
Chapter 2

Cognition and Human Computer Interaction

in Health and Biomedicine

David R. Kaufman, Thomas G. Kannampallil, and Vimla L. Patel

2.1 Introduction

Do we really need a theory of cognition? What advantages are conferred by a

cognitive theory or a collection of theories? How can cognitive theory advance our

knowledge as it pertains to the design and use of health information technology?

The past 30 years have produced a cumulative body of experiential and practical

knowledge about user experience, system design and implementation that provide

insights to guide further work. This practical knowledge embodies the need for

sensible and intuitive user interfaces, an understanding of workflow, and the ways

in which systems impact individual and team performance (Patel and Kaufman

2014). Human-computer interaction (HCI) in health care and other domains are at

least partly an empirical science where the growing knowledge base can be

leveraged as needed. However, practical or empirical knowledge, for example, in

the form of case studies is inadequate for producing robust generalizations, or sound

design and implementation principles.
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We argue that there is a need for a theoretical foundation. Of course, theory is a

core part of any basic or applied science and is necessary to advance knowledge, to

test hypotheses and to discern robust generalizations from the increasingly idio-

syncratic field of endeavor.

Cognitive theory has been a central part of HCI since its inception. However,

HCI has expanded greatly since its beginning as a discipline focused on a small

subset of interactive tasks such as text editing, information retrieval and software

programming (Grudin 2008). It is currently a flourishing area of inquiry that covers

all manners of interactions with technology from smart phones to ticketing kiosks.

Similarly, in health care, HCI research has focused on an enormous range of health

information technologies from electronic health record (EHR) systems to consumer

fitness devices such as the Fitbit™. In addition, technology is no longer the realm of

the solo agent; rather, it is increasingly a team game. This has led to the adaptation

of cognitive theories to HCI that stress the importance of the social and/or distrib-

uted nature of computing (Rogers 2004).

Rogers (2004, 2012) critiques the rapid pace of theory change. She argues “the

paint has barely dried for one theory before a new coat is applied. It makes it

difficult for anything to become established and widely used.” Although we per-

ceive this to be a legitimate criticism, we must acknowledge the extraordinary

diversity in HCI subjects of inquiry. In addition, cognitive theories have endured;

however, they have also evolved in response to new sets of circumstances such as

the emphasis on real-world research in complex messy settings, on the role of

artifacts as mediators of performance and on team cognition.

What role can theory play in HCI research and application? Bederson and

Shneiderman (2003) categorize five types of theories that can inform HCI practice:

• Descriptive – providing concepts, terminology, methods and focusing further

inquiry;

• Explanatory – elucidating relationships and processes (e.g., explaining why user

performance on a given system is suboptimal);

• Predictive – enabling predictions to be made about user performance or of a

given system (e.g., predicting increased accuracy or efficiency as a result of a

new design);

• Prescriptive – providing guidance for design from high level principles to

specific design solutions;

• Generative – seeding novel ideas for design including prototype development

and new paradigms of interaction.

Cognitive theories have played an instrumental role in all five categories,

although predicting performance across a spectrum of users (e.g., from novice to

expert) remains a challenge. In addition, generative theories have begun to play a

more central role in HCI design. Although theoretical frameworks such as ethno-

methodology, activity theory and ecological psychology, to name a few, have made

substantive contributions to the field, this chapter is focused primarily on cognitive

theories including classical human information processing, external cognition and

distributed cognition.
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In this chapter, we take a historical approach in documenting the evolution of

cognitive theories beginning with the early application of information-processing

theories and exploring external as well as distributed cognition. Each of these

constitutes a family of theories or a framework that embraces core principles, but

differs in important respects. A framework is a general pool of constructs for

understanding a domain, but it is not sufficiently cohesive or fully realized to

constitute a theory (Anderson 1983). The field of HCI as applied to healthcare is

remarkably broad in scope and the domain of medicine is characterized by immense

complexity and diversity in both tasks and activities (Kannampallil et al. 2011).

Specific HCI theories are often limited in scope especially as applied to a rich and

complex knowledge domain. Patel and Groen (1992) make an analogous argument

for the use of cognitive theories as applied to medical education. Frameworks can

provide a theoretical rationale for innovative design concepts and serve to motivate

HCI experiments. They can become further differentiated into theories that cover or

emphasize a particular facet of interaction (e.g., analyzing teamwork) in the context

of a broader framework (e.g., distributed cognition).

We provide a survey of these different theories and illustrate their application

with case studies and examples, focusing mostly on issues pertaining to health

technology, but also drawing on other domains. This chapter is not intended to be

comprehensive or a critical look at the state of the art on HCI in health and

biomedicine. Rather, it is written for a diverse audience including those who are

new to cognitive science and cognitive psychology. The scope of this chapter is

limited with a primary focus on cognitive theories, as they have been applied in

healthcare contexts.

A partial space of cognitive theories, as reflected in the chapter, is illustrated in

Fig. 2.1. As described, it isn’t intended to be exhaustive. It’s illustrative of how to

conceptualize the theoretical frameworks. It should also be noted that the bound-

aries between frameworks are somewhat permeable. For example, external and

distribute cognition frameworks are co-extensive. However, it serves the purpose of

emphasizing the evolution of cognitive theories and highlight specific facets such as

the effect of representations on cognition or the social coordination of computer-

mediated work. Although the theories within a framework may differ on key issues,

the primary difference is in their points of emphasis. In other words, they privilege

some aspect as it pertains to cognition and interaction.
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Fig. 2.1 Partial space of frameworks and cognitive theories
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2.2 Human Information Processing

A computational theory of mind provides the fundamental underpinning for most

contemporary cognitive theories. The basic premise is that much of human cogni-

tion can be characterized as a series of operations which reflect computations on

mental representations. Early theories and models of human performance were

often described in terms of the perceptual and motor activities and assumptions

by their structural components (e.g., limits of short-term memory). These were

primarily derived from the stimulus-response paradigm, and considered the human

as an “information processor.” In other words, within this paradigm the human was

an information controller, perceiving and responding to activities (Anderson 2005).

This approach led to the development of several commonly used models such as

Fitts Law (Mackenzie 1992) and the theory of bimanual control (Mackenzie 2003)

– that predict performance of human activities in a variety of tasks (e.g., task

acquisition, flight controls, and air traffic control). Detailed descriptions of the

use of these theories can be found in Chap. 5 of this volume.

With the advent of computers, and more recently significantly interactive envi-

ronments, there was a need for more integrated information-processing models that

accounted for the human-computer interaction (HCI). There were two important

requirements: first, the models needed to account for the sequential and integrated

actions that evolve during human-computer interactions; second, in addition to the

layout and format of the interface, the models also needed to account for the content

that was presented on the interfaces (John 2003). In its most general form, the

human information processor consists of input, processing and output components

(see Fig. 2.2). The input to the processor involves perception of stimuli from the

external world; the input/stimuli would be processed by a processor and involves a

series of processing stages. Typically, these stages include encoding of the
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perceived stimuli, comparing and matching it to known mental representations in

memory, and selection and execution of an appropriate response. The response is

realized through motor actions. For example, consider a clinician’s interaction with
an EHR interface, where he/she has to select a medication from a dropdown menu.

The input component would perceive the dropdown menu from the interface, which

would be matched in memory and a click action response would be triggered. This

click action would be relayed to the motor components (output), which executes the

action by clicking the dropdown menu item. This cycle repeats till the entire task of

selecting the medication is completed. In the next sections, we consider core

constructs associated with this approach including the model human processor,

Norman’s theory of action, and mental models.

2.2.1 Model Human Processor

One of the earliest and most commonly described instantiations of a theoretical

human information processing system is the Model Human Processor (MHP). MHP

can be described as a set of processors, memories and their interactions that

operate based on a set of principles (Card et al. 1983). As per MHP, the human

mind consists of three interacting processors: perceptual, cognitive and motor.

These processors can operate in serial (e.g., pressing a key) or in parallel

(e.g., driving a car and listening to radio). Information processing of MHP occurs

in cycles. First, the perceptual processor retrieves sensory (visual or audio) infor-

mation from the external world and is transmitted to the working memory (WM).

Once the information is in the WM, information is processed using a recognize-act
cycle of cognitive processor. During each cycle, contents of WM are connected to

actions that are linked to them (from long term memory). These actions, in turn,

modify the contents of the WM resulting in a new cycle of actions. MHP can be

used to develop an integrated description regarding the psychological effects of

human computer interaction performance. While it is considered a significant

oversimplification for general users (see applications of the MHP using the

GOMS model in Chap. 5), it provided a preliminary mechanism on which much

of the human performance modeling research was developed. MHP is useful to

predict and compare different interface designs, task performance and learnability

of user interfaces. It can be used to develop guidelines for interface design such as

spatial layout, response rates and recall. It also provides a significant advantage, as

these human performance measures can be determined even without a functional

prototype or actual users.

Although the use of MHP approach has not commonly been applied in

healthcare contexts, there have been a few noteworthy studies. For example,

Saitwal et al. (2010) used the keystroke level model (KLM, an instantiation of

the GOMS approach) to compute the time taken, and the number of steps required

to complete a set of 14 EHR-based tasks. Using this approach, they characterized

the challenges of the user interface and identified opportunities for improvement.
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Detailed description of this study and the use of the GOMS approach can be

found in Chap. 5.

2.2.2 Norman’s Theory of Action

In the mid 1980s, cognitive science was beginning to flourish as a discipline and

HCI was viewed as both a test bed for these theories and as a domain of practice.

The MHP work was indicative of those efforts. At the same time, microcomputers

were becoming increasingly common in homes, work and school. As a result,

computers were transitioning from being a tool that was used by experts (i.e.,

computer scientists and those with high degrees of technical expertise) exclusively

to one that was used broadly by individuals in all walks of life. Systems at that point

in time were particularly unwieldy and often, extremely difficult to learn. In a

seminal paper on cognitive engineering (Norman 1986), Norman sought to craft a

theory “to understand the fundamental principles behind human action and perfor-

mance that are relevant for the development of engineering principles of design”

(p 32). A second objective was to devise systems that are “pleasant to use.”

A critical insight of the theory is the discrepancy between psychologically

expressed goals, and the physical controls and variables of a system. For example,

a goal may be to scroll down towards the bottom of a document, and a scroll bar

embodies the physical controls to realize such a goal. Shneiderman presented a

similar analysis in his theory of direct manipulation (Shneiderman 1982). The key

question is how an individual’s goals and intentions get expressed as a set of

physical actions that transform a virtual system and result in the desired change

of state (e.g., reaching the intended section of the document). The Norman model

draws on many of the same basic cognitive concepts as the MHP model, but

embodies it in a seven stage model of action (Norman 1986), illustrated in Fig. 2.3.

The action cycle begins with a goal, for example, retrieving a patient’s surgical
history. The goal is a generic one independent of any system. In this context, let us

presuppose that the clinician has access to paper record as well as those in an EHR.

The second stage involves the formation of an intention, which in this case might be

to retrieve the patient record in an EHR. The intention leads to the specification of
an action sequence, which may include signing on to the system (which in itself

may necessitate several actions), engaging a component system or simply a field

that can be used to locate a patient in the database, and entering the patient’s
identifying information (e.g., last name or medical record number, if it is known).

The specification results in executing an action, which may necessitate several

actions. The system responds in some way or in the case of a failed attempt, may not

respond at all. A change in system state may or may not provide a clear indication of

the new state or a failure to provide feedback as to why the desired state has not

appeared (e.g., system provides no indicators of a wait state or why no response is

forthcoming). The perceived system response must then be interpreted and evalu-
ated to determine whether the goal has been achieved. If the response provided by
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the system is “record not found,” that could mean a number of things including that

a name was mistyped or the number was incorrectly listed. On the basis of this

determination, a next action will be chosen.

Any task of moderate complexity will involve substantial nesting of sub-goals,

requiring a series of actions. To an experienced user, the action cycle may appear as

a completely transparent and seamless process. However to a less experienced user,

the process may breakdown at any of the seven stages. Norman (1986) describes

two primary means in which the action cycle can break down. The gulf of execution
reflects the difference between the goals and intentions of the user and the kinds of

actions enabled by the system. For example, a user may not know the appropriate

action sequence or the interface may not provide discernible clues to make such

sequences transparent. For instance, a transaction may appear to be complete, but

further action is needed to execute the selection process (e.g., pressing enter to

accept a transaction).

The gulf of evaluation reflects the degree to which the user can make sense of the

state of a system and determine how well their expectations have been met. For

example, it is sometimes difficult to interpret a state transition and to know whether

one has arrived at the correct state or whether the user has chosen an incorrect path.

Fig. 2.3 Norman’s action
cycle
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Goals that necessitate multiple state or screen transitions are more likely to present

difficulties for users, especially as they learn the system. Bridging gulfs involves

both bringing about changes to the system design and training users to become

better attuned to the affordances offered by a system resources. Gulfs can be

partially explained by differences in the designer’s models and the users’ mental

models, as discussed in the next section. The designer’s model is the conceptual

model to be built, based on analysis of the task, requirements, and an understanding

of the users’ capabilities (Norman 1986). The users’ mental models of system

behavior are developed through interacting with similar systems and gaining an

understanding of how actions (e.g., selecting an item from a menu) will produce

predictable and desired outcomes. Graphical user interfaces that involve direct

manipulation of screen objects and widgets represent an attempt to reduce the

distance between a designer’s and user’s model (Shneiderman 1982). Obviously,

the distance is likely to be more difficult to bridge in a system like an EHR that

incorporates a wide range of functions and components that may provide different

layouts and forms of interaction.

Norman’s theory of action has given rise, or in some cases, reinforced the need

for sound design principles. For example, the state of a system should be plainly

visible to the user and feedback should be transparent. In illustration, dialog boxes

or alert messages can trigger the intention of reminding users to what is possible or

needed to complete the task. There is a need to provide good mappings between the

actions (e.g., clicking on a tab) and the results of the action as reflected in the state

of the system (e.g., providing access to the expected display).

Norman’s theory of action informed a great deal of research and design across

domains. The seven-stage action theory was used to good effect by Zhang and

colleagues in their development of a taxonomy of errors (Zhang et al. 2004). The

theory also draws on Reason’s categorization of errors as either slips or mistakes

(Reason 1992). Slips result from the incorrect execution of a correct action

sequence and mistakes are the product of the correct completion of an incorrect

action sequence. Slips and mistakes are further categorized into execution errors

and evaluation errors. They are further categorized into each of the descriptors

that correspond to the Norman’s seven stages (e.g., goals, intentions). Zhang

et al. (2004) provide the following example of an intention slip: “A nurse intended

to enter the rate of infusion using the up–down arrow keys, because this is the

technique on the pump she most frequently uses; however, on this pump the arrow

keys move the selection region instead of changing the selected number” (p 98). An

example of an evaluation/intention slips is that a nurse interprets a yellow flashing

light on a device analogically (based on prior knowledge of yellow as a warning)

and interprets it as noncritical when it is in fact signaling a critical event. Norman’s
seven-stage action theory proved to be a useful model for characterizing a wide

range of medical error types.

Although theory of action has been very influential in the world of design and

research, it also has shortcomings (Sharp et al. 2007). The theory proposes that

stages are followed sequentially. However, users do not necessarily proceed in such

a sequential manner, especially in a domain such as medicine, which is constituted
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by numerous and complex nonlinear tasks. Contemporary GUIs, for example,

web-based or app-based systems provide users greater flexibility in achieving the

desired state or access the needed information. As discussed in subsequent sections,

external representations (e.g., as expressed in text displays or visualizations) offer

guidance to the user or even structure their interactions in such a way that a planned

action sequence may not be necessary.

2.2.3 Mental Models

Mental models are an important construct in cognitive science and have been

widely used in HCI research (Van der Veer and Melguizo 2003). Mental models

are an analog-based construct for describing how individuals form internal models

of systems. They are employed to answer questions such as “how does it work?” or

“what will happen if I make the following move?” “Analog” suggests that the

representation explicitly shares some aspect of the structure of the world it repre-

sents. For example, one can envision in the mind’s eye a set of connected visual

images of the succession of ATM screens one has to negotiate to get $200 out of

one’s checking account or buildings one passes on the way home from a local

grocery store. This is in contrast to an abstraction-based form such as propositions

or schemas in which the mental structure consists of either the gist, or a summary

representation, for example, the procedures needed to complete an ATM transac-

tion. Like other forms of mental representation, mental models are invariably

incomplete, imperfect and subject to the processing limitations of the cognitive

system (Norman 1983). Mental models can be derived from perception, language or

from one’s imagination (Payne 2003). Running a model corresponds to a process of

mental simulation to generate possible future states of a system from observed or

hypothetical state.

The constructs discussed in the prior sections emphasize how the general limits

of the human-information processing system (e.g., limits in perception, attention

and retrieval from memory) influence performance on a given task in a particular

context (Payne 2003). On the other hand, mental models emphasize mental content,

namely, knowledge and beliefs. An individual’s mental model provides predictive

and explanatory capabilities regarding the functions of a particular system. The

construct has been used to characterize differences in expertise in a range of

knowledge domains such as physics (Payne 2003). Experts have richer and more

robust models of a range of phenomena, whereas novices are more prone to

imprecision and errors. Mental models has been used to characterize models that

have a spatial and temporal context, as is the case in reasoning about the behavior of

electrical circuits (White and Frederiksen 1990). The model can be used to simulate

a process (e.g., predict the effects of network interruptions on downloading a movie

from www.amazon.com).

Kaufman et al. (1996) characterized clinician’s mental model of the human

cardiovascular system (specifically, cardiac output). The study characterized
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progressions in understanding of the system as a function of expertise. The research

also documented various conceptual flaws in subjects’ mental models and how these

flaws impacted subjects’ predictions and explanations of physiological manifesta-

tions (e.g., changes in blood flow in the venous system). In general, mental models

are a useful explanatory construct for characterizing errors that are due to problems in

understanding and not ones associated with flawed execution of procedures.

Mental models are a particularly useful explanatory device in understanding

human-computer interaction (Staggers and Norcio 1993). The premise is that by

exploring what users can understand and how they reason about the systems, it is

possible to design them in a way that support the acquisition of the appropriate

mental model and to reduce errors while performing with them. It is also useful to

distinguish between a designer’s conceptual model of a given system and a user’s
mental model (Staggers and Norcio 1993). The wider the gap, the more difficulties

individuals will experience in using the system. For example, Kaufman and col-

leagues (2003) evaluated the usability of a home-based telemedicine system

targeting older adults with diabetes. The study documented a substantial gulf

between patients’ mental models of the system and the designer’s intent of how

the system should be used. Although most of the participants had a shallow

understanding of how such systems worked, there were some who possessed

more elaborate mental models, and were better able to negotiate the system to

perform a range of tasks including uploading blood glucose values and monitoring

one’s condition over time.

It is believed that novice users of a system can benefit from instructions that

imparts a conceptual model or supports a mental simulation process (i.e., helping

the users mentally step through problem states) (Payne 2003). Diagrammatic

models of the device or system are often used to support such a learning process.

For example, Halasz and Moran (1983) found that such a model was particularly

beneficial to students learning to use a programmable calculator. Kieras and Bovair

(1984) demonstrated a similar benefit for students learning to master a simple

control panel device. They conducted a series of studies contrasting two groups

learning to use a device. One group was trained to operate the device through

learning the procedures by rote. The second group was trained using a model of how

the device works. The model group learned the procedures faster, executed them

more rapidly and improvised when necessary, e.g., replacing inefficient procedures

with simpler ones. The study provides an illustration of how having a more robust

mental model of a system can impact performance. A more advanced model can

enable a user to discover alternative ways to achieve the same goal and overcome

obstacles.

The construct of mental models fell into disuse in the last couple of decades as

theories that emphasized interaction and externalization of representations

flourished. However, the construct has resurfaced in recent years as a means to

characterize how individuals’ conceptualizations differ from representations in

systems. For example, Smith and Koppel (2014) take the approach a step further

in that they conceptualize three models: the patient’s reality, that reality as

represented in an EHR and as reflected in a clinician’s understanding or mental
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model of the problem. Drawing on data from a wide range of sources (e.g.,

observations and log files) and findings, they constructed “scenarios of

misalignment” or misrepresentation including categories such as “IT data too

broadly focused” (i.e., lacking precise descriptions). For example, medical problem

lists that do not permit sufficient qualification or classification illustrate an example

of IT as being too broad or coarse. For instance, clinicians were not able to specify

that a stroke resulted from a left-sided cerebrovascular accident. The typology

provides a useful basis for IT designers to potentially reduce the gaps, better support

users and diminish the potential for unintended consequences.

Shared mental models (SMM) represent an extension of the concept of mental

models. The construct is rooted in research on teamwork in areas such as aviation

(Orasanu 1990). Clinical care is recognized as a highly collaborative practice and

there is a need to develop shared understanding about the processes involved in

patient care as well as the evolving conditions of patients that are currently under

their care. Breaks in communication among team members are known to be

significant contributors to medical errors (Coiera 2000). There are only a few

studies that demonstrate a relationship between SMM and clinical performance

(Custer et al. 2012). Mamykina and colleagues (2014) investigated the development

of SMM in an intensive care unit. The data included observations, audio recorded

transcripts of patient handoff (i.e., transfer of patient during shift change) and

rounds. In a recent paper, the analysis focused on a single care team including an

attending physician, residents, nurses, medical students and physician assistants.

The results indicated that the team initially had rather divergent perspectives on

how well patients were doing, and the relative success of the treatment. Rounds

served as an important coordinating event and the team endeavored to construct

shared mental models (i.e., achieving a shared understanding) through an iterative

process of resolving discrepancies. There was substantial evidence of change in

SMM and in the coordination of patient care over a 3 day period. Whereas

conversations on the first day focused on creating basic alignment and making

immediate modifications to the care, discussions on the third day focused on

understanding of underlying reasons for the situation, and developing a long-term

plan more consistent with this collective causal understanding (Mamykina

et al. 2014).

As mentioned previously, the concept of mental models has diminished as a

construct employed by HCI researchers. One of the reasons is that mental models

are not observable and can only be inferred indirectly. However, we believe that it

has enduring value as an explanatory device for characterizing how individuals

understand a system. The construct is too often used as a synonym for understand-

ing, or for generic mental representation (i.e., with no commitment to the form of

the representation). We favor the more specific instantiation of it as a model that can

be used to simulate a process and project forward to predict events or outcomes or

to explain why a particular outcome occurred. This enables us to develop theories or

models for a given domain and then be able to predict and explain variation in

performance. This should apply to a wide range of contexts whether the goal is to

teach patients with diabetes to understand the basic physiology of their disease or
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for clinicians to use a newly implemented EHR. There is also evidence that a

model-centric approach to teaching, in which an effort is made to foster an

understanding of how a system works, confers some advantages over rote learning

approaches to acquire the procedures needed to complete a task (Payne 2003; Gott

and Lesgold 2000).

2.3 External Cognition

Internal representations reflect mental states that correspond to the external world.

The term external representation refers to any object in the external world that has

the potential to be internalized or to be used to augment cognitive processes

(without internalizing). External representations such as images, graphs, icons,

audible sounds, texts with symbols (e.g., letter and numbers), shapes and textures

are vital sources of knowledge, means of communication and cultural transmission.

The classical model of information-processing cognition viewed external represen-

tations as mere inputs to the mind that were processed and then internalized (Zhang

1997). The landscape began to change in the early 1990s when new cognitive

theories focused on interactivity rather than solely modeling what was assumed to

happen inside the head. Rogers (2012) cites Larkin and Simon’s (1987) classic

paper on “why a diagram may be worth a thousand words” as seminal to researchers

in HCI. It offered the first alternative empirical account that focused on how people

interact with external representations. The core idea was that cognition can be

viewed as the interplay between internal and external representations, rather than

only about modeling an individual’s mental state and processes. Similar ideas had

been put forth by others (Hutchins et al. 1985), but Larkin and Simon provided an

explicit computational account that inspired the HCI community (Rogers 2012).

Larkin and Simon (1987) made an important distinction between two kinds of

external representation: diagrammatic and sentential representations. Although

they are informationally equivalent, they are considered to be computationally

different. That is, they contain the same information about the problem but the

amount of cognitive effort required to come to the solution differs. For example,

effective displays facilitate problem solving by allowing users to substitute percep-

tual operations (i.e., recognition) for effortful cognitive operations (e.g., memory

retrieval and computationally-intensive reasoning) and effective displays can

reduce the amount of time spent searching for critical information (Patel and

Kaufman 2014). On the other hand, cluttered or poorly organized displays may

increase the burden.

In the next two sections, we consider two extensions of external cognition,

namely, the representational effect and the theory of intelligent spaces.
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2.3.1 Representational Effect

The representational effect can be construed as a generalization of Larkin and

Simon’s (1987) conceptualization of the cognitive impact of external representa-

tions (Zhang and Norman 1994). It is well-known that different representations of a

common abstract structure can have a significant impact on cognition (Zhang and

Norman 1994; Kahneman 2011). For example, different forms of displaying

patients’ lab values can be more or less efficient for tasks. A display may be

oriented to support a quick readout of discrete values or alternatively, one that

allows clinicians to discern trends over a period of time. A simple illustration of the

effect is that Arabic numerals are more efficient for arithmetic calculations (e.g.,

26� 92) than Roman numerals (XXVI�XCII) even though the representations are

identical in meaning. Similarly, a digital clock provides a quick readout for

precisely determining the time at a glance (Norman 1993). On the other hand, an

analog clock enables one to more easily determine time intervals (e.g., elapsed or

remaining time) without recourse to mental calculations. Norman (1993) proposed

that external representations play a critical role in enhancing cognition and intelli-

gent behavior. These durable representations (at least those that are visible) persist

in the external world and are continuously available to augment memory, reason-

ing, and computation. Imagine the cognitive burden of having to do multi-digit

multiplication without the use of external aids. Even a pencil and paper will allow

you to hold partial results (interim calculations) externally. Calculations can be

extremely computationally intensive without recourse to external representations

(or memory aids).

Zhang and colleagues (Zhang 1997; Zhang et al.; Zhang and Patel 2006)

summarized the following properties of external representations:

• Provide memory aids that can reduce cognitive load

• Provide information that can be directly perceived and used such that minimal

processing is needed to explicitly interpret the information

• Support perception so that one can recognize features easily and make inferences

directly

• Structure cognitive behavior without cognitive awareness

• Change the nature of a task by generating more efficient action sequences

Several researchers have described the mediating role of information technology

on clinical reasoning. For example, Kushniruk et al. (1996) studied how clinicians

learned to use an EHR over multiple sessions. They found that as users familiarized

themselves with the system, their sequential information-gathering and reasoning

strategies were driven by the organization of information on the user interface. In

other words, the users followed a “screen-driven” strategy when taking a medical

history from a patient. This had both positive consequences in that it promoted a

more thorough consideration of the patient history, as well as negative conse-

quences in that the clinician failed to search for findings not available on the display

or inconsistent with their operative diagnostic hypothesis. In general, a screen-
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driven strategy can enhance performance by reducing the cognitive load imposed

by information-gathering goals and enable the physician to allocate more cognitive

resources toward patient evaluation (Patel and Kaufman 2014). On the other hand,

this strategy can induce a certain sense of complacency or excessive reliance on the

display to guide the process.

Similar results were reported by Patel et al. (2000) in a study contrasting the use

of EHRs with paper records in a diabetic clinic setting. Physicians entered signif-

icantly more information about the patient’s chief complaint using the EHR simi-

larly following a screen-driven strategy. Likewise, the structure of the paper records

document was such that physicians represented more information about the history

of present illness and review of systems using paper-based records. The introduc-

tion of an EHR changed information-gathering and documentation strategies,

thereby changing the information representation and meaning. The effects of the

EHR persisted even after the re-introduction of paper records.

External representations can mediate cognition in a number of ways with both

positive and negative impact. The following real-world example was drawn from a

study related to a comprehensive causal analysis of a medication dosing error, in

which an overdose of Potassium Chloride (KCl) was administered through a

commercial computer order entry system (CPOE) in an ICU (Horsky et al. 2005).

The authors’ detailed analysis included the use of inspection of system logs,

interviews with clinicians and a cognitive evaluation of the order-entry system

involved. For the purpose of this paper, we highlight one element of the error to

illustrate the interplay between technology and user interaction for clinical

decision-making. In this case, the system provided screen order-entry forms for

medication with intravenous drip and IV bolus orders that were superficially

similar, yet required different calculations to estimate the dose. In this case, orders

for IV bolus were specified by dose. In contrast, orders for other intravenous drip

administration were indicated by duration, rather than by volume of administered

fluid as suggested by the order-entry field “Total Volume.” The latter referred to the

size of the IV bag rather than the total amount of fluid to be delivered, which may

exceed the volume indicated. In addition, intravenous fluid orders were not

displayed on the medication review screen, further complicating the task of calcu-

lating an appropriate KCl bolus for a patient receiving intravenous medications.

Calculating the correct infusion dosage was a vitally important task. However, not

only did the interface not provide tools to facilitate this process, it also proved to be

an obstacle.

It is well documented that IV medication errors commonly result in potentially

harmful events (Taxis and Barber 2003; Husch et al. 2005). The configuration of

external resources or representations, for example on a visual display, can have a

significant impact on how the system facilitates (or alternatively, hinders) cogni-

tion. Critical care settings are immensely complex environments and medical error

can be the product of a host of factors including workflow and communication

(Patel et al. 2014). As discussed in subsequent sections, the organization of displays

are just one of several facets that mediate interaction.
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2.3.2 Intelligent Use of Space

Theories of external cognition tend to emphasize the computational offloading that

eases the cognitive burden of a user. However, external representations can also be

manipulated by individuals in a variety of ways to facilitate creative thinking as

well (Rogers 2012; Zhang and Norman 1994; Kirsh 2005). According to Kirsh,

“cognitive processes flow to wherever it is cheaper to perform them. The human

‘cognitive operating system’ extends to states, structures, and processes outside the
mind and body” (Kirsh 2010) (p. 172). For example, one may choose to create a

diagram to help interpret a complex sentence and that will alleviate some of the

cognitive burden of sense-making. Kirsch draws on a range of examples, in

illustration, how people follow a cooking recipe by arranging and re-arranging

items (e.g., utensils and ingredients) to coordinate their activities. The central

premise is that people interact and create external structure (or representations)

because through these interactions, it is easier to process more efficiently and more

effectively than by working inside the head alone. In essence, individuals are able to

improve their thinking and comprehension by creating and using external repre-

sentations (Kirsh 2010).

Kirsh (1995) studied how individuals restructured their environments when

performing a range of tasks. He found that they constantly rearrange items to

track the task state, support memory, predict effects of actions, and so forth.

Restructuring often can reduce the cost of visual search, make it easier to notice,

identify and remember items, and simplify task representation (Senathirajah

et al. 2014a). The theory of intelligent spaces is an extension of this idea. Kirsh

classified intelligent uses of space into three categories: (1) arrangements that

simplify choice, (2) arrangements that simplify perception (e.g., calling attention

to a group of items), and (3) spatial dynamics that simplify mental computation.

The theory of intelligent spaces suggests that the idiosyncratic arrangements of

individuals including clinicians may serve to simplify inferences or computations.

The theory is potentially extensible across a range of domains including health

information technology (HIT).

Although EHRs are very elaborate complex systems that support a wide range of

functions, they often fail to support the varied needs of healthcare practitioners.

Systems often fail to take into consideration the significant variability of medical

information needs, which differ according to setting, specialty, role, individual

patient and institution (Senathirajah et al. 2014b). In addition, they are not respon-

sive to the highly collaborative nature of the work. In response to these challenges,

Senathirajah and colleagues (2014a, b) developed a new model for health informa-

tion systems, embodied in MedWISE, a widget-based highly configurable EHR

platform. MedWISE supports drag/drop user configurations and the sharing of user-

created elements such as custom laboratory result panels and user-created interface

tabs. It was hypothesized that such a system could afford the clinician greater

flexibility and better fit to the tasks they were required to perform. The intelligent

spaces theoretical framework informed the design of MedWISE.
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In an experiment conducted by Senathirajah et al. (2014b), 13 clinicians used the

MedWISE system to review four patient cases. The data included video recordings

of clinicians’ interactions with the system and the screen layouts they created via

the drag/drop capabilities. The focus here was on the creation of spatial layouts. The

study documented three strategies which were labeled “opportunistic selection”

(rapidly gathering items on the screen and reviewing), structured (organizing the

layout categorically) and “dynamic stage” approach. The latter approach involved

the user interacting with small groups of widgets at a time, using the space as a

staging area to examine a specific concern and then shift to the next. An example of

dynamic stage approach was that the clinician kept the index note (initial note) open

at the bottom of column 2 (middle column) and stacked the unexamined labs and

reports, closed, in column 1 (leftmost column), opened them in column 2 to

compare them with the index note, and closed and moved them to column 3. This

interaction pattern could reflect examination of specific diagnostic concerns (e.g.,

ruling out a diagnostic hypothesis). An example of the structured approach is

indicated in Fig. 2.4. The clinician has stated that he is keeping the right side as a

free space for thinking space, for studies, and for to-do items. A to-do list is at upper

Fig. 2.4 An illustration of a physician using a structured approach in MedWISE

24 D.R. Kaufman et al.



right (in the yellow sticky note), while orienting items including the primary

provider clinic note is at left, with lab data down the middle. This reflects a common

pattern found of going from left to right with orienting material, data, and then

action items. The clinician has grouped labs according to related diagnostic facets,

for example, the HbA1c and micro albumin (diabetes-related) are together, and then

thyroid-related results (TSH, T3 and T4) are grouped at the bottom of the center

column.

The clinicians employed spatial arrangement in ways consistent with theory and

research on workplace spatial arrangement (Senathirajah et al. 2014b). This

includes assignment of screen regions for particular purposes, juxtaposition of

elements to facilitate calculation (e.g., ratios), and grouping elements with common

meanings or relevance to the diagnostic facets of the case (e.g., thyroid findings).

Clinicians also made deliberate use of the space following a common pattern of left-

to-right progression of orienting materials, data, and action items or reflection

space. Widget selection was based on an assessment of what information was

useful or relevant immediately or likely to be in the near future (as more informa-

tion is gathered). The study demonstrated how a user-composable EHR in which

users have substantial control over how a display is populated and arranged can

embody the advantages predicted by the intelligent use of space theory.

The external cognition framework has introduced a set of concepts that has

enabled researchers and designers to characterize designs in ways not previously

accessible to them (Rogers 2012). As evidenced in the work on MedWISE, it

provided a language that framed how people manipulate representations, interact

with objects, and organize their space. This provides a basis for designing tools that

facilitate different kinds of interaction. It also suggests that there are more and less

optimal ways to configure a display for particular tasks and that the impact of such

configurations are measurable.

2.4 Distributed Cognition

The external cognition framework seeded important design concepts. It also pro-

vides a means to engage in a more rigorous approach to evaluation. The distributed

cognition (DCog) approach takes the argument further beyond the internal-external

representation divide (Rogers 2012). DCog re-conceptualizes cognitive phenomena

in terms of individuals, artifacts, and internal and external representations and their

interactions (Rogers 2012). It provides a more extensive account than external

cognition. The core approach entails describing a “cognitive system,” which

involves interactions among people, artifacts they employ, and the environment

they are situated in. Hutchins and colleagues proposed a new paradigm for funda-

mentally rethinking our assumptions about cognition (Hutchins 1995).

DCog represents a shift in the study of cognition from an exclusive focus on the

mind of the individual to being “stretched” across groups, material artifacts and

cultures (Hutchins 1995; Suchman 1986). This paradigm has gained substantial
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currency in HCI research. In the distributed approach, cognition is viewed as a

process of coordinating distributed internal (i.e., what’s in the mind) and external

representations (e.g., visual displays, post-it notes, paper records). Distributed

cognition has two focal points of inquiry, one that emphasizes the inherently social

and collaborative nature of cognition (e.g., attending physicians, residents, nurses

and respiratory therapists in cardiothoracic intensive care unit jointly contributing

to a decision process), and one that characterizes the mediating effects of technol-

ogy (e.g., EHRs, mobile devices apps) or other artifacts on cognition.

Hollan et al. (2000) emphasize that distributed cognition is more than the social

distribution of cognitive processes; rather it is a broader conceptualization that

includes emergent phenomena in social interactions as well as interactions between

people and the structure of their environment. According to Hollan et al., the

perspective “highlights three fundamental questions about social interactions:

(1) how are the cognitive processes we normally associate with an individual

mind implemented in a group of individuals, (2) how do the cognitive properties

of groups differ from the cognitive properties of the people who act in those groups,

and (3) how are the cognitive properties of individual minds affected by participa-

tion in group activities?” (Hollan et al. 2000) (p 177).

DCog is concerned with representational states and the informational flows

around the media carrying these representations (Perry 2003). The framework

enables researchers to consider all factors relevant to a task, coalescing individuals,

the problem and the tools into a single unit of analysis. This makes it a productive

means to develop an understanding of how representations act as intermediaries in

the dynamically changing and coordinated processes of work activities (Perry

2003).

Hutchins’ (1995) seminal analysis of ship navigation of a U.S. navy vessel

provided a compelling account of how crews took the ships bearing and how this

information was interpreted processed, and transformed across representational

states (embodied in media and technology such as ship navigation instruments

like the ship’s compass and communication among interdependent actors that

constitute the ship’s crew). The succession of states resulted in the determination

of a ships location, progress and how they could be aligned with intended trajec-

tories. The entities operating within the functional system are not viewed from the

perspective of the individual, but as a collective (Perry 2003). Both people and

artifacts are considered as representational components of the system. As should be

clear at this point, external representations are not mere inputs or stimuli to the

mind, but play a more instrumental role in cognition.

In the next sections, we review two extensions of DCog including the distributed

resource model and the propagation of representational states.
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2.4.1 Distributed Resources Model

One of the strengths of the DCog, as applied to HCI, is that it can be used to

understand how properties of objects on the screen (e.g., links, menus) can serve as

external representations and reduce cognitive load. Wright et al. (2000) proposed a

distributed resources model to address the question of the information needed to

carry out a task and where it should be located: as an interface object or as

knowledge that a user brings to the task. The relative difference in the distribution

of representations is pivotal in determining the efficacy of a system designed to

support a complex task such as computer provider entry (Horsky et al. 2003). The

distributed resources model includes two primary components. The first is a

characterization of information structures (i.e., resource types), pertaining to the

control of action and the second is a process-oriented description of how these

information structures can be used for action (interaction strategies) to complete a

task. The information structures can be embodied in any artifact (e.g., paper charts

or an EHR). Wright et al. enumerated several of these information structures

including plans, goals, history and state. Plans include possible sequence of actions,

events, and anticipated states. Goals refer to the desired states the user wants to

accomplish. They may be generated internally or emerge from the interaction with

the system. History refers to the part of a plan that has already been accomplished.

The history of past actions may be maintained in a web browser, for example, as a

list of previously visited pages that can be accessed via a drop-down list. State is the

current configuration of resources, for example, as represented in the display screen

at a given point in time. These are all considered to be resources for action rather

than static structures. They can be externalized, manipulated and subjected to

evaluation (Wright et al. 2000).

Horsky et al. (2003) employed the distributed resource model to investigate the

usability of a CPOE system. The goal was to analyze order-entry tasks and to

identify areas of complexity that may impede performance. The research consisted

of two component analyses: a cognitive walkthrough evaluation that was modified

based on the distributed resource model and an experiment involving a simulated

clinical ordering task performed by seven physicians who were experienced users

of the CPOE. The walkthrough analysis revealed that the configuration of resources

(e.g., very long menus and complexly configured screens) placed an unnecessarily

heavy cognitive load on the user. In addition, successful interaction was too often

dependent on the recall of system-related knowledge. The resources model was also

used to explain patterns of errors produced by clinicians including, selecting an

inappropriate order set, omissions and redundant entries. The authors concluded

that the reconfiguration of resources may yield guiding principles and design

solutions in the development of complex interactive systems (Horsky et al. 2003).

In addition, system design that better reflects the constraints of the task (e.g.,

hospital admission) and domain (e.g., internal medicine) may minimize the need

for more robust mental models or extensive system knowledge.
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2.4.2 Propagation of Representational States

Horsky et al. conducted a DCog analysis that emphasized the technology-mediating

effects of a CPOE interface on clinical performance. Hazlehurst and colleagues

(2007) emphasize both the socially-distributed nature and mediating impact of

artifacts on communication during cardiac surgery. Towards that end, they

employed a cognitive ethnography method to understand how system resources

are configured and used for cardiac surgery and to prevent adverse events. DCog

focuses on the activity system as the unit of analysis and seeks to understand how

properties of this system determine performance (Hutchins 1995; Horsky

et al. 2003; Hazlehurst et al. 2007).

Following Hutchins (1995), Hazlehurt views the ‘propagation of representa-

tional states’ through activity systems as explanatory of cognitive behavior and

sought to investigate the organizing features of this propagation as an explanation

of system and human performance (Hazlehurst et al. 2007). Accordingly, “a

representational state is a particular configuration of an information-bearing struc-

ture, such as a monitor display, a verbal utterance, or a printed label, that plays some

functional role in a process within the system (Hazlehurst et al. 2007) (p 540)”.

They identified six patterns of communication between surgeon and perfusionist

that relate to the functional properties of the activity system. For example, direction
is a pattern that seeks to transition the activity system to a new state (e.g.,

administering medications that affect blood coagulation). Goal sharing involves

creating an expectation of a desired future, but not specifically the action sequence

necessary to achieve the target state. These patterns of communication serve to

enhance situation awareness, for example, by making the current situation clear and

mutually understood.

The distributed cognition approach has been widely used in HCI to examine

existing practices and workflow (Rogers 2012). It has also been used to inform the

iterative design process by characterizing how the quality and configuration of

resources and representations might be transformed and how this change may

impact work practices. It is an approach that is inherently well suited to a complex,

media-rich and collaborative domain such as medicine. However, a distributed

cognitive analysis can be extremely difficult to conduct (requiring substantial

specialized knowledge of the analytic approach as well as the knowledge domain),

rather complex and very time consuming. In the next section, we describe an

approach which endeavors to make the DCog approach more tractable and bring

it closer to the design process (Blandford and Furniss 2006).

2.4.3 Distributed Cognition of Teamwork (DiCoT)

DCog’s has developed a rather comprehensive and penetrating approach to under-

standing the different dimensions of human-computer interaction. However, there
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is no ‘off-the-shelf’ methodology for using it in research or as a practitioner

(Furniss et al. 2014). According to Rogers, the application of DCog theory and

methods are complicated by the fact that there are no set of features to attend to and

no checklist or prescribed method to follow (Rogers 2012). In addition, the analysis

and abstraction requires a very high level of skill. However, there have been various

structured approaches to gathering and analyzing data including the Distributed

Resources (DR) Model (Wright et al. 2000) described in a previous section. DiCoT

(Distributed Cognition for Teamwork) was developed to provide a structured

approach to analyze work systems and teamwork (Furniss et al. 2014; Furniss and

Blandford 2006). The approach is informed by theoretical principles from the DCog

literature.

The DiCoT framework focuses on developing five interdependent models with

different foci: artifacts, physical, information flow, social and evolutionary (Furniss

et al. 2014). Each of the models is informed by a set of principles. For example, the

artifacts model includes the premise that mediating artifacts are brought into

coordination (e.g., paper and electronic health records) in the completion of a

task. A second principle is reflected in the fact that we use our environment

continuously by “creating scaffolding” to simplify cognitive tasks (Hollan

et al. 2000). The physical model refers to the physical organization of work. It is

guided by principles such as space and cognition, which states how humans

manipulate space towards the facilitation of decision making or problem solving

(e.g., grouping objects into categories). This is similar to the intelligent uses of

space (Kirsh 1995). Information transformation is one of the principles of informa-

tion flow. It suggests that transformation occurs when the representation of infor-

mation changes. As described previously, more effective representations provide

better support for reasoning.

DiCoT has been used to analyze complex systems in a range of healthcare

contexts including ambulance control room dispatch (Furniss and Blandford

2006) and infusion pump use in intensive care (Rajkomar and Blandford 2012).

Emergency medical dispatch is constituted by a team that coordinates the delivery

of services (e.g., dispatching an ambulance) to respond to a call for medical

assistance. Furniss and Blandford (2006) conducted a study of an EMD team

using the DiCoT approach. The focus was on describing the work system, identi-

fying sources of weakness and projecting the likely consequences of a redesign

(e.g., what is likely to happen when a centrally available shared display is visible or

accessible to each member of the team). On the basis of characterizing systemic

weaknesses, they suggested changes to the physical layout that could enhance

“cross-boundary working”. Their observations revealed a discontinuity between

the central ambulance control and the crews in the field. In response, Furniss and

Blandford (2006) proposed the use of more flexible communication channels so the

crew could be contacted whether they are at a station or are mobile. The multifac-

eted model enables the researchers to envision a set of consequences to the redesign

scheme along a range of dimensions (e.g., information flow). Clinical practitioners

and other stakeholders review and comment on the concrete redesign solutions.

2 Cognition and Human Computer Interaction in Health and Biomedicine 29



The DCog framework, which incorporates a number of interrelated theories,

offers the most comprehensive and in our view, the most compelling theoretical

approach to explain the technology-mediated and social/collaborative nature of

clinical work. Each theory within this framework privileges different aspects of

interactions.

2.5 Conclusions

It is reasonable to conclude that we need a theory (or theories) of cognition in the

context of HCI and health care. Although we have learned much from empirical

studies and applied work, a theoretical framework is needed to account for the

broad scope of the field and the complexity that is inherent in the domain of

medicine. Without a sound theoretical framework, generalizations would be lim-

ited, and principled approaches to design would be largely illusory. In this chapter,

we traced the evolution of cognitive theory from the classical information-

processing approach to external cognition through distributed cognition. The

information-processing approach drew extensively on concepts from cognitive

psychology and embraced a computational approach to the study of interaction.

The MHP theory (Card et al. 1983) provides insight into cognitive processes and

provides a predictive model of behavior, albeit one that is limited in scope.

Norman’s theory of action (Norman 1986) offers an explanatory account of the

challenges involved in using systems. It also offers general prescriptions, for

example, emphasizing the importance of quality feedback to the user. The theory

of mental models as applied to HCI builds on the idea of gulfs to further explicate

the kinds of knowledge needed to productively use a system. It also broadly pre-

scribes how to narrow the divide between designer models and users’ mental

models. Although these theories are inherently incomplete in their focus on the

solitary individual, they continue to be productive as explanatory theories of HCI.

Theories of external cognition expanded the scope of analysis to include a focus

on external representations. Several studies have demonstrated how representations

mediate cognition and how differential mediation (as reflected in display configu-

rations) can contribute to medical errors. The theory of intelligent spaces (Kirsh

1995) is a generative theory, which seeded concepts that were realized in the design

of the MedWISE system. DCog theories are the most encompassing in their focus

on both technology-mediated and socially distributed cognition. The theories offer

rich descriptive and explanatory accounts of technology use in the medical work-

place. Distributed resource theory (Wright et al. 2000) works both as a descriptive

theory characterizing the state of affairs and a prescriptive theory that can be used to

reconfigure interfaces to alleviate some of the cognitive burden on users. Significant

challenges remain in the domain of health information technology. Although

cognitive theory cannot provide all of the answers, it remains a powerful tool for

advancing knowledge and furthering the scientific enterprise.
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Discussion Questions

1. What role can cognitive theory play in HCI research and application? Describe

the different kinds of theories that can inform HCI in practice situations.

2. Explain the gulfs of execution and evaluation and how they can be used to

inform HCI design.

3. Mental models are an analog-based construct for describing how individuals

form internal models of systems. Explain what is meant by analog. How can

mental models inform our understanding of the user experience?

4. Describe the meaning and significance of the representational effect. How can it

influence the design of visual displays to represent lab results?

5. What implications can one draw from the theory of intelligent spaces? How can

it be used to seed design concepts in health care?

6. What are the essential differences between theories of external representation

and theories of distributed cognition?
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