhood,
and so on. Specifically, the m-th order topological overlap measure is constructed
by (i) counting the number of m-step neighbors that a pair of vertices share and
(ii) normalizing it to assume a value between 0 and 1. The resulting vertex similarity
measure is a measure of agreement between the m-step neighborhoods of two input
vertices. Such a measure can be applied in a number of ways, for instance, similarity
search, prediction based on k-nearest neighbors, multi-dimensional scaling and
module identification by clustering.
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Let Nm.i/, m > 0, denote the set of vertices (excluding i itself) that is reachable
from i within a shortest path of length m, i.e., Nm.i/ D fj ¤ i j dij 	 mg, where
dij is the geodesic distance (shortest path distance) between i and j. The m-step
topological overlap is given by:

tŒm�
ij D

( jNm.i/
T

Nm.j/jCAij

min ŒjNm.i/j;jNm.j/j�C1�Aij
; if i ¤ j

1; if i D j
; (2.41)

in which Aij denotes the .i; j/-th entry of the adjacency matrix of the graph. Thus,
the m-step topological overlap measures the agreement of the m-step neighborhoods
between two vertices. Note that, even in the case that two vertices have the same
m-step neighborhoods, the topological overlap index only assumes its maximum
value when they are directly connected, i.e., when Aij D 1.

2.3.4 Centrality Measures

Centrality measures quantify how central or how important vertices or edges are
inside a network. The first centrality measure that comes to our mind may be the
degree of a vertex. In this way, it is natural to assume that vertices with large degrees
are central to the network, while vertices with small degrees are usually peripheral
or terminal ones. In spite of its simplicity, degree is widely used as a centrality
measure. In many real networks, vertices with large degree are often called hubs.
Many centrality measures have been reported by the literature. Each one is defined
according to a different heuristics that ultimately lead to different conclusions about
the centrality of vertices or edges.

2.3.4.1 Distance-Based Centrality Measures

We divide these types of centrality measures in two groups that are classified
according to the criterion used to calculate the centrality distance [41].

Definition 2.52. Minimax criterion: The first family consists of those problems
that use a minimax criterion. As an example, consider the problem of determining
the location for an emergency facility such as a hospital. The main objective of such
an emergency facility location problem is to find a site that minimizes the maximum
response time between the facility and the site of a possible emergency.

The aim of the first problem family is to determine a location that minimizes the
maximum distance to any other location in the network. Suppose that a hospital is
located at a vertex u 2 V . We denote the maximum distance from u to a random
vertex v in the network, representing a possible incident, as the eccentricity eu of u.
Recall that the eccentricity is given by eu D maxv2V duv. The problem of finding an
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optimal location can be solved by determining the minimum over all eu with u 2 V .
Therefore, the centrality of vertex u based on the eccentricity is:

cE.u/ D 1

eu
D 1

maxv2V duv

: (2.42)

Definition 2.53. Minisum criterion: The second family of location problems
optimizes a minisum criterion that is used to determine the location of a service
facility like a shopping mall. The aim here is to minimize the total travel time. We
denote the sum of the distances from a vertex u 2 V to any other vertex in a graph
as the total distance

P
v2V duv . The problem of finding an appropriate location can

be solved by computing the set of vertices with minimum total distance as follows:

cC.u/ D 1
P

v2V duv

: (2.43)

In social network analysis, a centrality index based on this concept is called
closeness. The focus lies here, for example, on measuring the closeness of a person
to all other people in the network. People with a small total distance are considered
as more important as those with a high total distance.

2.3.4.2 Path- and Walk-Based Centrality Measures

Centrality measures that are based on paths do not take into consideration the
distances from vertex to vertex, but they consider the flow passing through a vertex.
In essence, a vertex is declared as more important if there are many shortest paths
passing through it.

Definition 2.54. Betweenness: The betweenness measures the extent to which
a vertex lies on the shortest paths between every pair of vertices in a net-
work [29, 30, 58]. Suppose we have a network in which the vertices exchange
messages among themselves. Let us initially make the simple assumption that every
pair of vertices in the network exchanges a message with equal probability per unit
time and that messages always take the shortest (geodesic) path of the network,
or one of such paths, chosen at random, if there are several. Then, let us ask the
following question: if we wait a suitably long time until many messages have passed
between each pair of vertices, how many messages, on average, will have passed
through each vertex en route to their destination? The answer is that, since messages
are passing down each geodesic path at the same rate, the number passing through
each vertex is simply proportional to the number of geodesic paths the vertex lies
on [58]. This number of geodesic paths is what it is called betweenness index.

Given this definition, it follows that vertices with high betweenness may have
considerable influence within a network by virtue of their control ability over
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information passing between others. The vertices with the highest betweenness in
our message-passing scenario are the ones through which the largest number of
messages pass, and if those vertices get to see the messages in question as they pass,
or if they get paid for passing the messages along, they could derive a lot of power
from their position within the network. The vertices with the highest betweenness
are also the ones whose removal from the network will most disrupt communications
between other vertices because they lie on the path of several messages. In real-
world situations, of course, not all vertices exchange communications with the same
frequency, and in most cases, communications do not always take the shortest path,
due to, for example, political or physical reasons.

Mathematically, let �v
st be 1 if vertex v lies on the geodesic path from s to t and 0

if it does not or if there is no such path (because s and t lie in different components
of the network). Then, the betweenness centrality xv is given by:

Bv D
X

s¤v2V

X

t¤v2V

�v
st

�st
; (2.44)

i.e., the betweenness of v evaluates the fraction of shortest paths between all pairs of
vertices s and t that passes through v over the total number of shortest paths between
s and t.

Definition 2.55. Communicability [25]: Many topological and dynamical prop-
erties of complex networks are defined by assuming that most of the transport
on the network flows along the shortest paths, such as the betweenness measure.
However, there are different scenarios in which non-shortest paths are used to
reach the network destination. For instance, in air transportation, airplanes may
have to fly through more distant routes between two destinations, because in the
shortest path between them there is a war or no-fly zone. Thus the consideration
of only the shortest paths does not account for the global communicability of a
complex network. Communicability is defined for every pair of vertices p 2 V and
q 2 V . In essence, it quantifies how easily vertex p can communicate with q by
means of a combination of shortest paths and random walks with varying lengths.
Mathematically, the communicability of vertex p to q is given by:

Gpq.M/ D 1

sŠ
Ppq C

X

k>s

1

kŠ
.Ak/pq D .eA/pq; (2.45)

in which Ppq denotes the number of paths with the shortest length from p to q; s is
the length of such paths; and A is the binary adjacency matrix of the network. The
term A.k/

pq is the element .p; q/ of the k-th power of matrix A that gives the number
of walks of length k from p to q along the adjacency matrix A, with k strictly greater
than s steps. The communicability of Gpq and Gqp may be different for directed
graphs. A large Gpq reveals that p can reach q by several routes. Conversely, when
Gpq is small, there are few possibilities for p to reach q.
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2.3.4.3 Vitality

Let Q be the set of all simple, undirected and non-weighted graphs G D hV ;E i
and let f W G ! R be any real-valued function on G 2 Q. A vitality index V.G ; u/,
u 2 V , is then defined as the difference of the values of f on G and on G without
element or vertex u: V.G ; u/ D f .G / � f .G nfug/ [41].

Definition 2.56. Flow betweenness vitality: define the max-flow betweenness
vitality for a vertex u 2 V by:

BV.u/ D
X

s;t2V
u¤s;u¤t

fst.u/

fst
; (2.46)

in which fst.u/ is the amount of flow which must go through u. We determine
fst.u/ by fst.u/ D fst � Qfst where Qfst is the maximal s-t-flow in G nfug. That is, Qfst

is determined by removing u from G and computing the maximal s-t-flow in the
resulting reduced network G nfug.

Definition 2.57. Closeness vitality: Let the distance between two vertices s and t
represent the costs of sending a message from s to t. Then, the closeness vitality of
u denotes how much the transport costs in an all-to-all communication will increase
if the corresponding element u is removed from the network. That is,

CV.u/ D I.G / � I.G nfug/; (2.47)

in which I.G / D P
v;w2V dvw, i.e, the total distance of the network.

Definition 2.58. Dynamical vitality [67]: Consider a network as a directed graph
with V vertices, Au D �u and vT A D �vT , where A is the adjacency matrix, � is the
largest eigenvalue of A, u and v are right and left eigenvectors of A. The dynamic
importance of edge .i; j/, DIij, is defined as:

DIij D ��ij

�
; (2.48)

that is, it is the amount ��ij by which � decreases upon the removal of edge .i; j/,
normalized by �. Similarly, the dynamical importance of vertex k is defined in terms
of the amount ��k by which � decreases upon removal of that vertex:

DIk D ��k

�
: (2.49)

By removing the edge .i; j/, we get .ACA/.uCu/ D .�C�/.uCu/. If we
multiply by vT , expand the formula, and neglect second order terms vTAu and
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�vTu, we obtain � D vT Au
vT u

. Upon the removal of edge .i; j/, the perturbation
matrix is .A/lm D �Aijıilıjm, and therefore:

cDIij D �Aijviuj

�vTu
: (2.50)

By removing the vertex k, the perturbation matrix is given by .A/lm D
�Aij.ıil Cıjm/, since uk D �uk,2 therefore, we set u D ıu�ukek, where ek is the
unit vector for the k-th component, and we assume that ıu is small. By multiplying
vT and again neglecting the second order terms vTAıu and �vTıu, we obtain

� D .vT Au�ukvT Aek/

.vT u�vkuk/
. Using the expression of A, we get vTAu D �2ukv

k

and ukv
TAek D �ukvk. Considering that the network is large (V 
 1), we assume

that ukvk < vT u. Thus, we obtain:

cDIk D � vkuk

�vT u
: (2.51)

2.3.4.4 General Feedback Centrality

Now we present measures that are built on the concept of feedback centrality.
In this respect, a vertex has larger feedback centrality the more central are its
neighbors [41].

Definition 2.59. Bonacich’s eigenvector centrality: In 1972, Phillip Bonacich [9]
introduced a centrality measure that is computed using eigenvectors of adjacency
matrices. In special, he presented three different approaches to evaluate the central-
ity measure and all three of them result in the same valuation of the vertices. The
difference between these methodologies are in a constant factor. In the following,
we assume that the graph G is undirected, connected, without self-loops, and non-
weighted. As the graph is undirected and without self-loops, the adjacency matrix
A is symmetric and all diagonal entries are zero. The three methods that score each
vertex are:

1. The factor analysis approach;
2. The convergence of an infinite sequence; and
3. The solution of a simultaneous linear equation system.

Here, we only focus on the third approach. It follows the idea of calculating an
eigenvector of a linear equation system. If we define the centrality of a vertex to be
a weighted sum of the centralities of its adjacent vertices, where the weight is given
by the network topology, we get the following equation system:

2Recall that the left and right eigenvectors have zero k-th entries after the removal of vertex k.
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si D
X

j2V
Aijsj; (2.52)

in which si is the Bonacich score or centrality of vertex i. In a matrix form,

s D As: (2.53)

Equation (2.53) has a single solution only if det.A � I/ D 0, where I is the
identity matrix. We can instead solve for s using the eigenvalue problem of A, i.e.,
�s D As.

Definition 2.60. Katz index: This index first appeared in the context of social
networks to determine the importance or status of an individual [38]. To take
the number of intermediate individuals into account, a damping factor ˛ > 0 is
introduced: the longer the path between two vertices i and j is, the smaller should
its impact on the status of j be. The associated mathematical model is hence a non-
weighted, directed graph G D hV ;E i without self-loops and associated adjacency
matrix A. Using the fact that .Ak/ji holds the number of paths from j to i with length
k, the status of vertex i is:

Ck.i/ D
1X

kD1

X

j2V
˛k.Ak/ji: (2.54)

In matrix notation, we have:

CK D
1X

kD1

˛k.AT/k1V ; (2.55)

in which 1V is the V-dimensional vector where every entry is 1. Assuming that
˛j�0j < 1, where �0 is the largest eigenvalue of A, the infinite series converges.
Thus, we can find a closed form expression for the status index of Katz:

CK D
1X

kD1

˛k.AT/k1V D .I � ˛AT /�11V (2.56)

or in another form:

.I � ˛AT/CK D 1V ; (2.57)

which is an inhomogeneous system of linear equations that emphasizes the feedback
nature of the centrality: the value of CK.i/ depends on the centrality values of
neighbors of i in the graph, i.e., CK.j/, j ¤ i.



2.3 Complex Network Measures 53

Definition 2.61. Web page centrality—PageRank: PageRank (PR) is a well-
known measure used by Google to rank web pages. It is supposed to simulate the
behavior of a user browsing the Web. Most of the time, the user visits pages just by
surfing, i.e., by clicking on hyperlinks of the page he/she is on. Another manner is to
jump to another page by typing its URL on the browser, or going to a bookmark, etc.
In a network, this process can be modeled by a simple combination of a random walk
with occasional jumps toward randomly selected vertices. This can be described by
the simple set of implicit relations [64]:

p.i/ D q

V
C .1 � q/

X

j2V Wj!i

p.j/

k.out/
j

: (2.58)

Here, V is the number of vertices of the graph, p.i/ is the PR value of vertex i,
k.out/

j the out-degree of vertex j, and the sum runs over the vertices pointing toward
(direct connection to) i. The damping factor q 2 Œ0; 1� is a probability that weighs
the mixture between the realized random walk and random jumps.

For any q > 0, the process reaches stationarity, as a walker has a finite (no matter
how small) probability to escape from a dangling end, whenever it lands there. When
q D 0, the process may not be stationary and PR is ill defined. When q D 1, instead,
the jumping process dominates and all of the vertices have the same PR-value 1=V.

PR goes beyond the concept of in-degree. In order to have a large PR for a vertex,
it is important to have many neighbors pointing at that vertex, i.e., large in-degree,
but it is also important that the neighbors have large PR values themselves. So, if
two vertices have equal in-degree, the vertex with more “important” neighbors will
have larger PR.

Definition 2.62. Eigenvector centrality: The eigenvector centrality, like the
PageRank, relies on the principle that the importance of a vertex depends on
the importance of its neighbors [64]. The relationship that the eigenvector centrality
captures is more straightforward than that in PageRank: the prestige xi of vertex i is
simply proportional to the sum of the prestiges of the neighboring vertices pointing
to it. Numerically,

�xi D
X

j2V Wj!i

xi D
X

j2V
Ajixj D .ATx/i: (2.59)

We see that xi is basically the i-th component of the transposed eigenvector of
the adjacency matrix A associated to the eigenvalue �. We observe that the trivial
eigenvector with all of the components equal to zero is always a solution of (2.59).
From (2.59), we also see that singleton vertices have zero centrality. In general,
vertices pointed at by vertices with zero centrality also have zero centrality and
this effect will propagate to other vertices, so that in many cases the eigenvector
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centrality would not give any information about a large fraction of vertices. To avoid
this, it is useful to make the following modification: to each vertex, we assign a
prestige �, which is independent of its relationships with the other vertices. As a
result, Eq. (2.59) becomes [64]:

xi D ˛.AT x/i C �: (2.60)

The role of the parameter � reminds that of the damping factor q in PageRank.
The parameter ˛ weighs the relative importance of the contribution of the peers
versus that of the vertex itself.

2.3.5 Classification of the Network Measurements

As it can be noticed, the complex network literature has proposed a myriad of
network measurements that capture different aspects of the network structure.
The provided list is far from being exhaustive. New network measurements are
introduced to suit the needs of computational problems that arise in our day-to-day
problems. Some of them may be domain-dependent and others may even require
external information to be computed. In the previous sections, we have introduced
the network measurements by dividing them into functional roles. In this section,
we re-compile these network measurements using a meta-information approach.
We classify them in accordance with the type of information they use in their
computation. We define three classes of network measurements, as follows:

• Strictly local measures: these measures only employ information from the vertex
itself to be computed. Strictly local measures are always vertex-level measures.

• Mixed measures: besides using strictly local information, these measures also
use topological information from its direct and indirect neighborhoods. This
additional information can vary from simply quasi-local topology, such as the
number of triangles in the neighborhood, to long-range information, such as
the shortest path between the two most distant pair of vertices. Mixed measures
are always vertex-level measures.

• Global measures: these network measurements make use of the entire network
structure to be computed. Global measures are always network-level measures.

Figure 2.21 portrays a schematic of the three classes of network measurements.
Strictly local and mixed measures are vertex-level, while global measures must be
network-level. Table 2.1 reports the classification of the network measurements we
have discussed so far in this chapter.
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Ref.

Strictly local

Mixed

Global

Fig. 2.21 Intuition for classifying network measurements in terms of the type of information they
need to be computed

2.4 Dynamical Processes in Complex Networks

One of the fundamental differences between graph theory and complex network
studies is that the latter focus not only on the static structures but also on the
dynamical properties of networks under study. Therefore, in this section, we review
five dynamical processes in networks: random walk, lazy random walk, self-
avoiding walks, tourist walk, and epidemic spreading. Besides these ones, there
are many other dynamical processes in networks, such as information transmission,
percolation in regular lattices and in complex networks, and synchronization among
oscillators (vertices). However, the last ones are not the focus of this book.

2.4.1 Random Walks

A random walk is a mathematical formalization of a trajectory that consists of
taking successive random steps [63]. It has been used to describe many natural
phenomena and it has also been applied to solve a wide range of engineering
problems. Some of these include graph matching and pattern recognition [33],
image segmentation [34], neural network modeling [37, 47], network centrality
measure [59], network partition [81], construction and analysis of communication
networks [78, 80].

Given a network G D hV ;E i and a starting vertex v 2 V , we select a neighbor
of it at random, and move to this neighbor; then we select a neighbor of this new
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Table 2.1 Classification of the network measurements using a meta-
information approach

Definition Description Classification

2.10 Degree Strictly local

2.11 In- and out-degree Strictly local

2.12 Average degree (connectivity) Global

2.13 Average in- and out-degree Global

2.14 Strength Strictly local

2.15 In- and out-strength Strictly local

2.35 Density Global

2.36 Assortativity Global

2.37 Local assortativity Mixed

2.38 Non-normalized rich-club coefficient Global

2.39 Normalized rich-club coefficient Global

2.40 Diameter Global

2.41 Vertex eccentricity Mixed

2.42 Radius Global

2.43 Wiener index Global

2.44 Global efficiency Global

2.45 Average harmony Global

2.46 Clustering coefficient Mixed

2.47 Network clustering coefficient Global

2.48 Cyclic coefficient Mixed

2.49 Global cyclic coefficient Global

2.50 Modularity Global

2.51 Topological overlap Mixed

2.52 Eccentricity centrality (minimax criterion) Mixed

2.53 Total distance centrality (minisum criterion) Mixed

2.54 Betweenness Mixed

2.55 Communicability Mixed

2.56 Flow betweenness vitality Mixed

2.57 Closeness vitality Mixed

2.58 Dynamical vitality Mixed

2.59 Bonacich centrality Mixed

2.60 Katz index Mixed

2.61 PageRank Mixed

2.62 Eigenvector centrality Mixed
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vertex again at random, and move to it, and so on. The random sequence of vertices
selected this way is a random walk on the graph. A finite random walk of length
t > 0 has the same intuition, but we stop after making t � 1 random transitions.
If the graph is weighted, then we transition to a neighbor u with probability that is
proportional to the edge weight Avu.

In essence, the theory of random walks on networks and the theory of finite
discrete Markov chains are basically the same, so that every discrete Markov
chain can be conceived as random walk on a graph. Discrete Markov chains are
stochastic processes whose future states are conditionally independent of the past
states provided that the present state is known. In graph theory, the states are denoted
by the vertices in the graph. In a graph theory context, given that a walker is at vertex
v, the Markovian property affirms that the probability of visiting a neighboring
vertex is independent on the past trajectories of that walker. We formalize that
concept in the following.

Definition 2.63. Discrete-time Markov chain: A discrete-time Markov chain is a
stochastic process fXt W t 2 Ng, where the random variable X assumes values in a
countable set N at any given time t. The transition probability to state q 2 N is:

PŒXt D q j Xt�1; Xt�2; : : : ; X0� D PŒXt D q j Xt�1�; (2.61)

i.e., the probability of the next outcome only depends on the last value of the process.
Therefore, past trajectories are irrelevant.

Remark 2.32. In the context of graph theory, the countable set is composed of the
vertex set, i.e., N D V .

Remark 2.33. In Markovian processes, each feasible value in the countable set V
is called a state.

Definition 2.64. Transition probability: The transition probability of going from
state (vertex) q to u is denoted by Pqu.t/, q; u 2 V , which is a shorthand for Pqu.t/ D
PŒXt D u j Xt�1 D q�. Mathematically, the transition probability is defined in
accordance with the network topology, as follows:

Pqu D Aqu
P

i2V Aqi
; (2.62)

i.e., the stronger is the edge weight linking q to u, the more likely will be that
transition.

Remark 2.34. Rewrite (2.62) as:

Pqu D Aqu

K.q/
; (2.63)
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in which K.q/ D P
i2V Aqi. Then,

• If the network is undirected and non-weighted, then K.q/ D kq, where kq is the
degree of vertex q.

• If the network is directed and non-weighted, then K.q/ D k.out/
q , where k.out/

q is
the out-degree of vertex q.

• If the network is undirected and weighted, then K.q/ D sq, where sq is the
strength of vertex q.

• If the network is directed and weighted, then K.q/ D s.out/
q , where s.out/

q is the
out-strength of vertex q.

Definition 2.65. Transition matrix: In Markovian processes, we can map all of
the feasible transitions using the transition matrix P.t/ as follows:

P.t/ D

0

B
B
B
@

P1;1.t/ P1;2.t/ : : : P1;V.t/
P2;1.t/ P2;2.t/ : : : P2;V .t/

:::
:::

: : :
:::

PV;1.t/ PV;2.t/ : : : PV;V.t/

1

C
C
C
A

: (2.64)

Note that the transition matrix completely characterizes the Markovian process
because, the immediate future state X.t C 1/ is only determined by the current state
X.t/, regardless of the past trajectories.

Remark 2.35. If P.t/ is immutable for all t 2 N, then the Markov process is said
to be time-homogenous. In a graph theory perspective, this is equivalent to saying
that the graph topology does not change during the walk. For clarity, if the Markov
process (or random walk) is time-homogeneous, we drop the time indexing of the
transition matrix.

Definition 2.66. m-step transition matrix: For a time-homogeneous Markovian
process, we can define the m-step transition matrix, m > 0, as Pm. Essentially, the
entry Pm

qu encodes the transition probability of starting from state or vertex q and
arriving at state or vertex u after exactly m transitions.

Remark 2.36. The original transition matrix defined in (2.64) is a 1-step transition
matrix.

For each realization of the Markovian process ! 2 ˝ , let pt.j/ be the number of
times j appears in the random walk that visits the states X0.!/; X1.!/; X2.!/; : : :.
Then, pt.j/ is the total number of times the state j is visited by the stochastic process
X in realization !. If pt.j/ is finite, then X eventually leaves state j never to return.
Mathematically, there must be an integer n such that Xn.!/ D j and Xm.!/ ¤ j,
8m > n. In contrast, if pt.j/ D 1 for a realization !, then X keeps on visiting
j again and again. These two classes that state j can assume are important from a
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practical point-of-view [14]. We now turn our attention in providing formal tools to
classify states according to those perspectives.

The passage time function counts the number of times a given vertex has been
visited during a random walk. We formalize this notion in the following.

Definition 2.67. Passage Time: The passage time is a function pt W V ! N

such that pt.q/ is the number of times the Markovian process reaches the state q.
Mathematically,

pt.q/ D jft 2 N j Xt D qgj

D
1X

tD0

1ŒXt.!/Dq�: (2.65)

Recall that 1ŒA� is the indicator function that yields 1 whenever the logical
expression A is true, and returns 0, otherwise. Basically, we increment pt.q/ by
one each time the stochastic process X visits state or vertex q.

We now define the so-called potential matrix of the Markovian process X.

Definition 2.68. Potential or fundamental matrix: The potential matrix R
encodes the expected number of times each vertex is visited when we start from any
given other vertex. Mathematically, its .i; j/-th entry is expressed as:

Rij D E Œpt.j/ j X.0/ D i� ; (2.66)

which can be seem as the mean passage time to reach j conditioned that the walker
starts at vertex i.

Plugging (2.65) into (2.66) and using the monotone convergence theorem,
we get:

Rij D E

" 1X

nD0

1ŒXnDj�

ˇ
ˇ
ˇ
ˇ
ˇ

X.0/ D i

#

D
1X

nD0

E

h
1ŒXnDj�

ˇ
ˇ
ˇ X.0/ D i

i

D
1X

nD0

P
�

Xn D j
ˇ
ˇ
ˇ X.0/ D i

�

D
1X

nD0

Pm
ij : (2.67)

Let T be the time that state or vertex j is first visited by a realization of the
Markovian process.



60 2 Complex Networks

Definition 2.69. Recurrent state: State j is recurrent if:

P.T < 1 j X.0/ D j/ D 1: (2.68)

As a consequence, the number of returns of a recurrent state is always infinite,
that is:

Rjj D E Œpt.j/ j X.0/ D j� D 1: (2.69)

Definition 2.70. Transient state: State j is transient if:

P.T D C1 j X.0/ D j/ > 0: (2.70)

As a consequence, the number of returns of a transient state is always finite,
that is:

Rjj D E Œpt.j/ j X.0/ D j� < 1: (2.71)

Remark 2.37. There are only two states: recurrent or transient. In this way, if j is
not recurrent, then it must be a transient state, and vice versa.

Remark 2.38. Let j be a recurrent state. Then, we sub-classify it as null recurrent if:

EŒT j X.0/ D j� D 1; (2.72)

otherwise, we call it non-null recurrent.

Remark 2.39. Let j be a recurrent state. Then, we sub-classify it as periodic with
period ı if ı � 2 is the largest integer for which:

P.T D nı for some n � 1/ D 1: (2.73)

otherwise, we call it aperiodic.

Definition 2.71. Closed set of states: A set of states is said to be closed if no state
outside it can be reached from any state inside it.

Definition 2.72. Absorbing state: A state forming a closed set by itself is called an
absorbing state. We say that state q is absorbing if there is a probability 1 to go from
q to itself. In other words, once an absorbing state has been reached in a random
walk, the walker stays in this state forever.

Definition 2.73. Irreducible closed set: A closed set is irreducible if no proper
subset of it is closed.
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Definition 2.74. Irreducible Markov chain: A Markov chain is called irreducible
if its only closed set is the set of all states. Therefore, a Markov chain is irreducible
if and only if all states can be reached from each other.

The state set of the Markov chain process can be divided into the absorbing state
set VA and its complementary set, the transient state set VT D V nVA.

Remark 2.40. The mean passage time for transient states can be obtained by
computing the fundamental matrix only for the transient states R.transient/:

R.transient/ D .I � PT/�1; (2.74)

in which I is the jVT j�jVT j identity matrix and PT is the transition probability matrix
restricted to the transient states. The entry R.transient/

q0q contains the mean passage time
in state q 2 VT during random walks starting in state q0. Hence,

E Œpt.q/� D Œp0.transient/R.transient/�q; (2.75)

in which p0.transient/ is the transpose of the initial probability vector when we only
consider transient states. Note that the expectation operation is taken over random
walks with arbitrary lengths.

Given a distribution p.t/, dim.p.t// D 1 � V , where the v-th entry denotes the
probability that the system will be at vertex v 2 V , the evolution of pv.t/ is:

pv.t C 1/ D
X

.u;v/2E
P.t/uvpu.t/: (2.76)

Analogously, the evolution of the distribution p.t/ is:

p.t C 1/ D p.t/P.t/: (2.77)

Intuitively, the evolution of the probability distribution p.t/ as a function of t can
be seen as describing a diffusion process in the underlying graph. The diffusion
is completely characterized once we know the initial distribution p.0/ and the
transition matrices P.t/.

Definition 2.75. Stationary distribution: If the network G is a finite, irreducible,
time-homogenous, and aperiodic Markov chain, then it has a unique stationary
distribution � D Œ�1; : : : ; �V � that can be reached from any initial distribution p.0/.
In the dynamic equation, the stationarity is reached when the following holds:

� D �P: (2.78)



62 2 Complex Networks

Each entry of the stationary distribution is of the form:

�i D 1

E ŒT j X.0/ D i�
; (2.79)

in which recall that E ŒT j X.0/ D i� is the expected time to regress to vertex i
starting from i.

For an undirected network, we have that:

E ŒT j X.0/ D i� D
P

j2V kj

ki
DD 2E

ki
; (2.80)

in which E is the number of edges in the network and ki is the degree of vertex i.
Substituting (2.80) in (2.79), we get:

�i D ki

2E
: (2.81)

2.4.2 Lazy Random Walks

The unique stationary distribution in Definition 2.75 only holds true, among other
things, for aperiodic networks. However, if the network is periodic, there is an easy
way to fix the periodicity problem by introducing the lazy random walk. In a lazy
random walk at time t, the walker may decide upon two different actions:

1. It can transition to a neighboring vertex in accordance with the transition matrix
with probability 1=2; or

2. It can stay at the current vertex3 with probability 1=2.

Remark 2.41. The lazy random walk can be viewed as a vanilla version of the
classical random walk in a network in which we add ku self-loops to every vertex u
in the original graph G .

Formally, the evolution of the probability distribution p.t/ of a lazy random walk
is given by:

p.t C 1/ D 1

2
p.t/ C 1

2
p.t/P.t/

D p.t/
1

2
ŒI C P.t/�

D p.t/P0.t/; (2.82)

3Hence, the terminology “lazy” random walk.
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in which P0.t/ is the modified transition matrix for the lazy random walk:

P0.t/ D 1

2
ŒI C P.t/� : (2.83)

Note also that the stationary distribution of a lazy random walk is identical to that
of the classical random walks portrayed in Definition 2.75. To see that, it suffices
to see that P0.t/ is also a valid transition matrix, just like the original P.t/. As long
as the graph G is finite, irreducible, time-homogenous, and aperiodic, the unique
stationary distribution always exists.

2.4.3 Self-Avoiding Walks

A self-avoiding walk on a network G is a path that visits no vertex more
than once. Self-avoiding walks were first introduced in the chemical theory of
polymerization [27], and since then their critical behavior has attracted attention
of mathematicians and physicists [49].

Broadly speaking, self-avoiding walks are usually considered in infinite lattices,
so that steps are only allowed in a discrete number of directions and of certain
lengths. Self-avoiding walks cannot be Markovian, because we need to check the
past trajectory in order to list the possible futures states that the process can assume.
The research in [49] provides a comprehensive review on self-avoiding walks.

2.4.4 Tourist Walks

A tourist walk can be conceptualized as a walker (tourist) aiming at visiting sites
(data items) in a P-dimensional map, representing the data set. At each discrete
timestep, the tourist follows a simple deterministic rule: it visits the nearest site that
has not been visited in the previous � steps. In other words, the walker performs
partially self-avoiding deterministic walks over the data set, where this self-avoiding
factor is limited to the memory window � � 1. This quantity can be understood as a
repulsive force emanating from the sites in this memory window, which prevents
the walker from visiting them in this interval (refractory time). Therefore, it is
prohibited that a trajectory intersects itself inside this memory window. In spite of
being a simple rule, it has been shown that this kind of movement possesses complex
behavior when � > 1 [48]. Note that tourist walks differ from self-avoiding random
walks in that the former is a deterministic process, while the latter is a random
process.

The tourist’s behavior heavily depends on the data set’s configuration and the
starting site. In computational terms, the tourist’s movements are entirely realized
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Fig. 2.22 Illustration of a
tourist walk with � D 1. The
red (dark gray) and green
(light gray) dots represent
visited and unvisited sites,
respectively. The dashed lines
indicate the transient part of
the walk, whereas the
continuous lines, the attractor
of the walk

by means of a neighborhood table. This table is constructed by ordering all the data
items in relation to a specific site. This procedure is performed for every site of the
data set.

Each tourist walk can be decomposed in two terms: (1) the initial transient part
of length t and (2) a cycle (attractor) with period c. Figure 2.22 shows an illustration
of a tourist walk with � D 1. In this case, one can see that the transient length is
t D 3 and the cycle length, c D 6.

Considering the attractor or cycle period as a walk section that begins and ends
at the same site of the data set may lead one to think that, once the tourist visits a
specific site, a new visit to it would configure an attractor. Nevertheless, this is a very
simple, and likely to fail, approach for attractors’ detection. In fact, during a walk,
a site may be re-visited without configuring an attractor. Besides, the tourist’s finite
memory � allows some steps of the walk to be repeated without configuring an
attractor. For instance, if we had chosen a � D 6 for the walk in Fig. 2.22, the re-visit
performed by the tourist on the site 4 would have not configured an attractor, since
the site 5 would still be forbidden to be visited again; hence, the tourist would be
compelled to visit another site. This characteristic enables sophisticated trajectories
over the data set, at cost of also increasing the difficulty in detecting an attractor.

In the majority of the works related to tourist walk [40, 48, 71], the tourist
may visit any other site other than the ones contained in its memory window. As
� increases, there is a significant chance that the walker will begin performing
large jumps in the data set, since the neighborhood is most likely to be already
visited in its entirety within the time frame �. In the context of data classification,
this is an undesirable characteristic that can be simply avoided by using a graph
representation of the input data. In this way, the walker is only permitted to visit
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vertices, represented now by the sites, that are in its connected neighborhood (link).
With this modified mechanism, for large values of �, it is very likely that the walker
will get trapped within a vertex, not being able to further visit other vertices of the
neighborhood. In this scenario, we say that the walk only had a transient part and
the cycle period is null (c D 0).

2.4.5 Epidemic Spreading

Epidemic spreading in complex networks has triggered much attention to many
researchers. It is a dynamic process within a network and the main concern is how
the network structure attenuates or amplifies disease breakouts or immunization.
Since epidemic spreading processes can be considered as information transmission,
it is useful for machine learning. For example, epidemic spreading may be directly
related to data label propagation in semi-supervised learning. Although we have
not found works connecting epidemic spreading and machine learning in literature
yet, we would like to share such a prediction with the readers. The readers who are
interested in this topic are invited to develop their new techniques in this direction.
For the above-mentioned purpose, we here review two basic models of epidemic
spreading in complex networks. For a comprehensive review, see [23, 62, 83].
For some development related to information transmission in complex networks,
see [18, 50, 76, 77, 79].

The most extensively studies of epidemic models are about the susceptible-
infected-recovered and susceptible-infected-susceptible models [3, 4, 36]. We
review these models in the following.

2.4.5.1 Susceptible-Infected-Recovered (SIR) Model

In the SIR model, each individual is at one of the three states: susceptible (does
not infect others but may be infected), infected, or recovered (will not be affected
again). At each time step, assume that a susceptible individual may be infected by
another infected person with probability ˛ and that the recovering rate of infected
individuals is ˇ. Then, the epidemic process in the SIR model can be described by
the following dynamic equations:

dx

dt
D �˛yx; (2.84)

dy

dt
D �˛yx � ˇy; (2.85)

dz

dt
D �ˇy; (2.86)
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in which x, y and z are the ratios of susceptible, infected, and removed individuals
to the entire population, respectively. In a network setting, each individual is
represented by a vertex and links exist when two individuals have some kind of
contact. In this network, a susceptible vertex will be infected only if it has at least
one infected neighbor.

2.4.5.2 Susceptible-Infected-Susceptible (SIS) Model

For some diseases, such as influenza and pulmonary tuberculosis, the recovered
individual can be infected again. This situation is not considered by the SIR model.
For this reason, the SIS model was introduced. The only difference between them is
that in SIS model, the infected individuals will return to the susceptible state after
recovering. The SIS model is defined by the following equations:

dx

dt
D �˛yx C ˇy; (2.87)

dy

dt
D ˛yx � ˇy: (2.88)

2.4.5.3 Epidemic Spreading in Complex Networks

In [43], the authors studied the SIS model on small-world networks of Watts and
Strogatz, which have been presented in Sect. 2.2.2. They found that even when
the rewiring probability p is very small (for instance, p D 0:01), the disease
can permanently exist with very small infection ratios and without fluctuations in
the population ratios. In contrast, when p gets large enough (for example, p D 0:9),
periodic oscillations of the number of infected individuals start to appear.

Consider the SIS model in random networks and assume that � denotes the
spreading rate. In [6, 7], the authors uncovered a spreading threshold �c. If the
value of � is above the threshold, i.e., � > �c, the infection spreads and becomes
persistent. Below it, the infection disappears. Such a result implies that the disease
can persist only if it infects a sufficiently large amount of individuals. However,
in real situations, many diseases can persistently exist with just a small fraction of
the population being infected, such as computer viruses and measles. In [6, 7], the
authors obtained the epidemic threshold of the SIS dynamics in general networks as
follows:

�c D hki
hk2i ; (2.89)

in which h:i represents an averaging operator over all of the network vertices,
and k denotes the degree. Note that hki D Nk, which is the network connectivity.
In scale-free networks, when the network size goes to infinite, we have that
�c D 0. The absence of epidemic threshold in scale-free networks provides a good
explanation for the empirical data [6, 7].
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2.5 Chapter Remarks

In this chapter, we have introduced the basic notion of graphs and some of the
network topologies that are well-known by the complex network community.
We have also explored a comprehensive list of network measurements, which
are able to extract structural information of the data relationships in a systematic
manner. Finally, we have reviewed classical dynamic processes, such as the random
walk, self-avoiding walk, tourist walk, and epidemic spreading with a focus on
networked environments.
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Chapter 3
Machine Learning

Abstract Machine learning relates to the study, design and development of
algorithms that give computers the capability to learn without being explicitly
programmed. Machine learning techniques are fairly generic and can be applied
in various settings. To utilize such kinds of algorithms, one has to translate the
problem to the domain of machine learning, which usually expects a set of features
and a desirable output or grouping criterion. In this chapter, we introduce the
three machine learning paradigms often employed by the literature: supervised,
unsupervised, and semi-supervised. We show that supervised algorithms exclusively
utilize external information to induce or to train their hypotheses. In contrast,
unsupervised learning methods are guided exclusively by the intrinsic structure of
the data items throughout the learning process, i.e., without any sort of external
knowledge. In-between these two learning paradigms lies the semi-supervised
learning, which employs both the labeled and unlabeled data in the learning process.
Here, we focus on supplying the shortcomings and potentialities of traditional and
representative techniques that are well-known by the machine learning community.
We will not go into technical details of traditional machine learning techniques in
this chapter, because these are not the focus of this book.

3.1 Overview of Machine Learning

Machine learning aims at developing computational methods that are capable of
“learning” with accumulated experiences [9, 19, 36, 43–45]. Traditionally, there
are two fundamental types of learning in machine learning. The first is entitled
unsupervised learning, whose main task consists in revealing intrinsic structures
that are embedded within the data relationships. The learning process, in this case,
is solely guided by the provided data, for no prior knowledge about the data is sup-
plied [38, 44, 46]. Essentially, a typical problem in unsupervised learning consists in
estimating the underlying density function that generated the data distribution under
analysis [10]. Among the main tasks of unsupervised learning, one can highlight:
clustering [23, 33, 48, 49], outlier detection [40, 41], dimensionality reduction
[39], and association [53]. In a clustering task, we expect to find groups in which

data items in the same group are very similar to each other, while data items
that correspond to different groups are expected to be dissimilar. In this case, the
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resemblance or similarity of different data items is judged according to an adopted
similarity function [44]. In outlier detection, the goal is to find data items that differ,
to a large extent, from the majority of the other data items, i.e., from the original
data distribution [40]. In dimensionality reduction, the objective is to dispose the
data items over a lower dimensional space in relation to its original distribution, so
as to simplify the relationships among the data items [39]. In association, one seeks
to generate rules that relate subsets of predictive attributes [53].

The second type of learning is referred to as supervised learning, whose objective
is to deduce concepts regarding the data. This inference is performed using the
presented labeled instances, which are commonly denoted as the training set. In this
regard, the learning process tries to construct a mapping function conditioned to
the provided training set [1, 26, 31, 36]. Often, the learners are tested using unseen
data items that compose the so-called test set. When the labels comprise discrete
values, then the problem is denominated classification, whereas when the values are
continuous, regression [9].

The main difference between supervised and unsupervised learning paradigms
is as follows. In the first, the learner explores external information of the training
set, which is available at the training stage, in order to induce the hypothesis of the
classifier. In a classification task, for example, this external information is brought
to the learning process in the form of classes or labels. The goal of classification, in
this case, is to create a predictive function that can generalize from this training set,
when applied to unknown data (test set). The performance of the classifier in this test
is often termed as the classifier’s generalization power. In contrast, the unsupervised
learning paradigm seeks behaviors or trends in the data, trying to group them in
a way that similar data tend to be agglomerated together while dissimilar data are
segregated into distinct groups. Note that, in this case, no external information or
labels are employed during the learning process.

Besides these two well-defined areas, a new machine learning paradigm has
received attention from the related community, which is denominated semi-
supervised learning. This paradigm has been proposed in order to combine the
strengths of the supervised and unsupervised learning paradigms [10, 64, 65]. In
a typical semi-supervised classification, few data are labeled, while most of them
are unlabeled. Observe that this corresponds to the typical scenario nowadays,
as thousands of data are generated very quickly, while only a few of them can
effectively be processed and labeled. This fact is true because, in general, the
labeling task is expensive, time-consuming, and prone to errors. In the semi-
supervised learning, the goal is to propagate these few labels from the labeled
examples to the large amount of unlabeled examples. A semi-supervised task,
therefore, utilizes both information from the training and the test sets to make
predictions in a simultaneous manner.

For didactic purposes, Fig. 3.1a shows a clustering task in unsupervised learning.
Note that no external information is available a priori, and the clustering is
performed by using similarity or topological information of the data. In Fig. 3.1b, it
is illustrated a semi-supervised classification in semi-supervised learning. Note now
that some data already possess labels (external information) beforehand, while most
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Fig. 3.1 Schematic of the three paradigms of the machine learning area. (a) Unsupervised
learning; (b) Semi-supervised learning; (c) Supervised learning

of them are unlabeled. The learning process propagates these labels to the remaining
unlabeled data. Finally, in Fig. 3.1c, a classification process in supervised learning
is displayed. Initially, the classifier is trained by solely using information from the
training set, which is always fully labeled. In the next phase, called classification
phase, the classifier is used to predict class labels of unseen data items.

For completeness, it is worth mentioning a novel machine learning area that is not
subject of study in this book. Deep learning is a parallel branch of machine learning
that relies on sets of algorithms that attempt to model high-level abstractions in data
by using model architectures, with complex structures composed of multiple non-
linear transformations [18, 57]. Deep learning is part of a broader family of machine
learning methods based on learning representations of data. An observation (e.g., an
image) can be represented in many ways such as a vector of intensity values per
pixel, or in a more abstract way as a set of edges, regions of particular shape, etc.
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Some representations make it easier to learn tasks (e.g., face recognition or facial
expression recognition) from examples. One of the promises of deep learning is
replacing handcrafted features with efficient algorithms for unsupervised or semi-
supervised feature learning and hierarchical feature extraction.

In the next sections, we give an overview of the supervised, unsupervised, and
semi-supervised learning paradigms.

3.2 Supervised Learning

Algorithms that exclusively utilize external information to induce or to train their
hypotheses are considered supervised learning methods. In this chapter, we supply
definitions and reviews on traditional supervised learning methods presented in the
literature. In Chap. 5, we revisit the supervised learning paradigm with a focus on
network-based methods.

3.2.1 Mathematical Formalization and Fundamental
Assumptions

The mathematical formulation of a supervised learning task is defined as follows
[9, 38, 44, 62]. Let Xtraining D f.x1; y1/; : : : ; .xL; yL/g denote the training set, where
the first component of the i-th tuple xi D .xi1; : : : ; xiP/ denotes the attributes of the
P-dimensional i-th training instance. The second component yi 2 Y characterizes
the class label or target associated to that training instance. The training set is
composed of L D jXtrainingj data items. The goal here is to learn a mapping x 7! y
using only Xtraining, i.e., the training data distribution and the associated labels. To
check the generalization performance of the trained model, the constructed classifier
is checked against a test set Xtest D fxLC1; : : : ; xLCUg, for which labels are not
provided. The test set is composed of U data items. Each data item in that set is
termed as test instance. For an unbiased learning, the training and test sets must be
disjoint, i.e., Xtraining \Xtest D ;. Usually, N D L C U denotes the total number of
data items in the learning process.

In the supervised learning scheme, there are two learning phases: the training
phase and the classification phase [9, 26, 31, 38]. In the training phase, the classifier
is induced or trained by using the training instances (labeled data) in Xtraining that
are always fully labeled. In the classification phase, the labels of the test instances
in Xtest are predicted using the induced classifier.

Once trained, one must verify how well the trained supervised learner can gen-
eralize. Without any additional assumptions over the data properties, this problem
cannot be solved exactly since unseen situations might have arbitrary output values.
The necessary assumptions about the nature of the target function constitute the
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inductive bias of the learner. The following is a list of common inductive biases in
supervised learning algorithms:

• Maximum conditional independence: if the hypothesis can be cast in a Bayesian
framework, usually an objective function that aims at maximizing the conditional
independence is employed. This is the bias used, for example, in the Naïve Bayes
classifier [45, 47].

• Maximum margin: when drawing a boundary between two classes, attempt to
maximize the width of the boundary, i.e., the distance from the data items. This
is the bias used, for instance, in support vector machines. The assumption is that
distinct classes tend to be separated by wide low-density boundaries.

• Minimum description length: when forming a hypothesis, attempt to minimize
the length of the description of the hypothesis. The assumption is that simpler
hypotheses are more likely to be true. The rationale here is that complex
hypotheses are likely to incorporate noise coming from the training data. Hence,
the model becomes overfit to the training data, in a way that its generalization
power is jeopardized. A classical principle of this type of inductive bias is the
Occam’s Razor, which conveys the idea that the simplest consistent hypothesis
about the target function is actually the best. Here, consistent means that the
hypothesis of the learner yields correct outputs for all of the training data
examples that have been given to the algorithm.

• Minimum number of features: unless there is good evidence that a feature is
useful, it should be deleted. This is the assumption behind feature selection
algorithms. Note that if correlation exists between different features, it corre-
spondingly increases the variance of the overall model. In this way, it is only
useful to add new features if they explain orthogonal parcels of the output or
target variable that have not been explained by other features.

• Nearest neighbors: relying on the smoothness or continuity assumption, this
inductive bias assumes that, in most of the cases, data items in small neigh-
borhoods tend to be quite similar. Given a test instance, for which the class is
unknown, we infer that its class is the same as of the majority of data items in the
local neighborhood. This is the bias used, for example, in the k-nearest neighbor
algorithm. The assumption is that data items that are near each other tend to
belong to the same class.

In machine learning, we can form different models or hypotheses for the same
data set, depending on the nature and inductive bias of the selected algorithm.
A natural problem that arises is of how well the classifier can perform on unseen
data. For that, we need to employ error estimation techniques. Instead of employing
the entire training set to train the supervised learner, the basic idea consists in
further partitioning the training set into two sub-sets, where the first one is used
to train the classifier and the second one is purposed to verify its performance. The
performance can be estimated because we now can compare the output value of
the algorithm with the ground truth, as we are dealing with “in-sample” or training
data items, for which labels are known. The method of k-fold cross-validation is the
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most employed error estimation procedure in the literature.1 When trying to choose
among different models, we select the hypothesis with the lowest cross-validation
error. Although cross-validation may seem to be free of bias, the “no free lunch”
theorem states that cross-validation must be biased. In cross-validation, we partition
a data set into k equally sized non-overlapping subsets F . For each fold Fi, a model
is trained on F \Fi (reduced training set), which is then evaluated on Fi (“in-
sample” test instances). Another error estimation procedure is the leave-one-out,
which is a special case of the k-fold cross-validation when k D L � 1, where L is
the number of labeled data items in the training set. The cross-validation estimator
of the prediction error is defined as the average of the prediction errors obtained on
each fold. While there is no overlap between the test sets on which the models are
evaluated, there is overlap between the training sets whenever k > 2. The overlap
is largest for leave-one-out cross-validation. This means that the learned models
are correlated, i.e., dependent, and the variance of the sum of correlated variables
increases with the amount of covariance. Therefore, leave-one-out cross-validation
has large variance in comparison to smaller k. However, remark that while twofold
cross validation does not have the problem of overlapping training sets, it often
also has large variance because the training sets are only half the size of the original
sample. A good compromise often accepted by the literature is to use ten-fold cross-
validation. For a thorough review on this topic, c.f. [3, 7, 31].

With regard to the training and test set characteristics, supervised learning
algorithms often assume that [9, 44]:

• For a valid estimation process, the test set must not be biased toward the training
set. It must, however, be sampled from the same data distribution process that
generated the training set data. This assumption makes clear that, since the
classifier has been trained in accordance with the training set distribution, it is
fair enough that it is only capable of efficiently inferring unseen examples of that
same data distribution. In practice, however, this assumption is often violated to
a certain degree. Strong violations will clearly result in poor classification rates.

• The training set must be a representative sample of the distribution or population
that generated the analyzed data. Since the hypothesis that the classifier induces
is based upon the training set, if the available data is not a representative sample
of the true underlying data distribution process, the classifier has a great chance
of being mistrained. As such, it predicts in accordance with another distribution,
that of the non-representative training set.

1If model selection is embedded within the error estimation procedure, then the nested k-fold cross-
validation is frequently indicated. The nested cross-validation works as follows:

• An inner loop is used as part of model fitting procedure. Typically, we conduct a grid search
over the parameters of the technique. For instance, in the k-nearest neighbors technique, we
may run through several values of the parameter k.

• An outer loop is employed to measure the performance of the model that had the best
performance on the inner loop on a separate external fold (but still in the training set).
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3.2.2 Overview of the Techniques

Supervised learning techniques are divided into the following groups:

• Decision trees: A decision tree consists of vertices and branches that serve the
purpose of breaking a set of samples into a set of covering decision rules. In
each vertex, in its original inception, a single test or decision is made to obtain
a partition. The starting vertex is usually referred to as the root vertex. In the
terminal vertices or leaves, a decision is made on the class assignment. In each
vertex, the main task is to select an attribute that makes the best partition between
the classes of the samples in the training set [55].

• Rule-based induction: One of the most expressive and human readable repre-
sentations for learned hypotheses are sets of IF-THEN rules. In these kinds of
rules, the IF part contains conjunctions and disjunctions of conditions composed
by the predictive attributes of the learning task, and the THEN part contains the
predicted class for the samples that satisfy the IF clause [54].

• Artificial neural networks: Neural networks are interconnected groups of neurons
that use mathematical or computational models for information processing based
on a connectionist approach. In most cases, an artificial neural network is an
adaptive system that changes its structure, usually represented by the connection
weights between pairs of neurons, based on external or internal information that
flows through the network. In more practical terms, neural networks are nonlinear
statistical data modeling or decision making tools. They can be used to model
complex relationships between inputs and outputs or to find patterns in data.
The neural network, ignorant at the start, through a repetitive “learning” process,
becomes a model of the dependencies between the descriptive variables and the
target behavior. The key part in developing neural networks is to choose a suitable
architecture (how many layers, thresholds utilized by the neurons, etc.) and a
corrective learning algorithm (back-propagation, etc.) [27].

• Bayesian networks: Bayesian networks constitute a probabilistic framework for
reasoning under uncertainty. From an informal perspective, Bayesian networks
are directed acyclic graphs, where the vertices are random variables and the
edges specify the dependence assumptions that must be held between different
random variables. Bayesian networks are based upon the concept of conditional
independence among variables. Once the network is constructed, it is used as an
efficient device to perform probabilistic inference. This probabilistic reasoning
inside the network can be carried out by exact methods, as well as by approximate
methods [37]. A special case of Bayesian networks is when no dependencies
on the predictive variables exist. In this case, the classifier is known as Naïve
Bayes [47].

• Statistical learning theory: Maybe the most well-known technique of this type of
learning is the support vector machines (SVM), which is based on the principle
of structural risk minimization. Originally, it was worked out for linear two-
class classification with margins, where margin means the minimal distance from
the separating hyperplane to the closest data points. SVM seeks for an optimal
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separating hyperplane, where the margin is maximal. An important and unique
feature of this approach is that the solution is based only on those data points that
are at the margin. These points are called support vectors. The linear SVM can be
extended to a nonlinear one when first the problem is transformed into a feature
space using a set of nonlinear basis functions. In the feature space—which can be
very high dimensional—the data points can be separated linearly. An important
advantage of the SVM is that it is not necessary to implement this transformation
and to determine the separating hyperplane in the possibly very-high dimensional
feature space. Instead, a kernel representation can be used, where the solution is
written as a weighted sum of the values of a certain kernel function evaluated at
the support vectors [59].

• Instance-based learning: Instance-based learning has its root in the study of the
nearest neighbor algorithm. The simplest form of nearest neighbor or, more
generally, k-nearest neighbors (k-NN) algorithms, simply stores the training
instances and classifies a new instance by predicting that it has the same class as
its nearest stored instance or the majority class of its k nearest stored instances,
according to some similarity measure. The essence of this learning method
resides in the form of the similarity function that computes the distances from
the new test instance to the training instances [15].

• Network-based methods: The inference is done by means of a network con-
structed from the training set. Up to now, there are still few network-based
supervised learning techniques [25]. In Chap. 5, we work on some representative
network-based supervised learning techniques.

3.3 Unsupervised Learning

Unsupervised learning methods are guided exclusively by the intrinsic structure of
the data items throughout the learning process, i.e., without any sort of external
knowledge. In this chapter, we provide definitions and reviews on traditional
methods presented in the literature. In Chap. 6, we revisit the unsupervised learning
paradigm with a focus on network-based methods.

3.3.1 Mathematical Formalization and Fundamental
Assumptions

The unsupervised learning can be defined as follows [2, 9, 21, 30, 44, 45]. Let
X D fx1; x2; : : : ; xNg be a data set, where N is the total number of data items
involved in the learning process. Then, xi is a P-dimensional vector, where each
of the entries is called a feature or descriptor, which has the role to qualitatively
or quantitatively describe the data item. Typically, it is assumed that the points are
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independently and identically distributed in accordance with a common distribution.
In the unsupervised learning case, no professors or external sources are used, i.e.,
no labels are provided throughout the learning process. Therefore, it is valid to say
that no training phase is involved in this type of learning. As a consequence, the
algorithm must be guided by the data distribution itself to infer useful knowledge or
trends. For example, in data clustering or community detection tasks, the objective
is to find subgroups of data items, such that the constituents or members of the
same subgroup are more similar than those of different groups. The grouping is
complete over the data, i.e., one seeks subgroups fX1; : : : ;Xkg, in such a way that
[k

iD1Xi D X .
Clustering is a discovery process in data mining. It groups a set of data in a way

that maximizes the similarity within clusters and minimizes the similarity between
two different clusters. These discovered clusters can help in explaining the char-
acteristics of the underlying data distribution and serve as the foundation for other
data mining and analysis techniques. Clustering is useful in characterizing customer
groups based on purchasing patterns, categorizing Web documents, grouping genes
and proteins that have similar functionality, grouping spatial locations prone to
earthquakes based on seismological data, and so on.

Most existing clustering algorithms find clusters that fit some static model.
Although effective in some cases, these algorithms can break down if the analyst
does not choose appropriate static-model parameters. Or, sometimes, the model
simply cannot adequately capture the clusters’ characteristics. Most of these
algorithms break down when the data contains clusters of diverse shapes, densities,
and sizes. For example, Fig. 3.2 shows some illustrative cluster shapes.

Clustering results differ according to the assumptions made about the data. Some
of these forms include [9, 21]:

• The underlying process that generated the observed data has some analytical
form: the methods are biased towards finding clusters with pre-defined forms
(similar with estimation). The well-known algorithm K-Means, for instance,
seeks circular-shaped clusters [42]. This bias has a strong impact on the final
results of the unsupervised learner and thus limits its power of detection. These
data assumptions, on one hand, may enhance the detection power of the learner
if they really reflect the data properties. On the other hand, they severely hamper
the learner’s detection capabilities if they are invalid.

• Neighborhood shares the same data characteristics: the algorithms rely on local
information to infer their decisions. For a given data item, for example, the k-NN
clustering decides in accordance with some function on the neighborhood of that
data item [26, 31].

• Data are produced in some “hierarchical” organization: the techniques that
fall into this category are the hierarchical techniques, including the divisive and
agglomerative ones. For practical methods of the former, the community detec-
tion based on continuously removing edges with the maximum betweenness [50]
and the bisecting K-Means [34] are representative examples. As good examples
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Fig. 3.2 Examples of clusters with different shapes. (a) Ellipsoidal clusters. (b) Quadrangular
(hollow and opaque) clusters. (c) Concave (banana-shaped) clusters

of the latter, one can cite the simple-link [30, 44], complete-link [2, 30], and
modularity greedy optimization [13].

• Data fall into clusters according to some preferred directions: the methods of
this type deal with the transformation of the original data into a modified space,
usually with a different number of dimensions. Examples include the principal
component analysis (PCA) [32], independent component analysis (ICA) [32],
and spectral graph algorithms [11].

3.3.2 Overview of the Techniques

One of the most common tasks of unsupervised learning is data clustering. Formally,
data clustering aims at discovering natural groups. The groups may be defined as
sets of patterns, points, or objects, all of which characterized by suitable similarity
measures [9, 21, 29, 30, 63]. Each cluster is a collection of data items that are similar
between them and are dissimilar to the objects belonging to other clusters. Data clus-
tering is vital in several exploratory pattern-analysis, grouping, decision-making,
and machine-learning situations. Some of them include data mining, document
retrieval, image segmentation, bioinformatics, and pattern classification [12, 20, 28–
30]. Unfortunately, in the majority of such tasks, only a little prior information is
available about the data. In this way, advances in the methodology to automatically
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understand, process, and summarize the data are required. Nowadays, this becomes
even more critical by virtue of the exponential increase in both the volume and
the variety of data [29, 63]. In this scenario, the decision-maker must perform as
few assumptions about the data as possible. It is under these practical restrictions
that the clustering procedure is specially appropriate for the exploration of inter-
relationships among the data points to make assessments (perhaps preliminary) of
their structure [29, 30]. Data clustering algorithms are generally divided into two
types: hierarchical or partitional [8, 20, 29]. The former finds successive clusters
using previously established clusters, whereas the latter determines all clusters
at once. Hierarchical algorithms can be agglomerative (“bottom-up”) or divisive
(“top-down”). Agglomerative algorithms begin with each element as a separate
cluster and merge them into successively larger clusters. Divisive algorithms begin
with the whole set and proceed to divide it into successively smaller clusters.
Two-way clustering, co-clustering, or bi-clustering are the names for clusterings
where not only the objects are clustered but also the features of the objects, i.e.,
if the data is represented in a data matrix, the row and columns are clustered
simultaneously [9, 21, 63]. In both approaches, the algorithms may be further
categorized in network-based algorithms or non network-based algorithms.

In relation to partitional methods, several techniques have been studied in the
literature [1, 26, 35, 63]. The most well-known one and the pioneer in the field
is the K-Means method [42]. Even though it suffers from several caveats, such
as the strong dependence on the system’s initial conditions and the inherent bias
to find only circular-shaped clusters, it has been further enhanced and studied by
the community until today. Some methods, which have improved on the basic
idea of K-Means, have been proposed, such as the K-Medoids and fuzzy C-Means
[2, 21, 30]. Using a similar strategy, Clarans [51] also attempts to break a data set

into K clusters such that the partition optimizes a given criterion, but it also assumes
that clusters are hyper-ellipsoidal and of similar sizes. Hence, it also cannot find
clusters that vary in size.

DBScan (Density-Based Spatial Clustering of Applications with Noise) [56], a
well-known spatial and partitional clustering algorithm, can find clusters of arbitrary
shapes. DBScan defines a cluster to be a maximum set of density-connected points,
which means that every core point in a cluster must have at least a minimum number
of points within a given radius. DBScan assumes that all points within genuine
clusters can be reached from one another by traversing a path of density-connected
points and points across different clusters cannot. DBScan can find arbitrarily
shaped clusters if the cluster density can be determined beforehand and the cluster
density is uniform [33].

With regard to hierarchical methods, the most well-known techniques are the
single-link and the complete-link [1, 2]. Among other traditional techniques, we
can also include average-link and the Ward methods [44]. These algorithms differ
in the way the groups similarity is evaluated. In the single-link, for instance, the
similarity is established by finding the minimum distance between pairwise data
items of any two given groups. The complete-link technique, in contrast, finds the
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similarity based on the maximum distance of two examples of different clusters,
rather than the minimum [21].

CURE (Clustering Using Representatives) [24] represents a cluster by selecting
a constant number of well-scattered points and shrinking them toward the cluster’s
centroid, according to a shrinking factor. CURE measures the similarity between
two clusters by the similarity of the closest pair of points belonging to different
clusters. Unlike centroid/medoid-based methods, CURE can find clusters of arbi-
trary shapes and sizes, as it represents each cluster via multiple representative points.
Shrinking the representative points toward the centroid allows CURE to avoid some
of the problems associated with noise and outliers. However, this technique fails
to account for special characteristics of individual clusters. As such, it can make
incorrect merge decisions when the underlying data does not follow the assumed
model or when noise is present [33].

In general, hierarchical algorithms usually provide more information than parti-
tional algorithms [30]. For instance, though susceptible to outliers, the single-link
method is able to find groups very apart from each other, concentric groups,
and chain-like groups in which the K-Means technique would have trouble with.
However, hierarchical algorithms often take more time to process data items, which
may invalidate their employment in large-scale data sets.

3.4 Semi-Supervised Learning

Algorithms that are able to learn using only a few labeled examples have aroused
the interest of the artificial intelligence community. Among other features, semi-
supervised learning aims at reducing the work of human experts in the labeling
process. This feature is quite interesting especially when the labeling process
is expensive and time consuming. This is often the case, for example, in video
indexing, classification of audio signals, text categorization, medical diagnostics,
genome data, among others [10, 65]. In this chapter, we introduce definitions and
reviews on traditional methods presented in the literature. In Chap. 7, we revisit the
semi-supervised learning paradigm with a focus on network-based methods.

3.4.1 Motivations

Semi-supervised learning is a new paradigm in relation to unsupervised and super-
vised learning. In this way, we first try to understand the reason behind its creation.
From an engineering standpoint, it is clear that the collection of labeled data is much
more intensive and costly in relation to that of unlabeled data. The main purpose
of semi-supervised learning, nonetheless, goes way beyond a purely utilitarian tool.
Most natural learning (human and animal) occurs in a semi-supervised regime basis.
In the world in which we live, living beings are in a constant exposure to a flow of
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natural stimuli. Such stimuli include unlabeled data that are easily noticeable. In the
context of recognition and phonological acquisition, for example, a child is exposed
to many perceptible acoustic sounds. Many of these sounds are not familiar to the
child. A positive feedback by part of another person is the main source of labeled
data. In many cases, a small amount of feedback is sufficient to allow the child to
master the acoustic-phonetic mapping of any languages [5, 6].

Humans have ability to learn unsupervised concepts (for example, clusters and
categories of objects), suggesting that unlabeled data could be satisfactorily used
for learning natural invariance to form categories and to construct classifiers. In
many pattern recognition tasks, humans only have access to small amounts of
labeled patterns. Hence, the success of human learning in environments with little
knowledge indubitably happens with effective use and manipulation of large sets
of unlabeled data to extract information that is useful for generalization purposes.
Consequently, if the goal is to know how natural learning is processed, there is a
need to think in terms of semi-supervised learning [4, 6].

Another motivation for studying semi-supervised learning is intrinsically linked
to improving the performance of computational models. It has been shown that,
by means of a finite sample analysis, if the complexity of the underlying data
distribution is too high to be learned by L labeled data, but it is small enough to
be learned by U 
 L unlabeled data, then the semi-supervised learning is really
able to improve the performance of a typical fully supervised learning task [58].
As an example, consider Fig. 3.3, where the numbered circles denote labeled data,
while unnumbered circles represent unlabeled data. Applying a fully supervised
algorithm to this problem, the decision boundary would most likely be established in
the surroundings of the dotted vertical line.2 Applying a semi-supervised learning
algorithm, in contrast, the decision boundary would probably be fixed around the
continuous line, because it is a low-density region that is away both from unlabeled
and labeled data. In this example, supervised algorithms would not be able to
efficiently classify the unlabeled examples. In contrast, semi-supervised methods,
with the aid of the unlabeled data used in the training process, would perform better.

3.4.2 Mathematical Formalization and Fundamental
Assumptions

Semi-supervised learning can be defined as follows [10, 65]. Let X D
fx1; x2; : : : ; xLCUg be a data set, divided into two parts: XL D fx1; x2; : : : ; xLg
and XU D fxLC1; : : : ; xLCUg. There are L and U labeled and unlabeled data items,
respectively, in a total of N D LCU data items. Consider that Y is the label or class

2This is the case for algorithms with a maximum margin inductive bias. As one labeled item is
positioned at �1 and the other at 1, the decision boundary that maximizes the margin between
these two data items must cross the zero mark, as Fig. 3.3 shows.
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Fig. 3.3 An example of data set where semi-supervised learning techniques would lead to more
robust results than supervised learning techniques. Data items are described by two numerical
attributes, whose values are plotted in the horizontal and vertical axis. The numbered circles
represent labeled data instances, while the circles without a number represent unlabeled ones.
The dotted line denotes the decision boundary that would be probably output by a supervised
learning method. The continuous line displays the same information for a semi-supervised learning
algorithm

set. Supposing that the label set is discrete, this task is referred to as semi-supervised
classification. (The same reasoning can be applied to regression.) The labels of the
subset XU are not known a priori. Normally, L � U, i.e., the great majority of
data items does not possess labels. As we have already stressed, this often happens
because the task of manual labeling is cumbersome and often is performed by
human experts. The goal is to propagate labels from labeled instances to unlabeled
instances in accordance to some diffusion rule. Based on these definitions, semi-
supervised learning can be used in both data classification and clustering tasks. In
the former case, the labeled examples are used in the process of labeling unlabeled
examples. In the latter case, the labeled samples are responsible for imposing
restrictions on the formation process of clusters [10].

It is worth mentioning that, for the proper functioning of semi-supervised
learning techniques, some assumptions about the data consistency are essential [61].
Typically, a semi-supervised learning method relies on one or more of the following
assumptions [10]:

• Cluster assumption: data points that belong to the same high-density region, i.e.,
are located in the same group, are plausible candidates for belonging to the same
class.

• Smoothness assumption: data points that are near in the attribute space are
probable candidates of being members of the same class. This assumption forces
the decision function yielded by the classifier to be smoother in high-density
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regions than in locations with low density. This analysis is in line with the cluster
assumption and hence they complement each other.

• Manifold assumption: this idea is based upon the premise that a set of data points
in a high dimensional space may be, approximately, reduced to a smaller space
(manifold data) via a nonlinear mapping function. This hypothesis is usually
employed to soften the curse of dimensionality problem, which is related to the
fact that the volume of the space increases exponentially with the number of
dimensions, and an exponentially larger number of examples would be needed
for constructing induction classifiers with the same accuracy power.

The way that the semi-supervised learning algorithms treat these assumptions
represents one of the fundamental differences among them.

Semi-supervised learning may refer to either transductive learning or inductive
learning. The goal of transductive learning is to only infer the correct labels of the
unlabeled data set XU . In contrast, the goal of inductive learning is to estimate
a mapping from the available data to the output variable. Therefore, while in
transductive learning the model is only used to predict the labels of XU , inductive
learning goes beyond by also allowing other unlabeled data out of XU to be
estimated.

3.4.3 Overview of the Techniques

Traditionally, the semi-supervised learning methods are divided into the following
categories:

• Generative models: The inference via generative models involves the estimation
of a conditional density. The Expectation Maximization technique is the most
known technique pertaining to this approach [52]. Besides that, a myriad of
techniques proposed so far in the literature can be encountered in [2, 10, 22, 65].

• Cluster-and-label models: The inference is done based on the results obtained
by a clustering task that is subjected to restrictions on the labeled data set. Some
representative methods are given in [16, 17].

• Low-density region separation models: The inference is based on the develop-
ment of decision boundary functions, such that each decision boundary is created
as far as possible from high-density regions of labeled and unlabeled data items.
The most well-known method of this category is the Transductive SVM [14, 60].
More related techniques can be found in [2, 10, 14, 65].

• Network-based models: The inference and label propagation are performed in a
networked environment. In Chap. 7, we explore these techniques in detail.
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Fig. 3.4 Steps for applying machine learning methods in vector-based data. First, we transform
data into a representative network using some network formation technique. That network is
employed as input for network-based machine learning tasks, which in turn output the desired
output

3.5 Overview of Network-Based Machine Learning

In the upcoming chapters of this book, we provide a comprehensive review on
machine learning methods based on complex networks, including detailed case
studies on the three learning paradigms.

When dealing with network-based methodologies, we need to follow a set of
steps to complete machine learning tasks. Figure 3.4 illustrates the main steps
involved to apply network-based methods in vector-based data, which we detail as
follows:

1. Gather the vector-based data set and preprocess it accordingly. The preprocess
may involve attribute transformation (scaling, normalization, standardization,
demeaning, combination, decomposition, aggregation etc) or deletion, cleaning
(removal of outliers, imputation of missing attributes etc), sampling, among
many other preprocessing operations. The machine learning tools that we use
influence the type of preprocessing we need to perform. For instance, if we have
a large data set and an algorithm with high time complexity order, we need to



3.6 Chapter Remarks 87

perform a sampling process on that data set so as to become viable the learning
process.

2. Transform the vector-based into network-based data. This step is performed
using a network formation technique. This is a crucial problem for network-
based problems, because the resulting network must reliably represent the data
relationships. Chapter 4 deals with this problem in a comprehensive manner.

3. Apply the network-based machine learning task in the network constructed from
the vector-based data. The generated network in the previous step serves as input
for network-based machine learning tasks. Three types of tasks can be performed
when we are at the machine learning domain:

• Network-based unsupervised learning: only the generated network is
employed in the learning process. Chapter 6 reviews the state-of-the-art
unsupervised learning techniques presented in the literature, while Chap. 9
presents a case study of unsupervised learning in data clustering and in
community detection that is based on competition of multiple interacting
particles.

• Network-based supervised learning: besides the generated network, we are
also given external information in the form of labels. Chapter 5 surveys
representative supervised learning algorithms that learn in a networked envi-
ronment. In addition, Chap. 8 explores a case study of supervised learning
in data classification and in handwritten digits recognition that is based on a
high-level classification framework.

• Network-based semi-supervised learning: besides the generated network, we
are also given external information for some of the training items in the form
of labels. Chapter 7 compiles a set of semi-supervised techniques that relies
on networks to learn. Moreover, Chap. 10 examines a case study of semi-
supervised learning in data classification and in imperfect learning that is
based on a competitive-cooperative scheme of multiple interacting particles.

3.6 Chapter Remarks

In this section, we have introduced the machine learning area and its three
main learning paradigms: supervised, unsupervised, and semi-supervised. Machine
learning is a field of study that gives computers the ability to learn without being
explicitly programmed.

We have seen that supervised algorithms utilize external information in the form
of labels or classes to induce or to train their hypotheses. In the supervised learning
scheme, there are two learning phases: the training and the classification phases. In
the training phase, the classifier is induced or trained by using the training instances
(labeled data) that are always fully labeled. In the classification phase, the labels of
the test instances are predicted using the induced classifier. We have seen that, once
trained, one must verify how well the trained supervised learner can generalize.
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Without any additional assumptions over the data properties, this problem cannot
be solved exactly since unseen situations might have an arbitrary output values.
The necessary assumptions about the nature of the target function constitute the
inductive bias of the learner.

Unsupervised learning methods are guided exclusively by the intrinsic structure
of the data items throughout the learning process, i.e., without any sort of external
knowledge. One of the most common tasks of unsupervised learning is in data
clustering. The clusters may be defined as sets of patterns, points, or objects, all of
which are characterized by suitable similarity measures. Each cluster is a collection
of data items that are similar between them and are dissimilar to objects belonging
to other clusters. Likewise supervised learning, we have seen that unsupervised
algorithms also make assumptions about the underlying data generation process and
that fact leads to shortcomings and potentialities of each available algorithm.

Between supervised and unsupervised learning lies semi-supervised learning.
In this paradigm, algorithms are able to learn using only a few labeled examples.
Among other features, semi-supervised learning aims at reducing the work of human
experts in the labeling process. The perceptive difference between semi-supervised
and supervised learning is that the latter only uses labeled data in the training
phase, while the former employs both the labeled and unlabeled data. Under some
conditions, we have seen that the introduction of unlabeled data in the training phase
can really improve the overall classification performance of the classifier.

The goal in this chapter is to provide an overview on the usual hypotheses and
limitations that we encounter in machine learning tasks. In the next four chapters,
we first review network formation techniques and then revisit each of the learning
paradigms with a focus on network-based approaches.
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Chapter 4
Network Construction Techniques

Abstract In many areas of machine learning, networks are used to model local
relationships between data points and to build global structures from local infor-
mation. Building networks is often a necessary step when dealing with problems
arising from applications in machine learning or data mining. This fact becomes
crucial when we want to apply network-based learning methods to vector-based
data sets, in which a network must be constructed from the input data set using
some convenient network formation criteria. In this chapter, we review the main
ingredients that are needed to construct a graph from non-networked data. In special,
we discuss transformation of vector-based and time series data. Several similarity
functions are also discussed.

4.1 Introduction

Networks are essential for encoding information, and data in network format is
increasingly abundant in fields ranging from computational biology to computer
vision. The transformation from unstructured data to a network data representation
can always be performed in a lossless manner. The inverse transformation, however,
is often a lossy one. Let us give an example. Consider the WWW that is inherently
represented by a network format. In such a network, pages are vertices and links
exist between different pages if one page references another one. Now suppose
we desire to extract a vector-based data out of this network. A very difficult task
would be to model the recursiveness of cycles in the network topology when we
now go to a vector-based format. Moreover, the local and global topologies of the
pages relationships would probably be distorted by the transformation. In addition,
considering that there are more than one network component, then some shortest
paths between members of different components would be infinity in the network.
To model this extreme dissimilarity in a vector-based format would be difficult,
because the information of whether or not vertices are in the same component is
structural and depends on the topology of the data relationships, which in turn is not
easily modeled in a vector-based format.

From that example, it is clear that networks embed more information than vector-
based data sets. This additional information is made up of several ingredients,
among which the most important one is the structural or topological information
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Unstructured data

Network data

Fig. 4.1 Differences of vector- and network-based machine learning tasks. We illustrate using
a semi-supervised learning classification. Colored vertices denote labeled data, while gray
data symbolize unlabeled data. Network formation methods interface between unstructured and
structured network data

of the data relationships. In this way, the network topology is able to encode in
an elegant manner interactions of the data items in a systematic manner, going
from local to global structural information. Thus, a natural question that arises
is how can we build networks from unstructured or vector-based data, such that
the resulting network encodes as much information as possible? The structure, in
principle, must be estimated using the network formation technique based on some
heuristics. In this chapter, we discuss the problem of network formation, a task that
serves as interface between unstructured and structured network data.

Figure 4.1 illustrates where network formation techniques stand in an overall
machine learning scheme. We illustrate using a semi-supervised learning task.1

First, we see that there is a one-to-one correspondence of X and V , i.e., each data
item in the data set is a vertex in the resulting network. Edges are created using
some heuristics that capture similarity among data items. Note these edges that
naturally encode similarity are only explicitly modeled in a network environment.
Thus, they are estimated by the network formation procedure that interfaces between
unstructured and structured network data.

Following our previous notation on general machine learning tasks, given a set of
N data points X D fx1; : : : ; xNg that is not in a networked format, we can transform
it into a network G that consists of (1) the vertex set V D fv1; : : : ; vV g and (2) the

1Recall that, in a semi-supervised setting, the goal is to propagate the labels from the labeled to the
unlabeled set.
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edge set E , which is a subset of V �V . The transformation is performed a mapping
procedure g W X ! G D hV ;E i. We now discuss how the sets V and E that
compose the network are obtained.

In relation to the vertex set, for the majority of machine learning applications,
V D X holds, i.e., each data item exactly corresponds to a vertex in the resulting
network. To illustrate, in a handwritten digits recognition, each digit in X would
correspond to a vertex in V . Some learning techniques, however, may use reduced or
expanded sets of the data items. For example, we can compact several very similar
date items in X into a super-vertex that essentially represents in a summarized
manner all of those data items.

We have been using N to denote the cardinality or number of data items in X .
In a network setting, the number of vertices in V is symbolized as V D jV j, which
is not necessarily (but often is) equal to N, as we have previously discussed.

Now we discuss how to obtain the set of edges E . We process the decision of
establishing or not edges in E in accordance with two factors:

• A proper similarity function s: the similarity function s W V � V 7! R enables
us to quantify how different or similar two data items are with respect to their
attributes. That is, the similarity function transforms two data items2 into a scalar
value. Applying the similarity function to all of the pairs of vertices, we are able
to construct (1) the similarity matrix S, in which Sij D s.vi; vj/, where vi; vj 2 V ,
or (2) equivalently the dissimilarity matrix Dij D d.vi; vj/.

• A network formation technique: we decide whether or not to add a link between
vi and vj by using some rules applied on the similarity matrix S or on the
dissimilarity matrix D.

In this chapter, we discuss these two ingredients that are needed to build up a
network from non-networked data. First, we review the theory behind the definition
of similarity functions as well as some well-known examples. Following that we
show network formation techniques that are applied to vector-based data, in which
each data item is represented by a feature vector.3 After, we deal with the issue
of constructing networks from time series. In this case, there is an additional
caveat of temporal data dependency that introduces some complexity in the network
formation process.

2The term data item is used in a wide sense. It may denote feature vectors, time series, graphical
objects, among many other types of objects.
3Essentially, the representation of data in the format of feature vector covers a wide spectrum of
applications in the real world. In image-based applications, for instance, where each data item
is symbolized by an image, we can always extract some features from that image and construct
a feature vector. Normally, face recognition systems and image processing tools do this for
robustness (due to relative uniqueness and invariance between different images) and computational
efficiency reasons.
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4.2 Similarity and Dissimilarity Functions

The concepts of similarity and dissimilarity are widely employed in the artificial
intelligence domain. Among the several fields that they appear, we highlight
applications in data mining, information retrieval, pattern matching, genetics,
drug discovery, and fuzzy logic [1, 2, 21, 30, 33, 48]. In a general sense, similarity
and dissimilarity express a comparison between two elements. Though intuitive,
several different formalizations of similarity and dissimilarity exist in the literature.
Another prominent characteristic is the duality linking the similarity and dissim-
ilarity concepts, which are opposite terms yet somehow interrelated. This duality
also extends to properties of the data items, which could be very useful if properly
exploited. Thus, every property of a similarity should have a correspondence with
one property of a dissimilarity and vice versa.

Several researches have tried to formalize these concepts but the main properties
of similarity or dissimilarity are still under discussion [13, 40]. The lack of basic
common theory underlying these two functions leads to incompatible definitions or
results. Duality is often neglected and there are few studies about how transforma-
tions of similarity to dissimilarity functions can alter their properties [40]. If the
similarity function s is well-behaved, one way to calculate its dual, the dissimilarity
function d, is:

d.xi; xj/ D
q

s.xi; xi/ C s.xj; xj/ � 2s.xi; xj/; (4.1)

in which xi and xj are two arbitrary data items.
Similarity measures are peculiar kinds of indicators that are mainly descriptive

coefficients and not estimators of some statistical parameter. We note that it
is difficult to give reliable confidence intervals for most measures of similarity
and probable errors can be estimated only by certain types of randomization
procedures [28, 49].

4.2.1 Formal Definitions

Similarity and dissimilarity express the degree of coincidence or divergence
between two elements of a given domain. Thus, it is reasonable to treat them as
functions since the objective is to measure or calculate this value between any two
elements of the domain. We first define a similarity function in the following [38].

Definition 4.1. Similarity function: Let X be a non-empty set where an equality
relation is defined. If s is a similarity function, then s is upper bounded, exhaustive,
and total, whose domain and range are as follows:

s W X � X 7�! Is � R; (4.2)
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in which Is is upper bounded by construction, since we assumed s is upper bounded,
where maxR Is D smax. Moreover, the similarity function s satisfies the following
properties:

1. Reflexivity: s.x; x/ D smax.
2. Strong reflexivity: s.x; y/ D smax ” x D y.
3. Symmetry: s.x; y/ D s.y; x/.
4. Boundedness4: s is lower bounded when 9a 2 R W s.x; y/ � a; 8x; y 2 X . This

statement is equivalent to affirm that s D smin D minR Is exists.
5. Closedness5: This property assures the existence of a lower bound. In special, the

closedness property asks for the existence of x; y 2 X W s.x; y/ D smin.
6. Transitivity: If �s is a transitivity operator, then the following must hold: s.x; y/ �

�s.s.x; z/; s.z; y//, 8x; y; z 2 X .

We see that s takes as input two data items from X and outputs a bounded real-
valued scalar value. The more similar two objects are, the greater is the similarity
value between them. In the next paragraph, we define the concept of dissimilarity or
distance function [38].

Definition 4.2. Dissimilarity function: Let X be a non-empty set where an
equality relation is defined. If d is a dissimilarity function, then d is lower bounded,
exhaustive, and total, whose domain and range are as follows:

d W X � X 7�! Id � R; (4.3)

in which Id is lower bounded by construction, since we assumed d is lower bounded,
where minR Id D dmin. Moreover, the dissimilarity or distance function d satisfies
the following properties:

1. Reflexivity: d.x; x/ D dmin.
2. Strong reflexivity: d.x; y/ D dmin ” x D y.
3. Symmetry: d.x; y/ D d.y; x/.
4. Boundedness: d is upper bounded when 9a 2 R W d.x; y/ 	 a; 8x; y 2 X . This

statement is equivalent to affirm that d D dmax D maxR Id exists.
5. Closedness: This property assures the existence of an upper bound. The closed-

ness property asks for the existence of x; y 2 X W d.x; y/ D dmax.
6. Transitivity: If �d is a transitivity operator, then the following must hold: d.x; y/ 	

�d.d.x; z/; d.z; y//, 8x; y; z 2 X .

4Recall that a set S 2 R
m, m > 0, is bounded if there exists a number B such that kxk � B; 8x 2

S , that is, if S is contained in some ball in R
m.

5Recall that a set S 2 R
m, m > 0, is closed if, whenever fxng1

nD1 is convergent sequence
completely contained in S , its limit is also contained in S . For example, the sets R

m and
f.x; y/ 2 R

2 W xy D 1g are closed but not bounded.
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We see that d takes as input two data items from X and outputs a bounded
real-valued scalar value. The more dissimilar are two objects, the greater is the
dissimilarity value between them.

Besides those mathematical properties, there are two desirable attributes of
all similarity measures. First, the measure should be independent of sample size
and of the number of classes in the population [49]. Second, the measure should
increase smoothly from some fixed minimum to a fixed maximum, as the samples
become more similar. We refer to the researches in [11, 12, 14, 40, 49, 50] for an
extensive analysis of the properties of similarity functions.

4.2.2 Examples of Vector-Based Similarity Functions

In this section, we show some traditional examples of similarity/dissimilarity
functions. Assume we have a data set X D fx1; : : : ; xNg with N > 1 data items.
Moreover, we characterize each data item with a feature vector xi D Œxi1; : : : ; xiP�

with P > 0 features or attributes. Data items xi and xj are both members of X .
Before we start to explore examples of similarity functions, we give an overall

intuition of the types of features or attributes that we can face.
A feature or attribute can be classified as one of the following types:

• Categorical or nominal attribute: a categorical feature is one that has two or
more categories with no intrinsic ordering. For example, gender is a categorical
variable having two categories (male and female) and there is no intrinsic
ordering to the categories. Hair color is also a categorical variable having a
number of categories (blonde, brown, brunette, red, etc.) and there is no agreed
way to order these from highest to lowest. A purely categorical variable is one
that simply allows you to assign categories but you cannot clearly order the
variables.

• Ordinal attribute: An ordinal variable is similar to a categorical variable. The
difference between the two is that there is a clear ordering scheme for ordinal
variables. For example, suppose you have a variable, economic status, with three
categories: low, medium, and high. In addition to being able to classify people
into these three categories, you can order the categories as low, medium, and
high. Now consider a variable like educational experience with values such as
elementary school graduate, high school graduate, some college, and college
graduate. These also can be ordered as elementary school, high school, some
college, and college graduate.

• Numerical or quantitative attribute: The values of a quantitative variable can be
ordered and measured. Height and weight are examples of numerical attributes.

Categorical and ordinal attributes are also termed as qualitative attributes, as
we cannot numerically operate on them (multiplication and division, for instance,
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are not defined). Numerical attributes, in contrast, are classified as quantitative
attributes, since mathematical operations can be performed on these types of
features.

In the next section, we provide some representative similarity and distance
measures. For a comprehensive review, see [33].

4.2.2.1 Numerical Data

In this section, we suppose that the attributes in xi and xj are all numerical. They are
called feature vectors and have an arbitrary dimension of P > 0. The notation xi.k/,
k 2 f1; : : : ; Pg, indexes the k-th component of the attribute vector xi. There are a
total of N data items.

Definition 4.3. Euclidean distance: The Euclidean distance between xi and xj is:

dEuclidean.xi; xj/ ,

v
u
u
t

PX

kD1

�
xi.k/ � xj.k/

	2
: (4.4)

Definition 4.4. Weighted Euclidean distance: The weighted Euclidean distance
between xi and xj is:

dWEuclidean.xi; xj/ ,

v
u
u
t

PX

kD1

Wk
�
xi.k/ � xj.k/

	2
; (4.5)

in which Wk denotes the weight given for the k-th attribute.

Remark 4.1. If we give unitary weight for all of the attributes in the feature vector,
then the weighted Euclidean distance reduces to the traditional Euclidean distance.

Definition 4.5. Manhattan or city-block distance: The Manhattan or city-block
distance between xi and xj is:

dManhattan.xi; xj/ ,
PX

kD1

ˇ
ˇxi.k/ � xj.k/

ˇ
ˇ: (4.6)

Definition 4.6. Chebyshev or supremum distance: The Chebyshev or supremum
distance between xi and xj is:

dSupremum.xi; xj/ , max
�ˇ
ˇxi.1/ � xj.1/

ˇ
ˇ ; : : : ;

ˇ
ˇxi.P/ � xj.P/

ˇ
ˇ
�
: (4.7)
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Definition 4.7. Minkowski distance (L� metric): The Minkowski distance or L�

metric, � � 1, between xi and xj is:

dMinkowski.xi; xj/ ,
"

PX

kD1

ˇ
ˇxi.k/ � xj.k/

ˇ
ˇ�
# 1

�

: (4.8)

Remark 4.2. The family of Minkowski functions is obtained by varying � over 1

to 1. The Minkowski distance is a generalization of the previous discussed metrics.
We list them in the following:

• L1 metric: Manhattan or city-block distance as in Definition 4.5.
• L2 metric: Euclidean distance as in Definition 4.3.
• L1 metric: Chebyshev or supremum distance as in Definition 4.6.

Definition 4.8. Mahalanobis distance: The Mahalanobis distance between xi and
xj is:

dMahalanobis.xi; xj/ ,

v
u
u
t

PX

kD1

�
xi � xj

�T
˙ �1

�
xi � xj

�
; (4.9)

in which ˙ is the P � P sample covariance matrix, whose .i; j/-th entry, ˙ ij, is
given by:

˙ ij , 1

N � 1

NX

kD1

.xi.k/ � Nxi/
�
xj.k/ � Nxj

�
; (4.10)

in which Nxi and Nxj are the sample means that in turn are expressed as:

Nxi , 1

N

NX

kD1

xi.k/: (4.11)

In the next example, we provide the intuition behind the definition of the
Mahalanobis distance.

Example 4.1. Consider the problem of estimating the probability that a test point in
an Euclidean space belongs to a set of training data points. A natural first step would
be to find the average or center of mass of these training data points. Intuitively, the
closer the test point in question is to this center of mass, the more likely it is to
belong to the set.

A simple refinement would be to quantify if the set is spread out over a large
or a small range, so that we can decide whether a given distance from the center is
noteworthy or not. The simplistic approach is to estimate the standard deviation of
the distances of the sample points from the center of mass. If the distance between
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the test point and the center of mass of the training set is less than one standard
deviation, then we might conclude that it is highly probable that the test point
belongs to the set of training data points. The further away it is, the more likely
that the test point should not be classified as belonging to the set.

This intuitive approach can be made quantitative by defining the normalized
distance between the test point and the set of training data points as x��

�
, where �

is the sample average and � , the sample standard deviation of the set. By plugging
these values into the normal distribution, we can derive the probability of the test
point belonging to the set.

The drawback of the above approach is that we assume that the points in
the training data set are distributed around the center of mass in a spherical
manner. If we were dealing with a non-spherical distribution, such as the ellipsoidal
distribution, then we would expect the membership probability of that test point to
depend not only on the distance from the center of mass, but also on the direction.
In those directions in which the ellipsoid has a short axis, the test point is expected
to be closer if it is really a member of that set, while in those directions where the
axis has large amplitude, the test point can be further away from the center.

Putting this on a mathematical basis, the ellipsoid that best represents the
probability distribution of the training data set can be estimated by building the
covariance matrix of the samples. The Mahalanobis distance is simply the distance
of the test point from the center of mass divided by the width of the ellipsoid in the
direction of the test point. This behavior is mathematically represented by (4.9).

Definition 4.9. Gaussian kernel similarity (radial basis function or heat
kernel): The Gaussian kernel similarity between xi and xj is:

sGaussian.xi; xj/ , a exp

�

�k xi � xj k2

2�2

�

; (4.12)

in which � > 0 is the variance of bandwidth of the Gaussian function and a is
scaling constant. The term k xi � xj k is the Euclidean norm between xi and xj.

Definition 4.10. Harmonic mean similarity: The harmonic mean similarity
between xi and xj is:

sHarmonic.xi; xj/ , 2

PX

kD1

xi.k/xj.k/

xi.k/ C xj.k/
: (4.13)

Definition 4.11. Cosine similarity: The cosine similarity between xi and xj is:

sCosine.xi; xj/ ,
PP

kD1 xi.k/xj.k/

kxikkxjk D hxi; xji
kxikkxjk ; (4.14)

in which h:; :i denotes the inner product operator and k:k is the Euclidean norm.
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Definition 4.12. Pearson correlation similarity: The Pearson correlation
similarity between xi and xj is:

sPearson.xi; xj/ ,
PP

kD1 .xi.k/ � Nxi/.xj.k/ � Nxj/

kxi � Nxikkxj � Nxjk

D hxi � Nxi; xj � Nxji
kxi � Nxikkxj � Nxjk

D sCosine.xi � Nxi; xj � Nxj/: (4.15)

Remark 4.3. Cosine similarity can be applied to deal with document similarity and
image similarity. It should be noted that cosine similarity is affected by vector
translation. The Pearson correlation similarity, however, addresses this problem by
being translation-invariant due to the demeaning process. In addition, cosine and
Pearson correlations are scale-invariant due to the normalization process.

Definition 4.13. Dice similarity [36]: The Dice similarity between xi and xj is:

sDice.xi; xj/ , 2
PP

kD1 xi.k/xj.k/
PP

kD1 xi.k/2 C xj.k/2
: (4.16)

Definition 4.14. Kumar-Hassebrook similarity [29]: The Kumar-Hassebrook
similarity between xi and xj is:

sKH.xi; xj/ ,
PP

kD1 xi.k/xj.k/
PP

kD1 xi.k/2 C xj.k/2 � xi.k/xj.k/
: (4.17)

4.2.2.2 Categorical Data

In this section, we deal with categorical data. We consider that each entry of the
P-dimensional feature vectors xi and xj can assume either a present or an absent
value (dichotomous feature). If there are multiple categories, we define the category
of interest as present, while all of the others are considered to be in the absent class.
Therefore, when comparing the vectors xi and xj, we can face four different scenarios
that are delineated in Table 4.1. We see that:

• M11 denotes the number of occurrences of coincident present values in xi and xj.
• M01 is the number of occurrences in which there is an absence in xi and a presence

in xj.
• M10 represents the number of occurrences in which there is a presence in xi and

an absence in xj.
• M00 symbolizes the number of occurrences of coincident absent values in xi

and xj.
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Table 4.1 Possible outcomes
when comparing two entries
of categorical data

xj

Present Absent
xi Present M11 M10

Absent M01 M00

Definition 4.15. Hamming distance: The Hamming distance between xi and xj is

dHamming.xi; xj/ ,
PX

kD1

1Œxi.k/¤xj.k/� D M01 C M10; (4.18)

i.e., the Hamming distance is defined as the minimum number of replacements that
are needed to transform xi into xj.

Definition 4.16. Jaccard similarity [26]: The Jaccard similarity between xi

and xj is

sJaccard.xi; xj/ , M11

M11 C M01 C M10

: (4.19)

Remark 4.4. In the Hamming distance, each value is equally important. In some
applications, however, it may be interesting to give more importance to some classes
in detriment to others. In light of that, suppose we have a problem where there is
a feature vector of P movies and we want to compute the similarity of movie taste
of two persons. In this case, if there are several movies that they have not watched,
we can not say two persons are similar simply because none of them watched any
movies in the feature vector. In contrast, if these two persons have seen a significant
quantity of common watched movies, we can say they are similar to some extent.
That is, we give more weight to those entries in which both persons have mutually
watched the film in detriment to other configurations. This is a kind of weighted
Hamming distance that is known as Jaccard similarity.

Definition 4.17. Sørensen similarity [45]: The Sørensen similarity between xi

and xj is

sSørensen.xi; xj/ , 2M11

2M11 C M01 C M10

: (4.20)

Remark 4.5. As opposed to Jaccard similarity, the matches in the Sørensen sim-
ilarity are given more importance than mismatches. Deciding between the two is
a matter of the type of data we have at hand. If many entries are present in the
population but are not present in the sample, it may be useful to use Sørensen
coefficient rather than Jaccard.
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Definition 4.18. Simple matching similarity: The simple matching similarity
between xi and xj is

sSM.xi; xj/ , M11 C M00

M11 C M00 C M01 C M10

: (4.21)

Remark 4.6. Simple matching similarity is a good option to choose when absent
and present values are equally valuable in the data.

Definition 4.19. Baroni-Urbani and Buser similarity [4]: The Baroni-Urbani and
Buser similarity between xi and xj is

sBUB.xi; xj/ ,
p

M11M00 C M11p
M11M00 C M11 C M01 C M10

: (4.22)

Remark 4.7. The square root term in (4.22) is introduced to help in removing the
size bias common in other similarity measures, such as the Jaccard.

4.3 Transforming Vector-Based Data into Networks

Given the similarity matrix S or the dissimilarity matrix D, one direct approach
of building a network would be to establish links between pairs of vertices with
weights according to Sij or, equivalently, to some function on the reciprocal of Dij.
This approach would frequently lead to the emergence of almost complete networks.
Generally speaking, a good network satisfies the following criteria: (1) it should
possess a giant component to mantain the vertices connected; (2) it should be as
sparse as possible in order to better reveal the relationships between the vertices. The
existence of links with very small weights, however, may lead to poor results if used
by network-based algorithms. Sparsification, hence, is important because it leads to
improved efficiency in the learning stage, better accuracy, and robustness to noise.
We can think of small-valued links as noises that would just jeopardize the learning
process, providing misleading information to the machine learning algorithm by
connecting two distant vertices. Therefore, the resulting network topology would
be largely distorted by these noisy links. The removal of these links stands as
an important pre-processing step for enhancing the efficiency of network-based
learning algorithms.

Following that reasoning, the two most traditional types of nearest neighbor
networks that sparsify the similarity or dissimilarity matrices are [5]:

• k-nearest neighbors network (k-NN): this is, in general, a directed network. An
edge from vi to vj exists if and only if vj is among the k most similar elements
to vi. In computational terms, we have to sort, in an independent manner, all of
the rows of D in ascending order. Once sorted, given a row i, links are established
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among vertex i and the first k entries that are in the sorted list corresponding to
the elements in the i-th row of D.

• �-radius network: this is an undirected network whose edge set consists of pairs
.vi; vj/ such that Dij 	 �, where � 2 RC.

The k-nearest neighbors network is, in general, a directed network because vj can
be one of the k nearest neighbors of vi, but the converse may not be true. In contrast,
the �-radius network is by construction an undirected network, because Dij D Dji,
as we evaluate each entry of the distance matrix using a distance function. In this
way, if Dij < �, it must be the case that Dji < �. Hence, the existence of links always
occurs in both directions.

The k-nearest neighbors and the �-radius techniques are considered as static
network formation methods. This is because they treat in a uniform manner data
items that are in dense and sparse regions. We now list a set of network formation
techniques that employ adaptive or dynamical information:

• Network formation using combinations of the k-nearest neighbors and �-radius
techniques [43, 44]: we can devise a network formation technique that employs
both heuristics based on one or more criteria. For instance, we can activate the
k-nearest neighbors network when we are at sparse regions. Conversely, we can
employ the �-radius technique in dense regions.

• b-matching network [27]: As opposed to the k-NN network, the b-matching
network ensures that each vertex in the graph has the same number of edges
and therefore produces a balanced or regular graph. It relies on an optimization
process.

• Linear neighborhood network [47]: the idea is to approximate the entire network
by a series of overlapped linear neighborhood patches, and the edge weights
in each patch are determined by a standard quadratic programming procedure.
The initial neighborhoods of the vertices are set in a static way. Then, the linear
embedding makes dynamical adjustments in the edge weights.

• Relaxed linear neighborhood network [10]: it approximates the entire network
by a series of overlapped linear neighborhood patches, where the neighborhood
of any vertex is captured dynamically based on the density/sparsity of its
surrounding. Moreover, the relaxed linear neighborhood technique explores the
degree of neighborhood during the reconstruction method rather than using fixed
assignments. As a consequence, it does not get affected by outliers, producing
networks that are more robust.

• Network formation using clustering heuristics [15]: this method uses data
clustering heuristics to perform the network formation process. Specifically, it
employs the single-link method, which is a clustering heuristic that is capable of
constructing connected and sparse networks, while also maintaining the cluster
structure of the original data set.

• Network formation using overlapping histogram segments [42]: this technique
uses overlapping histogram segments to perform the network construction.
The resulting network always produces a connected graph with vertices of the
same community densely interconnected and with vertices of different commu-
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nities sparsely interconnected. In essence, it is based on the k-NN technique, but
with adaptive k values that are learned from the data distribution.

In the following section, we discuss in detail each of the mentioned techniques.

4.3.1 Analysis of k-Nearest Neighbors and �-Radius Networks

We supply in Fig. 4.2a, b the geometrical intuition of the k-nearest neighbors and the
�-radius networks, respectively. In the k-NN, once set a reference vertex, we simply
sort all of the remainder vertices in accordance with the selected distance function,
thus ranking those vertices. With the selected parameter k, we only establish links
with those vertices that are ranked below that threshold k. In Fig. 4.2a, note that
k D 2. Now, in the �-radius network formation technique, we only establish links to
those vertices whose similarities to the reference vertex are within the threshold �.
A noticeable difference between these two techniques is in the number of links that
emerges from a reference vertex. In the �-radius technique, the number of links is
not pre-determined: the network formation process keeps establishing links as long
as there are vertices within the range �. Both techniques have their advantages and
shortcomings that we discuss further.

Parameters k and � play an important role in transforming the raw data into a
corresponding network, since these parameters are sensitive to the local structure of
the data. Thus, depending on the choices of k and �, the resulting network topology
may not reliably maintain the properties of the underlying data distribution.

We first discuss that caveat for k-NN. When k is large enough, it forces the
creation of links between pairs of vertices that are not similar at all. To give
an example, consider the data in Fig. 4.3a, in which we build a network with
k D 3. Even though it is apparent that two well-behaved clusters exist in the data,
the reference vertex is forced to connect to distant members of the other cluster.
Conversely, if we choose k too small, we may sparsify the link structure in such a
way that clusters are not formed in regions where the underlying data distribution
seems to have real clusters. As an example, consider Fig. 4.3b, where we want to

4
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2

3

1

Reference
vertex Reference

vertex

a b

Fig. 4.2 Geometrical intuition of the k-nearest neighbor and �-radius techniques, (a) 2-nearest
neighbors, (b) �-radius
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Fig. 4.3 Limitations of the k-nearest neighbors network formation technique. (a) Too large k
(k D 3). (b) Too small k (k D 2)

Reference
vertex

a b

Fig. 4.4 Limitations of the �-radius network formation technique. (a) Too large �. (b) Too small �

build a network with k D 2. Now, we have the opposite picture: the k-NN breaks
into two apparent well-behaved clusters due to the small value of k. Note also that,
provided that k > 0, no singletons6 will arise in the network.

As we have pointed out, parameter � also plays a major role in correctly
translating the raw data into a proper network topology. Depending on the data
distribution, a small increase on the value of � may increase the network density
to a large extent. Therefore, the network topology is very sensitive to the selected
value of �. Consider Fig. 4.4a, in which we employ the �-radius to construct a
network with a large �. If we slightly reduce the value of �, we get the network
portrayed in Fig. 4.2b. We see here that a small increase on � is responsible for an
explosive increase in the number of connections established by the reference vertex.
Conversely, if we choose a small value for �, we may end up getting singletons in
the network, as we can see in Fig. 4.4b. In both extremes, the resulting network may
not represent well the true data distribution.

Some studies point that the network constructed using k-nearest neighbors and �-
radius techniques have dramatic influences on clustering techniques [34]. The k-NN
network remains the more common approach since it is more adaptive to scale and
data density.

6Singletons are those vertices that do not have connections to other vertices.
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4.3.2 Combination of k-Nearest Neighbors and �-Radius
Network Formation Techniques

Recall that the �-radius technique creates a link between two vertices if they are
within a distance �, while the k-NN sets up a link between vertices i and j if i is one
of the k nearest neighbors of j. Both approaches have their limitations when sparsity
or density is a concern. For sparse regions, the k-NN forces a vertex to connect
to its k nearest vertices, even if they are far apart. In this scenario, one can say
that the neighborhood of this vertex would contain dissimilar points. Equivalently,
improper � values could easily result in disconnected components, subgraphs, or
isolated singleton vertices.

In order to combine the strengths of both approaches, a suitable combination
(among many others) is given as follows. If N .vi/ denotes the neighborhood of vi,
then:

N .vi/ D
(

�-radius.vi/; if j�-radius.vi/j > k

k-NN.vi/; otherwise
(4.23)

in which ��radius.vi/ returns the set fvj; j 2 V W Dij <D �g, and k-NN.vi/ returns
the set containing the k nearest of vertex vi. Note that the �-radius technique is
used for dense regions (j�-radius.vi/j > k), while the k-NN is employed for sparse
regions.

Figure 4.5 portrays how the combination of k-NN and �-radius can transform
vector-based data into networked data. In the example, we use k D 3 and desire
to evaluate the neighbors of the colored vertices. Recall that k is employed as a
threshold when defining whether vertices are located in sparse or dense regions.
Whenever the number of neighbors within a radius � of a given reference vertex is

Reference
vertex

Declared as in a sparse region:
Uses -NN

Declared as in a dense region:
Uses -radius

Fig. 4.5 Combination of the k-NN and �-radius technique as a network formation technique. In
the example, we use k D 3 and the � is geometrically depicted within the figure
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smaller than k, we use the k-NN, which effectively forces the reference vertex to
find more distant neighbors. When the number of neighbors is larger than k, then
we declare the reference vertex as in a dense region. In this case, it connects to all
of the neighbors within the radius �, as governed by the �-radius technique. One
nice property of this network formation technique is that it adapts the heuristics of
network formation depending on local density of data items. As it uses the k-NN
in sparse regions, the combination of k-NN and �-radius methods as a network
formation technique tend to prevent the emergence of many network components.7

4.3.3 b-Matching Networks

The b-matching method is introduced in [27]. As opposed to the k-NN network, the
b-matching network ensures that each vertex in the network has the same number
of edges and therefore produces a balanced or regular network.

For a non-weighted adjacency matrix A, the b-matching network formation
technique relies on an optimization framework as follows:

min
A

X

i;j2V
AijDij

s:t:
X

j2V
Aij D b;

Aii D 0;

Aij D Aji;

(4.24)

8i; j 2 V . D denotes the dissimilarity matrix in which Dij represents the dissimilar-
ity between the i-th and j-th feature vectors. We can use any of the discussed metrics
in Sect. 4.2 to construct D. Note that the search space is on all binary matrices with
the same dimension as of A. The first restriction forces every vertex to link to exactly
b other vertices. The second constraint prevents the emergence of self-loops. The
third restriction guarantees that the resulting network is symmetric.

The k-NN network formation technique can also be stated as an optimization
framework similar to that in (4.24), except for the third restriction. At the end of the
network formation, the k-NN technique may not necessarily construct symmetric
matrices. Though the out-degree of each of the vertices matches parameter k due
to the first restriction, the in-degree varies (is at least k). This arises due to the
asymmetrical behavior of the k-NN technique, in the sense that we can have vertex
j as one of the k-nearest neighbors of vertex i and the converse may not hold.
By introducing the third restriction, we are effectively forcing symmetry in the

7Note, however, that more than one network component may arise when k is small.
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adjacency matrix. Consequently, the out- and in-degree are exactly equal to b
(regular network).

The optimization framework described in (4.24) can be efficiently implemented
using the algorithm of loopy belief propagation [25].

4.3.4 Linear Neighborhood Networks

The linear neighborhood network is introduced in [47]. The building block of the
linear neighborhood network is based on the locally linear embedding technique,
which we first explore before going to the referred network formation technique.

Locally linear embedding (LLE) is a dimensionality reduction technique [39].
The motivation behind the introduction of this class of methods is as follows.
Our mental representations of the world are formed by processing large numbers
of sensory inputs. Pixel intensities of images, power spectra of sounds, and
the joint angles of articulated bodies are clear examples of these inputs. While
complex stimuli can be represented by points in a high-dimensional vector space,
they typically have a much more compact description. Coherent structure in the
world leads to strong correlations between inputs (such as between neighboring
pixels in images), generating observations that lie on or close to a smooth low-
dimensional manifold. The dimensionality reduction problem involves mapping
high-dimensional inputs into a low-dimensional summarizing space with as many
coordinates as observed modes of variability. Dimensionality reduction techniques
are widely employed in real-world applications, such as in the pre-processing of
images of faces, spectrograms of speech, and other multidimensional signals in
general. In essence, they are able to compress the signals in size and to discover
compact representations of their variability.

The LLE algorithm is based on simple geometric intuitions. Suppose the data
consist of V real-valued vectors xi,8 each with dimension P, sampled from some
smooth underlying manifold. Provided there are sufficient data (such that the
manifold is well-sampled), we expect that each data point and its neighbors will
lie on or close to a locally linear patch of the manifold.

Instead of using pairwise relations between data items such as the k-NN
and the �-radius network formation techniques, the linear neighborhood network
technique [47] uses locally linear embedding in the network formation step.
Thus, the algorithm employs neighborhood information of the data items when
establishing links. Therefore, each data point is optimally reconstructed using a
linear combination of its neighbors [39]. With this simplification, we define the
network formation process in terms of a constrained optimization process, whose
goal is to minimize the following objective function:

8Each data item here exactly corresponds to a vertex, so that N D V.
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C.A/ D
X

i2V

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
xi �

X

j2N .xi/

Aijxj

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

2

; (4.25)

in which Aij is the contribution or edge weight of xj to xi in the weighted adjacency
matrix A of the network, N .xi/ represents the neighborhood of xi, and k:k is the
Euclidean norm. The initial neighborhoods of all of the vertices are set in a static
way. For instance, we can use k-nearest neighbors or �-radius techniques.

Note that we can rewrite (4.25) in terms of the individual contributions of each
vertex to the objective function, as follows:

C.A/ D
X

i2V
Ci.A/; (4.26)

in which:

Ci.A/ D
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
xi �

X

j2N .xi/

Aijxj

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

2

; (4.27)

In the optimization process, we apply the following constraints:

X

j2N .xi/

Aij D 1;8i 2 V

Aij � 0; i; j 2 V

: (4.28)

The weight Aij increases as xj and xi become more similar. In the extreme case,
when xi D xk 2 N .xi/, then Aik D 1 and Aij D 0, j ¤ k, xj 2 N .xi/, is the
optimal solution. Thus, we can employ Aij to measure the similarity of xj to xi. As
the neighborhoods of xj and xi may differ, then Aij ¤ Aji may hold in the general
case. Applying some algebraic manipulations on (4.27), we see that:

Ci.A/ D
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
xi �

X

j2N .xi/

Aijxj

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

2

D
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

X

j2N .xi/

Aij.xi � xj/

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

2

D
X

j;k2N .xi/

AijAik.xi � xj/
T.xi � xk/

D
X

j;k2N .xi/

AijGi
jkAik; (4.29)
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in which Gi
jk represents the .j; k/-th entry of the local Gram matrix

Gi
jk D .xi � xj/

T.xi � xk/ (4.30)

at point xi. Thus, the reconstruction weights of each data item can be solved by the
following standard quadratic programming problems:

min
A

X

j;k2N .xi/

AijGi
jkAik (4.31)

s.t.
X

j2N .xi/

Aij D 1; Aij � 0; 8i 2 V

Intuitively, the way we construct the entire network A is to first shear the whole
network into a series of overlapped linear patches, and then paste them together.

4.3.5 Relaxed Linear Neighborhood Networks

This method is introduced in [9]. It is an extension of the linear neighborhood
network discussed in the previous section.

The noticeable advantage of this method is that it uses dynamic neighborhood
information, as opposed to fixed k neighbors of [47]. In summary, the technique
approximates the entire network by a series of overlapped linear neighborhood
patches, where the neighborhood N .xi/, 8xi 2 V , is captured dynamically via
the data density in the vicinities.

Instead of finding fixed k neighbors of each vertex xi, the relaxed linear neigh-
borhood method captures the boundary of each vertexB.xi/ based on neighborhood
information and declares as neighbors vertices within this boundary. We can capture
this dynamic feature by using a combination of the k-NN and �-radius approaches
to define the neighborhood between any xi and xj as:

NxiIk;�.xj/ D
(

1; jN�.xi/j > k

NxiIk.xj/; otherwise
; (4.32)

in which jN�.xi/j denotes the number of neighbors if we apply the �-radius
technique in xi, and NxiIk.xj/ 2 f0; 1g returns 1 if xj in is the k-nearest neighborhood
of xi, and 0 otherwise. Thus if there is a large enough number of vertices in the
�-vicinity (> k), then the boundary is identified. Otherwise, we employ k-NN. We
define the boundary set of any xi as:

B.xi/ D ˚
j 2 V W NxiIk;�.xj/ D 1



: (4.33)
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It must be noted that we may run into problems if we only consider the
established radius and density of the neighborhood. For instance, if we fix large
values for k and �, vertices located at dense regions would include more vertices than
necessary. Conversely, for small values of k and �, weak neighborhood bonds would
be established in sparse regions. An adaptive algorithm that can handle a wide range
of changing interval would be advantageous. It should also include information
provided by neighboring vertices closest to the corresponding vertex, which can
take neighborhood relations into consideration in a more intelligent way. One way
to accomplish that is to extend the neighborhood definitions in (4.32) and (4.33) and
account for the data sensitivity with varying distances to neighbor points based on
the parameter k > 0:

Nxi.xj/ D max

�

1 � k
d.xi; xj/

dmax
; 0

�

; (4.34)

in which dmax is the network diameter whose definition we recall:

dmax D max
xi;xj2V

d.xi; xj/; (4.35)

and d.xi; xj/ is a suitable dissimilarity or distance function, such as those defined in
Sect. 4.2. Parameter k plays the role in determining the neighborhood radius and is
adjusted as follows:

1 � k
�

dmax
D 0 ) k D dmax

�
: (4.36)

The new boundary set of any given xi includes:

B.xi/ D ˚
xj 2 V W Nxi .xj/ 2 .0; 1�



: (4.37)

Instead of measuring pairwise relations, neighborhood information to represent
the network is employed. Similarly to the studies in [39, 47], each vertex is re-
constructed using a linear combination of its dynamic neighbors:

min
A

X

i2V

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
xi �

X

j W xj2N .xi/

Nxi .xj/Aijxj

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

2

(4.38)

s.t.
X

j2V
Aij D 1; Aij � 0; 8i 2 V ;

in which Nxi .xj/ 2 Œ0; 1� is the degree of neighborhood to the boundary set B.xi/

and Aij is the degree of contribution of xj to xi. When Nxi.xj/ D 0, no links exist.
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4.3.6 Network Formation Using Clustering Heuristics

This network formation technique is introduced in [15]. Recall that k-NN and
�-radius network formation methods generate either disconnected or densely con-
nected networks. Neither of the two situations is desirable for the majority of data
mining and machine learning tasks. For example, Fig. 4.6 shows a data set with
300 data samples and the resulting networks generated using the k-NN method with
various values of k. Note that the generated networks become connected only when
k � 33. This means that sometimes we need a very large k to generate a connected
network. In these cases, the generated networks are dense, which in turn can cause:
inefficiency in the processing procedure that leads to high computational time; the
weak performance of the algorithm due to the homogeneity of the network or even
both.
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Fig. 4.6 Networks formed by the k-NN in a data set with three distinct groups. (a) Original
network with 300 vertices. Results for k-NN when (b) k D 5, (c) k D 20, and (d) k D 33.
Reproduced from [31] with permission from the author
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In [15], the authors proposed a method that is based on data clustering heuristic
to perform the network formation process. Specifically, they employ the single-
link method to overcome the aforementioned problem that happens with traditional
network formation techniques. The clustering heuristics for network formation is
capable of constructing connected and sparse networks and, at the same time, tends
to keep the cluster structure of the original data set. The method consists of the
following steps:

1. Generate an initial totally disconnected network, where each vertex represents a
data instance. In this way, we have V vertex groups (each vertex is in an isolated
group).

2. Construct a dissimilarity matrix using any distance measure, for example, the
Euclidean distance, to represent distances between all pairs of groups. According
to the single-linkage criteria, the dissimilarity between two groups is computed
as the dissimilarity between the two closest vertices.

3. Identify the two closest groups and denote them by G1 and G2, respectively.
4. Calculate the average dissimilarity among vertices (data instances) within each

group G1 and G2, and denote them by d1 and d2, respectively.
5. Select the k-most similar pairs of vertices between G1 and G2, and generate an

edge between each of the k selected pairs if their dissimilarity is smaller than the
threshold: dc D � max.d1; d2/, where � > 0.

6. Update the dissimilarity matrix considering the merging result in Step 5.
7. If the number of groups is larger than one, return to Step 3;

The condition in Step 7 guarantees that the final network is connected.
In order to illustrate the effectiveness of the method, Fig. 4.7 shows the resulting

networks for an artificial data set composed of three clusters of different sizes and
densities. In this simulation, the following values for k are used: 3, 5 and 20. We
see that the generated networks are connected and relatively sparse. At the same
time, the original cluster features are well preserved. Figure 4.8 shows the network
construction results by varying the threshold parameter �. Again, we see the good
performance of the method.

4.3.7 Network Formation Using Overlapping Histogram
Segments

This network formation technique is introduced in [42]. The network formation
using overlapping histogram segments always produces a connected graph with
vertices of the same community densely interconnected and with vertices of
different communities sparsely interconnected.

As we have discussed, the k-NN network formation technique is widely
employed in the machine learning domain. However, it suffers from several
problems, among which we can highlight: (1) the constructed network may not
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Fig. 4.7 Networks formed by the application of the network formation technique based on
clustering heuristics on the data set in Fig. 4.6a with � D 3. (a) k D 1, (b) k D 3, (c) k D 5,
(d) k D 20. Reproduced from [15] with permission from Elsevier

necessarily be connected, and even worse (2) the constructed network may not
reliably represent the data distribution. For instance, consider a data set with
two clusters: a very large cluster and another very small. If we select a large k
value, these two clusters would be heavily interconnected, as each of the vertices
belonging to the small cluster would be compelled to connect to vertices from the
large cluster. Conversely, if k is small, the large cluster may get fragmented into
several small communities. Both situations are undesirable in data analysis. The
network formation using overlapping histogram segments addresses these problems.

Define a mapping function h W X 7! Œ0; 1�, which receives a data item with
P > 0 attributes and converts it into a scalar value in the unitary interval.9 The
function h should be smooth in the sense that similar items receive approximately

9We use the unitary interval with no loss of generality.
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Fig. 4.8 Networks formed by the application of the network formation technique based on
clustering heuristics on the data set in Fig. 4.6a with k D 5. (a) � D 1, (b) � D 2, (c) � D 4, (d)
� D 8. Reproduced from [31] with permission from the author

similar scalar values. For instance, in a gray-level image in which each vertex is a
pixel, P D 1 and h is simply the identity function. When P > 1, we can use for
instance a linear weighted combination of the attributes in the feature vector.

Once transformed the vector-based data set, we construct the histogram of
distribution h that resides inside the interval Œ0; 1� by definition. We also define the
set of overlapping intervals I that are constructed using overlapping histogram
segments as follows:

I D fŒ0; d�I Œd � �; 2d�I : : : I Œ.M � 1/ � d � �; 1�g; (4.39)

in which M denotes the number of intervals, d > 0 is the non-overlapping window
width over adjacent intervals, and � � 0 is the overlapping factor. The overlapping
factor � is essential for the network formation. It serves the purpose of not letting
the resulting network become disconnected.
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Fig. 4.9 Illustration of the network formation using overlapping histogram segments. In the
histogram, we have d D 3 and � D 1

Let Si represent the quantity of vertices that is inside interval i 2 I . The network
is formed by connecting each vertex in i to its ki most similar neighbors. That is, ki

is adaptive as it varies from interval to interval. Mathematically, ki is given by:

ki D S2
max � .Smax � Si/

2; (4.40)

in which Smax D max.S1; S2; : : : ; SM/. Note that vertices in regions with several
vertices are given a large k.10 Vertices inside regions that have few other vertices are
given a small k. In our previous example, the vertices in the large clusters would have
large k and those in the small cluster, small k. This behavior gives two nice properties
for the resulting network: (1) the number of intercommunity links is expected to be
small and (2) the large cluster is not fragmented.

We illustrate the entire network formation process in Fig. 4.9.
We follow the methodology in [42] and apply the network formation process in

pixel clustering. In this case, each pixel in the image corresponds to a vertex. We
use grayscale images, so h is the identity function. For the clustering technique, we
use the greedy modularity function.11

10Read k in the sense of the k-nearest neighbors in which k is global and static.
11In brief, the modularity measures how good a particular network division is in terms of
communities. It ranges from 0 to 1. The larger the modularity, the better defined are the
communities. See Chap. 6 for more information.



4.3 Transforming Vector-Based Data into Networks 119

Fig. 4.10 Pixel clustering of a human brain. (a) Brain image. (b) Results for five clusters.
(c) Results for four clusters. (d) Results for three clusters. The colors in (b)–(d) represent the
clusters. We use d D 0:008 and � D 0:5d

We illustrate the potentialities of the network formation technique based on
overlapping histogram segments with pixel clustering tasks. Figure 4.10 shows the
results for pixel clustering of a human brain. As the greedy modularity technique is a
hierarchical technique, we can see the communities at different levels of granularity.
Figures 4.10b–d portray the clustering results for five, four, and three communities,
respectively. The network formation process attains a maximum modularity of 0:81

when there are five communities, suggesting that the network communities are well-
defined. The histogram of the human brain is supplied in Fig. 4.11. To note the
difference of the discussed technique with the k-nearest neighbors technique, we
plot the number of vertices as a function of k values in Fig. 4.12. In the original
k-NN, the k value is static and global. In contrast, the network formation technique
based on overlapping histogram segments has adaptive k.

As another illustrative pixel clustering example, consider the image in Fig. 4.13,
in which there are two dogs in the grass. We use a grayscale version of this
image in our simulations. The pixel clustering results are given in Fig. 4.14a–d. The
maximum modularity is 0:74 and is achieved when four communities are found.
The histogram of Fig. 4.13 in grayscale is displayed in Fig. 4.15. To inspect how the
underlying network is formed, we also plot the value of k assumed by the vertices
in Fig. 4.16. Note that there are two peaks corresponding to the dogs’ color and the
background composed of grass. Note that the great advantage of this technique is
that it can adapt k in terms of community sizes such as to construct well-defined
communities (large modularity).

4.3.8 More Advanced Network Formation Techniques

In the previous section, we have presented the k-nearest neighbor, �-radius and
other dynamical network formation techniques. The way that they have been
introduced assumes that we have no information about the data relationships
except the raw data set itself. This hypothesis is consistent with unsupervised
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Fig. 4.11 Histogram of the human brain image in Fig. 4.10a. We rescale the h function to the usual
pixel interval Œ0; 255� to facilitate the understanding of the grayscale tones. For instance, the black
color in a pixel is represented by the value 0 and the white color is denoted by 255

learning techniques. Methods that lie in the semi-supervised and supervised learning
paradigms, however, are provided with additional information, other than the data
set itself. As we have seen, we term that additional (external) information as labels
or targets. Each data item has a corresponding label indicating the specific class to
which it belongs in the analyzed domain. When these labels are discrete, we have a
semi-supervised or supervised classification task. When the labels are continuous,
we term the learning process as semi-supervised or supervised regression.

A natural refinement in these network formation techniques is to also consider
the labels of the data items when creating links. For instance, we may be interested
in creating links between pairs of vertices that only belong to the same class. This
constraint would lead to the emergence of more than one network component,
each of which with vertices of the same class. In other applications, it would be
desirable to have connections between members of different classes. In this case,
each network component would possibly have a mixture of members of several
different classes.

The way we employ different constraints in our network formation proce-
dure defines the topological properties of the resulting network. In addition, the
constraints that we are able to bring are not limited to the labels in case of semi-
supervised or supervised learning techniques. For instance, if we have a technique
that potentially can create several network components, we can create links if
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Fig. 4.12 Number of vertices as a function of their assumed k value (network formation
parameter) for the human brain image depicted in Fig. 4.10a

the new member that is being tested meets some topological requirements of all
of the current members of that component. The topological requirements can be
fashioned using local, mixed, and global information. Examples of local information
are similar in- and out-degree or in- and out-strength. Network measurements
that carry mixed information include similar clustering coefficient, closeness, and
betweenness values. Among examples of global information, we can highlight
assortativity, network diameter, and the rich club effect.12 In fact, in one of our
case studies in Chap. 8, we discuss more advanced network formation techniques
that use both network topological aspects and labels of the data items to construct
and to evolve the network in a self-learning process.

4.4 Transforming Time Series Data into Networks

Various time series network construction techniques have been studied in [17].
A time series is a sequence of data points, normally consisting of successive
measurements made over a time interval [22]. Examples of time series are ocean
tides, counts of sunspots, and the daily closing values of stock markets. Time series

12C.f. Sect. 2.3.5 for a more comprehensive classification of network measurements.
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Fig. 4.13 Picture of two dogs in the grass. Photo by Liang Zhao

Fig. 4.14 Pixel clustering results of the image portrayed in Fig. 4.13. We use d D 0:008 and
� D 0:5d. (a) Community 1. (b) Community 2. (c) Community 3. (d) Community 4

are largely employed in any domain of applied science and engineering that involves
temporal measurements, such as in: statistics, signal processing, pattern recognition,
econometrics, mathematical finance, weather forecasting, intelligent transport and
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Fig. 4.15 Histogram of the image in Fig. 4.13. We rescale the h function to the usual pixel interval
Œ0; 255� to facilitate the understanding of the grayscale tones. For instance, the black color in a
pixel is represented by the value 0 and the white color is denoted by 255

trajectory forecasting, earthquake prediction, electroencephalography, control engi-
neering, astronomy, and communications engineering [6, 7, 19, 22, 32, 46].

One interesting phenomenon arising in time series analysis is of state recurrence.
Formally, in dynamical systems that model time series, there is recurrence of state xi

whenever that system reaches state xj at another time j that is sufficiently similar to
that initial state (xi � xj). Normally, time series data is a sequence in the phase space
T D fxi 2 R

Pg1
iD0 that is periodically sampled at intervals i, where xi denotes the

time series state in an arbitrary P-dimensional phase space. The set T is termed as
the trajectory of the phase space representing the time series.

Suppose we have that trajectory of the dynamical system in its phase space.
The corresponding recurrence plot (RP) is represented by the following recurrence
matrix:

Rij D
(

1; if kxi � xjk <D �

0; otherwise
(4.41)

in which � > 0 is a constant that enables state equality up to a small error.
Essentially, the recurrence matrix compares the system states at times i and j. If they
are similar enough, then Rij D 1. Conversely, when states i and j are rather different,
the corresponding entry in the recurrence matrix is Rij D 0. So the recurrence matrix
tells us when similar states of the underlying system occur.
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Fig. 4.16 Number of vertices as a function of their assumed k value (network formation
parameter) for the image depicted in Fig. 4.13

Several approaches for transforming time series data into complex network have
been proposed in the literature. The main approaches are the proximity networks and
the transition networks [17]. The former is constructed using mutual proximity of
different segments of a time series, while the latter considers transition probabilities
between discrete states. The network connectivity of proximity networks is defined
in a data-adaptive local fashion, where distinct regions centered at an arbitrary
reference vertex in the phase space are considered. The idea can be understood
as an adaptive �-radius technique, which we have seen in Sect. 4.3. For transition
networks, in contrast, the corresponding regions are rigid, i.e., they are determined
by a fixed coarse-graining parameter evaluated in the phase space. In turn, proximity
networks are characterized using mutual closeness or similarity of the time series
trajectory.

In the following, we briefly discuss some network formation techniques for time
series data.

4.4.1 Cycle Networks

The research by Zhang and Small [53] was pioneering in studying topological
features of pseudo-periodic time series. In their technique, individual cycles in
a time series are identified by the vertices of an undirected network. Links are
established between pairs of vertices if cycles behave similarly. Zhang et al. [54]
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introduce a generalization of the correlation coefficient applicable to cycles of
possibly different lengths to quantify the proximity of cycles in the phase space.
The correlation index is defined as the maximum of the cross-correlation between
two signals when the shortest of both is slid relative to the longest one. Suppose
we compare two cycles C1 D fx1; x2; : : : ; x˛g and C2 D fy1; y2; : : : ; yˇg, where
˛ 	 ˇ.13 Then, we compute:

�.C1; C2/ D max
iD0;:::;ˇ�˛

h.x1; x2; : : : ; x˛/; .y1Ci; y2Ci; : : : ; y˛Ci/i; (4.42)

in which h:; :i represents the standard correlation coefficient of two ˛-dimensional
vectors. In this case, we evaluate the .i; j/-th entry of the adjacency matrix A of the
network as follows:

Aij D �
�
�.Ci; Cj/ � �max

� � 1ŒiDj�; (4.43)

in which �.:/ is the Heaviside function that outputs 1 if the argument is positive
and 0, otherwise. 1Œ:� is the Kronecker delta function that yields 1 if the argument
is true and 0, otherwise. �max is the maximum attainable correlation between any
two given cycles (vertices). The Kronecker delta function is introduced to prevent
self-loops in the resulting network. Another measure to quantify the proximity of
cycles is based on phase space distance [53], which is expressed as:

D.C1; C2/ D min
iD0;:::;ˇ�˛

1

˛

X̨

jD1

k xj � yjCi k: (4.44)

Using the phase space distance, we compute the adjacency matrix as:

Aij D �
�
Dmax � D.Ci; Cj/

� � 1ŒiDj�: (4.45)

Cycle networks are robust against additive noise and have the advantage that
explicit time delay embedding is avoided.

4.4.2 Correlation Networks

Consider each time series represented by a state vector xi. That is, we have a set of
time series for which we want to construct a representative network. The Pearson
correlation coefficient can be calculated:

13We set the length assumption without loss of generality. If it is not the case, we can simply
re-define C1 and C2 such as that the hypothesis holds true.
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rij D cov.xi; xj/

�xi�xj

; (4.46)

in which cov.xi; xj/ denotes the covariance between the time series vectors xi and xj,
and �xi , the standard deviation of vector xi.

The factor 1 � rij therefore is a proximity or similarity measure in the context
of time series data. In order to construct the network, we establish a link between
states or vertices i and j whenever 1 � rij is larger than a given threshold r [20, 51]:

Aij D �
�
r � rij

� � 1ŒiDj�: (4.47)

4.4.3 Recurrence Networks

Recurrence networks are complex networks whose adjacency matrices are given
by the recurrence matrices of time series, as computed in (4.41). We define the
adjacency matrix of a recurrence network by:

Aij D Rij � 1ŒiDj�: (4.48)

Because the recurrence matrix can be defined in different ways, there are distinct
subtypes of recurrence networks that are characterized by somewhat different
structural properties, such as the k-nearest neighbors networks and �-recurrence net-
works [18, 20, 35]. In k-nearest neighbors networks, we consider every observation
vector as a vertex i, which is then connected to its k nearest neighbors in the phase
space. In �-recurrence networks, the neighborhood of a vertex (time series) is all
times series within a predefined phase space distance �.

4.4.4 Transition Networks

In this method, we build a network from a single time series. The first step in
order to build transition networks from time series is to find the amplitude of the
analyzed time-varying signal. With that interval at hand, we then discretize it into
a suitable set of K classes S D fS1; : : : ; SKg. The transition probabilities measure
the likelihood of the signal jumping from one class (region) to another [37, 41].
Mathematically, �˛ˇ D P.xiC1 D Sˇjxi D S˛/ indicates the probability of the signal
to reach region Sˇ given that it is currently at region S˛. This approach is equivalent
to applying a symbolic discretization with static grouping [16] to the phase space of
the studied system.

Unlike proximity networks, the resulting transition networks explicitly make use
of the temporal order of observations, i.e., their connectivity represents causality
relationships contained in the dynamics of the observed system. By introducing a
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cutoff p < 1 to the transition probability �˛ˇ between pairs of discrete states S˛

and Sˇ, we obtain a non-weighted network representation, which is, however, still
directed. Note that for a trajectory that does not leave a finite volume in phase space,
there is only a finite number of discrete states Si with a given minimum size in phase
space. This implies the presence of absorbing or recurrent states in the resulting
transition network.

The transition probability approach is well suited for identifying the states that
have a special importance for the causal evolution of the studied system in terms of
betweenness centrality and related measures. However, its main disadvantage is a
significant loss of information on small amplitude variations [16].

4.5 Classification of Network Formation Techniques

In this section, we classify the network formation techniques with respect to the
type of information they use in their construction processes. The types of network
formation techniques are classified as using:

• Quasi-local information: these techniques are often restricted to geometrical
issues of the data, such as shortest distances between pairs of vertices. In this
way, they only employ information from a small set of vertices to construct the
links.

• Long-range information: these techniques use not only local geometrical infor-
mation, but long-range information such as the trajectory of shortest paths.
That is, we not only account for distances between the endpoints of pairwise
shortest paths, but we also use information from the trajectory itself from those
shortest paths. In contrast, note that network formation techniques classified as
using quasi-local information would only use the distance of the shortest path.

• Global information: these techniques use information from all of the data items
at once to construct the network. For instance, it may rely on the data distribution
itself to adjust parameters of the network formation process.

Tables 4.2 and 4.3 report the classification of the vector-based and time series
network formation techniques, respectively. Techniques that are classified as using
quasi-local information often share properties such as simplicity and generality, as
they can be applied to any data set and for any machine learning task. In this way,
they ignore global characteristics that are embedded within the data relationships
and are not specialized to a domain-specific task. Techniques that are classified as
using long-range and global information are more sophisticated in the sense that
they are able to capture local and global characteristics of the data relationships.
However, they are often employed to specific purpose tasks. For instance, the
network formation technique using clustering heuristics tends to construct a network
with the goal of data clustering. In other words, these techniques anticipate the
desired result in the network construction phase (before the inference or clustering
phases). Techniques that use global information are a tendency in this research topic.
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Table 4.2 Classification of vector-based network formation techniques

Definition Description Classification

Section 4.3.1 k-NN Quasi-local information

Section 4.3.1 �-radius Quasi-local information

Section 4.3.2 Combination of k-NN and �-radius Quasi-local information

Section 4.3.3 b-matching networks Long-range information

Section 4.3.4 Linear neighborhood networks Long-range information

Section 4.3.5 Relaxed linear neighborhood networks Long-range information

Section 4.3.6 Network formation using clustering heuristics Long-range information

Section 4.3.7 Network formation using overlapping histogram segments Global information

The classes are designed using the type of information these techniques employ in the construction
process

Table 4.3 Classification of time series network formation tech-
niques

Definition Description Classification

Section 4.4.1 Cycle networks Quasi-local information

Section 4.4.2 Correlation networks Quasi-local information

Section 4.4.3 Recurrence networks Quasi-local information

Section 4.4.4 Transition networks Quasi-local information

The classes are designed using the type of information these
techniques employ in the construction process

4.6 Challenges in Transforming Unstructured Data
to Networked Data

In this chapter, we have discussed several network formation techniques. When
applying network-based machine learning methods to given sets of data points,
there are several choices to be made: the type of the network to be constructed and
the network formation parameters. However, the question how these choices should
be made has received little attention in the literature. This is not so severe in the
domain of supervised learning, where parameters can be set using cross-validation.
However, it poses a serious problem in unsupervised and semi-supervised learning.
While different researchers use different heuristics to set these parameters, few
systematic empirical studies have been conducted. For instance, it is important
to know how sensitive the results are to the parameters that define the network
formation technique. The problem becomes even more severe when we try to find
theoretical models that justify the use of one parameter value in detriment to others.

In the domain of unsupervised learning, the study in [34] analyzes clustering
measures, such as the normalized cut, in nearest neighbors networks (k-nearest
neighbors and �-radius). The investigation shows that, depending on the selected
criteria to construct the network, the normalized cut criterion converges to different
limit results. The fact that all of these nearest neighbors networks lead to different
clustering criteria shows that we cannot study these criteria isolated from the
network that they are applied to.
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The picture is not different in the semi-supervised learning domain. Accord-
ing to [55], there is no reliable approach for model selection if only a few
labeled instances are available. Unfortunately, this is often the case as labeling is
expensive. We find a plethora of studies that deal with regularization frameworks
that essentially solve constrained optimization processes. These frameworks are
roughly composed of two abstract terms: the loss and the regularization functions.
While the loss function penalizes decisions that flip labels of labeled vertices,
the regularization function models the costs of propagating labels to unlabeled
instances. These algorithms mainly adjust or propose new ways of modeling these
two functions [56, 57]. The label propagation process, which strongly depends on
the network topology, has been extensively studied in the literature. Up to now, little
has been done for the network topology analysis per se, which is a product of a
network formation process. Therefore, a relevant question that arises is whether the
resulting network really represents the transformed (vector-based) data. If it is not
the case, then the label diffusion process will probably be flawed, as the network
topology will be incorrect. Even though most of them lack theoretical framework,
we find some few empirical investigations in the literature about network formation,
as follows [56]:

• Construction of networks using domain knowledge. For instance, the research
in [3] builds networks for video surveillance using strong domain knowledge,
where the network of web-camera images consists of time edges, color edges and
face edges. Such networks reflect a deep understanding of the problem structure
and how unlabeled data is expected to help. We note that constructing domain
knowledge requires an active work of human experts. Recall that the labeling
process of human experts is expensive and time-consuming. Moreover, edge
construction process is even more slower as it is a problem with a mapping
function of the type V � V 7! R, i.e., we consider the weight of every potential
edge between arbitrary pairwise vertices.14 In this way, even though domain
knowledge may improve the performance of machine learning algorithms, it
definitely turns into an unfeasible procedure as the number of the data items
grows.

• Construction of nearest neighbors networks. Empirically, weighted k-NN net-
work with small k tends to perform better. We can also build near complete
networks, using, for instance, correlation or kernel Gaussian functions as simi-
larity functions. In the sparsification process, we can apply several tricks. The
investigation in [8] builds robust networks from multiple minimum spanning
trees by perturbation and edge removal. When using a Gaussian function as edge
weights, the bandwidth of the Gaussian needs to be carefully chosen. In turn,
the study in [52] derives a cross-validation approach to tune the bandwidth for

14In contrast, the vertex labeling is a mapping task V 7! Y , which is much quicker than edge
labeling.
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each feature dimension, by minimizing the leave-one-out mean squared error of
predictions and given labels on labeled points.

• Construction of networks using local fit procedures. The investigation in [23, 24]
proposes an algorithm to de-noise points sampled from a manifold. That is, data
points are assumed to be noisy samples of some unknown underlying manifold.
They used the de-noising algorithm as a preprocessing step for network-based
semi-supervised learning, so that the network can be constructed from better
separated data points. Such preprocessing results in better semi-supervised
classification accuracy.

4.7 Chapter Remarks

In this section, we have reviewed the main ingredients involved in constructing
networks from vector-based and time series data. In special, we have seen that
we need a proper similarity function and a suitable strategy for creating links in
the network. Several similarity functions have been discussed. The shortcomings
and advantages of the most well-known network formation techniques have been
explored. We have also visited the inherent challenges that we face when building
networks that reliably maintain the data distribution.
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Chapter 5
Network-Based Supervised Learning

Abstract In this chapter, we focus on supervised learning algorithms that act on
networked environments. These methods utilize external information in the form of
labels to induce or train their models. Generally, the learning process is composed
of two serial steps denominated training and classification phases. While in the first
the algorithm attempts to learn from the data according to some external aid, such
as of a human expert, in the latter the algorithm is tested against unseen data to
verify its generalization power. In network-based methods, both phases take place
in a network by navigating through it or updating its structure according to new
information originated from the human expert. In the test phase, normally the
network structure remains static as new data items are classified. However, some
algorithms attempt to update the learned network structure in a process classified as
self-learning. In this chapter, we present some of the shortcomings and advantages
of using the network-based approach to conduct supervised learning. Representative
network-based methods are discussed.

5.1 Introduction

Network-based unsupervised and semi-supervised learning techniques have been
extensively studied in the literature [4, 10]. There are still, however, few reported
network-based supervised learning techniques [3]. In this regard, there is a big space
for the proposal and discovery of new ways of supervised learning in networked
environments. Presumably, several network-based semi-supervised inductive meth-
ods, such as those presented in [2, 5, 19], can be converted into a supervised learning
scheme when a reasonable number of labeled instances is provided. However, these
methods aim at considering unlabeled instances during the training phase and a
network-based approach is employed to model the data into a manifold in order to
first propagate the labels to all of the unlabeled instances. In this case, if the majority
of instances in the data set is labeled, there is no space for label propagation in a data
network. Thus, a regular supervised approach that uses only labeled instances in the
learning process would be preferable [3].

Another type of network-based classification approach refers to relational clas-
sification. Such type of supervised classification deals with data that differs from
the typical data because they violate the instance-independence assumption, which
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means that the class label of an instance might not depend only on its own attributes,
but also on the labels of its neighbors [14]. This kind of data is usually presented
in a network form (also termed within-network data) with some of the vertices
labeled and the rest unlabeled. The task is to infer the labels of the unlabeled
vertices. Relational classification techniques can be applied to solve a wide range of
problems, such as in the discovery of molecular pathways in gene expressions [17],
classification of linked scientific research papers [13], link prediction [12], among
others. For example, in link prediction on social networks [1, 7, 9, 12], the task is
to predict the likelihood of a future association between two vertices, knowing that
there is no association between the vertices in the current state of the network [9].
Such approach has a wide variety of further applications, among which we highlight
in: recommendation systems, identification of probable professional or academic
associations in e-commerce sites or scientific collaboration networks, and of
structures of criminal networks and structural analysis in the field of microbiology or
biomedicine. All of these applications demand for much more efficient and versatile
approaches for link prediction, thereby making it an important and scientifically
attractive research topic. Another application that is also related to relational
classification is defined as the detection of small connected subgraphs that best
capture the relationship between two vertices in a social network. In this respect,
the research in [8] proposed an efficient algorithm based on electrical circuit laws to
find the connected subgraph from large social networks. It has also been shown that
a connected subgraph can be used to effectively compute several topological feature
values for the supervised link prediction problem, especially when the network is
very large [9].

State-of-the-art approaches that spread labels inside the network to infer labels
of interrelated vertices in a jointly manner are known as collective inference
models [16]. This kind of inference can significantly reduce classification error
when compared to traditional inference techniques [11]. Collective inference
methods may use both data attributes and data relational features to perform
classification. Traditionally, vector-based methods have treated data items as inde-
pendent ones, which makes it possible to infer class membership on an instance per
instance basis. With networked data, the class membership of one data item (vertex)
may have an influence on the class membership of a related vertex. Furthermore,
vertices that are not directly linked may be related by chains of links, fact that
suggests that it may be beneficial to infer the class memberships of all of the
vertices simultaneously. Collective inference in relational data makes simultaneous
statistical judgments regarding the values of an attribute or attributes of multiple
entities in a network for which some attribute values are not known [16].

In the literature, some algorithms have been proposed that only employ collective
inference on specific phases of the learning process. For example, one may employ a
local classifier, such as Naïve Bayes or relational probability trees, to predict labels
for each unlabeled vertex and further use a collective inference algorithm, such as



5.2 Representative Network-Based Supervised Learning Techniques 135

ICA [13] or Gibbs sampling [11], to restate the class labels of vertices that are
employed in the next iteration. Such kinds of methods are called local classifiers.
Another kind of approach, called global formulation-based methods, does not use
a separate local classifier, but it uses the entire algorithm for the training and
inference, also using relational and non-relational data. Such an approach conducts
training with the objective of optimizing a global objective function. Examples of
these algorithms include loopy belief propagation and relaxation labeling [18]. In
search of a unification on relational data classification in networks, the research
in [15] proposed a general supervised learning network-based framework. The
framework builds a model considering three components: a local classifier, which
makes use of a training set to estimate the probability distribution of the classes;
a relational classifier, which also aims to estimate a probability distribution but
now considering the neighboring relations in the network; and a collective inference
component, which further refines the class predictions.

While collective inference presents some advantages, in some cases, inferring
labels collectively causes uncertainties that may actually lead to lower classifi-
cation accuracies when compared to non-relational approaches. For example, an
incorrectly predicted label may influence the predictions of its neighbors in future
iterations, possibly cascading this error through long chains of vertices [16]. On
one hand, there is a tendency to represent data by networks; on the other hand,
some approaches consider transforming networked data into raw, vector-based data
in order to apply classical methods, such as SVM and neural networks. This kind of
method requires extracting features from the networked data in order to construct
a trainable vector-based set. The task of feature extraction from a given relational
data can be divided according to the presence or absence of labels in the vertices, and
named label-dependent and label-independent extraction, respectively. The former
uses both network structure and label information throughout the neighboring
vertices and the latter exclusively considers the network structure [16]. An approach
to estimate the similarity between edges in a network or between two networks as
a whole is graph kernel. Briefly, these kinds of methods use a kernel to establish a
similarity measure on networks. In this approach, the main difficulty is in defining
a kernel that is suitable for the network structure and reasonably efficient to be
evaluated.

5.2 Representative Network-Based Supervised
Learning Techniques

In the following, we present several representative network-based supervised
learning techniques.
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5.2.1 Classification Using k-Associated Graphs

This technique is introduced in [3]. As usual for network-based methods, the basis of
the k-associated graphs technique lies on representing the training set as a network,
more specifically a directed network referred to as k-associated graph. Such a
network is built from a vector-based data set by abstracting data items to vertices
and pairwise similarities to edges. After a k-associated graph is constructed for a
given k, the purity measure for every component in the network is computed and
is used to determine the optimal network for classification, both on the training
and the test phases. The edges in a k-associated graph are established in accordance
with a modified version of the k-nearest neighbor technique. In this peculiar network
formation heuristic, only vertices that share the same label or class are permitted to
interconnect. This simple rule generates class components in the overall network.

The purity is defined for each component (isolated subgraph) in the network as
follows: given a parameter k, which is used to construct the networks using the
modified version of the k-nearest neighbor technique, a vertex can have at most 2k
connections. Since the resulting networks are digraphs or directed networks, each
vertex will have degrees ranging from k to 2k.1 The purity measure explores this
feasible range of degree values that each vertex can assume. In essence, it quantifies
the proportion of edges that has effectively been created between vertices of the
same class over the total number of possible connections per each vertex, 2k. In
mathematical terms, the purity 	 of component ˛, 	.˛/, is then defined as:

	.˛/ D Nk.˛/

2k
; (5.1)

in which Nk.˛/ denotes the average degree of component ˛ 2 G . In general, a purity
value close to 1 indicates that a large portion of edges are shared among vertices in
the network component, resulting in a high-density component, while lower values
reveal high levels of class mixture between components of different classes. It is for
this reason 	.˛/ is called a purity measure for component ˛: large values indicate
purer components in terms of connections. The purity measure can be conceived
as the a priori probability of connections within a component. This property is
explored by the classifier to decide the classes of each of the test instances.

In the referred technique, one can note that parameter k plays a key role in the
learning process during the training phase, as its value has considerable implications
on the resulting network topology. By virtue of this, a procedure for estimating the
value of k for each of the components has been developed in [3]. It is intuitive
that some networks may have better components than others according to the purity
measure. Rarely, the network obtained using a uniform and unique value of k for

1In an undirected network, in contrast, each vertex will always have a degree of 2k, because
whenever vertex j 2 V is one of the k-nearest neighbors of i 2 V , then the reciprocal is always
true.
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all of the network component produces the best configuration of vertices into class
components. A single value of k produces components with nearly the same size,
therefore structure and purity are restrained to only one possible value of k at a
time. Consequently, it would be better to allow for multiples values of k to represent
the same data space. In this way, each class component can then decide the best fit
of k in accordance with the observed data distribution, producing therefore class-
dependent component sizes and purity values. Bearing this in mind, a suggestive
idea is to obtain a network with the best organization of the data into components
with different and localized k, i.e., each component has its own optimal k. The
optimality is obtained by choosing a class-dependent k such that the purity of each
network component is the highest. The network component together with its optimal
class-dependent k value is termed the k-associated optimal network.

To obtain the optimal k-associated graph, the rationale is to increase k while
keeping the best components found so far starting from the 1-associated graph.
For each k and network component, the purity measure is calculated and is used
to compare between components of different k-associated graphs formed within
different values of k. The component with the highest purity value is maintained,
while the others are discarded.

Once the optimal k-associated graph has been properly obtained, then the
classification phase begins. In this phase, the authors use a Bayes classifier in order
to predict. Specifically, the a priori probabilities are calculated using a normalized
purity value of each of the class components, rather than the traditional size
proportions that we encounter in the literature.

A great potentiality of this technique is that no parameters are needed to
be adjusted, which eliminates the step of external model selection. However, since
the algorithm must create a network from the vector-based data set, then its time
complexity is at least of the order of O.V2/.

5.2.2 Network Learning Toolkit (NetKit)

This work is introduced in [15]. This is a within-network inference technique, rather
than an across-network inference method. In within-network inference methods,
the training data items are connected directly to the test entities whose labels or
classes are to be estimated. In contrast, in across-network inference, we often learn
from one network and apply the learned models to a separate, presumably similar
network. In essence, the toolkit is composed of three terms, each of which focusing
on different perspectives or visions of the data items. The modules are:

1. Non-relational (“local”) module: This component consists of a (learned) model
that only uses local information of the data items, namely the information about
their attributes, to estimate their labels or classes. The local models can be used
to generate priors that comprise the initial state for the relational learning and
collective inference components. They also can be used as one source of evidence
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during collective inference. These models are typically produced by traditional
machine learning methods.

2. Relational module: In contrast to the non-relational component, the relational
model makes use of the relations in the network as well as of the attribute values
of related entities, possibly through long chains of relations. Relational models
also may use local attributes of the data items.

3. Collective inference module: The collective inference component determines
how the unknown values are estimated together, possibly influencing each other
in a collective manner.

Depending on the choices of each of the three aforementioned components,
one can get new types of classifiers. Some of these choices result in well-known
classifiers in the related community. For example, using a Naïve Bayes classifier as
the local model, a Naïve Bayes Markov Random Field classifier for the relational
model, and relaxation labeling for the collective inference module form the system
used by Chakrabarti et al. [15].

It is worth registering that the collective inference component can explore
relational autocorrelation, which is a widely observed characteristic of relational
data. This phenomenon may reveal that a variable for one instance is highly
correlated with the value of the same variable on another instance. By making
inferences about multiple data instances simultaneously, collective inference can
significantly reduce classification error in some cases.

The importance of NetKit is threefold: (i) it generalizes several existing methods
for classification in networked data, thereby making comparison to existing methods
possible; (ii) it enables the creation and use of many new algorithms by its modu-
larity and extensibility; and (iii) it enables the analysis/comparison of individual
components and configurations. These contributions are welcomed by the literature,
because, since then, there has been no systematic study of machine learning methods
for within-network classification that compares various algorithms on several data
sets.

5.2.3 Classification Using Ease of Access Heuristic

This network-based supervised classification technique is proposed in [6]. The
intuition of this method is to perform the classification task using a heuristic called
ease of access in a networked environment. The measurement of ease of access is
built upon the concept of limiting probabilities in the Markov chain theory. First, a
set of labeled instances is mapped as vertices of a network. Recalling that a network
can be conceived as a discrete Markov chain, each vertex then represents a state in
the Markovian process. When classifying an unlabeled data, this network of only
labeled vertices is modified by a specific link weight composition, which takes into
account the bias information of that unlabeled instance. The bias information alters
the network structure in a way that, after the computation of the modified limiting
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probabilities, the most easily reached labeled instances represent the class label of
that unlabeled instance.

The classification problem requires a given labeled data set, L D
fx1; x2; : : : ; xLg, where each instance is described by P attributes xi D
.xi1; xi2; : : : ; xiP/. Each instance in this set has a single assigned label y 2 Y .
It is also given an unlabeled data set, U D fxLC1; xLC2; : : : ; xLCUg, containing
instances whose labels are to be estimated. There are L labeled instances and U
unlabeled instances. The classification technique is divided into the two classical
phases: training and classification.

5.2.3.1 Training Phase

In the training phase, a weighted and undirected network G D hV ;E i is constructed
without self-loops. Vertices represent labeled data instances, V D L , and link
weights are established using a similarity function (cf. Sect. 4.2) and a network
formation strategy (cf. Sect. 4.3). At the end of this phase, we get a network G
called training network.

5.2.3.2 Classification Phase

To classify an unlabeled instance x 2 U , a weight vector s D Œs1; s2; : : : ; sL� is
first calculated, in which each entry si contains the similarity of that unlabeled data
to the labeled vertex i. That is, vertex x is inserted into the training network G by
calculating the link weights to all of the other labeled vertices into this network, and
is subsequently removed from G . Then, the weighted and asymmetric adjacency
matrix with L vertices is perturbed as follows:

OA D A C � OS; (5.2)

in which A and OA are the original and the perturbed adjacency matrices, respec-
tively; � is a non-negative parameter; and OS is the following L � L matrix:

OS D

2

6
6
6
4

S.1/

S.2/

:::

S.L/

3

7
7
7
5

; (5.3)

in which S.i/ is a row-vector L�1 whose entries are all si. It can be observed in (5.2)
that the weight biases of the unlabeled instance x, encoded in matrix OS, are applied
over all of the links in the original adjacency matrix A of the training network G ,
that is, the weight of each link is linearly added up with its corresponding weight
bias. The idea behind this operation is that the distance between any pair of vertices
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is modified due to the new weights of network routes introduced by the insertion
of the link biases from the unlabeled instance links. The higher the similarity
between the unlabeled instance and a vertex, say vertex i, the more strengthened
are the connections from all of the other vertices to vertex i after this operation.
The parameter � controls the influence of the weight biases in the training network.
The larger the value of parameter � is, the greater is the influence of the bias weights.

The perturbed adjacency matrix OA is termed as the classification network.
By using this network, it is now possible to apply the random walk limiting
probabilities over the states represented by the network vertices. The transition
probabilities can be found by means of the matrix OA. To compute the entries of
the transition matrix P, the entries of matrix OA are normalized:

Pij D OAij
ıX

j2V
OAij: (5.4)

With the above matrix P at hand, the limiting probabilities can be calculated by
using one of two possible ways: finding the eigenvector corresponding to the unit
eigenvalue of matrix P or iterating the system

piC1 D piP (5.5)

to the stationary state, where p is the state distribution. Under the constraints dis-
cussed in Sect. 2.4.1, the limiting or stationary probability is unique and independent
on the system’s initial state and has the form:

p1 D � D Œ�1; �2; : : : ; �L�; (5.6)

in which each element represents a state, and each entry pi can be interpreted as the
probability of x to belong to the class of state i.

As the final step, the classification of x is accomplished by assigning it the most
representative label from the set of states. To accomplish that, a set T containing the
t states with the largest limiting probabilities are selected and the most representative
class in T is associated to x.

5.3 Chapter Remarks

The literature in network-based supervised learning is still very scarce, as very few
methods have been developed so far. This is mainly due to the fact that the large
percentage of labeled data makes the data network almost fixed. Then, there is
not enough space for label propagation. Up to now, the developed techniques are
based on two main ideas: (1) collective inference with the data network, as done
in k-associated graphs [3] and the network learning toolkit [15]; (2) classification
using the pattern formation of the entire network, as performed in the classification
that uses the ease of access heuristic [6]. At the conceptual level, the within-network
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techniques do not differ much from traditional data classification ones. However, we
still have a large space to explore the across-network approach. This is because we
have many ways to characterize the global patterns of the data network. In Chap. 8,
we walk through a pioneer across-network supervised learning technique.
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Chapter 6
Network-Based Unsupervised Learning

Abstract In this chapter, we present representative state-of-the-art unsupervised
learning techniques that rely on networked environments to conduct the learning
process. In a typical unsupervised task, no external knowledge is presented to the
algorithm. As such, the learning process is guided by the provided data, since no
prior knowledge about the existing groups is supplied. For network-based methods,
the learning procedure is performed by navigating in networks that are constructed
from the input data set according to some similarity criterion. As networks naturally
embody topological information of data relationships, network-based methods take
advantage over algorithms that make use of raw, vector-based data. Moreover,
network-based methods can be conceived as a general solution for unsupervised
learning tasks even for data sets that are not represented by networks. In this case, we
can apply network formation techniques on that data set to generate a network from
the input data. Once the network is constructed, all of the network-based techniques
described in this chapter can effectively be employed.

6.1 Introduction

In this chapter, we shift our attention to network-based unsupervised methods.
The data representation as networks enables us to systematically investigate the
topology and function of data relationships using well-understood graph-theoretical
concepts that can be employed to uncover structural and dynamical properties of the
underlying constructed network.

One of the main tasks of unsupervised learning is data clustering. In essence,
data clustering can be considered as a community detection problem once a
network is constructed from the original data set. In this transformation, each
vertex corresponds to a data item and connections are established according to a
certain similarity measure. The clusters in a community detection task are often
denominated communities. A community is defined as a subgraph whose vertices
are densely connected within itself, but sparsely connected with the remainder of the
network. Figure 6.1 illustrates typical processes in data clustering and in community
detection. In the former, unstructured or raw data are received by a data clustering
procedure that finds similar groups in accordance with a similarity criterion. In the
latter, the community detection procedure uncovers communities in the network.
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Unstructured data

Network data

Fig. 6.1 Similarities between data clustering and community detection tasks. The dotted hori-
zontal line represents the frontier of unstructured data and networked data. A network formation
method interfaces between unstructured and networked data. Note that each of the data items is
represented by a vertex in the networked domain

Topological information of the data, such as direct or indirect neighborhoods, can
be readily employed by the community detection method. Observe that the network
formation method serves as interface between unstructured and networked data.

Network-based methods are specially useful when we deal with clusters of arbi-
trary shape, proximity, orientation, and varying densities [36]. Since in unsupervised
learning methods we usually do not know how the clusters are shaped nor how many
of them exist, network-based methods stand as good candidates for tasks related
to data clustering. Consider that we use as input the data set depicted in Fig. 6.2a
in the schematic shown in Fig. 6.1. For the data clustering method in unstructured
data, we choose the well-known K-Means procedure with a number of clusters
calibrated to 2. For the community detection task in networked data, we use the
Chameleon technique [36], which is a network-based unsupervised learning method
that we discuss in this chapter. We employ the k-nearest neighbor technique with
k D 7 as the network formation technique that interfaces between unstructured
and networked data. The clustering result for the K-Means technique is displayed
in Fig. 6.2b, while the outcome of Chameleon is portrayed in Fig. 6.2c. While K-
Means has difficulty in clustering arbitrary-shaped clusters due to its strong bias on
circular-shaped items, network-based methods can provide robust results as they are
guided by the network topology in the learning process. This is because network-
based methods use the network topology to derive its decisions, in a way that we do
not need assumptions about the data distribution nor about the number of clusters or
communities. Consequently, we prevent the insertion of wrong biases over the data
distributions that can severely hamper the quality of the learning process.
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Fig. 6.2 Comparison of
vector- and network-based
methods in data clustering
and community detection
tasks, respectively. We use the
K-Means algorithm with
K = 2 in Fig. 6.2b. In
Fig. 6.2c, we first construct
the network from the
unstructured data in Fig. 6.2a
using k D 7 and then apply
the Chameleon. (a) Initial
state (vector-based data);
(b) Results for vector-based
learning method; (c) Results
for network-based learning
method

a

b

c
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6.2 Community Detection

In this section, we introduce the main concepts of community detection, as well as
a brief description of the related state-of-the-art techniques. In addition, we present
some broadly accepted community detection benchmarks.

6.2.1 Relevant Concepts and Motivations

Complex networks are found in fields as diverse as the Internet, the World Wide
Web, food webs, and biological and social organizations [7]. Even though the main
features of complex networks have been properly described at the microscale level,
such as strict-local properties of network vertices, and also at the macroscale level,
such as global properties of the entire network, some of the characteristics lying at
a mesoscale level are still elusive.

Nonetheless, modern science related to networks brought a substantial advance
in understanding complex networks. One of the features evident and prominent in
complex networks is the presence of mesoscale structures called communities. These
communities can carry functional, relational, or even social common concepts.
Though the formal definition of a community is controversial in the literature, the
essence of a community is straightforward: each community is defined as a subgraph
whose vertices are densely interconnected, and, at the same time, these vertices
have few links with the remainder of the network. Figure 6.3 portrays a network
in which four well-defined communities can be observed, because the quantity
of edges between members of the same community is perceptively larger than
the number of edges connecting different communities. The community detection
task in complex networks has become an important topic in graphs and data
mining [16, 22, 57]. In graph theory, community detection corresponds to the graph
partitioning problem, which is an NP-complete problem [22].

The study of community detection is very important for understanding various
phenomena in complex networks [32]. Modular structure introduces important
heterogeneities in complex networks. Each module, for example, can have different
local statistics [55]; some modules may have many connections, while other
modules may be sparse. When there is large variation among communities, global
values of statistical measures can be misleading. The presence of modular structure
may also alter the way in which dynamical processes (e.g. spreading processes and
synchronization [3]) unfold on the network. In biological networks, communities
correspond to functional modules in which module members function coherently
to perform essential cellular tasks. Both metabolic networks [69] and protein
phosphorylation networks [35], for instance, have modular structures.

A promising computational approach to discovering functions of genes and
proteins is to identify functional modules in biological networks. Since modules
are sets of genes or proteins that perform biological processes together, it is



6.2 Community Detection 147

Fig. 6.3 A network that presents four well-defined communities. The different vertices’ colors or
formats denote the communities to which each of them belong

possible to classify proteins with unknown functions by determining to what module
they belong [63]. Correct identification of functional modules has also important
biotechnological and drug design applications. In many cases, the deletion of a
certain function may be necessary and this can be achieved by removing the entire
functional module.

Several distinct ways of detecting modules in complex networks have been
proposed [22]. One popular approach considers communities as sets of adjacent
motifs [63], other methods are inspired by information theory [71], message
passing [26], or Bayesian principles [34, 58]. A widely used class of algorithms
is based on the optimization of a quantity called modularity [57].

Another important aspect related to community structure is of the hierarchical
organization displayed by most networked systems in the real world [22]. Real
networks are usually composed of communities including smaller communities,
which in turn include even smaller communities, and so on. The human body offers a
paradigmatic example of hierarchical organization: it is composed by organs, organs
are composed by tissues, tissues by cells, etc. Another example is represented by
business firms, which are characterized by a pyramidal organization, going from the
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workers to the president, with intermediate levels corresponding to work groups,
departments and management. Other example is the network formed by all human
acquaintances. While at a local scale we expect to find many communities formed
by families and friends, on a larger scale, the expected communities turn into
cities, regions, followed by countries, and, finally, probably continental areas. The
generation and evolution of systems organized in interrelated stable subsystems are
much quicker than unstructured systems. One evidence corroborating this fact is
that it is much easier to assemble the smallest sub-parts of a structured system
first and then use them as building blocks to build up larger structures, until the
entire system is assembled. In view of these examples, it is clear that the study of
community presence in networks plays an important role in understanding natural
concepts encountered in various branches of science.

Another interesting topic is of overlapping communities. We have seen that
the identification of modules and their boundaries enables us to classify vertices
according to their structural positions in those modules. So, vertices with a central
position in their clusters, i.e., which share large numbers of edges with other
group partners, may have important functions of control and stability within the
group. Notwithstanding, vertices lying at the boundaries between these modules
also play an important role of mediation and lead the relationships and exchanges
between different communities. These kinds of vertices are termed as overlapping
vertices [22].

Formally, overlapping vertices are defined as those vertices that are members of
more than one community or class at the same time [63]. For example, in a network
of semantic association concepts [38], the term “brilliant” may be a member of
several classes, such as the one representing the concepts related to “light,” to
“astronomy,” “color,” and so on [63]. In a social network, each person naturally
belongs to the company where he/she works and also to the group representing the
members of his/her family. Given this scenario, the discovery of overlapping vertices
and communities is important for data analysis in general.

6.2.2 Mathematical Formalization and Fundamental
Assumptions

Unsupervised learning methods are guided exclusively by the intrinsic structure of
the data items throughout the learning process, i.e., without any sort of external
knowledge. Consider that X D fx1; x2; : : : ; xNg is a data set, where N D jX j is
the total number of data items involved in the learning process. Techniques that are
members of the network-based unsupervised learning paradigm always accept as
input a network. In this respect, we can face the following scenarios:
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• The items in the data set are already in the network format, i.e., the vertex set
V coincides with the set of data items X and the set of edges E is given.
In this case, no preprocessing is needed. Well-known examples that already are in
the form of networks include: WWW, Internet, transport and financial networks.
Data sets of this type are inherent candidates to serve as input to network-based
unsupervised learning methods.

• The items in the data set are presented in a raw, vector-based format. Normally,
X D V , but we can also use compacted or expanded sets of X to build
up V . The edge set E is unknown and must be estimated using a network
construction technique. Normally, the set of edges is constructed according to
some similarity criteria that are imposed by the network construction process.
Figure 6.1 illustrates this process. In Chap. 4, we have presented several manners
to deal with this problem. Here, we assume that there exists such a function of
network formation technique that simply transforms the vector-based format to a
network.

Suppose the network G D hV ;E i is obtained from the input data items.
Then, the unsupervised learning problem is now posed in a network-based form.
Recall that data clustering turns into a community detection task when the network
structure of the data distribution is well-conditioned.

Though intuitive at first sight, the problem of community detection is actually
not well defined. The main elements that make up the community detection task
per se, that is, the concepts of community and partition, are not rigorously defined.
In view of that, one must accept some degree of arbitrariness or common sense [22].
In fact, some ambiguities are hidden and there are often many equally legitimate
ways of resolving them. It is not surprising, thus, that there are plenty of recipes
in the literature and that people do not even try to ground the problem on shared
definitions.

One point that is at least common sense in the literature is of the identification
of the structural constraint for the existence of communities. In this regard, the
existence of structural and well-defined communities is only possible when graphs
are sparse. Sparseness arises when the number of edges E is of the order of the
number of vertices V in non-weighted graphs, i.e. E D O.V/. If E 
 V , the
distribution of edges among the vertices is too homogeneous for communities to
make sense. In this case, the problem turns into something rather different, close
to data clustering, as the network structure does not convey relevant information
to identify the community structures. The main difference between a community
detection and data clustering task is that, while communities in graphs are related,
explicitly or implicitly, to the concept of edge density (inside versus outside the
community), in data clustering communities are sets of points which are “close” to
each other, with respect to a measure of distance or similarity, defined for each pair
of points [22].
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6.2.3 Overview of the State-of-the-Art Techniques

Given that the task of accurately solving a problem of community detection
is NP-complete, many efforts have been expended towards the development
of approximate and efficient solutions. Some of these solutions include the
spectral method [54], the betweenness-based technique [57], modularity greedy
optimization [52], detection of communities based on the Potts model [70],
synchronization [3], information theory [24], and random walks [92]. A thorough
review on this topic is presented in [22].

Regarding the techniques which aim at detecting overlapping vertices and
communities, various methods have been proposed in the literature [19, 43, 59, 63,
77, 79, 90]. In the research in [90], the authors combine the idea of the modularity
function Q, spectral relaxation, and fuzzy C-Means clustering in order to build a
new modularity function based on a generalized Newman and Girvan’s Q function,
which is an approximate mapping of the network vertices into the Euclidean space.
In the study in [63], the community structure is uncovered by means of a k-clique
percolation and the overlaps among communities are guaranteed by the fact that one
vertex can participate in more than one clique. However, the k-clique percolation
method gives rise to an incomplete cover of the network, i.e., some vertices may not
belong to any community. In addition, the hierarchical structure may not be revealed
for a given k. In contrast, the investigation in [43] introduces an algorithm that
concomitantly finds both overlapping communities and the hierarchical structure
based on a fitness function and a resolution parameter. In turn, the research
in [19] proposes a method to recognize the overlapping community structure by
partitioning a graph built from the original network. A perceptive drawback of the
majority of these techniques resides in the fact that the detection of the overlapping
characteristics of the input network is performed as a separated or dedicated process
apart from the standard community detection technique. In this way, additional
computational time is required. As a result, the whole process may have high
computational complexity.

6.2.4 Community Detection Benchmarks

In this section, we introduce two community detection benchmarks, which are
frequently used for comparing different competing techniques.

Benchmark of Girvan and Newman [28] This benchmark uses an agglomerative
method that groups V initially isolated vertices into M communities. This is
managed by creating links between two vertices with probability pin, if they
belong to the same community, or with probability pout, if they belong to distinct
communities. The values of pin and pout can be arbitrarily chosen to control the
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number of intracommunity and intercommunity links, zin and zout, respectively,
for an arbitrary average network degree Nk. On the basis of these parameters, we
are able to define the fraction of intracommunity links zin=Nk and, likewise, the
fraction of intercommunity links zout=Nk. The quantity zout=Nk defines the mixture of
the communities, i.e., as zout=Nk increases, the communities become more mixed and
harder to be identified.

The benchmark works by varying the mixture of communities, i.e., zout=Nk, for
a fixed network comprising V vertices and M communities. For each run, the
community detection accuracy is registered. After all of the runs have been properly
performed, a curve is plotted in a two-dimensional graph. This curve serves the
purpose of comparing the community detection performance of a control algorithm
in relation to competing techniques.

Benchmark of Lancichinatti et al. [42] The Girvan-Newman’s benchmark in its
original form suffers from several drawbacks, among which we can highlight:

• Each community has necessarily a random network topology. Therefore, the
vertices have similar degrees and therefore have trivial link relationships; and

• Communities are forced to be of the same size.

Motivated by the fact that real-world networks are characterized by heteroge-
neous distributions of vertex degree, whose tails often decay as power laws, the
benchmark of Lancichinatti et al. generates artificial networks with properties that
overcome the size homogeneity of communities and the random network topology
of the Girvan-Newman’s benchmark.

The constructed networks assume that both degree and community size distribu-
tions follow a power law function, with exponents � and ˇ, respectively. Typical
values of real-world networks are: 2 	 � 	 3 and 1 	 ˇ 	 2. Moreover, a mixing
parameter � is employed to interconnect communities in the following manner: each
vertex shares a fraction 1 � � of its links with other vertices of the same community
and a fraction � with vertices of other communities.

The benchmark process consists in varying the mixing parameter � and evalu-
ating the normalized mutual information index, which is a similarity measure of
partitions borrowed from the information theory [16] that measures the mutual
dependence of different random variables.

6.3 Representative Network-Based Unsupervised
Learning Techniques

In the following, we present representative techniques that are members of the
network-based unsupervised learning.



152 6 Network-Based Unsupervised Learning

6.3.1 Betweenness

A natural strategy to identify communities in a network is to detect and subsequently
remove those edges that connect vertices of different communities, so that the com-
munities eventually get disconnected from each other. In this case, the number of
network components represents the number of communities. This is the philosophy
of divisive algorithms. The crucial point resides in finding useful properties of
intercommunity edges that could allow for their identification.

The most popular algorithm is that proposed by Girvan and Newman [28, 57].
In the edge removal process, the algorithm selects edges according to the values of
edge centrality, estimating the importance of edges according to some property or
process running on the network. The steps of the algorithm are:

1. Computation of the centrality for all of the edges;
2. Removal of the edge with the largest centrality: in case of ties with other edges,

one of them is picked at random;
3. Recalculation of centralities on the modified network (network without that

removed edge);
4. Iteration of the cycle from Step 2.

Girvan and Newman focused on the concept of betweenness, which is a
variable expressing the frequency of the participation of edges to a process. They
considered three alternative definitions: geodesic edge betweenness, random-walk
edge betweenness and current-flow edge betweenness. In the following we shall
refer to them as edge betweenness, random-walk betweenness and current-flow
betweenness, respectively.

The betweenness of an edge is the number of shortest paths between all of the
vertex pairs that run along that edge. It is an extension to edges of the popular
concept of site betweenness, introduced by Freeman in 1977 [25] and expresses the
importance of edges in processes like information spreading, where information
usually flows through shortest paths. It is intuitive that intercommunity edges
have large values of edge betweenness, because many shortest paths connecting
vertices of different communities pass through them. As in the calculation of vertex
betweenness, if there are two or more geodesic paths with the same endpoints that
run through an edge, the contribution of each of them to the betweenness of the
edge must be divided by the multiplicity of the paths, as one assumes that the
signal/information propagates equally along each geodesic path.

In random-walk betweenness, one could imagine that signals flow across random
rather than geodesic paths. In this case, the betweenness of an edge is given by
the frequency of passages of a random walker across that edge. A random walker
moving from a vertex follows each adjacent edge with equal probability. The
algorithm works by first choosing a pair of vertices at random, say s 2 V and t 2 V .
The walker starts at s and keeps moving until it finally reaches t, where it stops. We
then compute the probability that each edge in the network is crossed by that random
walker. We perform this process for every given pair of network vertices s and t and
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take the average values. In this process, it is meaningful to compute the net crossing
probability, which is proportional to the number of times the walk crossed an edge
in one direction. In this way one neglects back and forth passages that are accidents
of the random walk and tell us nothing about the centrality of that edge.

In current-flow betweenness, the network is considered as a resistor network,
with edges having unit resistance. If a voltage difference is applied between any two
vertices, each edge carries some amount of current, that can be calculated by solving
Kirchoff’s equations. The procedure is repeated for all of the possible vertex pairs:
the current-flow betweenness of an edge is the average value of the current carried
by the edge. It is possible to show that this measure is equivalent to random-walk
betweenness, as the voltage differences and the random walks net flows across the
edges satisfy the same equations [53].

In practical applications, the Girvan-Newman algorithm with edge betweenness
gives better results than adopting the other centrality measures and is also much
faster to compute than current-flow or random walk betweenness [51]. Nevertheless,
the algorithm is still quite slow and is not applicable to large-scale graphs. In the
original version of the Girvan-Newman algorithm [28], the authors had to deal with
the entire hierarchy of partitions, as they had no procedure to say which partition
is the best. In a successive refinement [57], they incorporate the process of selecting
the best partition into the algorithm by employing the largest value of modularity.

Chen and Yuan [10] pointed out that considering all of the possible shortest
paths in the evaluation of the edge betweenness may lead to unbalanced partitions,
with communities of very different sizes. In order to overcome that problem, they
proposed to count only non-redundant paths, i.e. those paths whose endpoints are
all different from each other: the resulting betweenness yields better results than
standard edge betweenness for mixed clusters on the benchmark graphs of Girvan
and Newman.

6.3.2 Modularity Maximization

The scientific community considers the modularity algorithm as a seminal work in
community detection. This class of algorithms relies on the fact that maximizing
modularity is a good strategy for obtaining well-established communities. Before
we discuss some representative methods that maximize modularity, we first recap
the concept of network modularity, which has already been introduced in Defini-
tion 2.50.

The modularity measure quantifies how good a particular division of a network
is [13, 55] and is designed to measure the strength of division of a network
into modules (also called groups, clusters or communities). Generally, it ranges
from 0 to 1. When the modularity is near 0, it means that the network does not
present community structure, suggesting that the links are disposed at random in
the network. As the modularity grows, the community structure gets more and
more defined, that is, the mixture between communities gets smaller and therefore
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the fraction of links inside communities is larger than that between different
communities. Mathematically, the network modularity is given by:

Q D 1

2E

X

i;j2V

�

Aij � kikj

2E

�

1ŒciDcj�; (6.1)

in which E represents the total number of edges in the network; Aij indicates
the edge weight linking i to j; ki stands for the degree of the vertex i; ci is the
community of vertex i; and 1ŒciDcj� indicates the Kronecker’s Delta or the indicator
function, which produces 1 if ci D cj and 0, otherwise. Essentially, the modularity
captures how well the network structure fits to a given set of communities. In the
computation, random chances are canceled out by subtracting the edge quantity that
is expected within a community from an equivalent random network.

Modularity has been used to compare the quality of the partitions obtained
by different methods, but has also been used as an objective function to be
optimized [52]. Unfortunately, exact modularity optimization is a problem that
is computationally hard [6] and so approximation algorithms are necessary when
dealing with large networks.

The first proposed method to perform modularity optimization was done by
Clauset et al. [13]. Since then, several other versions have been proposed [6, 11, 31,
66, 83]. The greedy algorithm proposed by Clauset et al. may produce modularity
values that are significantly lower than what can be found by using, for instance,
simulated annealing [31]. Moreover, the method proposed in [13] has a tendency
to produce super-communities that contain a large fraction of the vertices, even
on synthetic networks that have no significant community structure. This artefact
also has the disadvantage to slow down the algorithm considerably and makes it
inapplicable to networks of more than a million vertices. The Louvain method [6]
is the fastest modularity optimization algorithm proposed so far. In addition, the
mechanism underlying the Louvain algorithm circumvents the undesired effect of
unbalanced communities encountered in Clauset et al. by introducing tricks in order
to balance the size of the communities being merged, thereby speeding up the
running time and making it possible to deal with networks that have a few million
vertices.

In the following, we first discuss the traditional modularity optimization method
proposed by Clauset et al. [13] and then the Louvain method [6].

6.3.2.1 Clauset et al. Algorithm

At each time step of the modularity maximization, the algorithm of Clauset
et al. [13] chooses to merge two communities that lead to the largest increase in
the modularity Q, i.e., it finds the largest modularity increment Q. In the initial
step, the increment in the network modularity if communities i and j are joined is:
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Qij D
(

1
2E � kikj

.2E/2 ; if i and j are connected.

0; otherwise.
(6.2)

Two communities, say i and j, are merged, in such a way that their merge causes
the largest increment (or the least decrement) of the modularity at a particular step.
The algorithm is agglomerative and each vertex represents a community in the initial
configuration. If one wants to stop the merges when the network configuration
reaches its maximum modularity, one can use the stop criterion as follows: once
a negative increment is encountered in this greedy process, the maximum global
value associated to the modularity has been reached and subsequent merges will
only monotonically decrease the modularity of the network. Therefore, by looking
at the signal of Qij at each iteration, it is sufficient to know when to stop merging.
In addition, no restrictions on the communities to be merged are specified by the
original model.

A major advantage of the modularity greedy algorithm is that no model selection
is required, as no parameters need to be adjusted. Moreover, we have a nice stopping
criterion for the algorithm due to the behavior of the modularity curve.

A drawback of the original modularity algorithm is in its resolution limit. Several
studies have shown that it is unable to detect very small communities [23, 39, 41].
Roughly speaking, the modularity compares the number of edges inside a commu-
nity with the expected number of edges that one would find in the community if
the network were a random network with the same number of vertices, each of
which with the same degree, but with edges randomly reattached. This random
null model implicitly assumes that each vertex can get attached to any other vertex
of the network. Such assumption is however unreasonable if the network is very
large, as the horizon of a vertex includes a small part of the network, ignoring
most of it. Moreover, this null model implies that the expected number of edges
between two groups of vertices decreases if the size of the network increases.
So, if a network is large enough, the expected number of edges between two
groups of vertices in the modularity’s null model may be smaller than one. If this
happens, a single edge between the two communities would be interpreted by
modularity as a sign of a strong correlation between these two communities, and the
modularity optimization procedure would lead to the merge of them, independently
of the communities’ features. So, even weakly interconnected complete graphs,
which have the highest possible density of internal edges, and represent the best
identifiable communities, would be merged by the modularity optimization process
if the network is sufficiently large. For this reason, optimizing modularity in large
networks would fail to identify small communities, even when they are well defined.
This bias is inevitable for methods like modularity optimization, which rely on a
global null model.
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6.3.2.2 Louvain Algorithm

The Louvain algorithm [6] is divided into two phases that are repeated iteratively.
Assume that we start with a weighted network of V vertices. First, we assign a
different community to each vertex. So, in this initial partition, there are as many
communities as there are vertices. Then, for each vertex i, we consider the neighbors
j of i and we evaluate the gain of modularity that would take place by removing
i from its community and by placing it in the community of j. Vertex i is then
placed in the community for which this gain is maximum, but only if this gain is
positive. If no positive gain is possible, vertex i stays in its original community.
This process is applied repeatedly and sequentially for all of the vertices until no
further improvement can be achieved. When the equilibrium is reached, the first
phase of the Louvain algorithm is then complete. Note that a vertex may be, and
often is, considered several times in this community flipping process. This first
phase stops when a local maximum of the modularity is attained, i.e., when no
individual move can improve the modularity. One should also observe that the
output of the algorithm depends on the order in which the vertices are processed.
Preliminary results on several test cases seem to indicate that the ordering of the
vertices does not have a significant influence on the achieved maximum modularity.
However, the ordering can influence the computation time. The problem of choosing
an order is thus worth studying since it could give good heuristics to enhancing the
computation time.

Part of the efficiency of the algorithm results from the fact that the gain in
modularity Q obtained by moving an isolated vertex i into a community m can
easily be computed by:

Q D
"

˙in C si;in

2E
�
�

˙tot C si

2E

�2
#

�
"

˙in

2E
�
�

˙tot

2E

�2

�
� si

2E

�2

#

; (6.3)

in which ˙in is the sum of link weights inside community m, ˙tot is the sum of
link weights incident to vertices in community m, si is the sum of the link weights
incident to vertex i (in-strength), si;in is the sum of link weights from i to vertices in
community m, and E is the sum of link weights in the network. A similar expression
is used to evaluate the change of modularity when i is removed from its community.
In practice, one therefore evaluates the modularity change by removing i from its
community and then by moving it into a neighboring community.

The second phase of the algorithm consists in building a new network whose
vertices are now the communities found during the first phase. To do so, the weights
of the links between the new vertices are given by the sum of the link weights
vertices in the corresponding two communities [4]. Links between vertices of the
same community lead to self-loops for this community in the new network. Once
this second phase is completed, it is then possible to reapply the first phase of
the algorithm to the resulting weighted network and to iterate.
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This simple algorithm has several advantages. First, the procedure is intuitive
and easy to implement, and the outcome is unsupervised. Moreover, the algorithm is
extremely fast, i.e., computer simulations on large ad-hoc modular networks suggest
that its complexity is linear on typical and sparse data. This is due to the fact that the
possible gains in modularity are easy to compute with the above formula and that
the number of communities decreases drastically just after a few passes so that most
of the running time is concentrated on the first iterations. The so-called resolution
limit problem of modularity is also circumvented due to the intrinsic multi-level
nature of the algorithm.

6.3.3 Spectral Bisection Method

Spectral graph theory is concerned with graph properties such as its characteristic
polynomial, eigenvalues, and eigenvectors of matrices associated to the adjacency
matrix or the Laplacian matrix of the graph. We define the spectrum of a finite graph
G as the spectrum of the adjacency matrix A, that is, its set of eigenvalues and
their multiplicities together with the set of orthonormal eigenvectors. The Laplace
spectrum of a finite undirected graph without loops is the spectrum of the Laplace
matrix L.

An undirected network with real-valued edges, for example, has a symmetric
adjacency matrix and therefore has real eigenvalues. The set of all of these
eigenvalues and the corresponding complete set of orthonormal eigenvectors make
up the graph spectrum. While the adjacency matrix depends on the vertex labeling
or ordering, its spectrum is graph invariant. The spectral bisection method is one
type of algorithm that falls into this category.

Spectral methods for graph partitioning have been known to be robust but
computationally expensive.

The use of spectral methods to compute cuts in graphs was first considered by
Donath and Hoffman [18] who first suggested using the eigenvectors of adjacency
matrices of graphs to find partitions. Fiedler [12] associated the second smallest
eigenvalue of the Laplacian matrix with its connectivity and suggested partitioning
the graph by splitting vertices according to their values in the corresponding
eigenvector. Thus, the eigenvector corresponding to the second smallest eigenvalue
(i.e., the algebraic connectivity) of the Laplacian matrix of a graph G is termed
as the Fiedler vector, while the corresponding eigenvalue, the Fiedler value. Since
then, spectral methods for computing and analyzing graph properties have received
increasing attention by the community [2, 37, 56, 91].

In one of these spectral methods [54], the spectral bisection method defines the
cut size R of a graph partition into two groups as:

R D 1

2

X

i;j2V
Aij1Œci¤cj�; (6.4)
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in which the indicator function makes sure that only those edges crossing different
communities are considered in the computation of the cut size R.

Consider the index vector s, whose component si is C1 if vertex i is in one group
and �1 if it is in the other group:

si D
 C1; if vertex i belongs to group 1.

�1; if vertex i belongs to group 2.
(6.5)

Then, R can be rewritten as:

R D 1

4

X

i;j2V
.1 � sisj/Aij: (6.6)

As the degree of vertex i is ki D P
j2V Aij, then we have

P
i;j2V Aij D P

i2V ki D
P

i2V s2
i ki D P

i;j2V sisjki1ŒiDj�.
Then, R can be rewritten as:

R D 1

4

X

i;j2V
sisj.ki1ŒiDj� � Aij/: (6.7)

In matrix form, we have:

R D 1

4
sT Ls; (6.8)

in which sT is the transpose of s and L D ki1ŒiDj� � Aij is the Laplacian matrix.
Let us write s as a linear combination of the orthonormal eigenvectors vi of the

Laplacian:

s D
X

i2V
aivi; (6.9)

in which ai D vT
i s. The normalization implies sT s D V and

P
i2V a2

i D V , where V
is the number of network vertices. Then, we have:

R D
X

i2V
aiv

T
i L
X

j2V
aivi D

X

i;j2V
aiaj�j1ŒiDj� D

X

i2V
a2

i �i; (6.10)

in which �i is the eigenvalue of L corresponding to the eigenvector vi and we have
made use of vT

i vj D 1ŒiDj�.
Assume that the eigenvalues are labeled in increasing order �1 	 �2 	 : : : 	 �V .

The task of minimizing R can then be equivalently equated as the task of choosing
nonnegative quantities a2

i , in a way to place larger weights to the components that
correspond to the smallest eigenvalues in the sum of R.
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The sum of every row (and column) of the Laplacian matrix is zero:
P

j2V Lij DP
j2V .ki1ŒiDj� � Aij/ D P

j2V ki � ki D 0. Thus, the vector .1; 1; : : : ; 1/ is always
an eigenvector of the Laplacian with eigenvalue zero. The Laplacian is symmetric
and hence its eigenvalues are all squares of real vectors, i.e., all eigenvalues of the
Laplacian are nonnegative, i.e., 0 D �1 	 �2 	 : : : 	 �V .

Since the eigenvectors are orthogonal, a good approximate solution can be
obtained by choosing s to be as close to parallel with v2 as possible, i.e., minimizing:

jvT
2 sj D j

X

i2V
v

.2/
i sij 	

X

i2V
jv.2/

i j: (6.11)

A simple choice for defining the clusters (C1 or �1) is:

si D
(

C1; if v
.2/
i � 0:

�1; if v
.2/
i < 0:

(6.12)

6.3.4 Community Detection Using Particle Competition

This technique is proposed in [68]. The evolution of this model is very similar
to various natural and social processes, such as resource competition, territory
exploration by animals, election campaigns, etc. In this model, particles explore a
network by combining roles of random and deterministic moving. The investigation
of the behavior of this technique reveals that the introduction of a certain level
of randomness can yield a big gain in the learning process. This phenomenon
is analogous to stochastic resonance in which the performance of a nonlinear
deterministic system can be largely enhanced by a certain level of noise. The study
shows that learning techniques consisting of only deterministic rules are insufficient.
This is because the number of rules required to completely describe even a very
specific environment can be prohibitively high. In a dynamical environment, the
situation gets worse because the system should keep acquiring new knowledge over
time. In this way, a certain level of randomness or chaos is essential for the learning
process. The random term models the “I don’t know” state and serves as a novelty
finder. It can also help learning agents, like particles in this model, in escaping from
traps in the physical or learning spaces.

The technique relies on the competition of several particles in a networked
environment to identify communities. These particles navigate in the network with
the purpose of dominating new vertices, while also trying to defend their previous
dominated territory. In the long run, the subsets of vertices that each particle
dominates represent the communities.

Two dynamical variables for the j-th particle, denoted by �j, are maintained:

• �v
j .t/: it represents the vertex that particle �j is visiting at time t.
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• �!
j .t/ 2 Œ!min; !max�: it indicates the exploration potential of particle �j at time t,

where !min and !max are scalars that define the minimum and maximum potential
that each particle can reach in the learning process, respectively.

The update rules that govern the movement and the exploration potentials of the
particles are given by:

�!
j .t C 1/ D

8
<̂

:̂

�!
j .t/ if v

�
i .t/ D 0

�!
j .t/ C .!max � �!

j .t//� if v
�
i .t/ D �j ¤ 0

�!
j .t/ � .�!

j .t/ � !min/� if v
�
i .t/ ¤ �j ¤ 0

; (6.13)

in which � controls the exploration level variation that each particle gains or loses,
depending on the nature of the vertex that it visits. Specifically, if it visits an already
dominated vertex, then the particle’s exploration level is strengthened; otherwise,
it is decremented. The location of particle �j at t C 1, �v

j .t C 1/, is determined by
sampling from a mixture of deterministic and random walk distributions.

Each vertex vi in the network is represented by three scalar variables:

• v
�
i .t/: it defines the proprietary particle of the vertex vi at time t.

• v!
i .t/: it indicates the level of domination imposed by proprietary particle v

�
i .t/

on vertex vi at time t.
• v

�
i .t/: it symbolizes whether or not vertex vi is being visited by any of the

particles at time t.

With the help of these variables, the dynamical behaviors of the quantities related
to the vertices in the network are governed by the following set of equations:

v
�
i .t C 1/ D


�j if v

�
i .t/ D 1 and v!

i .t/ D !min

v
�
i .t/ otherwise

; (6.14)

v!
i .t C 1/ D

8
<

:

v!
i .t/ if v

�
i .t/ D 0

maxf!min; v!
i .t/ � vg if v

�
i .t/ D 1 and v

�
i .t/ ¤ �j

�!
j .t C 1/ if v

�
i .t/ D 1 and v

�
i .t/ D �j

; (6.15)

in which v denotes the exploration level fraction lost by a vertex, if a rival particle
visits it.

The detection algorithm begins by putting K particles into random vertices.
At the beginning of the dynamical process, each particle �j and each vertex vi

have their potentials set to �!
j .0/ D !min and v!

i .t/ D !min, respectively. At each
iteration, each particle travels to a neighboring vertex, in accordance with a
movement policy that consists in a combination of deterministic and random walks.
In the former, the particle randomly visits the neighbors of the currently visited
vertex. In the latter, the particle prefers to visit vertices that are already being
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dominated by the same particle. In the following, we illustrate cases that can be
faced when a particle j, �j, is on the process of choosing the next vertex to visit:

• If the visited vertex vi still does not belong to any particles, then initially v
�
i .t/ D

0. In this case, such vertex starts to be dominated by the visiting particle, i.e.,
v

�
i .t/ D �j. The particle’s potential �!

j .t/ is not altered and the vertex’s potential
receives the particle’s potential: v!

i .t/ D �!
j .t/;

• If the visited vertex is dominated by the same particle, the visiting particle’s
potential is incremented and vi receives the new potential of that particle: v!

i .t/ D
�!

j .t/;
• If the visited vertex belongs to a rival particle, then the particle’s and the vertex’s

potentials are weakened. If the particle’s potential �!
j .t/ reaches a value lower

than !min, then this particle is reset to a new randomly chosen vertex. If the
potential of the vertex v!

j .t/ reaches a value lower than !min, then the vertex
becomes no longer owned by the previous particle, i.e., it regresses to the free,
non-dominated state: v!

j .t/ D 0.

Thus, the vertex’s level of domination increases if it is visited by the same particle
that dominates it at the present moment. In contrast, during the visit of a rival
particle, the domination level imposed by the current dominating particle on that
vertex is weakened. If this domination is not strong enough, the proprietary particle
loses its domination over that vertex. In the long run, it is expected that each particle
will dominate a community in the network.

The model proposed in [68] has two noticeable features: (1) high community
detection rates and (2) low computational complexity. However, in its original
form, only a procedure of particle competition is introduced, without any formal
definitions. This precludes any further analyses or predictions on the model’s
behavior. In Chap. 9, we show a rigorous model for particle competition that is
governed by a stochastic competitive dynamical system. That same model is also
adapted to a semi-supervised learning environment in Chap. 10, where we also
investigate the relevant problem of imperfect learning.

6.3.5 Chameleon

This is a well-known method in the network-based community for data cluster-
ing [36]. In general, existing clustering algorithms use static models of the clusters
and do not use information about the nature of individual clusters as they are
merged or divided. Furthermore, while some schemes ignore the information about
the aggregate interconnectivity of data items in two clusters, other schemes ignore
information about the closeness of two clusters as defined by the similarity of the
closest items across two clusters. By only considering either interconnectivity or
closeness, these algorithms can easily select and merge the wrong pair of clusters.

Chameleon is an agglomerative hierarchical clustering algorithm that employs
both interconnectivity and closeness features in identifying the most similar pairs
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of clusters. It is designed to overcome the major limitation of learning methods that
assume a static, user-supplied interconnectivity model. Such models are inflexible
and can easily lead to incorrect merge decisions when the model under- or
overestimates the interconnectivity of the data set or when different clusters exhibit
different interconnectivity characteristics. For that, Chameleon uses a combined
approach to model the degree of interconnectivity and closeness between each pair
of clusters. This approach considers the internal and adaptive characteristics of the
clusters themselves. Thus, it does not depend on a static, user-supplied model and
can automatically adapt to the internal characteristics of the merged clusters.

Given a vector-based data set, Chameleon first constructs a network using the
k-nearest neighbors method, that is, each data sample is represented by a vertex and
it is connected to the other k most similar data samples using a similarity metric.
Then, Chameleon finds the initial partition of the network using an algorithm that
partitions the network into several communities in a way to minimize the edge cut.
Since each edge in the k-nearest neighbor graph represents the similarity among
data points, a partitioning that minimizes the edge cut effectively minimizes the
relationship (affinity) among data points across the partitions. After finding sub-
clusters, Chameleon switches to an algorithm that repeatedly combines these small
subclusters, using the cluster similarity measures, which determine the similarity
between pairs of clusters by looking at their Relative Interconnectivity (RI) and
Relative Closeness (RC). The definitions of these two internal indices are given in
the following.

• Relative interconnectivity. Relative interconnectivity between clusters Ci and
Cj, denoted as RI.Ci; Cj/, is defined as the absolute interconnectivity between
Ci and Cj normalized with respect to the internal interconnectivity of the two
clusters Ci and Cj. The absolute interconnectivity between a pair of clusters Ci

and Cj, symbolized as EC.Ci; Cj/, is defined as the sum of the weight of the edges
that connect vertices in Ci to vertices in Cj. This is essentially the edge-cut of the
cluster containing both Ci and Cj such that the cluster is broken into Ci and Cj.
The internal interconnectivity of a cluster Ci can be easily captured by the size of
its min-cut bisector EC.Ci/, which is the weighted sum of edges that partition the
graph into two roughly equal parts. Thus, the relative interconnectivity between
Ci and Cj is:

RI.Ci; Cj/ D jEC.Ci; Cj/j
jEC.Ci/jCjEC.Ci/j

2

: (6.16)

• Relative closeness. The closeness of clusters of Ci and Cj, RC.Ci; Cj/, is the
average weight of the edges that connect vertices in Ci to those in Cj. It provides
a good measure of the affinity between the data items along the interface layer of
the two clusters. At the same time, this measure is tolerant to outliers and noise.
To get a cluster’s internal closeness, we take the average of the edge weights
across a min-cut bisection that splits the cluster into two roughly equal parts. The
relative closeness between a pair of clusters is the absolute closeness normalized
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with respect to the internal closeness of the two clusters:

RC.Ci; Cj/ D
NSEC.Ci; Cj/

jCij
jCijCjCj j NSEC.Ci/ C jCjj

jCijCjCj j NSEC.Cj/
; (6.17)

where NSEC.Ci/ and NSEC.Cj/ are the average weights of the edges that belong in the
min-cut bisector of clusters Ci and Cj, and NSEC.Ci; Cj/ is the average weight of
the edges that connect vertices in Ci and Cj. Terms jCij and jCjj are the number of
data points in each cluster. This equation also normalizes the absolute closeness
of the two clusters by the weighted average of the internal closeness of Ci and Cj.
This feature discourages merges of small sparse clusters into large dense clusters.

Chameleon selects pairs to merge for which both RI and RC are high. That is,
it selects clusters that are well interconnected as well as close together. The merge
scheme implemented in Chameleon uses a function to combine the relative inter-
connectivity and relative closeness. For this purpose, Chameleon selects the pair of
clusters that maximizes

RI.Ci; Cj/ � RC.Ci; Cj/
˛; (6.18)

where ˛ is a user-specified parameter. If ˛ > 1, then Chameleon gives a higher
importance to the relative closeness, and when ˛ < 1, it gives a higher importance
to the relative interconnectivity.

The algorithm is well suited for applications in which the volume of the available
data is large. For large V , the worst-case time complexity of the algorithm is
O.V.log2 V C M//, where M is the number of clusters formed after completion
of the first phase of the algorithm.

The good performance of the Chameleon is recognized when applied to low-
dimensional spaces. However, the performance of Chameleon in high-dimensional
spaces is still not thoroughly clarified [87]. The time complexity of the Chameleon
algorithm in high-dimensional spaces is O.V2/.

6.3.6 Community Detection by Space Transformation
and Swarm Dynamics

We describe the technique introduced in [17, 61], which is based on collective
dynamics. Much interest has been spent in the study of collective motion of
biological entities, like schools of fish, flocks of birds, herds of hoof animals or
swarms of insects. Swarm behavior is a collective behavior exhibited by animals
of similar size that aggregate together, perhaps milling about the same spot or
perhaps moving en masse or migrating in some direction. The swarm approach
seeks methods consisting of a large number of simple and locally interacting agents
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that collectively present macroscopically complex organizations [29, 81]. Swarm
behavior techniques have been successfully applied to solve various optimization
problems [14].

The community detection algorithm using space transformation and swarm
dynamics uses collective dynamics in a networked environment and consists of two
serial steps. In the first step, the method determines how data items are represented
as a network. In the second step, it detects clusters or communities by partitioning
that constructed network using rules built on neighborhood agreements. This is a
divisive hierarchical algorithm, in which we initially consider the entire network as
a large cluster and we split it into smaller clusters, until each vertex corresponds
to a cluster. Due to its hierarchical nature, we can illustrate the algorithm’s result
using a dendrogram, a special kind of tree where each vertex represents a cluster.
A horizontal cut on the dendrogram represents a partition of the data set.

We summarize these two steps in the following:

1. Network formation: In this step, a weighted complete network is constructed
using the input data set, in which each vertex represents a data sample. Then,
a non-weighted network is generated using the k-NN method, i.e., each vertex
is connected to its k most similar vertices. The similarity is determined by
calculating the Euclidean distance between pairs of data samples.1

2. Angle’s updating rule: After the network is constructed, the algorithm organizes
the vertices on a circle. The displacement of vertices is conducted in a random
manner. Thus, each vertex vi has an initial angle �i.t D 0/ that is randomly
chosen over the range Œ0; 2�/. While the angle’s updating rule approximates
vertices that belong to the same cluster, it also separates vertices that belong
to different clusters. At each time step t, the method updates the angle of each
vertex according to the angles of its neighbors. We define the angle’s updating
rule by the following equation:

�i.t C 1/ D �i.t/ C �i.t/
h P

j2N .vi/
Aij�j.t/P

j2N .vi/
Aij

� �i.t/
i

; (6.19)

in which N .vi/ is the set of neighbors of vertex vi, �i.t/ is the moving rate of vi

at time step t, and Aij is the weight that represents the influence of neighbor vj

on vi.
The edge weight Aij aims at approximating vertices that belong to the same

cluster. It is composed of two parts: CN.vi; vj/ and SN.vi; vj/. Mathematically,
Aij is expressed as:

Aij D CN.vi; vj/ � SN.vi; vj/: (6.20)

The idea of the term CN.vi; vj/ is to model physical proximity between vi

and vj. As such, it gives more importance to vertex vj the closer vi and vj are. This

1See Chap. 4 for a thorough review on network formation methods and similarity functions.



6.3 Representative Network-Based Unsupervised Learning Techniques 165

kind of behavior can effectively be captured by modeling CN.vi; vj/ according
to the following rule:

CN.vi; vj/ D e�˛d.vi;vj/; (6.21)

in which parameter ˛ controls for the penalization decay rate of the Euclidean
distance d.vi; vj/ from vi to vj. The algorithm can change the relative importance
of a neighbor by adjusting ˛. The angle’s updating rule can also be applied
to non-weighted networks. In this case, CN.vi; vj/ D 1 for all of the pairs of
neighbors vi and vj.

In contrast to that, the term SN.vi; vj/ models the topology similarity between
vi and vj. The hypothesis is: whenever two vertices belong to the same cluster,
they are likely to share a large number of common neighbors. With that in mind,
we can write SN.vi; vj/ as follows:

SN.vi; vj/ D c.vi; vj/

jN .i/j ; (6.22)

in which c.vi; vj/ is the number of common neighbors shared by vi and vj and
jN .i/j is the number of neighbors of i. In this way, SN.vi; vj/ yields large values
for vertices that share a large portion of common neighbors, regardless of the
physical distance. Conversely, if they share only a small fraction of common
neighbors, SN.vi; vj/ outputs small values.

Intuitively, the term CN.vi; vj/ forces angles of neighbor vertices to approx-
imate to that of vi and SN.vi; vj/ stops such an approximation between pairs
of vertices that possibly belong to different clusters. However, these two mech-
anisms still cannot eliminate interference between different groups, which may
cause the angles of all of the network vertices to approach each other. To mitigate
this problem, one solution is to reduce the moving rate �i.t/ in (6.19) as a function
of how quickly the angles change as follows:

�i.t/ D exp �
�

ˇ

�.vi/

�

; (6.23)

in which �.vi/ is the standard deviation of the angle distribution and ˇ is a user-
defined parameter to scale the updating process of �i.t/ as a function of �.vi/.

The moving rate parameter �i.t/ decreases as the standard deviation �.vi/

among angles decreases. At the beginning, each angle takes a random value. In
this way, the standard deviation of the angles distribution �.vi/ is expected to
be high in such a way that �i.t/ assumes large values, say �i.t/ � 1. In this
situation, angles of neighboring vertices approximate freely to form angle bands.
As time progresses, �.vi/ and consequently �i.t/ assume smaller values. When
�i.t/ reaches a very small value, say �i.t/ � 0, all of the angles remain steady
and a stable state is reached.
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To illustrate the algorithm, we use a random clustered network with three
unbalanced communities. We inspect the evolution of the angle’s update process
in Fig. 6.4. In this case, the algorithm identifies three communities in the network as
there are three perceptive angle bands in the time series.

Now, we see the performance of the method in a real-world data set, which is
a social network describing the associations (interactions) among dolphins [46].
This network has 62 vertices and 159 edges without weights. It presents two well-
known communities, formed by 21 and 41 elements, respectively. Inspecting how
the vertices’ angles are updated in Fig. 6.5, it is possible to identify two distinct
groups or communities of angles. In Fig. 6.6, we see the same simulation results
but through a dendrogram perspective, where the color of each vertex indicates the
community to which it originally belongs.
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Fig. 6.4 Evolution of the angle’s updating process. In the first iterations, the vertices’ angles
are disordered due to the random arrangements. After some iterations, they converge to stable
subgroups. Reproduced from [62] with permission from the author
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Fig. 6.5 Evolution of the angle’s updating process for the social network presented in [46]. Two
communities can be clearly identified by inspecting the time series. Reproduced from [62] with
permission from the author
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Fig. 6.6 Dendrogram showing the community detection results for the social network presented
in [46]. The dendrogram reveals the division of data into two original communities, indicated by
41 green elements and 21 red elements. Reproduced from [62] with permission from the author

6.3.7 Synchronization Methods

Physicists have given increasing attention to the dynamics of a diversity of complex
systems. In special, several studies have investigated the paradigmatic analysis
of large populations of coupled oscillators [40, 64, 78, 85]. The emergence of
synchronization patterns in these systems is closely related to the underlying
topology of interactions. In this section, we discuss methods that rely on dynamical
processes towards synchronization. In this respect, these models show different
patterns over time that are intrinsically connected to the hierarchical organization
of communities in complex networks. The ubiquity of synchronization phenomena
in the real world makes this approach interesting from a physical and biological
perspectives [3].

One of the most successful attempts to understanding synchronization phenom-
ena comes from Kuramoto [40], who analyzed a model of phase oscillators coupled
by the sine of their phase differences. The model is rich enough to display a large
variety of synchronization patterns and sufficiently flexible to be adapted to many
different contexts [1].

The Kuramoto model consists of V coupled phase oscillators, in which the phase
of the i-th unit, denoted by �i.t/, evolves in time according to the following dynamic:

d�i

dt
D !i C

X

j2V
Aij sin.�j � �i/; (6.24)

for i 2 V . The term !i stands for the natural frequency of the i-th oscillator and
Aij describes the coupling between units. The coupling weights are extracted from a
network, in which each vertex is an oscillator and edge weights denote the coupling
strength between different oscillators.

In particular, some works have shown that highly interconnected sets of oscil-
lators synchronize more easily that those with sparse connections [48, 60]. This
scenario suggests that, for a complex network with nontrivial connectivity patterns,
starting from random initial conditions, those highly interconnected units forming
local clusters will synchronize first. Then, in a sequential process, larger and larger
spatial structures will do the same until we reach a final state in which the entire
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Fig. 6.7 States assumed by the population of coupled oscillators. (a) Random initial configuration;
(b) Intermediate state (four communities); (c) Final global synchronization state

population has the same phase. This process is expected to occur at different
time scales whenever clear community structures exist. Thus, the dynamical route
towards the global attractor reveals different topological structures, presumably
those which represent communities.

For an artificial random clustered network with four communities, Figs. 6.7a–c
show, respectively, the initial configuration of the oscillators, the formation of four
synchronized communities of oscillators, and the global synchronization state.

Li et al. [44] has shown that communities are delineated by interface or overlap-
ping vertices [63], in which the oscillating frequency is intermediate among different
modules, in such a way that synchronization techniques cannot clearly group
these interface vertices into a single community. From this reported shortcoming,
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Wu et al. [86] has developed an alternative method that is capable of detecting
these overlapping vertices. Contrasting to the result of Arenas et al. [3], in which
the stable state is necessarily reached only by a global synchronization, in the
research of Wu et al. [86], the synchronization may occur within modules. Thus,
after the method synchronizes the oscillators between different communities, we
can understand the phases that are in the valley between different modules to be
the overlapping vertices. In order to do so, besides the global coupling supplied
by the traditional Kuramoto model, another type of coupling, which is negative,
between oscillators that are not connected is applied. The network dynamic can be
mathematically expressed as:

d�i

dt
D !i C Kp

V

X

j2V
Aij sin.�j � �i/ � Kn

V

X

j2V
.1 � Aij/ sin.�j � �i/: (6.25)

In this adapted format, the phases of the interconnected oscillators i and j are
modeled by a positive coupling (with coupling strength Kp) in accordance with the
original expression in (6.24). Thus, their phases evolve together. Non-connected
vertices in the network, in contrast, tend to have opposite phases, on account
of the negative coupling forced by Kn. In summary, after reaching the dynamic
equilibrium, oscillators that make up the same community in the network will
indicate similar phase values. Opposed to that, oscillators that represent overlapping
vertices will have their phases in-between different modules [44].

6.3.8 Finding Overlapping Communities

The community structure is a fundamental property of most real-world networks,
i.e., it is commonly observed that groups of vertices are densely interconnected.
It would be oversimplifying, however, if we assumed that communities are well-
defined partitions over the entire network. This is a strong assumption that may not
be fulfilled in many cases. First, it is very natural for a vertex to participate in more
than one community at a time; i.e., communities often overlap. Second, some ver-
tices might not participate in any community; i.e., we might have outliers [33]. An
outlier is not necessarily solitary, and it might have some negligible connection with
some communities. Finally, some vertices of a community might be special in the
sense that they are linked with almost all of the others. In the literature, these vertices
are known as hubs, leaders, or centers. Since many real-world networks are huge,
the analysis usually starts from the identification of the underlying communities
possibly with overlapping characteristics. Needless to say, the community structure
will greatly benefit from the simultaneous detection of hubs and outliers [9].

We can easily find overlapping communities in real-world networks. A person,
for instance, can be member of a social network, of his/her family community, and
also of his/her institutional community. In community detection or network-based
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data clustering, the detection of overlapping communities is specially interesting for
fuzzy clustering.

In this section, we present some popular overlapping community detection
techniques.

6.3.8.1 Clique Percolation

The most popular community detection with overlapping vertices is the Clique
Percolation Method (CPM) [63]. CPM relies on the assumptions that communities
consist of overlapping sets of fully connected subgraphs and that it is unlikely the
existence of cliques in intercommunity edges. The general idea of the method is
to detect communities by searching for adjacent cliques. It begins by identifying
network cliques of size k, termed as k-cliques. Once these have been identified, a
new collapsed graph is constructed in such a way that each vertex represents each
of these k-cliques. Two vertices in the collapsed graph are connected if the k-cliques
that represent them share k � 1 members. In this case, we say that these two k-
cliques are adjacent. The union of adjacent k-cliques is called k-clique chain. Finally,
a k-clique community is the largest connected subgraph obtained by the union of a
k-clique and of all k-cliques that are connected to it.

Since a vertex can be in multiple k-cliques simultaneously, the identification of
overlapping communities is possible. CPM is suitable for networks with densely
connected parts. Empirically, small values of k (typically between 3 and 6) often
give good results [30, 42, 63].

CPM has been extended to weighted, directed, and bipartite graphs. For weighted
graphs, in principle, one can follow the standard procedure of thresholding the
edge weights, and of applying the method on the resulting graph, treating them
as non-weighted. Farkas et al. [20] has proposed to threshold the weight of cliques,
defined as the geometric mean of the weights of all edges of the clique. The value
of the threshold is chosen slightly above the critical value at which a giant k-clique
community emerges, in order to get the richest possible variety of clusters.

CPM has a notable drawback in that it assumes that the network has a large
number of cliques [22]. As such, CPM may fail to give meaningful covers for
graphs with few cliques, like technological networks and some social networks.
In contrast, if the network presents many cliques, the method may deliver trivial
community structure, like a cover consisting of the entire network as a single giant
cluster. A more fundamental issue is the fact that the method does not look for
actual communities, consistent with the shared notion of dense subgraphs, but for
subgraphs “containing” many cliques, which may be quite different objects than
communities. (For instance, they could be “chains” of cliques with low internal
edge density.) Another problem is that there are considerable fractions of vertices
in real networks that are left out of the communities, like leaves or singletons. One
could think of some postprocessing procedure to include them in the communities,
but for that it is necessary to introduce a new criterion, outside the framework that
inspired the method. Furthermore, besides empirical work, it is not clear a priori
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which values of k one has to choose to identify meaningful structures. Finally, the
criterion to choose the threshold for weighted networks and the definition of directed
k-cliques are also rather arbitrary.

6.3.8.2 Bayesian Nonnegative Matrix Factorization Algorithm

This method has been described in various works [9, 21, 67, 75]. It relies on a
centrality matrix of vertices and a degree matrix of communities. The importance of
a vertex to a community is represented by its centrality. The centrality matrix, hence,
carries the vertices’ importance in each community. An element of the degree matrix
of communities, which is diagonal, indicates the degree of the community, and is
equivalent to the summation of the expected degree of all vertices of that community.
The algorithm then learns these two quantities by the multiplicative updating rule
using a nonnegative matrix factorization style. These matrices enable us to rank each
vertex’s centrality in each community, and use the community degree as a cutting off
criterion. Since the communities are retrieved independently, when we are working
on a new community, we do not need to care whether or not its vertices belong to
previously identified communities. The overlapping communities are thus handled
naturally. The importance of a hub in a community ensures that it gets ranked at the
top of the community. After all of the communities have been decided, those vertices
that have not been included in any of them are declared as outliers. In summary, this
algorithm is capable of identifying overlapping communities as well as detecting
hubs and outliers simultaneously.

Mathematically, Bayesian nonnegative matrix factorization is an adaptation
of the nonnegative matrix factorization technique used in machine learning for
dimensionality reduction and feature extraction [89]. This technique factorizes
the matrix V 2 R

V�VC into two matrices W 2 R
V�MC and H 2 R

M�VC , whose
elements are nonnegative, such that A � WH. Within the context of community
detection, A is the adjacency matrix of the network, V is the number of vertices
and M is the pre-defined number of communities. Each element of the i-th line
or the j-th column of matrix W is the statistical dependence between a vertex i
to community j. Due to matrix multiplication, the traditional nonnegative matrix
factorization procedure is inefficient with respect to time and memory restrictions.
In [9], a hybrid optimization algorithm that relies on a Bayesian optimization
process is proposed. In essence, this algorithm optimizes an objective function
expressed in terms of the above-mentioned matrices and user-supplied parameters
ˇ 2 R

M D Œˇ1; : : : ˇM�, which represent the importance of communities on the
interactions of the adjacency matrix. The algorithm involves consecutive updates
of W, H, and ˇ until these parameters achieve convergence or until a maximum
number of iterations is processed. Matrices W, H and the user-supplied parameters
ˇ are calculated as follows:

H D
�

H
WT1 C BH

�

�
�

WT

�
V

WH

��

; (6.26)
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W D
�

W
1HT C WB

�

�
��

V
WH

�

HT
�

; (6.27)

ˇi D V C a � 1

1
2

�P
i W2

ik CP
j W2

ij

�
C b

; (6.28)

in which a and b are fixed parameters of a Gamma distribution and matrices W, H
are initialized with random values. Finally, the columns of W (or lines H) containing
elements with only zero values are removed and the number of communities is given
by the number of columns of W (or the number of lines of H) obtained after the
removal.

6.3.8.3 Fuzzy Partition Algorithm

The fuzzy partition algorithm is introduced in [49]. The procedure runs as a con-
strained optimization problem. In that study, the expression “overlapping vertices” is
conceived as “bridges” in the context of social networks, in which it is very common
to find individuals that are members of multiple communities at the same time. In
a social network context, “bridges” then can be defined as those vertices that cross
structural holes between discrete groups of people [8]. It is therefore important to
define a quantity that measures the commitment of a vertex to several communities
in order to obtain a more realistic view of these networks.

The intuitive meaning of a bridge vertex may differ in different types of networks
that exist beyond sociometrics. In protein interaction networks, proteins with
multiple roles can be seen as bridge vertices. In cortical networks containing brain
areas responsible for different modalities, the cortical areas that assume integrative
roles and that provide higher level processing of sensory signals are the bridges
vertices. In word-association networks, words with multiple meanings are likely to
be bridges.

The overlapping condition is modeled via a fuzzy partition algorithm. A conve-
nient representation of a given partition is the partition matrix U D Œuik�, where i
indexes for the fuzzy membership across clusters k, for the data items. In this way,
matrix U has V columns and M rows, where M is the number of subsets or clusters.
We observe that uik D 1 if and only if vertex k belongs to the i-th subset in the
partition; otherwise, it is zero. For a complete partitioning algorithm,

PM
iD1 uik D 1,

8k 2 f1; : : : ; Vg must hold. The size of community i can then be calculated asPV
kD1 uik, and for any meaningful partition, we can assume that 0 <

PV
kD1 uik < V .

These partitions are traditionally called hard or crisp partitions, because a vertex can
belong to one and only one of the detected communities.

The generalization of the hard partition follows by allowing uik to attain any real
value from the interval Œ0; 1�. The constraints imposed on the partition matrix remain
the same.
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It should be observed that a meaningful partition should group vertices that are
somehow similar to each other in the same community. It is reasonable to assume
that an edge between vertex v1 and v2 implies the similarity of v1 and v2, and
likewise, the absence of an edge implies dissimilarity. Define s.U; i; j/ as a similarity
function that respects the following restrictions:

• s.U; i; j/ 2 Œ0; 1�;
• s.U; i; j/ is continuous and differentiable 8uij; i 2 f1; : : : ; cg; j 2 f1; : : : ; Ng;
• s.U; i; j/ increases as i and j are more similar. Therefore, s.U; i; j/ assumes

its maximum value, s.U; i; j/ D 1, when i and j are as similar as possible.
Conversely, s.U; i; j/ D 0 when i and j are totally dissimilar.

As a shorthand, consider that sij D s.U; i; j/. Suppose we have a prior assumption
about the actual similarity of vertices i and j, denoted by Qsij. Define the fitness of a
given partition U of the graph by quantifying how precisely it approximates the
prescribed similarity values to sij:

DG.U/ D
VX

iD1

VX

jD1

wij.Qsij � sij/
2; (6.29)

in which wij are optional weights. Say that W D �
wij
	
, S.U/ D �

sij
	
, and QS.U/ D

�Qsij
	
. From now on, we assume that QS D A, the adjacency matrix of the graph, which

is in accordance with our assumption that the similarity of connected vertex pairs
should be close to 1 and the similarity of disconnected vertex pairs should be close
to zero. Consider that the similarity function sij is given as follows:

sij D
VX

iD1

MX

kD1

ukiukj D UTU: (6.30)

The community detection problem in this framework boils down to the opti-
mization of DG.U/ defined in accordance with (6.29). We note that the goal is to
find a matrix U such that it minimizes DG.U/. The number of clusters c, the weight
matrix W and the desired similarity matrix S, which is often the adjacency matrix of
the network, are supplied by the user. This is a nonlinear constrained optimization
problem. Although there exists a set of necessary conditions that restrict the set
of possible matrices U worth evaluating [73], the computationally most feasible
approach to optimize DG.U/ is to use a gradient-based iterative optimization method
(e.g., simulated annealing).
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Consider the following objective function:

DG.U/ D
VX

iD1

VX

jD1

wij.Qsij � sij/
2 C

VX

iD1

�i

 
MX

kD1

uki � 1

!

; (6.31)

in which � D Œ�1; : : : ; �N � are Lagrangian multipliers that simply force the total
membership degree for each vertex to be 1 (complete partitioning).

Now we need to find S to minimize DG.U/ satisfying the above constraints. The
partial derivative of DG.U/, with respect to ukl is therefore:

@DG.U/

@ukl
D 2

VX

iD1

.eil C eli/

�
1

M
� uki

�

; (6.32)

in which eij D wij.Qsij � sij/.
The simplest gradient-based algorithm for finding a local minimum of DG is then

the following:

1. Start from an arbitrary random partition U.0/ and let t D 0.
2. Calculate the gradient vector of DG according to (6.32) and the current U.t/.

3. If maxk;l

ˇ
ˇ
ˇ

@DG.U/

@ukl

ˇ
ˇ
ˇ < �, stop the iteration and declare U.t/ a solution.

4. Otherwise, calculate the next partition in the iteration with the following
equation:

u.tC1/
ij D u.t/

ij C ˛.t/ @DG.U/

@uij
; (6.33)

in which ˛.t/ is a small step size constant chosen appropriately.
5. Increase t and continue from step 2.

6.3.9 Network Embedding and Dimension Reduction

Dimension reduction is an important pre-processing in data analysis and machine
learning. It can be considered as a procedure to produce a compact low-dimensional
encoding of a given high-dimensional data set [47, 74, 84]. Dimension reduction is
specially interesting when we deal with data sets that have many more variables
than data samples. For example, microarray data sets usually are composed by
thousands of variables (genes) in dozens of samples. The most famous dimension
reduction technique is the Principal Component Analysis (PCA) that dates back to
Karl Pearson in 1901 [65]. The basic idea is to find a new coordinate system via a
linear or a nonlinear transformation in which the input data can be expressed with
many less variables without a significant loss. Isomap [80] was originally proposed
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as a generalization of multidimensional scaling [15]. An alternative method known
as Locally Linear Embedding (LLE) [72] was developed that solved a consecutive
pair of linear least square optimizations. The kernel method, including graph kernel
method, has also been proposed for nonlinear dimension reduction by performing
linear operations on kernel mapping functions. Graph kernel methods for data
analysis and machine learning are an active research topic and are not covered in
this book. The interested readers may refer to [5, 27, 45, 50, 76, 82]. In this book,
we just present one technique on this topic. In [88], a graph embedding method has
been proposed and is briefly reviewed in the following paragraph.

Consider that it is given a data set X D fx1; x2; : : : ; xVg. Each data sample
is described by P attributes, that is, a feature vector xi D .xi1; xi2; : : : ; xiP/T .
Consider X as the matrix whose columns denote each data item in X . The goal
of the technique is to perform dimensionality reduction in the data items’ feature
vectors to a smaller number P0 of projected attributes. For example, the feature
dimension P of images is usually very high, and transforming the data from the
original high-dimensional space to a low-dimensional space can alleviate the curse
of dimensionality problem. To accomplish that, a technique should find a mapping
function F that transforms each feature vector x 2 R

P into the desired low-
dimensional representation y, so that y D F.x/, y 2 R

P0

. By using an underlying
network to find such function F, the dimensionality reduction process can be viewed
as a graph-preserving criterion of the following form:

Y� D arg minY

X

i;j2V
i¤j

Aijkyi � yjk2

D arg minY YT LY; (6.34)

constrained to YTBY D d. In this formulation, d is a constant vector, A is the
adjacency matrix of the network, B is the constraint matrix, and L is the Laplacian
matrix. Recall that the Laplacian matrix can be found via the following operation:

L D D � A; (6.35)

in which:

Dii D
X

j2V
j¤i

Aij; (6.36)

8i 2 V .
The constraint matrix B can be viewed as the adjacency matrix of a penalty

network AP, so that B D LP D DP � AP. The penalty network conveys information
about which vertices should not be linked together, that is, which instances should
be far apart after the dimensionality reduction process. The similarity preservation
property from the graph-preserving criterion has a twofold explanation. For larger
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similarity between samples xi and xj, the distance between yi and yj should be
smaller to minimize the objective function. Likewise, smaller similarity between
xi and xj should lead to larger distances between yi and yj for minimization. Assume
that the low-dimensional attribute space can be found by using a linear projection
such as Y D XTw, where w is the projection vector. The objective function in (6.34)
becomes:

w� D arg minw

X

i;j2V
i¤j

AijkwT xi � wTxjk2

D arg minw wTXTLXw; (6.37)

constrained to wTXTLXw D d. By using the Marginal Fisher Criterion and the
penalty network constraint, Eq. (6.35) becomes:

w� D arg minw
wT XTLXw

wT XLPXTw
; (6.38)

which can be solved by the generalized eigenvalue problem by using the equation
XLXTw D �XLPXTw.

6.4 Chapter Remarks

Clustering is the unsupervised grouping of patterns, such as observations, data
items, or feature vectors. The clustering task has been addressed in many contexts
and by researchers in many disciplines; this diversity reflects its broad appeal and
usefulness as one of the steps in exploratory data analysis. Intuitively, patterns
within the same cluster are more similar to each other than they are to a pattern
belonging to a different cluster. Clustering is useful in several exploratory tasks,
such as in data mining, document retrieval, image segmentation, and pattern clas-
sification. Often, there is little prior information (e.g., statistical models) available
about the data, and the learning algorithm must make as few assumptions about
the data as possible. It is under these restrictions that clustering methodology is
particularly appropriate for the exploration of interrelationships among the data
points.

In this chapter, we have focused on data clustering in a networked environment,
which is often termed as community detection. The study of community detection is
very important for understanding various phenomena in complex networks. Modular
structure introduces important heterogeneities in complex networks. Each module,
for example, can have different local statistics; some modules may have many
connections, while other modules may be sparse. When there is large variation
among communities, global values of statistical measures can be misleading. The
presence of modular structure may also alter the way in which dynamical processes
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unfold on the network. In biological networks, communities correspond to func-
tional modules in which module members function coherently to perform essential
cellular tasks. Hence, the development of efficient community detection methods
stands as an important topic in the agenda for the complex network and machine
learning communities. Due to that importance, this chapter has dedicated a great
part of it to the study of several representative community detection algorithms.
For each of them, we have explained the main idea behind the community detection
mechanism and also the potentialities and shortcomings of the methods. Community
detection benchmarks have also been explored.

The topic of detection of overlapping communities has also been discussed.
We can easily find overlapping communities in real-world networks. A person, for
instance, can belong to a social network, in his/her family community, and also
in his/her institutional community. In network-based unsupervised learning, the
detection of overlapping communities is especially interesting for fuzzy clustering.
Some representative methods have also been explored.
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Chapter 7
Network-Based Semi-Supervised Learning

Abstract In this chapter, we present network-based algorithms that run in the
semi-supervised learning scheme. The semi-supervised learning paradigm lies
somewhere in-between the unsupervised learning paradigm, which does not employ
any external information to infer knowledge, and the supervised learning paradigm,
which in contrast makes use of a fully labeled set to train models. Semi-supervised
learning aims, among other features, to reduce the work of human experts in the
labeling process. This feature is quite interesting especially when the labeling
process is expensive and time consuming as in video indexing, classification of
audio signals, text categorization, medical diagnostics, genome data, among many
other applications. In network-based methods, the graph structure is the main
driver in propagating labels from labeled vertices to unlabeled vertices. We show
that different techniques apply different criteria in their label diffusion processes,
generating, as a result, distinct outcomes. In addition, we discuss some of the
shortcomings and benefits of the within-graph semi-supervised learning process,
also called transductive learning.

7.1 Introduction

Semi-supervised learning is a learning paradigm concerned with the study of how
computers and natural systems, such as humans, learn in the presence of both
labeled and unlabeled data [39]. Traditionally, learning has been studied either in
the unsupervised paradigm (e.g., clustering, outlier detection), in which all of the
data are unlabeled, or in the supervised paradigm (e.g., classification, regression),
in which all of the data are labeled. The goal of semi-supervised learning is to
understand how combining labeled and unlabeled data may change the learning
behavior and to design algorithms that take advantage of such a combination.
Semi-supervised learning is of great interest in machine learning and data mining
because it can use readily available unlabeled data to improve supervised learning
tasks when the labeled data is scarce or expensive. Semi-supervised learning also
displays potential when conceived as a quantitative tool to understanding categorical
human learning, in which most of the input or received information is self-evidently
unlabeled [39].
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During the last years, the most active area of research in the field of
semi-supervised learning has been related to methods based on graphs or
networks. The common point of these techniques is in the representation of
data items as vertices of the network, while the existence of links between data
items depends both on the network formation strategy and on the labels of the
labeled vertices [8]. A noticeable advantage of using networks for data analysis
is the ability of revealing the topological structure of the data relationships. Thus,
network-based methods allow for the detection of classes and groups with arbitrary
shapes that are in turn difficult to identify for techniques that do not use structured
data representations to perform the learning process [14].

Network-based semi-supervised learning begins by constructing a network with
the input vector-based data using network formation strategies.1 Once the network
is built, the learning process consists in assigning a label for every unlabeled vertex
in the test set. The inference is done by diffusing labels through the edges that
interconnect vertices of the network [8]. The learning process employs both the
labeled and unlabeled sets in the label diffusion process. In contrast to the traditional
techniques that make use of attribute-value tables to conduct their analyzes on the
data, network-based techniques directly use the direct and/or indirect neighborhood
structures of the graph constructed from the input data to analyze and predict labels
for unlabeled instances. As explained in several researches in the literature [20, 21,
23–25, 36], this feature may generate classifiers that are more robust and efficient.

In a semi-supervised learning process, algorithms can be either inductive or
transductive. While inductive techniques construct general rules from the given
training set, transductive learning limits the prediction to specific test instances.2

Most network-based methods are transductive techniques, meaning that they aim
at inferring a class for each unlabeled vertex in the test set only; thus they are not
required to design a global generalizing function to other new vertices that are not
in the test set.

Among the main advantages of network-based semi-supervised learning algo-
rithms, we may highlight [8, 37]:

• The network structure can effectively detect clusters of various forms.
• The learning process does not make decisions based explicitly on distance

functions.
• The representation of data sets with multiple classes is facilitated.
• Some problems are naturally represented by networks, for example: protein-

protein interaction networks, blood mainstream, Internet, among others. In this
case, reversing from a network-based data representation to a vector-based

1See Chap. 4 for a discussion on different network formation methods.
2Intuitively, if the learning problem is an exam, then the labeled data correspond to the few example
problems that the teacher solved in class. The teacher also provides a set of unsolved problems.
In the transductive setting, these unsolved problems are a take-home exam and you want to do
well on them in particular. In the inductive setting, these are practice problems of the sort you will
encounter on the in-class exam.
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representation would be a lossy transformation. To see this, it would be difficult
to model cycles in graphs using a vector-based data. Cycles permit recursiveness
in the data relationships and are naturally modeled by networks.

Many semi-supervised learning techniques, such as Transductive SVM, can
identify data classes of well-defined forms, but usually fail to identify classes of
irregular forms. Thus, assumptions on the class distributions have to be made [8].
Unfortunately, such information is usually unknown a priori. In order to overcome
this problem, several graph-based methods have been developed in the last years.
Among them, we may highlight: mincut [40], local and global consistency [35],
local learning regularization [34], local and global regularization [33], manifold
regularization [4], semi-supervised modularity [22], D-Walks [7], random walk
techniques [12, 29], and label propagation techniques [32, 38]. However, most
of the graph-based methods share the same regularization framework, differing
basically in the particular choice of the loss function and the regularization function
[2, 3, 5, 13, 35, 40], and most of them have cubic order of computational complexity
(O.V3/). This factor makes their applicability limited to small- or middle-sized
data sets [36]. As data sets get larger and larger, the development of efficient semi-
supervised learning methods is still necessary.

7.2 Network-Based Semi-Supervised Learning Assumptions

Recall that the main difference between supervised and semi-supervised learning
is that the latter uses unlabeled data to improve the generalization performance of
the classifier. In order to effectively use the unlabeled data in the learning process,
we must assume some underlying data structure. Bad matching of the problem
structure with the model assumption can lead to degradation of the classifier’s
performance. For example, quite a few semi-supervised learning methods assume
that the decision boundary should avoid regions with high densities of data
items. Nonetheless, if data are generated from two heavily overlapping Gaussian
distributions, the decision boundary would go right through the densest region, and
the majority of the existing methods that rely on such assumption would perform
badly. Detecting bad matching in advance, however, is hard and remains an open
question [39].

Semi-supervised learning algorithms make use of at least one of the following
assumptions [8]:

• Smoothness assumption: data points in the attribute space that are close to each
other are more likely to share the same label. This is also generally assumed in
supervised learning and yields a preference for geometrically simple decision
boundaries. In the case of semi-supervised learning, the smoothness assumption
additionally yields a preference for decision boundaries in low-density regions,
so that it is expected that few points of different classes will reside near the
regions where these decision boundaries cross. The smoothness assumption can
also be related to the belief that “similar examples ought to have similar labels.”
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• Cluster assumption: data points that can be connected via (many) paths through
high-density regions are likely to have the same label. This is a special case
of the smoothness assumption and gives rise to feature learning with clustering
algorithms.

• Manifold assumption: each class lies on a separate manifold of much lower
dimension than the input space. In this case, we can attempt to learn the manifold
using both the labeled and unlabeled data to avoid the curse of dimensionality.
Then learning can proceed using distances and densities defined on the manifold.
The manifold assumption is practical when high-dimensional data are being
generated by some process that may be hard to model directly, but has only a
few degrees of freedom. For instance, human voice is controlled by a few vocal
folds [28], and images of various facial expressions are controlled by a few
muscles. We would like in these cases to use distances and smoothness in the
natural space of the generating problem, rather than in the space of all possible
acoustic waves or images respectively.

The typical scenario in a semi-supervised learning task is the following. Denote
T D f.x1; y1/; : : : ; .xL; yL/g as the set containing tuples of the form: vertex xi 2 L
and its corresponding label yi 2 Y , where L symbolizes the set of labeled vertices
and Y stands for the set of class labels. U D fxLC1; : : : ; xLCUg is the unlabeled
set, such that V D L

S
U is the vertex set. There are L D jT j D jL j

labeled instances and U D jU j unlabeled instances. Thus, there is a total of
V D jV j data items in the semi-supervised learning process and Y D jY j classes.
When Y D 2, we have a binary classification problem. When Y > 2, we have
a multi-class problem. yi denotes the true label of the i-th data item xi, while Oyi

represents the approximated label output by the semi-supervised learning algorithm.
Frequently, we have few labeled instances and several unlabeled instances, such
that the condition U 
 L holds. The goal is to label the unlabeled instances in
accordance with some convenient label propagation process using both labeled and
unlabeled data in the learning process. Network-based techniques use a graph to
approximate the low-dimensional manifold.

The premise that unlabeled data also helps in the learning process is discussed
in [26]. Therein, it is shown that, using a finite sample analysis, if the complexity
of the distributions under consideration is too high to be learnt using L labeled data
points, but is small enough to be learnt using U 
 L unlabeled data points, then
semi-supervised learning can improve the performance of a supervised learning
task.

One final note is of the existence of multiple manifolds. For instance, in
handwritten digit recognition, each digit forms its own manifold in the feature
space; in computer vision motion segmentation, moving objects trace different
trajectories that are low-dimensional manifolds [31]. These manifolds may intersect
or partially overlap, while having different dimensionality, orientation, and density.
In graph-based algorithms, if we create a graph that connects points on different
manifolds near a manifold intersection, then labels will propagate to other manifolds
in an incorrect manner. In this case, we must be aware to construct isolated graph
components that do not interconnect, thus avoiding wrong label propagation.
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7.3 Representative Network-Based Semi-Supervised
Learning Techniques

Semi-supervised methods that rely on networks define a graph in which labeled and
unlabeled examples in the data set are represented by vertices, and edges reflect
the similarity of those examples. These methods usually assume label smoothness
over the graph. In general, graph methods are nonparametric, discriminative, and
transductive.

They are generally nonparametric because they make no assumptions about the
probability distributions of the data items that are being analyzed (distribution-free).
Recall that the difference between parametric and nonparametric models is that the
former has a fixed number of parameters, while the number of parameters in the
latter grows with the amount of training data [10, 19]. Moreover, we stress that
nonparametric models are not the same as none-parametric models: parameters
are determined by the training data, not the model. The nonparametric nature of
network-based semi-supervised learning algorithms is a positive characteristic, as it
prevents the insertion of wrong or misleading biases during the learning process.

Network-based semi-supervised methods are generally discriminative models,
because they model the dependence of an unobserved variable y, the class or label in
our context, on one or more observed variables x (data items and their similarities).
In discriminative models, unlike generative models, there is no room to allow for
generating samples from the joint distribution of x and y. For tasks of classification
in which that joint distribution is not needed, discriminative models can yield
superior performance [15, 17, 27]. In contrast, generative models are generally more
flexible than discriminative models in expressing dependencies in complex learning
tasks.

Network-based semi-supervised methods usually employ transductive inference
because they estimate labels or classes from observed, specific data items (labeled
and unlabeled set) to only specific items (unlabeled set). In contrast, inductive
inference is reasoning from observed training cases to general rules, which are then
applied not only to the unlabeled set but also to other new test cases.

An extensive review on network-based semi-supervised learning techniques can
be found in [8, 36, 39].

Many graph-based methods can be expressed in terms of a regularization
framework, in which the goal is to minimize a cost or energy function C that is
composed of two complementary terms:

C D floss C freg: (7.1)

Each term in (7.1) serves different purposes, which are:

1. Loss function (floss): it leads the algorithm to penalize decisions that flip labels
of pre-labeled vertices. Practically, to minimize this term, it is enough to prevent
the change of pre-labeled vertices.
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2. Regularization function (freg): it is responsible for modeling the cost of prop-
agating labels to unlabeled vertices. Given that many algorithms rely on the
smoothness assumption, this function must be smooth in dense regions of the
network.

One implicit assumption here is that labeled data items are totally reliable.
In imperfect learning, where there are noisy or wrongly labeled data items, the
loss function would force algorithms that rely on the regularization framework to
propagate wrong labels to the unlabeled data. Depending on the rate of imperfect
data, the diffusion of bad labels could easily overwhelm the one of correct labels.

In the next sections, we explore several representative network-based semi-
supervised learning techniques.

7.3.1 Maximum Flow and Minimum Cut

This method is presented in [5]. The original method classifies in a binary way, i.e.,
there are only two classes and the labels are confined in the set yi 2 f0; 1g, 8i 2 V .
The semi-supervised learning classification is posed as a graph mincut problem. In
the binary case, positive labels act as sources, and negative labels act as sinks. The
objective is to find a minimum set of edges whose removal (cut) would block all flow
from the sources to the sinks. After the cut, the vertices connected to the sources are
then labeled positive, and those to the sinks are labeled negative. We can view the
term floss as a quadratic loss function with infinity weight:

floss D lim
w!1 w

X

i2L
. Oyi � yi/

2
; (7.2)

so that the influence of the regularization term in labeled data is effectively disabled.
Consequently, the values of labeled data are in fact fixed at their true labels.3 We are
left to discuss the label diffusion process applied to the unlabeled data, which is
governed by the following regularization function:

freg D 1

2

X

i;j2V
Aijj Oyi � Oyjj D 1

2

X

i;j2V
Aij
� Oyi � Oyj

�2
; (7.3)

in which Aij is the edge weight linking i to j and Oyi is the estimated label of vertex
i 2 V . Note that the second equality only holds due to the binary nature of Oyi,
8i 2 V . Substituting (7.2) and (7.3) into (7.1), we get our objective function:

3Otherwise, the objective function that is composed of the loss and regularization terms is infinity.
To note that, observe that if Oyi ¤ yi, i 2 L , then floss ! 1.
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C D lim
w!1 w

X

i2L
. Oyi � yi/

2 C 1

2

X

i;j2V
Aij
� Oyi � Oyj

�2
; (7.4)

subject to the constraint Oyi 2 f0; 1g, 8i 2 V (crisp labeling). Effectively, the
estimation of labeled instances i 2 L must coincide with their initial label beliefs,
in a way that we are only allowed for deciding the labels of unlabeled instances
in U .

The classical graph mincut approach has a number of attractive properties [6].
First, it can be computed in polynomial time using network flow tools. Second, the
learning process can be viewed as providing the most probable configuration of
labels in the associated Markov random field. Lastly, it can also be motivated from
sample-complexity considerations.

The mincut algorithm, however, also suffers from several drawbacks. One
noticeable drawback of mincut is that it only outputs hard or crisp classification
without confidence intervals. In statistical terms, it only computes the mode,
rather than marginal probabilities. For instance, in the research in [6], the graph
is perturbed by adding random noise to the edge weights. Mincut is applied to
multiple perturbed graphs, and labels are determined by a majority vote criterion.
The procedure is similar to bagging, and effectively creates a “soft” mincut. The
research in [13] gives a method based on spectral partitioning that produces an
approximate minimum ratio cut in the graph. Another shortcoming comes from a
practical perspective. A graph may have many minimum cuts, and the mincut
algorithm produces just one, typically the “leftmost” one using standard network
flow algorithms. For instance, a line of V vertices between two labeled points i and
j has V � 1 cuts of size 1, and the leftmost cut will be especially unbalanced.

7.3.2 Gaussian Field and Harmonic Function

One of the main limitations of the mincut is that the algorithm only classifies
using binary crisp labels. Data that are located in bordering or overlapping regions,
however, may be labeled with less confidence than those data items that are in
the core of their respective classes. Gaussian random fields and harmonic function
methods [38, 40] try to address these problems. These techniques can be viewed
as a form of nearest neighbors approach, in which the nearest labeled examples
are computed in terms of a random walk on the graph. These learning methods
have intimate connections with random walks, electric networks, and spectral graph
theory, in particular with heat kernels and normalized cuts.

In the context of networks, harmonic functions estimate the label of an unlabeled
vertex according to a weighted average of the labels of vertices in the neighborhood.
In this way, the classification becomes smooth. Gaussian random fields and har-
monic function methods [38, 40] are a continuous relaxation to the complex discrete
Markov random fields. Likewise mincut, they employ a quadratic loss function with
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infinity weight, so that labeled data are clamped to their pre-defined labels and the
regularization function is based on a quadratic form of the graph Laplacian L. The
cost function, therefore, is expressed as:

C D lim
w!1 w

X

i2L
. Oyi � yi/

2 C 1

2

X

i;j2V
Aij
� Oyi � Oyj

�2

D lim
w!1 w

X

i2L
. Oyi � yi/

2 C 1

2
OYTL OY; (7.5)

in which Oyi 2 Œ0; 1�, OY D Œy1; y2; : : : ; yV �T is a vector that stores the estimated labels
of all of the vertices, and L is the graph Laplacian. The fuzziness of OY is a key
relaxation towards the mincut technique that only allows for crisp classification,
i.e., Oyi 2 f0; 1g, i 2 V . Recall that the (i,j)-th entry of the graph Laplacian L with
adjacency matrix A is:

Lij D Dij � Aij D
(

ki; if i D j

�Aij; otherwise;
(7.6)

in which ki is the degree of vertex i computed using the adjacency matrix A. D is
the degree matrix that is computed as:

Dij D
(

ki; if i D j:

0; otherwise:
(7.7)

While it is clear that the solution form of the loss function in (7.5) is the one
that does not flip labels of pre-labeled instances, it may not be clear the solution
of the regularization term OYTL OY that assures smoothness in the labeling process.
We elaborate on that in the following. From (7.5), we see that:

OYTL OY D
X

i;j2V
Aij
� Oyi � Oyj

�2
: (7.8)

The regularization term in (7.8) is a measure of non-smoothness of the estimated
labels according to the network topology. For estimated labels that are not similar in
the neighborhood, the term OYTL OY yields large values. For estimated labels that are
similar in the neighborhood, the term OYTL OY produces small values.

Consider the eigenequation:

Lv D �v; (7.9)

in which v is one of the eigenvectors of L and � is the associated eigenvalue of
that eigenvector. If we right-multiply (7.10) by the transpose of the eigenvector v,
we get:
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vTLv D vT�v

vTLv D �vTv

vTLv D �; (7.10)

in which the second equality comes from the factor that � is a scalar and therefore
we can rearrange vector vT , while the third equality holds from the orthonormality
of v, i.e., vTv D 1.

If we consider that the eigenvector v is one of the solutions of regularization
function as in (7.8), i.e., v D y, we get:

yTLy D �; (7.11)

that is, the eigenvalue � associated to the solution y of the Laplacian L gives us
an idea of the non-smoothness of the estimated labels (y). As we select eigenvector
solutions that have larger and larger associated � values, the less smooth are the
estimated labels. Considering that the loss function in (7.5) cannot be changed by
the learning process as our goal is to minimize C, we are effectively minimizing
the regularization term constrained to the given labeled instances. Therefore, the
estimated labels must be near or equal eigenvectors that have associated eigenvalues
with small magnitude.

7.3.3 Tikhonov Regularization Framework

The Tikhonov regularization algorithm in [2] uses a general form of loss function:

floss D 1

L

X

i2L
V. Oyi; yi/; (7.12)

in which V. Oyi; yi/ is some loss function. For instance, V. Oyi; yi/ D . Oyi � yi/
2, then we

have a regularized least squares technique, while V. Oyi; yi/ D max.0; 1 � Oyiyi/ leads
to the SVM algorithm. Note that now the loss function allows for changes in the
prior labeled set.

The regularization function is:

freg D OYTS OY; (7.13)

in which S is a smoothness matrix, such as the Laplacian matrix L.
In this way, the cost function of the regularization framework becomes:

F D 1

L

X

i2L
. Oyi � yi/

2 C � OYTS OY; (7.14)
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in which � is a regularization parameter that modulates the influences played by the
loss and regularization functions. For stability purposes, the prior belief of labeled
instances is subtracted from its mean.

The Tikhonov regularization framework has some interesting advantages:

• It eliminates the need of computing multiple eigenvectors or complicated graph
invariants (mincut, max flow etc.). There is also a simple closed form solution
for the optimal regressor. The problem is reduced to a single, usually sparse,
linear system of equations whose solution can be computed efficiently. One of
the algorithms proposed (interpolated regularization) is extremely simple with
no free parameters.

• The generalization error can be bounded and related to properties of the
underlying graph using arguments from algorithmic stability.

• If the graph arises from the local connectivity of data obtained from sampling an
underlying manifold, then the approach has natural connections to regularization
on that manifold.

7.3.4 Local and Global Consistency

This method has been proposed by Zhou et al. [35] and is one of the first studies
in network-based semi-supervised learning techniques. This method considers
the general problem of learning from labeled and unlabeled data by means of
constructing a classification function that is sufficiently smooth with respect to the
intrinsic labeled and unlabeled data structures.

The technique considers the evolution of a set of matrices M with dimensions
V � Y, all of which with nonnegative entries. The matrix OY D Œ OYT

1 ; : : : ; OYT
V �T 2 M

corresponds to the fuzzy classification of the data items V , such that, for each
labeled or unlabeled vertex xi 2 V , we designate a label in accordance with the
expression Oyi D arg max

y2Y Yiy. One can think of OY as a vectorial function that

attributes, for each unlabeled data xi, the maximum value of OYiy; y 2 Y . Define
also the matrix Y with dimensions V � Y, such that Yiy D 1 if xi is labeled as
y 2 Y , and Yiy D 0, otherwise. The algorithm evolves as follows:

1. Generate the adjacency matrix A according to the Gaussian kernel, which is given

by Aij D exp
� kxi�xjk2

2�2

�
if i ¤ j, and Aii D 0, otherwise;

2. Construct the matrix S D D� 1
2 AD� 1

2 , in which D is a diagonal matrix with each
entry .i; i/ equivalent to the sum of the i-th row of A;

3. Iterate OY.t C 1/ D ˛S OY.t/ C .1 � ˛/Y until it converges, where ˛ 2 .0; 1/;
4. Consider that OY� denotes the limit of the sequence f OY.t/ W t 2 Ng. Then, label

each unlabeled vertex xi following the formula: Oyi D arg max
j2Y

OY�
ij .
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Moreover, it can be shown that the sequence = D f OY.t/ W t 2 Ng converges and
assumes the following closed formula:

OY� D lim
t!1

OY.t/ D .I � ˛S/�1Y: (7.15)

Still in [35], a regularization framework is molded with the aforementioned
dynamics. In this framework, one aims at minimizing a cost or energy expression.
The encountered expression, here written as C. OY/, is given as:

C. OY/ D 1

2

0

@
X

i;j2V
Aij

�
�
�
�
�

1p
Dii

OYi � 1
p

Djj

OYj

�
�
�
�
�

2

C �
X

i2V
k OYi � Yik2

1

A ; (7.16)

in which � > 0 is a regularization parameter. In this case, the optimal values for the
classification function become:

OY� D arg min
F2MC. OY/: (7.17)

The first term in (7.16) enforces smoothness decisions by the classifier, meaning
that a good classification function must not have large derivatives in high-density
areas. This is exactly the definition of a regularization function. The second term
symbolizes the adjustment restriction, revealing that a good classification function
also must not exchange the labels from already labeled data. In this case, this
definition perfectly fits into the description of a loss function. The counterweight
between these two conflicting quantities is given by the positive constant �.

The advantage of this technique is its simplicity. As one can see, the propagation
is done by utilizing a linear update rule and convergence issues have been fully
described, enabling one to understand the dynamics of such model in the long run.
However, the algorithm suffers from some drawbacks: since the propagation is done
utilizing a linear function, nonlinear characteristics of the data may pass unseen by
the algorithm. Moreover, since a matrix inversion is involved to find the optimal
solution, the algorithm requires O.V3/ to run, which is unfeasible for large-scale
networks.

7.3.5 Adsorption

The adsorption technique was first introduced in [1]. It was then further extended
and given a theoretical analysis in [30]. Adsorption has many desirable properties,
among which we can highlight:
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• Possibility to perform multiclass classification (Y > 2).
• Definition can be stated in terms of a parallelized implementation, thus enabling

its application on large-scale data sets.
• Mechanism to deal with imperfect training data.4

Likewise other label propagation algorithms that work in a networked environ-
ment, adsorption propagates label information from the labeled examples to the
entire set of vertices via the edges (network topology). The labeling is represented
using a non-negative score for each label, in which high scores are attributed to those
labels that indicate the highest associations or similarities to unlabeled vertices.
If these scores are additively normalized, they can be thought of as a conditional
distribution over the labels given the unlabeled data.

Let OY D Œ OYT
1 ; : : : ; OYT

V �T 2 V�Y be a matrix in which the v-th row OYv corresponds
to the fuzzy classification of v 2 V towards the Y possible classes. That is, OYvy is the
fuzzy classification of the data item v with respect to class y. Similarly Y encodes
the initial belief of all of the vertices in the network towards the existent classes.
At the initial phase of the algorithm, we must supply the belief for all of the vertices
v 2 V . If v is an unlabeled vertex, we can simply set the belief of v as the zero-
valued vector. Adsorption outputs an estimated belief or fuzzy classification label
for each class in the vector OYv , v 2 V .

We can view the learning mechanism performed by the adsorption algorithm as
controlled random walks that are conducted in accordance with the network topol-
ogy. The control over the random walk is realized via three possible actions: inject,
continue, abandon, each of which with occurrence probabilities on vertex v 2 V of
p.inject/

v , p.continue/
v , and p.abandon/

v , respectively. For a valid transition probability, one
must have:

p.inject/
v C p.continue/

v C p.abandon/
v D 1: (7.18)

To label each unlabeled or even already labeled vertex v 2 V , we first initiate a
random walk starting at v. At each time step, the random walk is allowed to choose
over three actions:

1. With probability p.inject/
v , the random walker stops and returns the pre-defined

initial belief Yv , i.e., OYv D Yv . A further constraint is also imposed to force
label diffusion to unlabeled instances in the graph. Whenever v is unlabeled, we
fix p.inject/

v D 0, so that the random walk cannot output the initial belief of an
unlabeled vertex as its classification decision.

2. With probability p.abandon/
v , the random walker abandons the labeling diffusion

process and returns the zero-valued vector as the classification decision, that
is, OYv .

4Imperfect training data arises when the labeled instances are not totally reliable. We explore in
detail another semi-supervised learning algorithm that deal with the detection and prevention of
labels that are diffused by possibly wrong labeled data in Chap. 10.
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3. With probability p.continue/
v , the random walker continues to navigate in the graph,

specifically to one of the neighbors of v with a probability proportional to the
edge weight. The transition probability follows the transition matrix of a random
walk process as explored in Sect. 2.4.1. For convenience, we rewrite the transition
matrix as follows:

PŒu j v� D Pvu D Avu
P

i2V Avi
: (7.19)

Considering this three-way dynamics of the walker, the expected score OYv, v 2
V , is given by:

OYv D p.inject/
v Yv C p.continue/

v

X

u2N .v/

PŒu j v� OYu C p.abandon/
v 0Y ; (7.20)

in which 0Y is the zero-valued vector with Y entries and N .v/ returns the set of
neighbors of v.

Alternatively, in order to guarantee the positiveness of OYv , a slight modification
can be introduced whenever the random walker abandons the walk. Instead of
returning a zero-valued vector, we can create a dummy label yd … Y and designate
that dummy label as the estimated label of v. We can conceive this additional
dummy class as encoding ignorance or uncertainty about the correct label of v.
With this modification, at least one of the three terms in (7.20) always assumes a
positive value. Thus, OYv is positive.

The smoothness assumption of the adsorption algorithm is modeled by the
second term in the RHS of (7.20). Note that the estimated label of v, OYv ,
is composed of a weighted linear combination of the estimated labels in the
neighborhood of v. This averaging view then defines a set of fixed-point equations
to update the predicted labels. Since the past trajectories or states of the walkers
do not need to be maintained, the adsorption algorithm is memoryless. As such, it
scales to large-scale data sets with possibly dense configurations and also can be
easily parallelized [1].

Some heuristics have been proposed to estimate p.inject/
v , p.continue/

v , and p.abandon/
v

[1, 30]. Effectively, these heuristics suggest that:

p.continue/
v / cv;

p.inject/
v / dv:

(7.21)

The first quantity cv 2 Œ0; 1� is a value that monotonically decreases with the
number of neighbors of vertex v. That is, the more neighbors v has in the network
topology, the smaller is cv . Intuitively, if v connects with several other vertices, it is
probably a difficult vertex to be classified. Hence, the idea is to prevent further label
propagation that comes from it. This mechanism assures preferential trajectories
that pass through vertices with small degrees.
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The other quantity dv � 0 is a value that monotonically increases with the
entropy (for labeled vertices), and in this case we prefer to use the prior belief
rather than the computed quantities from the neighbors. The entropy of vertex v

is evaluated using the transition matrix, as follows:

H.v/ D �
X

u2N .v/

PŒu j v� log PŒu j v�: (7.22)

Once computed, we pass the entropy through the following monotonically
decreasing function:

f .x/ D log.ˇ/

log.ˇ C ex/
; (7.23)

and the term cv is defined as:

cv D f .H.v//; (7.24)

and the term dv:

dv D
(

.1 � cv/
p

H.v/; if v is labeled:

0; otherwise:
(7.25)

Finally, to ensure that (7.18) holds, we set:

p.continue/
v D cv

zv

; (7.26)

p.inject/
v D dv

zv

; (7.27)

p.abandon/
v D 1 � cv

zv

� dv

zv

: (7.28)

in which zv is a normalization constant given by:

zv D max.cv C dv; 1/: (7.29)

7.3.6 Semi-Supervised Modularity Method

This algorithm has been proposed by Silva and Zhao [22] and is inspired by the
modularity greedy algorithm, which we have introduced in Sect. 6.3.2.1. In the
original modularity greedy algorithm, at each time step, two communities, say i
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and j, are merged, in such a way that the largest increment (or least decrement) of
the modularity occurs at a particular step. No restrictions on the communities to be
merged are specified by the original model.

In order to adapt the modularity greedy algorithm for the context of semi-
supervised learning, we make the following modifications:

1. Initially, we have L labeled vertices in the network. The task consists in
propagating their labels to the unlabeled vertices. Once an unlabeled vertex
receives a label, it cannot be changed.

2. At each step, we merge the communities (at the beginning, each community
encompasses only one vertex) in such a way that the modularity increment is
maximal. However, such merge is subjected to some constraints: in light of
mimicking the propagation of labels in the network, a merge only occurs if at
least one of the candidate communities has been labeled before. Suppose that
communities ci and cj have been selected to be merged, each of which carrying
the labels yi and yj. Let ; denote the unlabeled class. Then, one of the following
four cases occurs:

Case 1. The merge does not occur if yi ¤ yj, provided that yi ¤ ; and yj ¤ ;.
This case represents a clash between two different classes that have
been previously labeled.

Case 2. The merge occurs if yi ¤ ; and yj D ;, or yi D ; and yj ¤ ;. This case
represents the traditional label propagation from a labeled community
to an unlabeled one. cj receives the label from ci in the first case and ci

receives the label from cj in the second case.
Case 3. The merge occurs if yi D yj, provided that yi ¤ ; and yj ¤ ;. In this

case, the merge process just puts two communities of the same class
together, maximizing the modularity.

Case 4. The merge does not occur if yi D yj D ;, since no label is being
propagated.

If the merge does not occur, then we select other two communities that have
the second largest entry in the modularity increment matrix Q to be potentially
merged, i.e., the Step 2 is repeated, and so on, until a valid merge takes place.

Keeping in mind that the modularity algorithm tries to maximize the number of
edges among vertices of the same community, while also attempting to minimize
the same quantity among distinct communities, the dynamic of the procedure will
propagate labels so as to maintain the cluster and smoothness assumptions. In this
way, the modified modularity greedy algorithm performs the work of propagating
the labels in an optimized manner, provided that the network is strongly connected
among vertices of the same class and weakly connected among vertices of distinct
classes.

For the stop criterion of this algorithm, it simply needs to be run until no
unlabeled vertex remains, regardless of the value of the modularity, since we are
not looking for a good network division, but for an ordered way of labeling vertices.
The mechanism of maximizing the modularity does this job for us. The convergence
is guaranteed to happen and a proof has been provided in [22].
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Fig. 7.1 Process of coalescence of vertices s and r. After the merge, s consumes r and becomes
a super-vertex. All neighbors of r are connected to s during this procedure. Reproduced from [22]
with permission from Elsevier

Additionally, in an attempt to make feasible the application of this semi-
supervised algorithm on large-scale networks, a network reduction technique is
explored. Let '.y/ 2 Œ0; 1� denote the proportion of reduction to be performed over
the class pertaining to label y 2 Y . Denote also �y.t/ as set of data items that
belongs to class y 2 Y . Then, the reduction is done by the following procedure,
step-by-step:

1. Randomly choose pairs of pre-labeled vertices r 2 �y.t/ and s 2 �y.t/ to
coalesce. In this process, r is removed from the network and s is entitled as a
super-vertex, by virtue of the fact that it now represents more than one vertex
in the network. In this process, all of the links that are connected to r are
redirected to s. Suppose a connection between w and s already exists and w is
also a neighbor of r, then we strengthen the connection between w and s by
adding the weight from the former edge .w; r/ to .w; s/. Figure 7.1 illustrates this
idea. This is done until j�y.t C t/j D .1 � '.y//j�y.t/j, where t > 0 is a
parameter bounded by the upper limit provided by the convergence proof in [22].
Essentially, j�y.tCt/j denotes the size of �y in a future time that can be reached
in a finite number of steps. If '.y/ D 1, then we deliberately continue to merge
process until j�y.t C t/j D 1, i.e., until only one element remains of that class.

2. All of the self-loops, brought into the network by the reduction process, are
removed. This prevents the modified modularity greedy algorithm from trying
to merge a certain community with itself.

3. This process of reduction is performed for every class y 2 Y that exists in the
network.

In general, at the end of the reduction process, it is expected that the network will
shrink, because .V�L/CPy2Y j�y.t C t/j D .V�L/CPy2Y Œ1 � '.y/�j�y.t/j 	
V , since 0 	 '.y/ 	 1 and thus

P
y2Y Œ1 � '.y/�j�y.t/j 	 L. If the proportion of

labeled vertices is large, then this process greatly reduces the network size, provided
that '.y/; 8y 2 Y , is large. Usually, the quantity of labeled vertices is small,
because the task of labeling is generally expensive and cumbersome.

The main advantage of the aforementioned technique is that it does not require
any kinds of parameters in order to work. Considering that the task of parameter
tuning often takes a considerable time to complete and that lots of traps are involved
in this investigation, such as the presence of local maxima, an expert may be needed
such as to set feasible initial kickoff values for the parameters tuning procedure.
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Therefore, the feature of having no free parameters makes the applicability of
the semi-supervised modularity technique in real-world applications easy. A major
drawback of the aforementioned technique is that it suffers from the inherent
resolution problem that the original modularity greedy algorithm presents.5 This
often leads to bad results when there are classes with very distinct sizes.

7.3.7 Interaction Forces

The interaction forces technique was presented in [9]. This method is nature-
inspired and relies on attraction forces. It models data instances as points in a
P-dimensional space and performs their motion accordingly to the resultant force
applied upon them. The labeled instances act as attraction points, while unlabeled
instances receive forces and move towards these attraction points. Under some
circumstances, unlabeled instances receive labels from labeled points and thereafter
become new attraction points.

The use of attraction forces between labeled and unlabeled instances can provide
a model for semi-supervised learning that fits well the smoothness and cluster
assumptions. Labeled instances are fixed attraction points that apply attraction
forces on unlabeled instances. As a result, unlabeled instances move towards the
direction of the resultant force. Eventually, they converge to an attraction point.
Once an unlabeled instance gets close enough to a labeled instance, say inside a
circle with radius ı, the label from that attraction point propagates to the unlabeled
instance located at its surroundings. As a consequence of the labeling process, it
then becomes a new fixed attraction point. At the end of the process, it is expected
that all of the instances will converge to some attraction point. By means of the
attraction forces, instances are kept together in their dense groups (clusters), while
different labeled points are responsible for dividing the space under the smoothness
assumption.

We need two considerations in order to accomplish the above mentioned behavior
and classify the unlabeled instances correctly. One of them is to guarantee that the
process is stable, and the other is to certify that the labels propagate adequately
through the unlabeled instances, in the sense that the algorithm converges and
achieves good classification accuracy. The stability issue can be treated using
similar approaches from swarm aggregation methods [11, 16], while the label
propagation dynamic can be analyzed in terms of the parameters that underpin the
attraction forces.

The motion or the stepwise differential movement of an unlabeled point vi at step
t, denoted here as Pvi, is governed by the following system:

Pvi.t/ D
X

j2L
f Œvj.t/ � vi.t/�; (7.30)

5See Sect. 2.3 for details.
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8i 2 U , where function f is the attraction force among instances. As described
by (7.30), each unlabeled instance vi receives attractive forces from all of the
labeled instances and the resultant force is the sum of all individual forces. Thus,
the direction and magnitude of vi.t/’s motion are determined by the forces applied
by the labeled instances.

The attraction function between an unlabeled item i 2 U and a labeled item
j 2 L (attractor) is defined as a Gaussian field with parameters ˛ and ˇ:

f Œvj.t/ � vi.t/� D Œvj.t/ � vi.t/�
˛

eˇk.vj.t/�vi.t//k2
: (7.31)

The attraction function guarantees that the closer an unlabeled point is to an
attractor labeled point, the stronger is the force. Moreover, the parameters of the
Gaussian field provide an easy way to adjust the function amplitude and range.

Algorithm 1 summarizes the interaction forces method. The method is performed
iteratively in four steps (from 2 to 5), until all of the instances are properly labeled.

7.3.8 Discriminative Walks (D-Walks)

This technique is introduced in [7]. D-walks rely on random walks performed on
the input graph seen as a Markov chain. For a review on Markov chain theory,
see Sect. 2.4.1. More precisely, D-Walks are essentially computed as a betweenness
measure that is based on passage times during constrained random walks of bounded
lengths. Unlabeled vertices are assigned to the category for which the betweenness
is the highest. The D-walks approach has the following properties:

Algorithm 1 : Interaction forces technique
Input:
L W labeled data set
U W unlabeled data set
Output:
li W estimated class for each xi 2 U
Initialization:

1:.˛; ˇ; ı/ D Initialize parameters
Classification:
DO

2: Calculate distances among points
3: Calculate attraction forces
4: Update points’ positions
5: Update labels

WHILE (there are unlabeled instances)
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• It has a linear time complexity with respect to the number of edges, the maximum
walk length and the number of classes; such a low complexity allows the
technique to deal with very large sparse graphs.

• It can handle directed or undirected graphs.
• It can deal with multi-class problems.
• It has a unique hyper-parameter, the walk length, that can be tuned efficiently.

We first transform the (weighted) adjacency matrix into a transition matrix, which
is a row-stochastic matrix, using the following operation:

PŒXt D q0 j Xt�1 D q� D Pqq0 , Aqq0

P
k2V Aqk

; (7.32)

in which Aqq0 stands for the edge weight linking q to q0. Each vertex in the network
corresponds to a state in the Markov chain system. The graph can be directed or
undirected, weighted or non-weighted.

We now introduce the discriminative random walks (D-Walks). Essentially, a
D-walk is a random walk starting in a labeled vertex and ending when any vertex
having the same label (possibly the starting vertex itself) is reached for the first time.

Definition 7.1. D-Walk Given a Markov chain defined on the state set V and a
class label y 2 Y , a D-Walk is a sequence of states q0; : : : ; q�, � > 0, such that
yq0 D yq�

D y and yqt ¤ y, 0 < t < �.

The notation Dy refers to the set of all D-Walks starting and ending in vertices
of class y.

The betweenness function B.q; y/ measures the extent an unlabeled vertex q 2 U
is located “in-between” vertices of class y 2 Y . The betweenness B.q; y/ is formally
defined as the expected number of times vertex q is reached during D-Walks on Dy.

Definition 7.2. D-Walks Betweenness Given an unlabeled vertex q 2 U and a
class y 2 Y , we define the D-Walk betweenness function U � Y ! R

C as:

B.q; y/ , E Œpt.q/ j Dy� ; (7.33)

in which pt.q/ is the passage time of vertex q 2 V whose formal definition has been
reviewed in Sect. 2.4.1.

Vertices belonging to class y are first duplicated such that the original vertices
are used as absorbing states and the duplicated ones as starting states. The transition
matrix P is augmented as follows:

1. We duplicate the rows of P corresponding to labeled vertices of class y 2 Y at
the bottom of the matrix.

2. We add columns full of zeroes at the right of P. The number of added columns is
equal to the number of added rows in the previous step.

3. We define pqq0 D 1 ” q D q0 and 0 otherwise, for all of the vertices
belonging to y. The augmented matrix is denoted here by Py. The initial
distribution vector is adapted accordingly, resulting in the vector p.0/y.
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The betweenness is finally computed as follows:

B.q; y/ D �
.p.0/

y
T/0.I � Py

T/�1
	

q ; (7.34)

in which Py
T and p.0/

y
T denote, respectively, the transition matrix and the initial

distribution vector restricted to transient states. Matrix inversion, however, is
computed in O.V3/, limiting the use of the technique for large-scale graphs.

The authors in [7] instead propose to use bounded walks. Bounding the walk
length systematically provides a better classification rate with the additional benefit
that the betweenness can be computed very efficiently using forward and backward
recurrences. Let Dy

� denote to the set of all D-Walks of length exactly equal to �.
Moreover, consider that Dy

�� refer to the set of all bounded D-Walks up to a given
length �. We define the bounded betweenness measure B�.q; y/ as follows.

Definition 7.3. Bounded D-Walks Betweenness Given an unlabeled vertex q 2 U
and a class y 2 Y , we define the bounded D-Walk betweenness function U �Y !
R

C as:

B�.q; y/ , E

h
pt.q/ j Dy

��

i
: (7.35)

Following the authors in [7], limiting the random walk length brings to major
advantages in a classification process:

• The algorithm presents better accuracy rates in relation to unbounded D-Walks.
• We can compute the bounded betweenness measure very efficiently.

An efficient way to evaluate the bounded betweenness measure is to use forward-
backward variables, similar to those employed in the Baum-Welch algorithm for
hidden Markov models [18]. Given a state q 2 V and a time t 2 N, the forward
variable ˛y.q; t/ computes the probability of reaching state q after t steps without
visiting vertices of class y 2 Y , while starting from any state in class y. We can
evaluate the forward variables using the following recurrence:

(case t D 1) ˛y.q; 1/ D 1

Vy

X

q02Ly

pq0q

(case t � 2) ˛y.q; t/ D
X

q02U
˛y.q0; t � 1/pq0q

; (7.36)

in which Ly is the set of labeled vertices of class y and Vy D jLyj. The initial
recurrence (case t D 1) assumes that the walker can start at any vertex that is
member of class y with uniform probability 1

Vy
. Thus, the equation provides the

probability that q is visited in the next iteration. We also observe that, while in the
first recurrence we loop through members of class y, we forbid visits in members of
class y when t � 2. In fact, a D-Walk finishes whenever the walk visits a vertex with
label coincident with the label of the starting vertex.
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In an opposite perspective, the backward variable ˇy.q; t/ computes the probabil-
ity that state q is attained by the process t steps before reaching any vertex labeled y
for the first time. We evaluate the backward variables using the following recurrence:

(case t D 1) ˇy.q; 1/ D
X

q02Ly

pqq0

(case t � 2) ˇy.q; t/ D
X

q02U
ˇy.q0; t � 1/pqq0

: (7.37)

To compute B�.q; y/, we first calculate the mean passage time in a vertex q 2 U
during Dy

�. The length-conditioned passage time function pt.q/, E
�
pt.q/ j D y

�

	
,

can be decomposed as a sum of indicator variables: pt.q/ D P��1
tD1 1ŒXtDq�.

Consequently,

E

h
pt.q/

ˇ
ˇ
ˇD

y
�

i
D E

"
��1X

tD1

1ŒXtDq�

ˇ
ˇ
ˇ
ˇ
ˇ
D

y
�

#

D
��1X

tD1

E
�
1ŒXtDq� j D y

�

	

D
��1X

tD1

P
�
Xt D q j Dy

�

�

D
��1X

tD1

P
�
Xt D q ^ Dy

�

�

P
�
D

y
�

� ; (7.38)

in which the second equality comes from the linearity of the expectation operator,
the third equality holds because EŒ1ŒA�� D P.A/, and the fourth equality is true due
to Bayes theorem.

We can compute the joint probability in the numerator of (7.38) as:

P
�
Xt D q ^ D

y
�

� D ˛y.q; t/ˇy.q; � � t/; (7.39)

which is the probability to start in any vertex of class y, to reach the unlabeled vertex
q at time t and then to complete the walk � � t steps later.

The denominator of (7.38) accounts for the probability to perform D-Walks with
length � and can be computed as:

P
�
Dy

�

� D
X

q02Ly

˛y.q0; �/: (7.40)
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Plugging (7.39) and (7.40) into (7.38), we get:

E

h
pt.q/

ˇ
ˇ
ˇD

y
�

i
D
P��1

tD1 ˛y.q; t/ˇy.q; � � t/
P

q02Ly
˛y.q0; �/

: (7.41)

The bounded betweenness measure based on walks up to length � is obtained as
an expectation of the betweennesses for all length 1 	 l 	 �:

B�.q; y/ D
�X

lD1

P
�
D y

l

�

Z
E

h
pt.q/

ˇ
ˇ
ˇD

y
l

i

D
P�

lD1

Pl�1
tD1 ˛y.q; t/ˇy.q; l � t/

P�
lD1

P
q02Ly

˛y.q0; l/
: (7.42)

Finally, the decision process consists in classifying unlabeled vertices using a
maximum a posteriori (MAP) decision rule from the betweenness computed for
each class y 2 Y .

7.4 Chapter Remarks

Semi-supervised learning concerns with how computers and natural systems such as
humans learn in the presence of both labeled and unlabeled data. Semi-supervised
learning is of great interest in machine learning and data mining because it can
use readily available unlabeled data to improve supervised learning tasks when the
labeled data is scarce or expensive. Semi-supervised learning also displays potential
when conceived as a quantitative tool to understanding categorical human learning,
in which most of the input or received information is self-evidently unlabeled. In
order to effectively use the unlabeled data in the learning process, we have seen
that some assumptions on the unlabeled data must be satisfied, such as the cluster,
smoothness, and manifold assumptions.

The most active area of research in the field of semi-supervised learning has been
related to methods based on graphs or networks. A noticeable advantage of using
networks for data analysis is the ability to reveal the topological structure of the
data set. Once a graph is constructed, the goal is to propagate labels from labeled
to unlabeled instances in accordance with a diffusive process. Many graph-based
methods can be expressed in terms of a regularization framework, in which the
goal is to minimize a cost or energy function that is composed of two terms: the
loss and regularization functions. The loss function tends to penalize decisions
that flip the labels of pre-labeled vertices. In contrast, the regularization function
is responsible for modeling the cost of propagating labels to unlabeled vertices.
Given that many algorithms rely on the smoothness assumption, this function must
be smooth in dense regions of the network. A main drawback of these techniques
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is that a matrix inversion operation if often necessary in the propagation process.
Hence, the application of these techniques in large-scale graphs is reduced.

In the case study of semi-supervised learning in Chap. 10, we present an alter-
native semi-supervised learning technique that relies on a competitive-cooperative
process among several particles. These particles navigate in the network forming
teams. The goal of each team is to conquer new vertices, while also defending their
previously conquered vertices. The visiting process of the particles has an analogy
with the label propagation process in these regularization frameworks. However,
the particle navigation does not need matrix inversion, which enables us to use it in
large-scale problems. In addition, we show that the particle competition algorithm
can be used to detect and prevent error propagation. In this regard, the algorithm
considers that the initial beliefs or pre-labeled instances are not totally reliable. In
the learning process, the algorithm then rearranges these labels whenever it spots
non-smoothness in the learning problem.
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Chapter 8
Case Study of Network-Based Supervised
Learning: High-Level Data Classification

Abstract The power of computers to generalize to unseen data is intriguing.
Computers have been used successfully to accurately predict prices of non-
catalogued houses, trends in financial time series, or even to classify whether cancer
tumors are benign or malign. One thing that all these tasks have in common is
that computers are put forward to output answers to which they have not been
explicitly programmed. A natural computational solution to estimate unseen data is
to rely on the knowledge bases to which computers have been exposed, effectively
mimicking the past behaviors. This chapter deals with supervised learning from
a new learning perspective: a hybrid classification framework is presented that
combines the decisions of low- and high-level classifiers. The low-level classifier
realizes the classification task considering physical features of the input data, such
as geometrical or statistical characteristics. In contrast, the high-level classification
process checks the compliance of new test instances with the characteristic patterns
formed by each of the classes that composes the training data. Test instances are
declared members of those classes whose formed patterns are maintained with the
introduction of those test instances. For this end, the high-level classifier extracts
suitable organizational and topological descriptors of the network constructed from
the input data. Using these network-based descriptors in a convenient collective
manner, the high-level term is expected to promote the detection of data patterns
with semantic and global meanings. The way we extract the patterns using these
descriptors gives rise to several strategies to build up the high-level framework.
In this book, we show two forms of pattern extraction strategies: using classical
network measurements and employing dynamic information that is generated by
several tourist walk processes. The ability of discovering high-level features formed
by the data relationships is investigated using several artificial and real-world data
sets. Here, we focus in situations in which the high-level term is able to identify
intrinsic data patterns, but the low-level term alone fails to do so. This provides a
clear motivation for the employment of a dual classification procedure (low + high).
The obtained results reveal that the hybrid classification technique is able to improve
the already optimized performances of traditional classification techniques. Finally,
the hybrid classification approach is applied to recognize handwritten digits images.

© Springer International Publishing Switzerland 2016
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8.1 A Quick Overview of the Chapter

This chapter treats the issue of supervised data classification by using not only phys-
ical features of data items, but also their high-level characteristics. As examples of
low-level features, we may highlight: distance between data instances, conditional
distribution of the data, and composition of the data neighborhood. In contrast, high-
level characteristics can be defined under several different perspectives. One can
understand them as semantic relationships that extrapolate the classical raw end-
to-end relationships of the data (such as the edges in a network context). In this
regard, subsets of these raw relationships may give rise to new concepts of the
data organization that are ultimately not seen by low-level visions. For instance,
data members of the same class (subset of relationships) may share homogeneous
visions to each other, such as in a well-behaved distribution. Meanwhile, they may
also indicate heterogeneous organizations for different classes. Hence, here we
consider high-level features as descriptors that summarize the organization of the
data relationships in a structural sense.

Despite being an interesting problem, most methods in the literature ignore the
high-level relations among the data, such as the formation of clear patterns in
the data relationships. In view of this gap, a hybrid classification technique has
been proposed that takes into account both types of learning [24]. In essence, the
low-level classification is guided by the labels and the physical features of the
data items. In practical terms, it can therefore be implemented by any traditional
techniques in the literature. In contrast, the high-level classification uses, besides
the data labels, structural or pattern information of the data relationships. Here, new
forms of extracting high-level features of the data relationships are discussed using
a network-based approach. In this respect, the pattern extraction is conducted by
exploring the complex topological properties of the underlying network constructed
from the input data. In this framework, the low- and high-level classifiers are joined
together via a suitable convex linear combination, which is calibrated by what is
called the compliance term. Basically, the compliance term adjusts the importance
that is given for the low- and high-level decisions.

In this chapter, two different implementations of the high-level term are dis-
cussed, both relying on a networked representation of the data, as follows:

• The first one comprises a weighted combination of three classical network mea-
surements, namely the assortativity, the clustering coefficient, and the average
degree;

• The second one is composed of two quantities that are directly derived from the
dynamics of tourist walks, which are the cycle and the transient lengths.

The compliance term plays a crucial role in the classification process. As such,
several analyses are going to be provided in order to show the impact of the
compliance term in data sets with different distributions and particularities that
range from completely well-posed classes to highly overlapping classes. As a quick
glimpse of the final results, we show that one must raise the decision influence of the
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high-level classifier as the joint distribution of the classes becomes more complex
in the sense of the existence of overlapping regions.

Once the hybrid classification technique is properly presented, we explore the
effectiveness of the model by delving into the real-world application of handwritten
digits and letters recognition. Additionally, to illustrate the influence that the
compliance term makes upon the final decision in this real-world problem, a small
manuscript digits network sampled from the real data set is displayed. Such a
network shows that the high-level term is really necessary in special occasions.

8.2 Motivation

Data items are not isolated points in the attribute space but instead tend to form
certain patterns when looked in a collective manner. For example, in Fig. 8.1, the
test instance represented by the “triangle” (purple) will probably be classified as
a member of the “square” (blue) class if only distances among data instances
are considered. In contrast, if we take into account the relationship and semantic
meaning among the data items, we would intuitively classify the “triangle” item
as a member of the “circle” (red) class, since a clear pattern of a “moon” contour
is formed. The human (animal) brain has the ability to identify patterns according
to the semantic meaning of the input data. But, this feature still stands as a hard
task for computers. Supervised data classification that not only considers physical

Fig. 8.1 A simple example of a supervised data classification task in which there exists a class
with a clear pattern, the “circle” (red) class, and another without apparent structural organization,
the “square” (blue) class. The goal is to classify the “triangle” (purple) data item. Traditional
(low-level) classifiers would have trouble in classifying such item, since they derive their decisions
merely based on physical measures
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attributes of data items but also their pattern formations is here referred to as high-
level classification.

The hybrid classification technique presents a way to classify data combining two
semantically different views: the low-level view applies physical features of the data
and the high-level view checks pattern formation of the data. In this sense, the co-
training technique [4] is related to the hybrid classification technique. Co-training
requires two independent views of the data. It first learns a separate classifier for
each view using the labeled data items. Then, the most confident predictions of
each classifier on the unlabeled data are then used to iteratively construct additional
labeled training data. However, the “independent views” in co-training are generated
by low-level classification techniques, i.e., the “independence” is at the physical
feature level. On the other hand, the hybrid technique [24, 28] gives “independent
views” from different levels ranging from physical features to semantic meaningful
patterns. In the same sense, another related technique is the committee machine,
which consists of an ensemble of classifiers [12]. In this case, each classifier makes
a decision by itself and all these decisions are combined into a single response by
a voting scheme. The combined response of the committee machine is supposed to
be superior to those of its constituent experts. Again, all the involved techniques are
low-level ones.

Another strong feature of the hybrid classification technique is that it is an across-
network technique, i.e., it considers the network constructed from the input data as
a whole and the global pattern of the network is taken into account. In the across-
network approach, we take a set of network measures for each constructed data
network, in such a way to characterize the global patterns formed by the underlying
network via a measure vector. In this extraction process, we observe each network
as if we were outside of it and hence each extracted measure represents a different
view of the network.

In contrast, in the within-network approach, we look at the network inside it. In
the within-network case, we basically have two objectives:

1. Making a probabilistic or deterministic inference to find out the best route from
one vertex to another. For example, we may determine the class label of a test
vertex using an inference process starting from an already labeled vertex.

2. Information transmission or diffusion. In this case, we propagate some kind of
information to the entire or a portion of the network. For example, we may
propagate labels from some vertices to the entire network in semi-supervised
learning.

Figure 8.2 illustrates a schematic of the differences of the across- and within-
network approaches.

The across-network feature of the hybrid framework classification contrasts with
several other related works, such as the Semantic Web [1, 7, 23] and Statistical
Relational Classification (SRC). Semantic Web uses ontologies to describe the
semantics of the data. Even though it is a promising idea, it still presents several
difficult challenges. A key challenge in creating Semantic Web is the semantic
mapping among the ontologies, i.e., there are more than one ontology to describe
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Fig. 8.2 Differences of across- and within-network approaches. In the across-network approach
we look at the network as an “outsider” from different viewpoints. In the within-network, we either
perform inference or label diffusion with processes that take place inside the network

the same data item. Another challenge is the one-to-many mapping of concepts
in the Semantic Web, since most techniques are only able to induce one-to-
one mapping, which does not correspond to real-world problems. In the case of
statistical relational classification (SRC), it predicts the category of an object based
on its attributes and its links and attributes of linked objects. Network-based SRC
can be categorized into three main groups [9]: collective inference [9, 19, 29, 36–
38, 40], network-based semi-supervised learning [5, 25–27, 39], and contextual
classification techniques [2, 18, 20, 31, 32, 34, 35]. In all the cases, the labels are
propagated from pre-labeled vertices to unlabeled vertices considering the local
relationships or certain smoothness criteria. Therefore, those techniques are kind
of within-network ones. On the other hand, the classification method introduced
in high-level classification technique presents a different approach. It does not
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consider the paths within the network, instead, it characterizes the pattern formation
of the whole network by exploiting its topological properties using a set of network
measurements. In this case, each of these measures views the network as an outsider
in different perspectives.

8.3 Model Description

In this section, the high-level classification technique is presented. Specifically,
Sect. 8.3.1 supplies the general idea of the model and Sect. 8.3.2 deals with the
methodology for building the hybrid classification framework.

8.3.1 Fundamental Ideas Behind the Model

Suppose that it is given a training set Xtraining D f.x1; y1/; : : : ; .xL; yL/g with L
labeled items, where the first component of the i-th tuple xi D .xi1; : : : ; xiP/ denotes
the attributes of the P-dimensional i-th training instance and the second component
yi 2 Y is the class label of xi. Denote Y D jY j as the number of classes in the
classification problem. Recall that we have a binary classification problem when
Y D 2 and a multiclass classification problem when Y > 2.

As usual, the goal of supervised learning is to learn a mapping x 7! y. Normally,
the generalization power of the constructed classifier is checked against a test set of
U items Xtest D fxLC1; : : : ; xLCUg without label information.

The classification process consists of two phases: the training phase and the
classification phase. In the training phase, the classifier is induced or trained by
using the training instances (labeled data) in Xtraining. In network-based models, the
classifier’s model is represented by a network that is formed from the input data
and the associated labels. We term this output network from the training phase as
the training network. In the classification phase, the labels of the test instances in
Xtest are predicted using the induced classifier. That is, we start off from the training
network and make some modifications to accommodate the unseen test instances.
Using this slightly modified network, we predict the label of the test instance. This
modified network is referred to as the classification network.

8.3.1.1 Training Phase

In this phase, the training data is transformed to a network G using a network
formation technique g W Xtraining 7! G D hV ;E i. Hence, we have V D jV j vertices
and E D jE j edges in the training network. Each vertex in V represents a training
instance in Xtraining, so that V D L holds.

The network is constructed using a combination of the �-radius and k-nearest
neighbors (k-NN) techniques. As shown in the network construction chapter, both
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approaches have their limitations,1 i.e., these techniques, applied in the isolated
form, may generate densely connected networks or may split the vertices into
disconnected components.

For this reason, the combination of �-radius and k-nearest neighbors techniques
is used to construct the training network. The neighborhood of a training vertex xi

is given by:

Ntraining.xi/ D
(

�-radius.xi; yi/; if j�-radius.xi; yi/j > k

k-NN.xi; yi/; otherwise
(8.1)

in which yi denotes the class label of the training instance xi, �-radius.xi; yi/ returns
the set fxj; j 2 V W d.xi; xj/ <D � ^ yi D yig, and k-NN.xi; yi/ returns, in principle,
the set containing the k nearest vertices of the same class as xi. There is a caveat,
however, in this returned set of the k-NN technique. Suppose we rank all of data
items in accordance with their similarities in relation to xi. Let this sorted sequence
be denoted by S .xi/ D fx.1/

i ; : : : ; x.k�1/
i ; x.k/

i ; x.kC1/
i ; : : : ; x.Y.xi/�1/

i g, where Y.xi/ is

the number of data items of the same class as xi. In this notation, x.1/
i and x.Y.xi/�1/

i
are the most and the least similar data items to xi, respectively. As pointed out, we
first try to connect xi to its k most similar data items, i.e., fx.1/; : : : ; x.k/g. However,
if we end up getting more than one graph component of the same class as xi, we
then drop the least similar data item among those k most similar data items, that is,
we discard x.k/

i , and attempt to connect xi to the next most similar data item x.kC1/
i .

This process is recursively performed until we find connections of xi to other data
items in such a way to prevent the emergence of more than a network component of
the same class.

Note that the �-radius technique is used for dense regions (j�-radius.xi/j > k),
while the k-NN is employed for sparse regions. With this mechanism, it is expected
that each class is represented by a unique and single component. Below, we present
a simple contextual example showing the network formation technique.

Example 8.1. Consider the scatter plot in Fig. 8.3, where the task is to
determine to which neighbors the central vertex of the red class (dark gray)
connects. Consider that k D 2 and � is the radius illustrated in the figure. As
there are 3 > k vertices in the �-neighborhood, the area depicted in the figure
is considered as a dense region and the �-radius technique is employed. In
this way, the central red (dark gray) vertex is connected to the other three red
(dark gray) vertices reached by this radius.

1Revisit Sect. 4.3 for a thorough analysis of the shortcomings and advantages of using k-NN and
�-radius network formation techniques.
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Fig. 8.3 Illustration of the network formation technique consisting in a combination of the k-
nearest neighbor and the �-radius techniques. In the depicted network, there are two classes: the
red (dark gray) and the blue (light gray) classes. Since k D 2, the local region is considered as
densely populated. Thus, the �-radius technique is employed. As the centralized vertex belongs to
the red (dark gray) class, it is only permitted to be linked to other red (dark gray) class vertices

For the sake of clarity, Fig. 8.4a shows a schematic of how the network looks like
for a multiclass classification with Y D 3 when the training phase is completed. In
this case, each class holds a representative component. In the figure, the surrounding
circles denote these components: GC1 , GC2 , and GC3 .

8.3.1.2 Classification Phase

In the classification phase, the unlabeled data items (test instances) in the Xtest are
presented to the classifier one by one. The neighborhood of the test instance xi is
defined using the following rule:

Nclassification.xi/ D
(

�-radius.xi/; if j�-radius.xi/j > k:

k � NN.xi/; otherwise:
(8.2)

Equation (8.2) means that the �-radius connects every vertex within the radius �,
disregarding the class labels of the neighbor vertices. If the region is sparse enough,
i.e., there are less than k vertices in this neighborhood, then the k-NN approach
is employed. The modified network with the test instance is the classification
network. In the high-level model, each class retains a network component. Once
a test item is inserted, each component (class) calculates the changes that occur in
its pattern formation with the insertion of this test instance by means of a set of
complex network measures. If slight or no changes occur, then it is said that the test
instance is in compliance with that class pattern. As a result, the high-level classifier
yields a large membership value for that test instance on that class. Conversely, if
these changes dramatically modify the class pattern, then the high-level classifier
produces a small membership value on that class.
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a

b

Fig. 8.4 Overview of the two phases of the supervised learning. (a) Schematic of the network in
the training phase. (b) Schematic of how the inference in the classification phase is performed

Figure 8.4b shows a schematic of how the classification process is performed.
The test instance (triangle-shaped) is inserted using the traditional �-radius tech-
nique, resulting in the classification network. Due to its insertion, the class
components become altered: G

0

C1
, G

0

C2
, and G

0

C3
, in which each of them is a

component surrounded by a circle in Fig. 8.4b. It may occur that some class
components do not share any links with this test instance. In the figure, this happens
with G

0

C3
. In this case, the test instance does not comply with the pattern formation

of the class component. For the components that share at least a link (G
0

C1
and G

0

C2
),

each of it calculates, in isolation, the impact on its pattern formation by virtue of the
insertion of the test instance. For example, when we check the compliance of the
test instance with the component G

0

C1
, the connections from the test instance to the

component G
0

C2
are ignored, and vice versa.
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At the same time, a low-level classifier is also constructed to predict the
membership of the test instance for each class. At the end, the predictions produced
by both classifiers are combined to produce the final decision. Each of the low-
and high-level technique provides a different view of the data set. The low-level
techniques usually has good performance on well distributed and well separated
data sets, while the high-level one has the ability to identify semantic meaning of
the data. We may also understand the classification process in such a way that the
low-level one guarantees the basic performance of the classification results and the
high-level one explores complex and special patterns hidden in the data set.

8.3.2 Derivation of the Hybrid Classification Framework

The high-level classification complements the performance of the learning proce-
dure by exactly capturing the formation of patterns in the data relationships. For
this reason, a hybrid classification technique F is introduced. It consists of a convex
combination of two terms:

1. A low-level classifier. It can be any traditional classification technique, for
instance, a decision tree, Support Vector Machines (SVM), neural networks,
Bayesian learning, or a k-NN classifier;

2. A high-level classifier, which is responsible for classifying test instances accord-
ing to their pattern formation with the training data or network.

Specifically, the hybrid framework yields the decision F.y/
i representing the

membership of the test instance xi 2 Xtest with respect to the class y 2 Y as
follows:

F.y/
i D .1 � �/L.y/

i C �H.y/
i ; (8.3)

in which L.y/
i 2 Œ0; 1� and H.y/

i 2 Œ0; 1� denote the low- and high-level predictions
of test instance xi’s membership towards class y and � 2 Œ0; 1� is the compliance
term, which plays the role of counterbalancing the classification decisions supplied
by both classifiers. Whenever L.y/

i D 1 and H.y/
i D 1, xi is very similar (low-

level) and perfect complies (high-level) with class y. In contrast, whenever L.y/
i D 0

and H.y/
i D 0, xi does not present any similarities (low-level) nor complies to the

pattern formation (high-level) of class y. Values in-between these two extremes lead
to natural uncertainty in the classification process and are found in the majority
of times during a classification task. It is worth noting that (8.3) is a convex
combination of two scalars, since the sum of the coefficients is unitary. Thus, as
the domains of L.y/

i and H.y/
i range from 0 to 1, it is guaranteed that F.y/

i 2 Œ0; 1�.
Therefore, (8.3) provides a fuzzy classification method. Moreover, it is valuable to
mention that, when � D 0, (8.3) reduces to a common low-level classifier.
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The test instance xi receives the label from that class y 2 Y that maximizes (8.3).
Mathematically, the estimated label of the test instance xi, Oyi, is computed as:

Oyi D max
y2Y F.y/

i : (8.4)

Now, we proceed to a detailed analysis of the high-level classification term H.
In the high-level classification, the inference of pattern formation within the data
is processed using the generated training network. Due to the network formation
process, the training network has the following structural constraints:

1. Each class y 2 Y is an isolated network component; and
2. Each class y 2 Y retains a representative and unique network component.

With these two network properties in mind, the pattern formation of the data
is quantified via suitable combinations of network measurements. These measures
are chosen in a way to cover relevant high-level aspects of the class component.
In special, it is often desirable to capture strictly local, mixed, and global network
characteristics, such as to cover structural network aspects in different perspectives.2

The high-level classifier accepts an arbitrary number of network measurements.
Suppose m > 0 network measures are selected to comprise the high-level classifier
H. Mathematically, the high-level prediction on the membership of test instance
xi 2 Xtest with respect to class y 2 Y , here written as H.y/

i , is given by:

H.y/
i D

Pm
uD1 ˛.u/

h
1 � f .y/

i .u/
i

P
g2Y

Pm
uD1 ˛.u/

h
1 � f .g/

i .u/
i ; (8.5)

in which ˛.u/ 2 Œ0; 1�; 8u 2 f1; : : : ; mg, is a user-defined parameter that indicates
the influence of each network measure in the classification process and f .y/

i .u/ is a
function that depends on the u-th network measure applied to the i-th data item with
regard to the class y. This function is responsible for providing an answer whether
or not the test instance xi presents the same patterns or organizational features of
the class y. The denominator in (8.5) has been introduced for normalization matters.
Indeed, Eq. (8.5) is a valid convex combination of network measures if and only if:

mX

uD1

˛.u/ D 1: (8.6)

The functional form f .y/
i .u/ is given by:

f .y/
i .u/ D G.y/

i .u/p.y/; (8.7)

2Revisit Sect. 2.3.5 for definitions on the classification of network measurements.
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in which G.y/
i .u/ 2 Œ0; 1� is the variation of the u-th network measure that occurs

on the component representing class y if xi joins it and p.y/ 2 Œ0; 1� is the proportion
of data items pertaining to class y.

Remembering that each class has a single representative component, the strategy
to check the pattern compliance of test instance xi is to examine whether its insertion
causes a great variation of the network measures in the class components. If for
some class component the variation is small, then xi is in compliance with all of
the other training data items that comprise that class component, i.e., it follows the
same pattern as the original members of that class. This case happens when the
structural features of the network component are maintained with the introduction
of xi. Otherwise, if its insertion is responsible for a significant variation of the
component’s network measures, then xi may not belong to that class in the structural
sense. In this case, the structural properties of the class component are altered due
to the insertion of xi. These two behaviors are exactly captured by (8.5) and (8.7).
To see that, note that a small variation of f .u/ causes a large membership value
output by H; and vice versa. For didactic purposes, we show this concept in a simple
example.

Example 8.2. Suppose a network in which there exists two equally sized
classes, namely A and B. For simplicity, let us use a single network measure
to quantify the pattern formation (m D 1). The goal is to classify a test
instance xi. Hypothetically, say that G.A/

i .1/ D 0:7 and G.B/
i .1/ D 0:3.

In a pattern formation view, xi has a bigger chance of belonging to class B,
since its insertion causes a smaller impact on the pattern formation formed by
class B than on the one formed by class A.

In general, a data set usually encompasses several classes of different sizes and
many network measures are sensitive to the component size. In order to avoid the
unbalanced problem, the term p.y/ in Eq. (8.7) is introduced, which is the proportion
of vertices that class y has. Formally, it is given by:

p.y/ D 1

V

VX

uD1

1ŒyuDj�; (8.8)

in which V is the number of vertices and 1Œ:� is the indicator function that yields 1 if
the argument is logically true, or 0, otherwise.
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The following simple example illustrates the effect of the term p.y/.

Example 8.3. Consider a network in which there are two classes: A and B,
but now A’s size is ten times bigger than B’s. From (8.8), p.A/ D 10=11

and p.B/ D 1=11. Without the term p.y/, it is expected that variations of the
network measures in the component A to be considerably smaller than those
in component B, because of the size differences. This occurs even when the
test instance xi complies more with class B. By considering the term p.y/, the
larger value of p.A/ over p.B/ cancels out the effects of unbalanced classes
in the calculation of the network measures. In this way, the component size
modulates the variations of the topological descriptors when deciding on the
compliance of new test instances.

8.4 Possible Ways of Composing High-Level Classifiers

Two network-based high-level classifications have been proposed [24, 28]. The
first one makes use of a mixture of classical network measurements, namely the
assortativity, the clustering coefficient, and the average degree measures. The second
one uses the dynamical information generated by several tourist walks processes. In
the following, the two techniques are discussed.

8.4.1 High-Level Classification Using a Mixture of Complex
Network Measures

In this section, the first implementation of the high-level classification is intro-
duced [24], which is composed of three complex network measures, which are:
assortativity, clustering coefficient, and average degree. In spite of having chosen
these measures, it is worth emphasizing that other network measures can be also
plugged into the high-level classifier through Eq. (8.5). The reason these three
measures have been chosen is as follows: the degree measure figures out strictly
local or scalar information of each vertex in the network; the clustering coefficient
of each vertex captures local structures by means of counting triangles formed by
the current vertex and any of its two neighbors; the assortativity measure considers
not only the current vertex and its neighbors, but also the second level of neighbors
(neighbor of neighbor), the third level of neighbors, and so on. We perceive that the
three measures characterize the network topological properties in a local to global
fashion. In this way, the combination of these measures is expected to capture the
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pattern formations of the underlying network in a systematic manner. Below, we
revisit these three measures and show how to incorporate them into the high-level
classification.

8.4.1.1 First Network Measure: Assortativity

Assortativity is the preference of vertices in a network to link to others that are
similar in term of vertices’ degrees. This measure has been discussed in the chapter
dealing with the fundamentals of Complex Networks (cf. Definition 2.36). We now
derive G.y/

i .1/ using the assortativity measure. Consider that the membership of
the test instance xi with respect to the class y is going to be determined. The actual
assortativity measure of the component representing class y (before the insertion of
xi) is given by r.y/ (step performed in the training phase). Then, we temporarily insert
xi into the component representing class y using the explained network formation
technique (classification phase) and quantify the new component’s assortativity
measure, here denoted as r0.y/. This procedure is performed for all of the classes
y 2 Y . It may occur that some classes u 2 Y do not share any connections with
the test instance xi. Using this approach, r.u/ D r0.u/, which is undesirable, since
this configuration would state that xi complies perfectly with class u. In order to
overcome this problem, a simple postprocessing is necessary: for all components
u 2 Y that do not share at least one link with xi, we deliberately set r.u/ D �1

and r0.u/ D 1, i.e., the maximum possible difference. One may interpret this
postprocessing as a way to state that xi does not share any pattern formation with
class u, since it is not even connected with it.

In view of this, we are able to calculate G.y/
i .1/ for all y 2 Y as follows:

G.y/
i .1/ D jr0.y/ � r.y/j

P
u2Y jr0.u/ � r.u/j ; (8.9)

in which the denominator is introduced only for normalization matters. According
to (8.9), for components in which the insertion of xi result in a considerable variation
of the assortativity measure, G.y/

i .1/ is large, and, consequently, by (8.7), f .y/
i .1/ is

also large. In light of this, the high-level classifier H produces a small membership
value, as (8.5) reveals. Conversely, for insertions that do not cause a considerable
variation of the assortativity, G.y/

i .1/ is small, resulting in a small f .y/
i .1/. As a

consequence, the high-level classifier H produces a large membership value. In
this way, the high-level classifier favors test instances that do not impact much the
organizational and pattern features of a class.

8.4.1.2 Second Network Measure: Clustering Coefficient

Clustering coefficient is an indicator of the degree to which nodes in a network
tend to cluster together in a triangular manner. This measure has also been
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investigated in the chapter dealing with the fundamentals of Complex Networks
(cf. Definitions 2.46 and 2.47). We motivate the use of the clustering coefficient by
the following facts: components with large clustering coefficient are found to have a
modular structure with a high density of local connections, while components with
small average clustering values tend to have many long-range connections, with the
absence of local structures.

The derivation of G.y/
i .2/ is rather analogous to the previous case, except for a

simple detail: In this case, for all components u 2 Y that do not share at least one
link with the test instance xi, we intentionally fix CC.u/ D 0 and CC0.u/ D 1, i.e.,
the maximum possible difference, since CC.u/ ranges from Œ0; 1�. In this way, we
are able to define G.y/

i .2/ as:

G.y/
i .2/ D jCC0.y/ � CC.y/j

P
u2Y jCC0.u/ � CC.u/j : (8.10)

where CCu and CC0u are clustering coefficients before and after the insertion of the
test instance to class component u.

8.4.1.3 Third Network Measure: Average Degree or Connectivity

This measure has also been explored in the chapter related to the fundamentals of
Complex Networks (cf. Definitions 2.10 and 2.12). The component connectivity
is a relative simple measure, which statistically quantifies the average degree of
the vertices of a component. This measure by itself is weak in terms of finding
patterns in the network, since the mean value may not exactly quantify the degrees
of the majority of vertices in a component. However, if it is jointly used with other
measures, its recognition power significantly increases.

The derivation of G.y/
i .3/ is similar to the previous case, except for a simple

particularity: for all components u 2 Y that do not share at least one link with test
instance xi, we purposefully assign:

hk0.u/i D max

�

hk.u/i � min
j

�
k.u/

j

�
; max

j

�
k.u/

j

�
� hk.u/i

�

; (8.11)

i.e., the maximum possible difference from the mean of the component. In this way,
we are able to define G.y/

i .3/ as:

G.y/
i .3/ D jhk0.y/i � hk.y/ij

P
u2Y jhk0.y/i � hk.u/ij : (8.12)

Recall that hk0.u/i and hk.u/i represent the average degree of the component
u before and after the test instance xi is inserted into the class component u,
respectively.
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8.4.2 High-Level Classification Using Tourist Walks

Now we study the second approach of high-level classification [28]. Instead of using
classical network measures, we use the dynamics generated by several tourist walk
processes to extract high-level information from the network constructed from the
input data. For the sake of clarity, we retrieve, in a synthetic manner, the main
concepts that we utilize in this section.3

A tourist walk can be conceptualized as a walker (tourist) aiming at visiting sites
(data items) in a P-dimensional map, representing the data set. At each step, the
tourist follows a simple deterministic rule: it visits the nearest site that has not
been visited in the previous � steps. In other words, the walker performs partially
self-avoiding deterministic walks over the data set, where the self-avoiding factor
is limited to the memory window � � 1. This quantity can be understood as a
repulsive force emanating from the sites in this memory window, which prevents
the walker from visiting them in this interval (refractory time). Each tourist walk
can be decomposed in two terms: (1) the initial transient part of length t and (2)
a cycle (attractor) with period c. Since the tourist walker must respect the network
topology, it may get in a dead end with no available neighboring vertex to go. In this
case, we say that the cycle length is null. In spite of being a simple rule, it has been
shown that this movement dynamic possesses complex behavior when � > 1 [15].
Moreover, the transient and cycle lengths are dependent on the choice of the memory
length �.

In the previous implementation of the high-level classifier, three different
network measures have been employed: connectivity or average degree, clustering
coefficient, and assortativity. An immediate question that arises is whether or not
this set of selected measures is really sufficient to extract patterns from a network.
In addition, in case they are sufficient, how one may come up with other sets of
measures to construct new high-level classifiers? Therefore, a serious open problem
of the previous approach is how one may choose other network measures in an
intuitive way and also how one may define the learning weights that are associated
with each of them. For instance, those three network measures have been chosen
under a series of trial and error attempts against several well-known network
measures. These issues are addressed when tourist walks are employed to construct
high-level classifiers. Firstly, a unified measure to capture the patterns formed by
the data is presented. In this way, one does not need to discover suitable and
convenient sets of network measures to build up the high-level classifier, as occurs
in the previous approach. In this new implementation, we show that the dynamical
information generated by tourist walks processes is able to extract local-to-global
organizational and complex features of the network by adjustments in the walker’s
memory length parameter. For example, when the memory window of the tourist
is small, local structural features of the network are extracted. Conversely, as the

3Revisit Sect. 2.4.4 for a comprehensive review on tourist walks.
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memory window grows larger, the walker is forced to venture far away from its
starting point, permitting it to learn global features of the network. Secondly, the
model selection procedure is simplified. As one can see in (8.5), several learning
weights of the high-level classifier must be carefully fine-tuned. Because they are
in large numbers, the model selection procedure may take a considerable amount of
time to complete. In large-scale data sets, therefore, the application of the previous
approach would be unfeasible. In this new approach, the learning weights are
endogenously adjusted or fit from the training data. For this end, we utilize efficient
statistical procedures to adjust the learning weights that run in linear time. As a
result, the model selection effort is reduced to a large extent.

In addition to these advantages, the process of tourist walks presents some other
interesting characteristics. One of them is the presence of class-dependent critical
memory lengths. For a specific class y 2 Y , the critical memory length is defined
as an emergent point in which larger memory length values make no changes in
the behaviors of the transient and cycle lengths. This phenomenon is observed
when the memory length assumes sufficient large values. We say that, when this
happen, the walks have reached the “complexity saturation” of the class component.
In this occasion, the global topological and organizational features of the network
are said to be completely characterized in the sense of the tourist walks process.
Moreover, this phenomenon can be related to phase transition in the context of
complex networks.

Having in mind these concepts, the decision output of the high-level classifier
based on tourist walks is given by:

H.y/
i D KH

�
.y/
cX

�D0

w.y/
inter.�/

h
w.y/

intra.�/T.y/
i .�/ C .1 � w.y/

intra.�//C.y/
i .�/

i
; (8.13)

in which:

• �
.y/
c is a critical value that indicates the maximum memory length of the tourist

walks performed in the training phase for class y;
• T.y/

i .�/ and C.y/
i .�/ are functions that depend on the transient and cycle lengths,

respectively, of the tourist walk applied to the i-th data item with regard to class
y. These functions are responsible for providing an estimate of whether or not the
data item i under analysis possesses the same patterns of component y;

• w.y/
inter.�/ is the weight or influence that is given for the tourist walk with memory

length � on class y. Observe that we have used the subscript inter to make clear
that this coefficient deals with the regulation of tourist walks with different �;

• w.y/
intra.�/ is the weight or influence of the transient length of a particular

tourist walk with memory length � on class y. The complementary value, i.e.,
.1 � w.y/

intra.�//, records the same information but for the cycle length. Note that
we have used the subscript intra to denote that such coefficient is modulating the
dynamic generated within the same tourist walk;

• KH is a normalization constant which ensures the fuzziness of the high-level
classifier H.
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8.4.2.1 Calculating the Variational Descriptors T.y/

i .�/ and C.y/

i .�/

The descriptors that characterize the structural variations on the component repre-
senting class y 2 Y due to insertion of the test instance xi are defined as:

T.y/
i .�/ D 1 � t.y/

i .�/p.y/;

C.y/
i .�/ D 1 � c.y/

i .�/p.y/;
(8.14)

in which t.y/
i .u/; c.y/

i .u/ 2 Œ0; 1� are the variations of the transient and cycle
lengths on the component representing class y if test instance i joins it and p.y/ 2
Œ0; 1� is the proportion of training data items pertaining to class y.

In order to compute t.y/
i .�/ and c.y/

i .�/ that appear in (8.14), for a fixed �,
we perform tourist walks initiating from each of the vertices of component y 2
Y . In this way, we get the average transient and cycle lengths of component that
represents class y, ht.y/.�/i and hc.y/.�/i, respectively. For the purpose of estimating
the variation of the component’s network measures, consider that xi 2 Xtest is a test
instance. After xi is inserted into an arbitrary class y 2 Y , we recalculate the average
transient and cycle lengths of this component, denoted as ht0.y/

i .�/i and hc0.y/
i .�/i,

respectively. This procedure is performed for all classes y 2 Y . Again, if some
classes u 2 Y do not share any connections with the test instance xi, we set a high
value for ht0.y/

i .�/i and hc0.y/
i .�/i.

Then, we can calculate t.y/
i .�/ and c.y/

i .�/; 8y 2 Y , as follows:

t.y/
i .�/ D jht0.y/

i .�/i � ht.y/.�/ij
P

u2Y jht0.u/
i .�/i � ht.u/.�/ij

;

c.y/
i .�/ D jhc0.y/

i .�/i � hc.y/.�/ij
P

u2Y jhc0.u/
i .�/i � hc.u/.�/ij

;

(8.15)

in which the denominator is just for normalization matters. According to (8.15),
large variations of a component’s transient and cycle lengths, t.y/

i .�/ and c.y/
i .�/,

yield small membership values T.y/
i .�/ and C.y/

i .�/ and small variations produce
large membership values.

The memory length � has a high influence on the classification result. According
to (8.13), the above described procedure is performed by varying the memory length
�, ranging from 0 (memoryless) to a critical value �c. In this way, the descriptors
can capture complex patterns of each of the representative class components in a
local to global fashion. When � is small, the walks tend to possess a small transient
and cycle parts, so that the walker does not wander far away from the starting
vertex. In this way, the walking mechanism is responsible for capturing the local
structures of the class component. On the other hand, when � increases, the walker
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is compelled to venture deep into the component, possibly very far away from its
starting vertex. In this case, the walking process is responsible for capturing the
global features of the component.

8.4.2.2 Determining the Intra-Modulation Parameters w.y/

intra.�/

The idea to estimate the parameters w.y/
intra.�/ is simple. Intuitively, the transient

length and cycle length of each tourist walk can be considered as a peculiar or
unique vision of the class component. For a fixed �, if the variation of transient
lengths (cycle lengths) is small, all the walks have a homogenous vision on a class
component; otherwise, they have heterogeneous visions. In the event of an insertion
of a new test instance, it is reliable to state that its impact on the organizational
formation of the component is much stronger if its insertion causes a break in
the homogenous vision rather than in the heterogeneous vision. That is, a greater
influence should be intuitively given for the changes in homogeneous visions in
detriment to changes in heterogeneous visions. With this idea in mind, we propose
a calibration of w.y/

intra.�/ using the variances of the transient and cycle lengths
generated by the training set.

In the following, we formalize this idea. For a fixed � and y 2 Y , let the
variances of the tourist walk’s transient and cycle lengths be �

.y/
c .�/ and �

.y/
t .�/,

respectively. Then, w.y/
intra.�/, 8� 2 f0; : : : ; �cg; y 2 Y , is given as follows:

w.y/
intra.�/ D �

.y/
c .�/ C 1

�
.y/
t .�/ C �

.y/
c .�/ C 2

; (8.16)

1 � w.y/
intra.�/ D �

.y/
t .�/ C 1

�
.y/
t .�/ C �

.y/
c .�/ C 2

; (8.17)

in which Eq. (8.16) refers to the influence of the transient length and (8.17) provides
the influence of the cycle length when tourist walks with memory length � are
performed. Note that we have employed the Laplace Smoothing technique into the
determination of such parameters, which adds 1 for the variances of each variable.
This allows Eqs. (8.16) and (8.17) to be always defined for every �

.y/
c .�/ � �

.y/
t

.�/ 2R
2.

8.4.2.3 Determining the Inter-Modulation Parameters w.y/

inter.�/

In order to estimate the influence weights of tourist walks with different �, the same
strategy based on variances given in the previous subsection can be applied. i.e.,
a higher weight value is given to the walks that have less total variance (transient
+ cycle). This strategy is the same as to declare that we are favoring homogenous
visions against heterogeneous visions.
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The idea is formalized as follows. For a fixed � and y 2 Y , say that the variances
of the transient and cycle lengths of tourist walks with � 2 f0; : : : ; �cg are given
by �

.y/
c .�/ and �

.y/
t .�/, respectively. Then, w.y/

inter.�/; � 2 f0; : : : ; �cg; is given as
follows:

w.y/
inter.�/ D

P�
.y/
c

D0;¤�
�

.y/
t ./ C �

.y/
c ./

P�
.y/
c

�D0

P�
.y/
c

D0;¤�
�

.y/
t ./ C �

.y/
c ./

D k.y/
inter � .�

.y/
t .�/ C �

.y/
c .�//

�
.y/
c k.y/

inter

; (8.18)

in which:

k.y/
inter D

�
.y/
cX

D0

�
.y/
t ./ C �.y/

c ./: (8.19)

Note that, for a fixed �, if �
.y/
t .�/C�

.y/
c .�/ is large, then the corresponding influ-

ence of that tourist walk, w.y/
inter.�/, is small in relation to the others w.y/

inter./;  ¤ �.
Conversely, if the sum of the descriptors of the tourist walk with fixed � is small,
we get a large w.y/

inter./, showing the relative importance of those tourist walks in
the learning process.

8.5 Numerical Analysis of the High-Level Classification

In this section, we assess the performance of the high-level classifier composed by
the dynamical information generated from the tourist walks. Section 8.5.1 reviews a
problematic situation where the high-level of learning is welcomed and Sect. 8.5.2
supplies a parameter sensitivity analysis of the model.

8.5.1 An Illustrative Example

Figure 8.5 shows a segment of line representing the red or circular-shaped class
(9 vertices) and also a condensed hollow circular class (torus) depicted by the
blue or square-shaped class (1000 vertices). The network formation parameters are
fixed as k D 1 and � D 0:074. The fuzzy SVM technique [16] with RBF kernel

4(This radius covers, for any vertex in the straight line, two adjacent vertices, except for the vertices
in each end).
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Fig. 8.5 Minimum value of the compliance term, �min, that results in the classification of
the purple or triangle-shaped test instances as members of the red or circular-shaped class.
Reproduced from [28] with permission from Elsevier

(C D 22 and � D 2�1) is employed as the traditional low-level classifier. The task
is to classify the 14 test instances represented by the big triangle-shaped items from
left to right. After a test instance is classified, it is incorporated to the training set
with the corresponding predicted label (self-learning). The low part of the figure
shows the minimum required value of �min for which the triangle-shaped items are
classified as members of the red or circular-shaped class. From this figure, we see
that the big triangle-shaped items can be identified to form a line pattern with the red
or circular elements, even if the straight line crosses the condensed region of the blue
or square-shaped class. Another feature is that the required compliance term takes
small values when the test instances stay long away from the blue or square-shaped
class (simple cases of classification) but it takes large values when the straight line
crosses the “torus” class (complex cases of classification). This means that the high-
order of learning is very useful in complex situations of classification.

8.5.2 Parameter Sensitivity Analysis

In this section, several simulations are performed to show the influence of the
model’s parameters. We only provide a parameter sensitivity analysis of the high-
level classifier that is based on tourist walk processes, because this approach
self-adjusts the learning of the network descriptors. Therefore, model selection
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procedures become viable. In contrast, the model based on complex network
measures has as many learning weights as there are complex network measures.

8.5.2.1 Influence of the Parameters Related to the Network Formation

The network formation step plays a crucial role in the learning process of the high-
level classification. It is regulated by the parameters k and �. For every data item
(vertex), the algorithm determines if it is located in a sparse or dense region by
counting the number of data items within a hyper-sphere with radius �. If this
number is smaller than k, the vertex is declared to be in a sparse region and the
k-NN is used. Otherwise, the �-radius is employed. If k is bounded by the number
of training data items V , some mathematical consequences of this procedure are
given below:

• If k ! V ) all vertices are declared to be in sparse regions ) always use the
k-NN technique, regardless of �;

• If k ! 0 ) all vertices are declared to be in dense regions ) always use the
�-radius technique;

• If � ! 1 ) all vertices are declared to be in dense regions ) always use the
�-radius technique, regardless of k;

• If � ! 0 ) all vertices are declared to be in sparse regions ) always use the
k-NN technique.

The aforementioned behaviors imply that only for intermediate values of k and �,
both the k-NN and �-radius techniques are enabled. This is because, if k is too large,
the �-radius technique is disabled. Conversely, if � is too large, the k-NN technique
is turned off.

8.5.2.2 Influence of the Critical Memory Length

In Ref. [28], the authors uncovered a phenomenon regarding the critical memory
length �

.y/
c , called complexity saturation. In order to facilitate the understanding

of such property, let us first investigate some simulation results on synthetic and
real-world data sets.

For the experiments, we consider the Wine data set (unbalanced classes), which
is a well-known data set from the UCI Machine Learning Repository [8]. Figure 8.6a
and b portrays the transient and cycle lengths computed for each class reported in
the Wine data set. With respect to the transient length behavior, we can see that
the transient length increases as � increases. However, when � is sufficiently large,
the components’ transient lengths settle down in a flat region. In contrast, the cycle
length behavior shows an interesting behavior, which can be roughly divided in three
different regions: (1) for a small �, the cycle length is directly proportional to �;
(2) for intermediate values of �, the cycle length is inversely proportional to �; and
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Fig. 8.6 Behavior of the transient and cycle lengths of the Wine data set. Network formation
parameters: k D 3 and � D 0:04. Reproduced from [28] with permission from Elsevier.
(a) Transient length vs. �c and (b) cycle length vs. �c

(3) for sufficiently large values of �, the cycle length also settles down in a steady
region . One can interpret these results as follows:

• When � is small, it is very likely that the transient and cycle parts are also small,
because the memory of the tourist is very limited. We can conceive this as a walk
with almost no restrictions;

• When � assumes an intermediate value, the transient length keeps increasing
but the cycle length reaches a peak and starts to decrease afterwards. This peak
characterizes the topological complexity of the component and varies from one to
another. Hence, this is the most important region for capturing pattern formation
of the class component by using the network topological structure;
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• When � is large, the tourist has a greater chance of getting trapped in a vertex
of the graph. This happens when the entire neighborhood of the visited vertex is
contained within the memory window �. In this scenario, the transient length is
expected to be very high and the cycle length, null. This phenomenon explains
the steady regions in Fig. 8.6a and b. In this region, the tourist walks have already
covered all the global aspects of the class component, and increasing the memory
length � will not capture any new topological features or pattern formation of the
class components. In this scenario, it is said that the tourist walks have completely
described the topological complexity of the class component (saturation). In view
of this, the calculation of tourist walks by further increasing � is redundant.

This analysis suggests that the accuracy of the high-level classification may not
change given that we choose suitable �

.y/
c ; y 2 Y ; residing near these steady regions

for each class in the problem. This means that larger values for �
.y/
c only cause

redundant computations as the accuracy rate does not enhance nor reduce.
This phenomenon of complexity saturation observed in these data sets can also

be related to phase transition in networks. For example, when � < �c, we can
conceive the tourist walks in the network to be in an exploratory phase, where the
dynamics of the transient and cycle lengths change as the parameter � is modified.
Therefore, in this initial exploratory phase, parameter � is sensitive to the outcome
of the tourist walks’ dynamics. However, when � D �c, the walk changes from the
exploratory to the stationary phase, in which the lengths of the transient and cycle
parts of the tourist walks performed on networks are not sensitive (independent)
anymore. This holds true for all � � �c. In this phase, the graph topology restrains
the tourist walk such as to not change its dynamical information anymore. As the
network becomes more dense, more different walks are probabilistic possible, and
�c is expected to take on larger values. In this regard, in a complete graph, the �c of
a networked topology would be exactly equal to a networkless (lattice) approach.

Based on these experiments, a heuristic for estimating the critical memory length
�

.y/
c is provided as follows. For a particular class, the dynamics of the tourist walks

are calculated starting from � D 0. Once finished, � is incremented and the same
calculations are performed for the new �. Say that t.y/.�/ and c.y/.�/ are the curves
drawn from these calculations for the transient and cycle lengths, respectively. Once
the derivatives of t.y/.�/ and c.y/.�/, i.e., t0.y/.�/ and c0.y/.�/ are zero, we store
the �

.y/
c in which this happened and start out a counter, which monitors how many

iterations of � the derivatives of these measures have not changed. This counter
is incremented as � increases. If t0.y/.�/ and c0.y/.�/ remain zero-valued in few
iterations, the learning process is stopped and all calculations for which � > �

.y/
c

are discarded.
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8.6 Application: Handwritten Digits Recognition

In this section, we show the appealing feature of high-level classification through
a real pattern recognition application—handwritten digits recognition. We focus on
the performance of the high-level classification that relies on a linear combination
of tourist walks because the model selection procedure is simpler.

Section 8.6.1 motivates the importance of handwritten recognition in real-world
applications and the challenges involved in this process. Section 8.6.2 describes
the data set composed of handwritten digits that is employed in the automated
recognition task. Section 8.6.3 presents a suitable image-based similarity measure
that we use when constructing the training network. Section 8.6.4 lists a small set of
low-level classification techniques that are plugged into the hybrid classification
framework to test its robustness. Section 8.6.5 reports the results of the hybrid
classifier that comprises a suitable combination of the low-level and the high-level
classification. Section 8.6.6 illustrates how the training network of handwritten
digits is and also shows how the high-level classifier can really help in classifying
digits of a real-world data set.

8.6.1 Motivation

Handwritten recognition is the ability of computers to receive and interpret intelli-
gible handwritten input from sources such as paper documents, photographs, touch-
screens, data sets, and other devices [17, 30]. Ideally, the handwriting recognition
systems should be able to read and understand any handwriting [3]. Handwriting
recognition has been one of the most fascinating and challenging research areas
in the field of image processing and pattern recognition in the recent years [22].
It contributes immensely to the advancement of an automation process and can
improve the interface between man and machine in numerous applications [3, 30]. In
general, handwritten recognition is classified into off-line or on-line. In the first case,
the writing is obtained by an electronic device and the captured writing is completely
available as an image to the handwritten recognition method. In the second case, the
coordinates of successive points are available by means of a function dependent on
time, i.e., the complete image is not given [22, 30]. In summary, several research
works have been proposed [11, 21, 22] in an attempt to reduce the processing time
of both off-line and on-line methods, while, at the same time, providing higher
recognition accuracy. Due to the high complexity that this topic offers, it still has
a wide range of problems to be addressed, such as the efficient recognition of
images that are distorted or suffered a nonlinear transformation [3, 6, 30]. In view
of these complexities, we attempt to utilize complex networks to help in the task
of handwritten digits and letters recognition by taking advantage of the topological
characteristics of the constructed network of patterns.
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8.6.2 Description of the MNIST Data Set

Handwriting digits recognition is a well accepted benchmark for comparing pattern
recognition methods. Here, the Modified NIST (National Institute of Standards and
Technology) data set [14], MNIST for short, is used. It was created by “re-mixing”
the samples from NIST’s original data sets. While the NIST’s training data set was
taken from American Census Bureau employees, the test data set was taken from
American high school students. In view of the different data distributions of the
training and test sets, the NIST’s complete data set was considered too hard.

The database contains 60,000 training images and 10,000 testing images. Half
of the training set and half of the test set were taken from NIST’s training data set,
while the other half of the training set and the other half of the test set were taken
from NIST’s testing data set. This data set is almost balanced with regard to the size
of the ten existing classes, each of which representing a digit. Similarly to [14], a
pre-processing step is conducted. In this respect, the gray-level images (samples)
are reduced to fit in a 20 � 20 pixel box, while preserving their aspect ratio.

8.6.3 A Suitable Similarity Measure for Images

In a network-based data representation, the images (data items) are represented
by the vertices, while the relationships between them are given by the links. A
link connecting two vertices (images) holds a weight that numerically translates
the similarity between them. Each image can be represented by a “square” matrix
� � �. For rectangle images, a pre-processing is required to transform it into a
square image. We conventionally set the pixels’ values range to lie within the
interval Œ0; 1� by normalization. Thus, an arbitrary data item (image) xi can be
seen as a matrix with dimensions � � �, where each pixel xi

.u;j/ 2 Œ0; 1�; 8.u; j/ 2
f1; : : : ; �g � f1; : : : ; �g.

In order to construct the network, we are required to establish a similarity
measure. The traditional pixel-per-pixel distance is rather insufficient in terms of
reliably representing data, since such measure is very sensitive to rotations and scale
modifications. With the purpose of overcoming this difficulty, we propose a measure
based on the eigenvalues that each image inherently carries with it. First of all, we
remove the mean associated to each data item (image), so that we have a common
basis of comparison. After that, we calculate the 	 greatest eigenvalues of the image.
Efficient methods have been developed for finding the leading eigenvalues of real-
valued asymmetric matrices [10, 33]. The magnitudes of the eigenvalues are related
to the variations that the image possesses; hence, it is a natural carrier of information
[13]. The greater its value, more information about the image it conveys. By virtue
of that, a good choice is to only extract the greatest 	 < � eigenvalues and drop
the smaller values, since these do not transport too much information about the
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image. Also, in order to give more emphasis to the largest eigenvalues, a weight is
associated to each one so that the larger an eigenvalue is, the larger is its associated
weight.

Consider that we are to compare the similarity between two images, say xi and
xj, in relation to the 	 largest eigenvalues. We firstly sort the 	 eigenvalues of each

image as: j�.1/
i j � j�.2/

i j � : : : � j�.	/
i j and j�.1/

j j � j�.2/
j j � : : : � j�.	/

j j, where

j�.k/
i j marks the k-th eigenvalue of the i-th data item. In this case, the dissimilarity

d.i; j/ (or, equivalently, the similarity s.i; j/ D 1 � d.i; j/) between image i and j is
given by:

d.i; j/ D 1

�max

	X

kD1

ˇ.k/
h
j�.k/

i j � j�.k/
j j
i2

; (8.20)

in which � 2 Œ0; 1�, �max > 0 is a normalization constant, ˇ W N
� ! .0; 1/

indicates a monotonically decreasing function that can be arbitrarily chosen by the
user.

8.6.4 Configurations of the Low-Level Classification
Techniques

Three low-level classification techniques are going to be used in the following com-
puter simulations. For more details about the setup and architectural characteristics
of the first two techniques, one can refer to [14].

• A Perceptron neural network: each input pixel value contributes to a weighted
sum for each output neuron. The output neuron with the highest sum (including
the contribution by virtue of the bias applied to that neuron) marks the class of
the input character.

• A k-nearest neighbors classifier: we set the similarity as the reciprocal of the
Euclidean distance and k D 3.

• A network-based �-radius classifier: the �-radius network formation technique is
employed with a dissimilarity measure given by a weighted sum of the 	 D 4

greatest eigenvalues, as described in the previous section.

8.6.5 Experimental Results

Figure 8.7 shows the performance of the three low-level techniques acting together
with the high-level classification in a networked environment. For example, the
Perceptron alone reaches 88 % of accuracy rate, while a small increase in the
compliance term is able to increase the overall model’s accuracy rate to 91 %
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Fig. 8.7 A detailed analysis of the impact of the compliance term � on different traditional low-
level techniques applied to the MNIST database. One can see that a mixture of traditional and
high-level techniques does give a boost in the accuracy rate in this real-world data set. Reproduced
from [28] with permission from Elsevier

(� D 0:2). Regarding the k-nearest neighbor algorithm, for a pure traditional
classifier, we obtain 95 % of accuracy rate, against 97:6 % when � D 0:25. For the
weighted eigenvalue measure, we obtain 98 % of accuracy rate when � D 0, against
99:1 % when � D 0:2. It is worth noting that these enhancements are significant.
Even in the third case, the improvement is quite welcomed, because it is a hard task
to increase an already very high accuracy rate.

8.6.6 Illustrative Examples: High-Level Classification vs.
Low-Level Classification

In this section, we provide illustrative examples to show the situations where the
high-level classification works but the low-level term fails.

For simplification matters, we consider only two classes: digits “5” and “6”.
Figure 8.8a and b illustrates how the digit classification is carried out by using
simple networks containing these small samples of digits.

Firstly, let us consider Fig. 8.8a, where the digits “5” and “6” surrounded by
brown and blue boxes, respectively, represent the training set. The task is to classify
the test instance represented by the digit in the red box. If only the low-level
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Fig. 8.8 Illustration of the pattern formation impact in a subset of samples extracted from the
MNIST data set. The training instances are displayed by the brown (digit 5) and blue (digit 6)
colors. The test instances are indicated by a red color (bigger sizes). Reproduced from [28] with
permission from Elsevier. (a) Insertion of a digit 5 test instance and (b) insertion of a digit 6 test
instance

classification is applied, the test digit will probably be classified as a digit “6”,
because there are more neighbors of digit “6” than that of “5” in the vicinity. On
the other hand, if we also consider the class’ geometrical disposition (high-level
classification), it is more suggestive that the referred test instance is a member of the
digit “5” class, because it complies more to the pattern formed by training digits of
the class “5” than to the one formed by the digits of the class “6”. In organizational
terms, if the test digit is inserted into the class “5” as displayed, it will just extend
the somewhat formed horizontal “line” pattern. As a consequence, the inclusion of
the test digit in this class will disturb (change) the class organization in a small
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extent, i.e., its representative descriptors (transient and cycle length) will not vary
significantly. However, if the test digit is inserted into the class “6”, larger variations
of the component measures will occur, since cycles are formed in the component.
Taking into consideration that, before the insertion of the test instance, there were
no cycles in the components, it is clear that the representative descriptors of the
component representing the class “6” will vary considerably by virtue of this abrupt
change.

Figure 8.9a and b exhibits the transient and cycle lengths, as well as their
corresponding variations, as a function of �, when the digit “5” test instance is
inserted into the component represent the digit “5” cluster. As we expected, we see
that the variations are very small in the class representing the digit “5”, indicating
and suggesting the strong compliance of the digit “5” test instance with the pattern
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Fig. 8.9 Transient and cycle lengths of the graph components representing the training instances
of the digits 5 (brown class) and 6 (blue class), as shown in Fig. 8.8a. In addition, the variation on
these two measurements are reported due to the insertion of the digit 5 test instance (red instance).
Reproduced from [28] with permission from Elsevier. (a) Brown class transient length, (b) brown
class cycle length, (c) blue class transient length and (d) blue class cycle length
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already formed by the representative graph component of the digit “5”. On the other
hand, Fig. 8.9c and d show the variations of the transient and cycle lengths of the
component representing the digit “6” cluster when the digit “5” test instance is
inserted. Here, we see that larger variations occur, which means that the digit “5” test
instance does not comply with the pattern formed by the representative component
of the digit “6” cluster.

Putting together these two observations, we conclude that the high-level classi-
fication will correctly classify the test instance as a digit “5”. The same reasoning
can be applied to the digit network shown in Fig. 8.8b. In this case, the transient
and cycle lengths as well as the corresponding variations are shown in Fig. 8.10a–d,
when the digit “6” test instance is inserted into the component of digit “5” or “6”
cluster, respectively. Using the same arguments and aforementioned plots, in this
situation, we can verify that the digit “6” test instance is correctly classified as a
digit “6”.
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Fig. 8.10 Transient and cycle lengths of the graph components representing the training instances
of the digits 5 (brown class) and 6 (blue class), as shown in Fig. 8.8b. In addition, the variation on
these two measurements are reported due to the insertion of the digit 6 test instance (red instance).
Reproduced from [28] with permission from Elsevier. (a) Brown class transient length, (b) brown
class cycle length, (c) blue class transient length and (d) blue class cycle length
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8.7 Chapter Remarks

In this chapter, we have studied a general classification framework that is composed
of a novel combination of low- and high-level classifiers. The low-level term
classifies test instances according to their physical features, while the second term
measures how well new test instances comply with the existing patterns formed
by the data relationships. This is performed by exploiting the complex topological
properties of the network built from the training data.

In addition to the novel definition of this hybrid classification, two implementa-
tions for the high-level term are reviewed, both running in a networked environment.
In the first one, the high-level classification is composed of three complex network
measures: the average degree, clustering coefficient, and assortativity. In the
second implementation, the complex dynamics generated by several tourist walks
processes are employed. Specifically, the model is characterized by linear weighted
combinations of transient and cycle lengths of different tourist walks. It stores
tourist walks with varying values (up to a critical value) for the memory parameter.
The motivation behind taking combinations of tourist walks with different memory
values is that they can capture local (small memory values) to global (large memory
values) aspects of the network.

Several experiments are conducted on synthetic and real-world data sets, so that
we can better assess the performance of the hybrid classification framework. A quite
interesting feature of this technique is that the influence of the high-level term has
to be increased as the complexity of the classes increases. This suggests that the
high-level term is specially useful in complex situations of classification.

The high-level classification techniques have been applied to handwritten digits
recognition and we have seen that the hybrid model can really improve the accuracy
rates of traditional classification techniques in certain conditions. It is worth noting
that the employment of the high-level term in isolation generally does not perform
very well. However, when utilized together with a suitable low-level classification
technique, it can really boost the performance of the overall classification procedure.
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Chapter 9
Case Study of Network-Based Unsupervised
Learning: Stochastic Competitive Learning
in Networks

Abstract Many business and day-to-day problems that arise in our lives must be
dealt with under several constraints, such as the prohibition of external interven-
tions of human beings. This may be due to high operational costs or physical
or economical impossibilities that are inherently involved in the process. The
unsupervised learning—one of the existing machine learning paradigms—can be
employed to address these issues and is the main topic discussed in this chapter. For
instance, a possible unsupervised task would be to discover communities in social
networks, find out groups of proteins with the same biological functions, among
many others. In this chapter, the unsupervised learning is investigated with a focus
on methods relying on the complex networks theory. In special, a type of competitive
learning mechanism based on a stochastic nonlinear dynamical system is discussed.
This model possesses interesting properties, runs roughly in linear time for sparse
networks, and also has good performance on artificial and real-world networks.
In the initial setup, a set of particles is released into vertices of a network in a
random manner. As time progresses, they move across the network in accordance
with a convex stochastic combination of random and preferential walks, which are
related to the offensive and defensive behaviors of the particles, respectively. The
competitive walking process reaches a dynamic equilibrium when each community
or data cluster is dominated by a single particle. Straightforward applications are
in community detection and data clustering. In essence, data clustering can be
considered as a community detection problem once a network is constructed from
the original data set. In this case, each vertex corresponds to a data item and pairwise
connections are established using a suitable network formation process.

9.1 A Quick Overview of the Chapter

Competition is a natural process observed in nature and in many social systems
that have limited resources, such as water, food, mates, territory, recognition, etc.
Competitive learning is an important machine learning approach that is widely
employed in artificial neural networks to realize unsupervised learning. Early
developments include the famous self-organizing map (SOM—Self-organizing
Map) [19], differential competitive learning [20], and adaptive resonance theory
(ART—Adaptive Resonance Theory) [6, 14]. From then on, many competitive
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learning neural networks have been proposed [1–3, 16, 17, 24, 25, 28, 31, 39] and a
wide range of applications has been considered. Some of these application include
data clustering, data visualization, pattern recognition, and image processing [4, 7,
9, 10, 22, 41]. Without a doubt, competitive learning represents one of the main
successes of the unsupervised learning development.

The network-based unsupervised learning technique that we present here is one
type of competitive learning process. In essence, the model relies on a competitive
mechanism of multiple homogeneous particles originally proposed in [32]. There-
after, the particle competition technique has been enhanced and formally modeled
by a stochastic nonlinear dynamical system and applied to data clustering tasks
in [35]. In this chapter, we explore the particle competition algorithm by providing
several empirical and analytical analyses. In this investigation, we attempt to show
the potentialities and shortcomings of the particle competition technique. Given that
the models of interactive walking processes correspond to many natural and artificial
systems, and due to the relative lack of theory for such systems, the analytical
analysis of this model is an important step to understanding such systems.

Once the fundamental idea and the model definition are properly presented,
several applications that use the particle competition model are discussed in various
interesting problems indicated in the literature. One of these problems is the creation
of efficient evaluation indices for estimating the most likely number of clusters or
communities in data sets. We show that these indices explore dynamic variables that
are constructed from the competitive behavior of the particles inside the network. In
this way, the evaluation of these indices is embedded within the mechanics of the
particle competition process. As a result, if one takes into account that the number
of clusters is far less than the quantity of data items, the process of determining the
most likely number of clusters does not increase the model’s time complexity order.
Since the determination of the actual number of clusters is an important issue in
data clustering [38, 40], the particle competition model also presents a contribution
to this topic.

Following the same line, an index for detecting overlapping cluster structures is
also discussed, which, under some assumptions, may also not increase the model’s
time complexity order due to its embedded nature within the competitive process.

With all these tools at hand, the chapter is finalized by investigating how the
model behaves in an application of handwritten digits and letters clustering. Therein,
we see that the competitive model is able to satisfactorily cluster several variations
and distortions of the same handwritten digits and letters into their corresponding
clusters.

9.2 Description of the Stochastic Competitive Model

In this section, the competitive dynamical system consisting of multiple parti-
cles [35] is discussed.
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Section 9.2.1 provides the intuition behind the mechanics of the model. Sec-
tion 9.2.2 builds on the caveats for constructing the transition matrix of the
stochastic dynamical system that the particle competition model relies on. Sec-
tion 9.2.3 formally defines the corresponding dynamical system. Section 9.2.4
explores the application of estimating the most likely number of communities or
groups in a data set. Section 9.2.5 introduces another application of detecting
overlapping vertices and communities. Section 9.2.6 supplies a parameter sensitivity
analysis of the model’s parameters. Finally, Sect. 9.2.7 analyzes convergence issues
of the particle competition algorithm.

9.2.1 Intuition of the Model

Consider a network G D hV ;E i, where V is the set of vertices and E � V � V
is the set of links (or edges). There are V D jV j vertices and E D jE j edges in
the network. In the competitive learning model, a set of particles K D f1; : : : ; Kg
is inserted into the vertices of the network in a random manner. Essentially, each
particle can be conceived as a flag carrier whose goal is to conquer new vertices,
while defending its current dominated vertices. Given that we have a finite number
of vertices, competition among particles naturally occurs. Note that the vertices
play the role as valuable resources in this competition process. When a particle
visits an arbitrary vertex, it strengthens its own domination level on that vertex
and, at the same time, weakens the domination levels of all of the other rival
particles on the same vertex. Finally, it is expected that each particle will be confined
within a subnetwork corresponding a community. In this way, the communities are
uncovered. Figure 9.1a, b portray a possible initial condition, in which particles
are randomly inserted into network vertices, and the expected long-run dynamic of
the particle competition system for an artificial clustered network with three well-
defined communities.

Due to the competition effect, a particle is either in the active or in the exhausted
state. Whenever the particle is active, it navigates in the network guided by a combi-
nation of two orthogonal walking rules: the random and the preferential movements.
The random walking term permits particles to randomly visit neighboring vertices
regardless of their current conditions and the neighborhood. Therefore, the random
walking term is an unconditional rule that depends only on the immutable network
topology and hence is responsible for the particle’s exploratory behavior. On the
contrary, the preferential walking term accounts for the defensive behavior of the
particles by favoring particles to revisit and reinforce their dominated territory
rather than to visit non-dominated vertices. This walking term is a conditional rule
that depends on the particles’ domination levels on the neighborhood. Therefore,
while the movement distribution that models the exploratory behavior is fixed, that
distribution that describes the defensive behavior is mutable, being dependent both
on the particles and the time dimension.
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a b

Fig. 9.1 Illustration of the initial conditions and long-run dynamic of the particle competition
model. (a) Possible initial setup, (b) expected long-run dynamic

In the particle competition process, each particle carries a time-dependent energy
variable that reflects its instantaneous exploration ability. The energy variable
increases when the particle is visiting a vertex that it dominates, and decreases
whenever it visits a vertex dominated by a rival particle. If the energy variable
drops below a minimum threshold, the particle becomes exhausted and it is brought
back to one of the vertices that it dominates. With this mechanism, the network
always has a constant number of particles and frequent intrusions of particles to
regions dominated by rival particles can be avoided. The exhaustion of particles in
the learning process can be related to the smoothness assumption of unsupervised
learning algorithms, because this process delimits the community borders that each
particle dominates.

9.2.2 Derivation of the Transition Matrix

During the competition process, each particle k 2 K performs two distinct types of
movements:

• a random movement term, modeled by the matrix P.k/
rand, which allows the particle

to venture throughout the network, without accounting for the defense of the
previously dominated vertices; and

• a preferential movement term, modeled by the matrix P.k/
pref, which is responsible

for inducing the particle to reinforce vertices that the particle dominates,
effectively creating a preferential visiting rule to dominated vertices rather than
random ones.
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Consider the random vector p.t/ D Œp.1/.t/; p.2/.t/; : : : ; p.K/.t/�, which denotes
the location of the set of K particles presented to the network. Its k-th entry,
p.k/.t/, indicates the location of particle k in the network at time t, i.e., p.k/.t/ 2
V ; 8k 2 K . With the intent of keeping track of the current states of all particles,
we introduce the random vector S.t/ D ŒS.1/.t/; : : : ; S.K/.t/�, where the k-th entry,
S.k/.t/ 2 f0; 1g, indicates whether particle k is active (S.k/.t/ D 0) or exhausted
(S.k/.t/ D 1) at time t. When a particle is active, it performs the combined
random-preferential movements; when it is exhausted, the particle switches its
movement policy to a new transition matrix, here referred to as P.k/

rean.t/. This matrix
is responsible for taking the particle back to its dominated territory, in order to
reanimate the corresponding particle by recharging its energy. This sequence of
steps is called the reanimation procedure. After the particle’s energy has been
properly recharged, it again walks in the network. With these notations at hand,
we can define a transition matrix that governs the probability distribution of
the movement of the particles to the immediate future state p.t C 1/ D Œp.1/

.t C 1/; p.2/.t C 1/; : : : ; p.K/.t C 1/� as follows:

P.k/
transition.t/ , .1 � S.k/.t//

h
�P.k/

pref.t/ C .1 � �/P.k/
rand

i
C S.k/.t/P.k/

rean.t/; (9.1)

in which k is the particle index, � 2 Œ0; 1� modulates the desired fraction of
preferential and random movements. Larger values of � favor preferential walks
in detriment to random walks. The entry P.k/

transition.i; j; t/ indicates the probability
that particle k performs a transition from vertex i to j at time t. Now we define the
random and the preferential movement matrices.

Each entry .i; j/ 2 V � V of the random movement matrix is given by:

P.k/
rand.i; j/ , Aij

P
u2V Aiu

; (9.2)

in which Aij denotes the .i; j/-th entry of the adjacency matrix A of the network.
It means that the probability of an adjacent neighbor j to be visited from vertex i
is proportional to the edge weight linking these two vertices. The matrix is time-
invariant and it is the same for every particle in the network; therefore, whenever
the context makes it clear, we drop the superscript k for convenience.

In order to derive the preferential movement matrix, P.k/
pref.t/, we introduce the

following random vector:

Ni.t/ , ŒN.1/
i .t/; N.2/

i .t/; : : : ; N.K/
i .t/�T ; (9.3)

in which dim.Ni.t// D K � 1, T denotes the transpose operator, and Ni.t/ registers
the number of visits received by vertex i up to time t by each of the particles in the
network. Specifically, the k-th entry, N.k/

i .t/, indicates the number of visits made by
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particle k to vertex i up to time t. Then, the matrix that contains the number of visits
made by each particle in the network to all the vertices is defined as:

N.t/ , ŒN1.t/; N2.t/; : : : ; NV.t/�T ; (9.4)

in which dim.N.t// D V �K. Let us also formally define the domination level vector
of vertex i, NNi.t/, according to the following random vector:

NNi.t/ , Œ NN.1/
i .t/; NN.2/

i .t/; : : : ; NN.K/
i .t/�T ; (9.5)

in which dim. NNi.t// D K � 1 and NNi.t/ denotes the relative frequency of visits of
all particles in the network to vertex i at time t. In particular, the k-th entry, NN.k/

i .t/,
indicates the relative frequency of visits performed by particle k to vertex i at time
t. Then, the matrix form of the domination level of all vertices is defined as:

NN.t/ , Œ NN1.t/; NN2.t/; : : : ; NNV.t/�T ; (9.6)

in which dim. NN.t// D V � K. Mathematically, each entry of NN.k/
i .t/ is defined as:

NN.k/
i .t/ , N.k/

i .t/
P

u2K N.u/
i .t/

: (9.7)

With these notations at hand, the preferential movement rule can be defined as:

P.k/
pref.i; j; t/ ,

Aij
NN.k/

j .t/
P

u2V Aiu NN.k/
u .t/

: (9.8)

Equation (9.8) defines the probability of a single particle k to perform a transition
from vertex i to j at time t, using solely the preferential movement term. It can
be observed that each particle has a different transition matrix associated to its
preferential movement. Moreover, each matrix is time-varying with dependence on
the domination levels of all of the vertices ( NN.t/) at time t. Since the preferential
movement term of particles directly depends on their visiting frequency to a specific
vertex, as more visits are performed by a particle to a determined vertex, the higher
is the chance for that particle to repeatedly visit the same vertex. Furthermore, if the
domination level of the visiting particle on a vertex is strengthened, the domination
levels of all other particles on the same vertex are consequently weakened. This
feature occurs on account of the normalization process in (9.7): if one domination
level increases, all of the others must go down, so that the overall sum still
produces 1.

For didactic purposes, we now summarize and consolidate the key concepts
introduced so far in a simple example given in the following.
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Fig. 9.2 A typical situation where the red (dark gray) particle, presently located at vertex 1, has
to choose a neighbor to visit in the next iteration. For illustration purposes, the domination level
vector for each vertex is displayed, in which the two entries represent the domination levels of the
red (dark gray) and the blue (gray) particles, in that order. In this example, there are two particles,
red (dark gray) and blue (gray). The beige (light gray) color denotes vertices that are not being
dominated by any particles in the system at time t

Example 9.1. Consider the network portrayed in Fig. 9.2, where there are
two particles, namely red (dark gray) and blue (gray), and four vertices.
For illustrative purposes, we only depict the location of the red (dark gray)
particle, which is currently visiting vertex 1. In this example, the role that
the domination level plays in determining the resulting transition probability
matrix is presented. Within the figure, we also didactically supply the
domination level vector of each vertex at time t. Note that the ownership of the
vertex (in the figure, the color of the vertex) is set according to the particle that
is imposing the highest domination level on that specific vertex. For instance,
in vertex 1, the red (dark gray) particle is imposing a domination of 60 %, and
the blue (gray) particle, of only 40 %. The goal here is to derive the transition
matrix of the red particle in agreement with (9.1). Suppose at time t the red
particle is active, therefore, S.red/.t/ D 0. Consequently, the second term of
the convex combination in (9.1) vanishes. On the basis of (9.2), the random
movement term of the red particle is given by:

P.red/
rand D

2

6
6
4

0 1=3 1=3 1=3

1 0 0 0

1 0 0 0

1 0 0 0

3

7
7
5 ; (9.9)

(continued)
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Example 9.1 (continued)
and the preferential movement matrix at the immediate posterior time t C 1,
according to (9.8), is given by:

P.red/
pref .t C 1/ D

2

6
6
4

0 0:57 0:07 0:36

1 0 0 0

1 0 0 0

1 0 0 0

3

7
7
5 : (9.10)

Finally, the transition matrix associated to the red particle is determined by
a weighted combination of the random (time-invariant) and the preferential
matrices at time t C 1, given that the particle is active (see (9.1)). If � D 0:8,
then such matrix is given by:

P.red/
transition.t C 1/ D 0:2

2

6
6
4

0 1=3 1=3 1=3

1 0 0 0

1 0 0 0

1 0 0 0

3

7
7
5C 0:8

2

6
6
4

0 0:57 0:07 0:36

1 0 0 0

1 0 0 0

1 0 0 0

3

7
7
5

D

2

6
6
4

0 0:52 0:12 0:36

1 0 0 0

1 0 0 0

1 0 0 0

3

7
7
5 : (9.11)

Therefore, the red particle, which is currently in vertex 1, has a higher
chance to visit vertex 2 (52 % chance of visiting) than the others. This
behavior can be controlled by adjusting the � parameter. A large value of
� induces particles to perform mostly preferential movements, i.e., particles
keep visiting their dominated vertices in a frequent manner. A small value of
�, in contrast, provides a larger weight to the random movement term, making
particles resemble traditional Markovian walkers as � ! 0 [8]. In the extreme
case, i.e., when � D 0, the mechanism of competition is turned off and the
model reduces to multiple non-interactive random walks. In this way, we can
see that the particle competition model generalizes the dynamical system of
multiple random walks, according to the parameter �.

Now we define P.k/
rean.t/ matrix that is responsible for transporting an exhausted

particle k 2 K back to its dominated territory, with the purpose of recharging its
energy (reanimation process). Suppose particle k is visiting vertex i when its energy
is completely depleted. In this situation, the particle must regress to an arbitrary
vertex j of its possession at time t, according to the following expression:
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P.k/
rean.i; j; t/ ,

1�
arg max

m2K

� NN.m/
j .t/

�
Dk

�

P
u2V 1�

arg max
m2K

� NN.m/
u .t/

�
Dk

�
; (9.12)

in which 1Œ:� is the indicator function that yields 1 if the argument is logically true

and 0, otherwise. The operator arg max
m2K.:/ returns an index M, where NN.M/

u .t/ is the

maximal value among all NN.m/
u .t/ for m D 1; 2; : : : ; K. We note that (9.12) reduces

to a uniform distribution when we take the subset of vertices that are dominated by
particle k. For all of the non-dominated vertices, the transition probability is zero.
Observe also that the transition probability is independent of the network topology.
If no vertex is being dominated by particle k at time t, we put it in any vertex of the
network in a random manner (uniform distribution on the whole network).

Example 9.2. Figure 9.3 illustrates how the reanimation scheme takes place.
Consider that the red (dark gray) particle is exhausted possibly because it
has visited several non-dominated vertices, which led to the depletion of its
energy. The reanimation procedure consists in transporting back that particle
to one of its dominated vertices, regardless of the network topology. The
intuition of this procedure is that, with a relatively high probability, its energy
will be renewed in the next iterations, for the neighborhood is expected to be
dominated by the same particle.

Let also the random vector E.t/ D ŒE.1/.t/; : : : ; E.K/.t/� represent the energy
that each particle holds. In special, its k-th entry, E.k/.t/ denotes the energy level of
particle k at time t. In view of these definitions, the energy update rule is given by:

Fig. 9.3 Illustration of the reanimation scheme. The red (dark gray) particle is exhausted and is
forced to be transported back to its dominated territory. The transition probability follows a uniform
distribution on the dominated vertices
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E.k/.t/ D
(

min.!max; E.k/.t � 1/ C /; if owner.k; t/

max.!min; E.k/.t � 1/ � /; if :owner.k; t/
(9.13)

in which the parameters !min and !max characterize the minimum and maximum
energy levels, respectively, that a particle may possess. Therefore, E.k/.t/ 2
Œ!min; !max�. The owner.k; t/ is defined as:

owner.k; t/ D
�

arg max
m2K

� NN.m/

p.k/.t/
.t/
�

D k

�

(9.14)

is a logical expression that essentially yields true if the vertex that particle k
visits at time t (i.e., vertex p.k/.t/) is being dominated by that same visiting
particle, and results in a logical false otherwise; dim.E.t// D 1 � K;  > 0

symbolizes the increment or decrement of energy that each particle receives at
time t. The first expression in (9.13) represents the increment of the particle’s
energy and occurs whenever particle k visits a vertex p.k/.t/ that it dominates, i.e.,

arg max
m2K

� NN.m/

p.k/.t/
.t/
�

D k. Similarly, the second expression in (9.13) indicates the

decrement of the particle’s energy that happens when it visits a vertex dominated
by rival particles. Therefore, in this model, particles are given a penalty if they are
wandering in rival territory, so as to minimize aimless navigation trajectories in the
network.

The term S.t/ is responsible for determining the movement policy of each particle
at each time t. It is really a switching function and defined as follows:

S.k/.t/ D 1ŒE.k/.t/ D !min�; (9.15)

in which dim.S.t// D 1 � K. Specifically, S.k/.t/ D 1 if E.k/.t/ D !min and 0,
otherwise.

In the following, we apply the concepts introduced so far in a concise and simple
example.

Example 9.3. Consider the network depicted in Fig. 9.4. Suppose there are
two particles, namely, red (dark gray) and blue (gray), each of which located
at vertices 13 and 1, respectively. As both particles are visiting vertices whose
owners are rival particles, their energy levels drop. Consider, in this case, that
both particles have reached the minimum allowed energy, i.e., !min, at time t.
Therefore, according to (9.15), both particles are exhausted. Consequently,
S.red/.t/ D 1 and S.blue/.t/ D 1, and the transition matrix associated to
each particle reduces to the second term in the convex combination of (9.1).
According to the mechanism of the dynamical system, these particles are

(continued)
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Fig. 9.4 Illustration of the reanimation procedure in a typical situation. There are two particles,
namely red (dark gray) and blue (gray), located at vertices 13 and 1, respectively, at time t. The
network encompasses 15 vertices. As both particles are visiting vertices whose owners are rival
particles, their energy levels drop. In this example, suppose both energy levels of the particles
reach the minimum possible value, !min. The vertex color represents the particle that is imposing
the highest domination level at time t. The beige (light gray) denotes a non-dominated vertex

Example 9.3 (continued)
transported back to their dominated territory to recharge their energy levels.
The transition occurs regardless of the network topology. This mechanism
follows the distribution in (9.12). In view of that, the transition matrix for the
red (dark gray) particle at time t is:

P.red/
transition.i; j; t/ D 1

7
; 8i 2 V ; j 2 fv1; v2; : : : ; v7g; (9.16)

P.red/
transition.i; j; t/ D 0; 8i 2 V ; j 2 V n fv1; v2; : : : ; v7g; (9.17)

and the transition matrix associated to the blue (gray) particle at time t is
written as:

P.blue/
transition.i; j; t/ D 1

6
; 8i 2 V ; j 2 fv10; v11; : : : ; v15g; (9.18)

P.blue/
transition.i; j; t/ D 0; 8i 2 V ; j 2 V n fv10; v11; : : : ; v15g: (9.19)

One can verify that exhausted particles are transported back to their
territory (set of dominated vertices) regardless of the network topology. The
determination of which of the dominated vertices to visit follows a uniform
distribution. In this way, vertices are equally probable to receive only those
particles that dominate them.
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Looking at (9.1), we see that each particle has a representative transition matrix.
For compactness, we can join all of them together into a single representative
transition matrix that we refer to Ptransition.t/, which models the transition of the
random vector p.t/ to p.t C 1/. This global matrix will prove useful in Sect. 9.3.
Given the current system’s state at time t, one can see that p.k/.t C 1/ and p.u/.t C 1/

are independent for every pair .k; u/ 2 K � K ; k ¤ u. Another way of looking
at this fact is that, given the immediate past position of each particle, it is clear
that, via (9.1), the next particle’s location is only dependent on the topology of
the network (random term) and the domination levels of the neighborhood in the
previous step (preferential term). In this way, Ptransition.t/ can be written as:

Ptransition.t/ D P.1/
transition.t/ ˝ : : : ˝ P.k/

transition.t/; (9.20)

in which ˝ denotes the Kronecker tensor product operator. In this way, Eq. (9.20)
completely specifies the transition distribution matrix for all of the particles in the
network.

Essentially, when K � 2, p.t/ is a vector and we would no longer be able to
conventionally define the row p.t/ of matrix Ptransition.t/. Owing to this, we define
an invertible mapping f W V K 7! N. The function f simply maps the input vector
to a scalar number that reflects the natural ordering of the tuples in the input vector.
For example, p.t/ D Œ1; 1; : : : ; 1; 1� (all particles at vertex 1) denotes the first state;
p.t/ D Œ1; 1; : : : ; 1; 2� (all particles at vertex 1, except the last particle, which is at
vertex 2) is the second state; and so on, up to the scalar state VK . Therefore, with
this tool, we can fully manipulate the matrix Ptransition.t/.

Remark 9.1. The matrix Ptransition.t/ in (9.20) possesses dimensions VK �VK , which
are undesirably high. In order to save up space, one can use the individual transition
matrices associated to each particle (therefore, we maintain a collection of K
matrices), as shown in (9.1), each of which with dimensions V � V , to model
the dynamic of the particles’ transition with no loss of generality, by using the
following method: once every transition of the collection of K matrices has been
performed, one could concatenate the new particle positions to assemble the random
vector that denotes the particles’ localization, p.t C 1/, in an ordered manner. With
this technique, the spatial complexity would not surpass O.KV/, provided that we
implement the matrices in a sparse mode.

9.2.3 Definition of the Stochastic Nonlinear Dynamical System

We can stack up all of the dynamic variables that have been introduced in the
previous section to make up the dynamical system’s state X.t/ as follows:

X.t/ D

2

6
6
4

p.t/
N.t/
E.t/
S.t/

3

7
7
5 ; (9.21)
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and the dynamical system that governs the particle competition model is given by:

	 W

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

p.k/.t C 1/ D j; j � P.k/
transition.t/

N.k/
i .t C 1/ D N.k/

i .t/ C 1Œp.k/.tC1/Di�

E.k/.t C 1/ D
(

min.!max; E.k/.t/ C /; if owner.k; t/

max.!min; E.k/.t/ � /; if :owner.k; t/
S.k/.t C 1/ D 1ŒE.k/.tC1/D!min�

(9.22)

The first equation of system 	 addresses the transition rules from i to a neighbor
j, in which j is determined according to the time-varying transition matrix in (9.1). In
other words, the acquisition of p.tC1/ is performed by generating random numbers
following the distribution of the transition matrix P.k/

transition.t/. The second equation
updates the number of visits that vertex i has received by particle k up to time t.
The third equation is used to update the energy levels of all of the particles inserted
in the network. Finally, the fourth equation indicates whether the particle is active
or exhausted, depending on its actual energy level. Note that system 	 is nonlinear.
This occurs on account of the indicator function, which is nonlinear.

Observe that system 	 can also be written in matrix form as:

	 W

8
ˆ̂
<

ˆ̂
:

p.t C 1/ D fp.p.t//; fp.p.t// � Ptransition.t/
N.t C 1/ D fN.N.t/; p.t C 1//

E.t C 1/ D fE.N.t C 1/; p.t C 1//

S.t C 1/ D fS.E.t C 1//

; (9.23)

in which fp.:/, fN.:/, fE.:/, and fS.:/ are suitable random matrix functions, whose
entries have been defined in (9.22). An important characteristic of system 	 is its
Markovian property (see Proposition 9.1).

Now we discuss how to settle the initial condition of the dynamical system’s
state X.0/. Firstly, the particles are randomly inserted into the network, i.e., the
values of p.0/ are randomly set. A desirable and interesting feature of the particle
competition method is that the initial positions of the particles do not affect the
community detection or data clustering results, due to the competition nature. This
behavior occurs even when particles are put together at the beginning of the process.

Each entry of matrix N.0/ is initialized according to the following expression:

N.k/
i .0/ D

(
2; if particle k is generated at vertex i:

1; otherwise:
(9.24)

Remark 9.2. The initialization of N.0/ may be awkward, but there is a mathematical
reason behind it. The domination level matrix, NN.0/, is a row-normalization of N.0/.
Therefore, if all entries of a same row are zero, then (9.8) is undefined. In order to
overcome this problem, all entries of matrix N.0/ are evenly set to 1, with exception
of those in which the particles are initially spawned, whose starting values are 2. In
this setup, a consistent initial configuration for the competitive scheme is provided.
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Since a fair competition among the particles is desired, all particles k 2 K start
out with the same energy level:

E.k/.0/ D !min C
�!max � !min

K

�
: (9.25)

Lastly, all particles are active in the beginning of the competitive process, i.e.:

S.k/.0/ D 0: (9.26)

9.2.4 Method for Estimating the Number of Communities

The particle competition algorithm described by the dynamical system 	 produces
a large quantity of useful information. Some of these dynamical variables can be
used to solve other kinds of problems beyond community detection. In this section,
we review the method for determining the most likely number of communities or
clusters in a data set presented in [35]. In order to do so, an efficient evaluator index
called average maximum domination level hR.t/i 2 Œ0; 1� that monitors the informa-
tion generated by the competitive model itself is constructed. Mathematically, this
index is given by:

hR.t/i D 1

V

X

u2V
max
m2K

� NN.m/
u .t/

�
; (9.27)

in which NN.m/
u .t/ indicates the domination level that particle m is imposing on vertex

u at time t (see (9.7)) and max
m2K

� NN.m/
u .t/

�
yields the maximum domination level

imposed on vertex u at time t.
The basic idea can be described as follows. For a given network with K real

communities, if we put exactly K particles in the network, each of them will
dominate a community. Thus, one particle will not interfere much in the acting
region of the other particles. As a consequence, hR.t/i will be large. In the extreme
case when each vertex is completely dominated by a single particle, hR.t/i reaches 1.
However, if we add more than K particles in the network, inevitably more than one
particle will share the same community. Consequently, they will dispute the same
group of vertices. In this case, one particle will lower the domination levels imposed
by the other particles, and vice versa. As a result, hR.t/i will be small. Conversely,
if we insert in the network a quantity of particles less than the number of real
communities K, some particles will attempt to dominate more than one community.
Again, hR.t/i will be small. In this way, the actual number of communities or
clusters can be effectively estimated by checking for each K the index hR.t/i is
maximized.
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As it turns out, the optimal number of particles K to be inserted into a network is
exactly the number of real communities that it has. In this way, the index hR.t/i is
employed both to estimate the actual number of communities or clusters and also the
number of particles K. The last point will be made precise in Sect. 9.2.6, where we
study the sensitivity of the parameters that compose the particle competition model.

9.2.5 Method for Detecting Overlapping Structures

A measure that detects overlapping structures or vertices in a given network has been
proposed in [36]. For this purpose, the domination level matrix NN.t/ generated by
the particle competition process is employed. The intuition is as follows. When the
maximum domination level imposed by an arbitrary particle k on a specific vertex
i is much larger than the second maximum domination level imposed by another
particle on the same vertex, then we can conclude that this vertex is being strongly
dominated by particle k and no other particle is influencing it in a relevant manner.
Therefore, the overlapping nature of such vertex is minimal. In contrast, when these
two quantities are similar, then we can infer that the vertex in question holds an
inherently overlapping characteristic. In light of these considerations, we can model
this behavior as follows: let Mi.x; t/ denote the xth greatest domination level value
imposed on vertex i at time t. In this way, the overlapping index of vertex i, Oi.t/ 2
Œ0; 1�, is given by:

Oi.t/ D 1 � .Mi.1; t/ � Mi.2; t// ; (9.28)

i.e., the overlapping index Oi.t/ measures the difference between the two greatest
domination levels imposed by any pair of particles in the network on vertex i.

9.2.6 Parameter Sensitivity Analysis

The particle competition model requires a set of parameters to work. In special, we
need to set the number of particles (K), the desired fraction of preferential movement
(�), the energy that each particle gains or loses (), and a stopping factor (�). In this
section, we give the intuition on how to choose all of these parameters based on the
type of data set we are dealing with.

In this section, we also discuss candidates as termination criteria.

9.2.6.1 Impact of the Parameter �

Parameter � is responsible for counterweighting the proportion of preferential and
random walks performed by all particles in the network. Recall that the preferential
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Fig. 9.5 Community detection rate vs. parameter �. We fix  D 0:15. Taking into account the
steep peek that is verified and the large negative derivatives that surround it, one can see that
the parameter � is sensible to the overall model’s performance. Results are averaged over 30

simulations. Reproduced from [36] with permission from Elsevier. (a) � D 2 and ˇ D 1, (b)
� D 2 and ˇ D 2, (c) � D 3 and ˇ D 1, (d) � D 3 and ˇ D 2

term is related to the defensive behavior of the particles, while the random term
is associated to the exploratory behavior. If we have small values for �, we favor
randomness over preferential visiting. As we increase �, the tendency is to prefer
reinforcing dominated territories instead of exploring new vertices. The two terms
serve different and important roles in the community detection task and, in this
section, we show that a combination of randomness and preferential behavior can
really improve the performance of community detection tasks.

To study the role of � in the learning process, we use artificial clustered networks
that are generated following the benchmark of Lancichinatti et al. [21], which we
have introduced in Sect. 6.2.4. We fix V D 10;000 vertices and the average network
degree or network connectivity as Nk D 15. Recall that the benchmark consists in
varying the mixing parameter � while evaluating the attained community detection
rates.

Figure 9.5a–d portray the community detection rate of the particle competition
model as a function of �. We vary the counterweighting parameter � from 0 (pure
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random walks) to 1 (pure preferential walks) for different values of � and ˇ, which
are the exponents of the power-law degree and community size distributions.

We can observe that the community detection rate of the particle competition
algorithm is very sensitive to parameter �. Though choosing several different
values for � and ˇ, we can see a very clear behavior from these pictures: when
� D 0 or � D 1, the particle competition algorithm does not produce satisfactory
results. These values correspond to walks with only random or preferential terms,
respectively. This observation suggests that a mixture of these two terms can
improve the algorithm’s performance to a significant extent. One reason for that
is because each of these terms serve a different role in the community detection
process: while the random term expands community borders, the preferential term
guarantees that community cores stay strongly dominated. The tradeoff between the
speed of expanding community borders and guaranteeing the control of the subset of
dominated vertices is performed by tuning parameter �. By our results, we see that
the particle competition algorithm provides good results when we have a sustainable
increase and defense of the community borders, which happens when we select
intermediate values for �.

As a rule-of-thumb, the model gives good community detection rates in networks
with well-defined communities when 0:2 	 � 	 0:8.

9.2.6.2 Impact of the Parameter �

Parameter  is responsible for updating the particles’ energy levels as described
in (9.13). We use the same type of artificial clustered networks as in the previous
analysis. Figure 9.6a–d display the community detection rate of the particle compe-
tition model as a function of . Again, we see that the competitive model does not
behave well for extremal values of parameter . The intuition for that is as follows.
When  is very small, particles are not penalized enough and hence they do not get
exhausted often. Consequently, particles are expected to frequently visit vertices that
should belong to rival particles, possibly getting into the core of other communities.
Therefore, all of the vertices in the network will be in constant competition and no
community borders will be established and consolidated. As such, the algorithm’s
performance is expected to be poor. On the other extreme, when  is very large,
particles are expected to be constantly exhausted once they visit vertices dominated
by rival particles, thus frequently returning to their community core. In this setup,
the initial positions of the particles become sensitive to the competitive model. Once
we randomly put the particles inside the network at t D 0, they are expected to not
venture far away from their initial positions due to the reanimation procedure. As
such, whenever we put particles near each other, the community detection rate will
be poor. In this way, it is unattainable for the particles to switch the ownership of
already conquered vertices. We can conceive this phenomenon as an artificial “hard
labeling.”

Another interesting characteristic that can be extracted from the sensitivity curves
in Fig. 9.6a–d is that the competitive model becomes robust against variations of 



258 9 Case Study of Network-Based Unsupervised Learning

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Δ

C
lu

st
er

 D
et

ec
tio

n 
A

cc
ur

ac
y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Δ

C
lu

st
er

 D
et

ec
tio

n 
A

cc
ur

ac
y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Δ

C
lu

st
er

 D
et

ec
tio

n 
A

cc
ur

ac
y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Δ

C
lu

st
er

 D
et

ec
tio

n 
A

cc
ur

ac
y

a b

c d

Fig. 9.6 Community detection rate vs. parameter . We fix � D 0:6. Taking into account the
large steady region around 0:1 �  � 0:4, one can see that the parameter  is conditionally not
sensible to the overall model’s performance. Results are averaged over 30 simulations. Reproduced
from [36] with permission from Elsevier. (a) � D 2 and ˇ D 1, (b) � D 2 and ˇ D 2, (c) � D 3

and ˇ D 1, (d) � D 3 and ˇ D 2

when we are in the region 0:1 	  	 0:4, i.e., it is conditionally not sensitive to
 in this relatively wide interval. In this way, as a rule-of-thumb, we should choose
intermediate but small values of .

9.2.6.3 Impact of the Parameter K

Parameter K quantifies the number of particles that are inserted into the network
to perform the community detection process. In comparison to all of the other
parameters of the particle competition algorithm, K is the most sensitive parameter
for the model’s performance. Hence, the correct determination or at least estimation
of K stands as an important problem when employing the particle competition
model. Considering that, in the long-run dynamic, each particle dominates a single
community, the heuristic presented for estimating the actual number of clusters or
communities in Sect. 9.2.4 is a perfect candidate for estimating the proper value for
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the K parameter. That is, we estimate the number of particles K as the estimated
number of communities in the data set using the index hR.t/i. Mathematically, we
choose a candidate K, Kcandidate, such as to maximize the measure hR.t/i, hR.t/maxi,
as follows:

K D fKcandidate 2 N W hR.t/i D hRmax.t/ig; (9.29)

in which hR.t/maxi is given by:

hR.t/maxi D arg max
jK j2N

1

V

X

u2V
max
m2K

� NN.m/
u .t/

�

/ arg max
jK j2N

X

u2V
max
m2K

� NN.m/
u .t/

�
: (9.30)

In computational terms, we iterate the particle competition algorithm using K D
2 up to a small positive number, while maintaining the best K associated to the
maximum achieved hR.t/maxi. We do not need to try large values for K because the
number of communities is often far less than the number of data items.

9.2.7 Convergence Analysis

In this section, we present two possible stopping criteria for the particle competition
model. Both of them assume that the particle competition converges. The termina-
tion criteria stands as an important issue as we are dealing with a dynamical system
that can evolve indefinitely. In essence, we investigate the properties of the indices
hR.t/i and j NN.t C 1/ � NN.t/j1 when employed as stopping criteria. We inspect their
behavior as a function of time and conclude for the convergence of the dynamical
system using an empirical analysis. Based on convergence issues, we give evidences
favoring j NN.t C 1/ � NN.t/j1 in detriment to hR.t/i.

In our analysis in this section, we use the synthetic data sets shown in Fig. 9.7a–c,
which is composed of two communities: the red or “circle” and the green or “square”
communities. The two groups in Fig. 9.7a are well-posed as their distributions are
distinct and do not overlap. Figure 9.7b portrays an intermediate situation, in which
the two groups slightly overlap. Finally, Fig. 9.7c depicts an ill-posed situation,
in which the groups largely overlap. In the latter, the clustering task is extremely
difficult since the smoothness and cluster assumptions do not hold.
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a b

c

Fig. 9.7 Scatter plot of artificial databases constituted by two groups. The data is constructed using
two bi-dimensional Gaussian distributions with varying mean and unitary covariance. Reproduced
from [36] with permission from Elsevier. (a) Well-posed groups, (b) somewhat well-posed groups,
(c) not well-posed groups

Now, we investigate how the index hR.t/i, which has been introduced in
Sect. 9.2.4, behaves as the competitive dynamical system progresses in time. The
simulation results with regard to the synthetic data sets displayed in Fig. 9.7a–c
are depicted in Fig. 9.8a–c, respectively. In all of these plots, we have explicitly
indicated two important dynamical properties: (1) ts, which is the time to reach the
“almost-stationary” state of the model and (2) the diameter of the region in which the
almost-stationary state is confined within. Note that, since the competition is always
taking place, the model never reaches a perfect stationary state. Rather, the dynamic
variables float around quasi-stationary states because of the constant visits that
particles perform on vertices of the network. These fluctuations are expected, since
the random walk behavior of the particles, which is denoted by the second term in
Eq. (9.1), compels particles to visit vertices that they do not dominate. This behavior
creates oscillations in the domination levels between rival particles. However, if we
conduct walks with no random behavior, i.e., with only preferential movements,
these fluctuations are expected to be eliminated, since the exploratory behavior of
the particles would cease to exist. In this case, only the defensive behavior would
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Fig. 9.8 Convergence analysis of the particle competition algorithm when hR.t/i is used. The
algorithm is run against the binary artificial databases in Fig. 9.7. Here, we inspect how the index
hR.t/i varies as a function of time. Reproduced from [36] with permission from Elsevier. (a) hR.t/i
for Fig. 9.7a, (b) hR.t/i for Fig. 9.7b, (c) hR.t/i for Fig. 9.7c

be used by particles. However, each of the two kinds of movements (random and
preferential) has its role in the competition process, in a such a way that disabling
one or another would drastically affect the community or cluster detection. As such,
good values for � must reside between 0 and 1 and not in the extremes.

From Fig. 9.8a–c, we see that the time to reach the almost-stationary state
ts lingers to be established as the overlapping region of the groups gets larger.
In this respect, ts is roughly 150; 430; 650 for Fig. 9.8a–c, respectively. This is
because competition in the community border regions gets stronger as the overlap
width increases. As a consequence, the dominance of each particle takes longer
to be established. Another interesting phenomenon is that of the diameter of the
confinement region of hR.t/i, which grows larger as the overlap width increases. In
these simulations, the diameters of such regions are roughly 0:06; 0:07; 0:08. This is
expected by the same reasons stated before.
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Fig. 9.9 Convergence analysis of the particle competition algorithm when j NN.t C 1/ � NN.t/j1 is
used. The upper theoretical limit is shown in the blue curve when c D K. The algorithm is run
against the binary artificial databases in Fig. 9.7. Here, we inspect how j NN.t C 1/ � NN.t/j1 varies
as a function of time. Reproduced from [36] with permission from Elsevier. (a) j NN.tC1/� NN.t/j1
for Fig. 9.7b, (b) j NN.t C 1/ � NN.t/j1 for Fig. 9.7b, (c) j NN.t C 1/ � NN.t/j1 for Fig. 9.7b

Figure 9.9a–c shows the variation term j NN.t C 1/ � NN.t/j1 as a function of time
when applied to the data sets in Fig. 9.7a–c. We see that the variation of NN.t C 1/ in
relation to NN.t/ reduces as time evolves. This happens because the total number of
visits performed by particles always increases, since each particle must visit at least
a vertex in any given time. Looking at Eq. (9.7), we see that the denominator always
increases faster than the numerator. Therefore, it provides an upper limit for NN.t/.
In view of this, the variations from one iteration to another, i.e., j NN.t C 1/ � NN.t/j1,
tend to vary less and less. Analytically, we can verify that, when the particles start
to walk, i.e., when t D 1, the maximum variation of j NN.t C 1/ � NN.t/j1 is given by:

j NN.1/ � NN.0/ j1	 c

�
2

V
� 1

V C 1

�

; (9.31)
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in which c is a real positive constant which depends on the level of competitiveness,
which in turn is directly proportional to �. Such upper limit expression translates
the maximum variation that occurs from time t D 0 to t D 1, which happens when,
at t D 0, a vertex is not receiving any visits, but, at time t D 1, it is being visited by
exactly one particle. Generalizing this equation for an arbitrary t, j NN.tC1/� NN.t/j1
is always bounded by the following expression:

j NN.t C 1/ � NN.t/ j1	 c

�
t C 2

V C t
� t

V C t C 1

�

; (9.32)

which demonstrates that, as the previous case, for any t 	 1, the model presents
fluctuations around a quasi-stationary state. From this analysis, it is clear that the
j NN.t C 1/ � NN.t/j1 can be used as a termination criterion.

In summary, we find that the particle competition algorithm does not converge
to a fixed point, but the dynamics of the system gets confined within a small finite
sub-region in the space. The intuition behind that is, though in the long-run the
communities have already being established, the competition among particles is
always occurring. In this way, the domination levels of vertices keep changing,
though with less magnitude as time progresses due to the accumulative effect that
the number of visits plays in establishing the vertices’ domination levels.

9.3 Theoretical Analysis of the Model

In this section, a mathematical analysis of the competitive system is supplied. Also,
we show that the competitive system reviewed in the previous section reduces to
multiple independent random walks when a special situation occurs. Some of the
results have been presented in [37] and others are new results. In this book, we
present the mathematical analysis in a self-contained manner.

9.3.1 Mathematical Analysis

To estimate the long-run dynamic of the stochastic competitive learning model, we
first need to derive the transition probabilities between the different states in the
dynamical system. Let the transition probability function of system 	 be P.X.tC1/ j
X.t//. Observe that the marginal probability of the system’s state P.X.t// can be
written in terms of the joint probability of each of the components of the system’s
state, meaning P.X.t// D P.N.t/; p.t/; E.t/; S.t//. Thus, applying the product rule
on the transition probability function, we have:
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P.X.t C 1/ j X.t//

D P.N.t C 1/; p.t C 1/; E.t C 1/; S.t C 1/ j N.t/; p.t/; E.t/; S.t//

D P.S.t C 1/ j N.t C 1/; p.t C 1/; E.t C 1/; N.t/; p.t/; E.t/; S.t//

� P.N.t C 1/; p.t C 1/; E.t C 1/ j N.t/; p.t/; E.t/; S.t//

D PS.tC1/P.E.t C 1/ j N.t C 1/; p.t C 1/; N.t/; p.t/; E.t/; S.t//

� P.N.t C 1/; p.t C 1/ j N.t/; p.t/; E.t/; S.t//

D PS.tC1/PE.tC1/P.N.t C 1/ j p.t C 1/; N.t/; p.t/; E.t/; S.t//

� P.p.t C 1/ j N.t/; p.t/; E.t/; S.t//

D PS.tC1/PE.tC1/PN.tC1/Pp.tC1/:

(9.33)

in which:

PS.tC1/ D P.S.t C 1/ j N.t C 1/; p.t C 1/; E.t C 1/; X.t//; (9.34)

PE.tC1/ D P.E.t C 1/ j N.t C 1/; p.t C 1/; X.t//; (9.35)

PN.tC1/ D P.N.t C 1/ j p.t C 1/; X.t//; (9.36)

Pp.tC1/ D P.p.t C 1/ j X.t//: (9.37)

Next, the algebraic derivations of these four quantities are explored.

9.3.1.1 Discovering the Factor Pp.tC1/

Observing that the random vector p.t C 1/ is directly evaluated from Ptransition.t/
given in (9.20), which in turn only requires p.t/ and N.t/ to be constructed (X.t/ is
given), then the following equivalence holds:

Pp.tC1/ D P.p.t C 1/ j X.t// D Ptransition.N.t/; p.t//: (9.38)

Here, we have used Ptransition.N.t/; p.t// to emphasize the dependence of the
transition matrix on N.t/ and p.t/.

9.3.1.2 Discovering the Factor PN.tC1/

In this case, taking a close look at PN.tC1/ D P.N.t C 1/ j p.t C 1/; X.t//, we can
verify that, besides the previous state X.t/, we also know the value of the random
vector p.tC1/. By a quick analysis of the update rule given in the second expression
of system 	, it is possible to completely determine N.t C1/, since p.t C1/ and N.t/
are known. Owing to that, the following equation holds:
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PN.tC1/ D P.N.t C 1/ j p.t C 1/; X.t//

D 1ŒN.tC1/DN.t/CQN.p.tC1//�;
(9.39)

in which QN.p.tC1// is a matrix with dim.QN/ D V �K and dependent on p.tC1/.
The .i; j/-th entry of QN.p.t C 1// is given by:

QN.p.t C 1//.i; k/ D 1Œp.k/.tC1/Di�; (9.40)

The argument in the indicator function shown in (9.39) is essentially the first
expression of system 	, but in a matrix notation. In brief, Eq. (9.39) results in 1 if
the computation of N.tC1/ is correct, given p.tC1/ and N.t/, i.e., it is in compliance
with the dynamical system rules; and 0, otherwise.

9.3.1.3 Discovering the Factor PE.tC1/

For the third term, PE.tC1/, we have knowledge of the previous state X.t/, as well as
of p.tC1/ and N.tC1/. By (9.7), we see that NN.tC1/ can be directly calculated from
N.t C 1/, i.e., having knowledge of N.t C 1/ permits us to evaluate NN.t C 1/, which,
probabilistically speaking, is also a given information. In light of this, together
with (9.13), one can see that E.t C 1/ can be evaluated if we have information
of E.t/, p.t C 1/, and NN.t C 1/, which we actually do. On account of that, PE.tC1/

can be surely determined and, analogously to the calculation of the PN.tC1/, is given
by:

PE.tC1/ D P.E.t C 1/ j N.t C 1/; p.t C 1/; X.t//

D 1ŒE.tC1/DE.t/C�QE.p.tC1/;N.tC1//�;
(9.41)

in which QE .p.t C 1/; N.t C 1// is a random vector with dim.QE/ D 1 � K and
dependence on N.t C 1/ and p.t C 1/. The k-th entry, k 2 K , of such matrix is
calculated as:

Q.k/
E .p.t C 1/; N.t C 1// D 1Œowner.k;tC1/� � 1Œ:owner.k;tC1/�: (9.42)

Note that the argument of the indicator function in (9.42) is essentially (9.13)
in a compact matrix form. Indicator functions were employed to describe the
two types of behavior that this variable can have: an increment or decrement
of the particle’s energy. Suppose that particle k 2 K is visiting a vertex that
it dominates, then only the first indicator function in (9.42) is enabled; hence,
Q.k/

E .p.t C 1/; N.t C 1// D 1. Similarly, if particle k is visiting a vertex that is being
dominated by a rival particle, then the second indicator function is enabled, yielding
Q.k/

E .p.t C 1/; N.t C 1// D �1. This behavior together with (9.41) is exactly the
expression given by (9.13) in a compact matrix form.
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9.3.1.4 Discovering the Factor PS.tC1/

Lastly, for the fourth term, PS.tC1/, we have knowledge of E.tC1/, N.tC1/, p.tC1/,
and the previous internal state X.t/. By a quick analysis of (9.15), one can verify
that the calculation of the k-th entry of S.t C 1/ is completely characterized once
E.t C 1/ is known. In this way, one can surely evaluate PS.tC1/ in this scenario as
follows:

PS.tC1/ D P.S.t C 1/ j E.t C 1/; N.t C 1/; p.t C 1/; X.t//

D 1ŒS.tC1/DQS.E.tC1//�; (9.43)

in which QS.E.t C 1// is a matrix with dim.QS/ D 1 � K and has dependence on
E.t C 1/. The k-th entry, k 2 K , of such matrix is calculated as:

Q.k/
S .E.t C 1// D 1ŒE.k/.tC1/D!min�: (9.44)

9.3.1.5 The Transition Probability Function

Substituting (9.38), (9.39), (9.41), and (9.43) into (9.33), we are able to encounter
the transition probability function of the competitive dynamical system:

P.X.t C 1/ j X.t// D 1ŒN.tC1/DN.t/CQN.p.tC1//�

� 1ŒS.tC1/DQS.E.tC1//�

� 1ŒE.tC1/DE.t/CQE.p.tC1/;N.tC1//�

� Ptransition.N.t/; p.t//

D 1ŒCompliance.t/�Ptransition.N.t/; p.t//;

(9.45)

in which Compliance.t/ is a logical expression given by:

Compliance.t/ D ŒN.t C 1/ D N.t/ C QN.p.t C 1//�

^ ŒS.t C 1/ D QS.E.t C 1//� ^ ŒE.t C 1/

D E.t/ C QE.p.t C 1/; N.t C 1//� ; (9.46)

i.e., Compliance.t/ encompasses all the rules that have to be satisfied in order to all
the indicator functions in (9.45) produce 1. If all the values provided to (9.45) are
in compliance with the dynamic of the system, then Compliance.t/ D true and the
indicator function 1ŒCompliance.t/� yields 1; otherwise, if there is at least one measure
that does not satisfy the system, then, from (9.46), the chain of logical-AND
produces false. As a consequence, Compliance.t/ D false and the indicator function
1ŒCompliance.t/� in (9.45) yields 0, resulting in a zero-valued transition probability.
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9.3.1.6 Discovering the Distribution P.N.t//

With the transition probability function derived in the previous section, we now turn
our attention to determining the marginal distribution P.N.t// for a sufficiently large
t. First, the Markovian property of system 	 is demonstrated as follows.

Proposition 9.1. fX.t/ W t � 0g is a Markovian process.

Proof. We seek to infer that system 	 is completely characterized by only the
acquaintance of the present state, i.e., it is independent of all the past states. Having
that in mind, the probability expression to make a transition to a specific event XtC1

(a set with an element representing an arbitrary next state) in time t C 1, given the
complete history of the state trajectory, is denoted by:

P .X.t C 1/ 2 XtC1 j X.t/; : : : ; X.0//

D P

0

@ptC1 W
2

4
fN.N.t/; ptC1/

fE.N.t C 1/; ptC1/

fS.E.t C 1//

3

5 2 XtC1 j X.t/; : : : ; X.0/

1

A :
(9.47)

Noting that the determination of ptC1 only depends on N.t/ and p.t/, then:

P

0

@ptC1 W
2

4
fN.N.t/; ptC1/

fE.N.t C 1/; ptC1/

fS.E.t C 1//

3

5 2 XtC1 j X.t/; : : : ; X.0/

1

A

D P

0

@ptC1 W
2

4
fN.N.t/; ptC1/

fE.N.t C 1/; ptC1/

fS.E.t C 1//

3

5 2 XtC1 j X.t/

1

A

D P .X.t C 1/ 2 XtC1 j X.t// : (9.48)

Therefore, in view of (9.48), fX.t/ W t � 0g is a Markovian process, since it only
depends on the present state to specify the next state and, hence, the past history of
the system’s trajectory is irrelevant. �

The strategy to calculate the distribution P.N.t// is to marginalize the joint
distribution of the system’s states, i.e., P.X.0/; : : : ; X.t//, with respect to N.t/ (a
component of X.t/). Mathematically, using Proposition 1 on this joint distribution
P.X.0/; : : : ; X.t//, we get:

P.X.0/; : : : ; X.t// D P.X.t/ j X.t � 1//

� P.X.t � 1/ j X.t � 2//

� : : : � P.X.1/ j X.0//P.X.0//: (9.49)
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Using the transition function that governs system 	, as illustrated in (9.45), to
each shifted term in (9.49), we get:

P.X.0/; : : : ; X.t// D P.X.0//

t�1Y

uD1

�

1ŒCompliance.u/�Ptransition.N.u/; p.u//

�

; (9.50)

in which P.X.0// D P.N.0/; p.0/; E.0/; S.0//. But, we are interested
in knowing the marginal distribution N.t/ as t ! 1. We can obtain
it from the joint distribution calculated in (9.50), summing over all the
possible values of random variables with no relevance in the analysis, i.e., N
.t � 1/; : : : ; N.0/; p.t/; : : : ; p.0/; E.t/; : : : ; E.0/; S.t/; : : : ; S.0/. In doing so, it is
worth studying the limits of N.t/ for an arbitrary t, because the domain that an entry
of N.t/ can take is Œ1; 1/. With this study, we expect to find the reachable values of
every entry of matrix N.t/ for any t. In this way, values which exceed these limits
are guaranteed to happen with probability 0. Lemma 9.1 precisely supplies this
analysis.

Lemma 9.1. The maximum reachable value of N.k/
i .t/, 8.i; k/ 2 V �K ; t 2 N, is:

N.k/
imax

.t/ D
 ˙

tC1
2

�C 1; if t � 0 and aii D 0

t C 2; if t � 0 and aii > 0
: (9.51)

Proof. The proof is based on encountering the particle’s trajectory that increases
N.k/

i .t/ in the quickest manner. In this situation, we suppose particle k is generated
in vertex i; otherwise, the maximum theoretical value would never be reached in
view of the second expression in (9.24). For the sake of clarity, consider two specific
cases, both depicted in Fig. 9.10: (1) networks without self-loops and (2) networks
with self-loops.

Fig. 9.10 An arbitrary network constructed with the purpose of obtaining the largest feasible entry
of N.t/ for a given t. (a) A network without the presence of self-loops; (b) a network with self-loops
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For the first case, 8i 2 V W aii D 0. By hypothesis, particle k starts in vertex i
at t D 0. The quickest manner to increase N.k/

i .t/ happens when particle k visits a
neighbor of vertex i and immediately returns to vertex i. Repeating this trajectory
until time t, N.k/

i .t/ precisely matches the first expression in (9.51).
For the second case, 9i 2 V W aii > 0. By hypothesis, particle k starts in vertex i

at t D 0. It is clear that the quickest manner to increase N.k/
i .t/ occurs when particle

k always travels through the self-loop for all t. In view of this, the maximum value
that N.k/

i .t/ can reach is given by the second expression in (9.51). The “+2” factor
appears because the particle initially spawns at vertex i, according to the second
expression in (9.24). �

In what follows, we analyze the properties of the random vector E.t/. The upper
limit of the k-th entry of E.t/ is always !max. Thus, provided that !max < 1, the
upper limit is always well-defined. However, this entry does not only accept integer
values in-between !min and !max. Lemma 9.2 provides all reachable values of E.t/
within this interval.

Lemma 9.2. The reachable domain of E.k/.t/,8k 2 K ; t 2 N, is:

DE ,
n
!min C !max � !min

K
C n; n D f�bnic; : : : ; bnmcg

o

[
n
!min C n; n D

n
1; 2; : : : ;

j!max � !min



koo

[
n
!max � n; n D

n
1; 2; : : : ;

j!max � !min



koo
; (9.52)

in which ni D !max�!min
K

� 0 and nm D !max�!min


�
1 � 1

K

� � 0.

Proof. We divide this proof in three main steps, namely the three sets that appear
in the expression in the caput of this lemma. The first set accounts for supplying all
values that are multiples of  with the offset E.k/.0/ D !min C�

!max�!min
K

�
, 8k 2 K

(see (9.25)). The minimum reachable value is given when n D ni:

ni D
�
!min C !max�!min

K

�� !min


D !max � !min

K
; (9.53)

whereas the maximum reachable value is given when n D nm:

nm D !max � �
!min C !max�!min

K

�


D !max � !min



�

1 � 1

K

�

: (9.54)

After some time, the particle k might reach one of the two possible extremes of
energy value: !min or !max. On account of the max.:/ operator in (9.13), it is also
necessary to list all multiple numbers of  with these two offsets. The second and
third sets precisely fulfill this aspect when the offsets are !min and !max, respectively.
Once the particle enters one of these sets, it never leaves them. Hence, all values
have been properly mapped. �
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Lastly, the upper limit of an arbitrary entry of S.t/ is 1, since it is a boolean-
valued variable. Observing now that P.X.0/; : : : ; X.t// D P.N.0/; p.0/; E.0/; S.0/;

: : : ; N.t/; p.t/; E.t/; S.t//, we marginalize this joint distribution with respect to N.t/
as follows:

P.N.t// D
X

�N.t/

P.X.0/; : : : ; X.t//; (9.55)

in which � N.t/ means that we sum over all the possible values of X.0/; : : : ; X.t/,
except for N.t/ which is inside X.t/ D ŒN.t/ p.t/ E.t/ S.t/�T . Using (9.50) in (9.55),
we are able to obtain P.N.t// as follows:

P.N.t// D
X

�N.t/

(

P.X.0//

t�1Y

uD1

h
1ŒCompliance.u/�Ptrans.N.u/; p.u//

i
)

: (9.56)

Expanding (9.56) using Lemmas 9.1 and 9.2, we have:

P.N.t// D
X

p.1/.0/2V

X

p.2/.0/2V
: : :

X

p.K/.0/2V
: : :

X

p.K/.t/2V

�
N

.1/
1max

.0/
X

N
.1/
1 .0/D1

N
.2/
1max

.0/
X

N
.2/
1 .0/D1

: : :

N
.K/
Vmax .0/
X

N
.K/
V .0/D1

: : :

N
.K/
Vmax .t�1/
X

N
.K/
V .t�1/D1

�
X

E.1/.0/2DE

X

E.2/.0/2DE

: : :
X

E.K/.0/2DE

: : :
X

E.K/.t/2DE

�
1X

S.1/.0/D0

1X

S.2/.0/D0

: : :

1X

S.K/.0/D0

: : :

1X

S.K/.t/D0

(

P.X.0//

t�1Y

uD1

h
1ŒCompliance.u/�Ptrans.N.u/; p.u//

i
)

: (9.57)

The summations in the first line of (9.57) account for passing through all possible
values of p.0/; : : : ; p.t/. The summations in the second line are responsible for
passing through all reachable values of N.0/; : : : ; N.t � 1/, where the upper limit
is set with the aid of Lemma 9.1. The third line supplies the summation over all
possible values of E.0/; : : : ; E.t/, in which it is utilized the set DE defined in
Lemma 9.2. Lastly, the fourth line summations cover all the values of S.0/; : : : ; S.t/.
Note that the logical expression Compliance.u/ and the transition matrix inside the
product are built up from all these summation indices previously fixed.
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Remark 9.3. An interesting feature added by this theoretical analysis is that the
particle competition model can also accept uncertainty revolving around its initial
state, i.e., P.X.0// D P.N.0/; p.0/; E.0/; S.0//. In other terms, the particles’ initial
locations can be conceptualized as a true distribution itself.

9.3.1.7 Discovering the Distribution of the Domination Level Matrix
P.N.t//

The distribution of the domination level matrix NN.t/ is the fundamental information
needed to group up the vertices. First, one can observe that positive integer multiples
of N.t/ compose the same NN.t/. Therefore, the mapping N.t/ ! NN.t/ is not
injective; hence, not invertible. Below, an illustrative example shows this property.

Example 9.4. Consider a network with 3 particles and 2 vertices. At time t,
suppose that the random process is able to produce two distinct configurations
for N.t/, as follows:

N.t/ D
�

1 1 1

1 2 3

�

;

N0.t/ D
�

2 2 2

2 4 6

�

:

(9.58)

Then, the setups in (9.58) applied to (9.7) make clear that both configura-
tions yield the same NN.t/ given by:

NN.t/ D
�

1=3 1=3 1=3

1=6 1=3 1=2

�

: (9.59)

In view of this, the mapping N.t/ ! NN.t/ cannot be injective nor invertible.

Before proceeding further with the deduction of how to calculate NN.t/ from N.t/,
let us present some helpful auxiliary results.
Lemma 9.3. For any given time t, the following assertions hold 8.i; k/ 2V �K :

(a) The minimum value of NN.k/
i .t/ is:

NN.k/
imin

.t/ D 1

1 CP
u2K n fkg N.u/

imax
.t/

: (9.60)
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(b) The maximum value of NN.k/
i .t/ is:

NN.k/
imax

.t/ D N.k/
imax

.t/

N.k/
imax

.t/ C .K � 1/
: (9.61)

Proof. (a) According to (9.7), the minimum value occurs if three conditions are
met: (i) particle k is not initially spawned at vertex i; (ii) particle k never visits
vertex i; and (iii) all other K � 1 particles u 2 K n fkg visit vertex i in the
quickest possible manner, i.e., they follow the trajectory given in Lemma 9.1.
In this way, vertex i is visited

P
u2K n fkg N.u/

imax
.t/ times by other particles.

However, having in mind the initial condition of N.0/ shown in the second
expression of (9.24), we must add 1 to the total number of visits received
by vertex i. By virtue of that, it is expected that the total number of visits
to be 1 C P

u2K n fkg N.u/
imax

.t/. In view of this scenario, applying (9.7) to this
configuration yields (9.60).

(b) The maximum value happens if three conditions are satisfied: (i) particle k
initially spawns at vertex i; (ii) particle k visits i in the quickest possible
manner; and (iii) all of the other particles u 2 K n fkg never visit i. In this
scenario, vertex i receives N.k/

imax
.t/C .K �1/ visits, where the second term in the

summation is due to the initialization of N.0/, as the second expression in (9.24)
reveals. This information, together with (9.7), implies (9.61). �

Remark 9.4. If the network does not have self-loops, then (9.60) reduces to:

NN.k/
imin

.t/ D 1

1 C .K � 1/N.k/
imax

.t/
: (9.62)

The following Lemma provides all reachable elements that an arbitrary entry of
NN.t/ can have.

Lemma 9.4. Denote num=den as an arbitrary irreducible fraction. Consider that the
set It retains all the reachable values of NN.k/

i .t/, 8.i; k/ 2 V � K , for a fixed t.
Then, the elements of It are composed of all elements satisfying the following
constraints:

(a) The minimum element is given by the expression in (9.60).
(b) The maximum element is given by the expression in (9.61).
(c) All the irreducible fractions within the interval delimited by (a) and (b) such

that:

I. num; den 2 N�;
II. num 	 N.k/

imax
.t/;

III. den 	 P
u2K N.u/

imax
.t/.
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Proof. (a) and (b) Straightforward from Lemma 9.3; (c) Firstly, we need to
remember that N.k/

i .t/ may only take integer values. According to (9.7), NN.k/
i .t/ D

num=den is a ratio of integer numbers. As a consequence, num and den must be
integers and clause I is demonstrated. In view of (9.7), num only registers visits
performed by a single particle. Therefore, the upper bound of it is established by
Lemma 9.1, i.e., N.k/

imax
.t/. Hence, clause II is proved. Looking at the same expression,

observe that den registers the number of visits performed by all particles. Again,
using Lemma 9.1 proves clause III. �

Another interesting feature of the set It is elucidated in the following Lemma.

Lemma 9.5. Given t 	 1, the set It indicated in Lemma 9.4 is always finite.

Proof. In order to demonstrate this lemma, it is enough to verify that each set
appearing in the caput of Lemma 9.4 is finite.

(a) are (b) are scalars, hence, they are finite sets. (c) Clause I indicates a lower
bound for the numerator and the denominator. Clauses II and III reveal upper
bounds for the numerator and denominator, respectively. Also from clause I, it can
be inferred that the interval delimited by the lower and upper bounds is discrete.
Therefore, the number of irreducible fractions that can be made from these two
limits is finite.

As all the sets are finite for any t, since It is the union of all these subsets, it
follows that It is also finite for any t. �

Lemma 9.4 supplies the reachable values of an arbitrary entry of NN.t/ by means
of the definition of the set It. Next, we simply extend this notion to the space
spawned by the matrices NN.t/ with dimensions V � K, in such a way that each entry
of it must be an element of It as follows:

Mt , f NN W NN.k/
i .t/ 2 It; 8.i; k/ 2 V � K g: (9.63)

In light of all these previous consideration, we can now provide a compact way of
determining the distribution of NN.t/. Following the aforementioned strategy, P. NN.t//
can be calculated by summing over all multiples of uN.t/, u 2 f1; : : : ; tg such that
f .uN.t// D NN.t/, where f is the normalization function defined in (9.7). On account
of this, we have:

P
� NN.t/ D U W U 2 Mt

� D
tX

uD1

P
�
f .uN.t// D U

�
; (9.64)

in which the upper limit provided in summation of (9.64) is taken using a
conservative approach. Indeed, the probability for events such that N.k/

i .t/ > N.k/
imax

.t/
is zero. By virtue of that, we can stop summing whenever any entry of matrix uN.t/
exceeds this value. We have omitted this observation from (9.64) for the sake of
clarity.
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As t ! 1, P. NN.t// provides enough information for grouping the vertices. In
this case, they are grouped accordingly to the particle that is imposing the highest
domination level. Since the domination level is a continuous random variable, the
output of this model is fuzzy.

9.3.2 Linking the Particle Competition Model and the Classical
Multiple Independent Random Walks System

Multiple random walks are modeled as dynamical systems and have been exten-
sively studied by the literature [8]. In these systems, particles cannot communicate
with each other. In effect, the model of multiple random walks can be understood as
a system with multiple single random walks stacked up. The particle competition
model that we have explored in this chapter, however, permits communication
between different particles. The communication is modeled via the domination
level matrix, which encodes the fraction of visits each vertex has received from
particles in the network. This happens because the fraction of visits is computed
by a normalization procedure that effectively entangles the walking dynamic of all
particles with one another.1

The interaction or communication between particles, nonetheless, can be turned
off when � D 0 and  D 0. This is equivalent to saying that the particle competitive
model investigated in this chapter is a generalization of the classical dynamical
system of multiple independent random walkers. Whenever � > 0, the competitive
mechanism is enabled and the combination of random-preferential interacting walks
occurs. In this case, the reanimation feature is presented depending on the choice
of .

We now prove the assertion that when � D 0 and  D 0 holds, the particle
competition model produces the same dynamics of multiple independent random
walks.

Proposition 9.2. If � D 0 and  D 0, then system 	 reduces to the case of multiple
independent random walks.

Proof. First, note that, when � D 0, the influence of the transition matrix that
encodes the preferential movement, Ppref.t/, is taken away. Indeed, when � D 0,
the coupling between N.t/ and p.t/ ceases to exist, because the calculation step of
Ppref.t/ (responsible for the coupling) can be skipped. Moreover, if  D 0, then the
particles can never get exhausted. In view of these characteristics, the dynamical
system 	 can be easily described by a traditional Markovian process given by:

p.t C 1/ D p.t/Ptransition; (9.65)

1Recall the evaluation of each entry of the domination matrix in (9.7).
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in which Ptransition D Prand ˝ Prand ˝ : : : ˝ Prand and p.t/ is an enumerated state
encompassing all the particles, as described before. Here, the independence among
the particles is demonstrated by showing that the generated N.t/ by system 	 is
exactly the same as the one produced by the potential matrix of the Markov chains
theory as introduced in Definition 2.68. In other words, N.t/ can be implicitly
calculated from the stochastic process fp.t/ W t � 0g.

We now find a closed expression for N.t/ in terms of N.0/. This can be easily
done if we iterate the matrix equation N.t C 1/ D N.t/ C Q, where Q is as given
in (9.40). In doing so, we get:

N.t/ D

2

6
6
6
4

1 � � � 1

1 � � � 1
:::

: : :
:::

1 � � � 1

3

7
7
7
5

C
tX

iD0

2

6
6
6
6
4

1Œp.1/.i/D1� � � � 1Œp.K/.i/D1�
1Œp.1/.i/D2� � � � 1Œp.K/.i/D2�

:::
: : :

:::

1Œp.1/.i/DV� � � � 1Œp.K/.i/DV�

3

7
7
7
7
5

: (9.66)

Since this process is stochastic, it is worth determining the expectation of the
number of visits N.t/ given the particle’s initial location p.0/. Noting that EŒ1ŒA�� D
P.A/, we have:

EŒN.t/ j p.0/� D

2

6
6
6
4

1 � � � 1

1 � � � 1
:::

: : :
:::

1 � � � 1

3

7
7
7
5

C
tX

iD0

2

6
6
6
4

Pi.p1.0/; 1/ � � � Pi.pK.0/; 1/

Pi.p1.0/; 2/ � � � Pi.pK.0/; 2/
:::

: : :
:::

Pi.p1.0/; V/ � � � Pi.pK.0/; V/

3

7
7
7
5

; (9.67)

in which Pi.pj.0/; 1/ denotes the .pj.0/; 1/-entry of Ptransition to the i-th power.
But, from the Markov chains theory, we have that the so-called truncated potential
matrix [8] is given by:

Rt.v; k/ ,
tX

iD0

Pi
transition.v; k/: (9.68)

By virtue of (9.68), each entry of the matrix equation in (9.67) can be rewritten as:

EŒN.j/
i .t/ j p.0/� D 1 C Rt.pj.0/; i/: (9.69)

From (9.69), we can infer that each particle does perform an independent random
walk according to a Markov Chain. Thus, we are able to conclude that, for � D 0

and  D 0, all the states of system 	 follow a traditional Markov Chain process,
except for a constant, as demonstrated in (9.69). �

Proposition 9.2 states that system 	 reduces to the case of multiple random walks
when � D 0 and  D 0, i.e., we could think that there is a blind competition among
the participants. Alternatively, when 0 < � 	 1, some orientation is given to the
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participants, in the sense of defending their territory and not only keep adventuring
through the network with no strategy at all. In either case, the reanimation procedure
is enabled depending on the choice of .

9.3.3 A Numerical Example

For the sake of clarity, we provide an example showing how to use the theoretical
results supplied in the previous section. We limit the demonstration for a single
iteration, which is the transition from t D 0 to t D 1. The simple example is
composed of a trivial 3-vertex regular network, identical to the one in Fig. 9.10a.
For the referred example, suppose there are K D 2 particles into the network, i.e.,
K D f1; 2g. Let particle 1 be spawned at vertex 1 and particle 2 at vertex 2, i.e., we
have certainty about the initial locations of the particles at t D 0:

P.X.0// D P

0

@N.0/ D
2

4
2 1

1 2

1 1

3

5 ; p.0/ D Œ1 2� ; E.0/; S.0/

1

A D 1; (9.70)

i.e., there is 100 % chance (certainty) that particles 1 and 2 are generated at vertices
1 and 2, respectively. Observe that N.0/, E.0/, and S(0) are chosen such as to
satisfy (9.24), (9.25), and (9.26), respectively. Otherwise, the probability should be
0, in view of (9.45). It is worth emphasizing that the competitive model accepts
uncertainty about the initial location of the particles, in a way that we could
specify different probabilities to each particle to spawn at different locations. This
characteristic is not present in [32], in which it must be fixed a certain position for
each particle.

From Fig. 9.10a we can deduce the adjacency matrix A of the network and,
therefore, determine the transition matrix associated to the random movement term
for a single particle. Recall that the random matrix is the same for all of the particles.
Then, applying (9.2) on A, we get:

Prand D
2

4
0 0:50 0:50

0:50 0 0:50

0:50 0:50 0

3

5 : (9.71)

Given N.0/, we can readily establish NN.0/ with the aid of (9.7):

NN.0/ D
2

4
0:67 0:33

0:33 0:67

0:50 0:50

3

5 : (9.72)
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Using (9.8) we are able to calculate the matrices associated to the preferential
movement policy for each particle in the network as:

P.1/
pref.0/ D

2

4
0 0:40 0:60

0:57 0 0:43

0:67 0:33 0

3

5 ; (9.73)

P.2/
pref.0/ D

2

4
0 0:57 0:43

0:40 0 0:60

0:33 0:67 0

3

5 : (9.74)

In order to ease the calculations, let us assume that � D 1, so that (9.20)
reduces to Ptransition.0/ D P.1/

pref.0/ ˝ P.2/
pref.0/ at time t D 0,2 which is a matrix

with dimensions 9 � 9 that is given by:

Ptransition.0/ D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0:228 0:172 0 0:342 0:258

0 0 0 0:160 0 0:240 0:240 0 0:360

0 0 0 0:132 0:268 0 0:198 0:402 0

0 0:325 0:245 0 0 0 0 0:245 0:185

0:228 0 0:342 0 0 0 0:172 0 0:258

0:188 0:382 0 0 0 0 0:142 0:288 0

0 0:382 0:288 0 0:188 0:142 0 0 0

0:268 0 0:402 0:132 0 0:198 0 0 0

0:221 0:449 0 0:109 0:221 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

(9.75)

Since in the initial condition depicted in (9.70) particles 1 and 2 start out at vertices
1 and 2, respectively, the enumerated scalar state for the matters of calculating
p.t C 1/ is .1; 2/ ! 2. Hence, we turn our attention to the second row of
Ptransition.0/, which completely characterizes the transition probabilities for the next
state of the dynamical system. A quick analysis of the second row in (9.75) shows
that, out of the 9 possible “next states” of the system, only 4 are plausible. (The
remaining states have probability 0 to be reached.) In this way:

P

0

@N.1/ D
2

4
2 2

2 2

1 1

3

5 ; p.1/ D �
2 1

	
; E.1/; S.1/ j X.0/

1

A D 0:160; (9.76)

P

0

@N.1/ D
2

4
2 1

2 2

1 2

3

5 ; p.1/ D �
2 3

	
; E.1/; S.1/ j X.0/

1

A D 0:240; (9.77)

2Recall that all particles are active at the initial state in view of (9.26).
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P

0

@N.1/ D
2

4
2 2

1 2

2 1

3

5 ; p.1/ D �
3 1

	
; E.1/; S.1/ j X.0/

1

A D 0:240; (9.78)

P

0

@N.1/ D
2

4
2 1

1 2

2 2

3

5 ; p.1/ D �
3 3

	
; E.1/; S.1/ j X.0/

1

A D 0:360; (9.79)

in which X.0/ is as given in (9.70). Equations (9.76)–(9.79) match our intuition
if we take a careful look at Fig. 9.10a: self-looping is not allowed, so the state
space that is probabilistically possible of happening can only be these previous 4

states. In other terms, starting from vertex 1, there are only two different choices
that the particle can make: either visit vertex 2 or 3. The same reasoning can be
applied when we start at vertex 2. Since it is a joint distribution, we multiply
these factors, which totalizes 4 different states. Furthermore, as we have fixed
� D 1, it is expected that the transition probabilities will be heavily dependent
on the domination levels imposed on the neighboring vertices. In this case, strongly
dominated vertices constitute repulsive forces that act against rival particles. In this
regard, the preferential or defensive behavior of these particles prevents particles
from visiting these type of vertices. This is exactly symbolized in (9.79), which
denotes the transition probability .1; 2/ ! .3; 3/ and also possesses the highest
transition probability, in account of the neutrality of vertex 3, as opposed to the
remaining two vertices.

Remark 9.5. Alternatively, we could have used the collection of two matrices 3�3,
as given in (9.73) and (9.74) with no loss of generality. Here, we clarify this concept
by calculating a single entry of Ptransition.0/ using this methodology. Consider we
are to calculate the probability according to (9.76), i.e., particle 1 performs a
transition from vertex 1 to vertex 2 and particle 2 executes a transition from vertex
2 to vertex 1. For the former case, according to the particle 1’s transition matrix
(see (9.73)) we have P.1/

pref.0/.1; 2/ D 0:40. Likewise, for the last case (see (9.74)),

we have P.2/
pref.0/.2; 1/ D 0:40. Remembering that p.0/ D Œ1 2� in a scalar form

corresponds to the second state of Ptransition and p.1/ D Œ2 1� corresponds to the
fourth state, then Ptransition.0/.2; 4/ D P.1/

pref.0/.1; 2/�P.2/
pref.0/.2; 1/ D 0:40�0:40 D

0:16, which is equal to the corresponding entry of the matrix in (9.75).

Before doing the calculation of the marginal distribution P.N.1//, we are
required to fix an upper limit for an arbitrary entry of the matrix N.1/. This is readily
evaluated from (9.51), which results in N.k/

imax
.1/ D N.k/

imax
.1/ D 2, 8.i; k/ 2 V � K ,

implying that we are only needed to take all numerical combinations for the matrix
N.0/ such that each entry may only take the values f1; 2g, since larger values
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yield probability 0 according to Lemma 9.1. Moreover, we need to iterate through
every feasible value of every entry of E.0/ and E.1/. In order to do so, we fix
 D 0:25, !min D 0, and !max D 1. With that, we are able to make use of
Lemma 9.2, which yields E.t/ 2 f0; 0:25; 0:5; 0:75; 1g. The limits of the remaining
system variables S.0/ and S.1/ are straightforward. In the present conditions, we
have enough information to calculate the marginal distribution P.N.1//, according
to (9.57):

P

0

@N.1/ D
2

4
2 2

2 2

1 1

3

5

1

A D 1 � 0:160 D 0:160; (9.80)

P

0

@N.1/ D
2

4
2 1

2 2

1 2

3

5

1

A D 1 � 0:240 D 0:240; (9.81)

P

0

@N.1/ D
2

4
2 2

1 2

2 1

3

5

1

A D 1 � 0:240 D 0:240; (9.82)

P

0

@N.1/ D
2

4
2 1

1 2

2 2

3

5

1

A D 1 � 0:360 D 0:360: (9.83)

As the last goal, our task is to determine the distribution P. NN.1//. According to
the specified steps in the previous section, we need to find all irreducible fractions
that lie within the interval Œ0; 1� with the constraints derived in the previous section.
This means that we only have to consider entries of matrix NN.t/ that contain
elements ofI1; the remainder NN.t/ are infeasible and, thus, occur with probability 0.
In view of the constraints previously enumerated, I1 D f1=4; 1=3; 1=2; 2=3; 3=4g.
Observing that we have the complete distribution of N.1/, it is an easy task to
apply (9.64), as follows:

P

0

@ NN.1/ D
2

4

1=2 1=2

1=3 2=3

1=2 1=2

3

5

1

A D 0:160; (9.84)

P

0

@ NN.1/ D
2

4

2=3 1=3

1=2 1=2

1=3 2=3

3

5

1

A D 0:240; (9.85)

P

0

@ NN.1/ D
2

4

1=2 1=2

1=3 2=3

2=3 1=3

3

5

1

A D 0:240; (9.86)
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P

0

@ NN.1/ D
2

4

2=3 1=3

1=3 2=3

1=2 1=2

3

5

1

A D 0:360: (9.87)

It is noteworthy to reinforce that the mapping between the probabilities of N.t/
and NN.t/ is not bijective: in this special simple case that we are studying, we did
not have distinct N.t/ that could generate the same NN.t/, but as t increases, this is
likely to happen quite frequently. This process is repeated until a sufficiently large t
or until the system converges to a quasi-stationary state of NN.t/, as discussed in the
empirical section.

9.4 Numerical Analysis of the Detection of Overlapping
Vertices and Communities

In this section, some simulation results are presented with the purpose of assessing
the effectiveness of the particle competition technique on detecting overlapping
vertices and communities. Note that the index that estimates the overlapping nature
of each network vertex is computed using (9.28). The obtained results are also
compared to classical overlap vertex measures [11, 12].

9.4.1 Zachary’s Karate Club Network

First, the particle competition technique is applied to detect fuzzy community
structure in the Zachary’s “karate club” network [42]. This is a well-known
network from the social science literature, which has become a benchmark test for
community detection algorithms. This network exhibits the pattern of friendship
among 34 members of a club at an American University in the 1970s. The members
are represented by vertices and an edge exists between two members if they know
each other. Shortly after the formation of the network, the club dismembered in
two as the consequence of an internal dispute, making it an interesting problem
for detecting communities. Figure 9.11 shows the outcome of the community
detection task. The red (dark gray) and blue (gray) colors denote the communities
detected by the algorithm. Only vertex 3 (the yellow or light gray vertex) is
incorrectly grouped as a member of the red (dark gray) community. In the literature,
vertices 3 (e.g., see [13]) and 10 (e.g., see [29]) are often misclassified by many
community detection algorithms. This happens because the number of edges that
they share between the two communities is the same, i.e., they are inherently
overlapping, making their clustering a hard problem. We apply the overlapping
index of the particle competition model and report the results in Fig. 9.12. We see
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Fig. 9.11 Community detection result in the Zachary’s karate club network when we apply the
particle competition method. The red (dark gray) and blue (gray) colors denote the detected
communities. Only the yellow or light gray vertex (vertex 3 in the original database) is incorrectly
grouped. Reproduced from [36] with permission from Elsevier
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Fig. 9.12 Result of the calculation of the overlapping index for all vertices in the Zachary’s “karate
club” network. Reproduced from [36] with permission from Elsevier

that vertices 3 and 10 show the highest overlapping indices, confirming the previous
analysis. Moreover, vertices 9, 14, 20, 29, and 32 also present a significant level of
overlapping characteristics, since these are placed in the borders of each community.
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Fig. 9.13 Dolphin Social Network observed by Lusseau. K D 2 and � D 0:6. The five vertices
with the highest overlapping structure are displayed with larger sizes. Reproduced from [36] with
permission from Elsevier

9.4.2 Dolphin Social Network

The Dolphin Social Network [26] is composed of 62 bottlenose dolphins living
in Doubtful Sound, New Zealand. In this case, we consider that the dolphins
represent the vertices, whereas edges between dolphin pairs are established by
observation when there is a statistically significant frequent association between
them. Figure 9.13 indicates the community detection outcome of the particle
competition technique. The five most overlapping vertices are displayed in larger
sizes. In this case, the number of particles that maximizes hR.t/i is K D 2, which
corresponds to the division of the real problem indicated by Lusseau. The split into
two communities seems to match the known division of the dolphin community,
except for the dolphin “PL,” which is a member of the blue (gray) community.
Based on a 2-year research period, Lusseau reported that the bottlenose dolphins
segregated into two communities, apparently by virtue of the disappearance of the
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dolphins located at the boundaries of each of the communities. When some of
these dolphins later reappeared, the two halves of the network joined together once
more. Surprisingly, these border dolphins are the ones that the particle competition
algorithm captures as the vertices with the most overlapping nature, as we can
verify in Fig. 9.13 from the larger vertices, i.e., “DN63,” “Knit,” “PL,” “SN89,” and
“SN100.”

9.4.3 Les misérables Novel Network

Les Misérables is an interaction network between major characters comprising the
Victor Hugo’s sprawling novel of crime and redemption in post-restoration France.
Using the list of 77 character appearances by scene, compiled by Knuth [18], the
network was constructed in a way that vertices represent characters and an edge
between two vertices represents co-appearance of the corresponding characters in
one or more scenes [30]. In this case, the quantity hR.t/i is maximized when K D 6.
Figure 9.14 shows the outcome of the particle competition technique, along with
the 10 most overlapping vertices portrayed in larger sizes. The communities clearly
reflect the subplot structure of the book. As one can expect, the protagonist Jean
Valjean and his nemesis, the police officer Javert, are captured as being the 2 most
overlapping vertices of the network, since they are central to the Hugo’s play and
form the hubs of communities composed of their respective adherents.

Fig. 9.14 Hugo’s sprawling novel of crime and redemption in post-restoration France entitled
Les Misérables. K D 6 and � D 0:6. The 10 vertices with the highest overlapping structure are
depicted with larger sizes. Reproduced from [36] with permission from Elsevier
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9.5 Application: Handwritten Digits and Letters Clustering

In order to give a concrete vision of the particle competition model, we here review
the application in data clustering for the particle competitive method presented in
[36]. We employ three real-world data sets that are composed of handwritten digits
and letters, which are the USPS, the MNIST, and the Letter Recognition data sets.

Section 9.5.1 briefly discusses on the employed data sets. Section 9.5.2 applies
the index for estimating the most likely number of groups in these three data sets.
Finally, Sect. 9.5.3 provides the data clustering results.

9.5.1 Brief Information of the Handwritten Digits
and Letters Data Sets

The data sets in which the particle competition model is tested against are given in
the following:

• USPS data set: Comprised of 9298 images of handwritten digits. The digits 0

to 9 have 1553, 1269, 929, 824, 852, 716, 834, 792, 708, and 821 samples
respectively. The US Postal Service (USPS) digits data were gathered at the
Center of Excellence in Document Analysis and Recognition (CEDAR) at SUNY
Buffalo, as part of a project sponsored by the US Postal Service. For more details
about this data set, refer to [15]. Each image has dimensions of 16 � 16 pixels,
with 256 grey levels per pixel. We employ the weighted eigenvalue similarity
measure as defined in Sect. 8.6.3. Instead of using 16 eigenvalues, we only
work with the four greatest ones. In this case, we use the following ˇ function:
ˇ.x/ D 16 exp. x

3
/.

• MNIST data set: Originally composed of images with dimensions 28 � 28. We
only use the public set composed of 10;000 vertices. Moreover, we make use of
the dissimilarity measure based on the first 4 eigenvalues of each image out of 28

eigenvalues. The same ˇ function employed in the USPS data set is used here.
More information is given in Sect. 8.6.2.

• Letter Recognition data set: Composed of characteristic vectors with 16 entries.
There are 20;000 vertices.

Since none of these data sets are in a network form, the methodology is divided
into two general steps: the network formation and the data clustering tasks. In
the first, we use the k-nearest neighbor network formation technique with k D 3

after we apply a preprocessing step. In this preprocessing, we standardize the data
such as to have zero mean and unitary standard deviation. As for the distance
measure, we either use the weighted eigenvalue dissimilarity (for the first two data
sets above) or the Euclidean distance (for the last one). The reason behind not
using the weighted eigenvalue on the third data set is because the samples are not
provided as images, but as image descriptors. Since the latter is formed by merely
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scalars, we cannot apply the dissimilarity measure. In the second step, the data
clustering algorithm based on particle competition is applied. As we are dealing
with unsupervised learning, we do not use any external information, such as labels or
exogenous knowledge. Instead, we limit ourselves to discovering explicit or implicit
relationships among the data by the mechanism of particle competition.

9.5.2 Determining the Optimal Number of Particles
and Clusters

Figure 9.15a–c show the determination of the optimal K for the USPS, MNIST, and
Letter Recognition data sets, respectively. One can verify that hR.t/i is maximized
exactly when the number of particles is equal to the number of clusters in the
network, confirming the effectiveness of such heuristic.

9.5.3 Handwritten Data Clustering

Here, we show “digit” and “letter” cluster detection results using the particle
competition algorithm. Table 9.1 supplies details about the algorithms chosen for
comparison matters. The genetic algorithm implemented in the Global Optimization
Toolbox of MATLAB is used to optimize the parameters of the particle competition
algorithm. Specifically, the � parameter is optimized over the range 0:2 	 � 	 0:8

and its optimal values for the USPS, MNIST, and Letter Recognition data sets are
0:58, 0:60, 0:60, respectively. The number of particles to be inserted is determined
according to the previous analysis, i.e., we choose the number of particles that
maximizes the quantity hR.t/i measure, which are 10, 10, and 26 for the USPS,
MNIST, and Letter Recognition data sets, respectively.

Table 9.2 presents the data clustering rate reached by the particle competition
method and the aforementioned competing algorithms. Some of these results are
readily extracted from [33] and [23]. Within this table, we have provided the
Average Rank of each algorithm, which is calculated as follows: (1) for each data
set we rank the algorithms according to their average performance (average data
clustering accuracy), i.e., the best algorithm is ranked as 1, the second best one is
ranked as 2, and so on; (2) for each algorithm, the Average Rank is given by the
average value of its rank achieved in all the data sets. As we can verify by looking
at the Average Rank column, the stochastic competition algorithm has reached one
of the best positions, showing the effectiveness of the particle competition scheme.

In order to further verify the robustness of the particle competition method, we
inspect the samples that compose a same cluster. Specifically, Figs. 9.16 and 9.17
show some samples of the clusters representing the pattern “2” and “5”, respectively,
of the MNIST data set. These samples are captured using the following strategy: we
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Fig. 9.15 Determination of the optimal number of particles K (the optimal number of clusters)
in real-world data sets. The number of classes that each data set originally possesses are: (a) the
USPS data set has 10 clusters (each cluster corresponding to a number from “0” to “9”); (b) the
MNIST data set has 10 clusters (each cluster corresponding to a number from “0” to “9”); and
(c) the Letter Recognition data set has 26 clusters (each cluster corresponding to a letter from
the English alphabet (“A” to “Z”)). 20 independent runs are performed and the average value is
reported. Reproduced from [37] with permission from Springer

Table 9.1 Description of the competing state-of-the-art data clustering
techniques

Technique Reference

Gaussian mixture Model (GMM) [5]

K-Means [27]

Locally consistent Gaussian mixture Model (LCGMM) [23]

Spectral clustering algorithm with normalized cut (Ncut) [34]

Ncut embedding all (NcutEmbAll) [33]

Ncut embedding maximum (NcutEmbMax) [33]

Reproduced from [37] with permission from Springer
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Table 9.2 Data clustering accuracy reached by the particle competition technique and
the competing methods listed in Table 9.1

USPS MNIST Letter recognition Avg. rank

LCGMM 73.83 73.60 93.03 2.33

GMM 67.30 66.60 91.24 5.33

K-Means 69.80 53.10 87.94 6.33

NCut 69.34 68.80 88.72 5.67

NCutEmbAll 72.72 75.10 90.07 3.67

NCutEmbMax 72.97 75.63 90.59 2.67

Particle competition technique 80.46 74.53 91.37 2.00

For the stochastic methods, such as the particle competition method, thirty independent
runs were performed and the corresponding mean is provided. Reproduced from [37]
with permission from Springer

Fig. 9.16 A broad set of samples that were classified as being member of the cluster representing
the pattern “2”. Note that samples that are adjacent are similar with regard to the weighted
eigenvalue dissimilarity function. The transitions from the sample (a)–(g) were captured from the
maximum geodesic distance between two vertices in the cluster representing pattern 2. In this
case, the diameter of such cluster is 17. We have only provided 7 representative samples above.
Reproduced from [37] with permission from Springer

Fig. 9.17 A broad set of samples that were classified as being member of the cluster representing
the pattern “5”. Likewise the previous figure, adjacent samples are more similar to each other than
distance samples. Reproduced from [37] with permission from Springer

compute the vertices that compose the maximum geodesic distance of the cluster
representing each pattern (cluster diameter). Now, we select a representative subset
of vertices composing the cluster diameter trajectory for illustrative purposes. In
these figures, samples that are adjacent are more similar than those distant from one
to another. On the basis of this analysis, we conclude that the graph representation
has successfully captured several variations of these number patterns each of which
in a single representative cluster, showing the robustness of the model.
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9.6 Chapter Remarks

In this chapter, a rigorous definition of a competitive learning scheme in complex
networks has been studied, whose foundations are biologically inspired by the
competition process taking place in many nature and social systems. In this model,
several particles navigate in the network to explore their territory and, at the same
time, attempt to defend their territory from rival particles. If a particle frequently
visits a specific vertex, it occurs that the domination level of the visiting particle
on that vertex is strengthened. Concurrently to that, the domination levels of all of
the other particles on the same vertex are weakened. In the long-run dynamic, each
particle is expected to be confined within a community of the network.

The particle competition model is nonlinear and stochastic. Owing to the
mathematical formality that the model is built upon, theoretical and empirical
analyses have been conducted to better understand the underlying properties of the
competitive model. A convergence analysis has shown that the dynamical system
presents structural stability rather than asymptotic stability. This is a welcomed
characteristic, since it better describes the uncertainty that revolves around real-
world problems, which have noise and uncontrolled variables. In addition, due
to this analysis, we have found that the model is a generalization of the process
of single independent random walkers in a network. Specifically, we have shown
that the model’s behavior acts as multiple interacting walkers in a network.
The interaction is molded in a competitive way, by using a probabilistic convex
combination of random and preferential walks. Such generalization is realized by
calibrating the values of the parameter � and  of the system. If � D 0, the model
reduces to multiple non-interacting random walks; but, when � > 0, the interaction
among particles is turned on.

Furthermore, measures for detecting overlapping structures and for estimating
the number of actual clusters or communities in a network have been discussed,
whose calculations are embedded into the model’s own algorithm. This permits their
calculation to be performed in an efficient way.

Simulations have been carried out with the purpose of quantifying the robustness
of the particle competition scheme on artificial and real-world data sets for the
tasks of data clustering and community detection. Computer simulations have
revealed that the model works well for community detection and for data clustering
tasks. Finally, an application on handwritten digits and letters recognition has
been provided and high clustering accuracies have been obtained. Moreover, we
have analyzed the composition of the clusters formed in the MNIST data set and
have verified that, within a specific cluster, several variations of the same pattern
can be encountered, confirming the robustness of the model.
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Chapter 10
Case Study of Network-Based Semi-Supervised
Learning: Stochastic Competitive-Cooperative
Learning in Networks

Abstract Information reaches us at a remarkable speed and the amount of data it
brings is unprecedented. In many situations, only a small subset of data items can
be effectively labeled. This is because the labeling process is often expensive, time
consuming, and requires intensive human involvement. As a result, partially labeled
data sets are more frequently encountered. In order to get a better characterization
of partially labeled data sets, semi-supervised classifiers are designed to learn
from both labeled and unlabeled data. It has turned out to be a new topic of
machine learning research that has received increasing attention in the past years.
In this chapter, the semi-supervised classification with focus on methods based on
complex networks is explored. In special, the particle competition model that we
have introduced in the previous chapter is adapted to this new learning paradigm.
Specifically, this enhancement is achieved by introducing the idea of cooperation
among the particles and by changing the inner mechanisms of the original algorithm
so as to fit it into a semi-supervised environment. In contrast to the unsupervised
learning model, where the particles are randomly spawned in the network because
no prior analysis of the groups is available, the semi-supervised learning version
does have some external knowledge by definition. This knowledge is represented
by the labeled data items, usually offered as a small fraction of the entire data set.
In this scenario, the objective is to propagate the labels from the labeled set to the
unlabeled set. Likewise the previous chapter, a mathematical formalization of the
model, as well as a theoretical analysis, is also provided. A great portion of this
analysis is based on the model that we have studied in the last chapter. A validation
is also presented linking the numerical and theoretical results. An application in
imperfect data learning is also presented, where the particle competition model is
employed to detect and prevent error propagation in the learning process due to
noisy or wrongly labeled data.

10.1 A Quick Overview of the Chapter

As we have seen in Chap. 3, the semi-supervised learning differs from the unsuper-
vised learning by the fact that the former has some external knowledge incorporated
into the learning process, by means of pre-labeled data items. Moreover, semi-
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supervised learning also differs from supervised learning because it uses both
labeled and unlabeled data in the learning process.

In the initial part of this chapter, the semi-supervised particle competition model
is presented [3, 11]. Once the basic concepts are properly introduced, we deal with
the interesting problem of learning with imperfect data. In this case, the labeled data
set is not totally reliable. Situations in which the training data is not perfectly reliable
may arise when noises are embedded in the labeling source procedure or in the
acquisition of the data items, or even when an external professor incorrectly labels
data items (human error). Though being prone to all of these kinds of error sources,
most semi-supervised learning algorithms assume a perfectly reliable training data.
As we will see, their performances are largely impacted when that assumption is
violated.

Due to the practicability in the real-world, the semi-supervised model of multiple
particles is further enhanced to deal with this uncertainty in the training data. For
that, the model is equipped with mechanisms to detect and to prevent wrongly
labeled training data. These mechanisms only use information that the dynamical
system of multiple particles generates. Therefore, the procedure of detection and
prevention of imperfect data is embedded within the model. We show that the
modified particle competition model can really provide good results even in
environments where the training data reliability is low. We analyze how the model’s
accuracy rate behaves as we increase the percentage of noise or wrongly labeled
items in the training data set. In this analysis, we find critical points that are
characterized by border regions in which small increases in the noise in the labeled
set produces large downfalls in the model’s accuracy. We compare the critical points
of the semi-supervised model of multiple particles with other competing techniques
and show that the former can withstand much more noisy environments. We also
show that, provided that the fraction of correctly labeled vertices is the majority, the
model can in general correctly re-label the wrongly labeled vertices. This constraint
is intuitive and confirms that the competitive model uses some kind of “natural
selection” in the learning process that forces the majority to overwhelm the minority
using the network topology.

10.2 Description of the Stochastic
Competitive-Cooperative Model

In this section, we describe the semi-supervised version of the particle competition
model in detail [11].
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10.2.1 Differences of the Semi-Supervised
and the Unsupervised Versions

The main difference in the semi-supervised version of the model of multiple
interacting particles is that now each particle represents a labeled data item. The
goal of each particle is to spread the associated label of its labeled vertex to
other unlabeled vertices by visiting and dominating them in a competitive way.
The labeled vertex that each particle represents is termed as the home vertex of
that particle. Particles always start the dynamical process at their home vertices.
In the reanimation procedure of particles, once exhausted, they always regress to
their corresponding home vertices and not to random dominated vertices. Moreover,
particles are guaranteed to always dominate their home vertices in such a way that
the domination levels imposed on home vertices are not sensitive to visits of rival
particles.

Figure 10.1 illustrates the initial condition of the semi-supervised version
of the particle competition model. Note that the initial location of particles is
deterministically established in accordance with their home vertices. Moreover, the
number of particles equals the number of labeled data items.

Each particle
represents a

labeled vertex

Fig. 10.1 Illustration of the initial conditions and the reanimation procedure of the semi-
supervised model with multiple particles
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This modification forces the model to work in a local label-spreading behavior,
since each particle is now probabilistically bounded within a small region of the
network. As a consequence, due to the competitive mechanism, each particle only
visits a portion of vertices potentially having the same label as the particle’s home
labeled vertex. This concept can be roughly conceived as a “divide-and-conquer"
effect embedded into the competitive scheme.

Recall that particles only have exploratory behavior due to the random movement
rule when � D 0. Conversely, they only present defensive characteristics due to the
preferential movement rule when � D 1. In addition, we have seen that a mixture
of these two walking policies promotes better results for the model. Due to the
deterministic behavior of the reanimation procedure, particles get probabilistically
confined in regions potentially centered at their corresponding home vertices. The
width of these regions is determined by the counterweighting factor �. Figure 10.2
provides an intuitive schematic of this concept. Note that, as � decreases, the
larger are the regions that particles can potentially visit in that we are giving more
importance to the exploratory in detriment to the defensive behavior. In this way,
particles’ dominated territories are expected to collide more often as � decreases.

One interesting feature of the semi-supervised version is of the emergence of
potential cooperation among particles. Frequently, we may have more than one
labeled vertex from the same class. As a consequence, more than one particle may
represent the same class or label of their respective home vertices. In this case, these

Regions with high 
probabilities of 

visitation

Fig. 10.2 Influence of the counterweighting factor � in shaping regions with high probabilities of
visitation
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representative particles act together as a team because they propagate the same label
to unlabeled vertices. In this way, several teams can potentially compete with each
other to establish their class borders, while cooperating with their teammates.

10.2.2 Familiarizing with the Semi-Supervised Environment

In the semi-supervised learning scheme, denote Y as the set of possible discrete
classes that can be predicted by the semi-supervised classifier. A set of data
items X D fx1; : : : ; xL; xLC1; : : : ; xLCUg is supplied, in which each entry is a P-
dimensional attribute vector of the form xi D .xi1; : : : ; xiP/. The first L data items
are initially labeled and compose the labeled set L . The remainder U data items are
the unlabeled instances and comprise the unlabeled set U . Note that X D L [U .
For each xi 2 L , a label yi 2 Y is given. In contrast, no labels are supplied for
data items in U . The objective is to propagate the labels from L to U , while
preserving the data distributions. In practice, the proportion of unlabeled data items
far surpasses the proportion of labeled data items, such that U 
 L is observed in
several practical occasions.

Since the particle competitive-cooperative model is a network-based technique, a
network formation technique is employed to transform the vector-based data into a
network. For this end, the data are mapped into a graph G using a network formation
technique g W X 7! G D hV ;E i, in which V D L [ U is the set of vertices and
E is the set of edges. There are V D jV j vertices in the graph. Each vertex v 2 V
in the network corresponds to a data item x 2 X , so that V D L C U. Essentially,
each vertex in V represents a data item in X . The edges in E are created using a
suitable network formation process, such as those explored in Chap. 4.

10.2.3 Deriving the Modified Competitive Transition Matrix

In this section, we focus on the technical differences of the unsupervised and
semi-supervised learning transition matrices. If any part of the method has not
been expressly indicated here, then it means that it is identical to the unsupervised
transition matrix derived in Sect. 9.2.2.

The transition matrix assumes the same functional form as that in the unsuper-
vised version, which, for convenience, we remember as follows:

P.k/
transition.t/ , .1 � S.k/.t//

h
�P.k/

pref.t/ C .1 � �/P.k/
rand

i
C S.k/.t/P.k/

rean.t/: (10.1)
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Basically, the technical differences are reflected on how each of these matrices
comprising the transition matrix are defined. Specifically, the random and prefer-
ential terms do not suffer any modifications. The reanimation matrix, however, is
adapted on account of two reasons:

• We must model the label diffusion process from labeled to unlabeled vertices in
a local label-spreading behavior. For that, we cannot randomly transport particles
from one place to another in the network as we would be creating labeling
decisions that are non-smooth.

• We must now comport the idea of the existence of external information in the
form of labels, which in turn are represented by labeled vertices. The idea is to
use these labeled vertices, here termed as home vertices, as the proper destination
for exhausted particles. As these labeled vertices are static in the network, we
effectively force labeling decisions that are smooth.

Recall that each entry of P.k/
rean.t/ indicates the probability of bringing an

exhausted particle k 2 K back to its dominated territory. Here, we always transport
the particle back to its home vertex, which is the vertex that particle k represents.
Suppose that particle k is visiting vertex i when its energy becomes completely
depleted. In this particular occasion, we transport the particle back in accordance
with the following distribution:

P.k/
rean.i; j; t/ ,

(
1; if j D vk

0; otherwise
; (10.2)

in which vk indicates the home vertex of particle k, Therefore, matrix Prean.t/ only
has non-zero entries for reallocations of particles to their respective home vertices.
In computational terms, this can greatly enhance the process of deciding the next
vertex that particle k will visit. For didactic purposes, Fig. 10.3 portrays a simple
scenario of a reanimation taking place. In this case, the red or dark gray particle
has its energy penalized, since it is visiting a vertex dominated by a rival particle.
Supposing that its energy has been completely depleted, that particle becomes
exhausted. Under these circumstances, the reanimation procedure of that particle
is enabled, which will compel it to travel back to its home vertex so as to be
properly recharged. Even though this is a simple mechanism, it can greatly increase
the performance of the particle competitive-cooperative model, because it does not
let particles go wander very far from their origions. Thus, the algorithm forces
smoothness in the label diffusion process.

10.2.4 Modified Initial Conditions of the System

Recall that the internal dynamical state of system 	 is composed of four terms: p.t/
is a random vector denoting the particles’ locations at time t; N.t/ represents the
number of visits that each of the vertices received up to time t; E.t/ indicates the
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Exhausted
particles now
return to their
home vertices

Fig. 10.3 The modified reanimation procedure performed by an exhausted particle. The sur-
rounded vertices denote labeled instances. The color intensity in each vertex denotes the color
of the particle imposing the highest domination level

particles’ energy levels at time t; and S.t/ displays the particles’ states at time t. In
order to run the dynamical system 	, we need a set of initial conditions. In this way,
we discuss how to fix the initial conditions for these four dynamical variables at
t D 0.

For the initial particles’ location p.0/, each particle is put at its corresponding
home vertex.

We now discuss how to initialize matrix N.0/. For those initially labeled vertices,
we fix a permanent ownership to their representative particles as follows. Since the
ownership is represented by the maximum actual domination level imposed on that
vertex, we simply force the number of visits of the representative particle to its home
vertex to be infinity at the beginning of the learning process. Thus, changes in the
ownership of labeled vertices become impossible. In view of this scheme, we have
that each entry of N.0/ is now given by:

N.k/
i .0/ D

(
1; if particle k represents vertex i

1 C 1Œp.k/.0/Di�; otherwise
; (10.3)

in which we apply (10.3) to every .i; k/ 2 V � K . Note that the scalar 1 is used
in the second expression of (10.3) so that unlabeled and unvisited vertices at time
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t D 0 have their calculation well-defined, according to (9.7). Usually, more than
one particle (a team) is generated to represent a set of pre-labeled examples of the
same class. Each of them tries to dominate vertices independently. The cooperation
among the particles of the same team happens only at the end of the process. In order
to do so, for each vertex, we sum up the domination levels of all of the particles of
the same team on it to obtain the aggregated domination level.

With respect to the initial particles’ energy levels E.0/ and states S.0/, we
maintain the configurations of the unsupervised learning model according to (9.25)
and (9.26).

10.3 Theoretical Analysis of the Model

In this section, a theoretical analysis of the model is discussed. A numerical
validation of the theoretical results is supplied. It is worth noting that only the
main analytical differences in relation to theoretical analysis previously conducted
on Sect. 9.3 (unsupervised version) are provided.

10.3.1 Mathematical Analysis

Since the dynamical system of the unsupervised and semi-supervised version are
virtually the same, differing only on the initial distributions of the particle locations,
the transition probability function is the same. In view of this, we rewrite it for
convenience matters as follows:

P.X.t C 1/ j X.t// D 1ŒN.tC1/DN.t/CQN.p.tC1//�

� 1ŒS.tC1/DQS.E.tC1//�

� 1ŒE.tC1/DE.t/CQE.p.tC1/;N.tC1//�

� Ptransition.N.t/; p.t//

D 1ŒCompliance.t/�Ptransition.N.t/; p.t//:

(10.4)

Following the reasoning applied in the analytical analysis of the unsupervised
dynamical system, we are required to set feasible upper and lower limits for each
of the random variables. The limits for p.t/; E.t/; S.t/ derived in the unsupervised
version are integrally valid for the semi-supervised learning version.

Having in mind these considerations, we now derive these limits for the random
variable N.t/. The new initialization step indicated in (10.3) takes into account both
labeled and unlabeled vertices, which invalidates Lemma 9.1 that only previews the
existence of unlabeled vertices. Given this fact, we reformulate the aforementioned
Lemma in the following.
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Lemma 10.1. The maximum reachable value of N.k/
i .t/, 8.i; k/ 2 V � K ,

t 2 N, is:

• If i 2 U :

N.k/
imax

.t/ D
 ˙

tC1
2

�C 1; if t > 0 and aii D 0

t C 2; if t > 0 and aii > 0
: (10.5)

• If i 2 L :

N.k/
imax

.t/ D 1: (10.6)

in which aii D 0 if there are no self-loops starting at vertex i, and aii > 0 otherwise.

Proof. With regard to unlabeled vertices, i.e., which belong to U , the proof supplied
in Lemma 9.1 can be invoked ipsis litteris. This is valid because the movement
policy of each particle remains the same in relation to the original unsupervised
learning version.

With regard to labeled vertices, i.e., which belong to L , this quantity can be
inferred in a straightforward manner through the initial conditions of the system.
According to (10.3), if i is a pre-labeled vertex and k is its representative particle,
then N.k/

i .t/ D 1; 8t � 0. �

Since the upper and lower limits of the random variable N.t/ have changed, the
analysis of NN.t/ needs some adjustments. Similarly to the previous case, Lemma 9.3
presented in the original version of the algorithm may only be applied to unlabeled
vertices. In view of this, we reformulate this Lemma as follows:

Lemma 10.2. The following assertions hold 8.i; k/ 2 V � K :

• If i 2 U :

(a) The minimum value of NN.k/
i .t/ is:

NN.k/
imin

.t/ D 1

1 CP
u2K n fkg N.u/

imax
.t/

: (10.7)

(b) The maximum value of NN.k/
i .t/ is:

NN.k/
imax

.t/ D N.k/
imax

.t/

N.k/
imax

.t/ C .K � 1/
: (10.8)

• If i 2 L :

(a) The minimum value of NN.k/
i .t/ is:

NN.k/
imin

.t/ D 0: (10.9)
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(b) The maximum value of NN.k/
i .t/ is:

NN.k/
imax

.t/ D 1: (10.10)

Proof. With regard to unlabeled vertices, the proof supplied in Lemma 9.3 can be
invoked ipsis litteris.

With regard to labeled vertices, Eq. (10.9) can be reached as follows: consider
that particle k is not a representative from the labeled vertex i. However, by the
initial conditions shown in (10.3), since vertex i is labeled by hypothesis, 9k0 2 K W
N.k0/

i .t/ D 1; 8t � 0. Now, as k does not represent i, via (10.3) again, we know

that N.k/
i .t/ may only take on finite values 8t � 0. Finally, applying (9.7) using

this setup yields (10.9). Equation (10.10) can be achieved as follows: consider that
particle k now represents the labeled vertex i. In this case, N.k/

i .t/ D 1. Considering
that a labeled vertex may only be represented by one kind of particle, then all the

remaining entries of N.k0/
i .t/; k0 2 K ; k0 ¤ k are finite. Using (9.7) under these

circumstances, we arrive at (10.10). �

The final step before calculating the marginal distribution of the vertices’
domination levels, i.e., P. NN.t//, is to find all the possible irreducible fractions that
an arbitrary entry of NN.t/ can assume. Lemma 9.4 fails to provide us with enough
information about the labeled vertices, since it only delimits the irreducible fractions
for unlabeled vertices. Next, a reformulation of such Lemma is provided.

Lemma 10.3. Denote num=den as an arbitrary irreducible fraction. Consider that the
set It retains all the reachable values of NN.k/

i .t/, 8.i; k/ 2 V � K , for a fixed t.
Then, the elements of It are composed of all elements satisfying the following
constraints:

(i) With regard to unlabeled vertices:

(a) The minimum element is given by the expression in (9.60).
(b) The maximum element is given by the expression in (9.61).
(c) All the irreducible fractions within the interval delimited by (a) and (b)

such that:

I. num; den 2 N�.
II. num 	 N.k/

imax
.t/.

III. den 	 P
u2K N.u/

imax
.t/.

(ii) With regard to labeled vertices:

(a) 0, if particle k does not represent vertex i.
(b) 1, if particle k represents vertex i.
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Proof. Regarding item (i): Straightforward from Lemma 9.4.
Regarding item (ii): (a) As vertex i is labeled, 9u 2 K W N.u/

i .t/ D 1. In view

of (9.7) and (10.3), we obtain NN.k/
i .t/ D 0; (b) Similarly, using (9.7) and (10.3), we

get NN.k/
i .t/ D 1. �

Finally, the expression for calculating the domination matrix distribution remains
the same as the one derived in the unsupervised version of the algorithm. In the
following, we reiterate it for convenience:

P
� NN.t/ D U W U 2 Mt

� D
tX

uD1

P
�
f .uN.t// D U

�
: (10.11)

As t ! 1, P. NN.t// provides enough information for classifying the unlabeled
vertices. In this case, they are labeled according to the team of particles that is
imposing the highest domination level. Since the domination level is a stochastic
variable, the output of this model is fuzzy.

10.3.2 A Numerical Example

In this section, we show how the theoretical results derived in the previous section
can be employed in a simple example. We limit the demonstration for a single
iteration, namely for transition from t D 0 to t D 1. Consider the exemplificative
network as a trivial 3-vertex regular network, identical to that in Fig. 9.10a. Consider
that vertex 1 has been labeled as pertaining to class 1 and vertex 2, to class 2,
i.e., V D f1; 2; 3g, L D f1; 2g, and U D f3g. Clearly, we can see that the
unlabeled vertex 3 possesses overlapping characteristics in relation to classes 1 and
2. We theoretically show this behavior through this illustrative example. Consider
the arbitrary initial settings: we insert K D 2 particles into the network, i.e.,
K D f1; 2g. Let the particle 1 represent vertex 1 and particle 2, vertex 2. In this
setup, particle 1 propagates the label of vertex 1 and particle 2 diffuses labels of
vertex 2. Suppose also that we have a certainty about the locations of the particles
at t D 0, which satisfy the following distribution:

P

0

@N.0/ D
2

4
1 1

1 1
1 1

3

5 ; p.0/ D Œ1 2� ; E.0/; S.0/

1

A D 1; (10.12)

i.e., there is 100 % (certainty) that the particles 1 and 2 are generated at vertices
1 and 2, respectively. Observe that N.0/, E.0/, and S(0) are chosen such as to
satisfy (10.3), (9.25), and (9.26), respectively; otherwise the probability should be
0, in view of (10.4).
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From Fig. 9.10a, we can deduce the adjacency matrix A of the graph and,
therefore, determine the transition matrix associated to the random movement term
for a single particle. Applying (9.2), we get:

Prand D
2

4
0 0:50 0:50

0:50 0 0:50

0:50 0:50 0

3

5 : (10.13)

Given N.0/, we can readily establish NN.0/ with the aid of (9.7):

NN.0/ D
2

4
1 0

0 1

0:50 0:50

3

5 : (10.14)

Using (9.8) we are able to calculate the matrices associated to the preferential
movement policy for each particle in the network:

P.1/
pref.0/ D

2

4
0 0 1

0:67 0 0:33

1 0 0

3

5 ; (10.15)

P.2/
pref.0/ D

2

4
0 0:67 0:33

0 0 1

0 1 0

3

5 : (10.16)

To simplify calculations, let us assume � D 1, so that (10.1) reduces to
Ptransition.0/ D P.1/

pref.0/ ˝ P.2/
pref.0/ at time 0, which is a matrix with dimensions

9 � 9. Instead of building this matrix, we make use of Remark 9.1 to build the next
particles localization vector p.1/ with the collection of two matrices 3 � 3, as given
in (10.15) and (10.16). Note that, in the special case when � D 1, the preferential
movement matrix is the transition matrix itself, provided that all the particles are
active, which indeed are at time 0, according to (9.26). For the first particle, one
can see from (10.15) that, starting from vertex 1 (row 1), there can only be one next
possible localization for particle 1, namely vertex 3. For the second particle, starting
from the vertex 2 (row 2), one can state that the next localization of particle 2 can
only be vertex 3, too. With that in mind, we have that:

P

0

@N.1/ D
2

4
1 1

1 1
2 2

3

5 ; p.1/ D Œ3 3� ; E.1/; S.1/ j X.0/

1

A D 1; (10.17)

in which X.0/ is given by (10.12). Furthermore, as we have fixed � D 1, it is
expected that the transition will be heavily dependent on the domination levels of the
neighborhood vertices. Therefore, given that the labeled vertices constitute strong
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repulsive forces that act against rival particles, the preferential or defensive behavior
of these particles will never adventure in these type of vertices. This provides a
natural explanation for the reason that the state p.1/ D Œ3 3� is the only possible
next particles localization vector.

Before doing the calculation of the marginal distribution P.N.1//, we are
required to find an upper limit for an arbitrary entry of a specific unlabeled vertex of
the matrix N.1/. This is readily evaluated from (10.5), which results in N.j/

imax
.1/ D 2,

8i 2 V , implying that we are only needed to take all numerical combinations of the
matrix N.0/ such that each entry may only take the values f1; 2g, since larger values
would yield probability 0 according to Lemma 10.1. Moreover, we need to iterate
through every feasible value of every entry of E.0/ and E.1/. In order to do so, we
fix  D 0:25, !min D 0, and !max D 1. With that, we are able to make use of
Lemma 9.2, which yields E.t/ 2 f0; 0:25; 0:5; 0:75; 1g. The limits of the remaining
system variables S.0/ and S.1/ are straightforward. In the present conditions, we
have enough information to calculate the marginal distribution P.N.1//, according
to (9.57):

P

0

@N.1/ D
2

4
1 1

1 1
2 2

3

5

1

A D 1 � 1 D 1: (10.18)

As the last goal, the task is to determine the distribution P. NN.1//. According to
the specified steps in the previous section, we need to find all irreducible fractions
that lie within the interval Œ0; 1� with the constraints derived in the previous section.
This means that we only have to consider entries of matrix NN.t/ that contain
elements of It; the remainder NN.t/ are infeasible and, thus, occur with probability
0. In view of the constraints previously enumerated, It D f0; 1=4; 1=3; 1=2; 2=3; 3=4; 1g.
It is worth commenting that the labeled vertices (vertices 1 and 2) can only assume
the values f0; 1g � It, as we have previously stated. Observing that we have the
complete distribution of N.1/, it is an easy task to apply (9.64), as follows:

P

0

@ NN.1/ D
2

4
1 0

0 1

0:5 0:5

3

5

1

A D 1: (10.19)

It is noteworthy to reinforce that the mapping between the probabilities of N.t/
and NN.t/ is not bijective: in this special simple case that we are studying, we did not
have distinct N.t/ that could generate NN.t/, but as t increases, this is likely to happen
quite frequently. This process is repeated for a sufficiently large t or until the system
converges to a quasi-stationary state NN.t/. A detailed look at the system’s behavior
that we have derived suggests that (10.19) holds for every t � 1, and particles 1

and 2 will visit vertex 3 with period 2. Hence, this shows the overlapping nature of
vertex 3, as it can be naturally stated only by the topological structure of the graph.
Ideally, for networks with presence of distinct classes, NN.t/ varies as we iterate
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the dynamical system. We can then check the most probable classification of each
of the vertices by looking at the domination levels of those particles with highest
probability P

� NN� in the corresponding rows of each vertex.
For example, in Ref. [11], a simulation is performed to illustrate that the

theoretical results really approximate the empirical behavior of the stochastic
competitive model for a large number of independent runs of the algorithm. In
addition, extensive numerical analyses are conducted to show the good performance
of the particle competitive-cooperative model.

10.4 Numerical Analysis of the Model

In this section, we present simulation results in order to show the effectiveness of
the semi-supervised particle competitive-cooperative model.

10.4.1 Simulation on a Synthetic Data Set

Here, we investigate the performance of the algorithm when applied to a network
consisted of V D 15 vertices split into 3 unbalanced communities, as depicted
in Fig. 10.4. K D 3 particles are inserted into the network at the initial positions
p.0/ D Œ2 8 15�, meaning the first particle (representing the red or “circle” class)
starts at vertex 2, the second particle (representing the blue or “square” class) starts
at vertex 8, and the third particle (representing the green or “triangle” class) starts at
vertex 15. All the remaining vertices in the network are initially unlabeled (in the

Fig. 10.4 A simple
networked data set. The red
or “circle” class is composed
by vertices 1–4, the blue or
“square” class comprises the
vertices 5–10, and the green
or “triangle” class
encompasses the vertices
11–15. Initially, only the
vertices 2 (red or “circle”
particle), 8 (blue or “square”
particle), and 15 (green or
“triangle” particle) are
labeled
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Fig. 10.5 Evolutional behavior of the average domination level imposed by the 3 particles on the
existing classes in the network. (a) Red or “circle” class (vertices 1–4). (b) Blue or “square” class
(vertices 5–10). (c) Green or “triangle” class (vertices 11–15)

figure, they are colored for the sake of easily identifying the classes). The com-
petitive system is iterated until t D 1; 000 and the predicted label for each of
the unlabeled vertices is given by the particle’s label that is imposing the highest
domination level. Figure 10.5a–c show the evolutional behavior of the domination
levels imposed by the three particles on the red or “circle” class, the blue or “square”
class, and the green or “triangle” class, respectively. Specifically, from Fig. 10.5a,
we can verify that red or “circle” particle dominates vertices 1–4 (red or “circle”
class), due to the fact that the average domination level on these vertices approaches
1, whereas the average domination levels of the other two rival particles decay to 0.
Considering Fig. 10.5b, c, we can use the same logic to confirm that the blue or
“square” particle completely dominates the vertices 5–10 (blue or “square” class)
and the green or “triangle” particle dominates vertices 11–15 (green or “triangle”
class).
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Table 10.1 Brief
meta-information of the UCI
data sets

Data set # Instances # Dimensions # Classes

Heart 303 75 2

Heart-statlog 270 13 2

Ionosphere 351 34 2

Vehicle 946 18 4

House-votes 435 16 2

Wdbc 569 32 2

Clean1 476 168 2

Isolet 7797 617 26

Breastw 569 32 2

Australian 690 14 2

Diabetes 768 8 2

German 1000 20 2

Optdigits 5620 64 10

Sat 6435 36 7

10.4.2 Simulations on Real-World Data Sets

In this section, computer simulations on real-world data sets gathered from the UCI
Machine Learning Repository are presented. A brief meta-information of the 14

real-world data sets that are going to be studied here is supplied in Table 10.1. For a
detailed description, refer to [7].

With respect to the experimental setup, for each data set, 10 examples are
randomly selected to compose the labeled set and the labels of the remainder of
the examples are dropped. The labeled set is formed in such a way that each class
has at least a labeled example. It is worth observing that in a semi-supervised
learning task, the quantity of labeled examples is often too few to afford a valid cross
validation, and therefore hold-out tests are usually used for the evaluation process.
Also, for the purpose of comparing the performance of different algorithms, we
use two competitive semi-supervised data classification techniques: Transductive
SVM (TSVM) and low density separation (LDS). For a description and the default
parameters used, one can refer to [5].

Since the particle competitive-cooperative model relies on a networked envi-
ronment, we need to construct a graph from the vector-based data sets shown in
Table 10.1. For this end, we use the k-nearest neighbor technique with k D 3. We
fix � D 0:6 and  D 0:07, which respects the parameter sensitivity analysis in
Sect. 9.2.6.

The simulation results are reported in Table 10.2. In this table, the average test
error and the corresponding standard deviation achieved by each algorithm are
supplied. We can note that the semi-supervised algorithm based on multiple particles
achieves better results most of the time.

The average rank attained by each of the algorithms is also provided. We estimate
the average rank as follows: (i) for each data set, the algorithms are ranked according
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Table 10.2 Test errors (%)
with 10 labeled training
points and the corresponding
average rank and standard
deviation of each technique

Data set TSVM LDS
Proposed
technique

Heart 27:4 ˙ 10:4 22:9 ˙ 9:6 21:3 ˙ 9:9
Heart-statlog 26:1 ˙ 5:9 21:7 ˙ 6:1 20:5 ˙ 5:4
Ionosphere 23:9 ˙ 8:2 24:1 ˙ 10:9 24:7 ˙ 9:0

Vehicle 36:8 ˙ 7:8 33:7 ˙ 8:5 31:8 ˙ 8:8
House-votes 16:0 ˙ 5:3 11:6 ˙ 4:0 11:4 ˙ 3:7
Wdbc 11:1 ˙ 3:7 15:0 ˙ 8:7 11:9 ˙ 5:1

Clean1 46:7 ˙ 4:8 43:2 ˙ 3:7 40:2 ˙ 2:9
Isolet 13:3 ˙ 9:5 8:0 ˙ 11:4 12:7 ˙ 8:8

Breastw 11:1 ˙ 8:8 9:6 ˙ 7:6 10:5 ˙ 9:4

Australian 31:4 ˙ 11:4 34:0 ˙ 14:5 31:6 ˙ 12:2

Diabetes 34:2 ˙ 4:6 33:8 ˙ 4:8 32:1 ˙ 4:6
German 36:5 ˙ 5:1 35:3 ˙ 4:2 35:9 ˙ 4:3

Optdigits 8:6 ˙ 7:6 3:6 ˙ 11:1 5:4 ˙ 8:9

Sat 13:5 ˙ 10:8 5:8 ˙ 14:2 9:3 ˙ 10:1

Average rank 2.6 1.9 1.6

The experiments are repeated 30 times for each labeled
set and the average test error and standard deviations are
recorded. The smallest test errors for each data set are in bold

to their average performance, i.e., the best algorithm (the smallest test error) is
ranked as 1st, the second best one is ranked as 2nd, and so on; and (ii) for each
algorithm, the average rank is given by the average value of its ranks scored on all
the data sets.

With the purpose of examining these simulation results in a statistical manner, the
procedure outlined in [6] is adopted. The methodology described therein uses the
calculated average rank of each algorithm for the statistical inference. Specifically,
the Friedman Test is used to check whether the measured ranks are significantly
distinct from the mean value of the ranks. In this case, the mean value of the ranks
is 2, since there are 3 algorithms. The null-hypothesis considered here is that all
the algorithms are equivalent, so their ranks should be the same. Here, we fix a
significance level of 0:05. For our experiments, according to [6], we have that N D
14 and k D 3, resulting in a critical value given by F.2; 26/ � 3:37, in which
the two arguments are derived from the degrees of freedom defined as k � 1 and
.N � 1/.k � 1/, respectively. In our case, we get a value FF � 5:32 that is higher
than the critical value, so the null-hypothesis is rejected at a 5 % significance level.

As the null hypothesis is rejected, one can advance to post-hoc tests which aim
at verifying the performance of the proposed algorithm in relation to others. For
this task, we opt to use the Bonferroni-Dunn Test, for which the control algorithm
is fixed as the proposed technique. According to [6], one should not make pairwise
comparisons when we test whether a specific method is better than others. Basically,
the Bonferroni-Dunn Test quantifies whether the performance between an arbitrary
algorithm and the reference is significantly different. This is done by verifying
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whether the corresponding average ranks of these algorithms differ by at least a
critical difference (CD). If they do differ that much, then it is said that the better
ranked algorithm is statistically superior to the worse ranked one. Otherwise, they
do not present a significant difference for the problem at hands. Thus, if we perform
the evaluation of the CD for our problem, we encounter CD � 0:8. The average
rank of the proposed method is 1:6. By virtue of that, if any rank does lie in the
interval 1:6˙0:8, the control algorithm and the compared algorithms are statistically
equivalent. We conclude that our algorithm is superior to Transductive SVM for the
simulations performed on these data sets. However, the comparison of the LDS to
the control algorithm does not surpass the CD, meaning that the differences among
them are statistically insignificant.

10.5 Application: Detection and Prevention of Error
Propagation in Imperfect Learning

In this section, we tackle the problem of learning with imperfect data, i.e., some of
the labeled samples are incorrectly labeled, via the competitive model described in
the previous section.

Section 10.5.1 motivates the importance and real practicability of detecting and
preventing error propagation in semi-supervised tasks in imperfect data training
data. Section 10.5.2 enhances the particle competitive-cooperative model to deal
with imperfect learning by providing a detection mechanism of possible wrong
labeled instances. Section 10.5.3 shows a mechanism to prevent error propaga-
tion by flipping labels from those vertices detected as possibly wrong labeled
by the detection module. Section 10.5.4 formally presents the modified particle
competitive-cooperative model to withstand imperfect training data. Section 10.5.5
investigates the sensitivity of the model’s parameters related to detecting and
preventing error propagation. Finally, Sect. 10.5.6 tests the error detection and
prevention mechanisms on synthetic and real-world data.

10.5.1 Motivation

The quality of the training data is a fundamental issue in machine learning. It
becomes more critical in semi-supervised learning, because fewer labeled data are
available and errors (wrong labels) may easily propagate to a portion of or to the
entire data set. Up to now, there are still few works devoted to studying semi-
supervised learning from imperfect data [1, 2, 8]. Usually, in machine learning,
the input label information of the training data set is supposed to be completely
reliable. Intuitively, this is not always true and mislabeled samples are commonly
found in the data sets due to instrumental errors, corruption from noise, or even
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human mistakes in the labeling process. If these kinds of wrong labels are used to
further classify new data (in the supervised learning case) or are propagated to the
unlabeled data (in the semi-supervised learning), severe consequences may occur.
Therefore, designing mechanisms to prevent error propagation is important in the
machine learning area. Specifically, the prevention of error propagation can benefit
the learning systems from two complementary aspects:

i. Improvement of the performance of the learning system, permitting the system
to learn from errors;

ii. Avoidance of a system’s catastrophe by limiting the spread of wrong labels from
imperfect training data.

In the next section, a mechanism for preventing error propagation embedded in
the particle competition-cooperation model is presented [4, 10].

10.5.2 Detecting Imperfect Training Data

The idea of mislabeled vertex identification is described in the following. In the
competition-cooperation model, for each labeled vertex, a representative particle is
generated. For simplicity, we here use the term correctly labeled particle to denote
the representative particle of a correctly labeled vertex and the mislabeled particle to
represent the representative particle of a mislabeled vertex. In this way, the vertices
in the vicinity of mislabeled vertices are expected to be in constant competition
among the correctly labeled and the mislabeled particles. Therefore, the mislabeled
particles will be stranded in the small region centered at the mislabeled vertex. Since
the number of mislabeled particles in each region is generally much smaller than the
number of correctly labeled ones, the surrounding region of the mislabeled vertex
tends to be heavily dominated by the correctly labeled particle team. By virtue of
the combination of random and preferential walking rules, particles will eventually
try to venture far away from their home vertices. Once a mislabeled particle goes
far away from its home vertex, it has a high probability to get exhausted. Hence, the
number of times that a particle becomes exhausted is a good indicator of whether
or not the home vertex that it represents is mislabeled. If the associated particle is
constantly getting exhausted, it is possibly representing an imperfect labeled vertex.
Otherwise, it is probably representing a correctly labeled vertex.

In order to detect possible mislabeled vertices, consider the random vector
D.t/ D ŒD.1/.t/; : : : ; D.K/.t/�, in which the k-th entry, D.k/.t/, stores the number of
times that particle k has become exhausted up to time t. In view of this, the update
rule of each entry of D.t/ is expressed by:

D.k/.t/ D D.k/.t � 1/ C S.k/.t/; (10.20)

in which S.k/.t/ is the boolean-valued variable that indicates whether particle k is
active or exhausted at time t. In brief, it yields 1 if particle k is exhausted at time t
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and 0, otherwise. On account of that, Eq. (10.20) simply adds 1 or remains with the
same summation, depending on the state of particle k at the current time.

In order to check whether or not a particle is getting exhausted more times
than the others, we use the average number of times that particles get exhausted
as a statistical descriptor/threshold. The average number of times that particles get
exhausted in the network is expressed by:

hD.t/i D 1

K

KX

uD1

D.u/.t/: (10.21)

In view of the random variable introduced in (10.21), any particle k 2 K such
that:

D.k/.t/ � .1 C ˛/hD.t/i (10.22)

holds is considered to be getting exhausted more times than the other particles.
Therefore, such particle is a great candidate of representing an incorrectly labeled
or imperfect home vertex. The parameter ˛ 2 Œ�1; 1/ is a confidence value that
indicates the percentage above the average value hD.t/i that must occur in order to a
particle to be conceived as a representative of an incorrectly labeled vertex. A small
˛ tends to classify more vertices as incorrectly labeled ones than a large value. In
the extreme case, when ˛ ! 1, then the model reduces to its original form, i.e., it
does not detect nor prevent incorrectly labeled vertices from propagating incorrect
labels.

At the beginning of the competitive process, a very small portion of the unlabeled
data is expected to be dominated by the particles. In this way, a correctly labeled
particle may accidentally get exhausted and (10.22) turns out to be true. In an
attempt to prevent this false positive, a weighted function in (10.22) is introduced,
which penalizes (10.22) at the beginning of the competition process and eliminates
the effect of that penalty when t is large. In this way, the weighted version of (10.22)
becomes:

.1 � e� t
� /D.k/.t/ � .1 C ˛/hD.t/i; (10.23)

in which � 2 .0; 1/ is the time constant of the exponential decaying function.
Next, we analyze the minimum number of times that a particle must get

exhausted in order to (10.23) to hold. For this end, we plot the minimum D.k/.t/,
denoted as D.k/

min.t/, in a such a way that (10.23) holds. Mathematically, it satisfies
the following expression:

D.k/
min.t/ D .1 C ˛/hD.t/i

.1 � e� t
� /

: (10.24)
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For the sake of clarity, let us suppose that the dynamical process produces
hD.t/i D 1; 8t � 0. Fix ˛ D 0 for simplicity. With respect to the non-weighted
version, even when t is very small, a D.k/.t/ D 1 is sufficient to (10.22) to be satis-
fied. Therefore, if a correctly labeled vertex happens to reach the “exhausted” state
at the beginning of the competitive process, it is immediately marked as a possible
wrongly labeled vertex. On the other hand, the weighted version penalizes D.k/.t/
when t is small, as (10.23) reveals. Therefore, it is unlikely that labeled vertices
are classified as wrongly labeled for small values of t. However, for a sufficient
large t, this penalization ceases and (10.23) asymptotically approximates (10.22). In
particular, when t ! 1, one has:

lim
t!1 .1 � e� t

� /D.k/.t/ � lim
t!1 .1 C ˛/hD.t/i )

D.k/.1/ lim
t!1 .1 � e� t

� / � .1 C ˛/hD.1/i )

D.k/.1/ � .1 C ˛/hD.1/i; (10.25)

i.e., (10.23) reduces to (10.22). Finally, parameter � is used to control the decaying
speed of the exponential function. Looking in isolation to this function, a small �

yields a large negative derivative for this function and a large � produces a small
negative derivative for this function. In other words, the speed of decaying increases
as � decreases.

10.5.3 Preventing Label Propagation from Imperfect
Training Data

In the previous section, we have presented a method for detecting possible wrongly
labeled vertices by means of using the information generated by the competitive
process itself. Now, whenever we detect a possible imperfect labeled vertex, we
need to take actions in order to prevent it from propagating wrong labels throughout
its neighborhood.

In an imperfect labeled vertex, the associated particle is expected to constantly
getting exhausted, as it is probably in a region with several other labeled data items
from rival teams of particles. As such, the neighborhood of the imperfect labeled
vertex receives a large quantity of visits by other particles, in such a way that
competition is always taking place. In order to correct for the imperfectness of the
training labeled data, a natural approach therefore is to drop the label from that
home vertex and reset it accordingly to the most dominant class in the neighborhood.
By using a local approach, we maintain the smoothness assumption of the model.
Figure 10.6 portrays a schematic of this relabeling process that prevents error
propagation in the model. Note that the neighborhood is mostly dominated by
the red class in such a way that the home vertex has its label flipped to the red
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Declared as
possibly
mislabed

Fig. 10.6 Schematic of the mechanism of error propagation prevention. Surrounded vertices
denote home vertices, which correspond to the labeled data. The left-most blue labeled item is
declared as possibly mislabeled. In this case, the label is reset accordingly to the most dominant
class in the neighborhood

instead of the original blue class. In this way, the training labeled data gets reshaped
such as to have smoother properties. Note that we never use the information of the
possibly imperfect labeled vertex, as the detection module warns that its label may
be incorrect.

We now formalize that idea. Suppose vertex i has been considered as a possible
imperfect labeled vertex at time t, meaning that (10.23) holds. In view of this, vertex
i is going to have its random vector Ni.t/ altered, in such a way to reflect how the
neighborhood is being dominated at time t. We simply restart Ni.t/ as the average
number of visits received by its neighbors. Mathematically, for all k 2 K , we have:

N.k/
i .t/ D 1

jN .i/j
X

j2V
AijN

.k/
j .t/

D 1

jN .i/j
X

j2N .i/

N.k/
j .t/; (10.26)

in which N .i/ is the set of neighbors of the imperfect labeled vertex i and jN .i/j is
the corresponding number of neighbors. This idea can be further extended to encom-
pass not only the direct neighborhood but also indirect levels of neighborhoods of
the home vertex. In this chapter, we use the simple approach of relabeling according
to the immediate neighborhood, which is the most conservative option in terms of
smoothness in the labeling decision.
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One can observe that the difference between the modified model and the original
model is that the former is capable of relabeling labeled vertices, while the latter is
not. This new feature is processed when (10.26) is applied.

10.5.4 Definition of the Modified Learning System
to Withstand Imperfect Data

With the mechanism introduced before, the dynamical system of the original particle
competitive-cooperative model presented in Sect. 10.2 is modified as follows:

X.t/ D

2

6
6
6
6
6
4

p.t/
N.t/
E.t/
S.t/
D.t/

3

7
7
7
7
7
5

: (10.27)

If wrong.k; t/ D .1 � e� t
� /D.k/.t/ � .1 C ˛/hD.t/i, then the new competition-

cooperation system that supports detection and prevention of incorrectly labeled
vertices is given by:

	 W

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

p.k/.t C 1/ D j; j � P.k/
transition.t/

N.k/
i .t C 1/ D 1Œwrong.k;t/�

h
1

jN .i/j
P

j2N .i/ N.k/
j .t/

i

C1Œ:wrong.k;t/�

h
N.k/

i .t/ C 1Œp.k/.tC1/Di�

i

E.k/.t C 1/ D
(

min.!max; E.k/.t/ C /; if owner.k; t/

max.!min; E.k/.t/ � /; if :owner.k; t/
S.k/.t C 1/ D 1ŒE.k/.tC1/D!min�
D.k/.t C 1/ D D.k/.t/ C S.k/.t C 1/

(10.28)

We see that the update rule related to the number of visits (2nd expression)
now consists of two terms: the term which is employed for vertices that have been
detected to be wrongly labeled (first term) and the term for vertices that are not
considered wrongly labeled (second term).

10.5.5 Parameter Sensitivity Analysis

Likewise we have performed for the original particle competitive-cooperative model
in Sect. 9.2.6, here we focus on understanding the roles of parameters ˛ and �

that deal with the error detection and prevention mechanisms in imperfect data
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environments. Following the same setup in Sect. 9.2.6, we also use the benchmark
of Lancichinatti et al. [9] with V D 5;000 vertices, a network connectivity of
Nk D 8, and intercommunity mixture of � D 0:3. Essentially, the benchmark process
consists in varying the mixing parameter � and evaluating the resulting model’s
accuracy rate.

To test for robustness against imperfect data, the benchmark of Lancichinatti
et al. is altered [12]. Once the networks are generated, we label a fraction of the
vertices using a stratified uniform distribution to compose the labeled training data.
Now, we purposely flip some labels of the labeled data so as to introduce noise or
imperfectness. In the simulations, the labeled set is fixed as 10 % of the size of the
data set. Finally, we deliberately flip 30 % of the correct labels to incorrect labels
q D 0:3 in a stratified manner, so as to maintain the proportion of labeled samples
at each class.

10.5.5.1 Impact of ˛

Parameter ˛ is employed in the module of detecting imperfect labeled data. In
essence, it determines how much D.k/.t/; k 2 K , must deviate from hD.t/i in
order to the corresponding labeled vertex to be declared as mislabeled. Observe that,
when ˛ D �1, the detection process always accuses labeled vertices as mislabeled,
because, in accordance with (10.24), one has:

D.k/.t/ � lim
˛!�1

.1 C ˛/hD.t/i
.1 � e� t

� /

H) D.k/.t/ � 0: (10.29)

Taking into account that the domain of D.k/.t/ is the interval Œ0; 1/, then (10.29)
is always satisfied. Therefore, (10.26) is applied to every vertex in the network for
any t � 0, i.e., the detection procedure reduces to this simple strategy of locally
verifying the label validity. Now, when ˛ assumes larger values, the competition
dynamics are incorporated to the detection scheme and nonlinear interactions
are taken into account in the detection scheme. As ˛ is increased, one can see
that solution space of (10.24) becomes more distant from the origin, meaning
that (10.24) is more difficult to be satisfied. On the extreme case, when ˛ ! 1,
one has that:

D.k/.t/ � lim
˛!1

.1 C ˛/hD.t/i
.1 � e� t

� /
H) (10.30)

D.k/.t/ � 1; (10.31)
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Fig. 10.7 Accuracy rate vs. ˛. We fix � D 40. Taking into account the steep peek that is verified
and the large negative derivatives that surround it, one can see that the parameter ˛ is sensible to
the overall model’s performance. Results are averaged over 30 simulations. Reproduced from [12]
with permission from Elsevier. (a) � D 2 and ˇ D 1. (b) � D 2 and ˇ D 2. (c) � D 3 and ˇ D 1.
(d) � D 3 and ˇ D 2

that is only satisfied when t ! 1, which is empirically unattainable. Hence, (10.31)
never holds for a finite t. As a result, the detection scheme is virtually turned off. In
other terms, the particle competition algorithm reduces to its original form proposed
in Sect. 10.2.

Taking into account that analysis, Fig. 10.7a, d display how the accuracy rate of
the model behaves as we vary ˛ from �1 to 10 in the networks constructed using
the methodology described in [9] with different values of � and ˇ. As one can
verify from the figures, this parameter is sensitive to the outcome of the technique.
Oftentimes, the optimal accuracy rate is achieved when a mixture of random and
preferential walks occurs. Using a conservative approach, for 0 	 ˛ 	 3, the model
gives decent accuracy results when applied to networks with communities.
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10.5.5.2 Impact of �

Parameter � is employed in detection module of the error propagation mechanism.
It assumes the range � 2 .0; 1/ and is responsible for adjusting the speed of
the penalizing function so as to prevent vertices from being signalized as wrongly
labeled ones at the beginning of the stochastic process. Next, we study the behavior
of the algorithm for small and large � in a theoretical and empirical manner.

When parameter � assumes small values, the exponential decaying function has
large-valued derivatives, meaning that its decaying speed is faster compared to larger
values of � . In the extreme case, i.e., � ! 0, one has:

D.k/.t/ � lim
�!0

.1 C ˛/hD.t/i
.1 � e� t

� /
H) (10.32)

D.k/.t/ � .1 C ˛/hD.t/i; (10.33)

in which we have used the fact that lim�!0.1 � e� t
� / D 1, since e� t

� ! 0 provided
that � ! 0 and t is finite. This shows that the model’s behavior is dictated by the
value of ˛, which has been studied in the previous section. This means that, in this
special case, the penalizing function ceases to exist, because it decays so fast to be
considered relevant in the learning process.

When � assumes larger values, then the decaying speed of the exponential
function reduces accordingly. By virtue of that, we have that:

D.k/.t/ � lim
�!1

.1 C ˛/hD.t/i
.1 � e� t

� /
H) (10.34)

D.k/.t/ � .1 C ˛/hD.t/i
.1 � lim�!1 e� t

� /
H) (10.35)

D.k/.t/ � 1: (10.36)

In this case, the denominator of (10.36) approaches 0 in a quick manner, since
e� t

� ! 1 provided that � ! 1 and t is finite. This reveals that the detection
scheme is turned off, since there is no reachable solution for (10.36) when t remains
finite. Therefore, in this case, the model reduces to its original form.

Bearing in mind these considerations, Figs. 10.8a, d portray the accuracy rate
attained by the algorithm for distinct values of � . We can conclude that, for
intermediate values of � , namely 30 	 � 	 60, the model is not sensitive to �

when applied to networks with communities.
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Fig. 10.8 Accuracy rate vs. � . We fix ˛ D 0. Taking into account the large steady region that is
verified, one can see that the parameter � is not very sensible to the overall model’s performance
if one correctly uses it. Results are averaged over 30 simulations. Reproduced from [12] with
permission from Elsevier. (a) � D 2 and ˇ D 1. (b) � D 2 and ˇ D 2. (c) � D 3 and ˇ D 1.
(d) � D 3 and ˇ D 2

10.5.6 Computer Simulations

In this section, computer simulations are performed to show the robustness of the
particle competition-cooperation model for semi-supervised learning in an error-
prone environment. We use synthetic and real-world data sets to check the model’s
performance.

10.5.6.1 Synthetic Data Sets

We first show the behavior of the particle competition algorithm on artificial net-
works using the Girvan-Newman’s benchmark, which we discussed in Sect. 6.2.4.
Figure 10.9 depicts the model’s accuracy rate as a function of the proportion of
mislabeled instances or imperfect data q for three different sizes of the labeled set.
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Fig. 10.9 Behavior of the model’s accuracy rate of the model vs. the proportion of mislabeled
instances or imperfect data q, when random clustered networks with constant mixture are used. The
networks are generated using V D 10; 000 vertices, M D 16 communities, and a intercommunity
mixture of zout=hki D 0:3. 100 independent runs are performed and the average value is reported.
Reproduced from [12] with permission from Elsevier

From this figure, we can observe three different regions that are separated by two
critical points of interest:

• When q is small, the effect of mislabeled vertices on the accuracy rate of the
algorithm is minimal. Visually, this is translated by the plateau region in the
plot depicted in Fig. 10.9 with basis near the 100 % accuracy rate. This behavior
can be explained by the competition that happens in the dynamical system as it
evolves in time. Since the majority of the labeled samples is correctly labeled,
the propagation of the correctly labeled samples literally overwhelms that of
mislabeled samples. As a consequence, the model’s performance is slightly
altered.

• When q’s value is neither small nor large, the accuracy rate decreases. The
first critical point indicates that the label propagation originated from imperfect
labeled vertices start to overwhelm that of correctly labeled data. From the same
figure, we see that such a phenomenon is also dependent on the size of the labeled
set. As the labeled set gets bigger, the algorithm becomes more robust in error-
prone environments.

• When q is large, the accuracy rate enters a new steady state with low accuracy
rate values that start from the second critical point onwards. At this point, the
propagation of wrongly labeled vertices by misrepresented particles completely
overwhelms the particles that are spreading correct labels.
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Table 10.3 Description of the semi-supervised data classification techniques used in the error
propagation analysis

Abbreviation Technique Reference

LP Linear propagation Zhou et al. [14]

LNP Linear neighborhood propagation Wang and Zhang [13]

Original PCCM Original particle competitive-cooperative method Sect. 10.2

Modified PCCM Modified particle competitive-cooperative method Sect. 10.5

10.5.6.2 Real-World Data Sets

In this section, the algorithm is applied to real-world data sets in an imperfect labeled
data environment. For comparison matters, a set of competing semi-supervised
learning techniques is also employed, which is summarized in Table 10.3.

With respect to the model selection procedure, all of the parameters are tuned
in accordance with the best accuracy rate reached by the algorithms. The model
selection is conducted as follows:

• LP: � is selected over the discretized interval � 2 f0; 1; : : : ; 100g and ˛ is fixed
to ˛ D 0:99 (the same setup as [14]);

• LNP: k is evaluated over the discretized interval k 2 f1; 2; : : : ; 100g, and � , as
well as ˛, are selected using the same process employed in the LP parameters
selection;

• Original and Modified PCCM: the data are first transformed into a network
representation using the k-nearest neighbor network formation technique. For
this purpose, k is chosen over the discretized interval k 2 f1; 2; : : : ; 10g. For
the model’s parameters, we test � in the interval f0:20; 0:22; : : : ; 0:80g. We fix
 D 0:1. The selection of these parameters and the candidate range for � are
in accordance with the guidelines provided in the parameter sensitivity analysis
supplied in Sect. 9.2.6.

Now we apply the LP, LNP, the original and modified PCCMs on two data
sets from the UCI Machine Learning Repository [7]: Iris and Letter Recognition.
The former is composed of three equal-sized classes, each of which comprising
50 samples, totalizing 150 samples. The latter is composed of 20,000 samples
divided into 26 unbalanced classes, each representing a different letter of the English
alphabet. Thus, the Letter Recognition data set can be considered as a large-scale
data set.

Figure 10.10a, b show the behavior of the test error vs. the proportion of
mislabeled samples q. One can verify that, as q grows, intuitively all of the
algorithms’ performances start to decline, producing larger test errors. However,
the modified PCCM is able to outperform the compared algorithms, by virtue of
the detection and prevention mechanisms embedded into the competitive model. In
an error-prone environment, we can conceive the algorithm as having two types
of competitions taking place simultaneously: competition of particles spreading
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Fig. 10.10 Behavior of the test error as a function of the proportion of imperfect data on two real-
world data sets. 100 independent runs are performed and the average value is reported. Reproduced
from [12] with permission from Elsevier. (a) Iris data set. (b) Letter Recognition data set

correct and incorrect labels. Since the competition is always taking place indirectly,1

then these two types of label diffusion processes are always in opposition. In
practical situations, it is fair to assume that the number of correctly labeled samples
is usually larger than that of incorrect labels, in such a way that the diffusion process
represented by those particles that spread correct labels will eventually overwhelm
or win the competition against the label propagation originated by the imperfect
training data.

10.6 Chapter Remarks

This chapter presents a semi-supervised learning technique that uses mechanisms
of competition and cooperation among particles, which runs in a networked
environment. In this model, several particles, each of which representing a class,
navigate in the network to explore their territory and, at the same time, attempt to
defend their territory against rival particles. If several particles propagate the same
class label, then a team is formed, and a cooperation process among these particles
occurs.

Wrong label propagation is a fundamental question in machine learning because
mislabeled samples are commonly found in the data sets due to several factors,
such as instrumental errors, corruption from noise, or even human mistakes. In
autonomous learning systems, errors are much easier to be propagated to the whole
data set due to the absence or few external intervention, which makes the situation
more critical.

1The indirect competition among particles occurs by the accumulated domination levels of each
vertex and by the particles’ movement policy.
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To deal with that situation, in this chapter, a method is introduced for detecting
and preventing error propagation embedded in the semi-supervised learning tech-
nique. The error detection mechanism is realized by weighting the total number of
times a particle has become exhausted to a thresholded value, which is dependent
and vary in time. When the dynamical competitive system begins, there is a
penalizing factor which prevents the detection of false positives. This has been
introduced in order to diminish the dependency of the error propagation model on
the initial locations of the labeled samples (transient part of the dynamics). As the
system evolves, this penalization ceases to exist and the plain domination level that
each vertex has is used in the error propagation inference. Once a vertex is declared
as mislabeled, the particle competition technique resets its domination levels as the
average value of its neighborhood, so as to conform to the cluster and smoothness
assumptions.
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Clarans, 81
class complexity, 10, 230
class distribution, 183
classification, 1, 72
classification network, 212, 214, 215
classification of network measures, 54
classification phase, 74, 212, 214, 215
clique, 28
closed neighborhood, 20
closed set of states, 60
closed walk, 24
closedness, 97
closeness, 48
closeness vitality, 50
cluster, 242, 261, 285
cluster assumption, 84, 184
cluster diameter, 287
cluster-and-label models, 85
clustering, 71, 72, 79
clustering coefficient, 10, 44, 220, 222
clusters of arbitrary shapes, 182
co-clustering, 81
co-training, 210
collection of matrices, 252

collective inference, 134, 135, 138, 211
combination of network measures, 217
combinations of the k-nearest neighbors and

�-radius techniques, 105, 108
communicability, 49
community, 5, 36, 37, 45, 143, 147, 241–244,

254, 261, 280
community border, 244, 257, 261
community core, 257
community detection, 79, 143, 146, 149, 241
community detection rate, 253, 256, 257
community detection technique, 5, 254, 256,

258, 280
community size distribution, 151, 257
competition, 241
competitive learning model, 243
competitive process, 254
complete graph, 16, 24
complete-link, 80, 81
complex behavior, 63
complex network, 2–4, 15, 146, 223, 291
complex network measure, 39
complex network models, 31
complex network tools, 15
complexity saturation, 223, 228, 230
compliance term, 208, 216, 226, 234
compliant test instance, 214, 216–218,

223–225
conditional rule, 243
connected graph, 28
connectedness, 26
connecting probability, 33
connectivity, 19
contextual classification techniques, 211
continuity assumption, 75
convergence of the particle competition

algorithm, 259
convex combination, 216, 217
cooperation, 291, 298
core-periphery network, 37–39, 42
correlated variables, 76
correlation network, 125
cosine similarity, 101
counterweighting factor �, 248, 255, 256, 285
critical memory length, 223, 228
critical point, 318
critical probability, 33
cross-validation, 75
CURE, 82
cycle, 25, 45
cycle length, 10, 64, 222–225, 228, 230
cycle network, 124
cyclic coefficient, 45
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D
D-Walks, 183, 198
data analysis, 7
data are produced in some hierarchical

organization, 79
data clustering, 79, 80, 143, 149, 241, 242
data fall into clusters according to some

preferred directions, 80
data mining, 4, 5
data reliability, 186, 292
data representation, 15, 93, 143, 182
data representation in complex network,

3, 4
DBScan, 81
dead end tourist walk, 222, 230
decision tree, 77, 216
deep learning, 73
defensive behavior, 243, 260, 294
degree, 21, 58
degree correlation, 41
degree measure, 40
degree size distribution, 151, 257
degree-correlation measure, 40
dense network, 40
dense region, 213, 228
density, 40
density function, 71
detection of overlapping structures, 255
diameter, 43
diameter of the confinement region, 261
Dice similarity, 102
diffusion process, 65, 319
digit distortion, 242, 285
digraph, 18, 27
dimension reduction, 174
dimensionality reduction, 71
directed graph, 18, 27, 58
disassortative mixing pattern, 41, 42
discrete-time Markov chain, 57
discriminative model, 185
dissimilarity function, 96
dissimilarity matrix, 95
distance between vertices, 26
distance function, 182
distance measure, 43
distance-based centrality measures, 47
divide-and-conquer effect, 8, 294
divisive algorithm, 79, 81
dominated territory, 243
dominated vertices, 243
domination matrix distribution, 301
duality of similarity and dissimilarity

functions, 96
dynamical process in complex networks, 54

dynamical system, 241, 242, 248, 252, 291
dynamical vitality, 50

E
ease of access heuristic, 138
eccentricity, 43
edge triangle, 44
edge type, 17
efficient evaluation index, 242
efficient evaluator index, 254
eigenvalue, 51, 233, 284
eigenvector centrality, 53
embedded index, 242
empty graph, 28
energy depletion, 248, 296
energy update rule, 249
ensemble of classifiers, 210
epidemic spreading in complex networks, 65
Erdös and Réyni, 2, 31–33
error detection, 308, 309, 319
error estimation techniques, 75
error prevention, 308, 311, 319
estimating the most likely number of

communities, 242, 254, 258, 285
Euclidean distance, 99, 233, 284
example of high-level classification, 213, 218,

219
example of particle competition model, 247,

249, 250, 271
exhausted particle, 243, 245, 253, 296, 311
expanding community borders, 257
expensive labeling process, 291
exploration ability, 244
exploratory behavior, 243, 260, 294
exploratory phase, 230

F
fast spread of information in networks, 34
feedback centrality measure, 51
finite sample analysis, 83, 184
flag carrier, 243
flow betweenness vitality, 50
forest, 28
Friedman test, 307
functional classification, 54
functional modules, 146
fundamental matrix, 59, 61
fuzzy, 216, 223, 280
fuzzy C-Means, 81
fuzzy partition algorithm, 172

G
Gaussian field and harmonic function, 187
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Gaussian kernel similarity, 101
Gaussian mixture model, 285
generative model, 185
generative models, 85
geodesic path, 26
global cyclic coefficient, 45
global efficiency, 43
global formulation-based method, 135
global measure, 54, 217
global network statistics, 37
graph component, 27
graph definition, 16
graph kernel, 135
graph partitioning problem, 146
graph representation, 28, 64
graph with no self-loops, 16
graph with self-loops, 16

H
Hamming distance, 103
handwritten data clustering, 285
handwritten digits clustering, 284
handwritten digits recognition, 95, 231
handwritten letters clustering, 284
handwritten recognition, 231
hard labeling, 257
harmonic mean similarity, 101
heat kernel, 101
heterogeneities in complex networks, 146
heterogeneous vision, 225
heuristic for estimating critical memory length,

230
hierarchical algorithm, 81, 82
hierarchical organization, 147
high-level classification, 9, 207, 208, 210–212,

214, 217, 227, 230, 231, 238
high-level classifier, 9, 216, 217, 222, 223
high-level classifiers, 10, 208
high-level vs. low-level classification, 234
highly mixed community, 37
home vertex, 293, 296, 297, 309
homogeneous vision, 225
hub vertex, 21, 35, 37, 39, 42
human error, 72, 82, 292
hybrid classification, 207–209, 216
hybrid framework, 238
hyper-sphere centered at reference vertex, 228

I
imperfect data, 292
imperfect data learning, 8, 192, 291, 308, 309,

311, 319

in-degree, 22
in-strength, 23
independent component analysis, 80
independent random walk, 274
independent view of the data, 210
inductive bias, 75
inductive learning, 85, 182
infection, 65
influence of network formation parameter, 228
influence of network measure, 223
influence of the network measure, 217
information theory, 147, 150
instance-based learning, 78
inter-modulation parameter, 225
interacting random walk, 242, 274
interaction forces, 197
intercommunity link, 37
interdisciplinary research area, 15
interface between unstructured and structured

data, 94
interwoven system, 15
intra-modulation parameter, 225
intracommunity link, 37
irreducible closed set, 60
irreducible fraction, 272, 300
irreducible Markov chain, 60, 61
isolated vertex, 21

J
Jaccard similarity, 103

K
K-Means, 285
Katz index, 52
kernel function, 78
Kronecker tensor product operator, 252
Kumar-Hassebrook similarity, 102
Kuramoto model, 167

L
label diffusion process, 182
label propagation, 72, 211
label reliability, 8
label smoothness, 185
labeling source procedure, 292
lack of theory, 242
Laplace smoothing technique, 225
large jumps in the data set, 64
large quantity of useful information, 254
lattice tourist walk, 230
lazy random walk, 62
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learning, 71
leave-one-out, 75
level of competitiveness, 263
limited tourist walk, 229
linear combination, 231
linear neighborhood network, 105, 110
linear neighborhood propagation technique,

319
linear propagation technique, 319
local and global consistency, 183, 190
local and global regularization, 183
local assortativity, 41
local classifier, 134, 135, 137
local label-spreading behavior, 294, 296
local learning regularization, 183
local network statistics, 37
local statistics, 146
local to global fashion, 224
locally consistent Gaussian mixture model, 285
locally linear embedding, 110
long-run dynamic, 243
loopy belief propagation, 135
loss function, 183, 185
lossless transformation, 93
lossy transformation, 93
Louvain algorithm, 156
low density separation, 306
low-density boundary, 75
low-density region separation models, 85
low-level classification, 207, 208
low-level classifier, 9, 216, 227, 233

M
machine learning, 1, 4, 71, 308
machine learning technique, 4, 6
Mahalanobis distance, 100
Manhattan distance, 99
manifold, 184
manifold assumption, 85, 184
manifold regularization, 183
mapping function conditioned to the provided

training set, 72
Markov chains theory, 275
Markov state, 57
Markovian process, 58
Markovian property, 253, 267
Markovian walker, 248
matrix multiplication, 8
maximum betweenness, 79
maximum conditional independence, 75
maximum domination level, 254
maximum flow algorithm, 186
maximum margin, 75

maximum response time, 47
mean passage time for transient states, 61
memory length, 10, 222–225, 228
memory window, 63, 64, 222, 230
memoryless tourist walk, 224
mesoscale structure, 37, 38, 146
message passing, 147
mincut, 183, 186
minimax criterion, 47
minimum description length, 75
minimum number of features, 75
minisum criterion, 48
Minkowski distance, 100
mixed measure, 54, 217
mixing parameter, 256
mixture parameter, 37
MNIST data set, 232–234, 284, 285
model selection, 75
model selection procedure, 319
modularity, 45, 147, 150, 153
modularity greedy optimization, 80, 150, 154
monotone convergence theorem, 59
multiclass, 182, 212
multiclass classification, 192, 214
multiple random walk, 248, 274

N
Naïve Bayes, 77, 134
natural learning, 82
natural ordering, 252
natural selection, 292
Ncut embedding all, 285
Ncut embedding maximum, 285
near-clique structure, 41
nearest neighbors, 75
neighborhood of a vertex, 20
neighborhood shares the same data

characteristics, 79
nested k-fold cross-validation, 75
network clustering coefficient, 44
network component, 27, 33, 93
network connectivity, 10, 22, 221, 222, 256
network core, 37, 38
network cycle, 24
network embedding, 174
network formation process, 106
network formation technique, 32, 34, 87, 93,

95, 182, 212, 217, 284, 295
network formation using clustering heuristics,

105, 114
network formation using overlapping

histogram segments, 105, 115
network growth, 35
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network learning toolkit, 137
network mining, 7
network of handwritten digits, 234
network path, 24
network periphery, 37, 38
network theory, 16
network topology, 15, 16, 24, 31, 33, 35, 54, 57,

93, 104, 182, 192, 222, 229, 243, 249,
252

network-based algorithm, 81
network-based methods, 78, 85, 93, 207, 241,

291
network-based semi-supervised classification,

291
network-based semi-supervised learning, 87,

181, 211
network-based statistical relational

classification, 211
network-based supervised classification, 207
network-based supervised learning, 87, 133
network-based unsupervised classification, 241
network-based unsupervised learning, 87, 143
networkless tourist walk, 230
neural network, 216, 233
no free lunch theorem, 75
noisy labeled data, 291
nominal attribute, 98
non-interacting random walk, 248
non-networked data, 95
non-normalized rich-club coefficient, 41
non-null recurrent, 60
non-overlapping subsets, 75
non-weighted graph, 19, 30, 58
nonlinear basis functions, 78
nonlinear dynamical system, 253
nonparametric model, 185
normalized rich-club coefficient, 42
NP-complete problem, 5, 146, 150
null graph, 17
null model, 45
null recurrent, 60
number of times that particles get exhausted,

310
number of visits, 245, 253
numerical attribute, 98
numerical distance functions, 99

O
Occam’s razor, 75
ontology, 210
open neighborhood, 20
open walk, 24
ordinal attribute, 98

out-degree, 22, 58
out-strength, 23, 58
outlier, 82
outlier detection, 71
overlap width, 261
overlapping community, 7, 148, 150, 169, 280
overlapping index, 255
overlapping vertex, 7, 148, 150, 169, 242, 280,

283
overwhelm, 318, 319

P
PageRank, 52
partially labeled data set, 291
partially labeled set, 181
particle competition model, 6, 7, 159, 241–243,

253–259, 274, 280, 285
particle competitive-cooperative model, 8, 291,

292, 295, 296, 304, 306, 313, 319
particle’s energy level, 244, 254
particle’s location, 252
particle’s state update rule, 250
partitional algorithms, 81, 82
passage time, 59
past trajectories are irrelevant, 57
path, 25
path distance, 25
path measure, 43
path-based centrality measure, 48
pattern formation, 214, 216–218, 230
pattern formation extraction, 222–224, 234
pattern recognition, 83, 122, 231, 232
Pearson correlation coefficient, 41
Pearson correlation similarity, 102
penalty, 250, 257, 310
perceptron, 233
perfectly reliable training data, 292
periodic state with period, 60
peripheral vertex, 35
permanent ownership, 297
phase transition, 223, 230
Poisson distribution, 33
positive feedback cycle, 36
possible composition of high-level classifier,

219, 222
potential cooperation among particles, 294
potential matrix, 59, 61, 275
Potts model, 150
power-law, 3, 35, 257
prediction, 72, 74, 76, 130, 134, 135, 161, 212
preferential attachment, 34–36
preferential walk, 6, 243–246, 252, 257, 294,

309
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preprocessing, 86, 130, 148, 284
principal component analysis, 80
probabilistic inference, 77

Q
quantitative attribute, 98
quasi-stationary state, 260

R
radial basis function, 101
radius, 43
random clustered network, 36, 150, 151, 243,

317
random edge relocation, 34
random network, 2, 31–33, 45
random variable, 57
random vector, 245, 246, 249, 252, 264, 265,

269, 296, 309, 312
random walk, 6, 55, 150, 183, 243–245, 248,

249, 252, 257, 274, 294, 309
randomly inserted particles, 253
RBF kernel, 227
reachability, 26
reanimation matrix, 248, 296
reanimation procedure, 245, 248, 276, 294, 296
recharge energy, 245, 251, 296
recurrence network, 126
recurrent state, 60
recursiveness of cycles, 93
redundant tourist walk, 230
reflexivity, 97
refractory time, 63, 222
regions with high probabilities of visitation,

294
regression, 1, 72, 84, 120
regular graph, 24
regularization framework, 183, 185
regularization function, 183, 186
regulation of tourist walk, 223
relational classification, 133, 134
relational classifier, 135, 138
relative closeness, 162
relative frequency of visits, 246
relative interconnectivity, 162
relaxation labeling, 135
relaxed linear neighborhood network, 105, 112
representative sample, 76
reset label from labeled vertex, 312
rich-club coefficient, 41, 42
rich-club effect, 42
rival particle, 244, 257
robustness, 285

role of high-level of learning, 207, 226, 227,
234

rule-based induction, 77

S
scale-free network, 3, 34, 36
scale-free property, 35, 36
scaling exponent, 35
self-avoiding deterministic walk, 63, 222
self-avoiding walk, 63
self-learning, 133, 227
semantic web, 210
semi-supervised classification, 72, 84, 291, 306
semi-supervised learning, 1, 8, 72, 82, 308
semi-supervised modularity, 183, 194
semi-supervised regime basis, 82
separated or dedicated process, 150
separation in six degrees, 2
seven bridges problem, 2
shortest path, 26
shortest path distance, 26
similarity function, 72, 93, 95, 96
similarity matrix, 95
similarity measure, 78
similarity measure for images, 232, 233
Simple matching similarity, 104
simple-link, 80
simultaneous linear equation system, 51
single component, 28
single-link, 81, 82
singleton vertex, 21, 28
size bias, 104
size effect on network measures, 218
small-world network, 3, 33, 34
small-world property, 34
smoothness assumption, 75, 84, 183, 211, 244
solely guided by the provided data, 71
sophisticated trajectories, 64
space transformation and swarm dynamics,

163
spacial relation between vertices, 32
spanning tree, 28
sparse network, 40, 149
sparse region, 213, 228
sparsification, 104
spectral bisection method, 157
spectral clustering algorithm with normalized

cut, 285
spectral graph algorithms, 80
spectral graph theory, 157
spectral method, 150
spread of wrong labels, 309
stationary Markov process distribution, 61
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stationary phase, 230
statistical learning theory, 77
statistical relational classification, 211
steady region, 229, 230
stochastic process, 57
stopping criterion, 259
strength, 23
strictly local measure, 54, 217
strong connectedness, 26, 27
strong reflexivity, 97
structural complexity, 15
structural measure, 44
structural risk minimization, 77
structured data, 93
subgraph, 26
supervised classification, 73, 207–209
supervised learning, 1, 9, 72, 74, 207
support vector machine, 77, 216, 226
supremum distance, 99
Susceptible-Infected-Recovered model, 65
Susceptible-Infected-Susceptible model, 66
symmetric adjacency matrix, 30
symmetry, 97
synchronization, 150, 167
Sørensen similarity, 103

T
terminal vertex, 35
test set, 72, 74
tightly knit group, 44
Tikhonov regularization framework, 189
time complexity order, 40, 242
time-homogeneous Markov process, 58, 61
too homogeneous for communities to make

sense, 149
top-down algorithm, 81
topological complexity, 229
topological overlap, 46
total travel time, 48
tour, 25
tourist walk, 10, 63, 222, 223
trail, 25
training network, 212, 213, 216, 217
training phase, 74, 212
training set, 72, 74
transductive learning, 85, 181, 182, 185
transductive support vector machine, 183, 306
transient length, 10, 64, 222–225, 228, 230
transient state, 60, 61
transition matrix, 58, 245, 246, 249, 252, 263,

295, 298

transition matrix for all of the particles, 252
transition network, 126
transition probability, 57
transitivity, 97
transmission, 65
tree graph, 28
trivial walk, 25
two-way clustering, 81

U
UCI Machine Learning Repository, 228, 306,

319
unbalanced community, 151
unbiased learning, 74
unconditional rule, 243
underlying process has some analytical form,

79
undirected graph, 17, 30, 58
unified measure, 222
uniform distribution, 249
unique class component, 213, 214, 217, 218,

224, 229
unique stationary distribution, 61
unstructured data, 93
unsupervised learning, 1, 6, 71, 78, 241, 285
utilitarian tool, 82

V
valency, 21
valid estimation process, 76
variance, 225
variation of network measure, 218
variational descriptor, 224
vector-based data set, 86, 93, 95, 148, 182,

306
vector-based similarity functions, 98
vertex and connection diversities, 15
vertex connectivity, 21
vitality, 50
voting scheme, 210

W
walk, 24
walk distance, 25
walk length, 25
walk-based centrality measure, 48
walking rule, 243, 244
Ward method, 81
Watts and Strogatz, 3, 33, 34
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web page centrality, 52
weighted Euclidean distance, 99
weighted graph, 18, 31, 58
well-defined community, 37, 149
Wiener index, 43
within-network data, 134
within-network inference technique, 137

without being explicitly programmed, 71
wrong label propagation, 184
wrongly labeled data, 291

Z
zero derivative, 230
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