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Foreword

When I was first introduced to computing (in university, not on my parents’ laps the
way it happens today), the notion of interface design was pretty much irrelevant.

Initially (1966) I wrote my programs on paper and then translated them onto punch

cards that were run through mainframe computers in batch mode. A direct interface

with the computer did not actually occur. Within a few years, I was able to type

code into minicomputers using teletype machines—all upper case, noisy, and

certainly not mobile. The results of a program then came back as text on the

same teletype. And, a few years after that, we had moved on to the use of video

display terminals, although the screens still displayed only ascii characters and

efforts to draw pictures were achieved solely by using keyboard characters aligned

above or adjacent to others to suggest an image of some sort.

I moved in the early 1970s to what would soon become known as Silicon Valley,

and there (as a Stanford medical student and computer science graduate student) I

was exposed to remarkably inventive activities at Stanford Research Institute (now

known simply as SRI International). Developed in their Artificial Intelligence

Center, “Shakey the robot” was demonstrating whole new ways to interact with

computing devices (this computer-on-wheels had “sensory” inputs, could solve

problems, and then would perform their solution by moving in a room with a

platform and pushing objects up or down ramps as required).1 A few years earlier,

SRI scientist Doug Engelbart had developed a new way to interact with characters

and activities on a display screen utilizing a manual device that rolled on a desktop

and used a button to make selections—a creation that he wistfully called a “mouse”

because of the wire “tail” that emerged from it to connect to the display device.2 But

most of us were still using keyboards for all our work, depending on paper printouts

to review our programs and their results (initially produced on large line printers,

next on portable thermal paper devices, and then on early laser printers).

1 http://en.wikipedia.org/wiki/Shakey_the_robot (Accessed November 29, 2014).
2 http://www.dougengelbart.org/firsts/mouse.html (Accessed November 29, 2014).
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Nearby SRI was Xerox’s Palo Alto Research Center, known simply as Xerox

PARC, and we at Stanford had close interactions with many of the creative

developers there. By 1973 we had been exposed to their work on the Xerox Alto,

the first computer to use a desktop metaphor and incorporating a mouse pointing

device of the sort that Engelbart had invented at SRI.3 And, by the end of that

decade, two other key innovations were unveiled: (1) the introduction of commer-

cial microcomputers (notably the Apple II, first presented to the public in April

1977,4 and the first IBM PC, which did not appear until four years later5) and

(2) the introduction of local networking in the form of Ethernet technology,

developed by Bob Metcalfe at Xerox PARC and then spun off into a company

called 3Com in 1979.6

But even at the end of that decade, most of us were still using character-based

devices without graphical capabilities, and our access to networks was limited to

the wide-area technology of the ARPANET.7 I do not remember any discussions of

interface design or human-computer interaction during the 1970s, although perti-

nent notions were beginning to develop, mostly at Xerox PARC in light of their

Alto experience. Everything changed in the following decade. Xerox did introduce

commercial products based on its Alto work (an office document management

system known as the Star8 and a set of machines that were designed to support

work coded in the Lisp programming language9), but their innovations had led to

expensive special-purpose machines and failed to succeed in the marketplace

(Smith 1999). The 1983 introduction of the Apple Lisa10 (a personal computer

with a graphical user interface, icons, and mouse pointing device), followed a year

later by a less expensive and commercially successful successor, the Apple

Macintosh,11 changed computing (and human-computer interaction) in key ways.

Before long the notion of a computer “desktop” became standard, with icons, files,

folders, and images. It was in this context that it became clear that programmers

needed to understand their intended users and to design systems that would be

intuitive, usable, and well matched with the user’s needs and assumptions.

I have summarized this history here because I fear that we too often forget that

our remarkable advances in computing and communications happened gradually,

with key early insights and inventions that led incrementally to the interconnected

world of ubiquitous computing that we expect and accept today. The same is true of

our knowledge of human-computer interaction, which began as a subject of study

3 http://en.wikipedia.org/wiki/Xerox_Alto (Accessed November 29, 2014).
4 http://en.wikipedia.org/wiki/History_of_Apple_Inc.#Apple_II (Accessed November 29, 2014).
5 http://www-03.ibm.com/ibm/history/exhibits/pc25/pc25_birth.html (Accessed November 29,

2014).
6 http://standards.ieee.org/events/ethernet/history.html (Accessed November 29, 2014).
7 http://en.wikipedia.org/wiki/ARPANET (Accessed November 29, 2014).
8 http://en.wikipedia.org/wiki/Xerox_Star (Accessed November 29, 2014).
9 http://en.wikipedia.org/wiki/Lisp_machine (Accessed November 29, 2014).
10 http://oldcomputers.net/lisa.html (Accessed November 29, 2014).
11 http://apple-history.com/128k (Accessed November 29, 2014).
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(as I have stressed) decades after we first began to work with early computing

devices. Most of us began with highly intuitive notions of how a computer should

interact with its users, and there were no courses or books to guide us. It was largely

with the introduction of graphical user interfaces that notions of right and wrong

ways to build interfaces began to emerge.

I was accordingly impressed, in 1980, when I encountered the first of Ben

Shneiderman’s books on psychological issues and human factors in the design of

computer systems (Shneiderman 1980). This initial volume focused more on

programming styles, team organization, and personality factors, but I was intrigued

and impressed by the psychological emphasis and the notion that cognition was a

crucial consideration in the design and construction of computing systems. It was

his landmark book on user interface design, which appeared in its first edition in

1986, that ultimately persuaded me that there was an important set of scientific

issues to be explored and that building the interface to a computer system should be

based on theory and established principles rather than intuition. Now in its fifth

edition, that book continues to be a classic volume for those interested in how to

achieve effective human-computer interaction through principled interface design

(Shneiderman et al. 2009).

As a physician and computer scientist who has watched biomedical informatics

evolve from an exploratory discipline to a more mature field that feeds into a

vibrant health information technology industry, I can identify poor human engi-

neering as a key barrier to the successful fielding of computer systems for

healthcare and biomedicine. Physicians and other health professionals, who too

often despise or reject the systems they are asked to use, will almost always focus

on problems with the interface design and performance: “confusing,” “inefficient,”

“slow,” “difficult to learn,” “annoying,” “condescending,” “unusable,” and many

more similar characterizations. I accordingly applaud the effort to focus on human-

computer interaction and usability in the design and implementation of clinical

systems.

The best of intentions, and great cleverness in information and knowledge

management, will come to naught if the systems that provide clinical functionalities

are constructed without deep insight into the cognitive issues that affect the

intended users. The growing field of cognitive informatics, with its focus on health

and biomedicine as demonstrated in the current volume, is accordingly a crucial

element in the evolution and success of the informatics field (Shortliffe 2013). As

this book makes clear, there are core principles and theories that need to be

understood, and a set of methods for exploring the cognitive processes of both

users and system developers, that will determine the utility and success of the

systems that are built for use in healthcare settings. Their importance cannot be

overstated, and it will be crucially important for students of biomedical informatics

to learn these skills and insights and to bring them to bear in future work. I applaud

the efforts of Drs. Patel, Kannampallil, and Kaufman, and all the chapter authors,

and commend this volume to all those who want to assure that the systems they

build, and the interactive environments that they promote, will reflect the rigor and
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dedication to human-computer interaction principles that will ultimately enhance

both the user’s experience and the quality and safety of the care that we offer to

patients.

Arizona State University Edward H. Shortliffe, MD, PhD

Phoenix, Arizona

November 2014
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Preface

One might ask how it is that cognitive scientists have prepared a book that deals

with a topic—human-computer interaction (HCI)—that has largely been the pur-

view of computer scientists. Computer science is well represented in this volume,

but the orientation of the discussion is distinctly from a cognitive perspective. Some

background may be helpful in explaining how this cognitive focus on the medical

realities of human-computer interaction evolved.

As I embarked on my investigations into the nature of cognitive complexity

and error in medicine, I was aware of the pervasive role of computers and technol-

ogy in high intensity settings such as emergency departments and intensive care

units. However, my primary focus was on the role of cognition, and I did not

initially appreciate the central role that technology would play in our discussions

and, in turn, in our studies. Our six-year journey into these multi-site, team-based

investigations showed us that technology could sometimes overwhelm or be taken

for granted by clinical teams, occasionally exacerbating errors or leading to new

ones. However, it also became clear that technology could play a major role in error

mitigation, if human cognition and its interaction with the socio-cultural environ-

ment were seriously considered in the context of system design and use. Further-

more, it was evident that advances in technology could support data collection and

analyses, as well as the modeling of human behavior, to help us make better

predictions regarding the use and impact of patient-oriented decision tools, and

thus the outcomes of care. In addition, new sensor-based techniques allowed us to

track healthcare providers in naturalistic practice settings, observing unobtrusively

how they worked in the context of clinical workflow. We leveraged these methods

to capture real-world data in a more precise way (at one- or two-second intervals),

and then used visualization methods to display and support the analysis in our

laboratory, studying the subjects’ 2-dimensional movement patterns within the

clinical units.

During this time, we also saw a dramatic change in patient behavior, wherein

patients increasingly came to the emergency room, or to see their personal physi-

cians bringing pieces of paper with information that they had gathered from the
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Internet. Similarly, an increase in the use of social media to seek and share health

information became very apparent. We accordingly asked whether health informa-

tion technology could help to mitigate errors by providing cognitive support to

health care providers and patients, in part by facilitating the delivery of information

and computer-supported care even in their homes, without generating unintended

negative consequences. These are other questions about the effect of technology in

shaping human behavior, especially in terms of how information is organized,

retrieved and used safely, occupied our thoughts throughout the process.

Then, during the last few years, I became actively involved in teaching a course

on Human-Computer Interaction and Human Factors in Health Care, offered to

both biomedical informatics and computer science graduate students. We soon

found that there were no books that covered this field in a coherent, systematic

way, especially ones that offered a cognitive perspective that resonated with our

view of the field. Most books failed to also offer no special insights or examples

drawn from the healthcare environment. I have co-taught the class with my col-

league David Kaufman, an educational and cognitive psychologist with an interest

both in HCI and in medical applications. We were forced to use papers from various

journals and books, covering HCI from the perspective of biomedical informatics,

psychology, computer science, and engineering, as well as cognitive anthropology.

I viewed HCI as a cognitive topic as much as a technical one and reached

out to my colleague, Thomas Kannampallil, who has a background in computer

science and cognition, as a logical person to work with me on a new HCI textbook

that would take a cognitive perspective. We then extended our invitation to

David Kaufman, who agreed to join us as a third co-editor. The next step was to

outline the key topics to be included in the volume, after which we invited as

chapter authors several well-known and respected people who offered pertinent

expertise. Then, as we edited the contributed chapters, we continued to focus on

cognitive themes, and particularly asked what these technologies and methods do to

the human mind as well as how they facilitate effective completion of the tasks

by users.

We were delighted that the chapter authors enthusiastically agreed to participate

in this project. In fact, they embraced the idea, seeing the need for such a volume.

The resulting book highlights the state of the art in HCI in health care and offers

subject reviews, drawing from the current research in HCI and providing a graduate

level textbook that is suitable for use in an introductory HCI course for biomedical

informatics, cognitive science, computer science and social science students. Since

many of the examples are drawn from medicine and health, the volume is partic-

ularly pertinent for biomedical informatics students, but our classroom experience

has shown us that medical examples can be concrete motivating examples for

students in computer science or other fields who may not have a long-term

professional interest in working in the healthcare arena.

This work would not have been possible without dedicated support and collegial

brainstorming with my colleagues and co-editors, Thomas and David. We spent

many hours communicating and providing timely input to the authors. All chapters

were reviewed by one of the editors and one additional reviewer. Cindy Guan, from
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the Center for Cognitive Studies in Medicine and Public Health at The New York

Academy of Medicine, provided much needed support in editing and keeping track

of the chapter processing efforts. We are also grateful to the Center’s advisory

board members (Bill Clancey, Alan Lesgold, Randy Miller, Michael Shabot, and

Ted Shortliffe), who shaped our thoughts about the book while offering advice and

guidance regarding the role of technology in mitigating errors as well as in

providing cognitive support. I offer my very special thanks to John Bruer, President

of the James S. McDonnell Foundation, who supported the work of our Center, and

much of our work to put together this volume. Without his vision and commitment

regarding the importance of cognition and education in biomedicine and health,

much of the work we have done, including this and our previous books on cognitive

complexity and error in critical care and ER, and on cognitive science in medicine:

biomedical modeling, would not have been possible. I am indebted to him for his

support, and for facilitating this wonderful and fruitful journey that I have enjoyed

with my colleagues for more than a decade.

New York, NY, USA Vimla L. Patel, PhD, DSc

Scottsdale, AZ, USA

April 2015
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Chapter 1

A Multi-disciplinary Science of Human

Computer Interaction in Biomedical

Informatics

Vimla L. Patel, Thomas G. Kannampallil, and David R. Kaufman

1.1 Human Computer Interaction in Healthcare

Modern healthcare relies on a connected, integrated and sophisticated backbone of

health information technology (HIT). Clinicians rely on HIT (e.g., electronic health

records, EHRs) to deliver safe patient care. As has been extensively documented in

recent research literature, HIT use is fraught with numerous challenges, some of

which compromise patient safety (Koppel et al. 2005; Horsky et al. 2005; IOM

2011). Usability and more specifically, workflow, data integration and data presen-

tation are among the principal pain points identified by clinicians in a recent

HIMSS survey (2010). These issues are the subject of a growing body of applied

research in human-computer interaction (HCI) and allied disciplines.

HCI is an interdisciplinary science at the intersection of social and behavioral

sciences, and computer and information technology. Drawing from the fields of

psychology, computer and social sciences, HCI is concerned with understanding
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how people interact with devices and systems, and how to make these interactions

more useful and usable (Carroll 2003).

HCI research was originally spurred by the advent of personal computers in the

early 1980s. HCI developed as an applied science, drawing heavily on software

psychology, to enhance the design and evaluation of human-computer interfaces

(Shneiderman 1992). With early work rooted in modeling human performance and

efficiency of using interfaces (Card et al. 1983), HCI has been transformed by

developments in technology and software. HCI also became both a focal area of

inquiry and application for cognitive science, and a fertile test bed for evaluating

cognitive theories.

With advances in computing and technology, HCI research has greatly

expanded, spawning several research genres: computer supported cooperative

work (CSCW), mobile and ubiquitous computing (UbiComp), and intelligent user

interfaces (IUI). While early work on HCI drew heavily on theories and empirical

research in cognitive psychology (e.g., research on memory, perception and motor

skills), and human factors to explain and improve human interactions with

machines, the advent of personal computers transformed the field. Grudin (2012)

provides a comprehensive history and development of HCI. The transformation and

development of HCI as a field had a profound impact in healthcare as it did in other

professional sectors. An extended history is beyond the scope of this chapter.

However, we provide a brief synopsis as an entry-point to discuss HCI in the

context of healthcare.

HCI research in healthcare has paralleled the theoretical and methodological

developments in the field beginning with cognitive evaluations of electronic med-

ical records in the mid-1990s (Kushniruk et al. 1996), extending to a focus on

distributed health information systems (Horsky et al. 2003; Hazlehurst et al. 2007)

and analysis of unintended sociotechnical consequences of computerized provider

order entry systems (Koppel et al. 2005). HCI work in biomedicine extends across

clinical and consumer health informatics, addressing a range of user populations

including providers, biomedical scientists and patients. While the implications of

HCI principles for the design of HIT are acknowledged, the adoption of the tools

and techniques among clinicians, informatics researchers and developers of HIT are

limited. There is a general consensus that HIT has not realized its potential as a tool

that facilitates clinical decision-making, coordination of care, and improvement of

patient safety (Middleton et al. 2013; IOM 2011; Schumacher and Lowry 2010).

For interested readers, a recent chapter by Patel and Kaufman (2014) provides a

detailed discussion on the relationship between HCI and biomedical informatics.

Theories and methods in HCI continue to evolve to better meet the needs of

evaluating systems. For example, classical cognitive or symbolic information

processing theory viewed mental representations as mediating all activity (Card

et al. 1983). Although methods and theories emerging from the classical cognitive

approach continue to be useful and productive, they are limited in their character-

ization of interactivity or of team/group activities. In more contemporary theories

of HCI, such as distributed cognition, cognition is viewed as the process of

coordinating internal (mental states) and external representations. The scope has
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broadened to include external mediators of cognition including artifacts and is also

seen as stretched across social agents (e.g., a clinical care team). The socio-

technical approach has further expanded the focus of HCI research to include a

range of social and organizational factors that influence the productive use and

acceptance of technology (Berg 1999).

The scope of HCI in biomedicine and healthcare is currently very broad

encompassing thousands of journal articles across medical disciplines and con-

sumer health domains. Although the 14 chapters in this volume cover considerable

terrain, it would not be possible to cover the full range of research and application

of HCI in biomedicine and healthcare. In general, there is a strong focus in this

volume on issues in clinical informatics. The chapters by Jimison and colleagues on

consumer health informatics (Chap. 12), and by Lai and Siek (Chap. 13) on mobile

health are notable exceptions.

Human factors and HCI are sister disciplines and share many of the same

methods and foci. Although they remain distinct disciplines, the boundaries of

research have become increasingly blurred, often using similar theories and

methods (Patel and Kannampallil 2014). In addition, patient safety and clinical

workflow are focal topics in applied human factors in healthcare. However, we

elected not to specifically cover human factors research because of its immense

scope. The handbook edited by Carayon and colleagues (2012) provides excellent

coverage (in the 50+ chapters) of this important field. Pervasive computing in

healthcare is a burgeoning cutting-edge field of growing importance (Orwat

et al. 2008), but is only briefly addressed in a couple of chapters. Similarly, HCI

and global health informatics is an important emerging field of research (Chan and

Kaufman 2010), but is not dealt with in this volume. Finally, our focus is predom-

inantly on evaluation of HIT in the modern healthcare environment rather than the

design (or design approaches) for HIT. Although the chapters in this volume

embrace a range of theoretical perspectives, it should be noted that this is part of

the Cognitive Informatics series and the frameworks are somewhat skewed toward

the cognitive rather than the social perspectives. The omissions in this text leave

room for future volumes that will encompass some of these other fields.

1.2 Scope and Purpose of the Book

The objective of this book is to provide a pedagogical description of HCI within the

context of healthcare settings and HIT. Although there is a growing awareness of

the importance of HCI in biomedical informatics, there is limited training at the

graduate level in HCI for biomedical informatics (BMI) students. An informal

review of the curriculum of graduate programs led us to the conclusion that fewer

than 25 % of the US-based BMI programs had any course in HCI or related topics.

Part of the reason for this, we believe, is the relative inaccessibility of advanced

level graduate materials for students. While there are considerable original mate-

rials in the form of journal and conference articles, these are idiosyncratic in their
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coverage of issues and demand greater understanding of cognitive and informatics-

related issues. Our purpose with this book is to provide an aggregated source of a

collection of HCI topics that are relevant to BMI students and researchers. The role

of HCI in the biomedical informatics curriculum is reflected in the presence of

HCI-related courses in some academic graduate programs and in the growing

number of research programs. Most courses are taught with a combination of

research papers, general HCI textbooks with minimal focus on HIT, and instructor

prepared material. Within this scope, we have identified a set of topics – both from a

classical HCI perspective and others from an applied HCI in BMI focus. These

chapters, as we acknowledged above, do not provide comprehensive coverage of all

HCI topics. However, the selected topics represent a mix of topics that coalesces the

past with the future of HCI.

1.3 Organization of Chapters

The book is organized in the following manner: the early Chaps. (2, 3, 4, 5, and 6)

focus on the theoretical and methodological basis of HCI. The major themes

covered include cognition, communication, socio-technical considerations, and

evaluation methods for research. Chapters 7, 8, 9, 10, and 11 describe the applica-

tion of HCI methods and theories to address several key issues including usability

and user-centered design, team activities, and unintended consequences of technol-

ogy use. The last three Chaps. (12, 13, and 14) describe recent trends in consumer

health informatics, mobile computing in health, and visualization approaches. The

themes that are addressed in the various chapters have been selected with the

purpose of addressing specific biomedical informatics challenges related to HIT

(and consumer health tools) evaluation. As a result, key topics that are often

covered in HCI books, such as motor and visual/perceptual theories, have not

been discussed. We have also followed a specific structure: each chapter includes

a description of the key HCI problem and its relevance to biomedical informatics,

detailed examples where applicable (in some chapters, explicit case studies), a set

of discussion questions and additional follow up readings for interested readers. A

brief overview of each of the chapters is provided below.

As previously described, HCI has its original roots in psychology, and more

specifically in cognitive science. In Chap. 2, Kaufman, Kannampallil and Patel

describe these cognitive foundations within the context of biomedicine and

healthcare. Cognitive theories relevant to HCI including human information

processing, interactive environments, mental models, role of external representa-

tion in HCI, and distributed cognition are described. In Chap. 3, Morrow and Dunn-

Lopez describe the information processing and interactive approaches to commu-

nication, focusing on how these can be used to improve communication effective-

ness, leading to more efficient work activities, collaboration and patient safety. In

the following chapter, Sittig and Singh describe a socio-technical model for HIT
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evaluation. They describe an 8-dimensional socio-technical model and illustrate its

application for HIT development and implementation.

In Chap. 5, Kannampallil and Abraham discuss the various methods for evalu-

ating HIT. Methods of evaluation that encompass issues of HCI and those from a

more contextual and situated perspectives are described, including the appropriate-

ness of each method in various evaluation contexts. In contrast to the traditional

methods described in Chap. 5, Zheng and colleagues discuss in Chap. 6 a new

family of HCI methods called “computational ethnography.” Computational eth-

nography relies on digital trace data available in healthcare environments to

characterize human-computer interactions. Examples of such data include audit

logs, motion capture, and Radio Frequency Identification (RFID). Examples from

various clinical situations are used to illustrate how these methods have been

applied in healthcare to study end users’ interactions with technological

interventions.

In Chap. 7, Kushniruk and colleagues discuss the importance of user-centered

design (UCD) in improving the usability of clinical systems. A range of approaches

including the use of laboratory style usability testing to the use of clinical simula-

tions conducted in real-world clinical settings are described. The authors also

introduce new approaches to low-cost rapid usability engineering methods that

can be applied throughout the design and implementation cycle of clinical infor-

mation systems. Johnson and colleagues in Chap. 8 provide an alternative perspec-

tive on the interaction challenges with medical devices—an almost ubiquitous

component of clinical environments. They discuss the challenges of developing

medical device interfaces as a function of the interplay between the complexities of

the clinical environment, users of medical devices and device constraints. Regula-

tory considerations and their impact on medical devices interactions are also

described.

In Chap. 9, Kalenderian, Walji and Ramoni provide an example of the applica-

tion of HCI evaluation methods in the re-design of a dental EHR interface. In

addition to showing how these principles can be applied for the design of dental

EHRs, they describe the importance of participatory design process for the design

and development of usable HIT. The case study example provides further context

for the methods described in Chap. 5. Tang and colleagues (Chap. 10) characterize

the role of team activities and teamwork in modern healthcare practice. They

discuss how team composition and interactions create significant challenges for

maintaining seamless team activities in clinical settings. They draw on socio-

technical systems theory to illustrate how team activities are situated within the

context of HIT use. Case studies from the field are used to further exemplify the

nuances of team activities and interactions in complex clinical settings.

In Chap. 11, Franklin provides an overview of the nature and types of unintended

consequences of the use of HIT in clinical environments—both its positive seren-

dipitous results, as well as negative, unintended, and potentially harmful conse-

quences of technology. A review of different classification systems for studying the

unanticipated effects of HIT, especially EHR and CPOE use, is considered with

several examples from research.
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In Chap. 12, Jimison and colleagues illustrate the challenges of designing

healthcare solutions for consumers. They detail the issues of varying cultural

backgrounds, levels of literacy and access that cause considerable challenges in

design. The authors review these issues and describe the role of participatory user-

centered design for developing safe and usable consumer health tools.

Recent advances have spurred the widespread adoption and use of mobile

devices in healthcare settings. In Chap. 13, Lai and Siek examine the use of mobile

devices in healthcare both among consumers (e.g., patients) and clinicians, includ-

ing design considerations, requirements and challenges of its use. Modern wearable

devices, such as smart watches and Google Glass, and their potential applications

within healthcare settings are also considered. Finally, in Chap. 14, Bhavnani

introduces the relatively new domain of biomedical visualization, specifically

focusing on how visualization approaches can amplify our ability to analyze large

and complex data. Using examples from network analysis, the significant power of

visualization for data analysis and interpretation is demonstrated, from a scientific

and translational perspective. Opportunities for visualization in biomedical infor-

matics, available tools, and the challenges of biomedical visualization are also

described.

1.4 Future Directions for HCI in Healthcare

The range of users of HIT including clinicians, biomedical researchers, health

consumers and patients continue to expand, as does the range of functions

supported by HIT. The challenges of supporting these populations are well

known. HCI methods of evaluation and iterative design will play an increasingly

pivotal role (Kushniruk et al., Chap. 7). The approaches encompass tried and tested

methods that continue to yield valuable insight into system usability, and related

matters such as learning, adoption and training. The approaches also include

cutting-edge methodologies including computational ethnography (Zheng et al.,

Chap. 6), which continue to broaden the scope of applied HCI, and to ask questions

about workflow and related matters that were not previously possible. There is no

doubt that the fields of mHealth (mobile Health) and pervasive computing will

continue to push the envelope on creating new worlds in HIT. HCI methods will

have to continue to advance to play a productive role and meet the new demands

realized by these developments.

We see future research as having a greater focus on the role of HIT and safe

design of the healthcare workplace, including its involvement in patient safety.

Although it has been shown that HIT has significant potential to improve safety, it

must be acknowledged that it can also cause harm. One of our future challenges will

be to ensure that we include both the private and public sectors in our efforts to

understand the risks associated with HIT, including development of standards and

criteria for safe design and implementation. The role of HCI in engendering such a

change in HIT design and development cannot be overstated.
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Chapter 2

Cognition and Human Computer Interaction

in Health and Biomedicine

David R. Kaufman, Thomas G. Kannampallil, and Vimla L. Patel

2.1 Introduction

Do we really need a theory of cognition? What advantages are conferred by a

cognitive theory or a collection of theories? How can cognitive theory advance our

knowledge as it pertains to the design and use of health information technology?

The past 30 years have produced a cumulative body of experiential and practical

knowledge about user experience, system design and implementation that provide

insights to guide further work. This practical knowledge embodies the need for

sensible and intuitive user interfaces, an understanding of workflow, and the ways

in which systems impact individual and team performance (Patel and Kaufman

2014). Human-computer interaction (HCI) in health care and other domains are at

least partly an empirical science where the growing knowledge base can be

leveraged as needed. However, practical or empirical knowledge, for example, in

the form of case studies is inadequate for producing robust generalizations, or sound

design and implementation principles.
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We argue that there is a need for a theoretical foundation. Of course, theory is a

core part of any basic or applied science and is necessary to advance knowledge, to

test hypotheses and to discern robust generalizations from the increasingly idio-

syncratic field of endeavor.

Cognitive theory has been a central part of HCI since its inception. However,

HCI has expanded greatly since its beginning as a discipline focused on a small

subset of interactive tasks such as text editing, information retrieval and software

programming (Grudin 2008). It is currently a flourishing area of inquiry that covers

all manners of interactions with technology from smart phones to ticketing kiosks.

Similarly, in health care, HCI research has focused on an enormous range of health

information technologies from electronic health record (EHR) systems to consumer

fitness devices such as the Fitbit™. In addition, technology is no longer the realm of

the solo agent; rather, it is increasingly a team game. This has led to the adaptation

of cognitive theories to HCI that stress the importance of the social and/or distrib-

uted nature of computing (Rogers 2004).

Rogers (2004, 2012) critiques the rapid pace of theory change. She argues “the

paint has barely dried for one theory before a new coat is applied. It makes it

difficult for anything to become established and widely used.” Although we per-

ceive this to be a legitimate criticism, we must acknowledge the extraordinary

diversity in HCI subjects of inquiry. In addition, cognitive theories have endured;

however, they have also evolved in response to new sets of circumstances such as

the emphasis on real-world research in complex messy settings, on the role of

artifacts as mediators of performance and on team cognition.

What role can theory play in HCI research and application? Bederson and

Shneiderman (2003) categorize five types of theories that can inform HCI practice:

• Descriptive – providing concepts, terminology, methods and focusing further

inquiry;

• Explanatory – elucidating relationships and processes (e.g., explaining why user

performance on a given system is suboptimal);

• Predictive – enabling predictions to be made about user performance or of a

given system (e.g., predicting increased accuracy or efficiency as a result of a

new design);

• Prescriptive – providing guidance for design from high level principles to

specific design solutions;

• Generative – seeding novel ideas for design including prototype development

and new paradigms of interaction.

Cognitive theories have played an instrumental role in all five categories,

although predicting performance across a spectrum of users (e.g., from novice to

expert) remains a challenge. In addition, generative theories have begun to play a

more central role in HCI design. Although theoretical frameworks such as ethno-

methodology, activity theory and ecological psychology, to name a few, have made

substantive contributions to the field, this chapter is focused primarily on cognitive

theories including classical human information processing, external cognition and

distributed cognition.
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In this chapter, we take a historical approach in documenting the evolution of

cognitive theories beginning with the early application of information-processing

theories and exploring external as well as distributed cognition. Each of these

constitutes a family of theories or a framework that embraces core principles, but

differs in important respects. A framework is a general pool of constructs for

understanding a domain, but it is not sufficiently cohesive or fully realized to

constitute a theory (Anderson 1983). The field of HCI as applied to healthcare is

remarkably broad in scope and the domain of medicine is characterized by immense

complexity and diversity in both tasks and activities (Kannampallil et al. 2011).

Specific HCI theories are often limited in scope especially as applied to a rich and

complex knowledge domain. Patel and Groen (1992) make an analogous argument

for the use of cognitive theories as applied to medical education. Frameworks can

provide a theoretical rationale for innovative design concepts and serve to motivate

HCI experiments. They can become further differentiated into theories that cover or

emphasize a particular facet of interaction (e.g., analyzing teamwork) in the context

of a broader framework (e.g., distributed cognition).

We provide a survey of these different theories and illustrate their application

with case studies and examples, focusing mostly on issues pertaining to health

technology, but also drawing on other domains. This chapter is not intended to be

comprehensive or a critical look at the state of the art on HCI in health and

biomedicine. Rather, it is written for a diverse audience including those who are

new to cognitive science and cognitive psychology. The scope of this chapter is

limited with a primary focus on cognitive theories, as they have been applied in

healthcare contexts.

A partial space of cognitive theories, as reflected in the chapter, is illustrated in

Fig. 2.1. As described, it isn’t intended to be exhaustive. It’s illustrative of how to

conceptualize the theoretical frameworks. It should also be noted that the bound-

aries between frameworks are somewhat permeable. For example, external and

distribute cognition frameworks are co-extensive. However, it serves the purpose of

emphasizing the evolution of cognitive theories and highlight specific facets such as

the effect of representations on cognition or the social coordination of computer-

mediated work. Although the theories within a framework may differ on key issues,

the primary difference is in their points of emphasis. In other words, they privilege

some aspect as it pertains to cognition and interaction.
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Human
Information-
Processing

Model
Human

Processor

Mental
Models

Theory of
Action

External
Cognition
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Cognition
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Fig. 2.1 Partial space of frameworks and cognitive theories
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2.2 Human Information Processing

A computational theory of mind provides the fundamental underpinning for most

contemporary cognitive theories. The basic premise is that much of human cogni-

tion can be characterized as a series of operations which reflect computations on

mental representations. Early theories and models of human performance were

often described in terms of the perceptual and motor activities and assumptions

by their structural components (e.g., limits of short-term memory). These were

primarily derived from the stimulus-response paradigm, and considered the human

as an “information processor.” In other words, within this paradigm the human was

an information controller, perceiving and responding to activities (Anderson 2005).

This approach led to the development of several commonly used models such as

Fitts Law (Mackenzie 1992) and the theory of bimanual control (Mackenzie 2003)

– that predict performance of human activities in a variety of tasks (e.g., task

acquisition, flight controls, and air traffic control). Detailed descriptions of the

use of these theories can be found in Chap. 5 of this volume.

With the advent of computers, and more recently significantly interactive envi-

ronments, there was a need for more integrated information-processing models that

accounted for the human-computer interaction (HCI). There were two important

requirements: first, the models needed to account for the sequential and integrated

actions that evolve during human-computer interactions; second, in addition to the

layout and format of the interface, the models also needed to account for the content

that was presented on the interfaces (John 2003). In its most general form, the

human information processor consists of input, processing and output components

(see Fig. 2.2). The input to the processor involves perception of stimuli from the

external world; the input/stimuli would be processed by a processor and involves a

series of processing stages. Typically, these stages include encoding of the
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Output/Response
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Fig. 2.2 Input-output

model of human

information processing.
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memory and LTM is an

abbreviation for long-term
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perceived stimuli, comparing and matching it to known mental representations in

memory, and selection and execution of an appropriate response. The response is

realized through motor actions. For example, consider a clinician’s interaction with
an EHR interface, where he/she has to select a medication from a dropdown menu.

The input component would perceive the dropdown menu from the interface, which

would be matched in memory and a click action response would be triggered. This

click action would be relayed to the motor components (output), which executes the

action by clicking the dropdown menu item. This cycle repeats till the entire task of

selecting the medication is completed. In the next sections, we consider core

constructs associated with this approach including the model human processor,

Norman’s theory of action, and mental models.

2.2.1 Model Human Processor

One of the earliest and most commonly described instantiations of a theoretical

human information processing system is the Model Human Processor (MHP). MHP

can be described as a set of processors, memories and their interactions that

operate based on a set of principles (Card et al. 1983). As per MHP, the human

mind consists of three interacting processors: perceptual, cognitive and motor.

These processors can operate in serial (e.g., pressing a key) or in parallel

(e.g., driving a car and listening to radio). Information processing of MHP occurs

in cycles. First, the perceptual processor retrieves sensory (visual or audio) infor-

mation from the external world and is transmitted to the working memory (WM).

Once the information is in the WM, information is processed using a recognize-act
cycle of cognitive processor. During each cycle, contents of WM are connected to

actions that are linked to them (from long term memory). These actions, in turn,

modify the contents of the WM resulting in a new cycle of actions. MHP can be

used to develop an integrated description regarding the psychological effects of

human computer interaction performance. While it is considered a significant

oversimplification for general users (see applications of the MHP using the

GOMS model in Chap. 5), it provided a preliminary mechanism on which much

of the human performance modeling research was developed. MHP is useful to

predict and compare different interface designs, task performance and learnability

of user interfaces. It can be used to develop guidelines for interface design such as

spatial layout, response rates and recall. It also provides a significant advantage, as

these human performance measures can be determined even without a functional

prototype or actual users.

Although the use of MHP approach has not commonly been applied in

healthcare contexts, there have been a few noteworthy studies. For example,

Saitwal et al. (2010) used the keystroke level model (KLM, an instantiation of

the GOMS approach) to compute the time taken, and the number of steps required

to complete a set of 14 EHR-based tasks. Using this approach, they characterized

the challenges of the user interface and identified opportunities for improvement.
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Detailed description of this study and the use of the GOMS approach can be

found in Chap. 5.

2.2.2 Norman’s Theory of Action

In the mid 1980s, cognitive science was beginning to flourish as a discipline and

HCI was viewed as both a test bed for these theories and as a domain of practice.

The MHP work was indicative of those efforts. At the same time, microcomputers

were becoming increasingly common in homes, work and school. As a result,

computers were transitioning from being a tool that was used by experts (i.e.,

computer scientists and those with high degrees of technical expertise) exclusively

to one that was used broadly by individuals in all walks of life. Systems at that point

in time were particularly unwieldy and often, extremely difficult to learn. In a

seminal paper on cognitive engineering (Norman 1986), Norman sought to craft a

theory “to understand the fundamental principles behind human action and perfor-

mance that are relevant for the development of engineering principles of design”

(p 32). A second objective was to devise systems that are “pleasant to use.”

A critical insight of the theory is the discrepancy between psychologically

expressed goals, and the physical controls and variables of a system. For example,

a goal may be to scroll down towards the bottom of a document, and a scroll bar

embodies the physical controls to realize such a goal. Shneiderman presented a

similar analysis in his theory of direct manipulation (Shneiderman 1982). The key

question is how an individual’s goals and intentions get expressed as a set of

physical actions that transform a virtual system and result in the desired change

of state (e.g., reaching the intended section of the document). The Norman model

draws on many of the same basic cognitive concepts as the MHP model, but

embodies it in a seven stage model of action (Norman 1986), illustrated in Fig. 2.3.

The action cycle begins with a goal, for example, retrieving a patient’s surgical
history. The goal is a generic one independent of any system. In this context, let us

presuppose that the clinician has access to paper record as well as those in an EHR.

The second stage involves the formation of an intention, which in this case might be

to retrieve the patient record in an EHR. The intention leads to the specification of
an action sequence, which may include signing on to the system (which in itself

may necessitate several actions), engaging a component system or simply a field

that can be used to locate a patient in the database, and entering the patient’s
identifying information (e.g., last name or medical record number, if it is known).

The specification results in executing an action, which may necessitate several

actions. The system responds in some way or in the case of a failed attempt, may not

respond at all. A change in system state may or may not provide a clear indication of

the new state or a failure to provide feedback as to why the desired state has not

appeared (e.g., system provides no indicators of a wait state or why no response is

forthcoming). The perceived system response must then be interpreted and evalu-
ated to determine whether the goal has been achieved. If the response provided by
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the system is “record not found,” that could mean a number of things including that

a name was mistyped or the number was incorrectly listed. On the basis of this

determination, a next action will be chosen.

Any task of moderate complexity will involve substantial nesting of sub-goals,

requiring a series of actions. To an experienced user, the action cycle may appear as

a completely transparent and seamless process. However to a less experienced user,

the process may breakdown at any of the seven stages. Norman (1986) describes

two primary means in which the action cycle can break down. The gulf of execution
reflects the difference between the goals and intentions of the user and the kinds of

actions enabled by the system. For example, a user may not know the appropriate

action sequence or the interface may not provide discernible clues to make such

sequences transparent. For instance, a transaction may appear to be complete, but

further action is needed to execute the selection process (e.g., pressing enter to

accept a transaction).

The gulf of evaluation reflects the degree to which the user can make sense of the

state of a system and determine how well their expectations have been met. For

example, it is sometimes difficult to interpret a state transition and to know whether

one has arrived at the correct state or whether the user has chosen an incorrect path.

Fig. 2.3 Norman’s action
cycle

2 Cognition and Human Computer Interaction in Health and Biomedicine 15



Goals that necessitate multiple state or screen transitions are more likely to present

difficulties for users, especially as they learn the system. Bridging gulfs involves

both bringing about changes to the system design and training users to become

better attuned to the affordances offered by a system resources. Gulfs can be

partially explained by differences in the designer’s models and the users’ mental

models, as discussed in the next section. The designer’s model is the conceptual

model to be built, based on analysis of the task, requirements, and an understanding

of the users’ capabilities (Norman 1986). The users’ mental models of system

behavior are developed through interacting with similar systems and gaining an

understanding of how actions (e.g., selecting an item from a menu) will produce

predictable and desired outcomes. Graphical user interfaces that involve direct

manipulation of screen objects and widgets represent an attempt to reduce the

distance between a designer’s and user’s model (Shneiderman 1982). Obviously,

the distance is likely to be more difficult to bridge in a system like an EHR that

incorporates a wide range of functions and components that may provide different

layouts and forms of interaction.

Norman’s theory of action has given rise, or in some cases, reinforced the need

for sound design principles. For example, the state of a system should be plainly

visible to the user and feedback should be transparent. In illustration, dialog boxes

or alert messages can trigger the intention of reminding users to what is possible or

needed to complete the task. There is a need to provide good mappings between the

actions (e.g., clicking on a tab) and the results of the action as reflected in the state

of the system (e.g., providing access to the expected display).

Norman’s theory of action informed a great deal of research and design across

domains. The seven-stage action theory was used to good effect by Zhang and

colleagues in their development of a taxonomy of errors (Zhang et al. 2004). The

theory also draws on Reason’s categorization of errors as either slips or mistakes

(Reason 1992). Slips result from the incorrect execution of a correct action

sequence and mistakes are the product of the correct completion of an incorrect

action sequence. Slips and mistakes are further categorized into execution errors

and evaluation errors. They are further categorized into each of the descriptors

that correspond to the Norman’s seven stages (e.g., goals, intentions). Zhang

et al. (2004) provide the following example of an intention slip: “A nurse intended

to enter the rate of infusion using the up–down arrow keys, because this is the

technique on the pump she most frequently uses; however, on this pump the arrow

keys move the selection region instead of changing the selected number” (p 98). An

example of an evaluation/intention slips is that a nurse interprets a yellow flashing

light on a device analogically (based on prior knowledge of yellow as a warning)

and interprets it as noncritical when it is in fact signaling a critical event. Norman’s
seven-stage action theory proved to be a useful model for characterizing a wide

range of medical error types.

Although theory of action has been very influential in the world of design and

research, it also has shortcomings (Sharp et al. 2007). The theory proposes that

stages are followed sequentially. However, users do not necessarily proceed in such

a sequential manner, especially in a domain such as medicine, which is constituted

16 D.R. Kaufman et al.



by numerous and complex nonlinear tasks. Contemporary GUIs, for example,

web-based or app-based systems provide users greater flexibility in achieving the

desired state or access the needed information. As discussed in subsequent sections,

external representations (e.g., as expressed in text displays or visualizations) offer

guidance to the user or even structure their interactions in such a way that a planned

action sequence may not be necessary.

2.2.3 Mental Models

Mental models are an important construct in cognitive science and have been

widely used in HCI research (Van der Veer and Melguizo 2003). Mental models

are an analog-based construct for describing how individuals form internal models

of systems. They are employed to answer questions such as “how does it work?” or

“what will happen if I make the following move?” “Analog” suggests that the

representation explicitly shares some aspect of the structure of the world it repre-

sents. For example, one can envision in the mind’s eye a set of connected visual

images of the succession of ATM screens one has to negotiate to get $200 out of

one’s checking account or buildings one passes on the way home from a local

grocery store. This is in contrast to an abstraction-based form such as propositions

or schemas in which the mental structure consists of either the gist, or a summary

representation, for example, the procedures needed to complete an ATM transac-

tion. Like other forms of mental representation, mental models are invariably

incomplete, imperfect and subject to the processing limitations of the cognitive

system (Norman 1983). Mental models can be derived from perception, language or

from one’s imagination (Payne 2003). Running a model corresponds to a process of

mental simulation to generate possible future states of a system from observed or

hypothetical state.

The constructs discussed in the prior sections emphasize how the general limits

of the human-information processing system (e.g., limits in perception, attention

and retrieval from memory) influence performance on a given task in a particular

context (Payne 2003). On the other hand, mental models emphasize mental content,

namely, knowledge and beliefs. An individual’s mental model provides predictive

and explanatory capabilities regarding the functions of a particular system. The

construct has been used to characterize differences in expertise in a range of

knowledge domains such as physics (Payne 2003). Experts have richer and more

robust models of a range of phenomena, whereas novices are more prone to

imprecision and errors. Mental models has been used to characterize models that

have a spatial and temporal context, as is the case in reasoning about the behavior of

electrical circuits (White and Frederiksen 1990). The model can be used to simulate

a process (e.g., predict the effects of network interruptions on downloading a movie

from www.amazon.com).

Kaufman et al. (1996) characterized clinician’s mental model of the human

cardiovascular system (specifically, cardiac output). The study characterized
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progressions in understanding of the system as a function of expertise. The research

also documented various conceptual flaws in subjects’ mental models and how these

flaws impacted subjects’ predictions and explanations of physiological manifesta-

tions (e.g., changes in blood flow in the venous system). In general, mental models

are a useful explanatory construct for characterizing errors that are due to problems in

understanding and not ones associated with flawed execution of procedures.

Mental models are a particularly useful explanatory device in understanding

human-computer interaction (Staggers and Norcio 1993). The premise is that by

exploring what users can understand and how they reason about the systems, it is

possible to design them in a way that support the acquisition of the appropriate

mental model and to reduce errors while performing with them. It is also useful to

distinguish between a designer’s conceptual model of a given system and a user’s
mental model (Staggers and Norcio 1993). The wider the gap, the more difficulties

individuals will experience in using the system. For example, Kaufman and col-

leagues (2003) evaluated the usability of a home-based telemedicine system

targeting older adults with diabetes. The study documented a substantial gulf

between patients’ mental models of the system and the designer’s intent of how

the system should be used. Although most of the participants had a shallow

understanding of how such systems worked, there were some who possessed

more elaborate mental models, and were better able to negotiate the system to

perform a range of tasks including uploading blood glucose values and monitoring

one’s condition over time.

It is believed that novice users of a system can benefit from instructions that

imparts a conceptual model or supports a mental simulation process (i.e., helping

the users mentally step through problem states) (Payne 2003). Diagrammatic

models of the device or system are often used to support such a learning process.

For example, Halasz and Moran (1983) found that such a model was particularly

beneficial to students learning to use a programmable calculator. Kieras and Bovair

(1984) demonstrated a similar benefit for students learning to master a simple

control panel device. They conducted a series of studies contrasting two groups

learning to use a device. One group was trained to operate the device through

learning the procedures by rote. The second group was trained using a model of how

the device works. The model group learned the procedures faster, executed them

more rapidly and improvised when necessary, e.g., replacing inefficient procedures

with simpler ones. The study provides an illustration of how having a more robust

mental model of a system can impact performance. A more advanced model can

enable a user to discover alternative ways to achieve the same goal and overcome

obstacles.

The construct of mental models fell into disuse in the last couple of decades as

theories that emphasized interaction and externalization of representations

flourished. However, the construct has resurfaced in recent years as a means to

characterize how individuals’ conceptualizations differ from representations in

systems. For example, Smith and Koppel (2014) take the approach a step further

in that they conceptualize three models: the patient’s reality, that reality as

represented in an EHR and as reflected in a clinician’s understanding or mental
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model of the problem. Drawing on data from a wide range of sources (e.g.,

observations and log files) and findings, they constructed “scenarios of

misalignment” or misrepresentation including categories such as “IT data too

broadly focused” (i.e., lacking precise descriptions). For example, medical problem

lists that do not permit sufficient qualification or classification illustrate an example

of IT as being too broad or coarse. For instance, clinicians were not able to specify

that a stroke resulted from a left-sided cerebrovascular accident. The typology

provides a useful basis for IT designers to potentially reduce the gaps, better support

users and diminish the potential for unintended consequences.

Shared mental models (SMM) represent an extension of the concept of mental

models. The construct is rooted in research on teamwork in areas such as aviation

(Orasanu 1990). Clinical care is recognized as a highly collaborative practice and

there is a need to develop shared understanding about the processes involved in

patient care as well as the evolving conditions of patients that are currently under

their care. Breaks in communication among team members are known to be

significant contributors to medical errors (Coiera 2000). There are only a few

studies that demonstrate a relationship between SMM and clinical performance

(Custer et al. 2012). Mamykina and colleagues (2014) investigated the development

of SMM in an intensive care unit. The data included observations, audio recorded

transcripts of patient handoff (i.e., transfer of patient during shift change) and

rounds. In a recent paper, the analysis focused on a single care team including an

attending physician, residents, nurses, medical students and physician assistants.

The results indicated that the team initially had rather divergent perspectives on

how well patients were doing, and the relative success of the treatment. Rounds

served as an important coordinating event and the team endeavored to construct

shared mental models (i.e., achieving a shared understanding) through an iterative

process of resolving discrepancies. There was substantial evidence of change in

SMM and in the coordination of patient care over a 3 day period. Whereas

conversations on the first day focused on creating basic alignment and making

immediate modifications to the care, discussions on the third day focused on

understanding of underlying reasons for the situation, and developing a long-term

plan more consistent with this collective causal understanding (Mamykina

et al. 2014).

As mentioned previously, the concept of mental models has diminished as a

construct employed by HCI researchers. One of the reasons is that mental models

are not observable and can only be inferred indirectly. However, we believe that it

has enduring value as an explanatory device for characterizing how individuals

understand a system. The construct is too often used as a synonym for understand-

ing, or for generic mental representation (i.e., with no commitment to the form of

the representation). We favor the more specific instantiation of it as a model that can

be used to simulate a process and project forward to predict events or outcomes or

to explain why a particular outcome occurred. This enables us to develop theories or

models for a given domain and then be able to predict and explain variation in

performance. This should apply to a wide range of contexts whether the goal is to

teach patients with diabetes to understand the basic physiology of their disease or
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for clinicians to use a newly implemented EHR. There is also evidence that a

model-centric approach to teaching, in which an effort is made to foster an

understanding of how a system works, confers some advantages over rote learning

approaches to acquire the procedures needed to complete a task (Payne 2003; Gott

and Lesgold 2000).

2.3 External Cognition

Internal representations reflect mental states that correspond to the external world.

The term external representation refers to any object in the external world that has

the potential to be internalized or to be used to augment cognitive processes

(without internalizing). External representations such as images, graphs, icons,

audible sounds, texts with symbols (e.g., letter and numbers), shapes and textures

are vital sources of knowledge, means of communication and cultural transmission.

The classical model of information-processing cognition viewed external represen-

tations as mere inputs to the mind that were processed and then internalized (Zhang

1997). The landscape began to change in the early 1990s when new cognitive

theories focused on interactivity rather than solely modeling what was assumed to

happen inside the head. Rogers (2012) cites Larkin and Simon’s (1987) classic

paper on “why a diagram may be worth a thousand words” as seminal to researchers

in HCI. It offered the first alternative empirical account that focused on how people

interact with external representations. The core idea was that cognition can be

viewed as the interplay between internal and external representations, rather than

only about modeling an individual’s mental state and processes. Similar ideas had

been put forth by others (Hutchins et al. 1985), but Larkin and Simon provided an

explicit computational account that inspired the HCI community (Rogers 2012).

Larkin and Simon (1987) made an important distinction between two kinds of

external representation: diagrammatic and sentential representations. Although

they are informationally equivalent, they are considered to be computationally

different. That is, they contain the same information about the problem but the

amount of cognitive effort required to come to the solution differs. For example,

effective displays facilitate problem solving by allowing users to substitute percep-

tual operations (i.e., recognition) for effortful cognitive operations (e.g., memory

retrieval and computationally-intensive reasoning) and effective displays can

reduce the amount of time spent searching for critical information (Patel and

Kaufman 2014). On the other hand, cluttered or poorly organized displays may

increase the burden.

In the next two sections, we consider two extensions of external cognition,

namely, the representational effect and the theory of intelligent spaces.
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2.3.1 Representational Effect

The representational effect can be construed as a generalization of Larkin and

Simon’s (1987) conceptualization of the cognitive impact of external representa-

tions (Zhang and Norman 1994). It is well-known that different representations of a

common abstract structure can have a significant impact on cognition (Zhang and

Norman 1994; Kahneman 2011). For example, different forms of displaying

patients’ lab values can be more or less efficient for tasks. A display may be

oriented to support a quick readout of discrete values or alternatively, one that

allows clinicians to discern trends over a period of time. A simple illustration of the

effect is that Arabic numerals are more efficient for arithmetic calculations (e.g.,

26� 92) than Roman numerals (XXVI�XCII) even though the representations are

identical in meaning. Similarly, a digital clock provides a quick readout for

precisely determining the time at a glance (Norman 1993). On the other hand, an

analog clock enables one to more easily determine time intervals (e.g., elapsed or

remaining time) without recourse to mental calculations. Norman (1993) proposed

that external representations play a critical role in enhancing cognition and intelli-

gent behavior. These durable representations (at least those that are visible) persist

in the external world and are continuously available to augment memory, reason-

ing, and computation. Imagine the cognitive burden of having to do multi-digit

multiplication without the use of external aids. Even a pencil and paper will allow

you to hold partial results (interim calculations) externally. Calculations can be

extremely computationally intensive without recourse to external representations

(or memory aids).

Zhang and colleagues (Zhang 1997; Zhang et al.; Zhang and Patel 2006)

summarized the following properties of external representations:

• Provide memory aids that can reduce cognitive load

• Provide information that can be directly perceived and used such that minimal

processing is needed to explicitly interpret the information

• Support perception so that one can recognize features easily and make inferences

directly

• Structure cognitive behavior without cognitive awareness

• Change the nature of a task by generating more efficient action sequences

Several researchers have described the mediating role of information technology

on clinical reasoning. For example, Kushniruk et al. (1996) studied how clinicians

learned to use an EHR over multiple sessions. They found that as users familiarized

themselves with the system, their sequential information-gathering and reasoning

strategies were driven by the organization of information on the user interface. In

other words, the users followed a “screen-driven” strategy when taking a medical

history from a patient. This had both positive consequences in that it promoted a

more thorough consideration of the patient history, as well as negative conse-

quences in that the clinician failed to search for findings not available on the display

or inconsistent with their operative diagnostic hypothesis. In general, a screen-
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driven strategy can enhance performance by reducing the cognitive load imposed

by information-gathering goals and enable the physician to allocate more cognitive

resources toward patient evaluation (Patel and Kaufman 2014). On the other hand,

this strategy can induce a certain sense of complacency or excessive reliance on the

display to guide the process.

Similar results were reported by Patel et al. (2000) in a study contrasting the use

of EHRs with paper records in a diabetic clinic setting. Physicians entered signif-

icantly more information about the patient’s chief complaint using the EHR simi-

larly following a screen-driven strategy. Likewise, the structure of the paper records

document was such that physicians represented more information about the history

of present illness and review of systems using paper-based records. The introduc-

tion of an EHR changed information-gathering and documentation strategies,

thereby changing the information representation and meaning. The effects of the

EHR persisted even after the re-introduction of paper records.

External representations can mediate cognition in a number of ways with both

positive and negative impact. The following real-world example was drawn from a

study related to a comprehensive causal analysis of a medication dosing error, in

which an overdose of Potassium Chloride (KCl) was administered through a

commercial computer order entry system (CPOE) in an ICU (Horsky et al. 2005).

The authors’ detailed analysis included the use of inspection of system logs,

interviews with clinicians and a cognitive evaluation of the order-entry system

involved. For the purpose of this paper, we highlight one element of the error to

illustrate the interplay between technology and user interaction for clinical

decision-making. In this case, the system provided screen order-entry forms for

medication with intravenous drip and IV bolus orders that were superficially

similar, yet required different calculations to estimate the dose. In this case, orders

for IV bolus were specified by dose. In contrast, orders for other intravenous drip

administration were indicated by duration, rather than by volume of administered

fluid as suggested by the order-entry field “Total Volume.” The latter referred to the

size of the IV bag rather than the total amount of fluid to be delivered, which may

exceed the volume indicated. In addition, intravenous fluid orders were not

displayed on the medication review screen, further complicating the task of calcu-

lating an appropriate KCl bolus for a patient receiving intravenous medications.

Calculating the correct infusion dosage was a vitally important task. However, not

only did the interface not provide tools to facilitate this process, it also proved to be

an obstacle.

It is well documented that IV medication errors commonly result in potentially

harmful events (Taxis and Barber 2003; Husch et al. 2005). The configuration of

external resources or representations, for example on a visual display, can have a

significant impact on how the system facilitates (or alternatively, hinders) cogni-

tion. Critical care settings are immensely complex environments and medical error

can be the product of a host of factors including workflow and communication

(Patel et al. 2014). As discussed in subsequent sections, the organization of displays

are just one of several facets that mediate interaction.

22 D.R. Kaufman et al.



2.3.2 Intelligent Use of Space

Theories of external cognition tend to emphasize the computational offloading that

eases the cognitive burden of a user. However, external representations can also be

manipulated by individuals in a variety of ways to facilitate creative thinking as

well (Rogers 2012; Zhang and Norman 1994; Kirsh 2005). According to Kirsh,

“cognitive processes flow to wherever it is cheaper to perform them. The human

‘cognitive operating system’ extends to states, structures, and processes outside the
mind and body” (Kirsh 2010) (p. 172). For example, one may choose to create a

diagram to help interpret a complex sentence and that will alleviate some of the

cognitive burden of sense-making. Kirsch draws on a range of examples, in

illustration, how people follow a cooking recipe by arranging and re-arranging

items (e.g., utensils and ingredients) to coordinate their activities. The central

premise is that people interact and create external structure (or representations)

because through these interactions, it is easier to process more efficiently and more

effectively than by working inside the head alone. In essence, individuals are able to

improve their thinking and comprehension by creating and using external repre-

sentations (Kirsh 2010).

Kirsh (1995) studied how individuals restructured their environments when

performing a range of tasks. He found that they constantly rearrange items to

track the task state, support memory, predict effects of actions, and so forth.

Restructuring often can reduce the cost of visual search, make it easier to notice,

identify and remember items, and simplify task representation (Senathirajah

et al. 2014a). The theory of intelligent spaces is an extension of this idea. Kirsh

classified intelligent uses of space into three categories: (1) arrangements that

simplify choice, (2) arrangements that simplify perception (e.g., calling attention

to a group of items), and (3) spatial dynamics that simplify mental computation.

The theory of intelligent spaces suggests that the idiosyncratic arrangements of

individuals including clinicians may serve to simplify inferences or computations.

The theory is potentially extensible across a range of domains including health

information technology (HIT).

Although EHRs are very elaborate complex systems that support a wide range of

functions, they often fail to support the varied needs of healthcare practitioners.

Systems often fail to take into consideration the significant variability of medical

information needs, which differ according to setting, specialty, role, individual

patient and institution (Senathirajah et al. 2014b). In addition, they are not respon-

sive to the highly collaborative nature of the work. In response to these challenges,

Senathirajah and colleagues (2014a, b) developed a new model for health informa-

tion systems, embodied in MedWISE, a widget-based highly configurable EHR

platform. MedWISE supports drag/drop user configurations and the sharing of user-

created elements such as custom laboratory result panels and user-created interface

tabs. It was hypothesized that such a system could afford the clinician greater

flexibility and better fit to the tasks they were required to perform. The intelligent

spaces theoretical framework informed the design of MedWISE.
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In an experiment conducted by Senathirajah et al. (2014b), 13 clinicians used the

MedWISE system to review four patient cases. The data included video recordings

of clinicians’ interactions with the system and the screen layouts they created via

the drag/drop capabilities. The focus here was on the creation of spatial layouts. The

study documented three strategies which were labeled “opportunistic selection”

(rapidly gathering items on the screen and reviewing), structured (organizing the

layout categorically) and “dynamic stage” approach. The latter approach involved

the user interacting with small groups of widgets at a time, using the space as a

staging area to examine a specific concern and then shift to the next. An example of

dynamic stage approach was that the clinician kept the index note (initial note) open

at the bottom of column 2 (middle column) and stacked the unexamined labs and

reports, closed, in column 1 (leftmost column), opened them in column 2 to

compare them with the index note, and closed and moved them to column 3. This

interaction pattern could reflect examination of specific diagnostic concerns (e.g.,

ruling out a diagnostic hypothesis). An example of the structured approach is

indicated in Fig. 2.4. The clinician has stated that he is keeping the right side as a

free space for thinking space, for studies, and for to-do items. A to-do list is at upper

Fig. 2.4 An illustration of a physician using a structured approach in MedWISE
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right (in the yellow sticky note), while orienting items including the primary

provider clinic note is at left, with lab data down the middle. This reflects a common

pattern found of going from left to right with orienting material, data, and then

action items. The clinician has grouped labs according to related diagnostic facets,

for example, the HbA1c and micro albumin (diabetes-related) are together, and then

thyroid-related results (TSH, T3 and T4) are grouped at the bottom of the center

column.

The clinicians employed spatial arrangement in ways consistent with theory and

research on workplace spatial arrangement (Senathirajah et al. 2014b). This

includes assignment of screen regions for particular purposes, juxtaposition of

elements to facilitate calculation (e.g., ratios), and grouping elements with common

meanings or relevance to the diagnostic facets of the case (e.g., thyroid findings).

Clinicians also made deliberate use of the space following a common pattern of left-

to-right progression of orienting materials, data, and action items or reflection

space. Widget selection was based on an assessment of what information was

useful or relevant immediately or likely to be in the near future (as more informa-

tion is gathered). The study demonstrated how a user-composable EHR in which

users have substantial control over how a display is populated and arranged can

embody the advantages predicted by the intelligent use of space theory.

The external cognition framework has introduced a set of concepts that has

enabled researchers and designers to characterize designs in ways not previously

accessible to them (Rogers 2012). As evidenced in the work on MedWISE, it

provided a language that framed how people manipulate representations, interact

with objects, and organize their space. This provides a basis for designing tools that

facilitate different kinds of interaction. It also suggests that there are more and less

optimal ways to configure a display for particular tasks and that the impact of such

configurations are measurable.

2.4 Distributed Cognition

The external cognition framework seeded important design concepts. It also pro-

vides a means to engage in a more rigorous approach to evaluation. The distributed

cognition (DCog) approach takes the argument further beyond the internal-external

representation divide (Rogers 2012). DCog re-conceptualizes cognitive phenomena

in terms of individuals, artifacts, and internal and external representations and their

interactions (Rogers 2012). It provides a more extensive account than external

cognition. The core approach entails describing a “cognitive system,” which

involves interactions among people, artifacts they employ, and the environment

they are situated in. Hutchins and colleagues proposed a new paradigm for funda-

mentally rethinking our assumptions about cognition (Hutchins 1995).

DCog represents a shift in the study of cognition from an exclusive focus on the

mind of the individual to being “stretched” across groups, material artifacts and

cultures (Hutchins 1995; Suchman 1986). This paradigm has gained substantial
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currency in HCI research. In the distributed approach, cognition is viewed as a

process of coordinating distributed internal (i.e., what’s in the mind) and external

representations (e.g., visual displays, post-it notes, paper records). Distributed

cognition has two focal points of inquiry, one that emphasizes the inherently social

and collaborative nature of cognition (e.g., attending physicians, residents, nurses

and respiratory therapists in cardiothoracic intensive care unit jointly contributing

to a decision process), and one that characterizes the mediating effects of technol-

ogy (e.g., EHRs, mobile devices apps) or other artifacts on cognition.

Hollan et al. (2000) emphasize that distributed cognition is more than the social

distribution of cognitive processes; rather it is a broader conceptualization that

includes emergent phenomena in social interactions as well as interactions between

people and the structure of their environment. According to Hollan et al., the

perspective “highlights three fundamental questions about social interactions:

(1) how are the cognitive processes we normally associate with an individual

mind implemented in a group of individuals, (2) how do the cognitive properties

of groups differ from the cognitive properties of the people who act in those groups,

and (3) how are the cognitive properties of individual minds affected by participa-

tion in group activities?” (Hollan et al. 2000) (p 177).

DCog is concerned with representational states and the informational flows

around the media carrying these representations (Perry 2003). The framework

enables researchers to consider all factors relevant to a task, coalescing individuals,

the problem and the tools into a single unit of analysis. This makes it a productive

means to develop an understanding of how representations act as intermediaries in

the dynamically changing and coordinated processes of work activities (Perry

2003).

Hutchins’ (1995) seminal analysis of ship navigation of a U.S. navy vessel

provided a compelling account of how crews took the ships bearing and how this

information was interpreted processed, and transformed across representational

states (embodied in media and technology such as ship navigation instruments

like the ship’s compass and communication among interdependent actors that

constitute the ship’s crew). The succession of states resulted in the determination

of a ships location, progress and how they could be aligned with intended trajec-

tories. The entities operating within the functional system are not viewed from the

perspective of the individual, but as a collective (Perry 2003). Both people and

artifacts are considered as representational components of the system. As should be

clear at this point, external representations are not mere inputs or stimuli to the

mind, but play a more instrumental role in cognition.

In the next sections, we review two extensions of DCog including the distributed

resource model and the propagation of representational states.
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2.4.1 Distributed Resources Model

One of the strengths of the DCog, as applied to HCI, is that it can be used to

understand how properties of objects on the screen (e.g., links, menus) can serve as

external representations and reduce cognitive load. Wright et al. (2000) proposed a

distributed resources model to address the question of the information needed to

carry out a task and where it should be located: as an interface object or as

knowledge that a user brings to the task. The relative difference in the distribution

of representations is pivotal in determining the efficacy of a system designed to

support a complex task such as computer provider entry (Horsky et al. 2003). The

distributed resources model includes two primary components. The first is a

characterization of information structures (i.e., resource types), pertaining to the

control of action and the second is a process-oriented description of how these

information structures can be used for action (interaction strategies) to complete a

task. The information structures can be embodied in any artifact (e.g., paper charts

or an EHR). Wright et al. enumerated several of these information structures

including plans, goals, history and state. Plans include possible sequence of actions,

events, and anticipated states. Goals refer to the desired states the user wants to

accomplish. They may be generated internally or emerge from the interaction with

the system. History refers to the part of a plan that has already been accomplished.

The history of past actions may be maintained in a web browser, for example, as a

list of previously visited pages that can be accessed via a drop-down list. State is the

current configuration of resources, for example, as represented in the display screen

at a given point in time. These are all considered to be resources for action rather

than static structures. They can be externalized, manipulated and subjected to

evaluation (Wright et al. 2000).

Horsky et al. (2003) employed the distributed resource model to investigate the

usability of a CPOE system. The goal was to analyze order-entry tasks and to

identify areas of complexity that may impede performance. The research consisted

of two component analyses: a cognitive walkthrough evaluation that was modified

based on the distributed resource model and an experiment involving a simulated

clinical ordering task performed by seven physicians who were experienced users

of the CPOE. The walkthrough analysis revealed that the configuration of resources

(e.g., very long menus and complexly configured screens) placed an unnecessarily

heavy cognitive load on the user. In addition, successful interaction was too often

dependent on the recall of system-related knowledge. The resources model was also

used to explain patterns of errors produced by clinicians including, selecting an

inappropriate order set, omissions and redundant entries. The authors concluded

that the reconfiguration of resources may yield guiding principles and design

solutions in the development of complex interactive systems (Horsky et al. 2003).

In addition, system design that better reflects the constraints of the task (e.g.,

hospital admission) and domain (e.g., internal medicine) may minimize the need

for more robust mental models or extensive system knowledge.
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2.4.2 Propagation of Representational States

Horsky et al. conducted a DCog analysis that emphasized the technology-mediating

effects of a CPOE interface on clinical performance. Hazlehurst and colleagues

(2007) emphasize both the socially-distributed nature and mediating impact of

artifacts on communication during cardiac surgery. Towards that end, they

employed a cognitive ethnography method to understand how system resources

are configured and used for cardiac surgery and to prevent adverse events. DCog

focuses on the activity system as the unit of analysis and seeks to understand how

properties of this system determine performance (Hutchins 1995; Horsky

et al. 2003; Hazlehurst et al. 2007).

Following Hutchins (1995), Hazlehurt views the ‘propagation of representa-

tional states’ through activity systems as explanatory of cognitive behavior and

sought to investigate the organizing features of this propagation as an explanation

of system and human performance (Hazlehurst et al. 2007). Accordingly, “a

representational state is a particular configuration of an information-bearing struc-

ture, such as a monitor display, a verbal utterance, or a printed label, that plays some

functional role in a process within the system (Hazlehurst et al. 2007) (p 540)”.

They identified six patterns of communication between surgeon and perfusionist

that relate to the functional properties of the activity system. For example, direction
is a pattern that seeks to transition the activity system to a new state (e.g.,

administering medications that affect blood coagulation). Goal sharing involves

creating an expectation of a desired future, but not specifically the action sequence

necessary to achieve the target state. These patterns of communication serve to

enhance situation awareness, for example, by making the current situation clear and

mutually understood.

The distributed cognition approach has been widely used in HCI to examine

existing practices and workflow (Rogers 2012). It has also been used to inform the

iterative design process by characterizing how the quality and configuration of

resources and representations might be transformed and how this change may

impact work practices. It is an approach that is inherently well suited to a complex,

media-rich and collaborative domain such as medicine. However, a distributed

cognitive analysis can be extremely difficult to conduct (requiring substantial

specialized knowledge of the analytic approach as well as the knowledge domain),

rather complex and very time consuming. In the next section, we describe an

approach which endeavors to make the DCog approach more tractable and bring

it closer to the design process (Blandford and Furniss 2006).

2.4.3 Distributed Cognition of Teamwork (DiCoT)

DCog’s has developed a rather comprehensive and penetrating approach to under-

standing the different dimensions of human-computer interaction. However, there
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is no ‘off-the-shelf’ methodology for using it in research or as a practitioner

(Furniss et al. 2014). According to Rogers, the application of DCog theory and

methods are complicated by the fact that there are no set of features to attend to and

no checklist or prescribed method to follow (Rogers 2012). In addition, the analysis

and abstraction requires a very high level of skill. However, there have been various

structured approaches to gathering and analyzing data including the Distributed

Resources (DR) Model (Wright et al. 2000) described in a previous section. DiCoT

(Distributed Cognition for Teamwork) was developed to provide a structured

approach to analyze work systems and teamwork (Furniss et al. 2014; Furniss and

Blandford 2006). The approach is informed by theoretical principles from the DCog

literature.

The DiCoT framework focuses on developing five interdependent models with

different foci: artifacts, physical, information flow, social and evolutionary (Furniss

et al. 2014). Each of the models is informed by a set of principles. For example, the

artifacts model includes the premise that mediating artifacts are brought into

coordination (e.g., paper and electronic health records) in the completion of a

task. A second principle is reflected in the fact that we use our environment

continuously by “creating scaffolding” to simplify cognitive tasks (Hollan

et al. 2000). The physical model refers to the physical organization of work. It is

guided by principles such as space and cognition, which states how humans

manipulate space towards the facilitation of decision making or problem solving

(e.g., grouping objects into categories). This is similar to the intelligent uses of

space (Kirsh 1995). Information transformation is one of the principles of informa-

tion flow. It suggests that transformation occurs when the representation of infor-

mation changes. As described previously, more effective representations provide

better support for reasoning.

DiCoT has been used to analyze complex systems in a range of healthcare

contexts including ambulance control room dispatch (Furniss and Blandford

2006) and infusion pump use in intensive care (Rajkomar and Blandford 2012).

Emergency medical dispatch is constituted by a team that coordinates the delivery

of services (e.g., dispatching an ambulance) to respond to a call for medical

assistance. Furniss and Blandford (2006) conducted a study of an EMD team

using the DiCoT approach. The focus was on describing the work system, identi-

fying sources of weakness and projecting the likely consequences of a redesign

(e.g., what is likely to happen when a centrally available shared display is visible or

accessible to each member of the team). On the basis of characterizing systemic

weaknesses, they suggested changes to the physical layout that could enhance

“cross-boundary working”. Their observations revealed a discontinuity between

the central ambulance control and the crews in the field. In response, Furniss and

Blandford (2006) proposed the use of more flexible communication channels so the

crew could be contacted whether they are at a station or are mobile. The multifac-

eted model enables the researchers to envision a set of consequences to the redesign

scheme along a range of dimensions (e.g., information flow). Clinical practitioners

and other stakeholders review and comment on the concrete redesign solutions.
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The DCog framework, which incorporates a number of interrelated theories,

offers the most comprehensive and in our view, the most compelling theoretical

approach to explain the technology-mediated and social/collaborative nature of

clinical work. Each theory within this framework privileges different aspects of

interactions.

2.5 Conclusions

It is reasonable to conclude that we need a theory (or theories) of cognition in the

context of HCI and health care. Although we have learned much from empirical

studies and applied work, a theoretical framework is needed to account for the

broad scope of the field and the complexity that is inherent in the domain of

medicine. Without a sound theoretical framework, generalizations would be lim-

ited, and principled approaches to design would be largely illusory. In this chapter,

we traced the evolution of cognitive theory from the classical information-

processing approach to external cognition through distributed cognition. The

information-processing approach drew extensively on concepts from cognitive

psychology and embraced a computational approach to the study of interaction.

The MHP theory (Card et al. 1983) provides insight into cognitive processes and

provides a predictive model of behavior, albeit one that is limited in scope.

Norman’s theory of action (Norman 1986) offers an explanatory account of the

challenges involved in using systems. It also offers general prescriptions, for

example, emphasizing the importance of quality feedback to the user. The theory

of mental models as applied to HCI builds on the idea of gulfs to further explicate

the kinds of knowledge needed to productively use a system. It also broadly pre-

scribes how to narrow the divide between designer models and users’ mental

models. Although these theories are inherently incomplete in their focus on the

solitary individual, they continue to be productive as explanatory theories of HCI.

Theories of external cognition expanded the scope of analysis to include a focus

on external representations. Several studies have demonstrated how representations

mediate cognition and how differential mediation (as reflected in display configu-

rations) can contribute to medical errors. The theory of intelligent spaces (Kirsh

1995) is a generative theory, which seeded concepts that were realized in the design

of the MedWISE system. DCog theories are the most encompassing in their focus

on both technology-mediated and socially distributed cognition. The theories offer

rich descriptive and explanatory accounts of technology use in the medical work-

place. Distributed resource theory (Wright et al. 2000) works both as a descriptive

theory characterizing the state of affairs and a prescriptive theory that can be used to

reconfigure interfaces to alleviate some of the cognitive burden on users. Significant

challenges remain in the domain of health information technology. Although

cognitive theory cannot provide all of the answers, it remains a powerful tool for

advancing knowledge and furthering the scientific enterprise.
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Discussion Questions

1. What role can cognitive theory play in HCI research and application? Describe

the different kinds of theories that can inform HCI in practice situations.

2. Explain the gulfs of execution and evaluation and how they can be used to

inform HCI design.

3. Mental models are an analog-based construct for describing how individuals

form internal models of systems. Explain what is meant by analog. How can

mental models inform our understanding of the user experience?

4. Describe the meaning and significance of the representational effect. How can it

influence the design of visual displays to represent lab results?

5. What implications can one draw from the theory of intelligent spaces? How can

it be used to seed design concepts in health care?

6. What are the essential differences between theories of external representation

and theories of distributed cognition?
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Chapter 3

Theoretical Foundations for Health

Communication Research and Practice

Daniel G. Morrow and Karen Dunn Lopez

3.1 Introduction

At first glance, communication among clinicians may seem to be the least compli-

cated component of the health care domain, which involves providing care for a

wide variety of illnesses and age groups using an array of low and high technology

diagnostics and treatment, and a continually mounting base of evidence. Yet, there

is mounting evidence that points to serious problems in communication within

health care. Annually, 98,000 deaths are attributed to errors in health care (Kohn

et al. 2000), with an estimated 60 % attributed to avoidable communication failures

(Joint Commission on Accreditation of Healthcare Organizations 2005). Other

research using root cause analysis revealed that approximately 70 % of sentinel

events (serious negative consequences involving the unexpected occurrence or risk

of death or serious injury) are caused by poor communication (Cordero 2011) and

that poor information sharing and coordination is linked to patient mortality in

multiple settings (Kim et al. 2010; Knaus et al. 1986; Shortell et al. 1992; Williams

et al. 2007). These findings should not be surprising given the evidence that

miscommunication is an important contributor to errors in other complex and

high stakes domains such as aviation (Davison et al. 2003).

These failures are brought about by multiple challenges of communicating in the

high stakes health care domain. A key challenge is the high cognitive demands

associated with managing biological complexity in health care. This task requires
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interpreting and sharing uncertain and dynamic patient information, including

frequent unplanned and interruptive communication among clinicians from differ-

ent disciplines who must collaborate despite discipline-specific terminologies and

taxonomies. These challenges are exacerbated by rapid diffusion of health infor-

mation and communication technologies that can increase communication com-

plexity. In addition, the round-the-clock nature of health care requires frequent

complete transfer of responsibility for patients within disciplines, or handoffs that

increase the number of clinicians who take care of a single patient. Moreover, the

high cost of health care leads to multiple federal regulations that directly impact

how care is delivered. For all these reasons, communication challenges may be even

greater in health care than in other complex domains that involve managing

engineered systems. For example, in aviation, pilots’ interaction with aircraft

usually yield predictable consequences with swift feedback, while in health care

the effects of clinicians’ treatment of patients is much less predictable with more

variable and sometimes delayed feedback about treatment success (Durso and

Drews 2010).

Given the vast differences between patient-provider communication, communi-

cation about health in the media, communication within health care organizations

between caregivers and non-caregivers, and communication between caregivers,

we focus our discussion on the communication between clinicians who are involved

in direct patient care. Despite the volume of research related to inter- and intra-

disciplinary communication in patient care, this work is often not theoretically-

based. For example, a recent systematic review of hand-off communication

research found that only 34 % of studies were guided by theoretical frameworks

(Abraham et al. 2014; also see Patterson and Wears 2010). Therefore, we will focus

on existing theoretical foundations that can inform research to address these key

challenges in health care that hold strong potential for improving the quality and

safety of patient care. In the next section, we describe information processing and

interactive theories of communication. We then summarize some important chal-

lenges related to communication in health care contexts and argue for the impor-

tance of communication theory for addressing these challenges.

3.2 Theories of Communication Relevant to Health Care

Several theoretical approaches help identify processes involved in health commu-

nication as well as factors that influence these processes and thus the success of

communication. In this section, we review approaches that have influenced research

about performance in complex domains such as aviation, and increasingly in

health care.
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3.2.1 Information Processing

A longstanding and fruitful approach assumes that communication can be explained

in part in terms of mental processes involved in information exchange by producing

and understanding messages. This approach has its origins in information theory,

developed by Shannon and Weaver (1949). They distinguished technical commu-

nication (how accurately information is encoded, transmitted by sending them

through a communication medium or channel, and decoded by interpreting the

coded message), semantic communication (how well these codes convey meaning)

and effectiveness (how well the message has the intended effect). Information

theory most directly addressed the technical level. The approach has been success-

ful in many ways, for example by guiding development of communication tech-

nology (e.g., speech synthesis and recognition systems) and explaining some

aspects of communication success such as reducing the impact of channel capacity,

noise, and related factors on speech comprehension (Wickens and Hollands 2000).

Health care as well as other domains have greatly benefited from these improve-

ments because of its reliance on many forms of voice communication (e.g., Inter-

active Voice Response systems, mobile phones, and dictation systems).

The information processing approach was elaborated during the cognitive rev-

olution in which the mind was understood metaphorically in terms of the computer,

and drawing upon linguistic theories of mental structures (Miller 2003). Commu-

nication was explained in terms of the cognitive processes required to produce and

understand linguistic messages, as well as the cognitive abilities and resources that

constrained these processes.

Speakers (or writers) generate ideas by activating concepts in long-term memory

and assembling these concepts (and associated words) into ideas (represented as

propositions) that are mapped onto syntactic structures to convey the ideas through

speech (Levelt 1989). Word access and propositional encoding processes involved

in speech planning are shaped by our cognitive architecture, such as the capacity of

working memory, which constrains how much conceptual context can be active at

one time, and thus the size of the planning unit, as revealed for example in patterns

of pausing when talking (Levelt 1989). To understand these messages, listeners

(readers) recognize spoken (printed) words, activate the corresponding lexical

codes and concepts in long-term memory, and integrate these concepts into prop-

ositions or idea units. Understanding extended discourse involves identifying

relationships among these ideas, often driven by identifying referents of

co-referring expressions and drawing on knowledge to identify temporal, causal,

and other relationships among the ideas (Kintsch 1998). Comprehension requires

more than assembling concepts into propositions: the network of propositions (the

textbase) must be interpreted in terms of what we know about the concepts in order

to develop a situation model, or representation of the described events and scenes

(Kintsch 1998; for application to issues of comprehension and knowledge repre-

sentation in the medical domain, see Arocha and Patel 1994; Patel et al. 2002).

Situation models may be concrete, reflecting our perceptual experience of the
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described situation (Zwaan and Taylor 2006), or more abstract, capturing the

essential ‘gist’ of the message (Reyna 2008). Understanding as well as producing

messages is constrained by limited cognitive resources. For example, readers tend

to pause at the end of clauses and sentences, presumably to wrap up conceptual

integration, so that the pattern of pausing when reading mirrors the pauses when

producing the message (Stine-Morrow and Miller 2009).

Individual differences in cognitive resources such as working memory capacity

help explain differences in successful communication. For example, age differ-

ences in comprehension of complex messages (e.g., conceptually dense text) often

reflect age-related differences in cognitive resources (Stine-Morrow and Miller

2009). Knowledge, on the other hand, can facilitate comprehension, reducing

need for effortful conceptual integration and inference processes (Kintsch 1998).

Age differences in comprehension are often reduced for texts that are organized to

match knowledge organization (Stine-Morrow and Miller 2009).

While the information processing approach has been successful both theoreti-

cally (supporting a large body of empirical research on language understanding and

production processes and how they are shaped by cognitive resources) and practi-

cally (e.g., spurring development of communication technology), it is incomplete as

an account of communication in complex domains. It is based on and guided by a

conduit metaphor of communication, which assumes communication depends on

how precisely linguistic codes match speaker ideas and how accurately listeners

decode these ideas, or how well they ‘take away’ the message (Reddy 1979). Thus,

the focus is more on participants’ processes and resources than on communication

medium, context, and purpose. Although this approach recognizes the importance

of pragmatic as well as semantic views of language (e.g., explaining message

effectiveness is an important goal of information theory), much of the work within

this framework focused on how people represent message meaning, more than on

the actions performed by speakers when using language; e.g., semantic rather than

pragmatic effects of discourse (Austin 1960).

3.2.1.1 Persuasion/Risk Communication

Other theories within this tradition focus on affective as well as cognitive processes

in communication, how these processes interact to influence addressees, and how

speakers design messages to influence addressee beliefs and actions. For example,

the elaboration-likelihood model argues that persuasive effects of messages depend

on both a direct route (addressee’s deliberative processing of message meaning) and

on peripheral routes (addressee’s responses to indirect, secondary aspects of the

message context) (Petty and Cacioppo 1986). This research addressed social psy-

chological problems related to attitude change, but the mechanisms presumed to

underlie persuasive effects of messages were similar to information processing

models of text processing. Similarly, cognitive models of risk communication

focus both on how addressees represent message meaning and how these represen-

tations interact with beliefs and domain knowledge in order to influence behavior.
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For example, mental model theory focuses on how to design messages to target

addressees’ conceptions of risk (Morgan et al. 2001). The fuzzy trace theory argues

that addressees can understand risk at both verbatim and gist-based levels, which

have different effects on decision making and action (Reyna 2008). A large body of

research that builds on such theories investigates how to leverage technology to

deliver health-related messages tailored to addressee characteristics (Kreuter and

Wray 2003).

3.2.2 Communication as Interaction

Interactive theories analyze how meaning emerges from coordination of speaker

and listener actions (“sense-making in the moment”), and how this activity is

influenced by constraints imposed by communication media and context and by

speakers’ and addressees’ cognitive resources. An important idea is that communi-

cative success depends on the interaction of participants’ cognitive resources, with
joint attention as a key resource. Therefore, interactive theories can be interpreted

within the framework of distributed cognition, which analyzes human performance,

including communication, as emerging from cognitive resources distributed across

social contexts such as conversational partners, and external contexts such as tools

(Hutchins 1995; a detailed description can be found in Chap. 2 in this volume).

3.2.2.1 Common Ground

Conversational partners communicate by coordinating cognitive effort in order to

construct meaning (Clark 1996). To do this, they ‘ground’ information, or agree that

the information is mutually understood and acceptable (accurate and relevant to

joint goals). Grounding rests on and contributes to shared situation models (Morrow

and Fischer 2013). In this view, speakers not only ensure that they are understood,

but collaborate with their addressees to create meaning. For example, speakers may

implicitly invite their addressees to co-construct their message by presenting an

intentionally ‘underdeveloped’ contribution, encouraging their addressees to help

specify the content. For example, a resident might say “I checked that patient.”,

prompting a nurse to complete the contribution “The one with edema?” “Right. It’s
down”. Speakers may also present a message they think is clear, but the addressee’s
request for clarification reveals that it is undeveloped (Clark 1996; Coiera 2000).

Thus, ongoing feedback is essential to communication. For example, stories are

more understandable when speakers receive immediate feedback from their

addressees (Bavelas et al. 2000).

Communication depends on joint or collaborative effort, as well as the individ-

ual effort involved in producing and understanding messages (Clark 1996; Coiera

2000). Developing common ground itself requires effort. Pre-emptive grounding

involves devoting effort ahead of time to develop shared knowledge about the
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message domain, communication strategies, and other aspects of communication

(Coiera 2000). The upfront work involved in pre-emptive grounding facilitates

communication as it occurs (e.g., little cost to grounding during communication).

For example, aviation communication depends heavily on shared knowledge about

aviation concepts, terminology, and communication procedures that is acquired by

Air Traffic Controllers and pilots as part of their professional training. This shared

knowledge enables rapid and efficient communication during flight operations

(Morrow and Fischer 2013). Similarly, in health care, two providers may discuss

patients before a formal hand-off in order to expedite the later conversation. Just-in-

time grounding, on the other hand, involves devoting effort during, rather than

before, communication. In this case, partners share less knowledge about the

domain and/or the conventions of communication, and so must devote more effort

‘on the fly’ during communication (Coiera 2000). For example, communication

between domain experts and novices or between experts from different subdomains

(e.g., physicians and nurses) often requires partners to be more explicit, devoting

more effort to ground contributions.

Common ground theory helps to refine the view of how cognitive resources

constrain communication. Speakers initiate contributions by getting their

addressee’s attention using verbal or nonverbal (e.g., gestures) cues. They then

present messages that are designed to be understood based on common ground

(shared knowledge of the language, cultural context, as well as more specific

concepts that are relevant based on the prior discourse and context of communica-

tion). Listeners not only understand the message (which involves activating and

integrating concepts, as described above), but also signal to the speaker that they do

or do not understand. In the latter case, they may implicitly (e.g., puzzled expres-

sion) or explicitly request clarification. The speaker and addressee accept the

message as mutually understood, so that the contribution enters common ground.

These phases typically overlap: speakers often initiate contributions by presenting

messages, and listeners often signal acceptance by responding to the message with a

relevant contribution (Clark 1996).

Interactive approaches emphasize that communication depends on partners’
collaborative or joint effort. For example, Air Traffic Controllers communicate

by radio with many aircraft in the same air space in order to manage the flow of

traffic. They may try to reduce their own effort by presenting one long, rapidly

delivered message to a pilot rather than breaking it into several shorter messages

that require more radio time and complicates the task of talking to multiple pilots on

a single radio line. However, this strategy may increase the addressed pilot’s effort
involved in understanding and accepting the long message (by ‘reading back’ or
repeating key concepts from the message in order to demonstrate understanding and

help establish common ground). It also increases the likelihood that the pilot

misunderstands and requests clarification or that the pilot does not explicitly accept

the message at all (responding with minimal or no acknowledgement). The con-

troller in turn must spend more radio time in order to ‘close the communication

loop’ by clarifying their message and seeking confirmation that the pilot under-

stood. The upshot is increased collaborative effort (Morrow et al. 1994). In health
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care, outgoing ICU nurses who hand off patients to incoming nurses may

overestimate common ground when the incoming nurses are already familiar with

the patients, so that they present overly abbreviated reports. This strategy mini-

mizes their own effort involved in hand-offs, but at the expense of the incoming

nurse who is likely to misunderstand and to request clarification, resulting in

increased collaborative effort (Carroll et al. 2012). In short, successful communi-

cation depends on partners’ ability to coordinate contributions through shared

attention and collaborative effort. Such communication problems in turn contribute

to adverse events that reduce patient safety (The Joint Commission 2005).

3.2.2.2 Common Ground and HCI in Health Care

Common ground theory (and distributed cognition theories more generally) is

important for identifying factors that influence communication in health care

settings, which depends heavily on technology and is often distributed over space

(synchronous remote) and time (asynchronous remote), as well as occurring face-

to-face. Next, we consider how collaborative effort and communication success

depend on resources related to communication media, participants (e.g., cognition),

and health care tasks. We also consider the role of technology as an external

resource that shapes communication.

Communication Media

Media differ in terms of the opportunities they afford for, and constraints they

impose on, establishing common ground (Clark and Brennan 1991; Monk 2008). In

face-to-face communication, partners are co-present and typically see and hear each

other as well as the referent situation. They can use nonverbal (gesture and facial

expression) as well as verbal resources in order to coordinate attention on linguistic

information as well as the nonlinguistic context when presenting and accepting

messages. Communication can be efficient, with less need for elaborate verbal

description compared to other media (Convertino et al. 2008; Gergle et al. 2004).

Turn-taking is rapid, with messages received almost as they are produced

(contemporality), the possibility of signaling that a message is understood as it is

presented (simultaneity), and the order of contributions easily determined

(sequentiality) (Clark and Brennan 1991). Face-to-face communication is espe-

cially suited for coordinating to accomplish joint tasks such as performing surgery.

Nonverbal cues are also critical for conveying emotion, which is important for

provider-patient communication. For example, provider communication behaviors

such as leaning toward the patient and using facial expressions that convey concern

predict patient satisfaction (Ambady et al. 2002).

Face-to-face communication also has drawbacks. Communication at work is

often complex, with partners having to keep track of interacting topics or conver-

sational threads. This complexity requires partners to easily access concepts from
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prior discourse (reviewability) and revise contributions in light of the evolving

discourse (revisability) (Clark and Brennan 1991). The transient nature of speech

complicates comprehension of complex messages because of listeners’ working
memory limits. More generally, the time pressure of face-to-face communication

may preclude the deliberation needed to craft complex messages, as well as to

understand them.

Other media may impose more constraints on communication, providing fewer

resources for grounding. Synchronous communication with partners at different

locations (e.g., telephone), like face-to-face communication, allows rapid turn-

taking, contemporality, and simultaneity that support grounding (e.g., immediately

indicating and repairing comprehension problems), but eliminates visual cues

(unless using videophone), which can increase collaborative effort involved in

accepting contributions (Clark and Brennan 1991). Synchronous remote commu-

nication has become pervasive with mobile phone technology. When partners are

not visually co-present, this medium may increase overall workload because

speakers cannot modulate their communication as required by listener context. A

good example comes from driver distraction research. Driver-passenger conversa-

tion is less likely to disrupt driving (e.g., lane control; likelihood of seeing highway

exit) compared to cell phone conversation, in part because driver and passenger are

co-present and the passenger can modulate their talk as required by the situation

(Drews et al. 2008). Texting, like online chat, is similar to synchronous remote

communication because proficient texters use compressed language that allows

rapid turn-taking, although this medium does not allow contemporality. Texting

also eliminates auditory (e.g., speech prosody) cues for grounding and affective

messages, which may be remediated in part by innovative use of punctuation and

other symbols that convey affect. Texting also provides a record of the message,

which supports reviewability.

Grounding can be even more challenging for asynchronous remote communi-

cation such as email, which lacks contemporality, simultaneity, and sometimes

sequentiality. More effort is needed to produce messages (typing vs speaking),

which influences individual and collaborative effort involved in grounding. Asyn-

chronous voice communication (such as exchanging pre-recorded messages) is

often less effective than synchronous communication (telephone conversation).

For example, introducing an EHR system in an Emergency Department may

increase the use of EHR-based emails between nurses and physicians about patient

treatment plans, which reduces face-to-face communication that helps to clarify and

elaborate shared treatment plans. On the other hand, email supports message

reviewability and revisability and affords time for deliberation, which may result

in more comprehensive and understandable messages (Olson and Olson 2007).

Communication Media and Tasks

The effects of media-related constraints depend on the tasks that people communi-

cate about (Zigurs and Buckland 1998). For example, remote communication may
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be more appropriate for tasks that hinge on message reviewability and revisability,

such as integrating multiple sources of complex information in order to diagnose an

illness or troubleshoot a problem. Face-to-face or synchronous remote media may

be more effective for tasks requiring frequent interaction to accomplish goals or to

resolve conflicting goals (negotiation, persuasion). For example, an unstable ICU

patient receiving provisional treatment that requires close monitoring would be

better served by a face-to-face nurse handoff rather than an asynchronous handoff

based on a phone message from the outgoing nurse.

Participant Resources

While information processing theories focus on speaker and listener cognitive

resources (e.g., attention, working memory) needed to produce and understand

messages, interactive theories emphasize that resources are also essential for

grounding contributions to build a shared situation model, so that communication

success depends on collaborative effort. For example, speakers with fewer cogni-

tive resources, either because of long-term effects such as aging or short-term

effects such as fatigue or distraction, may take more short-cuts when producing

messages (resulting in more elliptical or vague messages) potentially complicating

message comprehension and grounding. Conversely, listeners with fewer resources

are less likely to explicitly acknowledge contributions, providing less evidence for

comprehension and undermining grounding. Older adults with fewer cognitive

resources may be less adept at tailoring message presentation to listeners based

on common ground (Horton and Spieler 2007). On the other hand, shared knowl-

edge about language, the discourse topic, and other aspects of communication can

reduce effort and support grounding. This knowledge arises from partner familiarity

and membership in a variety of linguistic/cultural communities and includes social

norms and conversational conventions (Clark 1996). Partners who share knowledge

about the discourse topic more quickly establish co-reference (Isaacs and Clark

1987) and more effectively perform joint tasks by coordinating attention to key

information (Richardson et al. 2007), suggesting knowledge reduces collaborative

effort. Shared knowledge may also support retrieval of previously mentioned

information (Ericsson and Kintsch 1995). These benefits may explain why experts

benefit more than novices from collaboration (compared to working alone) when

recalling and acting on domain-relevant information (Meade et al. 2009).

Technology and Communication

Technology shapes communication in many ways, especially by expanding the

repertoire of media options that create new communication opportunities and

constraints. In complex environments such as hospitals, where work is typically

done by multiple distributed and interacting teams, technology provides many

options for remote communication, both synchronous (chat, texting, videophone,
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electronic status boards) and asynchronous (voicemail, email, clinical messaging

in EHRs).

Technology, broadly considered as “cognitive artifacts,” includes paper-based

tools such as notes or whiteboards (Hutchins 1995; Nemeth et al. 2004). Distributed

cognition theories analyze how artifacts, a pervasive part of work environments,

reduce the need for mental computation, memory search, and other effortful

cognitive processes involved in producing and understanding messages. They can

support grounding by providing easily shared external referents that reduce need for

explicit description (Monk 2008). They also support reviewability in face-to-face

communication (Gergle et al. 2004) and visibility in synchronous remote commu-

nication such as teleconferencing because speakers can gesture to guide attention to

information on the tool (Monk 2008; Whittaker et al. 1993). They especially benefit

older adults by reducing demands of speech production and comprehension on

cognitive resources (Morrow et al. 2003).

However, it is important to note that the benefits of technology-based tools can

be overestimated. For example, using video-conferencing or other technology to

distribute information to remote team members does not in itself ensure that people

work together to effectively ground and act on this information. More generally,

such technology may tempt us to distribute large amounts of information to as many

people as possible. This strategy may undermine communication and reduce safety

if information distribution is not guided by strategies to manage joint attention to

the information that is most relevant within an evolving mental model organized

around shared goals.

There is much interest in designing health information technology that flexibly

supports a range of communication and task goals in different workflow situations.

An important challenge for communication theory and research is to understand

and predict strengths and limitations of different communication media and tools in

complex environments such as the ICU or primary care clinics. This requires

integrating theories that identify how participant-related and media-related

resources interact with tasks to influence work, with macro analysis of work

processes in organizations. Macro-level theories focus on how system-level out-

comes such as safety and efficiency emerge from the interaction of system levels,

e.g., individuals interacting with devices in the context of teams, management,

organizational policies and practices (Carayon et al. 2013; Kaufman et al. 2014).

Such an approach would analyze communication in organizations, with

technology-related factors at different system levels interacting to influence com-

munication between dyads, teams, etc.

Another communication issue that becomes increasingly important as clinicians

routinely collaborate with technology, rather than using technology to collaborate

with each other, is how common ground is established between people and tech-

nology. People tend to take a ‘social stance’ toward technology and treat it as a

communication partner (Reeves and Nass 1996). In addition, technology must be

able to reciprocate by building up and acting on common ground with their human

partners. This requires technology to update and reason from a model of the user’s
context during communication (Coiera 2000). A simple example comes from the
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literature on automated tutoring systems, which are most effective when providing

prompts that scaffold student learning based on a model of the student’s current
state of knowledge about the target domain.

3.3 Key Challenges for Health Care Communication

3.3.1 The High Cognitive Demands Associated
with Biological Complexity

Health care is an information intensive domain that includes knowledge of normal

and abnormal physiology, pharmacology, multiple treatment options and health

specialties, health system and organizational infrastructure, a high volume of new

clinical evidence, and longitudinal information about patients, families and their

communities. Delivering care to patients and communicating about care is therefore

a highly complex endeavor characterized by both uncertain responses to treatment

interventions and changing patient conditions (Glouberman and Mintzberg 2001).

For acutely ill patients, each change in their condition requires the clinicians to

reorganize and reinterpret multiple sources of data (e.g., lab values, physical exam,

vital signs and patient’s subjective responses) to inform their next decision (Coiera

and Tombs 1998; Collins et al. 2007; Edwards et al. 2009; Grundgeiger and

Sanderson 2009; Tucker and Spear 2006), which further increases cognitive

demands. Thus the potential for information overload and its associated safety

implications is very high (Beasley et al. 2011).

The cognitive complexity of health care both reflects, and in turn contributes to,

the need to perform multiple, interleaved tasks that result in pervasive interruptions

(Coiera and Tombs 1998; Collins et al. 2007). Interruptions increase clinicians’
cognitive load because of the need to recall the interrupted tasks, introducing risk

for confusion and error (Tucker and Spear 2006) and for forgetting critical tasks

(Collins et al. 2007). Interruptions also increase the complexity of communication,

making it more vulnerable to error during hand-offs (Behara et al. 2005), when

caring for patients in ICUs (Grundgeiger and Sanderson 2009), and in many other

clinical tasks. Cognitive load can be exacerbated by poorly designed information

displays and electronic interfaces that fragment, rather than integrate, information

needed to perform multiple tasks, which can increase the frequency and conse-

quences of interruption. A multi-site study of EHRs found that health care workers

waste much time sifting through multiple sources of the information to get a true

picture of a patient’s situation, which is needed for effective communication (Stead

and Lin 2009). Similarly, a study of intensive care nurses found that information

needed to perform many of the common nursing tasks were inaccessible, difficult to

see, and/or located in multiple displays (Koch et al. 2012). In sum, problems

associated with cognitive demands in health care have important implications for

communication and lead to ineffective decision making, important tasks left
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undone and high potential for error. These implications are more easily seen when

communication is analyzed as emerging from, as well as contributing to, clinical

workflow (Kaufman et al. 2014).

Interactive theories of communication are essential for explaining how cognitive

and communication complexity reduces work efficiency and safety, which in turn

provides a foundation for improving communication. For example, the need to

switch topics when discussing patient care, or to interleave communication with

other clinical tasks, complicates processes involved in grounding information and

developing a shared mental model of the task. In face-to-face communication,

speakers may truncate contributions or listeners may fail to acknowledge these

contributions in an attempt to manage their own workload, which ends up increas-

ing the collaborative workload involved in effective communication, or increasing

the chance of inaccurate or incomplete communication that undermines patient

care. The impact of interruption on these grounding processes may be greater for

remote (e.g., telephone) communication because speakers and listeners do not share

a visual context, and therefore cannot modulate communication to accommodate

each other’s workload. Given the high cognitive demands in health care and its

relationship to quality and safety in health care, the application of information

processing and interactive theories can aid in the design of tools to help clinicians

manage the demands of communication during complex work. For example, large

electronic status boards in ICUs or other environments in which multiple clinicians

must coordinate care can support the ability to jointly attend to critical information,

a pre-requisite for grounding information to develop a shared mental model that

supports team performance. Tools that allow communication partners to electron-

ically share and update care plans can also support grounding during asynchronous

remote communication. For example, electronic checklists that saliently indicate

the currently performed subtask can remind clinicians where they left off in a task

when they are interrupted.

3.3.2 The Pervasive Nature of Interdisciplinary Work

The promotion of health and treatment of illness often involves multiple members

of a health care team. Ambulatory patient care is most often led by a “team” of

clinicians from the medical or nursing discipline. Hospitalized patients also require

the care of several health disciplines including medicine, nursing and pharmacy. In

both ambulatory and hospitalized patients, the complexity and acuity of the

patient’s condition is often reflected by the number of disciplines involved in

their care, which may also require one or more medical subspecialties (e.g.,

cardiology, endocrinology, hematology) as well as a combination of care from

other disciplines such as physical, occupational and or respiratory therapy, dietary

counseling, pharmacy and social service. This means that the most complex

patients are more likely to have complex interdisciplinary teams that must commu-

nicate effectively in order to coordinate care by performing interdependent tasks.
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Moreover, although members of the “team” have different roles, there is increas-

ingly blurred boundaries between some disciplines that have overlapping expertise

(Kilpatrick et al. 2012). Finally, because many patients have multiple chronic

illnesses, this type of interdisciplinary work is pervasive in our health care system.

Unfortunately, the term “team” in health care often does not mean that the group

involved in care effectively communicates, collaborates, and coordinates care

together based on shared mental models and goals (Schoen et al. 2011). Despite

calls for teamwork (Corrigan 2005; Kohn et al. 2000) and significant research to

improve teamwork in healthcare (McCulloch et al. 2011), there are multiple

barriers to effective teamwork (Rosen and Pronovost 2012). In practice, team

members often partake in silo-ed work on the patient’s behalf, sharing information

passively through the health record or reactively interrupting a “team” member’s
work when there is an urgent need (Coiera and Tombs 1998; Stoller 2013). When

“team” members have the opportunity to communicate, many clinicians favor face-

to-face communication, perhaps because this medium affords rapid turn-taking and

a wealth of nonverbal as well as verbal cues that support interpretation and

grounding of information (Williams et al. 2007). However, this practice is chal-

lenged because the “team” members often work in geo-physically separate places

(Dunn Lopez and Whelan 2009; Weller et al. 2014) and may work only temporarily

together on a single patient during hospitalization or during the course of an illness.

In addition, the composition of hospital teams are subject to frequent, sometimes

daily, changes due to limitations in duty hours, changing schedules, and personnel

rotations.

For ambulatory patients with chronic conditions, the “team” may be formed over

longer periods of time, but may be assembled by the patient, such that the same

team members, including different disciplines and subspecialists, may only have

one patient in common. Another challenge of patient-assembled teams is that team

members may work in different organizations with different medical record sys-

tems that do not readily share information across settings. Finally, ambulatory

schedules are generally clinician-driven with little to no time for synchronous

collaborative discussions.

Inadequate communication between health care team members can harm

patients. For example, hospital resident physicians who experience communication

problems with nurses report a greater number of serious medical errors and adverse

patient outcomes than residents who did not report poor communication episodes

with nurses (Baldwin and Daugherty 2008). Less frequent sharing of information in

surgical patients has been shown to double the risk of post-operative complication

rates (Mazzocco et al. 2009), perhaps because it is more difficult to develop shared

accurate mental models of the task that enable cross-monitoring and other collab-

orative processes required for successful performance (Xiao et al. 2013).

Although more research on interdisciplinary teamwork is needed, there are some

examples of positive outcomes related to teamwork training or interventions.

Interventions to promote shared goals have been shown to reduce post-operative

complication rates (Haynes et al. 2011). Improved delivery of care may reflect the

use of tools (e.g., checklists) and explicit communication procedures that help team
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members from different disciplines coordinate their attention on critical informa-

tion, reducing the collaborative effort required to update a shared mental model of

the task at hand. However, effective use of checklists can sometimes itself require

coordination that adds complexity to joint work (Drews 2013). Such tools are more

effective when integrated with communication procedures (Gawande 2011). Spe-

cialized teams in hospitals with shared goals, training and tools, and that work

together over time (e.g., rapid response teams) have been shown to improve some

teamwork processes (Mackintosh et al. 2012).

3.3.3 Discipline-Specific Terminologies and Taxonomies

Given that interdisciplinary work is pervasive in health care, it is somewhat

surprising that each discipline uses specific and different terminologies and taxon-

omies, which contributes to the challenge of effectively communicating and coor-

dinating across disciplines. Some of these differences relate to discipline-specific

knowledge, traditions, and education and training practices. Clinicians from differ-

ent disciplines may interpret the same information differently or make different

assumptions about which information is most relevant, reflecting these differences.

For example, nurses and physicians (Johnson and Turley 2006) and even physicians

from different subspecialties (Hashem et al. 2003) tend to interpret the same patient

information differently. There is also a lack of history of interaction among team

members that can create barriers to developing shared mental models because of

limited shared experience related to communication conventions, and knowledge.

In other words, there is less opportunity for pre-emptive grounding that would

reduce effort during communication (Coiera 2000). Furthermore, each discipline

focuses on interrelated but different information and aspects of patient care

(DiEugenio et al. 2013). This has been demonstrated through natural language

processing of nursing and physician discharge notes that revealed minimal overlap

in terms mapped to similar or related concepts between nurses and physicians

caring for the same patients (DiEugenio et al. 2013). Therefore, given that knowl-

edge guides attention to and decisions about relevant information in complex

situations, these knowledge and linguistic differences between disciplines can

undermine grounding processes, making communication challenging unless it is

very explicit, which may be too inefficient when health care work is demanding and

urgent.

3.3.4 Rapid Diffusion of Health Information Technologies

Communication technologies are important for addressing some of these chal-

lenges, particularly the need for frequent interdisciplinary communication. These

technologies allow rapid exchange of, and negotiation about, information among
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team members that address the challenges of both interdependence and uncertainty.

While many clinicians favor face-to-face communication (Williams et al. 2007),

this is often not possible in health care where individual work is highly mobile

(Welton et al. 2006). Physicians in hospitals often divide their time among several

units, resulting in limited direct contact with individual nurses throughout the day

(Dunn Lopez 2008). In addition, to promote patient privacy, interaction with

patients is most often in individual rooms such that clinician team members may

be geo-physically close to each other, but unaware of their proximity, which would

offer opportunity for care coordination discussions. As mentioned above, technol-

ogies such as EHR systems may reinforce discipline-based practices rather than

bridge discipline-based differences in order to support coordinated care (Stoller

2013).

Recent research indicates that nurses and physicians use a variety of different

types of communication technology in hospitals. Nurses and physicians reported

believing that the exchange of patient information by email improves the speed and

reliability of information exchange and results in faster and safer care (O’Connor
et al. 2009). Nurses and physicians also agreed that text messaging, email, and

electronic “tasking” (notification of tasks that need to be completed) help ensure

that patient care tasks are not left undone and can improve efficiency (O’Malley

et al. 2010). Both physician and nurse workflows were improved in an evaluation

study of a web-based tool that triaged pages for physicians (Locke et al. 2009). In

another study, wireless alerts to residents helped them prioritize their work and

promote quicker response times (Reddy et al. 2005). A less commonly used hands-

free wearable communication device was found to support efficient communication

that improved overall workflow (Richardson and Ash 2010).

Although there is some evidence for benefits of communication technologies,

there are also unintended consequences that promote errors and inefficiency (Ash

et al. 2007, 2009; a detailed description regarding the role of unintended conse-

quences in health care environments can be found in Chap. 11). Communication

technologies have rapidly diffused into health care from other domains. There is a

need for theoretically-based and empirically-derived guidelines to determine which

technologies are most effective in differing clinical situations. Traditionally, clini-

cians have relied on synchronous communication modes such as face-to-face or

telephone that occur in real-time (Coiera and Tombs 1998) and are perceived by

many to offer more complete information transfer (Williams et al. 2007). While

these modes offer many resources for grounding information in order to develop

shared mental models that support collaboration (e.g., nonverbal as well as verbal

cues, rapid turn-taking), synchronous communication in the fast-paced, multi-task

health care domain can also be interruptive, inefficient, and distracting, which can

increase cognitive workload, miscommunication, and risk for error (Coiera 2006;

Coiera and Tombs 1998; Collins et al. 2007; Karsh et al. 2006; Tucker and Spear

2006). More recently, asynchronous modes (transmit messages to be received at a

later time) are increasingly used. These include email and texting, and are less

interruptive and more appropriate for non-urgent clinical matters (Coiera and

Tombs 1998; also refer to Chaps. 10 and 13 in this volume). However, these
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asynchronous modes may also pose threats to patient safety, including uncertain

delivery, texts sent to the wrong person (Wong et al. 2009), missed messages, and

delays in transmission (O’Malley et al. 2010; Varpio et al. 2009). These media also

narrow the range of information that can be easily communicated (e.g., affective as

well as cognitive meaning). Tasks that require negotiation, such as consults to

interpret complex and uncertain patient information in order to come to a diagnosis,

may be especially vulnerable to such asynchronous communication. However, to

the extent that technologies such as texting preserve aspects of face-to-face com-

munication such as rapid turn-taking, they may combine flexibility of this commu-

nication while avoiding some drawbacks, such as limited message reviewability

and revisability.

3.3.5 Frequent Complete Transfer of Responsibility Within
Disciplines

The round-the-clock nature of health care makes it unsafe for individual clinicians

to provide care every hour of every day. For this reason, patient care in acute

settings is regularly and frequently (2–3 times per day for hospitalized patients)

transferred between clinicians. This is commonly referred to as a “handoff”,

indicating that the responsibility and authority for care is transferred to another

individual of the same discipline. These transitions are conducted between two

people or in groups using a variety of communication media, including face-to-

face, telephone, audio recording or electronic tools. They present a vulnerable time

period for patient care (Arora et al. 2008) for a variety of reasons, including the fact

that they often occur in noisy environments with frequent interruptions (Kitch

et al. 2008). Communication problems during handoffs, including omission of

key information, occur frequently and lead to redundant work, missed care, delays

in diagnosis and treatment, and medical errors such as near misses and sentinel

events (Horwitz et al. 2008).

Clinicians often prefer face-to-face handoffs, in part because of the rich nonver-

bal as well as verbal resources for grounding information. However, handoffs

require communicating large amounts of patient information, which can hamper

face-to-face communication because transient speech limits the ability to revise and

review this complex information (Morrow and Fischer 2013). Multiple efforts to

improve the quality of handoffs, in part by reducing demands on memory, include

low tech memory aids such as mnemonics, checklists, or paper templates (Gogan

et al. 2013). More recently, electronic handoff tools have emerged (Abraham

et al. 2014; Anderson et al. 2010; Bernstein et al. 2010; Keenan et al. 2005; Van

Eaton et al. 2004). These tools, when integrated into the electronic health record,

may decrease clinical workload if information needed for handoff is incorporated in

an automated manner into a handoff template.
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Theories that articulate the impact of communication media and participant

constraints guide analysis of how these support tools can improve or impair handoff

communication. For example, electronic tools may impair communication accu-

racy and reduce the ability of incoming clinicians to assume responsibility for

patient care to the extent they reduce the interactive synchronous communication

needed to successfully ground information and negotiate shared goals. Moreover,

some important functions of handoffs, such as discovering patient care errors when

incoming clinicians review information, may be eliminated to the extent electronic

tools reduce interaction during handoffs (Staggers and Blaz 2013).

3.4 Conclusion

Communication in the clinical environment has played a key role in health care for

several decades. Over time, its importance has increased given the number of health

care providers from many disciplines, specialties and sub-specialties working

interdependently to provide discipline-specific care to patients. This importance is

also reflected in the evidence that miscommunication often contributes to patient

care errors and inefficiency. In response, there is increased attention on health care

communication as a means to minimize inefficient and unsafe care related to poor

communication processes. For example, it is hoped that the use of technology to

increase the speed of information transfer and access to real time information

among team members will reduce delays in care and shorten hospital stays,

potentially saving substantial costs. However, because there are drawbacks as

well as benefits to any technology, research is needed to evaluate the effects of

clinical communication technologies.

With the crisis in health care costs in the United States, attention to the field of

health care communication extends beyond academics to regulators. The Joint

Commission has required implementation of a standardized handoff method since

2006, giving rise to the design and testing of tools for handoff communication

(Agency for Healthcare Quality and Research 2012). To meet this requirement,

many hospitals implemented measures that were not theoretically based. More

recently, The Center for Medicare and Medicaid Services introduced significant

financial incentives to implement electronic health records, with some of the

emphasis on clinical communication and communication with patients (DesRoches

et al. 2013). Again, the design, implementation, and evaluation of these tools are

not often guided by communication theories.

In this chapter, we pointed out the need for, and value of, leveraging theories to

guide research on communication in complex health care settings. These theories

identify important characteristics of communication situations (e.g., media, partic-

ipants, context) likely to impact the success of communication, as well as the

processes underlying communication, which help explain why communication

fails in particular situations. Such analyses in turn can guide development of design

and training approaches to improve communication in clinical environments. These

3 Theoretical Foundations for Health Communication Research and Practice 51



theories are especially important for explaining effects of technology on commu-

nication and delivery of patient care, and for anticipating potential effects of new

technologies before they are implemented. Theories that have been most frequently

applied to the health domain often derive from analysis of conversation (typically

between two people; Clark 1996; see Monk 2008 for extensions to health care

technology) and are used to analyze processes underlying exchange of information

between patients and providers or between incoming and outgoing clinicians during

handoffs (Abraham et al. 2013). An important challenge is to integrate such theories

with more macro-level system theories in order to analyze processes and represen-

tations involved in communication among networks of people and technologies that

coordinate to accomplish complex patient care tasks.

Discussion Questions

1. What are the key challenges to clinical communication?

2. What are the concepts and theories that can be applied to communication in

healthcare?
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Chapter 4

A New Socio-technical Model for Studying

Health Information Technology in Complex

Adaptive Healthcare Systems

Dean F. Sittig and Hardeep Singh

4.1 Introduction

The promise of health information technology (HIT) is safer, more efficient, and

more effective healthcare systems. HIT (including electronic health records

[EHRs]) has potential to improve care by reducing preventable errors, assisting

healthcare providers with clinical decision-making, and enabling rapid communi-

cation among members of healthcare teams. In reality, implementation of HIT

comes with innumerable challenges. Some of these challenges are foreseeable

(e.g., maintaining safe and effective clinical operations during a transition between

record systems). However, many others are unanticipated; examples include

increased provider burden, inconsistent (or improper) user behavior, problems

with interactions between systems, and errors in clinical content or function.

Despite some successes, to date the realized benefits of HIT have fallen short of

expectations. Hindsight suggests that many unintended consequences of HIT
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implementation are actually due to a lack of consideration of one or more facets of

the systems into which HIT is introduced.

Implicit in some approaches to HIT implementation is the idea that new tech-

nologies are themselves the drivers of change and it is the responsibility of people

and organizations to adapt to them. In contrast, socio-technical approaches posit

that technologies operate within social and organizational contexts that are insep-

arable from the presence or influence of the technologies themselves. Such

approaches have gained a foothold in research in the fields of organizational

development and information systems, and have recently been applied specifically

to the study of HIT.

An ongoing challenge to the design, development, implementation, and evalu-

ation of HIT interventions is to operationalize their use within the complex adaptive

healthcare system that consists of high-pressured, fast-paced, and distributed set-

tings of care delivery. Given the dearth of models that are specifically designed to

address safe and effective HIT development and use, we have developed a com-

prehensive, socio-technical model that provides a multidimensional framework

within which any HIT innovation, intervention, application, or device implemented

within a complex adaptive healthcare system can be studied. This model builds

upon and bridges previous frameworks, and is further informed by our own work to

study the safe and effective implementation and use of HIT interventions. In this

chapter, we describe the conceptual foundations of our model and provide several

examples of its utility for studying HIT interventions within real-world clinical

contexts.

4.2 Background

Previous analyses of HIT interventions have been limited by a lack of conceptual

models that have been specifically developed for this purpose. Examples of models

previously applied by HIT investigators include:

• Rogers’ diffusion of innovations theory (Rogers 2003), which has been used to

help explain why some HIT innovations succeed while others fail (Ash 1997;

Gosling et al. 2003). It outlines five characteristics that affect the likelihood that

a particular innovation will be accepted: (1) relative advantage – how much

“better” the new technology is compared to what it replaces; (2) compatibility –

the extent to which the new technology is consistent with existing values,

beliefs, previous experience, and current needs; (3) complexity – the level of

difficulty involved in learning and using the new technology; (4) trialability – the

feasibility of experimenting with the new technology; and (5) observability – the

visibility of improvements resulting from the innovation. Unfortunately, none of

these five characteristics address the design, development, or evaluation of HIT,

nor the complexities involved in iteratively refining new technologies.
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• Venkatesh’s unified theory of acceptance and use of technology (UTAUT)

(Venkatesh et al. 2003; Holden and Karsh 2010; Duyck et al. 2008; Kijsanayotin

et al. 2009) synthesizes components of eight different models to describe

determinants of users’ acceptance of new technologies. The UTAUT model

provides a powerful tool for HIT developers and implementers who face chal-

lenges in assessing whether a new technology intervention will succeed. It can

also help them to understand what drives acceptance, and how to design and

implement new interventions (e.g., novel training, marketing, or implementation

methods) aimed at those who are less likely to use new systems successfully.

However, this model fails to address any specific features or functions of HIT

interventions; rather, it focuses solely on the users’ reactions to these

interventions.

• Hutchins’ theory of distributed cognition (Hutchins 1996) identifies three key

principles of cognitive processes, specifically that they are often distributed:

(1) among members of a work team; (2) between internal human thought

processes and items in the external physical world (e.g., on the computer screen

or written notes); and (3) across time (i.e., later events are dependent on earlier

events). Recently (Hazlehurst et al. 2003, 2007; Cohen et al. 2006; Patel

et al. 2008), distributed cognition has been applied to study the design and

utilization of HIT with a focus on how the combined human-HIT activity system

can be improved. However, this theory does not explicitly include the specific

technical details of the HIT system that we believe are critical to future success

of HIT.

• Reason’s Swiss Cheese Model (Reason 2000; van der Sijs et al. 2006; Lederman

and Parkes 2005) describes a systematic approach to error reduction that relies

on various defenses that improve the safety and effectiveness of the healthcare

system. These defenses can be engineered into the HIT (examples include

automated alerts, default values, or terminal placement). Errors may result

from holes in these defenses due to active failures and/or latent conditions

such as poorly trained individuals or inadequate policies and procedures.

Although this model provides an excellent view of how errors might occur

despite state-of-the-art HIT, it does not address specific aspects of the hardware,

software, content or user interfaces of these systems.

• Norman’s 7-step human-computer interaction model (Norman 1988; Malhotra

et al. 2007; Sheehan et al. 2009) addresses one key element of any HIT system –

the process by which a user interacts with a computer application. This model is

very powerful for analyzing individuals as they interact with a computer.

However, it does not explain the role of the hardware or software, or how the

application fits into the user’s larger workflow and organizational context.

Although all of these models account for one or more important facets of technol-

ogy implementation, we believe that the scope of each model limits its utility to

address the full range of factors that should be considered in the design, develop-

ment, implementation, use, and evaluation of HIT interventions. For example, these

models were not specifically designed to address the complex relationships between
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the HIT hardware, software, information content, and the human-computer inter-

face. Furthermore, while most of these models provide general guidance to study

the high-level aspects of HIT implementation within a given clinical environment,

none of them include a measurement and monitoring infrastructure (e.g., methods

to routinely collect data, create or review reports, or conduct surveillance of out-

comes). Based on these limitations, our aim was to develop a more comprehensive

model to integrate specific technological and measurement dimensions of HIT with

other socio-technical dimensions (e.g., people, workflow, communication, organi-

zational policies, external rules and regulations).

Four related socio-technical models have been particularly influential in provid-

ing the foundation of our proposed model. First, Henriksen’s model focuses on the

capabilities of the people involved in the complexity of the work, but does not delve

into the technical characteristics of the hardware or software in use. Specifically, it

addresses (1) individual provider characteristics; (2) the nature or complexity of the

work or task performed; (3) the physical environment where care takes place;

(4) the human-system interfaces involved; and (5) various characteristics of the

organization (social, environment, and management) (Henriksen et al. 1993). Sec-

ond, Vincent’s 1998 framework for analyzing risk and safety proposes a hierarchy

of patient, work, and environmental factors that can potentially influence clinical

practice (Vincent et al. 1998), but fails to recognize the emerging role of computer-

based systems that are now common in most healthcare settings. Third, Carayon’s
Systems Engineering Initiative for Patient Safety (SEIPS) model (Carayon

et al. 2006) identifies three domains: (1) characteristics of providers, their tools

and resources, and the physical/organizational setting; (2) interpersonal and tech-

nical aspects of healthcare activities; and (3) change in the patient’s health status or
behavior. Again, their model does an excellent job of characterizing the key actors

and aspects of the healthcare work system, but falls short in its attention to the

internal and external characteristics of the hardware and software that govern the

human-computer interactions with the “technical” portion of their model. Finally,

Harrison et al.’s Interactive Socio-technical Analysis (ISTA) framework provides

an excellent broad overview of the complex, emergent interrelationships between

HIT, clinicians, and workflows within any healthcare system (Harrison et al. 2007),

but fails in its modelling of the specific aspects of the HIT (e.g., hardware config-

uration, clinical content available, aspects of the user interface, etc.) that play key

roles in both the successes and failures within these complex interrelationships.

While these socio-technical models include a “technology” component, they fall

short in their ability to break down the “technology” into its key components to

enable researchers to dissect and better understand the causes, or at least the

reasoning, that led to specific decisions related to particular HIT implementation

or use problems, or to help identify specific technology-related solutions or areas

for improvement. We have found that many HIT problems we are studying revolve

around the interplay of hardware, software, content (e.g., clinical data and

computer-generated decision support), and user interfaces. Failing to acknowledge

these specific technology-specific elements or attempting to treat them separately

can hinder overall understanding of HIT-related challenges. For example, the
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“content” dimension of our model accounts for much of what informaticians do,

that is, studying the intricacies of controlled clinical vocabularies that provide the

cognitive interface between the inexact, subjective, highly variable world of bio-

medicine and the highly structured, tightly controlled, digital world of computers

(Rector 1999). A well-constructed, robust user interface vocabulary can make all

the difference in the world to a busy clinician struggling to quickly and accurately

enter a complex clinical order for a critically ill patient (Rosenbloom et al. 2006),

and it is important to distinguish this aspect of technology from others that may

contribute to additional challenges (e.g., a user interface that is difficult to navigate,

an order entry application that is slow to respond, or computers that are only

available at the main nursing station). Failure to do so, for example, leads to general

statements such as “clinicians struggled with the new technology” or “it takes

clinicians longer to complete their tasks using the new technology” without pro-

viding any insight into specific causes of the problems or their solutions. In this

example, without a multidimensional understanding of the technological dimen-

sions of the failed IT application, the researcher may incorrectly conclude that the

hardware, application software, or user was responsible, when in fact a poorly

designed or implemented clinical vocabulary might have been the root of the

problem.

Finally, the preceding models do not account for the special monitoring pro-

cesses and governance structures that must be put in place while designing and

developing, implementing, or using HIT. For example, identifying who will make

the decision on what, when, and how clinical decision support (CDS) interventions

will be added (Wright et al. 2011); developing a process for monitoring the effect of

new CDS on the systems’ response time (Sittig et al. 2007); building tools to track

the CDS that is in place (Sittig et al. 2010a); developing an approach for testing

CDS; defining approaches for identifying rules that interact; developing robust

processes for collecting feedback from users and communicating new system

fixes, features, and functions; and building tools for monitoring the CDS system

itself (Hripcsak 1993).

4.3 Moving Towards a New Socio-technical Model for HIT

To overcome the limitations of previous models, we propose a new socio-technical

model to study the design, development, use, implementation, and evaluation of

HIT (Fig. 4.1). Our comprehensive 8-dimensional model accounts for key factors

that influence the success of HIT interventions. A major assumption of our model is

that the 8 dimensions cannot be viewed as a series of independent, sequential steps.

As with other components of complex adaptive systems, these 8 interacting dimen-

sions must be studied in relationship to each other. Clearly, several of our model’s
components are more tightly coupled than others, for example, the hardware,

software, content, and user interface are all completely dependent on one another.
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However, all the other social components also exert strong influences on these

technical components.

In our model, one cannot expect to gain an in-depth understanding of the

intricacies of complex HIT interventions simply by integrating the results of studies

performed within any single dimension of the model (Rasmussen 1997). Rather,

HIT interventions must be understood in the context of their simultaneous effects

across multiple dimensions of the model. For instance, a recent evaluation of a

national program to develop and implement centrally stored electronic summaries

of patients’ medical records in the UK revealed their benefits to be lower than

anticipated. The report cautioned that complex interdependencies between many

socio-technical factors at the levels of the clinical encounter, organization, and the

nation at large are to be expected in such evaluations (Greenhalgh et al. 2010).

These study findings are illustrative of how and why our proposed model could be

useful.

The 8 dimensions include:

1. Hardware and Software Computing Infrastructure. This dimension of the

model focuses solely on the hardware and software required to run the applica-

tions. The most visible part of this dimension is the computer, including the

monitor, printer, and other data display devices along with the keyboard, mouse,

Fig. 4.1 Illustration of the complex inter-relationships between the 8 dimensions of the new

socio-technical model (Used with permission from: Menon et al. 2014)
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and other data entry devices used to access clinical applications and medical or

imaging devices. This dimension also includes the centralized (network-

attached) data storage devices and all of the networking equipment required to

allow applications or devices to retrieve and store patient data. Also included in

this dimension is software at both the operating system and application levels.

Finally, this dimension of the model subsumes all the machines, devices, and

software required to keep the computing infrastructure functioning, such as the

high-capacity air conditioning system, the batteries that form the uninterruptable

power supply (UPS) that provides short-term electrical power in the event of an

electrical failure, and the diesel-powered backup generators that supply power

during longer outages.

In short, this dimension is purely technical; it is only composed of the physical

devices and the software required for keeping these devices running. One of the

key aspects of this dimension is that, for the most part, the user is not aware that

the majority of this infrastructure exists until it fails (Leveson and Turner 1993).

For example, in 2002 the Beth Israel Deaconess Medical Center in Boston

experienced a 4-day computer outage due to old, out-of-date computer equip-

ment coupled with an outdated software program designed to direct traffic on a

much less complex network. Furthermore, their network diagnostic tools were

ineffective because they could only be used when the network was functioning

(Kilbridge 2003).

2. Clinical Content. This dimension includes everything on the data-information-

knowledge continuum that is stored in the system (i.e., structured and unstruc-

tured textual or numeric data and images that are either captured directly from

imaging devices or scanned from paper-based sources) (Bernstam et al. 2010).

Clinical content elements can be used to configure certain software require-

ments. Examples include controlled vocabulary items that are selected from a

list while ordering a medication or a diagnostic test, and the logic required to

generate an alert for certain types of medication interactions. These elements

may also describe certain clinical aspects of the patients’ condition (e.g., labo-

ratory test results, discharge summaries, or radiographic images). Other clinical

content, such as demographic data and patient location, can be used to manage

administrative aspects of a patient’s care. These data can be entered (or created),
read, modified, or deleted by authorized users and stored either on the local

computer or on a network. Certain elements of the clinical content, such as that

which informs clinical decision support (CDS) interventions, must be managed

on a regular basis (Sittig et al. 2010b).

3. Human-Computer Interface. An interface enables unrelated entities to interact

with the system and includes aspects of the system that users can see, touch, or

hear. The hardware and software “operationalize” the user interface; provided

these are functioning as designed, any problems with using the system are likely

due to human-computer interaction (HCI) issues. The HCI is guided by a user

interaction model created by the software designer and developer (Shneiderman

et al. 2009). During early pilot testing of the application in the target clinical

environment, both the user’s workflow and the interface are likely to need
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revisions. This process of iterative refinement, wherein both the user and user

interface may need to change, must culminate in an HCI model that matches the

user’s modified clinical workflow. For example, if a clinician wants to change

the dose of a medication, the software requires the clinician to discontinue the

old order and enter a new one, but the user interface should hide this complexity.

This dimension also includes the ergonomic aspects of the interface (Svanæs

et al. 2008). If users are forced to use a computer mouse while standing, they

may have difficulty controlling the pointer on the screen because they are

moving the mouse using the large muscles of their shoulder rather than the

smaller muscles in the forearm. Finally, the lack of a feature or function within

the interface represents a problem both with the interface and with the software

or hardware that implements the interface.

4. People. This dimension represents the humans (e.g., software developers, sys-

tem configuration and training personnel, clinicians, and patients) involved in all

aspects of the design, development, implementation, and use of HIT. It also

includes the ways that systems help users think and make them feel (Sittig

et al. 2005a). Although user training is clearly an important component of the

user portion of the model, it may not by itself overcome all user-related prob-

lems. Many “user” problems actually result from poor system design or errors in

system development or configuration. In addition to the users of these systems,

this dimension includes the people who design, develop, implement, and eval-

uate these systems. For instance, these people must have the proper knowledge,

skills, and training required to develop applications that are safe, effective, and

easy to use. This is the first aspect of the model that is purely on the social end of

the socio-technical spectrum.

In most cases, users will be clinicians or employees of the health system.

However, with recent advances in patient-centered care and development of

personal health record systems and “home monitoring” devices, patients are

increasingly becoming important users of HIT. Patients and/or their caregivers

may not possess the knowledge or skills to manage new health information

technologies, and this is of specific concern as more care shifts to the patient’s
home (Henriksen et al. 2009).

5. WorkflowandCommunication.This is thefirst portion of themodel that acknowl-

edges that people often need towork cohesivelywith others in the healthcare system

to accomplish patient care. This collaboration requires significant two-way com-

munication. The workflow dimension accounts for the steps needed to ensure that

each patient receives the care they need at the time they need it. Often, the clinical

information system does not initially match the actual “clinical” workflow. In this

case, either the workflow must be modified to adapt to the HIT, or the HIT system

must change to match the various workflows identified.

6. Internal Organizational Policies, Procedures, Environment, and Culture.

The organization’s internal structures, policies, environment, and procedures

affect every other dimension in our model. For example, the organization’s
leadership allocates the capital budgets that enable the purchase of hardware

and software, and internal policies influence whether and how offsite data
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backups are accomplished. The organizational leaders and committees who

write and implement IT policies and procedures are responsible for overseeing

all aspects of HIT system procurement, implementation, use, monitoring, and

evaluation. A key aspect of any HIT project is to ensure that the software

accurately represents and enforces, if applicable, organizational policies and

procedures. Likewise, it is also necessary to ensure that the actual clinical

workflow involved with operating these systems is consistent with policies and

procedures. Finally, internal rules and regulations are often created in response

to the external rules and regulations that form the basis of the next dimension of

the model.

7. External Rules, Regulations, and Pressures. This dimension accounts for the

external forces that facilitate or place constraints on the design, development,

implementation, use, and evaluation of HIT in the clinical setting. For example,

the passage of the American Recovery and Reinvestment Act (ARRA) of 2009,

which includes the Health Information Technology for Economic and Clinical

Health (HITECH) Act, made available over 20 billion dollars for healthcare

practitioners who become “meaningful users” of HIT. Thus, ARRA introduced

the single largest financial incentive ever to facilitate electronic health record

(EHR) implementation. Meanwhile, a host of federal, state, and local regulations

govern the use of HIT. Examples include the 1996 Health Insurance Portability

and Accountability Act (HIPAA), recent changes to the Stark Laws,1 and restric-

tions on secondary use of clinical data. Finally, there are three recent national

developments that have the potential to affect the entire healthcare delivery system

in the context of HIT. These include: (1) the initiative to develop the data and

information exchange capacity to create a national health information network

(American Recovery and Reinvestment Act of 2009); (2) the initiative to enable

patients to access copies of the clinical data via personal health records (Sittig

2002); and (3) clinical and IT workforce shortages (Detmer et al. 2010).

8. System Measurement and Monitoring. This dimension has largely been unac-

counted for in previous models. We posit that the effects of HIT must be

measured and monitored on a regular basis. An effective system measurement

and monitoring programmust address four key issues related to HIT features and

functions (Leonard and Sittig 2007). First is the issue of availability – the extent

to which features and functions are available and ready for use. Measures of

system availability include response times and percent uptime of the system. A

second measurement objective is to determine how clinicians are using the

various features and functions. For instance, one such measure is the rate at

which clinicians override CDS warnings and alerts. Third, the effectiveness of

the system on healthcare delivery and patient health should be monitored to

ensure that anticipated outcomes are achieved. For example, the mean HbA1c

1A federal law which prohibits a physician from referring a Medicare or Medicaid patient to an

entity for specific health services if the physician (or an immediate family member) has a financial

relationship with that entity.

4 A New Socio-technical Model for Studying Health Information Technology. . . 67



value for all diabetic patients in a practice may be measured before and after

implementation of a system with advanced CDS features. Finally, in addition to

measuring the expected outcomes ofHIT implementation, it is also vital to identify

and document unintended consequences that manifest themselves following use of

these systems (Ash et al. 2004). For instance, it may be worthwhile to track

practitioner efficiency before and after implementation of a new clinical charting

application (Bradshaw et al. 1989). In addition to measuring the use and effective-

ness ofHIT at the local level, wemust develop themethods tomeasure andmonitor

these systems and assess the quality of care resulting from their use on a state,

regional, or even national level (Sittig et al. 2005b; Sittig and Classen 2010).

4.4 Relationships and Interactions Among Components

of the Socio-technical Model

Our research and experience has led us, and others, to conclude that HIT-enabled

healthcare systems are best treated as complex adaptive systems (Begun et al. 2003).

The most important result of this conclusion is that hierarchical decomposition (i.e.,

breaking a complex system, process, or device down into its components, studying

them, and then integrating the results in an attempt to understand how the complete

system functions) cannot be used to study HIT (Rouse 2008). As illustrated by the

evaluation of centrally stored electronic summaries in the UK, complex interdepen-

dencies between various socio-technical dimensions are to be expected, and our HIT

model (had it existed at the time) might have potentially predicted some of them and

allowed them to be addressed prior to going-live rather than in the evaluation stages

of the project. Therefore, one should not view or use our model as a set of indepen-

dent components that can be studied in isolation and then synthesized to develop a

realistic picture of how HIT is used within the complex adaptive healthcare system.

Rather, the key to our model is how the 8 dimensions interact and depend on one

another. They must be studied as multiple, interacting components with non-linear,

emergent, dynamic behavior (i.e., small changes in one aspect of the system lead to

small changes in other parts of the system under some conditions, but large changes at

other times) that often appears random or chaotic. This is typical of complex adaptive

systems, and our model reflects these interactions.

For example, a computer-based provider order entry (CPOE) system that works

successfully in an adult surgical nursing unit within a hospital may not work at all in

the nearby pediatric unit for any number of potential reasons, including: (1) hardware/

software (e.g., fewer computers, older computers, poor wireless reception, poor

placement); (2) content (e.g., no weight- or age-based dosing, no customized order

sets or documentation templates); (3) user-interface (e.g., older workforce that has

trouble seeing the small font on the screen); or (4) personnel (e.g., no clinical

championwithin themedical staff). However, each of these dimensions has a potential

relationship with one or more of the other dimensions. For instance, computers may

have been few or old because of some organizational limitations on financing, a
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constrained physical environment that results in limited space in the patient rooms or

even the hallway for workstations, or a combination of these restrictions, there may be

no customized order sets because clinician-users did not agree on how best to create

them or on the medical evidence to support their decisions, and there was no clinical

champion because the organization did not provide any financial incentive for the

additional time this role would entail. Other reasons could include problems with the

user interface and the communication andworkflow related to how nurses process new

medication orders using the EHR and record administration of medications using the

new barcode medication administration system. These issues, in turn, may have been

due to long-standing organizational policies and procedures that administrators were

reluctant to reconsider. For example, the unit governance committee may have

decided not to approve a request for mobile computers to help compensate for the

lack of hardwired, stationary workstations in the patient rooms, with the result that

nurses spent more time away from patients and therefore had a slower workflow

related to processing new orders. The preceding example illustrates the interaction of

six dimensions of our model: hardware/software, clinical content, user interface,

people, workflow, and organizational policies. Additionally, some form of system

measurement and monitoring could have detected these issues. In summary, our

model provides HIT researchers with several new avenues of thinking about the

interactions between key technology and social components of the HIT-enabled

work system and how the interactions between the various socio-technical dimensions

of our model must be considered in future research.

4.5 Applications of the Socio-technical Model

in Real-World Settings

The following sections illustrate how we have used the socio-technical model of safe

and effective HIT usewithin our research. In an attempt to describe how themodel can

be applied across the breadth of HIT research and development, and to provide

examples of different systems and interventions that can be analyzed within this

new paradigm, we highlight key elements of our model in the context of several

recent projects.

4.5.1 HIT Design and Development

The design and development of CDS interventions within clinicians’ workflow

presents several challenges. We conducted several qualitative studies to gain

insight into the 8 dimensions of our model during the development of a CDS tool

within a CPOE application. This CDS intervention was designed to alert clinicians

whenever they attempted to order a medication that was contraindicated in elderly

patients or a medication that had known serious interactions with warfarin. For
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example, Fig. 4.2 shows a pop-up alert which appeared whenever a clinician

attempted to order “diazepam” on a patient who was 65 years or older.

We used several methods, including focus groups, usability testing, and educa-

tional sessions with clinician users (Feldstein et al. 2004), to identify issues related to

hardware/software, content, interface, people, measurement, workflow/communica-

tion, and internal policies and procedures. These efforts helped us, for example, to

understand the need to meet with the organization’s Pharmacy and Therapeutics

committee (i.e., internal policy) to convince them to modify the medication formu-

lary to include an alternative suggestion for specific medications contraindicated in

the elderly. We also worked with the information technology professional (i.e.,

people) who was responsible for maintaining the textual appearance (i.e., font size

– an element of the user interface) of the alerts as well as the content of the message,

and the order of the messages. Fitting alert content within the constraints of the alert

notification window (i.e., user interface) eliminated the need to train clinicians to use
the horizontal scrolling capability. This is just one simple example of how use of the

socio-technical model paid huge dividends during the development and implemen-

tation stages of this highly successful project (Feldstein et al. 2006; Smith et al. 2006).

4.5.2 HIT Implementation

In a separate study, we derived lessons that could be learned from CPOE imple-

mentation at another site (Sittig et al. 2006). One of the most important conclusions

from this implementation was that problems could, and often do, occur in all

8 dimensions of the model. In addition, many of the problems resulted from

interactions between two or more dimensions of the model (see Table 4.1) (Sittig

and Ash 2010).

Fig. 4.2 An example pop-up alert warning a user that diazepam is not a preferred benzodiazepine

for a patient 65 years or older (Used with permission from: Smith et al. 2006)
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Table 4.1 Applications of the socio-technical model to analyze two HIT-related interventions

Socio-technical

model dimension

Implementation of computer-based

provider order entry

Follow-up of alerts related to

abnormal diagnostic imaging

results

Hardware and

software

The majority of computer terminals were

linked to the hospital computer system

via wireless signal. Communication

bandwidth was often exceeded during

peak operational periods, which created

additional delays between each click on

the computer mouse

Alerts should be retracted when

the patient dies or if the radiol-

ogist calls, or the patient is

admitted before the alert is

acknowledged. However, this

can be done only through a

centralized organizational

policy

Clinical content No ICU-specific order sets were avail-

able at the time of CPOE implementa-

tion. The hurried implementation

timeline established by the leaders in the

organization prohibited development of

these order sets

Interventions to reduce alert

overload and improve the signal

to noise ratio should be

explored. Unnecessary alerts

should be minimized. However,

people (physicians) may not

agree which alerts are essential

and which ones are not (van der

Sijs et al. 2008)

Human com-

puter interface

The process of entering orders often

required an average of 10 clicks on the

computer mouse per order, which trans-

lated to 1–2 min to enter a single order.

Organizational leaders eventually hired

additional clinicians to “work the CPOE

system” while others cared for the

patients

Unacknowledged alerts must

stay active on the EHR screen

for longer periods, perhaps even

indefinitely, and should require

the provider’s signature and
statement of action before they

are allowed to drop off the

screen. However, providers

might not want to spend addi-

tional time stating their actions;

who will make this decision?

People Leaders at all levels of the institution

made implementation decisions (re:

hardware placement, software configu-

ration, content development, user inter-

face design, etc.) that placed patient care

in jeopardy

Many clinicians did not know

how to use many of the EHR’s
advanced features that greatly

facilitated the processing of

alerts, exposing a limitation in

provider training. Adding to the

problem, providers are only

given 4 h of training time by the

institution

Workflow and

communication

Rapid implementation timeline did not

allow time for clinicians to adapt to their

new routines and responsibilities. In

addition, poor hardware and software

design and configuration decisions com-

plicated the workflow issues

Communicating alerts to two

recipients, which occurred when

tests were ordered by a

healthcare practitioner other

than the patient’s regular PCP,
significantly increased the odds

that the alert would not be read

and would not receive timely

follow-up action. No policy was

available that states who is

responsible for follow-up.

(continued)
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4.5.3 HIT Use

Safe and effective use of an EHR-based notification system involves many factors

that are addressed by almost all dimensions of our model (Singh et al. 2009a,

2010a). For instance, many EHRs generate automated asynchronous “alerts” to

notify clinicians of important clinical findings. We examined communication out-

comes of over 2,500 such alerts that were specifically related to abnormal test

results. We found that, despite assurance that abnormal test results were transmit-

ted, 18.1 % of abnormal lab alerts and 10.2 % of abnormal imaging alerts were

never acknowledged (i.e., were unread by the receiving provider). Additionally,

7–8 % of these alerts lacked timely follow-up, which was unrelated to acknowl-

edgment of the alert. This study revealed complex interactions between users, the

user interface, software, content, workflow/communication, and organizational

policies related to who was responsible for abnormal test follow-up. Our findings

thus highlighted the multiple dimensions, as well as the complex interactions

Table 4.1 (continued)

Socio-technical

model dimension

Implementation of computer-based

provider order entry

Follow-up of alerts related to

abnormal diagnostic imaging

results

Organizational

policies and

procedures

Order entry was not allowed until after

the patient had physically arrived at the

hospital and been fully registered into the

clinical information system

Every institution must develop

and publicize a policy regarding

who is responsible (PCP vs the

ordering provider, who may be a

consultant) for taking action on

abnormal results. Such policies

also help institutions meet

external (i.e., Joint Commis-

sion) requirements

External rules,

regulations, and

pressures

Following the Institute of Medicine

report To Err is Human: Building a Safer
Health System and subsequent congres-

sional hearings, the issue of patient

safety has risen to a position of highest

priority among health care organizations

Poor reimbursement and heavy

workload of patients puts pro-

ductivity pressure on providers.

The nature of high-risk transi-

tions between health care prac-

titioners, settings, and systems

of care makes timely and effec-

tive electronic communication

particularly challenging

System measure-

ment and

monitoring

Monitoring identified a significant

increase in patient mortality following

CPOE implementation

An audit and performance feed-

back system should be

established to give providers

information on timely follow-up

of patients’ test results on a

regular basis. However, pro-

viders may not want feedback or

the institution does not have the

persons required to do so
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between various dimensions, of our model that need to be addressed to improve the

safety of EHR-based notification systems and perhaps other forms of CDS (see

Table 4.1) (Hysong et al. 2009, 2010; Singh et al. 2010b; Singh and Vij 2010).

4.5.4 HIT Evaluation

Our model has provided guidance in evaluating HIT-related breakdowns in care,

reminding us that however technologically savvy we make our patient care pro-

cesses, we must also carefully monitor their impact, effectiveness, and unintended

consequences. We recently evaluated why, despite implementation of an automated

notification system to enhance communication of fecal occult blood test (FOBT)

results, providers did not take follow-up actions in almost 40 % of cases (Singh

et al. 2009b). Again, our findings highlighted multiple interacting dimensions

within our socio-technical model. For instance, we found that clinician

non-response to automated notifications was related to a software configuration

error that prevented transmission of a subset of test results. However, we also found

that if the institution was using certain types of workflows related to test perfor-

mance, and if organizational procedures for computerized order entry of FOBTs

were different, the problem may not have occurred. Thus, we found our

multidimensional approach, which accounted for interactions, to be useful for

comprehensive evaluation of HIT after implementation.

4.6 Model in Action: From Theory to Practice

Our preliminary studies of HIT safety and effectiveness have demonstrated the

potential value of considering all 8 dimensions of our socio-technical model to

anticipate, diagnose, and correct a variety of problems. Determining the broader

impact and generalizability of this approach requires translating these concepts into

more concrete and actionable guidance. To this end, our team recently developed a

set of self-assessment tools for organizations and end-users who wish to evaluate

the safety and effectiveness of HIT within their own settings (Sittig et al. 2014).

Given the current emphasis on EHR implementation and upgrades in healthcare

systems throughout the United States, we focused the content specifically on issues

related to EHRs. The ultimate aim of these tools is to enhance system resilience, or

the ability to continuously detect, correct, and prevent various risks related

to EHRs.

Although EHR-related problems and risks are highly significant to organizations

that are implementing new systems, vulnerabilities can persist or arise even within

well-established systems. Thus, we developed our guides with the needs of users

across the continuum of EHR implementation in mind. We coupled the socio-

technical model with a three-phase model of safe EHR use that enumerates
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specific risks across the “life cycle” of EHR implementation (Sittig and Singh

2012). According to the model, the first phase is concerned chiefly with

addressing vulnerabilities that are unique and specific to EHRs and often emerge

early in implementation (e.g., safety problems owing to unavailable or

malfunctioning hardware or software). The second phase (using IT safely)

addresses unsafe or inappropriate use of technology. The third phase (monitoring

safety) addresses use of technology not only to deliver care, but also to monitor

processes and outcomes and to identify potential safety hazards proactively. The

socio-technical model and three-phase implementation model together formed the

main conceptual basis for developing self-assessment tools (Fig. 4.3) (Meeks

et al. 2014). The self-assessment tools were designed with the understanding

that as EHR implementations mature, the demands and functions of the socio-

technical system evolve as well.

The content of the self-assessment tools, known as the Safety Assurance Factors

for EHR Resilience (SAFER) guides, was developed in multiple stages. From the

outset, a multidisciplinary expert panel, with representation from the fields of

informatics, patient safety, quality improvement, risk management, and human

factors engineering, steered the initial generation of content. To maximize the

utility and potential impact of the guides, the content was organized as a series of

standalone guides that apply to nine high-risk areas:

• CPOE and e-prescribing

• Clinical decision support

• Test result reporting

Fig. 4.3 Conceptual model for self-assessment of EHR safety and effectiveness (Used with

permission from: Meeks et al. 2014)
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• Communication between providers

• Patient identification

• EHR downtime events

• EHR customization and configuration

• System-system interface data transfer

• HIT safety-related human skills

For each topic, our team identified 10–25 recommended practices, which were

chosen on the basis of our own research and that of others who study HIT safety and

effectiveness. These practices were operationalized with concrete examples and

written as checklist-type items so that the person(s) completing the checklist can

indicate whether each practice is fully, partially, or not implemented in a given

setting. During the validation process, our team visited several facilities and sought

comments from a variety of potential users to ensure that items were consistently

interpreted and meaningful across settings. Input from a variety of facility types,

disciplines, and end-user roles is a strength of the SAFER guides. These guides are

now available free of charge through the Office of the National Coordinator for HIT

(www.healthit.gov/safer) in the hope they might help accelerate the discovery and

development of best practices for training, patient care, policy, and use of EHRs for

monitoring and patient safety.

4.7 Conclusions

This chapter has introduced a comprehensive paradigm for the study of HIT. We

have successfully applied this model to study HIT interventions at different levels

of design, development, implementation, use, and evaluation. In addition, we have

applied the model to develop tools that organizations can use to self-assess the

safety and effectiveness of HIT within their own settings. We anticipate that

additional study of the 8 dimensions and their complex interactions will yield

further refinements to this model and, ultimately, improvements in the quality

and safety of HIT applications that translate to better health and welfare for our

patients.

Discussion Questions

1. You have been asked to create a project plan for implementation of a new hand-

held device that is designed to facilitate the process by which nurses record vital

signs and clinical assessments of their patients. Describe 2–3 key considerations

within each of the 8 dimensions of the socio-technical model that must be

addressed to ensure success of the project.

2. What are some possible consequences of excluding frontline clinical personnel

from decisions about HIT configurations and functions?
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3. The leadership at a large healthcare facility have ordered a major update of the

facility’s EHR. Assuming a socio-technical approach to this project, what types

of personnel might constitute an EHR implementation team?

4. You have been asked to evaluate the effectiveness of a recently implemented

comparative effective research (CER) platform. List 2–3 measures that you

could use within each of the 8 dimensions of the socio-technical model to assess

the system’s performance and utility.

5. Explain how an external rule or regulation (e.g., HIPAA, Meaningful Use

requirements, or CMS conditions for participation) can affect the implementa-

tion and/or use of a new clinical computing device (e.g., voice-activated, hand-

held data review device) or application (e.g., an Internet-accessible, state-wide

immunization registry).
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Chapter 5

Evaluation of Health Information

Technology: Methods, Frameworks

and Challenges

Thomas G. Kannampallil and Joanna Abraham

5.1 Introduction

The adoption and use of health information technology (HIT), especially Electronic

Health Records (EHR), has increased over the last decade (Blumenthal 2009). This

increase, at least in part, has been spurred by recent federal mandates as part of the

American Reinvestment and Recovery Act (ARRA). These mandates have incen-

tivized the use of HITwith the goal of improving the quality and safety of healthcare.

Though there are several positive reports of significant benefits in cost savings,

quality and safety, persuasive evidence of the substantial impact of HIT is currently

lacking. Most often, HIT implementation is characterized by inconsistent and mixed

results regarding their utility and value (Linder et al. 2007). A large body of research

investigates the unintended and unanticipated consequences associated with the use

of HIT that results in increased time spent on documentation, workarounds, com-

munication failures, duplication and redundancy of information, and effort to main-

tain continuity of information and care (e.g., Ash et al. 2003; Koppel et al. 2005;

McDonald et al. 2014; also see Chap. 11, on unanticipated consequences of HIT

use). Furthermore, evaluation studies have also questioned the safety implications of

EHR use (e.g., errors and adverse events) (Sittig and Classen 2010).

A recent Institute of Medicine (IOM) report (e.g., IOM 2011) has highlighted the

lack of effective integration of appropriate evaluation methods during the design

and development phases of HIT. The IOM committee has also called for a
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systematic evaluation of not only the HIT systems, but also the context of clinical

environments in which these systems would be used. Nevertheless, the challenge

that is faced by developers and researchers alike is to identify, select and use
appropriate methods of HIT evaluation. In this chapter, our aims are twofold:

first, to provide an overview of the various methods that can be used for evaluating

HIT systems. We have categorized evaluation methods under two general headings:

(a) evaluation of systems, focusing on usability and other parameters related to

human computer interaction (HCI) – these methods are analytic, and most often

laboratory-based; (b) a more generic usability and situated testing of systems,

focusing on a comprehensive perspective of the use of HIT systems within the

context of clinical environments (e.g., the role of HIT on clinical workflow or its

role in causing unintended consequences) – these methods are more open-ended,

in-situ, and field-based. It is important to note that these categorizations are not

mutually exclusive – evaluation of systems often involve the use of one or more

methods from both categories. Second, we discuss the challenges of conducting

comprehensive evaluation studies in the clinical environment, and approaches to

potentially overcome these challenges. In addition, we provide examples of the use

of the specific methods, and cross-references to other chapters in this volume that

have utilized these methods in a clinical context.

5.2 Methods of Evaluation in Clinical Environments

A healthcare system is often considered a complex, socio-technical system

consisting of many components – clinicians, patients, and HIT, to name a few

(Kannampallil et al. 2011; Patel et al. 2014). Among these, HIT is a key component

that is necessary to ensure the smooth and effective functioning of the modern

healthcare system. HIT incorporation into a clinical environment often transforms

the structure, processes or outcomes – hence appropriate evaluation is often neces-

sary to determine its viability or effectiveness (Donabedian 1966). The pertinent

question is how do we study the effects of HIT on structure, processes or outcomes –
both directly, and indirectly? HIT evaluation is often built on components assessing

the: (1) system functionality, (2) impact of the user interface on work activities, and

(3) discovering specific interface and system issues that affect the contextual work

activities of user (Kurosu 2014).

In general, an evaluation would involve questions of what, why, when and how:

(a) what to evaluate (e.g., an interface); (b) why should it be evaluated – it should be
noted that given the breadth of biomedical informatics research, the purpose of the

evaluation can include the following: as a promotional activity (e.g., reassuring

patients or clinicians that resources are safe), part of scholarly work (e.g., a research

project), a pragmatic activity (e.g., to evaluate whether a device is cost effective to

purchase), ethical activity (e.g., to evaluate whether a medical device is functional

and can be used as an alternative to an existing device), or medico-legal (e.g., to

reduce legal liability) (Friedman and Wyatt 2006); (c) when to evaluate (e.g., at
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what stage of the design or implementation process); and (d) how to evaluate (i.e.,

the methods and tools that should be used for evaluation).

In terms of “when to evaluate” a system, evaluation studies can be classified

into two formative or summative. Formative evaluation is defined as “a rigorous

assessment process designed to identify potential and actual influences on the

progress and effectiveness of implementation efforts” (Stetler et al. 2006). These

are performed during the early stages of system design, and continue throughout

the system development lifecycle. These are conducted to receive early feedback

from potential users, and are mostly conducted with prototypes (low-fidelity

paper prototypes or hi-fidelity test interfaces). The purpose of these evaluations

is to study the complexity of design and update the system before implementation

through user feedback. In contrast, summative evaluation is performed at the

completion of the design and development efforts. These are often considered

comprehensive as it is expected to demonstrate the efficacy of a system in its

environment of use.

In this chapter, we focus specifically on the “how to evaluate” aspect. We have

classified evaluation methods into two categories: general analytic evaluation

approaches and usability testing. This categorization was informally based on the

type of participant in the evaluation. Analytic evaluation studies are, most often,

using experts as participants – usability experts, domain experts, software designers

– or in some cases, without participants. These techniques include task-analytic,

inspection-based or model-based approaches and are most often conducted in

laboratory-based (or controlled) settings.

In contrast, usability testing employs users and stakeholders in the evaluation

process. Usability testing can be conducted in the field or in a controlled laboratory

setting. For example, one can evaluate the use of a hand-held device in an Emer-

gency Room (ER) using observational techniques. In contrast, EHR interfaces or

other user interfaces can be tested in a laboratory environment where users are

asked to complete specific simulated task scenarios. While certain methods of

usability testing can be more effectively conducted in a laboratory setting, the

settings are sometimes a matter of convenience (e.g., it is easier for a participant

to complete a task with verbal think-aloud without interruptions in a laboratory

setting than in a clinical setting). We have categorized usability testing into field-

based studies (including general observational and other studies) that capture

situated and contextual aspects of HIT use, and a general category of methods

(e.g., interviews, focus groups, surveys) that solicit user opinions and can be

administered in different modes (e.g., face-to-face or online). A brief categorization

of the evaluation approaches can be found in Fig. 5.1. In the following sections, we

provide a detailed description of each of the evaluation approaches along with

research examples of its use.
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5.2.1 Analytical Approaches

Analytical approaches rely on analysts’ judgments and analytic techniques to

perform evaluations on user interfaces, and often do not directly involve the

participation of end users. These approaches utilize experts – usability, human

factors, or software – to conduct the evaluation studies. In general, analytical

evaluation techniques involve task-analytic approaches (e.g., hierarchical and cog-

nitive task analysis), inspection-based methods (e.g., heuristic evaluations and

walkthroughs), and predictive model-based methods (e.g., keystroke models, Fitts

Law). As will be described in the respective sections, the model-based techniques

do not use any participants and relies on parameterized approaches for describing

expert behavior. We describe each of these techniques, their applications, appro-

priate contexts of their use and examples from recent research literature.

5.2.1.1 Task Analysis1

Task analysis is one of most commonly used techniques to evaluate “existing

practices” in order to understand the rationale behind people’s goals of performing

a task, the motivations behind their goals, and how they perform these tasks (Preece

et al. 1994). As described by Vicente (1999), task analysis is an evaluation of the

“trajectories of behavior.” Hierarchical task analysis (HTA) and cognitive task

analysis (CTA) are the most commonly used task-analytic methods in in biomedical

informatics research.

Analytic
Approaches

Task
Analytic

Inspection-
based

Model-
based

Hierarchical Task
Analysis (HTA)

Cognitive
Task Analysis

Heuristic
Evaluation

Cognitive
Walkthrough

Keystroke-
Level Models

Motor-based
theories (e.g.,

Fitts Law)

Field/
Observational

Shadowing

Verbal Think
AloudSurveys and

Questionnaires

Eye-tracking,
screen capture

Time and
Motion Studies

Evaluation
Methods

Usability Testing

Focus Groups,
Interviews

[Lab or Field ]

[Lab or Field
or Online]

Fig. 5.1 Classification of evaluation methods

1While GOMS (See Sect. 5.2.1.3) is considered a task-analytic approach, we have categorized it

as a model-based approach for predictions of task completion times. It is based on a task analytic

decomposition of tasks.
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Hierarchical Task Analysis

HTA is the simplest task analytic approach and involves the breaking down of a

task into sub-tasks and smaller constituted parts (e.g., sub-sub-tasks). The tasks are

organized according to specific goals. This method, originally designed to identify

specific training needs, has been used extensively in the design and evaluation of

interactive interfaces (Annett and Duncan 1967). The application of HTA can be

explained with an example: consider the goal of printing a Microsoft Word docu-

ment that is on your desktop. The sub-tasks for this goal would involve finding

(or identifying) the document on your desktop, and then printing it by selecting the

appropriate printer. The HTA for this task can be organized as follows:

0. Print document on the desktop

1. Go to the desktop

2. Find the document

2.1. Use “Search” function

2.2. Enter the name of the document

2.3. Identify the document

3. Open the document

4. Select the “File” menu and then “Print”

4.1. Select relevant printer

4.2. Click “Print” button

Plan 0: do 1–3–4; if file cannot be located by a visual search, do 2–3–4

Plan 2: do 2.1–2.2–2.3

In the above-mentioned task analysis, the task can be decomposed into the

following: moving to your desktop, searching for the document (either visually or

by using the search function and typing in the search criteria), selecting the

document, opening and printing it using the appropriate printer. The order in

which these tasks are performed may change based on certain situations. For

example, if the document is not immediately visible on the desktop (or if the

desktop has several documents making it impossible to identify the document

visually), then a search function is necessary. Similarly, if there are multiple printer

choices, then a relevant printer must be selected. The plans include a set of tasks

that a user must undertake to achieve the goal (i.e., print the document). In this case,

there are two plans: plan 0 and plan 2 (all plans are conditional on tasks having

pertinent sub-tasks associated with it). For example, if the user cannot find a

document on the desktop, plan 2 is instantiated, where a search function is used

to identify the document (steps 2.1, 2.2 and 2.3). Figure 5.2 depicts the visual form

of the HTA for this particular example.

HTA has been used significantly in evaluating interfaces and medical devices.

For example, Chung et al. (2003) used HTA to compare the differences between

6 infusion pumps. Using HTA, they identified potential sources for the generation

of human errors during various tasks. While exploratory, their use of HTA provided
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insights into how the HTA can be used for evaluating human performance and for

predicting potential sources of errors. Alternatively, HTA has been used to model

information and clinical workflow in ambulatory clinics (Unertl et al. 2009). Unertl

et al. (2009) used direct observations and semi-structured interviews to create a

HTA of the workflows. The HTA was then used to identify the gaps in existing HIT

functionality for supporting clinical workflows, and the needs of chronic disease

care providers.

Cognitive Task Analysis

CTA is an extension of the general task analysis technique to develop a more

comprehensive understanding regarding the knowledge, cognitive/thought pro-

cesses and goals that underlie observable task activities (Chipman et al. 2000).

While the focus is on knowledge and cognitive components of the task activities

and performance, CTA relies on observable human activities to draw insights on the

knowledge based constraints and challenges that impair effective task performance.

CTA techniques are broadly classified into three groups based on how data is

captured: (a) interviews and observations, (b) process tracing and (c) conceptual

techniques (Cooke 1994). CTA supported by interviews and observations involve

developing a comprehensive understanding of the tasks through discussions with,

and task observations of experts. For example, a researcher observes an expert

physician performing the task of medication order entry into a CPOE (Computer-

ized Physician Order Entry) system and asks follow up questions regarding the

specific aspects of the task. In a study on understanding providers’ management of

abnormal test results, Hysong et al. (2010) conducted interviews with 28 primary

care physicians on how and when they manage alerts, and how they use the various

features on the EHR system to filter and sort their alerts. The authors used the CTA

0.Print document
on desktop

2. Find
document

3. Open
document

4. Print
document

1. Go to desktop

2.1 Use search
function

2.2 Enter name
of document

2.3 Identify
document

Plan 0: do 1- 3-4; if file
cannot be found do 2-3-4

Plan 2: do 2.1- 2.2-2.3

Fig. 5.2 Graphical representation of task analysis of printing a document: the tasks are

represented in the boxes; the line underneath certain boxes represents the fact that there are no

sub-tasks for these tasks
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approach supported by a combination of interviews and demonstrations. Partici-

pants were asked how they performed their alert management tasks and were asked

to demonstrate these to the researcher. Based on the evaluation, they found that

understanding of alert management differed (between 4 and 75 %) between pro-

viders and most did not use these features.

CTA supported by process-tracing approaches relies on capturing task activities

through direct (e.g., verbal think aloud) or indirect (e.g., unobtrusive screen record-

ing) data capture methods. Whereas the process-tracing approach is generally used

to capture expert behaviors, it has also been used to evaluate general users. In a

study on experts’ information seeking behavior in critical care, Kannampallil

et al. (2013) used the process-tracing approach to identify the nature of

information-seeking activities including the information sources, cognitive strate-

gies and shortcuts used by critical care physicians in decision making tasks. The

CTA approach relied on the verbalizations of physicians, their access of various

sources, and the time spent on accessing these sources to identify the strategies of

information seeking. In a related study, the process-tracing approach was used to

characterize the differences of information seeking practices of two groups of

clinicians (Kannampallil et al. 2014).

Finally, CTA supported by conceptual techniques rely on the development of

representations of a domain (and their related concepts) and the potential relation-

ships between them. This approach is often used with experts and different methods

are used for knowledge elicitation including concept elicitation, structured inter-

views, ranking approaches, card sorting, structural approaches such as multi-

dimensional scaling, and graphical associations (Cooke 1994). While extensively

used in general HCI studies, the use of conceptual techniques based CTA is much

less prominent in biomedical informatics research literature. A detailed review of

these approaches and their use can be found in Cooke (1994).

5.2.1.2 Inspection-Based Evaluation

Inspection methods involve one or more experts appraising a system, playing the

role of a user in order to identify potential usability and interaction problems with a

system (Nielsen 1994). Inspection methods are most often conducted on fully

developed systems or interfaces, but may also be used on prototypes or beta

versions. These techniques provide a cost-effective mechanism to identify the

shortcomings of a system. Inspection methods rely on a usability expert, i.e., a

person with significant training and experience in evaluating interfaces, to go

through a system and identify whether the user interface elements conform to a

pre-determined set of usability guidelines and design requirements (or principles).

This method has been used as an alternative to recruiting potential users to test the

usability of a system. The most commonly used inspection methods are heuristic

evaluations (HE) and walkthroughs.
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Heuristic Evaluation

HE techniques utilize a small set of experts to evaluate a user interface (or a set of

interfaces in a system) based on their understanding of a set of heuristic principles

regarding interface design (Johnson et al. 2005). This technique was developed by

Jakob Nielsen and colleagues (Nielsen 1994; Nielsen and Molich 1990), and has

been used extensively in the evaluation of user interfaces. The original set of

heuristics was developed by Nielsen (1994) based on an abstraction of 249 usability

problems. In general, the following ten heuristic principles (or a subset of these) are

most often considered for HE studies: system status visibility; match between

system and real world; user control and freedom; consistency and standards; error

prevention; recognition rather than recall; flexibility and efficiency of use; aesthetic

and minimalist design; help users recognize, diagnose and recover from errors; and

help and documentation (retrieved from: http://www.nngroup.com/articles/ten-

usability-heuristics/, on September 24, 2014; additional details can be found at

this link). Conducting a HE involves a usability expert going through an interface to

identify potential violations to a set of usability principles (referred to as the

“heuristics”). These perceived violations could involve interface elements such as

windows, menu items, links, navigation, and interaction.

Evaluators typically select a relevant subset of heuristics for evaluation (or add

more based on the specific needs and context). The selection of heuristics is based

on the type of system and interface being evaluated. For example, the relevant

heuristics for evaluating an EHR interface would be different from that of a medical

device. After selecting a set of applicable heuristics, one or more usability experts

evaluate the user interface against the identified heuristics. After evaluating the

heuristics, the potential violations are rated according to a severity score (1–5,

where 1 indicates a cosmetic problem and 5 indicates a catastrophic problem). This

process is iterative and continues till the expert feels that a majority (if not all) of the

violations are identified. It is also generally recommended that a set of 4–5 usability

experts are required to identify 95 % of the perceived violations or problems with a

user interface. It should be acknowledged that HE approach may not lead to the

identification of all problems and the identified problems may be localized (i.e.,

specific to a particular interface in a system). An example of an HE evaluation form

is shown in Fig. 5.3.

In the healthcare domain, HE has been used in the evaluation of medical devices

and HIT interfaces. For example, Zhang et al. (2003) used a modified set of

14 heuristics to compare the patient safety characteristics of two 1-channel volu-

metric infusion pumps. Four independent usability experts evaluated both infusion

pumps using the list of heuristics and identified 89 usability problems categorized

as 192 heuristic violations for pump 1, and 52 usability problems categorized as

121 heuristic violations for pump 2. The heuristic violations were also classified

based on their severity. In another study, Allen et al. (2006) developed a simplified

list of heuristics to evaluate web-based healthcare interfaces (printouts of each

interface). Multiple usability experts assigned severity ratings for each of the

identified violations and the severity ratings were used to re-design the interface.
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HE has also been used for evaluating consumer-based pages (e.g., see the use of HE

by Choi and Bakken (2010) on the evaluation of a web-based education portal for

low-literate parents of infants). Variants of HE approaches have been widely used

in the evaluation of HIT interfaces primarily because of its easy applicability.

However, the ease of its application in a variety of usability evaluation scenarios

often gives rise to inappropriate use. For example, there are several instances where

only one or two usability experts (instead of the suggested 4–5 experts) are used for

the HE. Other instances have used subject matter experts rather than usability

experts for such evaluation studies.

Walkthroughs

Walkthroughs are another inspection-based approach that relies on experts to

evaluate the cognitive processes of users performing a task. It involves employing

a set of potential stakeholders (designers, usability experts) to characterize a

sequence of actions and goals for completing a task. Most commonly used

1. Visibility of System Status

The system should always keep user informed about what is going on, through appropriate feedback 
within reasonable time.

I. Please check your response for the individual items related to this usability factor:

# Usability Factor Response Comments

1.1 Does every screen have a title or header
that describes its contents?

Yes
No
NA

There is only one data entry screen and
the more important issue is whether
information at the top of the screen
provides a guide for what follows and it
doesn’t do that adequately. The title of 
the Asthma Action Plan should be
centered.

1.2 Is there visual feedback in menus or 
dialog boxes about which choices are
selectable?

Yes
No
NA

Radio buttons work fine for that purpose.

1.3 Is there a clear indication of the current 
location?

Yes
No
NA

It is only a single page,but the modules
should be more clearly segregated

1.4 Is the menu-naming terminology 
consistent with the user's task domain?

Yes
No
NA

1.5 Does the system provide visibility: that
is, by looking, can the user tell the state
of the system and the alternatives for
action?

Yes
No
NA

The only state changes are
hiding/revealing and noting that
something has been completed. “View
Details” would be clearer than details.

1.6 Is there a consistent icon design
scheme across the site?

Yes
No
NA

1.7 Do GUI menus make obvious which
item has been selected?

Yes
No
NA

II. Please circle the overall sever ity rating for th is usability factor:

0 1 2 3 4

III. If you have other comments, please specify.
System visibility isn’t a big issue in this application because there aren’t many state changes. My
comments refer to the main data entry page and not the asthma action plan which I assume is for the
caregiver. Does the following message ever go away? “Please update the preventative and rescue
medication for the patient!”

Heursitic

Specific considerations for the
"visibility heuristic"

Expert evaluation and
comments (in italics)

Rating of severity of violations

No
Usability Problem

Cosmetic
Problem Only

Minor
Usability Problem

Major
Usability Problem

Usability
Catastrophe

Fig. 5.3 Example of a HE form (for visibility) (Figure courtesy, David Kaufman, Personal

communication)
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walkthrough, referred to as cognitive walkthrough (CW), involves observing,

recording and analyzing the actions and behaviors of users as they complete a

scenario of use. CW is focused on identifying the usability and comprehensibility of

a system (Polson et al. 1992). The aim of CW is to investigate and determine

whether the user’s knowledge and skills and the interface cues are sufficient to

produce an appropriate goal-action sequence that is required to perform a given task

(Kaufman et al. 2003). CW is derived from the cognitive theory of how users work

on computer-based tasks, using the exploratory learning approach, where system

users continually appraise their goals and evaluate their progress against these goals

(Kahn and Prail 1994).

While performing CW, the focus is on simulating the human-system interaction,

and evaluating the fit between the system features and the user’s goals. Conducting
CW studies involves multiple steps. Potential participants (e.g., users, designers,

usability experts) are provided a set of task sequences or scenarios for working with

an interface or system. For example, for an interface for entering demographic and

patient history details, participants (e.g., physicians) are asked to enter the age,

gender, race and clinical history information. As the participants perform their

assigned task, their task sequences, errors and other behavioral aspects are

recorded. Often, follow up interviews or think aloud (described in a later section)

are used to identify participants’ interpretation of the tasks, how they make pro-

gress, and potential points of mismatches in the system. Detailed observations and

recordings of these mismatches are documented for further analysis. While in most

situations CWs are performed by individuals, sometimes groups of stakeholders

perform the walkthrough together. For example, usability experts, designers and

potential users could go through systems together to identify the potential issues

and drawbacks. Such group walkthroughs are often referred to as pluralistic

walkthroughs.

In biomedical informatics, it must be noted that CW has been used extensively in

evaluating situations other than human computer interaction. For example, CW

method (and its variants) has been used to evaluate diagnostic reasoning, decision-

making processes and clinical activities. Kushniruk et al. (1996) used the CW

method to perform an early evaluation on the mediating role of HIT in clinical

practice. The CW was not only used to identify usability problems, but was

instrumental in the development of a coding scheme for subsequent usability

testing. Hewing et al. (2013) used CW to evaluate an expert ophthalmologist’s
reasoning regarding the plus disease (a condition of the eye) among infants. Using

images, clinical experts were independently asked to rate the presence and severity

of the plus condition and provide an explanation of how they arrived at their

diagnostic decisions. Similar approaches were used by Kaufman et al. (2003) to

evaluate the usability of a home-based, telehealth system.

While extremely useful in identifying the key usability issues, CW methods

involve significant investments in cost and time for data capture and analysis.
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5.2.1.3 Model-Based Evaluation

Model-based evaluation approaches use predictive modeling approaches to char-

acterize the efficiency of user interfaces. Model-based approaches are often used for

evaluating routine, expert task performance. For example, how can the keys of a

medical device interface be optimally organized such that users can complete their

tasks efficiently (and accurately)? Similarly, predictive modeling can be used to

compare the data entry efficiency between interfaces with different layouts and

organization. We describe two commonly used predictive modeling techniques in

the evaluation of interfaces.

GOMS

Card et al. (1980, 1983) proposed the GOMS (Goals, Operators, Methods and

Selection Rules) analytical framework for predicting human performance with

interactive systems. Specifically, GOMS models predict the time taken to complete

a task by a skilled/expert user based on “the composite of actions of retrieving plans

from long-term memory, choosing among alternative available methods depending

on features of the task at hand, keeping track of what has been done and what needs

to be done, and executing the motor movements necessary for the keyboard and

mouse” (Olson and Olson 2003). In other words, GOMS assumes that the execution

of tasks can be represented as a serial sequence of cognitive operations and motor

actions.

GOMS is used to describe an aggregate of the task and the user’s knowledge
regarding how to perform the task. This is expressed in terms of the Goals,
Operators, Methods and Selection rules. Goals are the expected outcomes that a

user wants to achieve. For example, a goal for a physician could be documenting the

details of a patient interaction on an EHR interface. Operators are the specific

actions that can be performed on the user interface. For example, clicking on a text

box or selecting a patient from a list in a dropdown menu. Methods are sequential
combinations of operators and sub-goals that need to be achieved. For example, in

the case of selecting a patient from a dropdown list, the user has to move the mouse

over to the dropdown menu, click on the arrow using the appropriate mouse key to

retrieve the list of patients. Finally, selection rules are used to ascertain which

methods to choose when several choices are available. For example, using the

arrow keys on the keyboard to scroll down a list versus using the mouse to select.

One of the simplest and most commonly used GOMS approaches is the

Keystroke-Level Model (KLM), which was first described in Card et al. (1983).

As opposed to the general GOMS model, the KLM makes several assumptions

regarding the task. In KLM, methods are limited to keystroke level operations

and task duration is predicted based on these estimates. For the KLM, there are six

types of operators: K for pressing a key; P for pointing the mouse to a target;
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H for moving hands to the keyboard or pointing device; D for drawing a

line segment; M for mental preparation for an action; and R for system response.

Based on experimental data or other predictive models (e.g., Fitts Law), each

of these operators is assigned a value or a parameterized estimate of execution

time. We describe an example from Saitwal et al. (2010) on the use of the

KLM approach.

In a study investigating the usability of EHR interfaces, Saitwal et al. (2010)

used the KLM approach to evaluate the time taken, and the number of steps

required to complete a set of 14 EHR-based tasks. The purpose of the study was

to characterize the issues with the user interface and also to identify potential areas

for improvement. The evaluation was performed on the AHLTA (Armed Forces

Health Longitudinal Technology Application) user interface. A set of 14 prototyp-

ical tasks was first identified. Sample tasks included entering patient’s current

illness, history of present illness, social history and family history. KLM analysis

was performed on each of the tasks: this involved breaking each of the tasks into its

component goals, operators, methods and selection rules. The operators were also

categorized as physical (e.g., move mouse to a button) or mental (e.g., locate an

item from a dropdown menu). For example, the selection of a patient name involved

8 steps (M – mental operation; P – physical operation): (1) think of location on the

menu [M, 1.2s], (2) move hand to the mouse [P, 0.4s], (3) move the mouse to “Go”

in the menu [P, 0.4s], (4) extend the mouse to “Patient” [P, 0.4s], (5) retrieve the

name of the patient [M, 1.2s], (6) locate patient name on the list [M, 1.2s], (7) move

mouse to the identified patient [P, 0.4s] and (8) click on the identified patient [P,
0.4s]. In this case, there were a total of 8 steps that would take 5.2s to complete. In a

similar manner, the number of steps and the time taken for each of the 14 considered

AHLTA tasks were computed.

In addition, GOMS and its family of methods can be effectively used to make

comparisons regarding the efficiency of performing tasks interfaces. However, such

approaches are approximations and have several disadvantages. While GOMS

provides a flexible and often reliable mechanism for predicting human performance

in a variety of computer-based tasks, there are several potential limitations. A brief

summary is provided here, and interested readers can find further details in Card

et al. (1980). GOMS models can be applied only to the error-free, routine tasks of
skilled users. Thus, it is not possible to make time predictions for non-skilled users,

who are likely to take considerable time to learn to use a new system. For example,

the use of the GOMS approach to predict the potential time spent by physicians in

using a new EHR would be inaccurate – owing to relative lack of knowledge of the

physicians regarding the use of the various interfaces, and the learning curve

required to be up-to-speed with the new system. The complexity of clinical work

processes and tasks, and the variability of the user population create significant

challenges for the effective use of GOMS in measuring the effectiveness of clinical

tasks.
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Fitts Law

Fitts Law is used to predict human motor behavior; it is used to predict the time

taken to acquire a target (Fitts 1954). On computer-based interfaces, it has been

used to develop a predictive model of time it takes to acquire a target using a mouse

(or another pointing device). The time taken to acquire a target depends on the

distance between the pointer and target (referred to as amplitude, A) and the width

of the target (W ). The movement time (MT) is mathematically represented as

follows:

MT ¼ k:log2
A

W
þ 1 where k is a constant, A� amplitude, W�width of the target

In summary, based on Fitts law, one can say that the larger objects are easier to

acquire while smaller, closely aligned objects are much more difficult to acquire

with a pointing device. While the direct application of Fitts law is not often found in

the evaluation studies of HIT or health interfaces in general, it has a profound

influence in the design of interfaces. For example, the placement of menu items and

buttons, such that a user can easily click on them for selection, are based on Fitts

law parameters. Similarly, in the design of number keypads for medical devices, the

size of the buttons and their location can be effectively predicted by Fitts law

parameters.

In addition to the above-mentioned predictive models, there are several other

less common models. While a detailed description of each of them or their use is

beyond the scope of this chapter, we provide a brief introduction to another

predictive approach: Hick-Hyman choice reaction time (Hick 1951; Hyman

1953). Choice reaction time, RT, can be predicted based on the number of available

stimuli (or choices), n:

RT ¼ aþ b:log2 nð Þ;where a and b are constants

Hick-Hyman law is particularly useful in predicting text entry rates for different

keyboards (MacKenzie et al. 1999), and time required to select from different

menus (e.g., a linear vs. a hierarchical menu). In particular, the method is

useful to make decisions regarding the design and evaluation of menus. For

example, consider two menu design choices: 9 items deep/3 items wide and

3 items deep/9 items wide. The RT for each of these can be calculated as follows:

3* aþ b:log2 nð Þð Þ; <; 9; * aþ b:log2 nð Þð Þ½ �. This shows that the access to menus is

more efficient when it is designed breadth-wise rather than depth-wise.
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5.2.2 Usability Testing/User-Based Evaluation

In this section, we have grouped a range of approaches that are generally used for

evaluating the usability of HIT systems. In general, we have classified them into

field/observational studies, and general approaches for usability evaluation that can

be utilized in both field and laboratory settings. While formal usability testing is

often conducted in laboratory settings where user performance (and other selected

variables) are evaluated based on pre-selected tasks, we have loosely classified the

evaluation techniques that utilize users in the evaluation process into general

approaches (those that can be used in both field and laboratory based studies) and

field studies.

5.2.2.1 General Usability Testing Approaches

Interviews

Interviews are commonly used to elicit information about opinions and perspectives

of participants and their work practices (Mason 2002). Within the context of HIT

design and evaluation, interviews have been used to obtain clinicians’ perspectives
and their experiences within the context of the clinical workflow and its respective

challenges and opportunities for design improvement. A study on physicians’ use of
EHR with particular emphasis on its barriers and solutions is a classic example of an

interview study that investigates the impact of HIT on physician workflow. For

example, Miller and Sim (2004) conducted over 90 interviews with physician

champions and EHR managers. Through these interview sessions, they identified

participant perceptions regarding barriers to EHR use including high initial set-up

costs, slow and uncertain financial payoffs, high initial physician time costs related

to challenges with the technology, attitudes and incentives to use the new system.

Interview participants, when asked, suggested potential solutions such as perfor-

mance incentives for achieving quality improvement, technical support for the

system and incorporation of a community-wide data exchange.

Interviews are viewed as an approach to elicit additional information and are

often used in concert with other field study methods (e.g., observation or

shadowing). For example, Unertl et al. (2013) investigated the use of health

information exchange (HIE) technology, and its impact on care delivery at an

e-health organization. Multi-faceted data collection methods including observa-

tions, informal and formal interviews, were used to examine workflow and infor-

mation flow among team members and patients. While the interview findings

illustrated the benefits of HIE technologies for communication and care continuity,

their adoption in practice was limited. The integrated analysis highlighted the

importance of moving away from a data and information “ownership” model to a

“continuity and context-aware” model for the design and implementation of HIE

technology.
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Often, the data obtained from interviews are used to analyze the contextual

language and meaning as quoted by participants. For example, in a qualitative study

on patient transfers, Abraham et al. (Abraham 2010; Abraham and Reddy 2008)

observed breakdowns in information flow between clinical units, despite the effec-

tive use of a care coordination system. Using follow-up interviews, the authors

captured participants’ perspectives on the underlying cause for the information

breakdowns. For example, in one of the interviews, an emergency department

charge nurse was asked to describe the information sharing issues that affected

the coordination of patient transfers from her unit. Her response was: “A lot of times
the attending residents don’t know to put in medication or change orders, addi-
tional labs and if we are busy with other patients, we don’t have time to go to the
computer and even though these screens help, they still don’t alleviate the prob-
lem.” She further added that: “I think basically they don’t understand how the
emergency department works, how difficult it is to hold patients, I don’t think they
understand the concept like I said we don’t have the ancillary staff and so they have
this expectation of what the patient is going to be like when they come up, you know
they are disheveled or haven’t had a bath or like you know they think that’s horrible
(Abraham and Reddy 2008).”

Individual interviews can be classified into three major categories based on the

format and level of standardization of the interview questions – structured, semi-

structured and narrative (or unstructured). During structured interviews, all inter-
viewees are asked the same questions in the same order. This allows for compar-

isons between responses across interviewees, which can be analyzed using

qualitative and quantitative methods. Semi-structured interviews, unlike the struc-
tured interviews, are flexible and allow for probing of participants (i.e., with follow

up questions) to discuss relevant issues.

In contrast to the structured methods of interviewing, narrative, open-ended,

unstructured interviewing does not use any question-response structure. Instead, it

adopts a storytelling and listening framework for obtaining participant perspectives.

Narrative interviewing is typically comprised of four steps: (a) initiation (introduc-

tion of the topic for narration), (b) the main storytelling or narration, (c) questioning

and clarification, and (d) concluding remarks (Farr 1982; Hermanns 1991). This

particular type of interviewing allows participants to describe their story in their

own spontaneous language. For instance, short HCI scenarios can be used to elicit

participants’ responses on how they react to a real-world situation. An example

scenario can focus on the emergency medical service (EMS) personnel use of

patient EHR to support handoff communication to an ER physician during a trauma

patient drop-off. Some of the potential questions that follow the scenario could

uncover the details of how the EMS and ED team respond to the trauma situation,

and the EHR functions and features that can support such emergent communication

during trauma resuscitation.

Most interviews are audio-recorded for a variety of reasons: (a) the data can be

transcribed verbatim, with limited chances of missing key points made by partic-

ipants, (b) provides the ability for the researcher to listen to the audio files and

(c) features such as voice tone and frequency may be of interest for researchers. It is
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recommended that interviews be conducted at locations selected by the participants

to ensure that they feel comfortable to freely talk, without being concerned about

other colleagues overhearing their conversations.

Focus Groups

Focus group is a type of interactive interviewing method that involves an in-depth

discussion of a particular topic of interest with a small group of participants. Focus

group method has been described as “a carefully planned discussion designed to

obtain perceptions on a defined area of interest in a permissive, non-threatening

environment” (Krueger 2009). The central elements of focus groups as highlighted

by Vaughn et al. (1996) include: (a) the group is an informal assembly of target

participants to discuss a topic; (b) the group is small, between 6 and 12 members

and is relatively homogeneous; (c) the group conversation is facilitated by a trained

moderator with prepared questions and probes; and (d) given that the primary goal

of a focus group is to elicit the perceptions, feelings, attitudes, and ideas of

participants about a selected topic, it can be used to generate hypotheses for further

research (Krueger 2009).

Unlike individual interviews, focus group discussions allow the researcher to

probe responses to a particular research topic while capturing the underlying group

dynamics of the participants. According to Kitzinger (1995), interaction is a crucial

feature of focus groups as it captures their view of the world, the language they use

about an issue and their values and beliefs about a situation (Gibbs 1997). For

instance, a focus group involving usability experts, system designers and care

providers can allow participants to share their varying perspectives on HIT system

design based on their work role. This will enable them to voice the key issues on the

fit or (lack thereof) between the functionalities of the system and the clinical

workflow.

Many researchers have argued that focus group interviewing depends on the

active discussion and engagement among participants, and therefore have strongly

advocated for homogenous groups (similar participants) (e.g., Krueger 2009).

Although the interaction between participants is considered a strength of the

method, group participants and the setting can sometimes inhibit the group inter-

action (Lewis 1992), especially during instances when sensitive personal issues are

discussed. A decision regarding the composition should be based on the specific

research (or design) question at hand. For example, a qualitative study supported by

a series of seven focus group interviews with emergency medical services (EMS)

and emergency room (ER) teams were conducted to investigate their coordination

practices in a crisis response situation. The focus group participants were presented

with a mass casualty incident situation, and were asked to respond to a series of

events that unfolded. The questions were related to the decision making process

during a large-scale emergency situation, with particular emphasis on (a) their

information and communication needs, (b) their information and communication

technology use, and (c) their roles and responsibilities during the crisis. During the
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focus group sessions, two researchers moderated the discussion, and took detailed

notes. Barriers perceived to impact coordination activities between EMS and ED

teams included ineffective information and communication technologies, lack of

common ground, and breakdowns in information flow. Furthermore, the focus

group interview participants also jointly identified several key socio-technical

requirements for inter-team coordination systems such as situation awareness,

context, and workflow (Paul et al. 2008; Reddy et al. 2009).

Another important factor that plays a vital role in focus group sessions is the

presence of a skilled moderator (or facilitator) (Burrows and Kendall 1997) who

manages the conversations and interactions between participants. Moreover, sched-

uling a convenient time and location for administering focus group interviews can

be very difficult, given the number of participants that are involved.

Verbal Think Aloud

Verbal think aloud (or simply “think aloud”) is often used to capture rich verbal

data on the thought processes that underlie human actions. Analysis of these verbal

reports can be used to characterize the underlying information and knowledge

structures. Think aloud evaluations are generally characterized into two types:

(1) concurrent and (2) retrospective (Ericsson and Simon 1980). A concurrent

think aloud requires uninterrupted and direct verbalizations of participants as they

perform a task, and is considered to be complete and consistent with their thought

sequence. In contrast, a retrospective think aloud requires the researcher to ask and

prompt subjects to recall their thought sequence while performing a task (or after

completing a task). Ericsson and Simon (1984), the original proponents of the

verbal think aloud method, suggested the value of think aloud data is based on

the following assumptions: (1) the verbalizations capture only a subset of the

cognitive processes underlying behavior; (2) human mind is an information pro-

cessor; and (3) the verbalizations capture contents of working memory (i.e., infor-

mation recently acquired is accessed).

Think aloud studies are typically conducted to identify and characterize cogni-

tive processes such as reasoning, problem solving, and decision-making processes.

For example, Patel and colleagues (Patel et al. 1994, 2001; Patel and Groen 1991a,

b) have conducted several studies using verbal think aloud that investigated the

nature of reasoning using electronic tools, its effects on expertise and decision-

making. Most of these studies relied on verbalizations by a participant (e.g., a

physician), and in-depth linguistic analysis of the verbalizations to identify inherent

strategies in their reasoning and decision-making. Similarly, Fonteyn and Grobe

(1994) utilized a think aloud study to understand the reasoning and decision-

making behaviors of critical care nurses regarding unstable patients. Insights on

the reasoning process of expert nurses informed the design of an expert system.

Other examples of similar key studies can be found here (Fisher and Fonteyn 1995;

Fowler 1997; Funkesson et al. 2007; Grobe et al. 1991; Simmons et al. 2003).
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One of the concerns that have been raised in evaluation studies using verbal

think aloud method is the issue of sample size. While many researchers have used a

small sample size of five participants to focus on in-depth analysis of the cognitive

processes, others have critiqued the sample size (e.g., Lewis 1994). Lundgrén-Laine

and Salanterä (2010) have suggested that the characteristics of the study partici-

pants in terms of their verbalization skills and the appropriate application of the

think aloud is more important than the sample size (Caulton 2001; Fonteyn

et al. 1993; Hall et al. 2004). Measures of information and participant saturation

are often used to determine study completion. A detailed description of the think

aloud method and approaches for its analysis can be found here (Ericsson and

Simon 1984).

5.2.2.2 Surveys and Questionnaires

Surveys and questionnaires are widely used in evaluation studies. Their widespread

use is related to ease of administration (through multiple modes: online, face-to-

face) and limited time required to complete (especially those that use Likert scale

measures). In terms of usability evaluation, there are several surveys that are

commonly used. A list of the commonly used usability surveys are provided below:

(a) QUIS (Questionnaire for User Interface Satisfaction: http://lap.umd.edu/quis/):

measure user interface interaction and subjective satisfaction;

(b) SUMI (Software Usability Measurement Inventory: http://sumi.ucc.ie/): assess

usability of software;

(c) PSSUQ (Post-Study System Usability Questionnaire), and ASQ (After Sce-

nario Questionnaire: http://hcibib.org/perlman/question.cgi?form¼ASQ)

(Lewis 1991): address global usability of a system along with specific scenar-

ios of use;

(d) SUS (System Usability Scale – http://www.usability.gov/how-to-and-tools/

methods/system-usability-scale.html) (Brooke 1996): a general survey of sys-

tem usability;

(e) Subjective workload assessment (NASA-TLX Workload Instrument: http://

humansystems.arc.nasa.gov/groups/tlx/paperpencil.html) (Hart and Staveland

1988): a multi-item scale to determine the physical, temporal, mental, effort,

frustration and performance while working with interfaces.

Although most of the above-mentioned surveys are validated for their reliability,

researchers often use a variety of self-created surveys and questionnaires. Ques-

tionnaires, as opposed to the surveys that use a specific scale (e.g., a scale of 1–7),

often use open-ended questions to elicit responses from participants regarding

system use (e.g., “Describe some of the challenges that you faced while using the

system?”).

Surveys are often used along with other data collection methods and are con-

sidered a complementary data collection method in HIT evaluation. For example,

Karahoca and colleagues (2010) used a generic survey along with system usage
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logs to characterize the usability of two mobile device prototypes. Similar open-

ended questionnaires along with additional observational data was used by

Holzinger and colleagues (2011) to characterize patient interactions with a mobile

interface. Dalai and colleagues (in press) used the SUS scale and the NASA-TLX

scales for comparing the effectiveness of two interfaces for comprehending psy-

chiatric clinical narratives. These survey scales were used in concert with an

analysis of verbal reports to evaluate the effectiveness of presented interfaces.

5.2.2.3 Field/Observational Approaches

In contrast to the analytic evaluation techniques that often yield objective data,

there are several qualitative approaches that focus on the subjective and contextual

assessments of system design and user interactions within the context of a real work
environment (Kurosu 2014). These qualitative approaches are generally catego-

rized as ethnographic-based methods and require an “immersion” in the field in

order to understand the experiences and practices of the informants (Schatzberg

2008). Ethnography is a widely accepted method for data collection in the field of

anthropology (Fetterman 1998). An ethnographer obtains a firsthand experience by

immersing herself in the research setting for an extended period of time. This helps

in gaining an understanding of the particular social and cultural practices of the

setting. Ethnographic methods are used in a variety of domains to gain meaningful

insights on the nuances and complexities of work practices (Forsythe 1999; Brixey

et al. 2005).

Field studies using ethnographic methods allow for a situated, in-depth and

in-situ evaluation of the clinical environments – providing insights on the use and

interaction of care providers with the computer technologies and tools, situated

within their organizational structures. Furthermore, field studies allow us to gain

deeper insights on not only the interdependencies between the usability (ease of use,
learnability and access) and the available functionality afforded by the technology,

but also, the hidden tensions in the healthcare work practices arising from the

contextual and environmental constraints that can potentially disrupt the user

interaction with the technology. In other words, these methods provide an under-

standing of the effects of the user-system interaction on the end user workflow in

actual practice. For instance, these methods can answer questions such as “how did

the system change user behavior?”; “what are the reasons for poor task perfor-

mance?”; “what are the unintended consequences or opportunities related to the

system implementation in the work context?”; “what are the motivations behind the

use of the system?” In contrast to the analytical approaches that are applicable only

at an individual level, these empirical methods support the investigation of collab-

orative practices of work and the effect of technologies on coordination of work in

these practices (e.g., Aarts et al. 2007; Horsky et al. 2006).

Field studies have been extensively used in studying the unique characteristics

and nuances of clinical environments (e.g., Abraham and Reddy 2008; Malhotra

et al. 2007), clinical and non-clinical activities and tasks surrounding clinical
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workflows such as information seeking practices of clinicians, coordination of

patient transfer activities, decision making activities (e.g., Kannampallil

et al. 2013, 2014; Patel and Kannampallil 2011; Patel et al. 2013), and HIT use in

clinical environments (e.g., Abraham et al. 2009, 2012; Ash et al. 2004). Several of

the chapters in this volume have used one or more of these methods. In the

following sections, we describe two commonly used forms of structured field

study approaches – shadowing, and time and motion studies.

Shadowing

Shadowing techniques involve a researcher closely following a participant over an

extended period of time. In contrast to general observations of the entire unit and

patient care team, shadowing techniques focus on collecting data about a single

participant. The data obtained through shadowing are mainly related to the steps

(e.g., process, activities or tasks) performed by the selected participant during the

observational period. Specific to the use of HIT in clinical environments,

shadowing can be used to gather data on the activities of different clinicians

(attending physicians, residents, nurses) as they carry out their patient-care tasks,

and their use of HIT. For example, in a study evaluating the use of EHR systems in

an emergency care setting, Abraham et al. (2009; Abraham and Kannampallil 2014)

shadowed attending physicians over multiple sessions. In addition to identifying the

key activities around EHR use, they found that the use of the EHR led to additional

“peripheral” activities that increased their work activities, consequently creating a

fragmentation in the care process (e.g., the need to use multiple care artifacts, move

across multiple locations and interact with several care providers). A similar

shadowing study was conducted by Patterson et al. (2004) to investigate the barriers

to effective use of clinical reminders supported by clinical decision support systems

at multiple study sites. Using detailed shadowing notes and interview data, the

authors identified six barriers: (a) workload during patient visits, (b) time to

document when a clinical reminder was not clinically relevant, (c) inapplicability

of the clinical reminder due to context-specific reasons, (d) limited training on how

to use the clinical reminder software for rotating staff and permanent staff,

(e) perceived reduction of quality of provider–patient interaction, and (f) the

decision to use paper forms to enable review of resident physician orders prior to

order entry.

Time and Motion Studies

Time and Motion study is a specific shadowing approach that helps in developing a

deeper understanding of the impact of clinical work activities; for example, the

changes on clinical efficiency, team coordination, rounds communication due to the

implementation of a new health technology such as the computerized physician

order entry system or an EHR system (Zheng et al. 2011). In routine time and
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motion studies, a researcher shadows the participant, capturing the sequence of a

particular process/activity/task, in conjunction with the time spent by participant

(on the process/activity/task). Time and motion studies help in examining the

nature of emerging practices around care provider’s adoption and use of the HIT

system (e.g., Zheng et al. 2010). For instance, this method helps in understanding

the role and the use of the EMR system for care activities such as developing an

assessment and plan (in terms of distribution of time spent on clinical notes

interface vs. patient labs interface). In addition to time, it is possible collect data

on the locations traversed by the participant during the session. This provides an

additional level of data on use and interaction of the HIT system within the context

of its use, which can inform better design of HIT that are integrated within the

clinical workflow. This method was used in a study that evaluated the impact of

complexity on physician activities in an emergency care setting (Abraham and

Kannampallil 2014). Based on the study, the authors characterized the nature of

physician activities, the time allocated for these activities, how these activities were

distributed across the unit and the susceptibility of these activities for interruptions,

and found that approximately one-fourth (~25 %) of the physician activities (e.g.,

direct patient care) were localized at specific locations in the unit, while the rest of

the activities (e.g., communication) were distributed across the unit and were less

predictable. These non-localized activities also had a higher likelihood of interrup-

tions. Based on the time and motion study, the authors highlight implications for

mitigating the physician workload, and the design of technologies for monitoring

such complex settings (Abraham and Kannampallil 2014).

Similar to shadowing, time and motion studies often require the use of a

pre-defined taxonomy to record and document the observational data. The accuracy

of the taxonomy, and its fit for the particular work environment is critical to the

evaluation. Time and motion studies are very useful for assessing efficiency and

effectiveness of HIT systems and also, human-centered characteristics of such

technologies. An example of a validated taxonomy used by researchers in the

medical informatics field was developed by Overhage et al. (2001), and later refined

by Pizziferri et al. (2005). This taxonomy was recommended by the Agency for

Healthcare Research and Quality (AHRQ) for collecting time-motion data in

clinical workflow studies. This taxonomy has successfully been used to document

the electronic documentation and note-writing practices of residents in a general

medicine unit at a large teaching hospital (Mamykina et al. 2012). Using this

taxonomy, they conducted a time and motion study on 11 resident physicians that

provided insights on: (a) When and in what circumstances did residents use the

EHR to write a note? (b) What were the general steps of EHR note composition?

(c) Were there common patterns of transitions between these steps among resi-

dents? (d) How did the EHR documentation system facilitate or inhibit their clinical

tasks such as developing a patient assessment and plan of care? The authors

identified that seven of the 10 most common transitions between activities during

note composition were between documenting, and gathering and reviewing patient

data, and updating the plan of care. Through the fine-granular data collection on

temporal properties of resident use of EHR system, the authors were able to find
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that clinical documentation on an EHR system was a synthesis activity, which was

in contrast to the fundamental design of EHR systems that conceptualized clinical

documentation as an uninterrupted composition. As highlighted in the above

examples, time and motion studies solely depend on the observer to accurately

document and record the participant time devoted to each task.

Shadowing and time and motion studies are labor-intensive and time-

consuming, as they require continuous observation for extended periods of time

by the researcher. Also, given that this method is a labor-intensive process, the

sample size may be limited and may lead to questions regarding the generalizability

of results. As with most observational studies, the presence of an observer can

potentially impact the normal behavior of the participant due to awareness that he or

she is being observed.

5.3 Considerations for Conducting HIT Evaluation Studies

In this chapter, we provided an overview of the range of methods that are available

for conducting evaluation studies on HIT systems. The evaluation methods were

classified into two general groups – analytical and user-based testing. While the

methods are not truly mutually exclusive across these two groups, the classification

provides a useful framework for selecting the appropriate method(s) for the eval-

uation of HIT systems. Additionally, given the complexities of the clinical envi-

ronment, we have also adapted a more integrative perspective in terms of the

applicable methods for HIT evaluation – acknowledging the importance of evalu-

ation methods that capture the nuances of the work environment in which these

systems are deployed. We highlight the role of field studies that capture the situated

and contextual perspective of HIT including the effects of HIT implementations on

clinical workflow, tasks and decision-making. Other chapters in this volume also

provide extensions of these methods, both in terms of their use for evaluation and

also for design. In Chap. 7, Kushniruk et al. introduces and explains user-centered

design (UCD), a design approach that relies on some of the above-mentioned

methods for the usability evaluation and design of HIT systems. Similarly, in

Chap. 9, Kalenderian et al. describes the evaluation and re-design of a dental

EHR interface.

In the rest of this section, we highlight some of the considerations for conducting

HIT evaluation studies, directions of future evaluation studies and potential chal-

lenges for conducting these studies. One of the preliminary considerations for

evaluations is to determine the environment in which the evaluation study will be

conducted. As previously described, analytical evaluations are invariably

conducted in a laboratory setting with experts. However, analytical evaluation

studies would fail to capture the nuances and implications of the use of HIT within

a clinical setting. For example, laboratory-based evaluations can identify most of

the interface issues with a Computerized Physician Order Entry (CPOE) system,

but long-term observational studies are possibly required for identifying the
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unintended effects of its use in clinical settings (as highlighted by Koppel

et al. (2005) and Ash et al. (2004)). Similarly, remote usability evaluation studies

are now routinely conducted using web-conference and screen sharing software

(see for example, Kushniruk et al. 2008; also see Chap. 7, this volume, for low-cost

simulation and tele-evaluation studies).

Another important consideration is the use of a framework to guide the evalu-

ation process. These frameworks provide a theoretical and methodological scaffold

for conducting an evaluation for improving the design of a system. While there are

several such design and evaluation frameworks in general HCI (e.g., Scenario-

based Design, Rosson and Carroll 2009), they are far less prominent in the

healthcare research literature. One recent framework is TURF: Task, User, Repre-

sentation, and Function (Zhang and Walji 2011). In addition to being a theoretical

framework for describing and predicting usability differences between HIT sys-

tems, it also provides a framework for selecting appropriate evaluation methods,

measuring the usability using these methods, and making design improvements

based on the evaluation. Similar frameworks are likely to evolve with the wide-

spread adoption of HIT and with the need for rapid evaluation protocols. Addition-

ally, federally mandated programs such as the meaningful use (MU) of EHRs have

furthered the adoption and use of HIT systems. However, with persistent concerns

regarding EHRs (and HIT in general), further evaluation is very likely to continue.

For example, EHR interfaces are still considered to have usability issues that

require a redesign process. More research and development efforts, both from

academia and healthcare industry partners, are likely to be forthcoming in this area.

Two other fast-growing fields within biomedical informatics are the use of

mobile technology and consumer health informatics tools. The proliferation of

mobile devices (phones, tablets) has provided a new approach for accessing and

sharing health information between patients and their healthcare providers. Simi-

larly, consumer health information tools have also been extensively used – for

example, web-based social support tools, aggregated medical information tools and

patient portals. These tools (both mobile and web-based) are still evolving and are

likely an area of significant future design and evaluation (see Chaps. 12 and 13 in

this volume for a detailed discussion of consumer informatics and mobile tools

respectively).

Finally, it is also important to consider the challenges for conducting HIT

evaluation studies. These require considerable investments in time, effort and

planning, thoughtful considerations in selecting appropriate methods, and often

require significant buy-ins from hospital administration and clinicians.

5.4 Conclusions

In this chapter, we described the traditional methods from usability engineering and

HCI, and their applicability for HIT evaluation. The applicability of each of these

methods for evaluation requires careful consideration. We have provided brief
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descriptions of these methods within the context of biomedical and healthcare

applications. A detailed review is beyond the scope of this chapter (interested

readers are encouraged to review the additional readings provided at the end of

this chapter). Recently, more innovative techniques have been utilized for usability

testing and evaluation. These have varied from general techniques such as

eye-tracking, simulations and screen-capture tools to unobtrusive techniques that

have used motion sensing (for a detailed review, see Chap. 6 in this volume by

Zheng and colleagues). The scope of evaluation methods continues to expand in

response to developing technologies, evolving health information tasks and chang-

ing circumstances (e.g., role of the health consumer).

Discussion Questions

1. Why is usability of systems a relevant topic for investigation? Why is evaluation

of HIT a challenge to healthcare researchers?

2. When designing a new HIT system for a clinical vs. non-clinical setting, what

are some of the considerations that must be made?

3. What are some of the considerations for evaluating a prototype vs. an actual,

fully-developed system?

4. What methods will you use to evaluate a vendor-developed EHR?

5. How do usability issues manifest across professions? What can be done to

mitigate them?
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Chapter 6

Computational Ethnography: Automated

and Unobtrusive Means for Collecting Data

In Situ for Human–Computer Interaction

Evaluation Studies

Kai Zheng, David A. Hanauer, Nadir Weibel, and Zia Agha

6.1 Introduction

Health information technology (HIT) holds great promise to cross the quality

chasm of the US healthcare system and to bend the curve of ever-rising costs.

However, many successfully deployed HIT systems have failed to generate antic-

ipated benefits; (Bloomrosen et al. 2011) some are even associated with unintended

adverse consequences (Kellermann and Jones 2013). It has been extensively

documented that the lack of usability is one of the key factors accounting for the

suboptimal outcomes of implementing the current generation of HIT systems

(Bloomrosen et al. 2011). Human–computer interaction (HCI) evaluation studies,

which help designers and researchers assess the effectiveness of competing designs
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and identify potential usability pitfalls, are therefore of vital importance. HCI

evaluation studies in healthcare have been traditionally conducted in the following

four forms: (1) expert inspection (e.g., heuristic evaluation), (2) usability experi-

ments carried out in laboratory settings, (3) field studies (e.g., ethnographical

observation and contextual inquiries), and (4) perception solicitation through ques-

tionnaire surveys, interviews, or focus groups.

In expert inspection, evaluators—usually usability experts—execute scripted

tasks through the target software system or device and determine its conformity

to established principles of usability (the “heuristics”). This method is useful when

widely recognized usability standards exist or when the goal of the evaluation is

very specific, e.g., to improve the accessibility of the software or to eliminate

potential patient safety hazards. Usability experiments are often used in

formative evaluation to comparatively assess multiple design alternatives, or in

summative evaluation to correct usability pitfalls before shipping the system/device

to the hands of end users. Data collected through usability experiments can be both

quantitative (e.g., time for task completion, number of keystrokes and mouse clicks

required, and error rates) and qualitative (e.g., participant verbalization expressing

their cognitive processes or commenting about the usability issues they encounter).

Some usability experiments employ randomized controlled design to maximize the

objectivity and generalizability of study results.

Both expert inspection and usability experiments are typically conducted in

controlled environments wherein evaluators or test users perform predefined sim-

ulation tasks in a manipulated environment void of distractions. These tasks are

carefully curated to best represent prospective end users’ work, but they are by no

means exhaustive. Further, simulation tasks often focus heavily on the user inter-

face (UI) and are designed to assess an individual user working with a computer

terminal in silos stripped of the context of a dynamic work setting involving

multiple co-workers. As such, these approaches are widely criticized for their

lack of consideration of complex task-dependencies in clinical work and the

somewhat chaotic nature of clinical work environments ample of interruptions

and communication failures.

Field studies conducted to collect in situ data describing how end users incor-

porate the system/device in their everyday job routines have thus become popular in

recent years. These studies often involve shadowing clinicians in a medical facility

to observe their individual work as well as their interactions with patients and other

care providers. They draw upon principles from a variety of scientific fields such as

computer-supported cooperative work (CSCW), distributed cognition, and social

computing. For non-observable perceptional measures, such as satisfaction, stress,

and perceived efficiency gains (and losses), questionnaire surveys and other direct

perception solicitation methods are widely used (please refer to Chap. 5 in this

volume for a detailed review).

While these traditional HCI approaches have great merit and are indispensable

in studying and improving usability of software systems and medical devices in

healthcare, they have several major limitations in common. First, recruiting

research subjects or usability experts is an arduous task, as study participation
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requires significant time commitments. Second, the sample size of such studies

(or size of the expert panel) is often small, constraining the generalization power of

their research findings. Third, test users in a controlled environment, or subjects

being shadowed by HCI researchers, may exhibit distinctive behaviors deviating

from their normal work practice (i.e., the Hawthorne effect). Similarly, self-

reported data collected via direct perception solicitation are susceptible to common

cognitive biases and recall errors. For example, due to social desirability bias,

informants may tend to answer questions in a manner that would be favorably

received by others (e.g., to avoid being viewed as lacking competence in adapting

to new technologies); or they may assess individual usability items based on their

overall impression of the intervention, i.e., the Halo effect. Lastly, existing HCI

methods usually produce discrete data representing only a very small fraction of

user behaviors of interest, whereas computational ethnographical approaches are

able to capture data continuously and at very low costs. For a review of common

measurement issues associated with self-reported data, see Gonyea (2005).

In this chapter, we introduce computational ethnography, an emerging family of

methods for conducting HCI studies in healthcare, which usually leverages auto-

mated and less obtrusive (or unobtrusive) means for collecting in situ data reflective
of real end users’ actual, unaltered behaviors using a software system or a device in

real-world settings. These methods are based on the premise that user interactions

with modern technologies always leave “digital traces” behind that can be utilized

by HCI experts to fully or partially re-enact the activities. Typical examples of such

digital traces include browsing history of webpages, keywords typed into a search

engine, audit trails recording document access activities in electronic health

records, and paging/phone logs stored in telecommunication systems.

In the next section, we will introduce the definition of computational ethnogra-

phy, common types of digital trace data that are either being routinely collected in a

healthcare environment or can be proactively collected by HCI experts, and com-

monly used analytical approaches for making sense of such data. We will conclude

the chapter with two use cases illustrating how this new family of methods has been

applied in healthcare to study end users’ interactions with technological interven-

tions in their everyday routines.

6.2 Computational Ethnography

6.2.1 Definition

The term ethnography originates from Greek ἔθνoς ethnos (“folk, people, nation”)
and γράφω grapho (“I write”). It describes a method initially used by social science

researchers, cultural anthropologists in particular, to closely examine the meaning

in the lives of a cultural group. Researchers conducting ethnographical studies, or

ethnographers, strive to develop ‘thick’ descriptions of everyday life and practice
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through a long-term engagement with the people they study and in the setting where

their everyday lives take place. Participant observations and non-participant obser-

vations constitute the primary source of ethnographical data, which are often

supplemented by other means of data collection such as artifact analysis and formal

or informal interviews. Participant and non-participant observations differ on the

degree to which researchers become active participants in the lives of the setting, or

instead maintain a distance as ‘detached’ observers.
Ethnographical work by HCI researchers in healthcare produces vivid and

nuanced accounts of how different players—clinicians, clerical staff, administra-

tors, patients, and families—engage with technologies both during the early adop-

tion and adaptation phases (the so called “burn-in period”) as well as after the

system or device has been used on a routine basis. Such work often pays extraor-

dinary attention to the longitudinal and distributed nature of care processes and the

complex interplay between people, technology, and the organization. Thus, ethno-

graphical research accounts contain very subtle cultural and social contexts in a

healthcare organization (or in a patient community) where technological systems

are situated and what their designs ought to be rooted in. Many of the studies

conducted in the field of CSCW are of this nature. For a review of these studies, see

Fitzpatrick and Ellingsen (2013).

However, the limitations of ethnography are also widely acknowledged. Ethno-

graphical fieldwork is extremely time consuming to conduct, sometimes taking

many months, or even years, to complete. The lack of objectivity has always been

and continues to be viewed as a threat to the legitimacy of ethnographical studies

because generating an interpretive account of the lives of a study setting is inevi-

tably influenced by ethnographers’ own personal and professional experiences. This
issue is particularly prominent in health sciences where controlled trials producing

unambiguous and conclusive results are often deemed as the de facto standard of

high-quality research. In addition, because of the complexity of medical work, it is

often difficult for observers not trained in medicine, or in a particular medical

specialty, to be able to understand what they are observing. Further, in modern

healthcare organizations, a significant amount of work has become largely invisible

or very difficult to observe by ethnographers. Interpersonal communications among

healthcare workers for example are increasingly mediated by technologies (e.g., via

pager messages or electronic notifications built into an order entry system), and a

considerable proportion of clinical work (e.g., documentation) can be now done

remotely or even after work.

Nonetheless, the widespread use of information systems and computer-mediated

communication technologies in today’s highly wired healthcare environments also

creates an unprecedented opportunity for collecting ethnographical data through

automated and electronic means. In fact, healthcare, perhaps more than any other

industry, bears regulatory mandates (e.g., HIPAA1 and Medicare Conditions of

1HIPAA, or the Health Insurance Portability and Accountability Act, defines policies, procedures,

and guidelines for maintaining the privacy and security of protected health information as well as

outlining offenses and sets civil and criminal penalties for violations.
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Participation2 in the US) that require them to truthfully record anything done to the

patient, any communications surrounding the care for the patient, and any access to

and modifications of the patient’s medical records. Failing to do so is associated

with significant financial and legal consequences. As a result, digital traces abound

in healthcare organizations, providing an excellent source of data for ethnographers

to retroactively reconstruct patient care activities at a fine level of granularity.

Combining the ‘thickness’ of ethnographical methods with the strength of

automated computational approaches is thus a natural next step for HCI researchers.

This new way of collecting behavioral and social data not only forms the basis of

the computational ethnography methodology described this chapter, but also the

emerging field of “computational social science” at large (Lazer et al. 2009; Giles

2012). In the context of this chapter, we define computational ethnography as “a

family of computational methods that leverages computer or sensor-based technol-

ogies to unobtrusively or nearly unobtrusively record end users’ routine, in situ
activities in health or healthcare related domains for studies of interest to human–

computer interaction.” Because computational ethnography is based on data auto-

matically captured through technological means, it by nature provides higher

objectivity, less intrusion, more inclusiveness (i.e., into spaces and time where/

when direct observation by human observers is not possible), and better scalability

for data collection, aggregation, and analysis. Note that while recording user

interactions with a computer system such as keystrokes (Card et al. 1980) and

analyzing the behavioral data thus obtained (Ritter and Larkin 1994) have been a

widely used study approach in HCI, unless their data are collected in users’
everyday settings via unobtrusive or nearly unobtrusively means (i.e., as opposite

to a controlled laboratory environment), such studies do not meet the definition of

computational ethnography. Similarly, quantitative observational studies involving

independent human observers (e.g., in a time and motion observation) to collect

interaction or behavioral data also do not meet the definition of computational

ethnography.

6.2.2 Common Sources of Computational
Ethnographical Data

As mentioned earlier, in a modern healthcare organization, clinician, staff, and

patient activities always leave behind abundant digital traces that can be leveraged

to study interesting HCI problems. Such data are already being routinely collected

or can be proactively collected by deploying specific tracking devices. In this

section, we introduce five sources of computational ethnographical data that have

been commonly used in HCI evaluation studies in healthcare.

2 § 482.24 Condition of Participation: Medical Record Services. http://www.gpo.gov/fdsys/gran

ule/CFR-2011-title42-vol5/CFR-2011-title42-vol5-sec482-24/content-detail.html
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6.2.2.1 Computer Logs

Most modern computer systems are capable of generating log files for purposes

such as helping engineers monitor a system’s performance or helping administra-

tors gauge the usage of newly deployed software. In the US, there is a federal

mandate by both HIPAA and the HITECH Act3 demanding all HIT systems have

the security auditing capability. For example, the HIT Certification Program over-

seen by the Office of the National Coordinator for Health Information Technology

(ONC)4 requires that all electronic health records (EHR) systems certified through

the program to implement security audit logs (commonly referred to as audit trails).

The certification criteria contain detailed specifications on (1) what constitutes

auditable events (e.g., creation, modification, deletion, or printing of electronic

health information); (2) metadata that must be recorded for each auditable event

(e.g., date, time, patient identification, and user identification); and (3) tamper-

resistance measures in place to ensure the auditing function is enabled by default

and audit trails are immutable. Having an EHR system equipped with these

security-auditing features is a prerequisite to meeting the meaningful use criterion

in order to “protect electronic health information created or maintained by the

certified EHR technology through the implementation of appropriate technical

capabilities” (Eligible professional meaningful use core measures). The certifica-

tion criteria further recommend all EHR systems adopt an American Society for

Testing and Materials (ASTM) International standard, ASTM E2147-01,5 as the

format to record and store audit trail data. This means that in the not too distant

future audit trial logs generated by different HIT vendor systems at different

institutions could be easily merged and jointly analyzed.

Table 6.1 exhibits a sample security audit log. As illustrated in the sample,

security log entries contain rich information describing medical work. These log

entries not only reveal the occurrence of a clinical event (when, by whom, related to

which patient), but also what the event was about (e.g., chart access vs. placing

orders) as well as the identifier of the medical record describing the event allowing

for further drill-down analyses. In addition, audit trails contain the IP address of the

device from which the data access/writing request originated and potentially also

3 The Health Information Technology for Economic and Clinical Health Act, or the HITECH Act,

sets meaningful use of EHRs as a critical national goal and allocates incentive funds to accelerate

their adoption. The HITECH Act contains specific privacy and security requirements, mainly

through software certification, to ensure adequate protection of protected health information stored

in EHRs.
4 The Office of the National Coordinator for Health Information Technology (ONC) is the

principal federal entity responsible for coordinating nationwide efforts to support the adoption

of HIT and the promotion of nationwide health information exchange. It was created in 2004 and is

organizationally located within the Office of the Secretary for the U.S. Department of Health and

Human Services. http://www.healthit.gov
5ASTM E2147-01: Standard Specification for Audit and Disclosure Logs for Use in Health

Information Systems. http://www.astm.org/Standards/E2147.htm
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geocoding data supplied by mobile devices. Such information can be combined

with timestamps to reconstruct the spatiotemporal distribution of clinical work in a

medical facility. Audit trail logs thus provide rich sources of data for HCI experts to

conduct workflow and temporal rhythm studies, studies on distributed cognition

and social information processing, and studies on information and patient handoffs.

For example, Hripcsak et al. (2011) used audit logs captured in an EHR system to

characterize the amount of time clinicians spent authoring clinical notes and

the proportion of such notes that was viewed by others (Hripcsak et al. 2011).

For a review of HCI studies conducted in both healthcare and non-healthcare

contexts using computer log data, see Hilbert and Redmiles (2000) and Dumais

et al. (2014).

A significant limitation of using security audit logs in HCI research is that

some transitory screen activities (e.g. user moving a window around to reduce the

amount of visual clutter on the screen) are not logged which nevertheless could be

of considerable interest to HCI experts. Further, timestamps recorded in a security

audit log file only indicate when a clinical action occurred. This information is not

adequate to answer important usability questions such as how long it took the user

to perform the action (e.g., to fill out a medication ordering form), or if the user

chose the optimal options when using the system (since the original clinical

context may also be unknown). Additional tools are therefore needed for

HCI experts to acquire supplemental data on screen activities, described in the

next section.

Table 6.1 A sample security audit log
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6.2.2.2 Screen Activities

Screen activities, such as mouse cursor trails, mouse clicks/drags, keystrokes, and

window activation and window movements, have been popularly used in HCI

research to study user interactions with a software system to detect potential

usability pitfalls. Screen activities reveal rich details of user behaviors that may

not be otherwise available, e.g., user clicking a “+” sign to expand a tree view to see

a full list of medications, or clicking the “Close” button to skip a popup window

presenting a computer-generated clinical decision-support reminder. This addi-

tional level of detail is very important for HCI research in healthcare because

many commercial HIT systems may not log user actions that do not involve direct

accesses of or modifications to patient charts.

Screen activities may be recorded as a sequence of screen snapshots or as a video

stream. Figure 6.1 illustrates a sample frame from a video clip capturing a user

session took place in an outpatient exam room. When a front-mounted camera is

available, additional contextual video/audio data (shown in the bottom right win-

dow) may also be recorded along with screen activities providing an opportunity for

HCI experts to study the clinician’s (as well as the patient’s) facial expressions,
body gestures, and conversations between the clinician and the patient.

Fig. 6.1 A sample frame from a screen activity video clip recording a clinician interacting with an

EHR system. The superimposed dark grey path shows the trail of the mouse cursor over the 1 s

prior to the capture of this frame
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Screen activities may also be recorded as log data containing a chronological list

of user interaction events that can be computationally analyzed. Screen footage and

contextual videos, on the other hand, are much harder to analyze which often

requires prolonged and laborious manual coding processes. As illustrated in a

sample screen activity log shown in Table 6.2, a variety of usability metrics can

be readily derived from the structured log data including time efficiency (how much

time it takes to complete a given task), operation efficiency (how many mouse

clicks or keystrokes it requires to complete a given task), and error rates (e.g.,

frequency of user clicking a wrong button or the ratio of unnecessary mouse/

keyboard activities that did not contribute to the accomplishment of a given task).

For example, Magrabi et al. (2010) used screen activities to examine how task

complexity and interruption affect clinician performance in terms of error rates,

resumption lag, and task completion time in creating and updating electronic

medication charts (Magrabi et al. 2010). Screen activity logs, especially when

combined with other sources of data (e.g., security auditing logs), can also reveal

other interaction behaviors of high interest to HCI researchers such as how clini-

cians copy/paste text from various sources in a an EHR system to construct a

narrative note.

Many software tools are available for capturing and analyzing computer screen

activities. Morae (TechSmith Corporation, Okemos, MI), for example, is a com-

mercial product widely used in usability studies and market research that allows for

observing, recording, and analyzing user interactions with software systems such as

websites.6 Both the video footage shown in Fig. 6.1 and the screen activity log

shown in Table 6.2 were generated using Morae. In healthcare, screen activity

capturing tools have been developed specifically to work with HIT systems such as

Table 6.2 A sample screen activity log

6 http://www.techsmith.com/morae.html
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EHRs. Turf (an acronym for “Task, User, Representation, Function”), for example,

is an EHR usability assessment tool developed at the National Center for Cognitive

Informatics and Decision Making funded by the ONC’s Strategic HIT Advanced

Research initiative.7 Turf is an integrated toolkit that allows for screen capturing,

UI markups, and heuristic evaluation (e.g., experts can use the system to indicate

potential usability issues on a screen and label them as minor, moderate, major or

catastrophic). The evaluation criteria incorporated in Turf are based on the National

Institute of Standards and Technology’s (NIST) EHR usability evaluation protocol,

NISTIR 7804.8

6.2.2.3 Eye Tracking

Screen activity data capture how users interact with a software system using mouse

and keyboard. However, user activities that do not trigger a traceable screen event

are not captured. These activities may include, for example, a clinician reading

from an EHR system to digest a patient’s earlier discharge summary before meeting

the patient in an exam room, or examining the content of a computer-generated

drug safety alert before acting upon it. Head and eye movements captured through

eye-tracking devices can thus become an important source of data enabling HCI

experts to study interesting topics such as how clinicians seek information and

make sense of a patient case out of a large volume of patient records and whether

there is a tendency among clinicians to skip computer-generated advisories without

carefully reading them.

An eye-tracking device measures a person’s head position (gaze) and eye

movements relative to the head that reveal the person’s visual and overt attention

processes. Modern eye-tracking technologies are often based on optical sensors that

capture the vector between the pupil center and the corneal reflections created by

casting a beam of infrared or near-infrared non-collimated light on the eye. In HCI,

the eye-tracking technique has been commonly used in assessing the usability of

websites e.g. to study which portion(s) of the screen that web surfers’ attention
tends to focus on more often so as to optimize the placement of online advertise-

ments (Poole and Ball 2005). It has also been used in healthcare particularly in the

areas of autism research (Falck-Ytter et al. 2013), anxiety and depression (Arm-

strong and Olatunji 2012), and training and assessing the skills of surgeons (Tien

et al. 2014).

Figure 6.2 shows an eye-tracking device mounted below a computer monitor in

an outpatient exam room. This configuration is not intrusive and can detect both

head and eye movements, and is thus more practical to use in everyday healthcare

settings. Eye-tracking data obtained through the device can be synchronized with

7 https://turf.shis.uth.tmc.edu/turfweb/
8 NISTIR 7804: Technical Evaluation, Testing and Validation of the Usability of Electronic Health

Records. http://www.nist.gov/manuscript-publication-search.cfm?pub_id¼909701
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screen activity recordings to reveal which part of the computer screen the user was

looking at moment-by-moment during a use session. The end result can be plotted

as heat-maps showing hotspots on an application’s UI or eye trails traversing

different parts of the screen, as illustrated in Fig. 6.3a, b, respectively. In addition,

the eye-tracking data provide hints as to when the user gazes away from the

computer to attend to other stimuli in the room, e.g., the patient. This allows HCI

experts to study how the presence of computers in an exam room might interfere

with patient–provider communications. Many manufactures produce eye-tracking

devices and analytical software are produced. Leading vendors include Tobii

Technology9 and SensoMotoric Instruments (SMI).10

6.2.2.4 Motion Capture

A considerable body of the HCI literature in healthcare concerns how introduction

of computerized systems changes the dynamics of patient–clinician interactions in

an exam room. It has been extensively documented that computer use during

clinical consultations could be associated with adverse impact such as diminished

quality of patient–clinician communications and elevated levels of patient disen-

gagement and dissatisfaction. Some frequently reported reasons include loss of eye

Fig. 6.2 A table-mounted eye tracker in an outpatient exam room

9 http://www.tobii.com/
10 http://www.smivision.com/
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Fig. 6.3 Heat-map and eye trails produced by eye-tracking data
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contact, rapport, and provision of emotional support; interference with conversa-

tions due to the clinician gazing back-and-forth at the computer screen; reduced

emphasis on psychosocial questioning and relationship maintenance; and irrelevant

computer-prompted inquiries diluting the focus on the patient’s current issues. For a
review of these potential issues, see Kazmi (2013).

Besides the methods for capturing computer activities and eye movements, HCI

experts in healthcare are also experimenting with novel sensor-based technologies

that allow for automated collection and analysis of additional dimensions of

patient–clinician interaction data such as vocalization, body orientation, and body

gestures. Microsoft Kinect™,11 for example, is an affordable yet effective solution

that includes an infrared depth sensor for tracking depth data (i.e., participants’
distance and angle relative to the position of the camera), body movements (kinetics

through motion of body joints e.g. head, should center, shoulder left/right, elbow

left/right, wrist left/right, hand left/right, etc.), and head orientation (e.g., pitch, roll,

yaw). It also has a built-in microphone array that detects the angle of multiple audio

sources which makes it possible to perform automated segmentation of voice data

to identify vocalization sequences, clinician’s visual attention (EHR vs. patient), as

well as characterize turn-talking behaviors in terms of whether the clinician or the

patient was talking. Such data can thus enable HCI experts to answer daunting

questions e.g. the body language that clinicians use when interacting with patients

while simultaneously using computerized systems such as EHRs. Figure 6.4 shows

a Kinect mounted above and behind a computer monitor in an outpatient exam

Fig. 6.4 Microsoft Kinect™ installed in an outpatient exam room and monitoring a physician’s
movements

11 http://kinectforwindows.org
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room. Figure 6.5 illustrates a sample frame from a depth and skeleton image

sequence recorded by Kinect’s depth camera.

A distinctive advantage of using sensor-based technologies such as Kinect is that

the data collected can be programmatically analyzed eliminating the need to have

human coders to manually review hours of video/audio data. Microsoft provides a

non-commercial Kinect Software Development Kit (SDK) freely available to HCI

experts to develop customized analytical programs to perform post-processing tasks

such as background removal, gesture recognition, facial recognition, and voice

recognition.12

For example, the depth, skeletal, and voice direction data are all recorded as

digitized coordinates which can be easily computed to determine the relative

positions of the participants in the room (typically a clinician and a patient if it is

an outpatient primary care exam room) at each given time during a clinical

encounter. This allows HCI experts to automatically segment the progression of a

clinical consultation into distinct stages e.g. greetings, physical exam, conversing in

seated positions, and patient and/or clinician leaving the room. Nonverbal commu-

nications such as head orientation and body gestures can also be automatically

recognized and studied, and can be further synchronized with eye-tracking data to

precisely profile the clinician’s gazing behavior when using the EHR to enter or

retrieve information while talking to the patient. Large-scale deep analyses of

patient–clinician interactions are thus possible at reasonably costs without involv-

ing laborious manual coding processes. For a more in-depth discussion on how to

Fig. 6.5 Skeletal and depth data recorded by Kinect. The red overlay indicates that a body has

been recognized; the purple dots indicate body joints connected through purple lines; the yellow
line indicates the gaze vector as inferred from pitch yaw and roll

12 http://www.microsoft.com/en-us/kinectforwindowsdev/
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use sensor-based technologies to study the dynamics of patient–clinician interac-

tions in exam rooms and potential practical obstacles, see Weibel et al. (2015).

6.2.2.5 Real-Time Locating Systems (RTLS)

Clinicians as well as patients move around constantly in a medical facility to

provide/receive care and to interact with other stakeholders (e.g., families, special-

ists, pharmacists). While the other computational ethnographical methods

described in this section help HCI experts examine the interactions between

clinicians, patients, and computerized systems, they do not allow for comprehen-

sive collection of motion-location data that may lead into novel insights. For

example, with motion-location data, HCI researchers are in a better position to

answer questions such as whether the physical layout of an outpatient clinic or an

inpatient ward is optimally designed to facilitate patient care delivery, and whether

the introduction of HIT systems might result in a reduction of face time among

healthcare coworkers. Sensor-based RTLS systems, most commonly based on the

radio-frequency identification (RFID) technology,13 provide a solution to capturing

such motion-location data. RFID has a long history of being used in healthcare for

supply chain management purposes (e.g., asset tracking of medical devices) and

patient safety purposes (e.g., patient identification), and has been increasingly used

in HCI studies to determine the whereabouts of clinicians or patients. For a review

of applications of RFID in healthcare, see Wamba et al. (2013) and Rosen

et al. (2014).

An RFID tag or badge contains an electronic transponder that emits or responds

to electromagnetic signals to both identify itself and triangulate its position relative

to base stations installed in the environment. The locating precision depends on

vendor and configuration, but is generally adequate for studying problems

concerned in HCI such as whether two or a group of healthcare providers are in

close spatial proximity (e.g., the same room), which provides an opportunity for

them to engage in interpersonal communications. Joined with timestamps, the

spatiotemporal data collected via an RTLS system allow HCI experts to explore a

variety of interesting topics, for example, clinicians’ movement patterns, the

dynamics of team aggregation and dispersion, and potential workflow deficiencies.

6.2.2.6 Other Types of Computational Ethnographical Data

Besides the five major types of computational ethnographical data discussed in this

section, there are also other sources of digital traces that HCI experts may poten-

tially tap into, such as paging/phone logs tracked by telecommunication systems,

13Wifi, cellular, and ZigBee triangulation technologies have also been developed and used

for RTLS.

6 Computational Ethnography: Automated and Unobtrusive Means for Collecting. . . 125



email messages delivered or received by email servers, internet traffic monitored by

proxy servers and firewall systems, and data and metadata collected by barcode

scanners and by medical devices e.g. intelligent infusion pumps. Combining these

data sources together allows HCI experts to study everyday activities taking place

in a healthcare environment at an unprecedented level of comprehensiveness,

depth, and accuracy.

6.2.3 Analyzing Computational Ethnographical Data

6.2.3.1 Coding Computational Ethnographical Data

To analyze computational ethnographical data, a coding schema must be first

identified or developed for properly labeling and categorizing the events recorded.

For example, to make sense of security audit logs, researchers need to first deter-

mine the taxonomies used for “event name” and “event type” (see Table 6.1), which

can often be found in software documentation or obtained directly from the vendor.

Over the years, the HCI and the health informatics research communities have

created many task taxonomies to characterize clinicians’ work in different care

areas or different medical specialties. For example, Tierney et al. (1993) developed

a clinical task taxonomy comprised of tasks commonly performed by inpatient

internists (Tierney et al. 1993) and subsequently adapted it to use in ambulatory

primary care settings (Overhage et al. 2001). Wetterneck et al. (2012) developed a

comprehensive primary care task list for evaluating clinic visit workflow which

incorporates more granular task and task category definitions such as looking up the

referral doctor from an EHR system or from a paper chart (Wetterneck et al. 2012).

Similar taxonomies have been established to characterize the work by anesthesiol-

ogists (Hauschild et al. 2011), ICU nurses (Douglas et al. 2013), clinicians working

on general medicine floors (Westbrook and Ampt 2009), as well as clinical activ-

ities specifically related to medication ordering and management (Westbrook

et al. 2013).

If an HCI study mainly concerns clinicians’ documentation behavior, it is

advised that the researchers base their analysis on a formal classification of EHR

functions and record structures, such as ASTM International’s “Standard Practice

for Content and Structure of the Electronic Health Record (EHR), ASTM E1384-

07,”14 “Standard Specification for Healthcare Document Formats, E2184-02”,15 or

“Data Elements for EHR Documentation” curated by the American Health Infor-

mation Management Association (Kallem et al. 2007). These standards define basic

functions of EHR systems, common types of clinical documents, and the structure

of each document type (e.g., sections and data elements that should be contained in

14 http://www.astm.org/Standards/E1384.htm
15 http://www.astm.org/Standards/E2184.htm
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a discharge summary). Using these standards properly can help standardize the

conduct and results reporting of documentation behavior research.

6.2.3.2 Analyzing Computational Ethnographical Data

Data collected using computational ethnographical methods can be analyzed in

many ways depending on the objective and the context of an HCI study. For

example, researchers interested in patient throughput may perform time series

analyses to determine the intensity of clinical activities in different units in a

hospital during different hours of the day and different days of the year; researchers

interested in time efficiency may compute descriptive statistics to determine aver-

age turnaround between a medication order is placed and the medication is fulfilled/

administered using a new computerized order entry system; and researchers inter-

ested in optimizing a UI design may use the amount of eyeball and mouse

movements as a surrogate measure of the effectiveness of the organization of

information and UI elements on the screen. Error rates, documentation patterns,

and formation and dismissal of care teams are also frequently studied research

topics (Magrabi et al. 2010; Bohnsack et al. 2009; Vawdrey et al. 2011). In this

section, we describe a few unique analytical approaches that are particularly useful

in analyzing computational ethnographical data.

First, temporal data mining is commonly used in computational ethnography.

This is because computational ethnographical data are always recorded in the form

of, or can be easily transposed into, time-stamped event sequences exhibiting the

temporal (and potentially spatial) distribution of occurrences of a series of events.

Because temporal data mining identifies temporal interdependencies between

events, this family of methods is ideal for discovering hidden regularities from

computational ethnographical data that may have significant clinical or behavioral

implications. For example, HCI researchers studying the impact of HIT on clinical

workflow may be interested in identifying clinical activities that are usually carried

out in a given sequential order to examine whether the design of a HIT system may

facilitate or hinder the ordered execution of a series of clinical tasks.

Sequential pattern analysis is one such temporal data mining method for char-

acterizing how interrelated events are chronologically arranged. Sequential pattern

analysis was initially developed by Agrawal and Srikant (1995) to study customers’
shopping behavior, e.g., predicting a customer’s future merchandise purchases

based on the person’s past shopping record. Consider the following three event

sequences wherein each symbol representing a clinical activity: abegcdhf, eabhcd,
abhcdfg. It can be easily observed that ab. . .cd is a frequently occurring pattern

supported by all three sequences. If the implementation of a new HIT system

requires cd to be performed prior to ab, or another task to be performed between

a and b or between c and d, it is possible that the new system may introduce

considerable disruptions to the established workflow as well as clinicians’ cognitive
processes. For a review of sequential data analysis and temporal mining, see

Sanderson and Fisher (1994) and Laxman and Sastry (2006).
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Second, time-stamped events sequences derived from computational ethno-

graphical data can be used for transition analyses. For example, from the three

sample event sequences above, it can be easily calculated that the probability of

observing event b following event a is 1, and the probabilities of observing e and

h following b are 0.25 and 0.5, respectively. This information enables HCI

researchers to characterize the nature of task transitions in clinical care. It may

also allow HCI researchers to associate ‘cost’ with each task transition and assess

whether the introduction of a new software system might increase or decrease such

cost. Here, ‘cost’ may consist of cognitive load of switching between tasks as well

as the physical effort that the task switching may incur. Studying the cost associated

with task transitions is important because it has been shown in the cognition

literature that frequent task switching is often associated with increased mental

burden on the performer (e.g., task prioritizing and task activation). Additionally,

switching between tasks that are of distinct natures could result in a higher

likelihood of cognitive slips and mistakes; for example, the loss-of-activation

error manifesting as forgetting what the preceding task was about in a task execu-

tion sequence.

Lastly, transition probabilities hereby obtained allow HCI researchers to conduct

Markov chain analysis (Grinstead and Snell 1997) to determine that in a series of

events which event might most likely appear in which step. These Markov chains,

based on empirical contexts, may represent activities that a primary care physician

performs during an outpatient patient visit or care procedures that a patient must go

through before a surgical operation. Such information helps HCI researchers

quantify the nature of established workflow in a healthcare environment and design

software systems accordingly that best align with such workflow.

6.2.4 Limitation of Computational Ethnography

Comparing to traditional approaches for conducting HCI fieldwork, computational

ethnographical methods provide an automated and less intrusive means for HCI

researchers to study software systems or medical devices deployed in the field and

used in naturalistic settings. However, computational ethnography also has notable

shortcomings. A critical limitation of computational ethnographical methods is that

while automatically captured digital trace data help HCI researchers tell what

happened in the field, they are often inadequate to shed light on why clinicians

demonstrated the observed behaviors. Mixed methods, which combine the merits of

computational ethnography with qualitative research designs such as interviews,

context inquiry and ethnographically based observations, are therefore highly

encouraged. Further, computational ethnographical data are not necessarily com-

plete for characterizing clinicians’ certain behaviors. For example communication

analyses solely based on computer logs (paging/phone, email, messaging, etc.) may

fail to consider other important channels of communication among clinicians such
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as hallway or bedside conversations. Thus, when conducting computational ethno-

graphical investigations, researchers shall be always mindful whether such data are

a truly comprehensive reflection of clinicians’ work of interest. Lastly, computa-

tional ethnographical data may originate from multiple sources posing great chal-

lenges to synchronization and integrative analysis. In addition, computational

ethnographical data may be originally collected to support operational purposes

(e.g., security auditing), rather than research. Preparing such data for research reuse

could therefore be resource consuming and may require sophisticated analytical

skills.

6.3 Case Studies

6.3.1 Understanding Clinicians’ Navigation Behavior
in EHRs

In their paper “An Interface-Driven Analysis of User Interactions with an Elec-
tronic Health Records System,” Zheng et al. (2009) applied the computational

ethnographical approach to study primary care physicians’ usage behavior of an

ambulatory care EHR system (Zheng et al. 2009). In the study, a homegrown EHR

system was reengineered to allow real-time capture of comprehensive UI interac-

tion events such as mouse clicks and keystrokes. These UI interaction events, along

with audit trails recording EHR document retrieval, creation, and modification

events, provided data for computational ethnographical analyses.

Figure 6.6 illustrates the UI of the EHR system studied. Listed in Table 6.3 are

17 major EHR features provided in the system to allow clinicians to perform

various documentation or chart viewing tasks. Based on the digital trace data and

timestamps, event sequences were constructed representing how these 17 EHR

features were sequentially accessed, which might represent how the corresponding

clinical tasks were sequentially carried out. HMXAD, for example, represents a task

sequence of “History of Present Illness” (H )! “Medication” (M )! “Physical

Examination” (X)! “Assessment & Plan” (A)! “Diagnosis” (D). The empirical

study was conducted in an ambulatory primary care clinic and lasted 10 months.

Data were recorded in a total of 973 distinct patient encounters seen by 30 resident

physicians.

The computational ethnographical data recorded in the empirical study were

analyzed using a sequential pattern analysis, which uncovers hidden navigational

patterns in the resident physicians’ use of the EHR system; and a Markov chain

model, which characterizes the sequential dependencies among the 17 EHR fea-

tures based on transition probabilities. The sequential patterns identified in the

study are shown in Table 6.4. These patterns satisfied a minimum support threshold

of 15 %, i.e., each appeared in at least 15 % of the patient encounters studied.
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Fig. 6.6 User interface of the EHR system studied in Zheng et al. (2009)
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As shown in Table 6.4, ADAD and DADA were the most common recurring feature

combinations sequentially carried out, which suggests that when the resident

physicians used the EHR system to document or view patient data, they often

accessed the “Assessment & Plan” and “Diagnosis” sections of the EHR consecu-

tively, and frequently switched between these two features back and forth. “Med-

ication” and “Order” are another pair of EHR features that appeared to be often

used together.

Figure 6.7 illustrates the results obtained from the Markov chain analysis where

feature transitions with a probability above 0.5 are highlighted using bold arcs.

Prominent transitions can be easily observed from the figure; for example, after a

resident physician completed “Physical Examination”, the chance that she or he

would immediately move on to document “Assessment & Plan” (0.687) is higher

than the probabilities of using all other EHR features combined. Similarly, “Assess-

ment & Plan”! “Diagnosis” (0.764) is a frequent task transition, suggesting that

immediately after documenting in the “Assessment & Plan” section in the EHR

system, a resident physician would most likely begin working on “Diagnosis.”

Likewise, “Order” has a high probability of transitioning to “Medication” (0.57), as

does “Family History”! “Social History” (0.538).

Table 6.3 Major EHR features studied

Label Feature Label Feature

A Assessment & Plan O Order

B Retaking BP P Procedure

D Diagnosis (problem list) R EncounteR Memo

E Medication Side Effects S Social History

F Family History T Office Test

G AllerGies V Vaccination

H History of Present Illness (HPI) X Physical EXamination

L Laboratory Test Y Review of SYstems

M Medication

Table 6.4 Sequential

patterns identified
Pattern Level of support (%)

ADAD 51.16

DADA 43.97

XADA 40.17

OMOM 32.77

MOMO 29.39

YXAD 21.78

HS 19.03

OL 18.6

OMY 16.7

LO 15.64

HO 15.01
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Figure 6.7 illustrates the Markov chain constructed based on the feature transi-

tion probabilities. This information reveals that after a user logged into the EHR

system, in which step a particular EHR feature would most likely be accessed. As

exhibited in the figure, “History of Present Illness” was usually the first stop after a

user started to use the system. Then, the most likely accessed next EHR feature was

“Social History,” followed by “Assessment & Plan.” From Fig. 6.7, it becomes

clear how resident physicians in the study practice tended to organize their clinical

work chronologically during a typical outpatient primary care encounter.

The results of this computational ethnographical study led to the discovery of the

resident physicians’ navigational patterns in using the ambulatory care EHR system

in the study clinic. This discovery may in turn lead to a better understanding of their

cognitive processes when providing patient care. For HCI researchers, this learning

may directly inform improvement opportunities to ameliorate the usability of the

EHR system, e.g., usability deficiencies may surface if certain UI design of the

system might require an excessive number of mouse clicks in order to accomplish

frequent task transitions.

For example, the empirical data recorded in this study show that “History of

Present Illness” was one of the most frequently used features and was usually

accessed immediately after a user logged into the system. This feature should

therefore be placed in a distinctive, salient onscreen position in the UI. Further,

the study identified several pairs of features (e.g., “Assessment & Plan” ⇆ “Diag-

nosis” and “Order” ⇆ “Medication”) that were often accessed together. This

prompts EHR designers to place these features in adjacent locations on the screen,

or provide certain navigational aids (e.g. hyperlink shortcuts), to facilitate these

frequent feature switches. The result would be a more optimized designs better

aligned with clinicians’ workflow as well as their mental model of accessing/

documenting information and providing patient care.

6.3.2 Analyzing the Dynamics of Provider–Patient
Interactions

The second case study, “Interpreter-mediated physician–patient communication:

opportunities for multimodal healthcare interfaces,” was conducted by Weibel

et al. (2013). This study examined physician–patient communications mediated

by medical interpreters with patients who have low English proficiency. The

fieldwork was conducted at a community health center that provides comprehensive

care for low income and multiethnic patient populations. A majority of these

patients show limited English proficiency (LEP); most of them require the assis-

tance of an interpreter during physician–patient consultations.

In the study, the researchers analyzed multiparty and multimodal interactions in

the exam room from a distributed cognition perspective. The study employed a

novel computational ethnographical approach to simultaneously capture multiple
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data streams to examine physician, patient, and interpreter interactions. This

allowed the researchers to investigate beyond speech—what has been traditionally

considered the primary modality for communication—to include other types of

nonverbal exchanges such as eye contact, gestures, and body orientation.

To capture multiparty multimodal interactions, the study deployed an experi-

mental recording system using two Microsoft Kinects that allowed the capture of

body positioning, directional audio, video footage, and depth-imaging of the scene.

The analysis leveraged a suite of analysis techniques that the researchers previously

developed called ChronoViz (shown in Fig. 6.8),16 a tool that aids visualization and

analysis of multimodal sets of time-coded information with a focus on the analysis

of video in combination with other data sources. In this study, ChronoViz was used

to facilitate the analysis of simultaneous bodily action, voice, and gaze (head

position) of multiple participants (Fouse et al. 2011).

Figure 6.9 also shows the position of patient, doctor, and interpreter in the exam

room. The physician and the patient usually sit side-by side. The physician sits in a

rolling desk chair, with the EHR directly in front of her on a rolling, height-

adjustable platform. The patient sits next to the physician on the front edge of a

traditional exam table. The interpreter typically sits in a simple chair backed against

the exam room wall, next to the door, approximately six feet directly in front of the

patient. The empirical study recorded 12 outpatient encounter sessions (half requir-

ing the service of an interpreter). Each generated two video streams, two directional

audio streams, two depth data streams, and derived body joint positions (calculated

by the Kinect algorithms).

A group of five researchers analyzed the data with the assistance of ChronoViz.

Given the richness and complexity of interaction between individuals and with the

EHR, as well as the distinct physician–patient interactions while an interpreter was

present in the room, two encounters were selected for an in-depth drilldown

analysis. One session involved an English-fluent patient; the other involved an

LEP patient who required an interpreter. Body position, head position, right and left

hand position, and speech instances (not transcriptions of them) of both patient and

physician across the entire sessions were coded. Speech, body position, and head

position were also annotated for the interpreter in the second session.

The drilldown analysis revealed differing multiparty communication patterns.

Not surprisingly, the interpreter functioned as a middleman who spoke directly after

both the patient and the physician (Fig. 6.10). This pattern was only interrupted

when the interpreter was not able to directly translate the physician or the patient’s
speech due to usage of other artifacts (e.g., paper, the EHR system). Further, gesture

communication patterns differed between the interpreter and non-interpreter ses-

sions. In both sessions, a variety of gesture types were observed, including deictic

(e.g. pointing at EHR or paper), iconic (e.g. hand in shape of cyst), and beat gestures

(e.g. hand palm up). When the interpreter was not present, the physician’s gestures
were distributed fairly evenly across the three gesture types; and the patient

16 http://chronoviz.com/
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Fig. 6.9 ChronoViz view of Kinect data (Reproduced from Weibel et al. 2013). The top half
shows video feeds (two video and one depth-image) from two Kinects. The center video and right
depth-image show the interpreter facing the physician (left) and the patient (right). The bottom half
shows three timelines with annotations of a 5-min medical session indicating information such as

who is talking (patient, interpreter, doctor), their body positions, and what they are interacting with

Fig. 6.10 Speech analysis

of an interpreter-mediated

communication session

(Reproduced from Weibel

et al. 2013). The timeline

displays three levels, each

representing the speech of

one member of the team: the

top line is the patient’s
speech (green), the middle
line is the interpreter’s
speech (blue), and the

lowest line displays the
physician’s speech (red). A
line is superimposed to

connect utterances of the

three individuals. Yellow
lines represent common

physician–interpreter–

patient interaction patterns;

purple lines identify the rare
physician–patient

interaction patterns
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communicated with more beat gestures (approximately 36 % deictic, 10 % iconic,

55 % beat). The presence of the interpreter radically changed the gesture pattern:

the physician used iconic gestures much more often (approximately 31 % deictic,

44 % iconic, 25 % beat), while all of the interpreter’s and patient’s gestures were
iconic (gesture were used exclusively to communicate the shape, size, and location

of an injury).

Another key observation from the study is that often one of the parties involved

was “left in the dark.” The patient often did not understand what the physician was

saying and must await the interpreter’s translation, and the physician could not

understand what the interpreter was saying to the patient nor be sure of translation

accuracy. In addition, there were challenges of where to direct attention when

various parties were talking. While facial expressions and gesture play a significant

in facilitating communication, the patient might be looking at the interpreter when

the physician was talking, or the physician at the interpreter when the patient was

talking and as a result missed important cues. The communication process was

further challenged when the interpreter was left out of the loop because of inability

to attend to the EHR display or some other artifact, such as paper. In the study, the

physician commonly pointed to the information displayed on the EHR and patients,

according to their gestures and body position, suggested that they were also

interested in looking at the data. A key problem, however, was that neither the

patient nor the interpreter could effectively see the display. This is evident as when

the interpreter was present in the room, no pointing gestures to the EHR by the

patient or the interpreter were identified from the empirical data. This suggests that

the value of using the EHR as a shared communication tool could diminish

significantly with LEP patients.

6.4 Conclusions

In summary, comparing to traditional HCI approaches, computational ethnograph-

ical methods provide an automated and less obtrusive means for measuring and

analyzing the multimodal nature of patient–clinician–computer interactions. Com-

putational ethnography can thus be conducted at an unprecedented level of scale to

uncover end users’ true, unaltered behaviors interacting with technological systems

in healthcare. However, while computational ethnographical data abound in mod-

ern healthcare organizations (e.g., routinely tracked audit trails and communication

logs), their power for enabling HCI evaluation studies is yet to be fully unleashed.

We therefore encourage students, HCI researchers, and healthcare administrators,

to carefully consider using computational ethnographical data captured in everyday

healthcare settings to generate new knowledge that could inform strategies for

improving the usability of technological systems, and ultimately operation effi-

ciency, quality of care, and patient safety.
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Discussion Questions

1. The sample audit trail log shown in Table 6.1 exhibits a clinician’s use session
with an EHR system. In the “PATIENT_ID” column, it can be observed that the

clinician worked primarily on patient “4070370” throughout the session but she

or he, rather abruptly, viewed a document belonging to patient “7485199” at

07:23:19 UTC.

(a) What might be the possible explanation(s) of this EHR use behavior?

Provide one scenario of “inappropriate” use and one scenario of

“beneficial” use.

(b) How might the EHR system be redesigned to prevent “inappropriate” use,

or to facilitate “beneficial” use?

(c) If the audit trail log were not available, propose an alternative method of

recording data that can capture this behavior.

2. Provide an example wherein your everyday activities leave behind some “digital

traces” that can be analyzed using computational ethnographical methods.

(a) Identify the data type that best characterizes these digital traces;

(b) Propose an analytical method discussed in this chapter to analyze the data;

(c) Also discuss what potential insights may be drawn from the analysis. These

could be insights for better understanding the user behavior or for

informing better design of certain technological systems.

Acknowledgement We are grateful to Steven Rick who contributed the photos used in this

chapter to illustrate computational ethnographical data recording devices deployed in exam rooms.
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Chapter 7

User-Centered Design and Evaluation

of Clinical Information Systems: A Usability

Engineering Perspective

Andre Kushniruk, HelenMonkman, Elizabeth Borycki, and Joseph Kannry

7.1 Introduction

Designing useful and usable clinical information systems continues to be a major

healthcare challenge. There are numerous reports of clinical information systems

that have failed to be fully used by clinicians, deemed to be unusable by end users or

do not fit the workflow of the clinical settings where they are deployed. In addition

to this, it has been recognized that poorly designed clinical information systems and

their user interfaces can pose significant hazards to patient safety, in some cases,

leading to medical errors (Beuscart-Zéphir et al. 2005; Borycki and Kushniuk 2008;

Koppel et al. 2005; Kushniruk et al. 2005). In this chapter, we describe approaches

for the design and evaluation of user interfaces for clinical information systems

based on methods from the usability engineering literature that have been adapted

for the design and evaluation of clinical information systems. Several examples

involving the application of user centered design (UCD) approaches will be

described, including the application of rapid low-cost usability engineering

methods and the use of clinical simulations. Challenges in designing and deploying

usable interfaces for clinical information systems will be considered. The content of

this chapter should be of interest to a wide audience, ranging from those who design

and evaluate health information systems, to end users of such systems (i.e., doctors,

nurses and patients) who would like an appreciation of how system usability can be

assessed and improved in their organizations.

Usability can be defined as a measure of use and ease of system use in terms of

the following dimensions: (1) effectiveness, (2) efficiency, (3) learnability,
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(4) safety, and (5) enjoyability (Preece et al. 2011). Usability engineering involves

the application of scientific methods for the evaluation of usability of information

systems. Usability engineering methods can be applied throughout system devel-

opment process, from early system prototyping to system deployment and post-

implementation (Kushniruk et al. 1996; Kushniruk and Patel 2004; Nielsen 1993;

Patel and Kushniruk 1998; Patel and Kaufman 2006; Kaufman et al. 2003). Usabil-

ity engineering emerged as a field of study in the 1980s and aims to improve the

usability of existing or proposed user interfaces, feeding recommendations back to

designers. Initially, the field emerged from the disciplines of Computer Science and

Psychology, but has now led to the development and training of professional

practitioners who work in the area of usability engineering and applies methods

such as usability testing and inspection. As will be described, usability engineering

methods involve two main approaches: (1) usability testing, where users of systems

or user interfaces are observed (and typically recorded) as they interact with the

system under study to carry out tasks, and (2) usability inspection methods, which

involve trained usability analysts systematically “stepping through” a user interface

or system, comparing it against a set of usability principles and noting usability

problems (Nielsen 1993). We argue that UCD in conjunction with rapid usability

evaluation is more likely to lead to systems that are both useful and usable (Borycki

et al. 2013).

We begin with a discussion of a topic central to effective design and evaluation

of health information systems, namely the incorporation of user input into the

design and refinement of clinical information systems through UCD. Closely

related to this is a discussion of the application of methods that have emerged

from the field of usability engineering that can be employed in conjunction with

UCD in order to develop and test systems. As will be described, such approaches

can be applied at a low cost in settings ranging from fixed usability laboratories to

real-world settings and contexts. Extension of the approaches involving the use of

clinical simulations will be described along with the importance of applying

usability engineering methods to ensure system safety.

7.2 Assessing User Needs

UCD has been defined as “a multi-disciplinary design approach based on active

involvement of users for a clear understanding of the user and task requirements,

and the iteration of design and evaluation” (Mao et al. 2005, p. 51). UCD aims to

develop systems that are useful and usable (Karat 1997) by applying tenets of

human factors (i.e., to enhance human capabilities and overcome human limita-

tions) to the design of products and systems to promote user acceptance and

adoption (Rouse 1991). UCD specialists aspire to design systems that accommodate

users’ characteristics, limits, tasks and workflows (Johnson et al. 2005). Rather than

strictly relying on input from system designers, UCD enlists users as participants to

help inform their design solutions. Additionally, UCD encompasses the philoso-

phies and methodologies whereby design is guided by observing, working with and
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studying users and their requirements (Karat 1997). Methods of user involvement

can vary from consulting with end users to analyzing their interactions with systems

and information needs (Damodaran 1996). Gould and Lewis (1985) proposed three

principles for UCD: (1) focus early on users and their tasks; (2) conduct empirical

evaluation and measurement; and (3) apply iterative design processes. Thus, UCD

involves collection of data from users and its transformation to design solutions for

improving the usefulness and usability of products.

Traditionally, system designers expected users to align with how a system

operated. In contrast, system development guided by user input increases the

likelihood that the resulting systems will be easy to learn, minimize errors, and

will also increase user productivity, acceptance and satisfaction. In contrast, failing

to incorporate iterative and ongoing user feedback in the design process can result

in a lack of alignment between user needs and system capabilities. There are a

number of advantages to involving users during system development.

Identifying user needs early in the design phase is imperative to designing

systems that meet user specifications and to keep project costs to a minimum

(Johnson et al. 2005). The costs associated with making system changes escalate

as system development progresses. Moreover, failing to consider users in the design

process often requires system redesign, which is both costly and time-consuming

(Johnson et al. 2005). The financial benefits of user involvement include increased

sales and user productivity, and decreased training and user support costs. In

considering aggregated evidence from user involvement in ethnographic, qualita-

tive and quantitative studies, the following benefits have been reported: (1) more

accurate user requirements, (2) minimization of superfluous functionality, and

(3) improved user acceptance of systems (Kujala 2003). Thus, it has been argued

that it is financially prudent to adopt good design principles and incorporate user

exemplars to identify any design and usability issues early on in the development

process.

Several challenges offset the benefits of user involvement. For one, methods that

include users in an integral way can be more time consuming and expensive than

developing a system with limited user input (Kujala 2003). Recruiting participants

may be a more time consuming process in itself. It can be difficult to select the ideal

users to participate in system development. Users need to be representative of the

prospective user group(s); this may require a number of participants with different

disciplinary backgrounds (e.g., medicine, nursing, or pharmacy) and specialties

(e.g., general medicine, cardiology, or surgery) (Kushniruk and Turner 2012).

Ideally, users selected for participation should be able to articulate the needs and

requirements of representative end users, not just themselves. That is, there may be

considerable individual variability in user needs, and this should be reflected in the

resultant system. In addition, it may be difficult to attain consensus amongst the

users (Kujala 2003).

There are a variety of approaches for increasing user involvement during system

design (e.g., ethnography, contextual design, user-centered design, participatory

design) (see Kujala 2003 for comparison among methods). The emphasis of UCD is

on usability; and UCD methods include task analysis, prototyping and usability
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evaluations (Kujala 2003). UCD is inherently guided by user goals; that is, the

emergent system should be developed driven by what users need to accomplish

(Saffer 2007). Assessing user needs and obtaining feedback from users for the

design of clinical information systems is challenging in clinical settings for a

number of reasons: (1) healthcare is a complex domain, (2) there may be many

classes of users for a particular clinical information system, (3) users may have

varied healthcare and IT backgrounds, (4) clinical workflow must be carefully

considered in addition to more static elements of system user interfaces, and

(5) the context of use of clinical systems varies considerably. In 2012, Kushniruk

and Turner proposed a three-dimensional model to aid in the modeling of end user

involvement in designing and testing clinical information systems. The model can

be used to both capture design requirements and also provide a basis for setting up

specific usability tests to ensure a partially or fully completed system meets clinical

user needs (see Fig. 7.1).

The model in Fig. 7.1 can be used to drive both the development of use case

scenarios for use in scenario-based design of healthcare information systems, as

well as for summative testing of systems once they are implemented (Carroll 1995;

Kushniruk and Turner 2012). For example, along the User Dimension, the different

classes of users of a system being developed (e.g., physicians, pharmacists, nurses)

TASK
DIMENSION
-specific function of task
-technical requirements
of task
-task activities
-task complexity
-Expected successful
completion and error rates

USER
DIMENSION
-experience/expertise
-age
-gender
-language skills
-heath profession
-job level
-education

HEALTHCARE
CONTEXT
DIMENSION
-physical location
-urgency
-uncertainty
-time constraints
-multiple players
-organizational
goals and norms

Fig. 7.1 User-task-context model (Adapted from Kushniruk and Turner 2012)
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are delineated along with their attributes (e.g., level of experience/expertise, age

range). Along the Task Dimension, the various tasks and the attributes of those

tasks are defined for each class of user (e.g., tasks such as entry of patient data,

decision support, etc.). In the past, the combination of User and Task dimensions

made up a model known in the software industry as the User-Task Matrix (Hackos

and Redish 1998). In our work in clinical contexts, it became apparent that a third

dimension, that of “Context” also needs to be considered when designing healthcare

information systems. This perspective is consistent with work from the socio-

technical design literature for healthcare IT development (where the role of social

context is emphasized), but differs in that it provides an explicit model of context in

relation to user types and users’ tasks. Context refers to the healthcare setting or

environment into which healthcare IT will be deployed. As an illustration, the User-

Task-Context model can be used to consider under what conditions a new speech

recognition component would likely be effective for physicians dictating reports

while using an electronic health record system (i.e., the Task dimension). The

effectiveness of the component can be shown to vary considerably even when

considering the same class of users (i.e., the User dimension), depending on

whether the speech recognition component is deployed in a quiet office setting or

in a noisy clinic (i.e., the Context dimension). Thus, the success or failure of health

information systems and technologies is related to consideration of all

3 dimensions.

In our work developing requirements, application of this model has proven

useful for activities ranging from creation of system requirements during early

requirements analysis, to generation of use cases (which describe in detail the

scenarios involved in specific uses of the system) and generation of scenarios that

can be used to test the user model of a prototype once a system has been deployed.

The system development life cycle (SDLC) provides a useful formal framework for

considering where this type of user modeling can be applied and consists of the

following phases: (1) the Planning Phase, where the initial planning of the system

development is initiated, (2) the Analysis Phase, where there is a focus on require-

ments gathering, (3) the Design Phase, where detailed architectural blueprints for

the system are developed, (4) the Implementation phase, where the system is

programmed, and (5) the Support Phase, where the system is in use (Kushniruk

2002). In the context of the SDLC, the User-Task-Context matrix is useful at a

number of stages including early in Planning and Analysis phases to specify user

requirements, during the Design Phase to drive refinement of use cases, and during

the Implementation Phase, to provide those testing a system with a list of users and

tasks for target testing (in order to ensure the system does what it was intended for

each class of user it was designed to serve).
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7.3 Low-Cost Rapid Usability Engineering in Clinical

Informatics

In this section, we describe methods collectively known as rapid low-cost usability

engineering methods designed to be used for analyzing user interactions with a

range of healthcare information systems and which can be an integral part of UCD

in healthcare (Kushniruk et al. 2006; Borycki et al. 2013). As will be shown, the

methods can be employed during UCD, and also upon completion of a clinical

information system during its deployment phase (i.e., during the support phase of

the traditional SDLC).

Usability testing involves observing representative users of a system (e.g.,

doctors or nurses) while they use a system or user interface to carry out represen-

tative tasks (e.g., entering medications into a clinical information system) (Nielsen

1993; Kushniruk and Patel 2004). Observing users typically involves video record-

ing user interactions, on-screen actions and verbalizations. Such data can be

transcribed and coded to identify usability problems and issues (Kushniruk and

Patel 2004). Usability testing methods have been employed widely in the design

and evaluation of a range of health information systems over the past several

decades. Usability testing methods can be used along the entire SDLC and the

focus of the testing will depend on the stage of development of the system (Borycki

et al. 2011; Kushniruk 2002).

Usability engineering methods have evolved in response to advances in tech-

nology. For example, free or low-cost screen recording software and built-in

microphones on laptops have enabled “low-cost rapid usability testing” to become

more widely applied (Kushniruk and Borycki 2006). The goal of this method is to

provide an informative usability test that is efficient and cost effective. Moreover,

low-cost rapid usability testing is not limited to the confines of a laboratory setting.

Rather, by employing low-cost portable methods that can be taken directly into

settings like operating rooms or clinics, the approach allows for what we have

referred to as “in-situ” usability testing. Such testing has the advantage of having

greater fidelity than laboratory-based usability testing. Such testing can also vary in

terms of whether the experimenter exerts control over the study, or allows the users’
interactions to be more naturalistic, which allows for a range of study types. It also

is arguably far less expensive, since if the testing can be taken into real settings after

hours or when available, then the cost of the testing can be reduced (Kushniruk and

Borycki 2006). Regardless of whether usability testing is conducted in a laboratory

setting or in a real clinical environment, there are a number of steps that need to be

considered in setting up such testing. Kushniruk and colleagues (Kushniruk and

Patel 2004; Borycki and Kushniruk 2005) have previously outlined the stages of

this approach:

1. Identification of testing objectives

2. Selection of participants (e.g., n¼ 10 to 20 representative users)

3. Selection of representative experimental tasks
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4. Selection of an evaluation environment

5. Observation and recording of users’ interaction with the health information

system

6. Analysis of usability data (i.e., coding screen and/or video recordings and audio

transcripts)

7. Translating findings and feedback into suggestions for system improvement

This method has been shown to drastically reduce development costs. In one

study, adopting this method resulted in an estimated cost savings between 36.5 and

78.5 % (Baylis et al. 2012). Costs associated with design changes are much lower

early in the SDLC. For example, identifying a usability problem or error early in the

design phase may require minimal effort to fix. However, once a system is

deployed, making even minimal changes may be impossible or prohibitively

expensive. Further, mitigating errors before deploying the system reduces the

potential of technology-induced errors (i.e., errors resulting from the use of an

information system that may be caused from poor usability or from interactions

with a system in a real setting) which in some cases are costly to address from a

systems and human perspective in terms of patient safety (Baylis et al. 2012;

Borycki and Keay 2010). As a result, this method minimizes the probability of

requiring a system re-design. In addition to this, the method is appealing as it is both

efficient and inexpensive to employ. Currently, experimental apparatus (i.e., the

computer screen, screen recording software, and microphone) is embedded in most

laptops and therefore a usability test can be conducted anywhere (Kushniruk and

Borycki 2006). The low-cost rapid usability engineering approach can also be

conducted remotely by employing commonly available web-conference and screen

sharing software to remotely view and record the screens and audio of subjects

performing tasks during usability testing remotely (Kushniruk et al. 2007, 2008;

Kushniruk and Borycki 2006).

In considering at what points in the SDLC that low-cost rapid usability engi-

neering can be applied, the literature indicates that such testing can be carried out at

various stages (Kushniruk and Patel 2004). For example, in the early development

of the user interface for an EHR (e.g., during the Analysis and Design phases), early

prototypical designs can be analyzed by having representative users (e.g., physi-

cians and nurses) comment on, and interact with partially functioning mock-ups and

prototypes in order to determine the most effective interface. In addition, continual

testing throughout the Implementation Phase is recommended as the feedback

gained from end users can be used to refine the system/user interface. Finally,

upon delivery of a clinical information system within an institution, the application

of low-cost rapid usability engineering is highly recommended in order to ensure

that systems that are beginning to be deployed are both safe and effective for end

users.

An important aspect of conducting effective usability tests is the delineation of

the following: (1) user classes (i.e., who are the different users or potential users of

the system being designed and have they all been defined and characterized?),

(2) the tasks the system will be designed to support (e.g., what tasks will the system
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be used for?), and (3) the context in which the system will be deployed (where will

the system be implemented?). The User-Task-Context model described in the

previous section can be used to decide what scenarios and use cases should be

used for setting up usability testing.

7.4 Using Low-Cost Rapid Usability Engineering

in Conjunction with Rapid Prototyping in UCD

Rapid prototyping uses models (ranging from paper mock-ups to wireframe models

to partially functioning systems) to illustrate/simulate system functionality

(Kushniruk 2002). Thus, these models depict different options about how the

system could operate in order to gain insight and feedback from users without

investing substantial time and resources in system design. For example, Axure

(www.axure.com) software can be used to develop interactive wireframe mock-ups

without writing any code. Similarly, Usaura (www.usaura.com) allows designers to

upload screenshots or sketches and then asks users to do a task, pick from a

selection or give feedback. Usaura collects a variety of data on how the users

interacted with the screen (e.g., “heat maps” of user clicks, accuracy of user clicks,

how long users took to click). Usaura also allows users to select their preference

between display options and respond to multiple-choice questions. This software

can be used to evaluate a variety of research questions (e.g., Where should a design

element be placed? Which design iteration is better?). Thus, software can facilitate

the development of prototypes quickly and these potential design solutions can be

compared and evaluated by users.

Rapid prototyping focuses on key system functionality, and thus minimizes the

time invested in system design prior to gaining user feedback about critical aspects

of the system or user interface design. Moreover, rapid prototyping can be used to

investigate specific system components independently. Developing components in

parallel allows for the progression of other components to continue despite barriers

impeding the development of specific components. Furthermore, several different

solutions can be evaluated to discern the best solution before considerable invest-

ment in designing the actual system. Additionally, different ways of integrating

components can be explored to determine which combinations are most successful.

Thus, rapid prototyping integrates users’ choice and feedback about how a system

will operate with minimal expenses. Kushniruk (2002) outlines the process of

incorporating rapid prototyping into system design (see Fig. 7.2). This flowchart

depicts the iterative nature of rapid prototyping to refine the solution and ensure that

user requirements are met by subjecting the prototypes to usability evaluations

before a final solution is implemented. In Fig. 7.2, the box in the flowchart

corresponding to “Prototype Testing (Usability Testing)” is the point where

low-cost rapid usability testing methods can be applied.
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In addition, application of usability inspection methods, such as heuristic eval-

uation (Nielsen 1993; Nielsen and Mack 1994; Zhang et al. 2003; Carvalho

et al. 2009) and cognitive walkthroughs (Kushniruk et al. 1996) are potential

techniques for evaluating the usability of prototypes (a detailed description of the

evaluation methods can be found in Chap. 5 in this volume). These methods do not

involve observing users but rather having one or more expert analysts “stepping

through” and methodically comparing the interface design against design guide-

lines in the case of heuristic evaluation (Nielsen 1993), and in the case of cognitive

walkthrough “inspecting” areas where users might be expected to have problems by

identifying user goals, actions, and system responses (Wharton et al. 1994). How-

ever, it should be noted that during rapid prototyping there is no replacement to

actually observing users’ interactions in terms of gaining an in-depth understanding

(rather than predicting alone) of both usability and workflow problems and issues

that need to be corrected on subsequent iterative cycles.

The adoption of rapid prototyping techniques in health information system

design (in conjunction with usability testing) have been shown to improve the

usability and usefulness of these systems while simultaneously minimizing devel-

opment costs. Rapid prototyping fosters inexpensive exploration and refinement of

models before a system is developed. Thus, more options are available for users to

Initial User Needs Analysis

Basic Architectural Design of
Health Information System

Design of Prototype System

Prototype Implementation

Prototype Testing  (Usability
Testing)

Analysis of Evaluation
Results

Results Adequate?

Final Implementation

Major Changes
Required

Redesign/Modify
Based on Evaluation

Fig. 7.2 Systems development based on prototyping and iterative usability testing

7 User-Centered Design and Evaluation of Clinical Information Systems. . . 149



assess. In addition to what users are testing during system development, advance-

ments in how usability tests are conducted have been made. For example, rapid

approaches are now being used that can practically be incorporated within iterative

prototyping cycles to feed information back into design based on analysis of user

interactions with systems.

7.5 Use of Clinical Simulations in System Design

and Evaluation

Clinical simulations represent a development that follows logically from usability

testing methods and can be practically employed during UCD. As described above,

usability testing can be characterized as involving observation of representative
users of a system being observed/recorded while they carry out representative tasks
(using a system being evaluated). Clinical simulations extend the realism of testing

by also carrying out the evaluation in representative environments (i.e. settings,

environments or contexts that are representative of where the system being

designed or developed will ultimately be deployed in). Examples of clinical

simulations include work conducted in the evaluation of medication administration

systems in order to assess the impact of different system designs on usability and

patient safety (Borycki et al. 2013). In a series of studies conducted “in-situ” in a

hospital in Japan, realistic clinical situations were set up by using hospital rooms

“after hours”, where the system was to be deployed (Kushniruk et al. 2006, 2008).

This approach included using mannequins (i.e. life size physical representations of

the human body used in health professional education) in place of patients, as the

simulations were to include not only use of computer systems in the room, but also

physical interactions such as hanging intravenous bags and ergonomic aspects of

the room layout (i.e. where the computer is located). This reduced the cost of setting

up the in-situ testing, as the hospital room was already in place along with

integration with other hospital systems and technologies. The advantages include

not only reduction in cost, but also the fidelity or realism of the study was increased

as the setting mirrored the actual location where the medication administration

would be implemented. It also included testing the human-computer interaction

involving integration with other technologies already in the hospital such as the bar

code scanning technology. For this study, a User-Task-Context model was used to

brainstorm a set of representative tasks that ranged from using the system to

administer routine medications to medications that varied in their complexity of

administration. In addition, scenarios were also created that included physical

interruptions and unexpected emergency conditions. Representative users included

sixteen health professionals (physicians and nurses) that were recruited to partici-

pate in 1-h sessions where they interacted with the new system to carry out the set of

representative medication administration tasks. Recording of the tasks involved

installing screen recording software (e.g. hypercam®) on the computer the
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participants accessed the medication administration system from. This allowed for

recording of all user interactions with the medication administration system. In

addition, a camcorder was used to obtain a wide-angle view of the physical

interactions of the participants with the system and other technologies in the

room (see Fig. 7.3).

Video analysis of the screen recordings in conjunction with audio recordings of

users interacting in the task and external video views were integrated using Adobe®
Premiere video editing software. During the analysis of the data, users’ interactions
were coded for: (a) usability problems in using the medication administration

system, (b) ergonomic issues, and (c) issues in the integration of differing technol-

ogies (e.g. medication administration system with bar coding). The coding meth-

odology used was modified and adapted from that described by Kushniruk and Patel

(2004) and involved first transcribing all audio recordings and then observing the

video and screen recordings, in order to create an annotated log file of

verbalizations and actions for each participant. The interactions were coded for

time taken to complete tasks and subtasks (e.g. verifying patients, reviewing

medication orders, entering administration information) as well as for problems

and issues encountered using the system. In addition, a post-task audio-recorded

semi-structured interview was conducted to ask each participant about his or her

experience in using the system. The results indicated that for routine medication

administration, the system operated safely and was deemed to be usable when

Fig. 7.3 External video view and screen view of user interactions with a medication administra-

tion system
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simple and short lists of medications were to be administered. However, as the

complexity of the tasks increased it was found that the rigidity of the system locked

the user into a workflow sequence, which although it supported safety (in not

allowing for any deviation from a specified workflow) did pose potential safety

risks when emergencies were simulated. Specifically, when a simulated emergency

occurred there was not enough time for all steps to be completed in sequence

(as guided by the system) and there was a need for emergency override capability.

As a result of this study, such an override was included in the system design prior to

widespread release (Kushniruk et al. 2006).

Carrying out system evaluation in-situ can increase the fidelity of testing while at

the same time reduce costs. Another cost-effective approach involves integrating

clinical simulations into the operations of simulation laboratories that are becoming

increasingly commonly used for medical and nursing education purposes. An

example of this is the IDX laboratory (Kushniruk et al. 2013a) that was established

in Copenhagen. The laboratory was initially used for medical and nursing education

purposes (i.e. computer controlled mannequins are used for training students), but

has since been expanded for use in testing the usability and safety of clinical

information systems. Recently, it has been used for installing candidate clinical

information systems for testing those systems during a regional procurement

process having the objective of selecting a system that matched the needs of

users in the Copenhagen region.

Clinical simulations have fewer potential risks, offer more experimental control

and are often more cost effective than testing a health information system with real

patients once a system goes live. In conducting such simulations, it is valuable to

build unexpected events into the simulations that emulate uncommon circum-

stances that occur in the real world during UCD (Kushniruk et al. 2013a). For

example:

• How does the health information system react if the user is called for an

emergency and there is a delayed period of non-interaction?

• What happens in the event of a power failure?

• How does the system behave if two users are trying to modify the same patient

chart at the same time?

In-situ testing can be undertaken prior to implementation to minimize the

potential risks of the introduction of healthcare IT. This is also a prudent approach

for deployment of new electronic systems in healthcare. Specifically, a gradual roll-

out of new healthcare IT enables it to be tested and limits the potential impact of

technology-induced errors, whereas a “big bang” deployment of HIT has an

increased potential to compromise patient safety. Further, testing should be done

on a regular basis, not just at the time of deployment. Users may only find issues

with the IT after months of use when they become familiar with it. Alternatively,

the healthcare environment itself may evolve and may need adjustments in the HIT

to accommodate these changes (Kushniruk et al. 2013a).

Clinical simulations have a number of limitations and may involve some logis-

tical challenges. For example, although clinical simulations conducted in-situ can
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be cost-effective (as they do not require trying to recreate real environments) they

do require permission and access to real local environments (e.g. hospital rooms) in

order to carry out simulation studies (typically when such environments are not

being used for patient care, such as after hours). On the other hand, conducting

clinical simulations in fixed laboratories does not require such permission. How-

ever, such fixed laboratories can be expensive to build and require expertise in

running the equipment. The cost may be leveraged by developing facilities for

testing information systems within simulation laboratories that may already be in

place for training healthcare professionals (e.g. medical and nursing students).

7.6 A Layered Approach to Evaluating Clinical

Information Systems for Ensuring Usability and Safety

Thorough testing is a critical component for revealing the possible usability and

system safety issues. As such, the Institute of Medicine (2012) argued “it is critical

to test HIT during all stages of development to determine whether user require-

ments have been translated into software that actually does what the user wants”

(p. 96). An effective approach to improving patient safety requires continuous

testing (Borycki and Keay 2010). In addition, it is recommended that the fidelity

of the testing environment should be gradually increased from low fidelity (e.g., an

office laboratory), to medium fidelity (e.g., clinical simulation), to high fidelity

(e.g., in-situ) (Kushniruk 2002; Kushniruk et al. 2013a). It is important to investi-

gate the system in a variety of settings to reveal as many potential problems and

shortcomings as possible.

In applying usability engineering in clinical informatics, system testing can (and

ideally should) include a focus on the examination of the user and system (Level

1 in Fig. 7.4). From a theoretical perspective, this level can be seen as

corresponding to the Human Information Processor model, which views user

interactions with information systems as involving two “information processors”:

the human end user and the computer system (Newell and Simon 1972). At this

level of testing, surface level usability problems (e.g., navigational problems, user

interface consistency problems) can be readily detected. This can be followed by

evaluation of use of the system in carrying out work tasks (Level 2). At this level,

issues involving workflow inefficiencies and potential safety problems when using

the system to carry out work tasks can often be detected. Finally, consideration of

use of the system within the complex organizational setting is needed (Level 3).

From a theoretical perspective, these last two levels can be construed as being at the

level of distributed cognition – that is, cognition that is distributed amongst multiple

intelligent agents, including various computer systems, people and representations

(Patel and Kaufman 2006). This multi-layered approach to considering testing for

usability and safety borrows from the three layers of human-computer interaction as
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described by Eason (1991) and expanded on by Kushniruk et al. (2008) in the

context of healthcare IT.

In our work, we have applied such a layered approach to organizing and

conducting evaluations and analyses of clinical information systems. For example,

in recent work conducted by Li and colleagues (2012), clinical guidelines designed

for incorporation into a commercial electronic health record (EHR) system were

tested using this multi-layered approach prior to being released within a large

American healthcare organization. In the first phase of testing, physicians interacted

with the initial prototype of the guideline design in isolation using a “traditional”

laboratory-style usability testing approach that involved asking subjects to “think

aloud”. Based on this analysis, a variety of surface level usability problems were

identified (with this level of analysis corresponding to Level 1 of Fig. 7.4). After a

phase of refining the guidelines and their integration into the underlying EHR, a

second phase of testing was subsequently conducted which involved observing

physicians interacting with the guidelines embedded in the EHR while interviewing

a “digital” patient (a video clip of a patient designed to elicit the physician’s
preferred way of interacting with the guidelines). This phase represented a clinical

simulation, and corresponds to Level 2 of the layers described above (i.e., using the

OrganizationUser & System Task / Workflow 

Level 1 Level 2 Level 3

Fig. 7.4 Depiction of a layered approach to clinical information system evaluation
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system to carry out a work task involving not only the computer, but one or more

other active participants). Based on results from this layer of testing it was found

that the guidelines often triggered at an inappropriate point during user interaction,

requiring refinement of the guidelines. In a final layer of testing, corresponding to

Level 3 (i.e., testing in a socially complex setting or environment), physicians’
interaction with the guidelines were recorded for a limited number of live patient

interactions before deploying the system more widely. After optimizing their

design, once released on a large scale, the guidelines were readily adopted by end

users throughout the institution. In summary, the approach essentially moves from

the artificial to the more realistic, naturalistic setting in sequence (see Fig. 7.5).

7.7 Implications of User-Centered Design for Both

Improved Usability and System Safety

A major concern with serious usability problems or issues is that they may lead to

medical error (Kushniruk et al. 2005). For example, if the layout of information on

the screens of an electronic health record make it difficult for users to locate key

information (e.g., a patient’s drug allergies), then it becomes more likely that such

information might not be accounted for when prescribing new medications. Fur-

thermore, healthcare can be characterized by conditions that might cause errors,

including high workloads, poor interface designs, stressful and fast-paced environ-

ments, and fatigue (Reason 1995). Thus, it is important to employ UCD coupled

with usability engineering methods as a means to improve system usability and

patient safety in healthcare. However, healthcare systems pose unique challenges

for UCD because situations are dynamic and tasks fluctuate according to circum-

stances (Carayon 2012; Carvalho et al. 2009). That is, not all patients can be treated

the same way or will have the same outcomes for any given treatment. Furthermore,

human error in healthcare (that could be a result of poor user interface design) can

result in serious medical error (Borycki et al. 2012). Recent research has indicated

that the deployment of new health information systems actually has the potential to

introduce technology-induced errors (Borycki and Kushniuk 2008; Borycki

et al. 2009). Having increased input from healthcare providers during design and

development improves the likelihood that new systems will maximize efficiency,

minimize errors, and be compatible with their workflow. Further, given that

Fig. 7.5 Continuum of studies to ensure system safety prior to release
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healthcare is always in flux, it is imperative that systems are flexible so they can

adapt to the needs and challenges of any situation.

Recently, the Institute of Medicine’s (2012) report entitledHealth IT and Patient
Safety: Building Safer Systems for Better Care has indicated the need for greater

emphasis on testing with end users in the design process (i.e., a user-centered

design). Improved usability (e.g., easy navigation, simple intuitive data displays)

was identified as being important for improving HIT safety (IOM 2012). However,

successful and safe system development rests on the realization that UCD and

application of user testing is a continuous process and not just a singular event at a

particular stage of HIT development. UCD methods in conjunction with usability

engineering should be applied throughout system development, and may involve

not only usability testing but also use of in-situ clinical simulations and observation

of naturalistic use of system to ensure system usability and safety (Kushniruk

et al. 2013a).

In order to increase safety of systems, a number of standards have also emerged

for design of user interfaces, including some that are general, and others that are

specific to HIT. For example, the National Institute of Standards and Technology in

the United States has developed the Common Industry Specification for Usability

(NISTIR 2007), which can be used to guide system development. Other guidelines

have been developed around the area of designing more usable user interfaces for

web accessible systems (Usability.gov 2014). In health informatics, examples of

user interface guidelines include work towards developing a common user interface

for EHR systems (MCUI 2014). In addition, this has led to more specific guidelines

to help in designing and assessing user interfaces involving medications or devices,

such as the United Kingdom’s National Health Services design for patient safety

guidelines (NHS 2014). By providing more standards and well thought out guide-

lines to aid in design and evaluation of clinical information systems, it is expected

that the potential for technology-induced error will be reduced and the learning time

for mastering the use of systems will also be reduced (Kushniruk et al. 2013b).

7.8 Discussion and Future Trends

There are a number of new directions and trends in usability engineering for

supporting improved design of clinical information systems. One trend involves

conducting usability data collection remotely. Along these lines, the term

“televaluation” has been used to describe “virtual” usability engineering

(Kushniruk et al. 2001). Using this approach, system users and experimenters can

be located anywhere in the world, making it readily feasible and reducing costs

associated with transporting users or testers to fixed locations to carry out usability

evaluations. This may involve remotely recording users interacting with systems by

using remote screen monitoring and Web conferencing tools with screen sharing

capabilities. Such remote testing can be carried out simply and inexpensively using

remote screen sharing where the user’s screens and audio (from the remote
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location) are seen by the experimenter on their computer (and recorded from the

experimenter’s computer). Moreover, variations in televaluation can also now

allow for remote automated and simultaneous testing of a system in an array of

different environments. Thus, usability issues that may only arise in specific

environments can be identified early in the design phase. Furthermore, by removing

the presence of a researcher, and any external equipment, it is less likely that

participants will be affected by their participation in an experiment (Heppner

et al. 2008). Televaluations typically entail “recording all human–computer inter-

action (i.e., video recording all computer screens) and audio-recording all subject

verbalizations as they interact with system prototypes” (Kushniruk et al. 2001). The

findings from virtual usability testing can include: (1) suggestions by users for

improvements to both the user interface and system functionality, (2) identification

of usability problems such as lack of consistency in interface operations, and

(3) quantitative measurements including time for task completion and system

response times. This data can be used to create suggestions to improve health

information systems’ design to enhance the interface and functionality, ameliorate

usability issues and reduce the time to complete tasks.

An approach known as the “Virtual Usability Laboratory” (VuLab) has been

piloted to allow for both remote data collection and collation of large amounts of

user tracking data, subjective questionnaire and automated interview data and other

forms of both quantitative and qualitative data that can be automatically collected

from any number of users of a system remotely. To aid researchers and developers

in analyzing this type of data the VuLab also contains automated tools for data

analysis and summarization of usability data collected remotely. The approach has

been used to evaluate use of clinical guidelines in Canada, and feedback from this

study has been used to refine both content and sequencing of clinical guidelines as

well as health related content targeted to patients (Kushniruk et al. 2007, 2008;

Wideman et al. 2007).

Another area of future research from a practical perspective includes develop-

ment of rapid and automated or semi-automated methods to speed up analyses of

usability data to fit in rapid prototyping and agile approaches to UCD. In order for

the methods to be employed more widely, this is perhaps one of the greatest

challenges. Methodological approaches such as low-cost rapid usability engineer-

ing (Kushniruk et al. 2006) and IDA (Instant Data Analysis) (Kjeldskov et al. 2004)

are attempts at reducing schedule and cost barriers to application of usability testing

in system design and deployment. Other approaches to increasing the speed of

usability analyses for incorporation into rapid prototyping include the work of

Dumas and Salzman (2006) in the development of the Rapid Iterative Test and

Evaluation (RITE) method. The RITE method argues for continually repeating the

same evaluation tasks and redesigning until the problems have been fixed or until

there are no more resources. The RUE (Rapid Usability Evaluation) method also

attempts to reduce the time required to complete the appropriate sections of the

testing method (Russ et al. 2010). Although these approaches attempt to speed up

time and lessen resources needed for user testing, rapid and agile application of

usability testing in the design and deployment of many health information systems
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has not yet become the norm. However, with methodological advances including

potential for automation of testing processes, the situation may gradually improve.

In addition, critical comparison of methodological approaches (Jaspers 2009) is

essential for determination of the most appropriate and practical methods for

carrying out usability engineering in healthcare.

7.9 Conclusion

The usability and safety of healthcare information systems depend on improved

input from users in design. In this chapter, we have discussed approaches to UCD

that incorporate key elements from usability engineering. The application of these

approaches is necessary for not only ensuring the usability of clinical information

systems, but also their safety. It should be noted that the approaches described in

this chapter have also begun to be used in the selection and procurement of clinical

information systems that better match user needs in clinical settings, in addition to

their use during the design and implementation processes (Kushniruk et al. 2010).

In addition, the extension of usability testing to clinical simulations is leading to

new ways of testing systems in order to identify and prevent both usability errors

and safety hazards. A key aspect of more widely introducing these methods into

HIT and health informatics is that of reducing the cost and effort required to apply

usability engineering in healthcare. Along these lines, research has already begun to

indicate that the effort in terms of cost and manpower to apply the methods

described in this chapter is well worth the effort (Baylis et al. 2012).

Discussion Questions

1. What are the essential characteristics of user-centered design (UCD)?

2. What are the issues and challenges in applying UCD in healthcare IT design?

3. What are some of the main issues in understanding and representing user needs

as a basis of UCD in healthcare?

4. How can usability testing methods be practically applied in UCD and rapid

prototyping?

5. How do clinical simulations extend usability testing approaches?
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Beuscart-Zéphir, M. C., Pelayo, S., Ancequx, F., Meaux, J., Degroisse, M., & Degoulet, P. (2005).

Impact of CPOE on doctor–nurse cooperation for the medication ordering and administration

process. International Journal of Medical Informatics, 74(7), 629–641.
Borycki, E., & Keay, E. (2010). Methods to assess the safety of health information systems.

Healthcare Quarterly, 13, 49–54.
Borycki, E., & Kushniruk, A. W. (2005). Identifying and preventing technology-induced error

using simulations: Application of usability engineering techniques. Healthcare Quarterly, 8,
99–105.

Borycki, E. M., & Kushniuk, A. W. (2008). Where do technology-induced errors come from?

Towards a model for conceptualizing and diagnosing errors caused by technology. In A. W.

Kushniruk & E. M. Borycki (Eds.), Human, social and organizational aspects of health
information systems (pp. 148–166). Hershey: IGI Global.

Borycki, E. M., Kushniruk, A., Keay, E., Nicoll, J., Anderson, J., & Anderson, M. (2009). Toward

an integrated simulation approach for predicting and preventing technology-induced errors in

healthcare: Implications for healthcare decision-makers. Healthcare Quarterly, 12, 90–96.
Borycki, E. M., Kushniruk, A. W., Kuwata, S., & Kannry, J. (2011). Engineering the electronic

health record for safety: A multi-level video-based approach to diagnosing and preventing

technology-induced error arising from usability problems. Studies in Health Technology and
Informatics, 164, 197–205.

Borycki, E. M., Kushniruk, A. W., Bellwood, P., & Brender, J. (2012). Technology-induced errors:

The current use of frameworks and models from the biomedical and life sciences literatures.

Methods of Information Medicine, 51(2), 95–103.
Borycki, E., Kushniruk, A., Nohr, C., Takeda, H., Kuwata, S., Carvalho, C., Bainbridge, M., &

Kannry, J. (2013). Usability methods for ensuring health information technology safety.

Yearbook of Medical Informatics, 8(1), 20–27.
Carayon, P. (2012). Handbook of human factors and ergonomics in health care and patient safety

(2nd ed.). Boca Raton: CRC Press.

Carroll, J. M. (1995). Scenario-based design: Envisioning work and technology in system devel-
opment. New York: Wiley.

Carvalho, C. J., Borycki, E. M., & Kushniruk, A. W. (2009). Ensuring the safety of health

information systems: Using heuristics for patient safety. Healthcare Quarterly, 12, 49–54.
Damodaran, L. (1996). User involvement in the systems design process – A practical guide for

users. Behaviour & Information Technology, 15(6), 363–377.
Dumas, J. S., & Salzman, M. C. (2006). Usability assessment methods. Reviews of Human Factors

and Ergonomics, 2(1), 109–140.
Eason, K. D. (1991). Ergonomics perspective on advances in human-computer interaction.

Ergonomics, 34(6), 721–741.
Gould, J. D., & Lewis, C. (1985). Designing for usability: Key principles and what designers think.

Communications of the ACM, 28(3), 300–311.

7 User-Centered Design and Evaluation of Clinical Information Systems. . . 159



Hackos, J. T., & Redish, J. C. (1998). User and task analysis for interface design. New York:

Wiley.

Heppner, P. P., Wampold, B. E., & Kivlighan, D. M. (2008). Research design in counseling (3rd

ed.). New York: Thomson.

Institute of Medicine (U.S.). Committee on Patient Safety and Health Information Technology.

(2012). Health IT and patient safety: Building safer systems for better care. Washington, DC:

National Academies Press.

Jaspers, M. W. (2009). A comparison of usability methods for testing interactive health technol-

ogies: Methodological aspects and empirical evidence. International Journal of Medical
Informatics, 78, 340–353.

Johnson, T. R., Johnson, C. M., & Zhang, J. (2005). A user-centered framework for redesigning

health care interfaces. Journal of Biomedical Informatics, 38(1), 75–87.
Karat, J. (1997). Evolving the scope of user-centered design. Association for Computing Machin-

ery. Communications of the ACM, 40(7), 33.
Kaufman, D. R., Patel, V. L., Hilliman, C., Morin, P. C., Pevzner, J., Weinstock, R. S., & Starren,

J. (2003). Usability in the real world: Assessing medical information technologies in patients’
homes. Journal of Biomedical Informatics, 36(1), 45–60.

Kjeldskov, J., Skov, M. B., & Stage, J. (2004). Instant data analysis: Conducting usability

evaluations in a day. In NordiCHI’04 (pp. 233–240). ACM.

Koppel, R., Metlay, J., Cohen, A., Abaluck, B., Localio, A., Kimmel, S., & Strom, B. (2005). Role

of CPOE in facilitating medication errors. Journal of the American Medical Association, 293
(10), 1197–1203.

Kujala, S. (2003). User involvement: A review of the benefits and challenges. Behaviour &
Information Technology, 22(1), 1–16.

Kushniruk, A. W., & Borycki, E. M. (2006). Low-cost rapid usability engineering: Designing and

customizing usable healthcare information systems. Healthcare Quarterly, 9(4), 98–102.
Kushniruk, A., & Turner, P. (2012). A framework for user involvement and context in the design

and development of safe e-Health systems. Studies in Health Technology and Informatics, 180,
353–357.

Kushniruk, A. W., Kaufman, D. R., Patel, V. L., Levesque, Y., & Lottin, P. (1996). Assessment of

a computerized patient record system: A cognitive approach to evaluating an emerging medical

technology. M.D. Computing, 13(5), 406–415.
Kushniruk, A. W., Patel, C., Patel, V. L., & Cimino, J. J. (2001). ‘Televaluation’ of clinical

information systems: An integrative approach to assessing web-based systems. International
Journal of Medical Informatics, 61(1), 45–70.

Kushniruk, A. W., Triola, M., Borycki, E. M., Stein, B., & Kannry, J. (2005). Technology induced

error and usability: The relationship between usability problems and prescription errors when

using a handheld application. International Journal of Medical Informatics, 74(7–8), 519–526.
Kushniruk, A., Owston, R., Ho, F., Pitts, K., Wideman, H., Brown, C., & Chu, S. (2007, February).

Design of the VULab: A quantitative and qualitative tool for analyzing use of on-line health

information resources. In Proceedings of ITCH 2007, Victoria, BC, Canada.
Kushniruk, A. W., Borycki, E. M., Kuwata, S., & Watanabe, H. (2008). Using a low-cost

simulation for assessing the impact of a medication administration system on workflow.

Studies in Health Technology and Informatics, 136, 567–572.
Kushniruk, A. W., Beuscart-Zephir, M. C., Grzes, A., Borycki, E., Watbled, L., & Kannry,

J. (2010, September). Increasing the safety of healthcare information systems through

improved procurement: Toward a framework for selection of safe healthcare systems.

Healthcare Quarterly, 13, 53–58.
Kushniruk, A. W., Bates, D. W., Bainbridge, M., Househ, M., & Borycki, E. (2013). National

efforts to improve health information system safety in Canada, the United States of America

and England. International Journal of Medical Informatics, 82(5), e149–e160.
Li, A. C., Kannry, J. L., Kushniruk, A., Chrimes, D., McGinn, T. G., Edonyabo, D., &Mann, D. M.

(2012). Integrating usability testing and think-aloud protocol analysis with “near live” clinical

160 A. Kushniruk et al.



simulations in evaluating clinical decision support. International Journal of Medical Infor-
matics, 81(11), 761–772.

Mao, J. Y., Vrendenburg, K., Smith, P. W., & Carey, T. (2005). The state of user-centered design

practice. IEEE Engineering Management Review, 33(2), 51.
MCUI. (2014). Microsoft common user interface. Accessed from http://www.mscui.net/

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice-Hall.

NHS. (2014). National health service – Design for patient safety guidelines. Accessed from http://

www.nrls.npsa.nhs.uk/resources/collections/design-for-patient-safety/

Nielsen, J. (1993). Usability engineering. San Diego: Academic.

Nielsen, J., & Mack, R. L. (1994). Usability inspection methods. New York: Wiley.

NISTR. (2007). Common industry specification for usability requirments – NISTIR 7432.
Accessed from http://zing.ncsl.nist.gov/iusr/documents/CISU-R-IR7432.pdf

Patel, V. L., & Kaufman, D. (2006). Cognitive science and biomedical informatics. In E. Shortliffe

& J. Cimino (Eds.), Biomedical informatics: Computer applications in health care and
biomedicine. London: Springer.

Patel, V. L., & Kushniruk, A. W. (1998). Interface design for health care environments: The role of

cognitive science. In Proceedings of the AMIA symposium (p. 29). In C. Chute (Ed.), Phila-

delphia: Hanley & Belfus, Inc.

Reason, J. (1995). Understanding adverse events: Human factors. Quality in Health Care, 4,
80–89.

Rouse, W. B. (1991). Design for success: A human-centered approach to designing successful
products and systems. New York: Wiley.

Russ, A. L., Baker, D. A., Fahner, W. J., Milligan, B. S., Cox, L., Hagg, H. K., & Salleem, J. J.

(2010). A rapid usability evaluation method (RUE) method for health information technology.

In AMIA 2010 symposium proceedings (pp. 702–706). Bethusda, MD: American Medical

Informatics Association.

Saffer, D. (2007). Designing for interaction: Creating smart applications and clever devices.
Berkeley: New Riders.

Usabilility.gov. (2014). Usabilility.gove – Improving the user experience. Accessed from http://

guidelines.usability.gov/

Wharton, C., Rieman, J., Lewis, C., & Polson, P. (1994). The cognitive walkthrough method: A

practitioner’s guide. In J. Nielsen & R. Mack (Eds.), Usability inspection methods. New York:

Wiley.

Wideman, H., Owston, R., Brown, C., Kushniruk, A., Ho, F., & Pitts, K. (2007, March).

Unpacking the potential of educational gaming: A new tool for gaming research. Simulation
& Gaming, 38(1), 1–21.

Zhang, J., Johnson, T. R., Patel, V. L., Paige, D. L., & Kubose, T. (2003). Using usability heuristics

to evaluate patient safety of medical devices. Journal of Biomedical Informatics, 36(1), 23–30.

7 User-Centered Design and Evaluation of Clinical Information Systems. . . 161

http://www.mscui.net/
http://www.nrls.npsa.nhs.uk/resources/collections/design-for-patient-safety/
http://www.nrls.npsa.nhs.uk/resources/collections/design-for-patient-safety/
http://zing.ncsl.nist.gov/iusr/documents/CISU-R-IR7432.pdf
http://guidelines.usability.gov/
http://guidelines.usability.gov/


Chapter 8

Human Computer Interaction in Medical

Devices

Todd R. Johnson, Harold Thimbleby, Peter Killoran,

and J. Franck Diaz-Garelli

8.1 Introduction

Intuitively, we might think of a medical device as any tool that is specifically

designed for health or for promoting health. Although this intuitive notion is

sufficient for everyday purposes, it is not sufficient for medical device designers.

What counts as a medical device, and the requirements for testing, using, and

selling a device, are defined through regulations and standards that are designed

to protect the safety of patients and caregivers. These regulations are one of several

factors that affect the user interface design and evaluation of medical devices.

Others include the safety-critical nature of medical devices, the diversity of users,

extreme and noisy use environments, the lack of user interface standards for

medical devices, and the small physical space often available for the user interface.

This chapter provides an introduction to medical device HCI regulations and the

challenges that result from the regulatory requirements and the complexity and

variation within healthcare. We demonstrate these challenges using specific exam-

ples along with two case studies: one showing how HCI and broader human factors

engineering played a major role in reducing deaths related to the use of anesthesia

machines, and another showing how simple changes to number entry interfaces can

decrease the chance of serious medical errors.
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8.2 Human Computer Interaction and Related Fields

The field of human computer interaction is intimately concerned with medical

devices because medical devices are used by humans (usually caregivers, but

increasingly patients) and they often include computers. HCI is not concerned so

much with whether a device performs within technical specifications, but with other

important matters like whether it is usable, helps reduce error, and is enjoyable to

use (Carroll 2003). HCI helps make informed trade-offs, for example, how to make

a device smaller without making it too small for people to use (for instance because

the screen is illegible), or how to make a system secure, but not so secure that

nobody can use it or so secure that everybody reverts to sticking password

reminders up, and thus circumventing the security features. HCI thus covers a

very broad range of important topics that help improve the safety, ease of use and

user satisfaction of medical devices. Different emphases on analytic foci and

different types of methods emerge from different areas of inquiry concerned with

devices:

• HF, Human Factors (sometimes called ergonomics)—the study of how humans

perform and behave, particularly while operating complex systems or working in

complex environments, often with tough working conditions such as interrup-

tions, fatigue, vibration and so forth.

• HFE, Human Factors Engineering—human factors specifically used to help

engineer or design improved working environments and systems.

• HCI, Human Computer Interaction (sometimes CHI, which is more pronounce-

able)—many complex systems involve computers; hence, HCI is HF and HFE in

the context of complex, computer-based systems.

• UCD, User Centered Design—a key slogan of HCI and HFE; to design a system

for human use, one must focus, or center, design efforts on the user and their

tasks.

• UX, User Experience—originally, HFE focused on work environments and

performance of work-related goals; in contrast, UX emphasizes the experience

of the user rather than the organization. Do they enjoy their work? Of course, if

users have a good experience, their work will improve too!

8.3 Why Should We Be Concerned About HCI?

We all know what we like and what we find easy to use. Some companies, like

Apple, are adept at capitalizing on this and designing devices we enjoy using.

However, what we enjoy using and what makes for a safe and reliable experience

for professionals to use to perform demanding clinical tasks can be very different.

In particular, user errors occur primarily because the errors are not noticed; and if

we do not notice our own errors, how can we possibly know what is best in

environments where errors may have disastrous consequences? In addition, people
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are very different and our own skills and preferences—with which we are very

familiar—are not a good indicator of anyone else’s skills and preferences. In short,

to design or procure safe and usable systems for other people to use requires an

understanding of scientific principles and methods that underlie user-centered

design (UCD), which is aimed at ensuring we do not misunderstand what or who

we are designing for.

8.4 What Is a Medical Device?

The U.S. Federal Food, Drug, and Cosmetic Act (Office of the Commissioner 2002)

defines a medical device as “an instrument, apparatus, implement, machine, contri-

vance, implant, in vitro reagent, or other similar or related article, including a

component part, or accessory that is:

• Recognized in the official National Formulary, or the US Pharmacopoeia, or any

supplement to them,

• Intended for use in the diagnosis of disease or other conditions, or in the cure,

mitigation, treatment, or prevention of disease, in man or other animals, or

• Intended to affect the structure or any function of the body of man or other

animals, and which does not achieve any of its primary intended purposes

through chemical action within or on the body of man or other animals and

which is not dependent upon being metabolized for the achievement of any of its

primary intended purposes.”

This definition offers an initial starting point for device manufacturers. In

practice, whether a device is considered a “medical device” and the legal require-

ments to market a medical device are complex. In 2011, the FDA issued draft

guidance indicating that they intend to apply regulatory oversight to mobile medical

applications that meet the above definition of a medical device and “whose func-

tionality could pose a risk to a patient’s safety if the mobile application were to not

function as intended” (U.S. Department of Health and Human Services, Food and

Drug Administration 2013). There is also considerable controversy over Electronic

Health Records (EHRs) and other forms of HIT, with some arguing that EHRs

should be classified and regulated as high risk medical devices (Institute of Medi-

cine 2012).

The European Union (EU) uses a similar, but not identical, definition of medical

devices (The Council of the European Communities 2007). Specific details and

differences of the definitions and regulations around the world are beyond the scope

of this chapter. In the rest of this chapter, we will use the FDA framework as an

example of how regulations affect HCI. Since regulations vary by region and

change over time, HCI designers must be aware of current regulations for their

target market early in the design process. When a medical device is marketed in

different countries, HCI expertise is also needed to balance international issues,

cultural differences, and so on to ensure devices are usable where they are needed.
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8.5 Regulatory History and Human Factors Engineering

Requirements

The Federal Food, Drug, and Cosmetic Act (FFDCA) of 1938 contributed to the

formal definition of a medical device and its status in law. The Food and Drug

Administration’s (FDA) mission was to determine whether a device was safe and

effective as opposed to defective, unsafe, filthy, or produced in unsanitary condi-

tions (adulterated), or against statements, designs, or labeling that was false or

misleading (misbranded). Enforcement was predominantly based on post-market

inspection and complaints, until the 1960s when the FDA shifted to more proactive

oversight of life-saving devices and medical equipment as opposed to screening for

fraudulent and dangerous products.

In 1976, new legislation defined devices and divided them into three classes

based on potential risks, with varying regulatory control for each class (Medical
Device Amendments of 1976). Class I devices are those that have minimal potential

for harm, such as dental floss and elastic bandages. Many Class I devices are

exempt from the regulatory process. Class II devices have greater potential for

harm, such as powered wheelchairs. Class III devices are those with the highest

potential risks, such as replacement heart valves, breast implants, and implantable

pacemakers.

The Medical Device Amendments Act of 1976 also established the provisions

for pre-market notifications (the so-called 510 k) (U.S. Food and Drug Admini-

stration, Center for Devices and Radiological Health 2014), and inspection and

enforcement of good manufacturing practices (U.S. Food and Drug Administration

2008).

In 1995, the Association for the Advancement of Medical Instrumentation

(AAMI) and the FDA held a joint conference in Washington D.C. to discuss

human factors and medical devices (Association for the Advancement of Medical

Instrumentation 1996). This was the first large scale attempt to include human

factors in FDA regulations. Two publications were key to the evolution of

manufacturing standards and made human factors an active part of the design

process for the first time. Quality System – Design Controls Regulations were

published under 21 CFR part 820 in 1996 (61 FR 52602) and went into effect in

1997, harmonizing requirements to international standards, primarily, the Inter-

national Organization for Standards (ISO) 9001:1994 series of quality standards

(International Organization for Standardization 1994). From an HCI perspective,

the most important clause in the Design Controls Regulations states “Design

validation shall ensure that devices conform to defined user needs and intended

uses and shall include testing of production units under actual or simulated use

conditions.” The second important publication, Do it by design: An introduction to
human factors in medical devices, was issued in 1996 as guidance to help medical

device manufacturers take human factors into account during product design phases

(Sawyer 1996).
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In 2000, the FDA’s Center for Devices and Radiological Health (CDRH)

released human factors guidance including that “human error” should be considered

in risk analysis (Kaye and Crowley 2000). In 2001, the American National Stan-

dards Institutes (ANSI) and the AAMI released standard HE74 Human Factors
Design Process for Medical Devices (Association for the Advancement of Medical

Instrumentation 2001). In 2006, the International Electrical Commission (IEC)

released standard 60601-1-6 on medical electrical equipment, which included

human factors of alarm systems (Part 1–6: General requirements for basic safety
and essential performance – Collateral standard: Usability) (International Electro-
chemical Commission 2006). In 2007, the IEC released standard 62366, Appli-
cation of usability engineering to medical devices (International Electrochemical

Commission 2007), and ANSI/AAMI/ISO released 14971:2007, detailing how

human factors engineering can be used as part of risk analysis (International

Organization for Standardization 2007). In 2009, the ANSI and the AAMI released

standard HE75:2009 Human Factors Engineering – Design of Medical Devices
(Association for the Advancement of Medical Instrumentation 2009).

In addition to pre-market requirements, regulations also cover post-market

surveillance of medical devices. Manufacturers, importers, and device user facili-

ties are required to report all device-related adverse events and product problems,

which includes reporting of “use errors”: outcomes that are different than intended

due to the way a device was used, but not caused by malfunctions. In addition, the

FDA encourages healthcare professionals, patients, caregivers, and consumers to

voluntarily submit reports. Reports going back to 1991 are publicly available online

through a web-based search engine called MAUDE (Manufacturer and User Facil-

ity Device Experience) (“MAUDE – Manufacturer and User Facility Device Expe-

rience” n.d.). MAUDE can be used for downloading data for importing into

databases. These reports are an important source of information regarding possible

human factors issues with medical devices; however, they must be used with

caution because there is often insufficient data to determine whether a use error

was due to a design problem or to a user problem. In addition, the data cannot be

used to evaluate rates of adverse events or compare rates across devices, due to the

incomplete nature of the reports and lack of availability of the number of devices in

use at the time of the report.

At present, the regulatory environment continues to evolve. For example, the

Institute of Medicine recently issued a report, at the FDA’s request, of the 510

(k) clearance process (Council 2011). This refers to Section 510(k) of the FFDCA,

which outlines a streamlined pre-market approval process for medical devices that

are “substantially equivalent” to an existing device that was cleared through the

same process. The IOM report finds that the 510(k) process is flawed because many

existing devices were never assessed for safety and effectiveness. As a result, 510

(k) clearance is not a determination that a device is safe and effective. They

recommend that the FDA develop a new integrated pre-market and post-market

regulatory system, instead of continuing to modify the existing system.

Taken together, the regulations, guidance documents and recognized standards

offer both general and specific guidelines and recommendations for applying
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human factors engineering to medical device design including documentation

requirements for devices that require FDA approval. Many of the standards include

extensive background material and references for further reading. Before beginning

any medical device interface design project, it is essential for HCI designers to have

a thorough understanding of these documents.

8.6 Impact of Medical Device Design on Patient Safety

Many studies have examined the role and extent of human factors issues on errors

involving medical devices. Overall, these reports indicate that more problems are

caused by device-use errors than device failures. An early study showed that 82 %

of all preventable medical errors involving anesthesia devices were due to human

error (Cooper et al. 1984). Another suggested that patients may be 3–10 times more

at risk due to user error than to device failure (Grant 1998). A study of errors

involving infusion pumps found that the most frequent cause of patient harm was

user error and inadequate device education (McConnell et al. 1996). It is important

to note that use error does not mean the user is at fault; many use errors have

multiple causes, including poor training, poor device design, overwork, fatigue and

interruptions, poor operating procedures and even poor handwriting. In fact, FDA

data collected between 1985 and 1989 demonstrated that 45–50 % of device recalls

stemmed from poor product design (O’Connel n.d.). More recent studies suggest

that, despite efforts to improve device user interfaces and safety, device use errors

continue to be a substantial source of adverse events. For example, studies of

“smart” infusion pumps (which contain dose error reduction systems sensitive to

drugs and safe dosing ranges) have found that they have had only limited effects on

patient safety (Brannon 2006; Cummings and McGowan 2011; Rothschild

et al. 2005; Trbovich et al. 2010).

The limited impact of efforts to improve device safety mirrors the generally

limited results of more than a decade of effort to improve patient safety in the US,

despite demonstrated success in controlled studies of specific interventions

(Wachter et al. 2013).

8.7 Unique Challenges of Medical Device Design

Usability is ultimately a product of the interplay of a device (including its user

interface), its use environment, its user(s), the characteristics of the patients who are

being treated, and the tasks being performed with the device. Although device

manufacturers must consider all of these elements, the diversity, complexity, and

ever-changing nature of healthcare poses design problems that common methods of

user-centered design do not adequately address. Below we review each of these

areas in the context of medical device design.
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8.7.1 Medical Device Users

Users of medical devices range from healthcare professionals to patients and their

family members. Professionals are more likely to understand the medical role of

devices, have experience using the devices, and may be familiar with similar

devices. However, professionals often must use a number of similar devices of

different models by the same or multiple manufacturers. For example, the same

hospital may use different models of infusion pumps, each with user interfaces that

may be very or just slightly different. This diversity in design may be for historical

reasons (older and newer devices in the same setting), clinical reasons (some

models are better for certain areas of care or tasks), or because the user works in

multiple healthcare settings. Although familiarity with a family of devices can have

positive transfer of skill effects, it can also lead to negative transfer where the user’s
knowledge of one device leads to use errors on a different device (Gosbee 2002;

Woltz et al. 2000). Healthcare professionals also tend to be extremely busy, which

can result in limited time for formal training on new devices. This increases their

need to rely on their mental models and operating knowledge of previous devices—

knowledge that may not correctly transfer to the new device.

An increasing number of devices are being used outside traditional healthcare

settings by patients or lay-caregivers. In some cases, these devices are specifically

designed for non-professional users and settings. One common example are glucose

meters, which had significant problems in early designs (Rogers et al. 2001). In

other cases, patients and lay-caregivers must use devices that were designed for

healthcare professionals operating in a clinical setting.

Designing medical devices for non-professional users is challenging because

these users exhibit much more variation in abilities and knowledge than healthcare

professionals. They may have a wide range of physical, cognitive or perceptual

disabilities, and their educational background and understanding of the clinical

context can vary greatly. Although non-professional users may need to go through

training prior to device use, their actual use is much harder to monitor than in more

controlled, professional settings.

In April 2010, the FDA issued the Medical Device Home Use Initiative guidance

document (U.S. Food and Drug Administration Center for Devices and Radio-

logical Health 2010). It lists caregiver knowledge, device usability, and environ-

mental unpredictability as three unique challenges. A companion draft guidance

document, issued in 2012, provides design considerations for medical devices

intended for home use (U.S. Food and Drug Administration, Center for Devices

and Radiological Health 2012). Many of the recommendations address the differ-

ences between professional and non-professional users. For instance, the guidance

specifically recommends that designers take literacy level and emotional issues into

consideration, and design the interface so that it is “inherently apparent to users how

to use the device.”

There is considerable need for additional research on designing medical devices

to accommodate a wide variety of user characteristics. More accessible medical
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devices could benefit both non-professional and professional users, because as the

workforce ages, professional users will face some of the same challenges as

non-professional users. Existing medical devices designed for professionals rarely

consider even common disabilities, making it difficult for caregivers with disabili-

ties to use, or even access, the devices (Winters and Story 2007).

8.7.2 Variability in Patients

Even when a patient is not a direct user of a device, characteristics of the patient

being treated, tested, or monitored can still affect device use, and thus must be

considered during device design. For example, adults, young children, and neonates

(premature and newborn infants) have very different dosing limits for medications.

As a result, vendors have designed infusion pumps that the user can place in

different operating modes, depending on the patient being treated. This has caused

mode confusion errors when a pump is inadvertently placed in the wrong mode, but

operated as if it is in the correct mode (Obradovich and Woods 1996). Patients with

several comorbidities increase task complexity and often the number of devices

involved in their care. Device designers must also consider patient disabilities. For

instance, patients who cannot stand on their own, such as those who use wheel-

chairs, may have difficulty getting a mammogram because most mammography

equipment requires that the patient stand and remain still (Todd and Stuifbergen

2011).

8.7.3 Use Environments

The diversity and complexity of medical device use environments present a number

of design challenges. There are roughly four different environments: in-patient

facilities (such as hospitals and nursing homes), pre-hospital emergency settings,

outpatient clinics, and homes. Although variation is more extreme across these

settings, there is also considerable variation within each. Here we highlight some of

the major differences among these environments.

The hospital setting is the most controlled of all healthcare settings. Equipment,

staffing, room and unit layout, and room assignments may all be managed to

optimize care. However, patients in hospitals tend to be those who require imme-

diate medical monitoring and intervention, ranging from nearly constant monitor-

ing and therapy (such as in an intensive care unit) to relatively infrequent

observation. Multiple devices are often in use for a single patient, which can lead

to connector and alarm confusion, as well as equipment placement that is less than

ideal for optimal use. For instance, many medical devices have digital displays that

are inset in a bezel, such that if viewed from an angle above the device, the bezel
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will obscure the top or sides of the numbers, perhaps making a 7 appear as a

1 (Thimbleby 2007).

In this and other healthcare environments, many safety-critical devices are in

constant operation even when a trained provider is not present. Although medical

devices include visual and audible alerts, these may not be heard outside a patient’s
room. Some devices also have high rates of false alarms, so the alarms tend to be

ignored, or patients ask providers to lower the alarm volume so that they are not

woken at night. There is considerable body of research on medical device alarm

design; for a review see (U.S. Food and Drug Administration Center for Devices

and Radiological Health 2011).

The in-patient environment is also subject to numerous interruptions, and it may

be noisy, have non-optimal lighting and limited space for equipment placement.

Multiple devices are often mounted on a single wheeled pole, which can become

unstable and pose a hazard to patients and providers. Providers are typically time-

constrained due either to workload or emergent clinical situations. This has design

implications for speed and ease of use that we explore below.

Pre-hospital emergency settings include injury scenes and ground or air ambu-

lances. Ambulances present unique design challenges due to the available space and

vehicle motion, vibration, and noise. A user interface that works well at the hospital

bedside may not be suited for use in ambulances. For example, during an obser-

vational session of paramedics who were operating in an ambulance equipped with

an early telemedicine system, one of the authors (TRJ) observed that the para-

medics used a raised bezel around a wall-mounted computer touchscreen to anchor

their fingers so they could successfully use the telemedicine interface: the bezel

allowed the user’s hand to rise and fall with the movement of the vehicle and the

touchscreen. To access menus on the top half of the screen, the paramedics hooked

their fingers on top of the bezel and used their thumb to touch the screen. To access

menus on the lower half, the paramedics hooked their thumb on the bezel at the

bottom of the screen and used a finger to touch the screen. The bezel was not

intentionally designed for this purpose—it was simply an artifact of the method

used to mount the screen. Without the bezel, the paramedics would have had trouble

using the touchscreen interface while the ambulance was moving.

Outpatient clinics are perhaps the simplest environment with respect to medical

devices; however, efforts to reduce the number of emergency department visits and

in-patient stays are increasing the complexity of care in outpatient clinics. With

increased complexity of care comes an increase in the number and complexity of

medical devices. Similar economic pressures are demanding faster and faster visits,

meaning that common outpatient medical devices that are easier and faster to use

can play a role in assisting the shift to “better care for less.” For example, medical

devices that directly send patient vital signs to the electronic medical records can

offer significant efficiency gains, but also pose design challenges in terms of patient

identification and preventing errors that result from removing the user from over-

seeing the data entry process.

The home care environment, which may also include work and recreational sites,

is a growing but challenging environment for medical device design. An aging
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population, patient preference, and economic pressures, along with constantly

wired mobile technology, are leading to new ways to monitor and care for patients

who would normally require care in a traditional healthcare setting. However, the

home setting is one of the most diverse and uncontrolled environments. The FDA’s
draft guidance on home-use medical devices lists a number of environmental

considerations, including contaminants, childproofing, resistance to tampering,

and possible implications of security screenings while traveling with medical

devices (U.S. Food and Drug Administration, Center for Devices and Radiological

Health 2012).

8.7.4 Tasks

The safety-critical nature and complexity of tasks in which medical devices play a

role, greatly affect device usability and safety. In HCI the notion of task is broadly

defined. It may be used to refer to something very general that a person wants or

needs to do, such as diagnosing or monitoring a patient, or to something very

specific, such as turning off an infusion pump. When designing and evaluating a

medical device interface, it is important for designers to consider both device-

specific tasks and broader tasks in which the device plays a role. For example,

clinicians sometimes manage a patient’s pain by using a patient-controlled anal-

gesia pump. This is a type of infusion pump that is loaded with pain control

medication, then programmed to allow the patient to deliver the medication as

needed—up to a programmed dose and rate limit. Device-specific tasks include

programming the pump (typically done by a nurse) and signaling the need for more

pain medication (typically done by the patient). However, these tasks are just

subtasks of the broader pain management task. Likewise, pain management is just

one subtask of treating a patient. While a single device-specific task might seem

relatively simple when analyzed in isolation, designers need to consider that that

task is being done in the context of a complex suite of tasks involving multiple

agents and multiple devices, often over extended periods of time.

As medicine has progressed, the complexity of clinical tasks has increased. As

with other areas of technology, the introduction of computer-controlled medical

devices has supported and enabled more and more complex interventions, further

raising task complexity. To support more complex interventions, designers have

added additional functionality to medical devices, in much the same way that

mobile phones have continued to gain functionality. For example, some infusion

pumps can deliver several medications, each with their own rate and total doses.

Infusions may also be programmed to change over time. Medical devices are

increasingly connected to other devices and clinical information systems. They

may be operated or reconfigured remotely or even automatically. Many can be

customized at the institutional level to provide default values and modes designed

to ensure efficiency of care and safe dose limits.
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When devices are designed to perform more and more functions, their user

interfaces necessarily increase in complexity. At the same time, designers are

pressured to keep device size as small as possible to maximize space utilization

and the ability to transport the device (and to reduce manufacturing and storage

costs). The pressure to keep devices as small as possible can lead to serious

compromises in display and control design. For example, multi-channel infusion

pumps may only display the program for a single channel, requiring user interaction

to view other channels. Physical controls may be placed too close together with

each control serving multiple functions. On some devices controls are placed at the

back of the device where they are hard to see and may be inadvertently changed

when moving or holding the device. Small screen and font sizes may also make it

difficult for users to accurately read the display, particularly when not standing

directly in front of the screen, such as when a provider is on the opposite side of a

patient’s bed. A user may not realize a screen is difficult to use; they may just

misread it and not know they have misread the display.

Infection control is a major concern in nearly all healthcare settings. It is an

overarching task in which almost all device tasks are embedded. To prevent

infection, providers often use medical devices while gloved, so traditional

consumer-oriented interaction technology and user interfaces may not work or

work reliably. Devices must also be easy to disinfect, and must work under extreme

conditions, such as when splashed with fluids.

Because users are often time-constrained, they must be able to quickly and

accurately assess and change the state of the device, or use the device to get an

accurate assessment of the patient’s clinical state. Small displays, confusing icons

and information displays, and the need to change modes to access critical infor-

mation, all raise the probability of adverse events. When used in the context of

multiple medical devices, the time element increases the chance of alarm, connec-

tor, and device confusion. For instance, nurses have correctly programmed the

wrong infusion channel, because they had difficulty tracking down which tube was

connected to which pump and which channel on the pump.

Many devices must continue to operate when removed from a main power

source, such as during a power outage or during patient transport. Devices typically

have built-in batteries in addition to a power cord. The design of power source and

battery status displays is critical for the safe operation of these devices. Since the

devices continue to operate while unplugged, and since operators are not always

present, patients have been harmed when devices have run out of battery power

because they were either inadvertently unplugged or were not plugged in after

transportation or setup. In some cases, these errors were the result of poorly

designed power status displays.
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8.7.5 Devices

Unlike consumer applications that have user interfaces based on mature operating

systems with standardized user interface elements and interaction guidelines, medi-

cal devices are often completely custom-designed user interface projects involving

blends of custom hardware, software, displays, and interaction devices. Although

this gives designers tremendous flexibility to develop innovative devices, it also

means that designers do not benefit from the years of user interface development

and research experience embedded in modern consumer products. In particular,

users familiar with everyday devices may be caught up by medical device idio-

syncrasies. The small form-factor of many medical devices adds additional chal-

lenges to user interface design, both in terms of the amount of information that can

be displayed at once and the design of physical controls.

With the advent of more powerful mobile technology, such as smartphones and

tablets, the number and importance of mobile medical applications are expected to

increase. As noted above, the FDA intends to regulate mobile medical applications

that meet the definition of device, pose more than minimal risk to patients, and

either transform a mobile device into a medical device or are an accessory to a

regulated mobile device. Mobile medical applications can offer additional HCI

challenges (Poole 2013). Unlike dedicated medical devices, they share the device

with several other applications that could affect the functioning of the mobile health

application. For example, a mobile health alert may be lost among a number of

other, non-health related application alerts. Mobile app developers and users vary

more than for traditional medical devices. Because users typically have their mobile

devices on or near them at all times, the same user may use the mobile health app

under a wide range of environmental and social conditions. In addition to standard

usability factors, such as the design of visual and audible feedback, designers must

also address battery issues, Internet connectivity, security, and privacy. There is

also a need to integrate information from a number of health-related devices and

display it in a way that permits a user to understand relationships. For example, a

person might want to view weight, blood pressure, sleep, and exercise in an

integrated display by date, despite the fact that each is collected by different devices

and applications.

8.8 Methods for Medical Device Interface Design

and Evaluation

The FDA provides comprehensive draft guidance on the human factors engineering

process for medical device design along with recommended methods (U.S. Food

and Drug Administration Center for Devices and Radiological Health 2011). The

main goal of the process is to understand and mitigate use-related hazards so that

device use is safe and effective. The process has four main steps: identifying and
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investigating anticipated and unanticipated use-related hazards, prioritizing risks

associated with use-related hazards, developing and implementing risk mitigation

and control strategies, and validation testing. The steps must be carried out in the

context of an analysis of the intended users, tasks, use environments, and (once

designed or prototyped) the device user interface.

It is never possible to design a good device without doing user testing. How users

will use a device is unknown until they try it in a realistic environment; even in the

lab, user behavior can be misleading. Crucially, if designers modify a design to

improve user performance, it becomes necessary to do more user testing in case

new problems have been accidentally introduced. Hence all devices should be

tested iteratively until they meet the design criteria appropriate for their intended

use. International standards such as ISO 9241 (International Organization for

Standardization 2006) and 14971 (International Organization for Standardization

2007) should be referred to for more details on design processes.

Since medical devices are used in safety-critical settings where even infrequent

errors can result in major harm, user tests are not sufficient for ensuring safety.

Testing with humans gets harder and harder as user interface design improves. For

example, if only 1 % of user actions are errors, user tests have to be performed

100 times longer to get reliable results. As a result, user tests must be supplemented

by two further approaches. The first is to use computer models of users to “stress

test” devices. These simulated users try to get the device to do everything it is

intended to do, while making key-press slips. Using this approach, it is easy to

perform billions of tests, and to cover all of a device’s features (Thimbleby 2007).

Secondly, devices should be designed using formal methods—modern software

engineering—so that it can be proved they satisfy their design requirements (Dix

2013). Programming medical devices without proof today is irresponsible, but as

we have emphasized it is always essential to perform user tests—a device might be

“correct” but correctly implementing a poorly-conceived design!

Our own experiments, discussed in Case Study 2 (Cauchi et al. 2012), show that

user interfaces can be made from 2 times to 20 times safer, and that the improve-

ments to the user interface do not need to affect error-free behavior, so users need

no retraining to benefit from the improved safety.

Since medical device user interface design challenges stem from the interplay of

a number of factors as we described in the previous section, it is also important to

use a human factors framework that takes a systems-based approach to design.

Contextual Design offers a systematic set of methods and tools to help designers

analyze the context in which devices are used and then to use this information to

inform user interface design (Holtzblatt and Beyer 2013). Universal Design (Story

et al. 1998) and Inclusive Design (Clarkson 2003) are two design frameworks that

provide design guidelines and methods for producing devices and applications for a

broader range of user abilities and disabilities.

The moral of the story is that Human Factors and HCI can help make better and

safer medical devices, and that current devices unfortunately leave much to be

desired in terms of their quality, but this is primarily because manufacturers are not

using HCI well enough given the complexity of healthcare.
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8.9 Case Study 1: Human Factors in the Evolution

of Anesthesia Machines

The progressive improvement in anesthesia machine safety over the last century is a

striking example of how risks associated with increased complexity have been

mitigated through improvements in design. More than 50 years after the first public

demonstration of ether in 1846 (Viets 1949), anesthesia machines at the start of the

twentieth century looked more like industrial equipment than a medical device

(Drägerwerk 2012). Early development had focused on increasing the efficiency of

drug delivery and to control cost, so that the benefits of anesthesia during dental and

surgical procedures could reach as many patients as possible. Techniques for

accurately measuring gas flow rates were still decades away and patient monitoring

was limited to “keeping a finger on the pulse”. Interaction with the device was

limited to adjusting valves that regulated the flow of anesthetic gasses and oxygen

to the patient without the assistance of safety features that might prevent overdose

or alert the anesthetist to an interruption in gas delivery.

Over the subsequent decades, advances in technology led to gradual design

enhancements. For example, as the ability to accurately measure flow rates and

drug concentration became available, these components were incorporated into the

design. Engineering approaches to improving machine safety were also developed

in this period. In response to patient deaths involving delivery of hypoxic gas

mixtures due to incorrect attachment of gas supply tanks to the machine, the

pin-index safety system was introduced in 1948 which made it virtually impossible

to connect a nitrous oxygen cylinder to an oxygen intake valve. While introduction

of this technology undoubtedly reduced errors and saved lives, deaths associated

with incorrect gas connections continued for decades. In short, although techno-

logical solutions to specific safety issues improved anesthesia practice and miti-

gated the potential for errors, a paradigmatic shift in perspective by taking into

account the “human factor” was ostensibly missing.

By the 1950s, anesthesia machines began to resemble contemporary designs.

One of the most striking changes in appearance during this period was driven by the

desire to integrate the device into the clinical workflow. Early machines, which had

appeared like collections of tubes, valves, and tanks assembled on a wheeled

platform, had evolved into a workstation that included a flat surface where docu-

mentation could be completed or drugs and procedural equipment placed for

immediate access. In addition, storage drawers were also integrated into the design

where additional emergency equipment could be available in easy reach. The

appearance of these enhancements signaled a shift in design priorities away from

purely technological enhancements to a design that addressed the global needs of

the anesthetist using the machine in a clinical setting, where regulating gas flow is

only one of the many tasks to be completed.
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By modern standards, anesthesia was still a hazardous business in the 1950s,

with one study of nearly 600,000 patients reporting anesthetic related mortality in

1 in 1,560 patients (Beecher and Todd 1954). However, the pace of innovation in

machine design continued to advance utilizing both engineering and human factors

approaches. Innovations in engineering included development of fail-safe compo-

nents to detect and alert clinicians to the presence of hypoxic gas mixtures,

enhancing safety beyond what the pin-index system had been able to achieve.

Human factors approaches included efforts to standardize equipment and machine

design across manufacturers. For example, the variation between manufacturers in

tubing diameter used to connect patient endotracheal tubes to the anesthesia circuit

was widely recognized as a hazard, because incompatibility could have disastrous

implications. Standardization of equipment to ensure compatibility regardless of

manufacturer would improve safety by reducing the number of variables a clinician

needed to consider while preparing for a case or in response to an unexpected

circumstance. Broad design issues were addressed by the American National

Standards Association Committee z79, which further advocated for safety stan-

dards in anesthesia machine design that would reduce the potential for human error

(Betcher 1982). For example, the relative ordering of gas flow control knobs was

specified, so that the oxygen control valve would be located in the same relative

position on every machine regardless of manufacturer. Similarly, the texture of the

oxygen control valve was specified so that it would always have a ridged feel, while

nitrous oxide and air would be smooth, giving the anesthetist a tactile cue for the

valve being adjusted. While earlier approaches to improving safety had emphasized

enhanced mechanical engineering, these enhancements were more directed at

improving cognitive performance. Standard positioning of gas control valves

could eliminate the clinician’s need to remember the specific model of the machine

in use during a crisis, while the standard “feel” of the oxygen control knob could

enhance cognitive performance by engaging other senses.

By the 1970s, enhanced designs had started to make their way into clinical use as

older equipment was retired. However, adverse events due to poor equipment

design continued to be reported. In a 1976 report Dr. Rendell-Baker expressed his

concerns about the role of poor design and inadequate consideration of human

factors in anesthetic gas delivery systems (Rendell-Baker 1976). He noted numer-

ous examples where safe operation of the machine required strict compliance with

specific operating instructions by the anesthetist that were not necessarily explicit.

In one instance, he described a design where oxygen delivery could be entirely

routed through the vaporizer. If the breathing circuit needed to be flushed with fresh

oxygen, as might be required after induction of anesthesia, all gas flow (including

oxygen) would be vented to the atmosphere rather than to the patient. If the

clinician then neglected to re-open the vaporizer, no gas would flow to the patient.

The only acknowledgement of this risk from the manufacturer was in an informa-

tional brochure, described by Dr. Rendell-Baker:

“should the anesthesiologist turn the Shunt Valve to the OFF position, he will automatically

isolate the vaporizer, and the 02, previously passing through the vaporizer will be vented to

atmosphere. It will then be necessary to maintain a flow of metabolic 02, from a direct 02
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flowmeter to the patient circuit. By thus acknowledging the performance characteristics of

the apparatus, the operator can fully appreciate its efficiency with complete safety.” This

final sentence must rate as a masterpiece of Orwellian “1984” logic! Rendell-Baker

1976, p. 28

As a result of this design, the patient’s well-being under anesthesia was critically
dependent on the cognitive performance of the anesthetist to compensate for the

design flaws of the equipment. Dr. Rendell-Baker went on to advocate for a fail-

safe gas delivery system that incorporated continuous delivery of oxygen to the

patient, an approach that would allow the anesthetist to recover from an operational

error with much less risk of harm to the patient. While acknowledging the role of

human error in anesthesia mishaps, there clearly were many areas where safety

could be improved with engineering approaches that limited the potential for

human error. Dr. Rendell-Baker recommended that “The aim of the design engineer

should be to eliminate as many mechanical hazards as possible. Safety should not

depend upon the user’s memory and ability to carry out the correct procedure.”

At the same time, rigorous analysis of anesthetic mishaps using formal human

factors techniques was also underway. Cooper et al. (1978) used a modified critical-

incident analysis technique to examine the characteristics of human error and

equipment failure in anesthetic practice. In most cases, they found that preventable

incidents were related to human error (82 %), rather than overt equipment failure

(14 %), but poor design was often contributory in cases of human error and

inadequate experience in cases of equipment failure. The complexity of both

gaining an initial understanding of machine safety and then designing a mitigation

strategy is illustrated by one of their findings. At some point prior to the start of the

study, the hospital had changed the shape of the oxygen control valve to a large,

protruding, square knob, presumably in response to recommendations previously

discussed. This change in equipment design was intended to improve the cognitive

performance of the anesthetist, but as an unintended consequence, the impact of an

object on the work surface could cause unintentional rotation of the knob and result

in decreased oxygen flow. Clearly, improved safety would depend on deep under-

standing of the clinical environment, engineering requirements, and human factors.

Recognizing that improvements in machine design had largely progressed in an ad

hoc manner for nearly 50 years, Cooper et al. later noted “Improvements and

developments have been individual and narrow, arising in response to each specific

safety problem as discovered and designed” (Cooper et al. 1978). In response to the

existing machine design where “new concepts, as they have emerged, have been

added to the system in the form of new and separate boxes and gadgets that further

complicate the maze of wires, cords, and objects which currently clutters the

operating room and the anesthetist’s visual field”, he proposed a complete redesign.

His proposed machine would explicitly “eliminate human-factors problems. . . and
lay a suitable technological foundation for the development of new techniques in

anesthesia management”. The importance of man-machine communication links
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that operated with a minimum of attention and effort was emphasized, and the

anesthetist was conceived of as a controller, processing both patient physiologic

sensors and machine effectors that would support decision-making and action-

taking by the anesthetist.

The innovations advocated by Cooper et al. would take years to reach routine

clinical practice. So, despite these technological innovations and awareness of

human factors, anesthesia in the early 1980s was still considered risky. Anesthetic

related mortality had improved, but was still estimated to be 1–2 per 10,000

anesthetics (Keenan and Boyan 1985; Lunn and Mushin 1982). Malpractice insur-

ance was very expensive for anesthesiologists, and a disproportionate amount of

payments were related to anesthesia (Pierce 1996).

The issue of patient safety was brought to public attention in 1982 when a

documentary entitled “The Deep Sleep” aired on television. The program asserted

that more than 6,000 patients would die or suffer brain damage from preventable

causes associated with anesthesia that year. Its broadcast was followed by an

immediate public outcry (Pierce 2007). The American Society of Anesthesiologists

(ASA) responded, and by dedicating significant resources to making anesthesia

safer, was able to make a big difference in a short period of time.

The ASA started by gathering consensus and studying the issues, both techno-

logical and human. In 1985, the Anesthesia Patient Safety Foundation (APSF) was

created with a mission that “no patient shall be harmed by anesthesia,” (Cooper and

Pierce 1986) and a year later the Anesthesia Closed Claims project was launched as

a collaborative effort between anesthesiologists, hospitals, lawyers, and insurance

carriers to develop a standardized method of analyzing and learning from anesthe-

sia related mishaps (Cheney 1999).

Closed claims data have been used extensively to analyze anesthesia related

risks and improve outcomes. While incidents related to equipment have been

analyzed repeatedly since its inception, claims related to gas delivery systems

have decreased to 1 % since 1990, with a similar decline in the severity of harm

(Mehta et al. 2013).

Anesthesia today is safer than it has ever been. Some estimates of mortality are

now as low as 1–2 per 250,000 (Haller et al. 2011) and malpractice premiums and

payouts are now similar to other specialties. Such rapid, dramatic declines in

mortality are rare in medicine, and have been achieved in part by improved fail-

safe engineering, but also by addressing human factors that inherently pose error

risks. As we celebrate the decline of equipment related injury in the Closed Claims

Database, it is important to remember that the majority of the claims involving gas

delivery (85 %) are still related to human error without equipment failure (Mehta

et al. 2013). Clearly, Human Factors will play a central role in future advancements

in anesthesia machines related patient safety.
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8.10 Case Study 2: User Interface Details—Illustrating

the Value of HCI

HCI is a broad topic, but its impact can be seen even in small details. Take numbers.

You press buttons and a number appears in the medical device, perhaps the infusion

rate in mL per hour. On the Baxter Colleague 3 infusion pump, you can type 1.5 and

that’s what you will get, but if you type 100.5 the Baxter ignores the decimal point

and you will get 1,005, which is ten times larger. The designers obviously decided

that large numbers do not need decimal points; no number needs to be given to four

digits of precision. So the Baxter ignores decimals, which sort of makes sense, but a

rule of HCI is to provide useful feedback to the user. On the Baxter, when you press

keys, they click, confirming that you pressed them hard enough. This is good

feedback. Unfortunately, when you press a decimal point you get a click whether

or not the Baxter ignores it. This is a design defect. In fact, the whole idea is an HCI

defect: we know from eye tracking experiments (Oladimeji et al. 2011) that users do

not look at displays as much as they look at keyboards, so a user will not notice the

display shows 1005 instead of 100.5, which is what they expect. We know this and

HCI dictates we should design to accommodate what users expect.

The BBraun Infusomat infusion pump handles numbers differently; instead of a

numeric keypad there are 4 arrow keys and a cursor. The user can move the cursor

left or right by using the left and right arrow keys, and can increase or decrease the

digit the cursor is over by using the up and down arrow keys (see Fig. 8.1). The

behavior of the Infusomat depends on its mode. In VTBI (Volume To Be Infused) if

the display shows 0.0 with the cursor on the tenths position and the user presses the

right arrow key (to move the cursor to the right from the tenths to the hundredths

position) and then presses ‘up’ to increase the 0 to a 1, the display will change to

0.1, not to 0.01. The designers have made a decision to change what the users

do to mean something else, and (worse) the keystroke feedback (click sounds) seem

to confirm the device is obeying the keystrokes. The design is likely to cause

problems. The solution would be to make an alarm sound so as to draw the user’s
attention to the divergence of what the pump is doing and what it was told to

do. Moreover, the alarm should stay activated until the user acknowledges it, for

instance by pressing [CLEAR].

Caregivers must often make calculations while using medical devices, such as to

convert between different units. However, calculators vary greatly in how they

detect and flag use errors. The Apple iPhone calculator detects some use errors. For

example, keying 1/0.¼ instead of 1/0.7¼will give Error rather than 2.04. Unfortu-

nately, continuing the calculation after an error, for instance 1/0. + 2� 3 will give

the wrong answer—here 6 rather than Error. The calculator spots an error and

reports it, but the Error message is not persistent; in fact, the user is allowed to enter

an erroneous calculation, and the iPhone defectively just does the last part of the

calculation. The user may take 6 as the answer, and if so it would be tempting to say

they would be wrong—in fact, the calculator is wrong, and its design induced the

user to make this error.
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Many devices keep a log, and the log may be used as legal evidence after an

incident. If the log says the infusion pump delivered 15 mL, then it is tempting to

think the user told it to deliver 15 mL, and if this is the cause of the incident, then it

would seem the user is to blame. But it is not so simple. On some devices, the delete

key does not work as expected. For example, keying 1. [DEL] 5 may result in

5 rather than the intended 1.5, an error that is 3.33 times out yet the log will say the

user keyed 5, not 1.5 (or even 1. [DEL] 5). Thus the log in this case probably

correctly describes what the infusion pump did, but not what the user asked it to

do. Logs are also susceptible to key bounce errors, where the user presses a key

once but the device treats it as two or more presses; again the log will say what the

device does, but is a misleading account of what the user did.

Reducing the number of keys to enter numbers makes using a device easier, and

also reduces the amount of time a user needs to look at the keyboard. Some devices

use up/down arrows to increase and decrease numbers (see Fig. 8.2). Not only are

there fewer keys, but the user model is that the displayed number has to be changed

to be correct; like the 4-key style mentioned above, therefore, 2-key number entry

has lower error rates. Instead of the design being “the user keys a number” the

design is “the number displayed is wrong; the user corrects it” and therefore they

are forced to look at the display and to expect errors they will correct. Such

interfaces are much more reliable, yet they are slower and therefore some might

claim they are “less usable.” However, to say they are less usable is to confuse

speed with ease of use; but in a healthcare environment, ease of use is not as

important as whether a device can be used reliably. Obviously it is an advantage

Fig. 8.1 A 4-key number entry design. The left/right “arrows” move the cursor left and right, and

the up/down arrows increase or decrease the digit the cursor is over. The cursor is shown here as a
gray box, but on many designs it will flash, and perhaps invert video as well. Some defective

designs allow left/right arrows to wraparound the cursor position: e.g., pressing too many rights

will bring the cursor round to the far left, so a user trying to enter a fractional digit could

accidentally enter a 1000s digit. Some designs adjust digits independently, and others have

“carry” so incrementing a digit goes �8–9–10, rather than �8–9–0. The four-key design has a

low user error rate but it is complex to ensure it handles boundary cases correctly and in the best

way for the user. For example, an easy way of changing 10–100 goes via 0, which may be a

prohibited value and automatically set a minimum value like 1, which the user will find counter-

productive!
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that people like a design, but it should not be the top criterion. A better way to

understand the trade-off is that cars with brakes are slower (in fact, that is the point

of brakes) but they are much safer and arguably also much easier to drive than cars

without brakes. Likewise, slowing down a user may improve their performance

overall.

Feedback is important—users cannot always pay full attention to a device (they

have distracting jobs) so devices must make clear whether user actions “work” or

not. In all the designs discussed, keys normally change the display, but in boundary

cases (e.g., when too many digits have been pressed) the display cannot change or

possibly changes in a non-standard way (e.g., not going above a preset maximum

value). Hence buttons should make two sorts of noise: that they have been pressed

successfully, and possibly that they have been pressed but nothing can happen.

Many designs beep once for success and twice for failure, as of course a double

beep for a single key press is an error in any case. Some buttons (such as [cancel] or

buttons that cause confirmatory displays to appear) should make distinctive sounds.

Fig. 8.2 2-key number entry. Pressing the “up” triangle (on the left) increases the number and

pressing the “down” triangle decreases the number. Typically, holding a button down repeatedly

increments or decrements the number, and holding it down for several seconds speeds up the rate

of change. Some devices swap the up/down keys, and some additionally have “fast” keys (e.g.,

which increment and decrement in 10s or 100 s rather than 1 s)
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8.11 Conclusions

The HCI of medical devices is an important but complex topic due to their safety-

critical nature, regulatory requirements, and the complexity and heterogeneity of

their users and use environments. This chapter provided only a brief overview of

these issues. The key messages are:

1. Humans make errors sooner or later and designers should design for error. The

key point in medical device design is that use error should be managed and so far

as possible not lead to patient harm. For example, correctly implemented UNDO

or DELETE keys allows users to make errors and to correct them.

2. Designers, too, are human and can never know enough about the context of use

of a device. Medical devices help highly trained professionals in complex,

stressful environments, and they do not understand complex issues of engineer-

ing design. It is inevitable that design requirements are going to have oversights.

Devices have to be user-tested in realistic environments and improved in light of

experimental results, in a repeating process called iterative design.
3. To fully assess device usability, designers should augment user tests with

simulation and formal software engineering approaches. Simulated users that

make keystroke errors can exercise the full range of device operations. Formal

methods, such as model checking, can prove that the device works as intended.

4. There are numerous relevant international standards, and these are both a

regulatory framework of minimum standards as well as an excellent resource

of authoritative literature.

There is considerable need for research that addresses common issues across

medical devices; more so, there is considerable need for the research to be applied!

Research on medical device alarms and data entry interfaces are good examples of

such work, but additional work is needed in other areas, such as improving

situational awareness when using one or more devices.

This chapter gives only a basic introduction to the challenges of designing

interfaces for medical devices. A comprehensive review can be found in the

Handbook of Human Factors in Medical Device Design (Weinger et al. 2011)

and in the FDA guidance documents and regulatory standards.

Discussion Questions

1. What are the similarities and differences between HCI for medical devices

vs. non-medical devices?

2. Pick a type of medical device, such as an insulin pump, and then search MAUDE

for related reports. Can you separate use-related errors from other types of

problems, such as malfunctions or unrelated issues? Are they consistent kinds

of use errors? Do they vary based on the model? What kinds of data would you

like to gather to further clarify possible use-related errors?

3. Discuss the definition of a medical device with respect to sample mobile apps.

Can you find examples of apps that meet and do not meet the definition?
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4. Pick a simple mobile device, such as a blood pressure monitor, and consider how

well it meets the needs of a diverse set of users and use environments.

5. Based on the definition of a medical device, do you think electronic health record

systems (EHRs) are medical devices? If EHRs were regulated as medical

devices, how might this affect the stakeholders, including EHR vendors, doctors,

and patients?
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Chapter 9

Applying HCI Principles in Designing Usable

Systems for Dentistry

Elsbeth Kalenderian, Muhammad Walji, and Rachel Ramoni

9.1 Introduction

In 2012, close to 650 million patient visits were conducted in dental offices

throughout the United States. Dentists, like physicians, routinely perform highly

technical procedures in complex environments, work in teams, (Taichman

et al. 2010) and have rapidly begun to adopt electronic health records (EHRs).

Unfortunately, there is another parallel to medical practice: the usability of dental

EHRs is a growing concern. Data stored in dental EHRs are not only used to

coordinate care for an individual patient, but also can be aggregated and mined to

determine the efficacy of treatments or adherence to standards of care. One of the

biggest limitations of data stored in dental EHRs has been the lack of adoption of a

standardized terminology to document dental diagnoses. As a structured diagnosis

code is not required as part of dental billing, there has been little to no emphasis on

the importance of accurately documenting a diagnosis as part of a patient’s health
record. In this chapter, we review our previously published research in developing

and disseminating the Dental Diagnostic System (DDS) Dental Diagnostic Termi-

nology (formerly called the EZCodes) amongst dental school clinics. In order to
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bring DDS into the clinic, we applied human computer interaction (HCI) principles

to re-designing a treatment-planning module in a widely used dental EHR called

axiUm (Exan Corp., Vancouver, Canada) in close collaboration with the vendor.

American academic dentistry is well positioned to leverage on the promise of the

EHR to advance scientific knowledge and improve health care quality, as 51 of the

65 U.S. dental schools use AxiUm as their EHR. To contextualize this undertaking,

we begin by describing the dental profession and practice, with a major focus on the

United States. We then describe our human-computer interaction studies, highlight-

ing the relevance of the work to usability studies, secondary use of data, and inter-

professional practice.

9.1.1 Characteristics of the Dental Team

The dental practitioner will rarely perform care without a dental assistant present

chair-side as “fourhanded” dentistry significantly improves productivity,

(Finkbeiner 2000) efficiency, (University of Alabama at Birmingham Four-Handed

Dentistry 2011) as well as ergonomics (Finkbeiner 2001). Hygienists and some-

times a nurse further round out the clinical dental team. Front and back office

personnel are responsible for patient scheduling, billing and other administrative

duties.

The majority of the 195,000 dentists in the U.S. work in small practices,

although ownership declined from 91 to 86 % between 1991 and 2010. During

the same period, solo practitioners declined from 67 to 59 % (Guay et al. 2012) and

as one might imagine, group practices increased in number: between 2008 and

2010, the number of dentists joining a company-owned practice grew from 5.4 to

6.4 % (Guay et al. 2012). By contrast, in the medical profession physicians started

to integrate in large group practices as early as the 1990s, associated with the rise of

managed care in medicine (Anderson and Grey 2013). This is in contrast to our

Canadian colleagues where 98.3 % of the 19,563 (Canadian Dental Association

Dental Health Services in Canada 2010). Canadian licensed dentists work in private

practice, of whom 79 % are owners (Service Canada Dentists. Government of

Canada 2014).

In the teaching practices within dental schools, the workflow is different than in

private practices. Students provide care under the supervision of full-time or

adjunct faculty members. In most dental schools, students frequently practice

without a dedicated dental assistant or are assisted by a fellow dental student.

Thus, the students themselves are responsible for data entry into the EHR and

might also schedule appointments for their patients.
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9.1.2 Workflow in the Dental Operatory

Even before the introduction of computers, a lot was happening in a small space

within the modern dental operatory, the space in which the dental team performs its

clinical work. Dentists may have two to three operatories occupied at the same

time; on average, the operatory turnover occurs every 30 min.

The EHR-endowed dental operatory is typically set up in one of two ways: either

with the EHR at the 12 o’clock position, essentially behind the dentist, or attached

to the dental chair. The latter more readily allows the patient to be included in

treatment planning and education as documents, instructional videos and digital

radiographs can easily be displayed by swiveling the EHR within eyesight of the

patient. Most often, the dental assistant enters data into the EHR via a wireless

keyboard chair-side. The most intensive data entry occurs during the intra-oral

exam, when the dentist calls out findings that the dental assistant documents in the

EHR. Figure 9.1.

Dentistry has a unique clinical workflow, (Button et al. 1999) yet only a few

studies have been conducted on workflow and the role of technology in the dental

clinic (Button et al. 1999; Wotman et al. 2001). Nevertheless, previous studies have

demonstrated that limited consideration of HCI related issues often interferes with

the dental clinic workflow. For example, Irwin et al. showed that over 60 % of the

27 “breakdowns” during initial examination and treatment planning using EHRs in

general dentist practices were associated with technology (Irwin et al. 2009).

Usability issues and unfamiliarity with chair-side use of clinically relevant elec-

tronic data were major barriers to EHR adoption for dental practitioners, (Schleyer

Fig. 9.1 Recording of pocket depth (numbers in mm in red), bleeding points (P), missing teeth

(M) and existing restorations (colored areas on teeth) in the EHR
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et al. 2006, 2007; John et al. 2003; Thyvalikakath et al. 2007, 2008) not unlike the

barriers associated with medical provider encounters (Miller and Sim 2004;

Fitzpatrick and Koh 2005; Simon et al. 2007). In the U.S., the axiUm EHR has

achieved near ubiquity in dental academic settings. This is not to say that the axiUm

EHR has surmounted the usability challenges of the private practice dental EHRs;

indeed, a survey and interview study conducted during the implementation of

axiUm at the University of Texas Health Science Center at Houston Dental Branch

identified usability as a major concern (Walji et al. 2009).

9.1.3 Development of a Standardized Dental Diagnostic
Terminology

A complete list of patient problems and diagnoses is a cornerstone of the medico-

legal document that is the patient record. It serves as a valuable tool for providers

assessing a patient’s clinical status, succinctly communicates this information

between providers and to front desk and administrative personnel, and serves as a

fulcrum around which research and quality improvement levers pivot.

Early efforts to standardize dental diagnostic terms have fallen short with respect

to comprehensiveness and availability (World Health Organization 1973; Ettelbrick

et al. 2000). Subsequently, the ICD-DA (application of the International Classifi-

cation of Diseases to Dentistry and Stomatology) was added to ICD-8 in 1965

(World Health Organization 1973). However, the oral health coverage of the ICD

terminology continues to call for improvement (Ettelbrick et al. 2000). Over the

years, some groups independently generated dental diagnostic terminologies

(Orlowsky and Glusman 1969; Gregg and Boyd 1996; Bader et al. 1999). Of

these, the Toronto Codes (Leake et al. 1999) have been systematically evaluated,

(Leake 2002) while we do not know to what extent the other terminologies have met

dental teams’ diagnostic documentation needs (Sabbah 1999). In the early 1990s,

the American Dental Association (ADA) started the development of SNODENT, a

Systematized Nomenclature for Dentistry. In 1998, the ADA entered into an

agreement to incorporate SNODENT Version I into SNOMED (SNODENT Update

2004). SNODENT is composed of diagnoses, signs, symptoms and complaints, and

currently includes over 7700 terms (Goldberg et al. 2005; Torres-Urquidy and

Schleyer 2006). In 2012, SNODENT Version II was incorporated into the

SNOMED CT. Until its recent inclusion into SNOMED CT, SNODENT was

only available by license and was maintained by the ADA. As a result, SNODENT

is currently not widely implemented. In 2007, our research team developed the

EZCodes, (Kalenderian et al. 2011) renamed Dental Diagnostic System or DDS for

short, to enhance the proper and consistent registration of diagnostic findings. The

DDS has been mapped to SNOMED, ICD 9, ICD 10, ICD 9-CM and ICD 10-CM
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(CM is the American version of ICD 9 and 10). With 1518 terms, the DDS is

developed as an interface terminology (a set of terms designed to be compatible

with the natural language of the user, used to mediate between a user’s colloquial
conceptualizations of concept descriptions and an underlying reference terminol-

ogy (Clinical Information Modeling Initiative (CIMI) Category: Interface termi-

nology 2012)) to be used in the dental clinic with SNOMED CT as its back-end

reference terminology (a terminology where each term has a codable, computer-

usable definition to support retrieval and data aggregation (Reference Terminol-

ogy)). The few DDS terms that did not have adequate coverage with SNOMED

terms were submitted for integration with SNOMED, of which the majority has

been accepted. As such, SNOMED truly functions as the reference terminology for

the DDS terminology. Similarly, we have submitted terms to ICD in an effort to

enhance the ICD oral health classification and improve the mapping between DDS

and ICD oral health terms. The DDS terminology is also in its last phase of

becoming a norm in The Netherlands, meaning that it will be the standardized

diagnostic terminology that all Dutch dentists are expected to use (Nederlands

Tandartsenblad Nederlandse Norm voor diagnostische termen).

However, prior analyses of the EZCodes (DDS) terminology in use in an EHR

demonstrated both low utilization and frequent errors (Kalenderian et al. 2011).

Between July 2010 and June 2011, the EZCodes were utilized 12 % of the time in

three dental schools. More than 1,000 terms of the available 1,321 terms were never

chosen. Caries and periodontics were the most frequently used categories. 60.5 % of

the EZCodes entries were found to be valid (Blumenthal and Glaser 2007). The low

utilization rate reiterated findings from an earlier study, (White et al. 2011) but also

suggested the need to conduct more training, improve the EHR interface, and add

descriptions and synonyms to the terms.

In Sect. 9.2, we describe our approach in using HCI principles to systematically

identify usability problems, and to drive the re-design of an existing EHR to

enhance the effective and efficient entry of dental diagnostic terms.

To put this work in context, we first review some of the recent and relevant

literature regarding usability, dental EHRs and interface terminologies. A number

of researchers have established that dental EHRs have some distance to go to be

usable. Reynolds and colleagues provide a brief overview of dental informatics,

reiterating that usability challenges represent a primary hurdle to the adoption of

dental EHRs (Reynolds et al. 2008). In 2008, Hill, Stewart, and Ash explored the

impact of EHRs on dental faculty and students in the dental academic setting.

Newly developed clinical processes were considered more time consuming than

previous paper processes. The end users’ needs appeared to be intense, immediate

and significant. Here too, the authors reported significant usability problems stand-

ing in the way of smooth implementation. Additionally, changes in workflow were

significant and often cumbersome (Hill et al. 2010a). Juvé-Udina reported on the

evaluation of the usability of the diagnosis axis in a nursing interface terminology.

Utilization of the diagnostic terms was high at 92.3 % where some of the concepts
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were used rarely and others as often as 51.4 % (Juve-Udina 2013). Thyvalikakath

et al. similarly concluded that using a combination of heuristic evaluation and user

tests methods showed that the four major commercial dental EHRs had significant

usability problems (Thyvalikakath et al. 2009). Despite the fact that dental EHR

usability is an established problem, little has been published on the use of cognitive

engineering approaches, like think-aloud protocols, workflow observations and

semi-structured interviews, to remedy the issues (Thyvalikakath et al. 2014).

9.1.4 Challenges of Dental EHR Use and Usability

Although healthcare providers, including dental providers, increasingly adopt

EHRs, in part driven by current significant governmental incentives (Marcotte

et al. 2012) and the hope for increased efficiency and quality (Blumenthal and

Glaser 2007; Chaudhry et al. 2006), usability issues remain a major barrier to

adoption (Patel et al. 2008; Zhang 2005a, b). As with medical EHRs, a user-

centered designed dental EHR facilitates good usability, assuring that the user

can efficiently and effectively complete work tasks satisfactorily and successfully

(Walji et al. 2014). It is also understood that, on the contrary, a poorly designed

EHR with poor usability can lead to potential patient safety issues (Horsky

et al. 2005a, b; Ash et al. 2004).

There is a plethora of challenges of dental EHR use and usability concerns.

Usability challenges include visual as well as functional interface design problems

(Thyvalikakath et al. 2009). Illogical button placement, unanticipated button func-

tionality, difficulty switching between the odontogram and periodontal chart,

inability to easily delete a mistaken entry on the odontogram, the need for better

visual representation of dental findings and the fact that many icons resemble each

other in shape and color are just some specific examples of interface design

problems detected in the dental EHR (Reynolds et al. 2008; Thyvalikakath

et al. 2009; Walji et al. 2013; Song et al. 2010).

Low chair-side adoption rate of dental EHRs is also thought to be, in part, due to

the unsuitability of the conventional EHR set-up in the dental operatory (Reynolds

et al. 2008). Keyboards and mice are potential sources of infection and need

protective covers (D’Antonio et al. 2013). Electronic clinical data entry is often

believed to take longer than entering this information in the paper chart or is

thought to be impractical because the dental assistant is needed to perform other

duties (Reynolds et al. 2008). Additionally, the inability to effectively use clinical

decision support within the dental EHR to positively influence dental patient care

outcomes (Schleyer and Thyvalikakath 2012) and the lack of integration of evi-

dence based guidelines (Song et al. 2010) into the EHR have limited adoption by

dental practitioners.
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9.2 Applying Theory to Practice: Redesigning a Treatment

Planning Module in a Dental EHR

9.2.1 Design Challenge

Because the axiUm EHR is widely used amongst dental school clinics to document

patient care, it was possible to work in close collaboration with the vendor to

redevelop one of its existing modules, using a participatory, work-centered design

approach with an aim to better support the diagnostic-centric treatment planning

process for dental students. Specifically, the existing treatment planning module

within the EHR was deemed too complicated and difficult to use. Several dental

institutions had also recently adopted the DDS Dental Diagnostic Terminology

(formerly called the EZCodes), which drove the diagnostic entry functionality of

the Treatment Planning module.

The work of treatment planning in dentistry is the process of using information

obtained from the patient history, clinical examination and diagnostic tests to

formulate a sequence of treatment steps designed to eliminate disease and restore

efficient, comfortable aesthetic and masticatory function to a patient. When devel-

oping a treatment plan, the provider should follow a general phasing and sequenc-

ing format designed to solve the patient’s dental problems in a way that first

manages the patient’s emergent concerns (e.g., pain and infection). The next step

is disease (e.g., caries) removal and tooth restoration; then, tooth replacement and

reconstruction. Once these priorities have been met, aesthetic and cosmetic con-

cerns are addressed, and lastly, preventive and maintenance measures are ensured.

Any given phase may contain several individual procedures, some of which may be

sequenced in a specific order (Stefanac and Nesbit 2007).

The Treatment Planning module in the axiUm EHR was originally developed

with input from dental educators and thought leaders, and follows the treatment

planning philosophy of Stefanac (Stefanac and Nesbit 2007). In order to develop a

treatment plan within axiUm, a user (i) enters the patient’s problems/complaints;

(ii) selects the appropriate diagnoses from a comprehensive list; (iii) enters the

treatment objectives, which represent the intent or rationale for the final treatment

plan, usually expressed as short statements and clear goals from both the student’s
and patient’s perspectives; and (iv) enters a detailed plan for treating each of the

selected diagnoses (Fig. 9.2). Following treatment planning, the student obtains

instructor approval and patient consent before beginning treatment.

9.2.2 Design Approach

A participatory design process to systematically identify challenges in the use of the

existing Treatment Planning Module was used to inform an improved user interface

that effectively supports the underlying needs of the end users. As summarized in
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Fig. 9.3, usability challenges were first identified and prioritized. New mockups

were then developed, tested, refined and implemented in the EHR by the vendor.

After further usability assessments, the new module was released to customers.

Post-implementation usability assessments were conducted to determine the impact

of the re-design in comparison to the original version.

Fig. 9.2 Original treatment planning process in axiUm (Reprinted from Tokede et al. permission

required)
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9.2.2.1 Usability Assessment to Identify Challenges in Existing

Treatment Planning Module

In general, a terminology is evaluated in terms of its ability to represent relevant

concepts, and user interfaces are evaluated in terms of their usability. As Patel and

Cimino noted, a combined approach towards evaluating both the terminology and

the user interface offers a more holistic perspective on how the task is carried out

and where it can be improved (Cimino et al. 2001). Consider when a user would like

to enter a diagnosis into the Treatment Planning module but faces significant

hurdles or fails. The reason for the failure might be any one or a combination of

the following: inadequate completeness of the terminology (e.g., the terminology

does not represent the diagnosis), poor usability (e.g., the interface does not provide

adequate access to the diagnostic terminology), or insufficient representation within

the terminology (e.g., poor organization of the terminology). The same problems

could underpin the selection of a term that does not capture the intended meaning.

By attending to both the terminology and the user interface, we can begin to

characterize the breadth of the causes of failure. Thus, we analyzed the following

when considering this human computer interaction challenge: (1) use of the DDS

terminology itself, (2) use of the existing Treatment Planning interface and (3) use

of the DDS terminology as part of clinic workflow.

We conducted usability assessments of EHRs at two dental schools: Harvard

School of Dental Medicine (HSDM) and University of California, San Francisco

(UCSF). Both institutions have university-owned clinics to train dental students as

well as residents (post graduate students). Both dental schools also have a private

faculty practice, use the axiUm EHR system, and were early adopters of the DDS

dental diagnostic terminology. Study participants included a sample of third and

fourth year dental students (who were actively involved with delivering patient

care), residents, and faculty. These groups represent the primary users of the DDS

dental diagnostic terminology. As mentioned previously, dental students are

responsible for updating the dental patient record under the supervision of attending

faculty. Because one does not get many opportunities to overhaul a major module

within the EHR, we conducted three complementary usability assessments in order

to maximize our ability to capture challenges. We will summarize that work here;

we have published full details in the International Journal of Medical Informatics

(Walji et al. 2013, 2014).

Usability 
Assessment to 

Identify 
Challenges in 
Existing TP 

Module

Prioritization of 
Problems with 

vendor and 
research team

Implementation 
of Mockups 
into EHR by 

Vendor 

Post 
Implementation 

Usability 
Assessments

Development 
and 

Refinement of 
Mockups

Release of 
New Treatment 

Planning 
Module to 
Customers

Formative 
Usability 

Assessments 
and feedback 

to vendor

Fig. 9.3 Overall process for assessing, improving and implementing the Treatment Planning

(TP) Module in axiUm

9 Applying HCI Principles in Designing Usable Systems for Dentistry 197



Think-Aloud User Testing We created two pre-defined scenarios to assess users’
interactions with DDS in the axiUm Treatment Planning module: a simple task of

entering one diagnosis and a more complex treatment-planning task. Participants

were asked to think aloud (Ericsson and Simon 1993) and verbalize their thoughts

as they worked through each scenario. As part of user testing, quantitative data was

captured to assess if tasks were completed successfully (a measure of effectiveness)

and the amount of time spent in accomplishing the task (a measure of efficiency).

To evaluate whether a user successfully completed the tasks, we had to define the

correct path to complete the tasks. We did this using Hierarchical Task Analysis

(HTA) (Diaper and Stanton 2004) after gathering input from expert dentists at each

site. After determining the appropriate path to complete the tasks, we calculated the

expert performance time, which is the time it would take an expert (who makes no

errors) to complete the tasks. We did this using CogTool, (John et al. 2004) an open

source software that predicts performance time on the basis of application

screenshots and the specification of a path to complete a specific task. After

completing the exercises, participants were asked to provide additional feedback

on the use of the module, and complete a user satisfaction survey using the

validated and widely used System Usability Scale (Brooke 1996).

Observations Using Ethnography Observational data were collected over a 3-day

period by a trained researcher in order to provide insight into the clinical workflow,

information gathering and diagnostic decision-making process in the clinical envi-

ronment where the dentists and dental students worked. To minimize any impact on

patient care, a non-participatory observational technique was used. The researcher

engaged with the dental team members only if there was a need for any clarification

or during downtime such as when a patient did not show for an appointment.

Observational data were captured using paper-based field notes. Each set of obser-

vations occurred for approximately 4 h, in two separate shifts (morning and

afternoon). The primary purpose of the observations was to capture overall clinical

workflow and to identify how diagnoses were made and captured in the EHR using

the DDS dental diagnostic terminology, and to identify any associated challenges.

Actual clinical work was not part of the observation.

Semi-structured Interviews The third approach we took for evaluating the termi-

nology and interface was to conduct semi-structured interviews with open-ended

questions. The semi-structured format ensured uniformity of questions asked, while

the open-ended format allowed the interviewees to express themselves. New

questions were allowed to arise as a result of the discussion. The prepared questions

focused on two broad themes: (1) the perception and internal representation of the

clinic, patient care and role of dentists/students within the clinic; and (2) the nature

of the workflow and environment of care within this dental clinic with the use of

EHR. The questions were influenced by the knowledge gained from the observa-

tions. Interviews lasted approximately 30 min each. The interview data were

collected in order to assess information on the role, situational awareness and

general work philosophy of the subjects in the dental clinic. The sample was
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representative of those who are usually present in the clinical environment and as

such included dental third and fourth year students, residents and faculty.

Findings User testing revealed that only 22 % of users were able to successfully

complete all of the steps in the simple task of entering one diagnosis, while no user

was able to complete the more complex treatment-planning task. Table 9.1 provides

an overview of the 24 high-level usability problems that were found through the use

of the three methods. The methods together identified a total of 187 usability

violations: 54 % via user testing, 28 % via the semi-structured interview and

18 % from the survey method, with modest overlap (Walji et al. 2014). Interface-

related problems included unexpected approaches for displaying diagnosis, lack of

visibility, and inconsistent use of user interface widgets. User interface widgets are

elements of the interface with which a user interacts. Terminology related issues

included missing and mis-categorized concepts. Work domain issues involved both

absent and superfluous functions. In collaboration with the vendor, each usability

problem was prioritized and a timeline set to resolve the concerns.

9.2.2.2 Participatory Prioritization of Problems with the Vendor

and Broad-Based Research Team

Based on the findings from the usability studies, a diverse group comprising of

clinicians, secondary data users, usability experts, terminology developers/

researchers, and the vendor design team assessed each of the 24 findings and

prioritized each issue, and how it may be addressed in future versions of the

EHR. Involvement of the vendor was critical at this stage. Several problems had

solutions or workarounds that could be implemented immediately by

re-configuration or customization in the existing version of the Treatment Planning

module. For example, the ability to enter free text could be disabled for end users.

The research team also gained greater appreciation of the vendor’s development

schedule and rationale for some of their earlier design decisions. The vendor’s
development team, for the first time, had empirical evidence of specific usability

problems faced by users. The prioritization process, which occurred during a face-

to-face meeting with the CEO as well as several follow-up phone calls, provided a

common understanding of the major usability problems and a process by which

they could be addressed.

9.2.2.3 Development and Refinement of Mockups

Over 2–3 months, the usability team developed low fidelity mockups and made

presentations of this work to the larger, broad-based team in weekly conference

calls. After several iterations, a consensus design was developed. As shown in
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Table 9.1 Summary of usability problems, priorities and timeframe to address and implement

solutions

Usability problem (PRIORITY)

Timeframe to implement solutionsDescription/example

Interface 1. Illogical ordering of terms(HIGH) Immediate: Reorder alphabeti-

cally;�1 year: Users to customize

ordering
Terms are ordered based on numeric code

rather than alphabetically

2. Term names not fully visible(HIGH) �6 months

Users select incorrect diagnosis as they

are unable to read the full name

3. Time consuming to enter a

diagnosis(HIGH)
�1 year

User must navigate several screens and

scroll through a long list to find and select

a diagnosis

4. Inconsistent naming and placement of

user interface widgets(HIGH)
�6 months

To add a new diagnosis, a user must click

a button labeled “Update”

5. Ineffective feedback to confirm diag-

nosis entry(HIGH)
�1 year

User only sees the numeric code for the

diagnosis and not the name of the term.

6. Search results do not match users

expectations
(MEDIUM)

�1 year

A search for “pericornitis” retrieves

3 concepts with the same name but a dif-

ferent numerical code

7. Users unaware of important functions

to help find a diagnosis
(MEDIUM)

�1 year

System defaults to “quick list”, so some

users do not navigate the “full list” or

discover the use of the search feature

8. Limited flexibility in user

interface(MEDIUM)
�1 year

User unable to modify an entered diagno-

sis on the “details” page and must go back

to previous screens to edit diagnosis

9. Distinction between Category Name

and Concept unclear
(MEDIUM)

Immediate

Users attempt to select a category name.

Terminology 10. Inappropriate granularity/specificity

of concepts(MEDIUM)
�1 year

Some sub-categories have a large number

of concepts making it very difficult for

users to find an appropriate term

(continued)
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Table 9.1 (continued)

Usability problem (PRIORITY)

Timeframe to implement solutionsDescription/example

11. Some concepts appear missing/not

included
(HIGH)

�6 months

Examples of missing concepts according

to users include: missing tooth, arrested

caries, and attritional teeth

12. Some concepts not classified in

appropriate categories/sub

categories(HIGH)

�6 months

Example: aesthetic concerns

13. Abbreviations not recognized by

users
(HIGH)

�6 months

Example: F/U, NOS, VDO

14. Visibility of the numeric code for a

diagnostic term
(HIGH)

Immediate: Use Quicklist to hide

code �1 year: Remove numeric

code in UIAlthough the numeric code is a meaning-

less identifier, users had an expectation

that the identifier should provide some

meaning

15. Users not clear about the meaning of

some concepts(MEDIUM)
�1 year

Novice users (students) had difficulty

distinguishing between similar terms, and

definitions and synonyms were not

provided

Work

domain

16. Free text option can be used circum-

vent structured data entry
(HIGH)

Immediate: Disable option

�1 year: Remove option

altogetherInstead of selecting a structured term,

some users free text the name of the

diagnosis.

17. Synonyms not displayed
(HIGH) �1 year

Users must search by preferred term name

18. Knowledge level of diagnostic term

concepts and how to enter in EHR

limited
(HIGH)

�1 year

Users appear to have had little concerted

education and training either by institution

or vendor

19. Only one diagnosis can be entered for

each treatment(HIGH)
�1 year

Endodontic discipline require that treat-

ments are justified using both a pulpal and

periapical diagnosis

20. Diagnosis cannot be charted using

the Odontogram or Periogram
(HIGH)

�2 year

Users chart findings using

(continued)
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Fig. 9.4, key design features included (1) one screen for entering problems, diag-

noses and treatments to provide situational awareness to users, (2) autocomplete

functionality to enter problems, diagnoses and treatments, and (3) ability to explic-

itly link problems, diagnoses and treatments.

Table 9.1 (continued)

Usability problem (PRIORITY)

Timeframe to implement solutionsDescription/example

21. No historical view of when a diagno-

sis has been added or modified
(HIGH)

�1 year

22. No decision support to help suggest

appropriate diagnoses, or alert if inap-

propriate ones are selected
(MEDIUM)

�2 year

23. No way to indicate state of diagnosis

(i.e differential, working or

definitive)(MEDIUM)

�1 year

24. Users forced to enter a diagnosis for

treatments that may not require

them.(MEDIUM)

�1 year

Reproduced from Walji et al. (2013) used with permission

Fig. 9.4 Example of a mature mockup of a new Treatment Planning interface
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9.2.2.4 Implementation of Mockups into EHR

The vendor’s design team was then responsible for determining how to implement

the mockups within its EHR using their existing development tools (Microsoft

Visual C++ .Net). Some of the desired functionality, such as drag and drop to

reorder concepts, was not possible due to the underlying design architecture. In

each case, the vendor would provide alternative solutions to meet the intent of the

enhancement. Figure 9.5 shows a screenshot of the newly developed Treatment

Planning module in the axiUm EHR. The approximate development time from

receiving the mockups to full implementation was 6 months.

9.2.2.5 Next Steps: Assessing Impact of the New Treatment Planning

Module

This design case demonstrates how a participatory, work-centered design process

can be used to re-design an EHR module to support the treatment planning process

in dentistry. The vendor released the new Treatment Planning module in February

2014. In ongoing work, the research team is conducting comprehensive assessments

to determine the impact of the new interface on efficiency, effectiveness, and

satisfaction.

Fig. 9.5 Treatment Planning interface in axiUm after implementation by vendor
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9.3 Implications for Practice

9.3.1 Importance of Collaborative Teams for the Design
of Usable Systems

“It takes work, and new ways of thinking, and new kinds and methods of openness,

to bring substantively new voices into a conversation. Similarly, to bring users’
knowledges and perspectives directly into computer specification and design, it is

necessary to do more than “just add users and stir.”” (Muller and Druin 2003)

Human-computer interaction has, as a field, undergone an evolution from tech-

nological solutions to complex problems of human interaction with computers, to

user-centered design, (Thursky and Mahemoff 2007) to participatory design

(Teixeira et al. 2011). This evolution represents shifts from designing without

users to designing with users in mind to designing with users. This last approach,

called participatory design, is a set of theories and practices engaging end-users as

full participants in design. Rather than replacing user-centered design, participatory

design has subsumed user-centered approaches, like the work-centered design

approach we used, into its rich and diverse toolbox, which draws upon fields such

as graphic design, architecture, psychology, anthropology, software engineering,

and communications studies. Participatory design has likewise been applied to a

diverse set of applications, as wide ranging as land use in Africa (d’Aquino and Bah
2014) to designing technology for children with special needs (Frauenberger

et al. 2011).

In a strict user-centered design process, the researcher serves as the interface

between the user and designer. The researcher collects primary data or uses

secondary sources to learn about the user’s needs, which are translated by the

researcher into design criteria. The designer interprets these criteria, typically

through mockups. The researcher and user reappear in the process for usability

testing. In user-centered design, the researcher, designer, and user have distinct

roles: the user is not integral to the design team, but is instead spoken for by the

researcher. A key participatory design principle is to blur and bridge the distinctions

among these roles through mutual learning, often through face-to-face interaction

and prototyping.

The way that we have operationalized participatory design principles in the

context of standardized dental diagnostic term entry into the EHR has been to

bring together a broad range of stakeholders in a series of virtual and face-to-face

working sessions. The breadth of the stakeholders at each meeting reflected the

wide-ranging impact of building and implementing the terms and the interface to

the terms. Each team member brought a different, relevant perspective; they

included the CEO of the dental EHR company, the lead architect of the dental

EHR company, practicing dentists, usability experts, epidemiologists, data ware-

house experts, and dental clinic administrators. Through close interaction and real-

time problem solving, we were able to learn from each other and to find solutions
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that would meet each stakeholder’s needs while respecting the limitations other

stakeholders faced.

Participatory design was a good fit with our goal of enhancing standardized

dental diagnostic term entry in the context of an EHR. We had a committed, and

funded, set of core participants who were willing to devote scores of hours to the

project; we had sufficient technical latitude to accommodate end-user feedback

given the close partnership with the EHR vendor; and as the developers of the

diagnostic terminology, we had the ability to make necessary changes to the terms

as required. In addition, as has been the case in many participatory design applica-

tions, our scope was tightly focused (Pilemalm and Timpka 2008). Were we to have

considered the totality of the user experience when interacting with the EHR, the

type of participatory approach we took would have been infeasible given our

timeline and budget. As has been noted elsewhere, participatory design is costly

(Pilemalm and Timpka 2008). A much leaner approach to usability analysis is the

use of heuristics evaluation, i.e., assessing how well a given system adheres to best

practices for interaction design, which is well-suited to eliminating initial design

decisions that would violate a heuristic. As design progresses to implementation,

though, more user engagement is needed to identify usability challenges. In a 2009

study of four dental EHRs, heuristic evaluation was found to anticipate half of the

usability problems identified through empirical testing with end users

(Thyvalikakath et al. 2009). User testing is not, of course, the only way to incor-

porate user participation. Other approaches include interviews and surveys. Though

we found the survey approach to be comparatively less effective in our own work,

surveys have the advantage of being inexpensive and quick to yield results, which

may be the best option in some circumstances (Walji et al. 2014).

9.3.2 Impact on Secondary Use of Data

Although the discussion of whether the use of EHRs will lower costs and improve

care is still open, there are fewer questions about the significance of the data

generated through clinical care. Given the monetary and time expense of clinical

trials, it is only sensible to use the informational and biological by-products of

health care delivery to expand our knowledge and improve practice (Kohane 2013).

Before being the object of a researcher’s analysis, these data were entered in a

variety of systems, which in turn, sit in a variety of contexts, both of which may

have usability implications. Here, it is useful to draw out what is meant by the term

usability, as it covers a large swath of concepts. Over the decades, the literature has

surfaced a wide range of both narrow and broad definitions of usability. A

frequently-referenced definition is that framed within the ISO 9241 standard, in

which usability is defined as the “[e]xtent to which a product can be used by

specified users to achieve specified goals with effectiveness, efficiency, and satis-

faction.” (International Organization for Standardization 1998) In turn, satisfaction

is defined as “freedom from discomfort, and positive attitudes towards the user of
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the product”; efficiency is defined as the “resources expended in relation to the

accuracy and completeness with which users achieve goals”; and effectiveness is

defined as the “accuracy and completeness with which users achieve specified

goals.”

It would be tempting to surmise that effectiveness, efficiency, and satisfaction

depend on one another, but alas, the field has an under-developed understanding of

the relationships among usability measures (Hornbaeck 2006). Indeed, some have

posited that any relationships among them depend on other factors, such as appli-

cation domain, use context, user experience, and task complexity (Association for

Computing Machinery CHI 2000). What this means is that distinct aspects of

usability need to be measured separately, that we cannot rely upon efficiency to

tell us about effectiveness, for example.

In the setting of secondary use of data, effectiveness is key: in the context of

dental diagnostic terms, for instance, secondary users of data rely upon the primary

users to have effectively entered valid diagnostic terms, even if such entry entailed

discomfort and expenditure of resources on the part of the individual who entered

the data. Indeed, part of the challenge of promoting the valid documentation of

standardized diagnostic terms is that it has not been a professional norm in dentistry

and thus inherently involves additional effort than does failing to enter the diagno-

sis. Thus, the assessments we conducted captured utilization, the proportion of

times that any diagnostic term was entered when a diagnosis was appropriate, as

well as valid use, the proportion of diagnostic terms entered that were an appropri-

ate match for the treatment provided.

9.3.3 Impact on Inter-professional Practice

It is an artifact of the history of dentistry in the United States, (Centers for Medicare

& Medicaid Services Medicare Dental Coverage 2013; Bebinger 2014) rather than

anatomy or physiology, that oral health is perceived as separable from general

health, as if there were an impenetrable firewall between the two. Unfortunately, in

the case of bridging medical and dental data, there most often is such a technical

and policy-based firewall, with no broadly adopted ways to communicate efficiently

across the divide. In 2013, the Advisory Committee on Training in Primacy Care

Medicine and Dentistry wrote, “the separation between oral health and systemic

health does not serve the needs of patients. There must be a mutual interaction

between oral health and systemic health using efficient inter-professional commu-

nication.” Inter-professional practice is being promoted as a way to achieve the

so-called Triple Aim of (1) enhanced population health, (2) reduced costs of care,

and (3) optimal patient care experience (Advisory Committee on Training in

Primary Care Medicine and Dentistry 2013; Berwick et al. 2008). Informatics

infrastructure can pose both barriers to and opportunities for collaborative practice

between medicine and dentistry; the Advisory Committee recommended that dental

practices should interact and integrate more effectively with medicine and other
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health professions in terms of quality measure and health information systems

(Advisory Committee on Training in Primary Care Medicine and Dentistry 2013).

Under the right conditions, EHRs in the dental clinic setting could serve to

bridge the inter-professional information gap in a way that is not possible in a

paper-based world. In the most straightforward scenario, the medical and dental

records would be integrated into a single system. EHR systems with oral health

modules are deployed through the Indian Health Service, the Department of

Veteran’s Affairs, as well as the Cattails medical and dental EHRs developed and

used at the Marshfield Clinic in Marshfield, WI (Advisory Committee on Training

in Primary Care Medicine and Dentistry 2013; Schleyer and Eisner 1994). Unfor-

tunately, these cases are the rare exception rather than the rule. As noted by Powell

and Din, “the essential core improvement to bring medicine and dentistry closer

together is the integration of medical and dental care and data. Currently, many

medical records and data exist separate and distinct from dental records and data for

the same patient” (Powell and Din 2011). Even in the context of clinical care, there

are no channels through which to exchange data between medical and dental EHRs.

In practice, thus, the little information that is exchanged between the medical and

dental settings is typically done through letters or telephone calls. Information

exchanged in this way can make its way into the record only as a PDF or image

or as free-text notes entered by a clinician. In 2009, the ADA announced an

agreement with HL7 (Health Level 7) to enhance the coordination of patient care

between medical and dental practices using a dental extension to the Continuity of

Care Document (CCD), (Health Level 7 International Health Level Seven and the

American Dental Association Sign Agreement to Develop Joint Healthcare IT

Standard Initiatives 2009; Health Level 7 International HL7/ASTM Implementa-

tion Guide for CDA® R2 -Continuity of Care Document (CCD®) Release 1)

though the routine exchange of such documents has not yet come to pass.

In addition to the technical details of how clinical information is exchanged

across the professional divide, we should consider the communicative value of the

information. One of the primary goals of standardizing dental diagnostic terms is to

enhance communication between providers, with patients, and with third parties

like payors (Kalenderian et al. 2011). Thus, ensuring that both the terminology

itself as well as the EHR design, deployment, and use support effective and efficient

documentation of standardized dental diagnostic terms serves inter-professional

practice at its most basic level. Taking a step back, it is also worth noting that poor

usability and a steep learning curve have been reported as barriers to adoption of

EHRs in dentistry, as was mentioned in Sect. 9.1.4 of this chapter. Even in the

dental academic setting, in which EHRs are widespread, users have expressed doubt

that the systems improve efficiency and effectiveness (Thyvalikakath et al. 2014).

Improving EHR usability could not only enhance inter-professional practice but

also could heal the fractured perceptions of EHRs within larger dental practices in

which administrative and clinical duties are divided. In a study in a large dental

teaching practice at an academic center, administrators articulated the most and

broadest benefits of an EHR: in fact, the technology had so enhanced the quantity

and quality of accessible information to the point that it was described as
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indispensible. By contrast, the faculty and student dentists saw the EHR as a mixed

blessing with a not entirely positive impact on their clinical practice or teaching

(Hill et al. 2010b). This gap again underscores the importance of broad-based

collaborative teams participating in the design of usable systems that maximize

efficiency, effectiveness, and satisfaction across user groups.

9.4 Conclusions

Policy and socio-cultural factors have brought dental EHR adoption to a tipping

point (Uretz 2014b). This adoption is occurring in the context of high expectations

for software that can “help improve [your] patient care and communication,

streamline [your] clinical workflow, improve [your] referral process, and reduce

overall practice liability. . .” (Uretz 2014a) In light of these hopes, it should not

come as a surprise that dental practices are advised to consider the usability of and

ease of navigation within the EHR software when making their purchasing deci-

sions (Uretz 2014a). If the research base matched the enthusiasm of end-users for

usable systems, the literature would be replete with HCI work in the unique dental

setting. As it stands, literature review demonstrates that there is at present a

knowledge gap in dental informatics, particularly with respect to HCI research

that directly engages end-user stakeholders.

A more robust dental HCI ecosystem can help to close the gap between end-user

goals and the status quo of dental EHRs, which have been found to have “significant

usability problems” (Thyvalikakath et al. 2009). Within this chapter, we have

illustrated a practical example of how this iterative improvement can occur, by

describing how we undertook a multi-modal participatory design process to rede-

sign the treatment planning module in a dental EHR to better support the docu-

mentation of standardized dental diagnostic terms. The enhanced usability resulting

from this and similarly directed efforts holds the promise to enhance clinical care,

empower secondary data analysis, and lower the barriers to inter-professional care

of our patients, who are the ultimate beneficiaries of usable systems.

Discussion Questions

1. Identify the challenges for the average general dentist and primary care physi-

cian to collaboratively manage and thus be able to exchange electronically

patient information, specifically regarding diagnoses and chronic care

management.

2. Discuss the strengths and limitations of user testing, interviews and observations

in detecting usability problems.

3. Identify the unique challenges in dentistry, e.g., the slow adoption of meaningful

use, workflow issues and various practice structures, and specifically how

lessons learned in medicine can help advance the field.
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Chapter 10

Design for Supporting Healthcare Teams

Charlotte Tang, Yan Xiao, Yunan Chen, and Paul N. Gorman

10.1 Introduction

Healthcare today is a team sport, no longer dominated by the vision of a single nurse or

doctor interacting with a patient. Rather, modern healthcare occurs through a coordi-

nated action of many individuals, possessing diverse skills and expertise, sometimes

collocated but often distributed in time and space. Obvious examples of healthcare

teams include a surgical team performing an operation, emergency department

(ED) personnel stabilizing a trauma patient, a “code team” responding to in-hospital

cardiac arrest, and daily bedside rounds by multi-disciplinary teams in an intensive

care unit. Less obvious are examples of health professional communication and

collaboration that do not occur face-to-face. For example, a nurse may notice unex-

pected symptoms in her patient during night-shift, contact a pharmacist to learn that

this is a medication side effect, pass this information on verbally at shift report so other

nurses can monitor the effects, record the information in the medical record for all

clinicians to be aware of, and perhaps add a paper or electronic “post-it” note for the

physician, suggesting a change of the medication order at morning rounds.

In these contexts, electronic health records (EHR) and other health information

technologies (HIT) can function in ways that support healthcare teams, becoming a
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routine part of healthcare delivery and changing the ways teams work, communi-

cate and collaborate. Outside the hospital, consumer-centered HIT such as patient

portals and personal health records (PHR) can enable individuals to become more

effectively engaged in their care, sharing information and communicating with

multiple members of the healthcare team. In this chapter, we review healthcare

teams, key concepts and theories of teamwork, and present two case studies on

teamwork in healthcare.

10.1.1 Diversity of Healthcare Teams

In team research literature, an often adopted definition of a team is “a distinguish-
able set of two or more people who interact dynamically, interdependently, and
adaptively toward a common and valued goal/object/mission, who have each been
assigned specific roles or functions to perform, and who have a limited life span of
membership” (Salas et al. 1992, p. 4). This definition goes beyond mere affiliation,

emphasizing common goals and specific role assignments. In healthcare, role

assignments may be perceived differently by different parties or may at times be

unclear. For example, a surgeon, a nurse, and a patient may identify team mem-

bership or roles and responsibilities differently, and changing conditions and

personnel in attendance may make assignments less clear and require

re-negotiation. Table 10.1 lists several key characteristics of healthcare teams

with examples.

It is important to recognize that a great variety of teams exist in healthcare, with

varying degrees of shared objectives, clarity of role specifications, and interdepen-

dencies. For example, ED care is characterized by unpredictable and changing

Table 10.1 Key characteristics of healthcare teams

Healthcare team characteristics Examples

Multidisciplinary Multidisciplinary rounds in pediatric intensive

care unit (Fig. 10.3)

Dynamic team formation, composition, and

role assignment, blurry role differentiation

Ad hoc medical teams formed in ED to stabi-

lize trauma patients

Distributed or collocated teams, or a

combination

Multidisciplinary Medical Team (MMT)

meetings with remote consultation with spe-

cialists; telemedicine

Coordination needed for continuous coverage Shift handovers in inpatient care; patient

transfer to ICU for close monitoring

May be defined by profession, discipline,

physical location, temporal shift, patient needs,

etc.

Pharmacists vs. radiologists; outpatient unit

vs. ICU; day nurses vs. night nurses

Communication mediated through cognitive

artifacts

EHR for physicians and nurses to communi-

cate; whiteboard for residents’ patient assign-
ment; intercom for broadcasting within a

medical unit
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combinations of patient care needs, sometimes shifting abruptly from low-demand

to highly complex and urgent. In response, ED teams tend to be highly adaptive and

ephemeral, changing in composition, roles, and assignments based on shifting

requirements of a fluctuating group of patients and care issues. Intensive care

units (ICUs) also exhibit such ad hoc, self-assembling teams, which then dissolve

once conditions have stabilized. For ICU teamwork, strategy and goal formulation

was the most common team tasks, and the level of teamwork was significantly

associated with ICU patient outcomes, as found in a recent systematic review (Dietz

et al. 2014). By contrast, other healthcare contexts are characterized by stable, well

defined teams, for example, a cardiac surgery suite where a small and select group

of surgeons, nurses, surgical technicians, perfusionists, and anesthesiologists work

together frequently, developing well defined roles and responsibilities, and familiar

communication patterns.

A recent review of teamwork in healthcare (Xiao et al. 2013) used the concept of

“organizational shell” to understand various types of teams in healthcare in terms of

how an organization provides a structural context for the functioning of a team. A

team may find a strong infrastructure (“organizational shell”) with explicit require-

ments on personnel with respect to training, skills, knowledge, certification, and

privileges; well thought-out structures for team tasks such as protocols, standard-

ized operating procedures; and well-designed technology support. Such a strong

organizational shell reduces coordination needs (Ginnett 1993). In many healthcare

settings, work demands may be less predictable or work systems less well designed.

In these cases, team membership and task assignments may be less clear, work

practices become adaptive, and workarounds become common. Such fluid behav-

ioral norms and authority arrangements render it difficult to make general state-

ments about healthcare teams independent of the care context and the degree to

which an “organizational shell” exists.

In addition to the role that an “organizational shell” may provide, multiple

factors contribute to effective team functioning in healthcare, including prior

education, training, and experience, professional group influences, regulatory pol-

icies, and cultural norms (Ginnett 1993). As a result, team roles, expectations, and

lines of authority are sustained across contexts and organizations, exhibiting what

amounts to interoperability of health professionals as they move across organiza-

tional contexts.

10.1.2 Characteristics of Healthcare Teams

Xiao et al. (2013) highlight several features commonly found in healthcare teams,

two of which are very relevant to the design of HIT. First, team composition

changes, depending on settings and needs, or simply over time. A family physician

may work with different supporting staff in her clinic to address varying issues and

patient care needs. A nurse often must contact different physicians at different times

of the day when making referral appointments for a patient so that her routine
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practices are not impacted. Hospital staff such as interns and residents in training,

hospitalist physicians, or surgical specialists may rotate on and off duty over a short

cycle time, resulting in fluctuating configurations of staff and a high degree of

adaptability by team members. Moreover, team composition can change as a

function of a patient’s illness and treatment trajectory, when the needs of a patient

change. HIT can thus play important roles in enabling team members to see which

clinicians have participated in the care of a patient and in providing up-to-date

information on the roles of each team member in relation to a patient.

Second, the delineation of responsibility and the communication structure in

healthcare teams may become unclear across temporal or functional boundaries.

Individual patients, particularly in hospital settings, require participation by chang-

ing groups of health professionals, with cross-coverage responsibilities over nights

or weekends and other changes to work and personnel arrangements. In military

settings, a designated and clear structure for communication and role differentiation

can reduce the overhead of communication and negotiation (MacMillan

et al. 2002), a principle that may be applied in healthcare settings as well.

Definition of teams can have profound implications for how HIT should be

designed to enhance team communication and collaboration. For example, teams

may be defined by profession and discipline, by physical or temporal context, or by

emerging patient needs. Examples of professional or disciplinary teams include

(a) surgeons who share the care of patients who have had surgery, (b) nurses who

share responsibility for care of patients on a nursing unit, or (c) physical therapists

who share responsibility for therapy needs of patients distributed throughout the

hospital. Examples of contextually defined teams include the multidisciplinary

team responsible for patients in a specific location such as an operating room or

emergency department, or those responsible for care over a specific period of time

such as the night shift. Examples of teams defined by emerging care needs include

the ad hoc, self-assembling teams that form and dissolve in response to emergent

needs in an intensive care unit or delivery room.

These forms of team definition and composition have implications for the

processes and artifacts or tools used for communication and collaboration. To

illustrate, a surgical resident may consider the attending surgeons and surgical

residents on his/her surgical service as his/her team, sharing responsibility for the

preoperative and postoperative care of patients receiving surgery from a member of

their group. Such a group will typically have routines for group discussion to share

patient information and care plans (during “rounds”), as well as shared cognitive

artifacts (either paper or electronic) for recording and transferring this information

within the group. These routines and artifacts support transfer of information,

division of responsibility, and shared situation awareness that enable them to

achieve the shared goal of caring for all the patients on their service throughout

the day, ideally with processes that are robust to disruptions in availability and

responsibility, such as when members of the team are unexpectedly called to or are

delayed in the operating room, requiring others on the team to shift roles and

responsibilities.
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In contrast, multidisciplinary teams that are defined by context often have

distinct routines or work processes for working together such as multidisciplinary

rounds, and informal rules for turn-taking in discourse, as well as separate artifacts,

such as whiteboards or printed lists, that support the somewhat different work that is

accomplished in a multidisciplinary context.

Team composition and function may not be perceived in the same way by all

members. As an example, the clinicians and staff who provide care to a patient

often have defined roles and common goals, even though the patient may never

think of them as comprising a team. At the same time, the patient’s family and loved

ones may play significant roles in the determination and delivery of care, even

though the clinician may be unaware of this. In designing HIT, it may thus be

constructive to consider the entire group of healthcare professionals and family

members as a team.

When healthcare teams working together to care for an individual patient are not

located together in the same place at the same time, the need for technologies to

support their interaction is especially great. In these cases, communication among

team members in healthcare must be mediated by appropriate technologies, such as

fax machines and increasingly through the EHR, whether by use of a common EHR

system or through development of mechanisms for interoperability. As such, the

design of HIT has direct impact on how team members “interact dynamically,
interdependently, and adaptively” (Salas et al. 1992, p. 4). Inadequate understand-
ing of how teams coordinate has resulted in suboptimal patient care (e.g., Abraham

and Reddy 2008; Ash et al. 2004). Two examples are communication of medication

orders and use of bar code medication administration systems (BCMA). With

communication of medication orders, a physician may assume an order, once

entered, will be acted upon immediately by the pharmacist or nurse, when in fact,

many EHR implementations require the nurse to log in and specifically look for

new orders. With BCMA systems, a nurse may assume the system checks the

identity of the medication and of the patient, when in fact some systems do not

confirm the identity of the patient (Henneman et al. 2012). Similar “illusion of

communication” leads to many incidences of communication breakdowns (Ash

et al. 2004). Therefore, some hospitals have developed policies, for example, for

physicians to talk directly with nurses when time-sensitive orders are placed on

EHR, so that harmful delays can be avoided.

10.1.3 Teamwork in Healthcare Practices

Healthcare work can be highly dynamic, requiring intense, often multidisciplinary,

collaboration. Patient care teams often consist of a large number of personnel

ranging from clinicians, e.g., doctors, nurses, and pharmacists, to non-clinical

members, e.g., unit coordinators, administrative staff, and those responsible for

equipment supply and maintenance (Lee et al. 2012; Strauss et al. 1985). These

team members may be collocated, such as those in emergency care or during a
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routine family doctor visit (Aronsky et al. 2007; Benham-Hutchins and Effken

2010), but more often, they are distributed over different spatial locations (Bardram

and Bossen 2005; Abraham and Reddy 2008). This is particularly the case for

patients with complex or multiple illnesses, who require coordinated care from

different specialists, each contributing to the treatment plan. Although HIT such as

the EHR can help facilitate communication between distributed collaborators, the

need for clinicians to move between distributed locations while conducting medical

work has been found to be indispensible (Bardram and Bossen 2003, 2005). In

addition, hospital work is typically under “continuous coverage” (Zerubavel 1979)

in order to offer around-the-clock patient care. Thus, temporal coordination of work

among team members must be carefully maintained (Reddy et al. 2002, 2006).

Taken together, these collaboration challenges increase the risk of communication

breakdowns and can negatively impact the quality of patient care if they are not

properly considered and addressed (Chen 2010; Ebright et al. 2004; Gandhi 2006;

Horwitz et al. 2009; Patterson et al. 2004; Riesenberg et al. 2010).

Healthcare is often considered information work as collaboration relies on a

variety of information media, such as verbal exchange, paper, and display media

(Bardram 2000; Cabitza et al. 2005; Kovalainen et al. 1998; Luff et al. 1992;

Randell et al. 2010; Xiao et al. 2001). In particular, paper artifacts are often used

to record and track a work plan, as a bedside information source, opportune

notepad, and tool for information transfer within and across shifts (Tang and

Carpendale 2007, 2008). In addition, patients’ medical records are instrumental in

supporting collaborative practices, acting as a “collection and distributing device”

(Berg 1996) that constitutes and mediates social relations and interrelated patient

care tasks. The medical records also serve as a communication vehicle, linking

heterogeneous health professionals and mediating much of the healthcare system

(Berg and Bowker 1997).

10.2 Key Concepts and Theories for Team Performance

10.2.1 Sociotechnical Aspects of Teamwork

Previous studies on healthcare teamwork investigated a variety of sociotechnical

issues, e.g., mobility (Bardram and Bossen 2003, 2005; Morán et al. 2007), tem-

porality (Bardram 2000; Reddy and Dourish 2002; Reddy et al. 2006), coordinating

artifacts (Bardram and Bossen 2005; Cabitza et al. 2005), communication channels

(Coiera and Tombs 1998; Gurses et al. 2006; Patterson et al. 2004), and richness of

information (Baldwin and McGinnis 1994; Bates et al. 2003; Currie 2002; Kerr

2002). From these studies, we have gained considerable insights into the processes

and challenges for achieving effective collaboration in healthcare.
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10.2.1.1 Dynamic Communication Behaviors

Effective communication is essential for successful teamwork. In medical settings,

communication is ubiquitous and accounts for a substantial portion of daily rou-

tines, including interactions and information sharing in varying contexts, across

temporal and spatial dimensions (Bardram and Bossen 2005; Bossen 2002; Schmidt

and Bannon 1992). Communication failure among clinicians, however, has been

frequently found to contribute to preventable adverse events (Gurses et al. 2006).

Face-to-face communication offers a richer communication experience, provid-

ing paralinguistic and nonverbal information in addition to the words themselves,

and likely offers the best quality and spectrum of communication (Kraut et al. 1988;

Orlikowski and Hofman 1997; Hatten-Masterson and Griffiths 2009; Xiao

et al. 2001). Furthermore, colocation of healthcare work permits indirect and

informal communication (Vuckovic et al. 2004), enhancing situational awareness

among members of the group in a manner similar to more formalized coordination

mechanisms such as “voice loops” (Patterson et al. 1999). The mobile and dynamic

nature of medical work presents challenges to effective communication. Artifacts

such as whiteboards and bulletin boards, used both synchronously and asynchro-

nously, provide a flexible shared workspace that facilitates joint discussion and

provide shared and persistent information display (Wilson et al. 2006; Xiao

et al. 2001, 2007), promoting awareness and coordination of ongoing activities

(Bardram 2000; Xiao et al. 2001).

In hospitals especially, healthcare work is peripatetic: it is necessary for patients,

health professionals, and equipment to move among spatially distributed “work

centers” (e.g. emergency department, imaging suite, operating room, intensive care

unit), each with specialized personnel and equipment. Mobility is therefore crucial,

for people, equipment, and the HIT that connects them. Thus, Bardram and Bossen

(2005) regarded medical work as mobility work because mobility is often required

to bring together “the right configuration of people, resources, knowledge and place
in order to carry out tasks”. Although mobility itself does not usually accomplish

any concrete tasks, without mobility, many tasks cannot be fulfilled. In particular,

mobility enables distributed collaborators to conduct rich face-to-face communi-

cation, and to access information artifacts such as large whiteboards located in

different units in order to achieve effective patient care.

Meanwhile, communication across temporal boundaries such as work shifts is

essential to ensure continuity of monitoring, diagnosis, and treatment regimes.

Staggers and Jennings (2009) investigated nursing shift report in seven medical

and surgical units to identify the content and context of information exchange

across nursing shifts. Their findings aligned with the results of a systematic review

of studies on nursing and physician handovers (Collins et al. 2011), which revealed

that there were many types and situational varieties of handovers and shift hand-

overs and concluded that these could be better supported by an EHR system if a

standardized set of key information was exchanged in a structured manner.
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In addition, medical team members such as physicians, nurses, and pharmacists

typically have different temporal work routines and shift cycles, increasing the

challenges of coordinating team activities Reddy and Dourish (2002). Breakdowns

in communication between teams have been found to contribute to many adverse

events. For example, Horwitz et al. (2009), examining adverse events at the

transition from ED to in-hospital care, found that “communication failure at some

point of care was central to most” reported errors. As an example, an investigation

into the amputation of a patient’s wrong leg revealed an inadvertent communication

error during shift report (Strople and Ottani 2006). More recent research on patient

handover between medical units in the same hospital revealed a variety of com-

munication challenges that involved competing departmental goals, resources, and

teams. This sometimes led to limited information sharing between departments. For

example, a department may conceal bed availability information from other depart-

ments so that they can make their own decisions on bed assignments, which not

only affected the inter-departmental coordination but also reduced the organiza-

tional efficiency (Abraham and Reddy 2008; Abraham 2013).

10.2.1.2 Medical Records for Supporting Collaborative Work

Amongst the diversity of coordination artifacts and mechanisms used in healthcare

work, patient medical records are the fundamental information infrastructure

enabling collaboration across time and space. Medical records are not merely a

documentation tool for patient’s health conditions (Berg 1996), but also an infor-

mation collection and distribution device that connects interrelated patient care

tasks and social relations in a clinical environment. For instance, while a surgical

team interacts face-to-face inside an operating room, team members also commu-

nicate through clinical notes in the patient’s medical record when working inde-

pendently on different threads of patient care activities.

In recent years, EHR systems have been widely implemented to replace paper

medical records in clinical settings. The benefits of EHR systems include improve-

ments in accessibility, patient safety, accountability, and cost-savings (Bates

et al. 2001, 2003). However, the design of these systems has largely focused on

EHR systems as an information storage and retrieval tool for administrative,

research, and legal usage (Paul et al. 2003), with little attention to how the EHR

can support communication, coordination, and collaboration of healthcare teams

(Ackerman et al. 2008; Berg et al. 2006). Many prior studies reported cases in

which poorly designed HIT systems have led to unintended negative consequences

after deployment, including dissatisfaction, adoption failures, inefficiencies, and

even increased medical errors (Campbell et al. 2006; Edinger et al. 2012; Handel

and Poltrock 2011; Hardstone et al. 2004). These studies suggest that HIT systems

do not properly support communication and coordination activities in team-based

healthcare.

In contrast, properly designed and implemented HIT solutions have the

potential to support collaboration among a variety of stakeholders, from patients
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to clinicians, individuals to institutions, and policymakers at all levels. In recent

years, through government programs and incentives, the EHR and other HIT have

become virtually universal, making it critically important and timely to address

these issues resulting from the complex interplay among human, organizational,

and technological systems in healthcare.

Relational Coordination and Social Interaction in Teamwork

The dynamic and often urgent nature of healthcare work amplifies the need for

effective coordination of interdependent work tasks. In this respect, interpersonal

communication and relationships have been found to facilitate work coordination

(Gittel 2002), as evidenced in the reduction of adverse events such as hospital-

acquired infections and medication errors (Havens et al. 2010). Specifically, work

coordination in healthcare settings requires frequent communication of accurate and

timely information, and can be enhanced through relationships via shared goals,

shared knowledge, and mutual respect. Such relational coordination is particularly

instrumental in healthcare settings as patients’ illness trajectories are often associated
with a high degree of uncertainty. For example, when a patient’s condition unexpect-
edly becomes unstable, effective communication and efficient work coordination

among relevant healthcare team members would be critical for addressing the

unexpected emergency. Coordination among team members can be more effective

if positive interpersonal relationships exist (Grudin 1988; Orlikowski and Scott 2008;

Whittaker et al. 1994; Kraut et al. 1988; Nardi et al. 2000; Gittel 2002).

Interpersonal relationships are often achieved through informal social interactions,

which are generally characterized by being impromptu, brief and context-rich, and

often involve small groups of people triggered by their proximity (Whittaker

et al. 1994; Nardi et al. 2000). These informal social interactions are important for

articulating work among team members and coordinating shared resources for

collaboration (Bannon and Schmidt 1992; Berg 1999). Yet, as healthcare work

becomes more fragmented and time-pressured, clinicians less frequently find time

to interact socially with their colleagues during their shift (Tang and Carpendale

2008). This may be made worse by HIT because systems may hinder articulation

work and social interactions (Shipman and Marshall 1999). For example, physical

interaction through circulation of paper charts and paper prescriptions among

team members allows impromptu interpersonal interactions (Luff and Heath 1998),

while a shift to greater use of EHR is often coupled with time spent in isolation at the

computer (Poissant et al. 2005), reducing mobility (Richardson and Ash 2008), and

hindering interpersonal communication (Tang and Carpendale 2008).

Formal and Informal Work

The use of technology in healthcare settings has been criticized for a tendency

toward “formalizing” work practices, such as increasing the structuralization of

information representation, and making work processes standardized and rigid

(Bowers et al. 1995; Dourish 2003; Shipman and Marshall 1999). Therefore,
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team members may have to rely on informal practices to leverage the flexible and

spontaneous aspects of collaborative work (Isaacs et al. 1997; Kraut et al. 1990;

Mejia et al. 2007; Nardi et al. 2000; Whittaker et al. 1994). Informal practices

identified in the literature include impromptu human interactions and the use of

tools outside of the central system (Kraut et al. 1990; Mejia et al. 2007; Nardi

et al. 2000; Whittaker et al. 1994), such as face-to-face conversations, instant

messaging, and text messaging which overcome the rigidity and formality of

EHR systems (Brown et al. 2009; Ellingson 2003; Lee et al. 2012).

In practice, clinicians frequently adopt informal workarounds beyond the stan-

dard operations of health applications and HIT (Koppel et al. 2008) in order to

circumvent problems that emerge when a newly deployed IT system disrupts

workflows and interferes with task performance or goal attainment (Azad and

King 2008; Zhou et al. 2011). These workarounds can be new or reconfigured

tools, artifacts, or ways of interacting with an EHR system (Ash et al. 2004;

Campbell et al. 2006; Handel and Poltrock 2011; Park and Chen 2012; Tang and

Carpendale 2008). Well-documented examples of workarounds are the use of

“scraps” or “paper notes” (Chen 2010; Fitzpatrick 2004; Hardey et al. 2000;

Hardstone et al. 2004; Tang and Carpendale 2008) and clinicians’ avoidance of

documenting social-psycho-emotional information in EHRs (Ames 1993; Zhou

et al. 2009).

In healthcare settings, organizational culture and policy determine the kind of

information an artifact should contain and who may view or alter this information.

Some information artifacts are meant to be maintained permanently as the official

legal record of care. Other information artifacts are created for temporary and

informal use, to mediate work processes (Gorman et al. 2000) or transmit sensitive

information (Ames 1993), only to be disposed of afterwards. Clinicians often use a

variety of informal, sometimes individualized information tools to represent infor-

mation in ways that support specific tasks, in addition to the official, archival EHR

record. Temporary storage on paper or personal computing devices may be used to

gather fragments of information found in different information systems or in

fragmented locations within a single EHR. Portable and temporary forms of

information may support tasks and work activities or support certain activities

that EHRs fail to support. These informal artifacts have been pervasively used by

clinicians and play a vital role in coordinating healthcare work (Fitzpatrick 2004;

Hardey et al. 2000; Hardstone et al. 2004; Sexton et al. 2004; Tang and Carpendale

2007, 2008).

Previous studies also found that clinicians often chose to refrain from entering

social-psycho-emotional information regarding a patient’s care in EHR systems, as

this type of subjective information often conflicts with the objective and factual

requirements of EHR-based formal documentation (Ames 1993; Mentis et al. 2010;

Zhou et al. 2009). Thus, informal artifacts such as the “kardex” are frequently used

for sharing work-related information including subjective patient care information

during shift transitions (Fitzpatrick 2004; Gorman et al. 2000; Hardey et al. 2000;

Hardstone et al. 2004; Tang and Carpendale 2008) and they carry flexible and

work-in-progress notes that are not ready to be documented in archival format in the

EHR (Chen 2010; Park and Chen 2012; Tang and Carpendale 2008).
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Visible and Invisible Work

Current HIT is primarily designed for performing explicit, visible tasks and

supporting visible roles, but healthcare work also involves important but less visible

roles and tasks (Spence and Reddy 2007). The concept of visible and invisible

shares some similarities to the front-stage-back-stage concept; an explication of the

latter is presented in the second case study at the end of the chapter. Examples of

invisible tasks include those performed by nurses to conduct comfort work (Strauss

et al. 1985) and secretaries to coordinate patient transfer (Bossen et al. 2012; Holten

Møller and Vikkelsø 2012). These tasks are not recorded, thus become invisible, in

patient medical records, but these invisible tasks are important, and often

indispensible, for work accomplishment. However, invisible work has been

overlooked in the design of many IT systems (Star and Strauss 1999).

Thus, the design of complex collaborative systems should recognize and repre-

sent all invisible roles, tasks, and processes in the collaboration process (Nardi and

Engestrom 2001; Suchman 1995). This goal of making work visible is difficult to

achieve, however, with EHR designs that are focused primarily on explicit tasks

and documentation. For example, non-clinical or unlicensed staff in hospitals and

clinics such as clerical personnel, social workers and case managers, or medical

assistants often remain invisible in systems, and the critical roles they play in

providing and coordinating care may not be taken into account in the IT infrastruc-

ture (Bossen et al. 2012; Holten Møller and Vikkelsø 2012; Spence and Reddy

2007). Other important work processes are also neglected. In particular, EHRs often

display aggregated tasks without showing and tracking the multiplicity of individ-

ual work tasks involved (Chen 2010). The lack of a systems-level representation of

these invisible but critical steps can result in serious collaboration breakdowns.

Furthermore, system design has to balance visibility and invisibility among

different team members so that individuals will not be overwhelmed by specific

details that are not related to their work (Star and Strauss 1999), e.g., keeping

backstage work invisible and providing different levels of granularity to different

roles. Yet, current EHRs sometimes present the exact same view to team members

with different information and communication needs, e.g., physicians and nurses

likely require and use information differently but the information display in current

EHRs are typically the same (Park and Chen 2012).

10.2.2 Supporting Team Collaboration
with New Technologies

Research on collaborative work in healthcare investigates how current practices are

conducted in specific settings or examines the impact of new technologies in
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supporting collaborative work in situ. These studies have often led to new impli-

cations for supporting collaborative work practices or insights for improving

current HIT. In this section, we briefly review new technologies developed in

supporting collaborative work in healthcare. Of special note, there are only a

handful of studies that actually designed and deployed new technologies for real

use, which is largely due to the high threshold of safety control and regulations in

healthcare settings.

10.2.2.1 Technology for Supporting Distributed Communication

Collaborative healthcare practices often require that workers have timely access to

people, information, and resources (Bardram and Bossen 2005). However, compet-

ing tasks as well as spatial and temporal distribution of team members create

barriers or delays in communication. Mobile wearable communication devices

(e.g., Vocera) provide voice-operating connectivity for ad hoc communication

among team members that can improve communication and reduce their spatial

movements (Hanada et al. 2006; Tang and Carpendale 2009a). In particular, such

devices allow clinicians to continue with a current task while communicating with

team members about other patients or tasks, improving the efficiency and the

quality of patient care (Tang and Carpendale 2009a). Similarly, Richardson and

Ash (2008) found that the use of hands-free communication devices in clinical

settings provided clinicians with better communication access and also better

control over the information they could access.

10.2.2.2 Technologies for Supporting Coordination in Medical Work

Other than supporting point-to-point direct communication, technologies have also

been developed to support social awareness that underpins collaborative work. In

particular, Bardram and Hansen (2004) developed the AWARE architecture that

offered a platform for supporting context-mediated social awareness for mobile and

distributed teams. AwarePhone was a context-aware technology designed to sup-

port awareness among hospital clinicians and AwareMedia was developed on a

large interactive display that supports social, spatial, and temporal awareness with a

shared messaging system (Bardram et al. 2006). These technologies provided new

ways for promoting awareness in hospital work and their deployment showed

promising results in enhancing communication.

Moreover, supporting the coordination of actual work tasks among collaborators

is crucial for team-based practices, and a special challenge when task scheduling

must be dynamically changed in response to changing needs. For example, surgical

operations require careful planning of resources and personnel including the oper-

ating room, equipment, specialized surgeons, anesthesiologists, and nurses, taking

account of their availability, schedule, and constraints. In fact, coordination and
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scheduling are often tightly coupled and are necessary for achieving collaborative

healthcare work. However, in practice, these tasks are non-trivial and often chal-

lenging as resource optimization, a key goal for hospital efficiency, must be

balanced against changing patient care needs and competing demands on personnel

(Bardram and Hansen 2010). Thus, a variety of new technologies such as electronic

whiteboards and scheduling systems have been developed and deployed to facilitate

the coordination of team-based activities. For example, a study conducted in an

emergency department found that the use of an electronic whiteboard improved

work efficiency and communication quality among clinicians (France et al. 2005).

Wong et al. (2009) conducted a survey and found that 71 % of the respondents

considered that the whiteboard helped improve their team-based communication

and 62 % agreed that they were able to retrieve patients’medical information faster

with the whiteboard. Moreover, a prototypical Patient Scheduler deployed in a

surgical unit was also found to help facilitate patient scheduling, and temporal

coordination of the collaborative work and allocation of resources in the hospital

(Bardram 2000).

10.2.2.3 Technology for Supporting Information Access

Most modern healthcare settings are equipped with an EHR system to facilitate the

retrieval and use of medical information for improving the quality of patient care.

Mobile devices have been introduced to support flexible bedside access to the EHR

and other information, including tablets (Silva et al. 2006; Zamarripa et al. 2007)

and computers-on-wheels (Tang and Carpendale 2008). Though potentially helpful,

challenges have been documented including mechanical flaws and perceived intru-

siveness into the nurse-patient relationship as the nurse shifted focus to the com-

puter screen (Fig. 10.1) (Tang and Carpendale 2008). The nurses were also found to

continue to use paper notes that they had always created and used for their shift

work despite the availability of the mobile computers-on-wheels intended for

information access at bedside.

Based on their longitudinal field studies in a hospital, including the computers-

on-wheels study previously described, Tang and Carpendale (2009b) developed a

prototype technology that made use of digital pen and paper that allowed nurses to

continue to use their familiar pen and paper to create their paper notes. The

handwritten notes could be easily transformed into digital texts for documentation

without navigating the hierarchical EHR system. The integrated paper-and-digital

design was based on the findings that clinicians strongly preferred handwritten

notes to the digital information in the EHR system. The feedback for this prototype

gathered from six focus groups with nurses was generally encouraging and design

guidelines were proposed for further development of the prototype to support both

clinicians’ preferred practices and the use of EHRs intended by the hospital. In a

related study, a mobile digital pen meant to allow more flexible and mobile record

keeping was viewed positively by nurses, but used little because of mechanical or

physical limitations of the device (Yen and Gorman 2005). If these issues are
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addressed, these novel designs can be useful in a variety of healthcare settings

including hospitals, primary care clinics and community health centers.

10.2.3 Case Studies of Teamwork

As described above, communication and coordination of healthcare teams play a

crucial role in achieving quality patient care. Therefore, two case studies on

different healthcare teams in different contexts are presented below. The first case

study presents communication challenges encountered by healthcare teams dynam-

ically and ephemerally formed in an ED, primarily for stabilizing the patients such

that they can be quickly transferred out of the ED. The second case study describes

the use of information artifacts and the communication processes during medical

rounds that took place in a Pediatric Intensive Care Unit (PICU).

10.2.3.1 Communication Challenges for Loosely Formed Collaboration

Teams

The following vignette was abstracted from our field study in an ED to show how

mobile phones adopted in the ED failed to support the distributed teamwork.

While Paul, a nurse in the ED, was at bedside drawing a blood sample from a patient, his

mobile phone vibrated. Not knowing what the call was about, Paul decided to ignore it. This

Fig. 10.1 The use of computer-on-wheels weakened interpersonal interaction (Source: Tang

2009)
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phone call turned out to be an emergency call to help with a critically ill patient in another

room. Paul later commented why he didn’t pick up the call “. . .when you are at the bedside
with the patient, it [the mobile phone] rings; you pick it up to answer it. Sometimes they

[the patients] may think it’s rude. I don’t think the patients know it’s a work phone. I think

they think it’s a personal phone. Or it’s ringing, ringing, ringing and you are in the middle of

doing IV. The patients can go like ‘okay it’s ringing.’ So that is a problem!”

Although mobile phones are highly appreciated in many other fields for the

convenience it offers to distributed team members, clinicians in the ED actually

often ignored mobile phone calls. Instead, they generally preferred to use overhead

pagers to communicate work-related information inside the ED. This is because

communication via mobile phones did not provide sufficient group awareness

information for the patient care team members, which often led to unwanted

interruptions at patients’ bedside. More importantly, it failed to support role-

based communication, which is important to the dynamic collaborative healthcare

work that sometimes requires personnel of a specific role instead of a specific

named person. The lack of role-based communication has caused considerable

challenges in the ED teamwork communication since the team members are often

formed dynamically and ephemerally in the ED (Fig. 10.2).

Our analysis of communication breakdowns in the ED revealed a unique char-

acteristic of the collaborative teamwork that we regarded as loosely formed team

collaboration. Specifically, patient care teams in the ED differ considerably from

those in other medical wards, as ED care teams are often dynamically and quickly

assembled upon patient arrival and the heterogeneous team members must

Fig. 10.2 The formation and disassembly of a loosely formed patient care team. Dark and light
grey indicate core and peripheral members respectively. The dotted circles show that peripheral

members join the care team temporarily (Source: Lee et al. 2012)
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immediately engage in interdependent and complex care activities, since ED

patients often require care from different providers including ED doctor, nurses,

and various specialists. These team members come together dynamically and work

with various collaborators for patients with different needs. Variations in shift

cycles, temporal horizons, and collaborators’ job nature further complicate the

collaborative work. For example, ED nurses and residents have different shift

cycles. ED nurses work on 12-h cycles and their bed assignment usually changes

every 4 h, whereas ED residents work on 8–12 h shifts with different starting times.

Thus, the residents may have to work with different nurses for a single patient

during a shift, complicating the work collaboration. When individual care team

members simultaneously work in multiple patient cases, the complexity in collab-

oration becomes highly intertwined and significantly more challenging. Finally,

when an ED patient is stabilized, the responsible team dissolves right away. The

coordination required for achieving this kind of fluid work practice is highly

challenging, and thus susceptible to breakdowns. In particular, the frequently

changing collaborative teams require substantial spatial movement for collabora-

tion, temporal coordination of the collaborative tasks, effective handling of

unpredictable interruptions, and coordination across multiple healthcare teams

comprising of team members of different roles and each team member may be

concurrently involved in multiple patient cases.

The team members’ spatial distribution explains why mobile phones were not

preferred in the ED since each team member has to be reached separately. More-

over, sometimes when personnel of a particular role, such as a technician, instead of

a specific person are needed, the current communication system did not support

locating team members by their role. In addition, calls may interrupt patient care

activities at the bedside, as mobile phones used in the ED did not provide any caller

information. In contrast, overhead pagers allowed ED-wide broadcasts alerting all

team members at the same time. However, they might run the risk of disclosing

private patient information over an open link. Hence, the findings from this study

pointed to the need for designing future communication technologies to meet the

needs of loosely formed collaborative environments by providing team-based

communication with lightweight feedback and point-to-point information transpar-

ency while preserving patient privacy.

10.2.3.2 Information Arena to Support Team Rounding in a Pediatric

Intensive Care Unit

Hospital rounds are multi-disciplinary meetings convened at regular times (often

daily), partly for purposes of coordinating care among workers. The complexity of

hospital care (Strauss et al. 1985) has made such rounds ever more essential for the

safety and quality of care received by the patients. Hospital rounds are an example

of teamwork for exchanging and updating critical information and responsibility

under time constraints. Therefore, it is important for participants to select the most

relevant details while providing an overall assessment. The following dialogue
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presents a typical segment from a “walking” round in a surgical Intensive Care Unit

(ICU) during which the participants often ambulate. The information artifacts are

underlined.

Resident: Mr. VVV is a 52-year old male with. . . His white cell count is continuing to

increase. He is on antibiotics. Plan for him . . . [Resident provides a summary of the

patient’s current condition using her summary sheet while the attending looks at the

computer for getting an update on patient’s status]
Attending: Why don’t we change his antibiotics to antibiotic x?

Pharmacist: Because he is allergic to Penicillin.

Attending: OK.

Resident: He has also developed a high fever last night.

[The charge nurse interrupts the conversation and asks]

Charge nurse: Excuse me Dr. B (the attending), how many empty beds will we have for

today’s admissions?

[Attending and the charge nurse walk together from the bedside to the whiteboard to check]

This case study highlights the findings of several studies on communication and

coordination during rounds conducted in different settings (Fig. 10.3) including a

pediatric intensive care unit (Cardarelli et al. 2009) and a trauma specialty hospital

(Sen et al. 2009). A large number of physical artifacts (e.g. lists, bed boards, notes,

charts) are used by round participants, both as memory aids for relevant patient

information and as a record of goals and to-do lists (Fig. 10.3, left). Participants also

spend considerable amount of time in preparing for information exchanges during

rounds so that they can quickly transfer information about status and tasks to

another in order to sustain effective performance across task boundaries (Gurses

et al. 2006, 2009).

The information processes that took place during rounds were found to be multi-

threaded and overlapping. Hence a “front-stage-back-stage” model was developed

for capturing the choreographing of discourse and interaction with the information

artifacts. Information processes were considered front-stage when they were part of

verbal exchanges or shared visual exchanges occupying the conversation “floor”

Fig. 10.3 (Left) Sit-down rounds in a pediatric intensive care unit: multi-disciplinary meetings

convened for daily management of patient care. Note information objects scattered around the

workplace and manipulated by participants (e.g., X-rays on computer terminals, notes, papers on

the wall, charts in binders); (right) A surgeon pointing at a chest X-ray on the computer
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whereas back-stage processes were those not occupying the floor, mostly

non-verbal occasional side interactions or gestures, as well as private interactions

between participants and their information sources and computer terminals. Below

we illustrate the use of the front-stage-back-stage model in capturing the interac-

tions between the multi-threaded information processes and discuss the model’s
implications on designing computing support for the information arena.

1. Front-stage activities driving front-stage activities can be exemplified by a

resident physician presenting data that the attending physician regards as a

good teaching point and interrupts the presentation to launch into a didactic

discussion.

2. Front-stage activities driving back-stage activities are most commonly

represented by attending physicians filling in their personal notes (back-stage)

as the presenting resident physician reads the data values out loud to the group

(front-stage).

3. Back-stage activities for supporting front-stage activities include a resident on
the computer listening to the presentation and locating relevant patient data on

the computer while the resident later interjects to provide the latest values (e.g.,

laboratory results).

4. Back-stage activities driving other back-stage activities happen when a note-

taking resident has difficulty keeping up with the presented data, conferring with

another participant nearby. They would quietly exchange information as the

round proceeds without interrupting the front-stage activities.

Based on the information arena just described, our field studies offer several

implications for designing support for the interactions between activities in the

front and the back stages. As the back-stage activity interacts with the front-stage

both as an information contributor (e.g., during case presentation) as well as an

information receiver (e.g., transcribing into personal notes), there is a potential to

increase the “information density” of discourse. Newman and Smith (2006)

observed a similarly high requirement for ease of information access, beyond

which people tended to disengage from the conversation. We thus speculate that

the use of the front-stage may be improved with computing tools to support back-

stage preparation and visual presentation in the front-stage so that communication

of precise information (such as data value or medication dosages) may be more

reliable. A major role of back-stage activities is to assist in developing a common

information space by packaging and organizing relevant information (Bannon and

Bodker 1997; Fields et al. 2005) and to provide an annotated environment for fixing

inadequacy in the physical space, artifacts, and technology (Coiera 2013) for

facilitating front-stage information exchange. We believe that the front-stage-

back-stage model provides useful guidance for both studies of critical discourse

as well as the design of supporting tools.
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10.3 Conclusions

Healthcare is a team activity, which entails intense coordination and collaboration

among heterogeneous personnel who are typically distributed, both spatially and

temporally. Healthcare teams exist in different types depending on individual

teams’ structural context and its functioning. An organization with a strong orga-

nizational shell, well-formulated team structures, and well-designed technology

support is associated with lower coordination needs (Ginnett 1993). Yet, teamwork

constantly faces a variety of challenges in the dynamic, information-rich, time-

critical, and complex healthcare settings.

Recent developments in the use of HIT including the EHR systems and various

mobile devices for enhancing real-time information access were discussed as

new opportunities to enhance collaborative activities in healthcare. Given the

complexity and diversity of healthcare settings, it is crucial to consider relevant

sociotechnical issues when designing and deploying HIT for practical use in

specific healthcare settings. These issues include design considerations to facilitate

dynamic communication behaviors in healthcare settings and the use of medical

records for enhancing collaborative healthcare teamwork through supporting rela-

tional coordination and social interactions, formal and informal work, and visible

and invisible work. Recent technological development for supporting distributed

healthcare teamwork was also described. Finally, two case studies on different

healthcare teams in different contexts were presented to offer practical challenges

in team communication in an ED and the complex information arena and

processing involved in team-based medical rounds in an ICU. Both case studies

concluded with design implications for supporting technologies.

Discussion Questions

1. What are the communication challenges facing healthcare providers using EHR

systems?

2. What are the advantages of dashboard displays showing patient status in an ED?

3. How can EHR engage family members to be part of the care team for a patient in

an ICU?
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Chapter 11

The Unintended Consequences

of the Technology in Clinical Settings

Amy Franklin

11.1 Introduction

Unintended consequences (UCs) are direct and indirect outcomes that are outside of

expectation. In the context of healthcare, this includes the unanticipated impact of

health information technology (HIT) on clinical practice. For example, although

electronic health record (EHR) systems may improve access to information through

the use of standardized fields, the increased documentation demands may cause

busy doctors to enter data into free text fields rather than attempt to search for the

“right” location in a structured field. Downstream effects of this extra burden of

documentation include additional effort required for subsequent users of that data

by other stakeholders. This is because other users must either assume that the

information is unavailable or search for the information outside its expected

location.

The recent surge in HIT, particularly EHR systems, has spurred discussion and

research into the potential consequences of its use including unanticipated out-

comes. From physician complaints and praise of EHRs to patients’ reports regard-
ing the impact on visits, interaction with HIT has altered healthcare processes.

Headlines in the popular media have pointed out the changes to how medicine is

practiced in the digital age (Campbell 2014a, b; Meisel 2011). One often cited

example of unintended consequences in HIT is the changing dynamics of the

doctor-patient interaction when using an EHR system. It is no longer just the doctor

and the patient in the room: EHRs add a “third party”, the computer, to the patient

visit. This results in changes to workflow, including alteration of the patient’s
narrative (Lown and Rodriguez 2012) as well as changes in communication behav-

iors such as eye contact (Al-Jafar 2013). All of these may adversely impact the
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quality of patient care and patient satisfaction. These are unintended consequences

of technology that are not intended in its design.

Although HIT systems, including EHRs, have great potential for improving

healthcare quality and safety, it is necessary to elucidate and manage the outcomes

that were not foreseen or intended in the design and implementation of the system.

Unintended consequences, though commonly thought of as being unexpected

problems created by a system, are not always negative. Technology may provide

benefits beyond their intended design. Serendipitous benefits may include

repurposing of tools beyond their original purpose. For example, Kuziemsky

et al. (2012) provide examples in which physicians found a new use for their data

entry and process monitoring system developed for palliative care. By leveraging

the features that helped physicians visualize data for developing care plans, doctors

found that sharing the visual depictions of patient’s disease progression (e.g.,

medication needs, pain reports) aided difficult conversations with family members

regarding end of life decision-making.

In this chapter, we discuss the unintended consequences (UC) of HIT in clinical

practice. We begin with examples of how computerized physician order entry

(CPOE) created unforeseen outcomes in clinical care. Following a review of

literature, we use these instances to drive a discussion of the nuances of different

frameworks for classifying UCs. Next, we consider potential mechanisms underly-

ing UCs and touch on issues regarding the constraints of human cognition, usability

of devices, and work processes described in other chapters of this volume. Finally,

we look at reported issues on common UCs in EHR systems and outline proposed

solutions. Through a better understanding of UCs, particularly those generated

through human computer interaction (HCI), we can build systems that mitigate

negative UCs and reap the benefits of serendipity in unanticipated positive

outcomes.

11.2 Defining Unintended Consequences

The idea of unexpected outcomes is not unique to healthcare nor is it always

mediated by technology. The disciplines of philosophy, sociology, and even

economics have discussed unintended consequences over the course of recent

centuries (see for example Adam Smith’s The Theory of Moral Sentiments

(Smith 1759)). An analogous phenomenon is commonly observed in biological

systems. For example, introducing new sources of food such as rabbits or new crops

can solve a short-term food supply problem, while leading to long-term issues

including the disruption of the ecosystem (e.g., lack of predation leads to overpop-

ulation of rabbits that decimate other food sources such as crops). The first modern

definition of UCs as direct and indirect outcomes not intended by purposeful action

was popularized in the 1930s by the sociologist Robert Merton (1936). Through his

research, Merton attempted to explain why human actors were unable to anticipate

outcomes in complex systems. Although Merton’s argument was a philosophical
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discussion regarding the limitations of human reasoning, his ideas have been

applied in other domains for understanding outcomes that are outside of

expectation.

Merton’s treatise centered on understanding UCs via potential sources of cau-

sation. UCs could be understood as leading from errors in assumptions, (un)-

informed tradeoffs in short versus long term gain, and the impact of culture/policy.

This theme of classifying UCs by causation re-emerges in later frameworks.

However, Merton’s ideas on UCs continued to evolve over time to include other

components. For example, rather than focusing solely on causation, other frame-

works have separated UCs along dimensions of outcome (e.g., negative or positive

results, expected or unanticipated from design).

Research by Ash and colleagues (2007) provides the seminal framework for

unintended consequences in HIT. In their hierarchy, the singular notion of

unintended consequences has been broadened. First, consequences are split into

those that were anticipated or unanticipated, i.e., not predicted, outcomes. Next,

the dimension of the desirability of the outcome is included. This allows for the

traditional negative/undesirable, unanticipated and thus unintended consequence as

well as unexpected and yet desirable outcomes of serendipity. The inclusion of

desirability shifts the focus from prediction (i.e., anticipation) of the outcome to a

new examination of the actual outcomes themselves (i.e., positive or negative

results). In this framework, expected negative outcomes can be thought of as

risks or tradeoffs (undesired but anticipated results), which differ substantively

from the negative surprises of UCs.

Figure 11.1 depicts the hierarchy created by Ash et al. (2007) expressing both

benefits and negative consequences through direct processes measures as well as

indirect outcomes. In this framework only consequences that are both unanticipated

and undesired are deem unintended. Although this hierarchy focused on CPOE use,

the attributes of anticipation, desirability and direct/indirect outcomes can be

generalized to classifying consequences in other domains (including those outside

HIT). The above hierarchy highlights both the positive and negative consequences;

however, much of the literature (and the popular press) has focused on unintended
adverse consequences.

Campbell et al. (2006) provide a typology for looking just at these negative

outcomes, again with a CPOE focus.1 Campbell and her team interviewed and

observed clinicians (including physicians, nurses, pharmacists, and allied health

care providers) at five hospital sites. Using a grounded theory approach and card

sorting techniques, they first distilled shared themes from across observations and

interviews. Next, in the card sort, with clinician assistance, they grouped the ideas

presented into nine classes of negative unanticipated outcomes. These categories,

organized as a typology, add a finer grade of classification to the discussion of UCs.

1 CPOE is often the HIT component under study given its rich and tangible connection between

design and potential safety events such as medication errors.
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Campbell’s typology included categories for generalizing across problems, and

mapped UCs to their underlying outcomes. For example, the additional work

generated by technologies can vary from transformed work practices and workflow

to additional required effort (e.g., documentation, the handling of new decision

support alerts). When compared to the paper-based clinical practice at sites within

their study, respondents noted, there is simply more work to be done. Other classes

of UCs include a poor fit between the human-computer interface and the context of

use, unintended overload of individual cognitive and collective work processes, and

changes to coordination and communication practices. Of course, at this point in

time, some of those consequences can be construed as anticipated. As with Ash

et al.’s hierarchy, several instances within this typology are extensible to other

forms of healthcare products beyond CPOE, including medical devices, communi-

cation tools and other technology.

While the above typologies focus on an expectation of outcomes, socio-technical

models reevaluate UCs through a systems’ lens. Rather than focusing only on the

technology, these models were developed with foundations in systems research,

and were based on the idea that the impact of HIT can only be understood while

considering its social, organizational and technical context of use (Fox 1995;

Cummins and Srivastva 1977). They depict complex and interdependent compo-

nents of the health care system including users’ characteristics, workflow, organi-
zations, and policy along with the health information technology itself.

In Harrison et al.’s Interactive Socio-technical Analysis (ISTA) (Harrison

et al. 2007), UCs were not seen as created by the HIT system (e.g., failure to

fully understand the impact of design); instead the consequences were understood

as resulting from different types of interactions. ISTA depicts the emergent

Fig. 11.1 Ash et al.’s (2007) hierarchy [Reprinted with permission]
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relationships between HIT, clinicians and workflows. Technology is viewed as part

of the complex system that is shaped by the technical and physical infrastructure

within which it resides. The system as a whole is understood as the interaction and

interdependence among its components. UCs in this framework are not solely

classified by anticipation of their design (e.g., anticipated use/unanticipated out-

comes), rather ISTA considers how HIT is actually used within a given context.

Thus, interaction type is used to define UCs rather than the intent or outcome. The

five interaction types include: (1) new HIT changes existing social system, (2) tech-

nical and physical infrastructure mediates HIT use, (3) social system mediates HIT

use, (4) HIT-in-use changes social systems, and (5) HIT-social system interactions

engender HIT redesign. Instances of new HIT changing the existing social system

include UCs such as new/more work on tasks such as documentation, changes to

informal interactions yielding communication changes, or alterations in workflow

such as shifts in roles and responsibilities. As illustrated in Table 11.1, Harrison

et al. incorporate both Campbell’s typology (Campbell et al. 2006) as well as the

work on communication and information transfer by Ash et al. (2007, 2009) into

their interaction types. Importantly, ISTA shifts the focus from causation or out-

come of UCs to pointing out the impact and differences of systems in use from the

ways in which the systems were designed. Harrison’s framework offers a richer and

more nuanced analysis, and provides significant potential for remediation through

redesign.

The 2009 American Medical Informatics Association (AMIA) Annual Health

Policy meeting focused on outlining “outcomes of actions that are not originally

intended in a particular situation (e.g., HIT implementation).” The resulting publi-

cation (Bloomrosen et al. 2011) from a panel of experts considered another per-

spective on sociotechnical systems and consequences. In their article, Bloomrosen

et al. put forth a model with inputs and outputs that span domains including:

• Technology: hardware and software systems that are implemented and the

constraints they impose.

• Human factors and cognition: thought processes, habits of behavior, and mental

capabilities that humans bring to the use of HIT tools and processes.

• Organization: embedding of technology in the complex environment of

healthcare organizations.

• Fiscal/policy and regulation: the legislative and regulatory environment

governing the design, implementation, and use of HIT such as HIPPA require-

ments, indicators of meaningful use and standards for health information

exchange.

In this input-output model, interactions define the model as they did in ISTA.

The domains of technology, organization and human factors along with the addition

of policy and regulations converge into a sociotechnical system with an even

broader scope and in which HIT resides. Complicated interactions yield outcomes

that can be understood in terms of types of consequences and the affected stake-

holders. Like the ISTA framework, Bloomrosen’s efforts frame UCs as a study of

interactions. The input-output model specifies stakeholders (i.e., inputs) as well as
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Table 11.1 Unintended consequences by ISTA type

ISTA type Unintended consequencesa

1. New HIT changes social system More/new work for cliniciansb

Physicians spend more time on documentation and

justification

Changes in communication patterns and practices

Introduction of IT leads to decline of vital interactions

among care providers, ancillary services and unitsc

IT system eliminates informal interactions and redundant

checks that help catch errorsc

Workflow

CPOE undermines informal gatekeeping by clerk who

decided whether patients really needed daily x-rays

2. Technical and physical infra-

structure mediate HIT use

Paper persistanceb

Paper used to solve problems of lack of integration of

CPOE and other clinical information systems

3. Social system mediates HIT use New types of errorsb

Busy physicians enter CPOE data in miscellaneous section

rather than scrolling for optimal location. Improper

placement can impede use by other physicians and by

CPOE systems

Causing Cognitive Overload by Overemphasizing

Structured and “Complete” Information Entry or

Retrievald

Fragmentation

Distribution of information over several screens some-

times leads busy physicians to miss key parts of record,

such as interpretations or reports by other types of

physicians

Structure, overcompleteness

Extensive reporting requirements lead physicians to cut

and paste whole reports, rather than extracting pertinent

facts

Paper persistenceb

Counter to hospital directives and recommended IT prac-

tice, MDs who prefer paper records annotate CPOE print-

outs and place these in patient charts as formal

documentation

Misrepresenting collective, interactive work as linear,
clear cut, predictable workflowd

Inflexibility: Transfers: Inflexible EHR reporting require-

ments generate failures to record clinically appropriate

drug administration and cause difficulties in managing

patient transfers

Urgency: Nurses and Physicians refuse to follow data-

entry rules requiring physician pre-authorization for

urgent care

(continued)
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results or outcomes as components within the sociotechnical system. The complex-

ity of the system underscores the need to understand points of input to the

unintended consequences. For example, poor usability of an interface can increase

the cognitive burden on the clinicians by requiring searching for a returned labo-

ratory value in a sea of electronic, scanned, and paper data. Cognitive factors such

as limited memory and attention coupled with a poorly designed or cluttered

Table 11.1 (continued)

ISTA type Unintended consequencesa

Workarounds: Physicians and nurses provide urgent care by

working around cumbersome procedures

Misrepresenting communication as information
transferd

Decision support overload: Alert fatigue: physicians
ignore warnings and reminders

Loss of communication: Urgent requests and some test

results from accident and emergency, admissions are never

viewed on ward terminal

Loss of feedback: Nurses initial orders on receipt, rather

than administration, so physicians cannot tell if orders

have been carried out

Human-computer interface unsuitable for highly inter-
ruptive contextd

Juxtaposition errors

Entry of orders for or on behalf of the wrong person

4. HIT-in-use changes social

system

Changes in the power structureb

Narrow, role-based authorizations redistribute work –

requiring physicians to enter orders directly

Remote monitoring by the organizations undermines phy-

sicians’ autonomy

IT, quality assurance departments, administration gain

power by requiring physician to comply with CPOE-based

directives

In decentralized systems, internal variations in CPOE uses

and configurations increase interdepartmental conflicts

and competition

5. HIT-social system interactions

engender HIT redesign

Never-ending system demandsb

As implemented CPOE systems evolve, users rely more on

the software, demand more sophisticated functionality, &

customize software (e.g., physicians create their own order

sets). New features must be added to original software.

Interactions among multiple variations of the software in

use make CPOE system unmanageable & require

replacement with newer versions

Reprinted with permission from Harrison et al. (2007)
aTypes of consequences cited by Campbell et al. (2006)
b Campbell et al. (2006)
c Instances also treated in Ash et al. (2003)
d Ash et al. (2003)
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interface may engender potential UCs. These inputs can lead to output (i.e.,

consequences) that may impact both cognitive (e.g., diagnostic reasoning) and

care processes for patients and providers. At another level of analysis, organization

policy may serve to mitigate or exacerbate these consequences. In this example,

documentation requirements could lead to workflow changes generating further

unanticipated outcomes.

This multi-faceted model depicted in Fig. 11.2 underscores the shifting view of

UCs as an individual problem to a perspective in which UCs is considered as

complex and situated in system-wide issues. Embedding HIT into sociotechnical

frameworks highlights the need to consider all the interactions of inputs and

products of work in design.

11.3 Exploring Unanticipated Consequences

The potential unintended impacts of HIT in clinical settings are wide ranging,

including risk of harm to patients and inefficiencies in work practices. Just as

UCs can occur with technology (Tenner 1997), introducing new devices, or new

processes, have the potential for both gainful and harmful effects beyond the

expectation of the product developers. CPOE-based problems are some of the

best documented, and are some of the most documented issues related to
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unintended consequences of the use of healthcare technology (Ash et al. 2003,

2007, 2009; Campbell et al. 2006, 2007; Koppel et al. 2005; Weiner 2007).

Some of the technology-induced errors are derived from the user interface.

Reckmann and colleagues’ (2009) review identified problems created by poor

usability including incorrect drug selection induced by lengthy drop down menus

(Shulman et al. 2005), and duplicate orders or failures to discontinue medications

(Koppel et al. 2008). Subsequent problems also arose when unexpected conse-

quences led to downstream issues. For example, Computers onWheels (CoW) were

used to seamlessly move computers to the patient’s bedside. Having a computer at

the point of care can potentially prevent errors in identification, reduce interrup-

tions, and improve the completeness of procedures such as documentation. Com-

bined with bar code technology, CoW can improve medication administration by

reducing medication errors (i.e., scan the patient, scan the medication to prevent

errors). However, Koppel et al. identified 15 kinds of modified workflows in use

while using the barcode medication administration technology (19). For example,

the authors identified an instance where the potential benefits of bar code/CoW

systems were thwarted when these units were too large to fit into the patients’
rooms. Rather than scanning patient wrist identification at the bedside, nurses
would print out extra bar codes outside the room. Such alterations to clinical

practice can have downstream effects and, in fact, can lead to identification errors

this technology was originally intended to prevent.

Similarly, HIT may not function as expected in the realm of Clinical Decision

Support (CDS) alerts. Alerts for drug-drug or drug-allergy problems can be trig-

gered during the prescribing process. If too many alerts are delivered, clinicians

may fail to acknowledge the appropriate and relevant alerts. Additionally, the high

rate of potential notifications can lead to alert fatigue (Steele and DeBrow 2008),

and subsequently to technology-induced errors. For example, many studies found

that drug-drug and drug-allergy alerts were often overridden. Payne et al. (2002)

found an 88 % override rate for drug interaction alerts, and a 69 % override rate for

drug-allergy alerts. Similarly, Weingart et al. (2003) found ambulatory physicians

overrode 91 % of drug-allergy alerts, and 89 % of high-severity drug-drug interac-

tion alerts. A percentage of these alerts may have provided limited detail (e.g.,

notifying the physician that no drug information was available in system) and

perceived to be uninformative, presented information with unknown clinical sig-

nificance (e.g., lacking indicators of the severity of an interaction), or may have

repeated the content of previous messages.

In a 2013 case study, Carspecken et al. (2013) described an instance where a

2-year-old child was admitted to a pediatric intensive care unit (PICU) with a

documented antibiotic allergy. Over a 1-month period, more than 100 alerts related

to a drug-allergy cross reactivity were overridden, as the treatment was deemed as a

requirement for the patient’s condition (i.e., ignoring what was considered an

inappropriate alert). Over time it was determined the child did in fact have

an allergic hypersensitivity, and his medical record was eventually amended.

However, even after this change, the now appropriate alert (i.e., acknowledging

that the child does have an allergy) was still overridden. Due to the routine
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rejection of the alert, clinical staff had become de-sensitized to drug-allergy alerts

in this child’s case.2

There are multiple issues at the heart of this example. First, the unintended

consequence of new/additional work led to an increased burden on the physicians.

Subsequently, the repeated alerts decreased clinicians’ sensitivity to the message

resulting in inappropriate persistence of behavior (i.e., continued override of the

alert.) Additionally, the EHR did not make the addition/change to the allergy list

salient to the users of the system. Finally, the unintended changes to the workflow,

particularly around communication practices regarding medications, may have led

to less feedback and decreased opportunities to prevent this error.

We can break the case down into its component parts to situate it within the

previously described UC frameworks. Within Campbell’s CPOE typology and

Ash’s work on communication, this case study includes communication failures

(e.g., misrepresenting communication as information transfer (Ash et al. 2003)),

demonstrates new types of errors not found in paper-based systems, and shows how

changes to communication practices can lead to unanticipated outcomes.

Sociotechnical system models could also include discussion regarding how the

social system mediated HIT use including changes in assignment of roles (i.e.,

who maintains the allergy list and notifies others) as well as workflows. To prevent

these types of errors in the future, changes to the work system would be necessary to

provide a more nuanced and context-sensitive decision support. This would include

having appropriate content, including severity of interactions, visible changes for

new alerts and appropriate timing of alerts in the decision process.

Ongoing research shows potential improvement in adherence to alerts (rather

than overriding them) through improving the relevance of alert messages (Weingart

et al. 2011). Shah et al. (2006) found that with appropriate design it is possible to

generate high rates of alert acceptance by clinicians. In their study of 18,115 drug

alerts generated during a 6-month study period, 67 % of interruptive but informa-

tive alerts were accepted in spite of its impact on workflow.

Modifying a system to prevent or fix an existing problem can introduce other

unintended consequences as well. For example, Strom et al. (2010) identified the

complexities surrounding the unintended consequences of trying to prevent errors

in a CPOE system that in turn created new problems. In this study, a hard stop, or a

required step in the ordering process by which no further action can occur until a

response is produced, was added to the ordering process. It was intended to promote

adherence to decision support by preventing concomitant orders for a known

hazardous sulfa drug interaction (i.e., warfarin and trimethoprim-sulfamethoxazol).

Their clinical trial exploring the effectiveness of this hard stop was in fact halted

when it was determined that four patients received delayed treatment as a conse-

quence of changes to the medication-ordering process. In those cases, concurrent

prescribing was in fact appropriate and the hard stop should have been overridden.

2 This case has additional complications regarding the appropriateness of sulfonamide allergies.

Please see the original publication for details.
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Like the pediatric study, this case provides an example of the complicated process

for determining system rules, workflows, and challenges to anticipating all potential

outcomes for decision support choices. Other ways in which unintended conse-

quences emerge are through workarounds or additional unplanned innovations

(Strauss et al. 1997).When systems fail to support workflow in an acceptable fashion,

users may innovate and introduce new paths for completing their tasks and goals.

Just as with consequences, workarounds can have positive or negative impacts

(See Chap. 10, this volume for a detailed discussion on workarounds). For example,

Vogelsmeier et al. (2008) studied five nursing homes to uncover workaround prac-

tices related to electronic medication administration records. They found two types of

workarounds: those associated with the system interface, and those related to orga-

nizational processes. For example, when the CDS alerted that a medication was

“excessive” in dose, nurses entered multiple within-range doses in order to measure

up to the requested dose (rather than directly speaking with a physician or pharma-

cist). Other system requirements were managed by a “flouting” policy. For example,

in these nursing homes, there was a requirement for separate documentation, one for

preparation of medication and one subsequent to the administration of the medica-

tion. Nurses would often only note the process prior to administration of medication,

and ignore the post-administration records. If delays occurred, or if the medication

was not actually administered, it would not be accurately reflected on the patient

record. Similarly, when voluminous printouts of medication orders were required to

complete the policy-driven fax for prescription, nurses often elected to follow a

speedier (but not supported) process of calling-in medication orders.

The above cases are complex events for which it may be difficult to define a

singular unintended outcome, potential cause, or solution. As Bloomrosen’s input-
output model suggests, to understand the triggers of these events, and to work

towards managing such outcomes, the inputs (clinicians, technology, organizational

policy and the social structure), interactions, and outputs must all be considered in

the system in which the work occurs. In these circumstances, triggers to the event

include the changes to the interactions of the nurses and physicians, adaption of

clinicians to technology, workers negotiating organizational policy and the social

structure that guides their actions. All of these contribute to the “excessive” dose

workaround. The way in which a nurse enters drug information is only one of the

many problems. Solutions to these kinds of cases are not as straightforward as

changing specific algorithms in decision support systems. Rather, consideration

should be given to the communication practices and policies that lead to these

events, as well as the HIT demands.

At a more basic level, outside the nuances of specific drug interactions or dosing

rates, there are basic computer functions that lead to significant confusion. For

example, the onerous demands of documentation are an often-touted (perhaps, even

shouted) unintended consequence of EHR implementation. All of that new work

could be supported by judicious copy and paste within clinical notes. Seventy four

to ninety percent of physicians use the copy-paste function in their EHRs, and

between 20 and 78 % of physician notes are copied text (Bowman 2013). However,

many are concerned that this function is not being used appropriately (Hripcsak
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et al. 2011; Hirschtick 2006). Issues with copied text include the potential for lost

information as reviewing notes becomes a hunt for new or different information. In

addition, other clinicians caring for the same patient may elect not to read the

patient notes which contain copious amounts of redundant or uninformative text.

There is also a concern that copying and pasting could lead to inappropriate billing

(McCann 2013). The American Health Information Management Association

(AHIMA) provides a stakeholder perspective on the issues of copy and paste. As

the association for health information management (as compared to clinicians using

the health record system), this organization has a broad interest in the use of these

basic computer functions. In their position paper (40), AHIMA proposes that copy

and paste (i.e. cloning, identical documentation) should be used only under techni-

cal and administrative control and with well trained users, potentially limiting the

adverse outcomes of this function. This example also demonstrates how multiple

sources (i.e. stakeholders) have to be considered as input to both the event and the

solution. While copy and paste may be an activity of the individual, organizational

policy, technological constraints and socio-cultural practice can define (or even

regulate) how this activity is completed. Copy and paste could well be an issue

within the EHR systems that may someday be constrained by Federal regulation.

Paper persistence, similar to copy and paste, offer short-term solutions to HIT

problems that may have an impact on long-term consequences. The inability to

satisfy the demand of having access to an EHR system, as well as simple preference

for physical documents can lead to the persistence of paper in the presence of

electronic solutions. Some people like that napkin as a note tucked in their pocket,

while others are forced to create paper based workarounds due to the constraints of

their HIT systems. In a study on consultation practices at a Veterans Affairs

Medical Center, Saleem et al. (2011) explored the ways in which paper persisted

as a means of communicating and coordinating between physicians even in the

presence of electronic consultation tools. They found that the use of paper docu-

ments and informal notes persisted for a 5-year period where electronic processes

were already in place. Coordination workarounds were a common response to

limitations in the EHR system, for example, delays in notifying primary care

physicians that a consult report was available. Preferences for homegrown solutions

such as compact spreadsheets listing multiple patients and individual checklists

were also common workarounds.

Concerns for these behaviors include maintenance of dual paper and electronic

records: paper persistence engenders the potential consequence that handwritten

information may not become part of the electronic record and gaps in information

retrieval may occur as individuals may not be exhaustive in their search for

information. When evaluating the differences across paper and electronic sources,

Kannampallil et al. (2013) found that a process of local optimization drove the

information-seeking process across paper and electronic documents. Physicians

gathered information from sources that maximized their information gain even

though it required significantly more cognitive effort. Given the argument that
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unintended consequences are derived from poorly supported cognitive processes, it

is necessary that we seek solutions that better support work processes including

information search.

11.4 Human Factors Models

The sociotechnical frameworks for understanding UCs focus on the systems in

which technology is used. Macroergonomic models that emerged from a human

factors engineering approach to patient safety (including UCs) similarly embrace a

systems-centered perspective (Carayon et al. 2014). Karsh et al.’s Human Factors

(HF) Paradigm (Karsh et al. 2006) is exemplified by a principle that the goal should

be to “design work systems that support and enhance work process performance”
and that safety, risk, and all other outcomes then flow from the accommodation of

the system to this work. Well-designed systems would then not only support typical

efforts but also should be robust and resilient enough to reinforce work under

challenging conditions, such as high patient load. Although the HF paradigm

focuses on error and harm (the worrisome potential outcomes of UCs), Holden

(2011) suggests that the way that HIT improves or worsens outcomes is dependent

on how that system impacts cognitive performance. In his extension of this para-

digm to EHRs, Holden proposes that cognitive performance processes are the

mediating mechanism between a work system and outcomes. Rather than saying

failures in design lead to error, harm or unintended consequences, Holden outlines

how the work system either positively or negatively affects cognitive performance.3

The resulting themes from Holden’s interviews of clinicians surface many of the

same unintended consequences previously outlined in the UC literature such as the

burden of extra cognitive effort generated from poor displays, impacts on workflow

including extra steps, and communication changes including simply less face-to-

face time. Likewise, the SEIPS (Systems Engineering Initiative for Patient Safety)

(Carayon et al. 2006; Carayon and Smith 2000) model echoes many of the compo-

nents of Bloomrosen’s Input-Output model in that they both share the idea of

interacting components encompassing clinicians, technology, human interaction,

and external factors such as policy. Importantly, the SEIPS model includes feed-

back loops between the work system and care processes, and between the work

system and outcomes that provide support for redesign. These human factors

engineering models provide a means for discussing potential interventions to

systems to safeguard patient safety. More direct and immediate methods for

assessing the risk of UCs have been recently provided through federal programs

(see next section for a brief overview).

3 In line with Hollnagel and Woods, all performance, or work, in healthcare is considered

cognitive, from procedures to decision-making, including the cognitive processes of mental,

physical, social, and behavioral activities.
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11.5 Solutions

Finding productive means to manage unintended consequences can take many

forms. As Holden (2011) suggests, redesign of work systems to support cognitive

processes is necessary. We view that this redesign would include not only features

of the technology but also the social and organizational structures. As Bloomrosen

et al. (2011) suggest, regulation and policy may also play a role. Funding through

the Office of the National Coordinator (ONC) and the Agency for Healthcare

Research and Quality (AHRQ) has spawned research programs along the develop-

ment of guidelines to understand and mitigate UCs. Examples of the output from

these efforts are the 2011 AHRQ Guide to Reducing Unintended Consequences of
Electronic Health Records (Jones et al. 2011) and the Safety Assurance Factors for
EHR Resilience (SAFER) Guides. The AHRQ Guide provides detailed support in

understanding and identifying unintended consequences in EHR systems as well as

suggestions for remediation. Through a series of case studies, this guide highlights

15 areas of concern and provides references regarding research in each area. For

example, the guide describes a case in which the implementation of a nursing

documentation system unintentionally duplicated efforts (both paper and electronic

forms were completed) as part of a policy requirement for a specific type of

documentation (here, patient social function). Process assessment and redesign

are provided as suggested solutions.

As Jones et al. suggest in this guide (Jones et al. 2011), corrective actions may

fall into one or more broad categories: (a) software change, (b) training for local IT

staff, (c) configuration change, (d) custom programming, (d) care process change

and (e) policy change. As these corrective actions may be costly both in terms of

time and effort, remediation plans detailing the problem, its impact, the scope of the

request, stakeholder involvement as well as benefits from change may all be

necessary to justify the price of change. Such plans may therefore vary in their

ranking of importance for patient safety, user satisfaction and desirability for

corrective action.

The SAFER guidelines, also put out by ONC and AHRQ, are designed to help

care delivery organizations conduct self-assessments of recommended practices in

those areas important to the safe use of health information technology. These efforts

are part of the HIT Patient Safety Action and Surveillance Plan. Some of the guides

such as those targeting CPOE and Lab results detail unintended consequences in

these systems and provide assessments of system function.

Other federal efforts include ONC initiatives for EHR certification requirements

for usability testing with public reporting. These requirements have increased the

dialogue regarding user and system performance. Summative testing is one way of

uncovering unintended consequences in ready-to-deploy or implemented products.

The potential inclusion of formative testing requirements as part of the 2015 rule

may prevent some UCs from reaching end users through discovery and recovery

during development. Regional Extension Centers (RECs) and Health Information

Technology Research Centers (HITRC) are other programs funded by ONC which
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may help in supporting UC capture and remediation by providing support directly

to providers.

Professional organizations such as the American Medical Informatics Associa-

tion (AMIA), Healthcare Information and Management Systems Society (HIMSS)

and American Health Information Management Association (AHIMA) have also

sponsored efforts supporting HIT implementation and the identification of

unintended consequences.

11.6 Conclusions

To understand and support HIT in clinical practice, we must recognize the impact

of the complex sociotechnical system of healthcare in both contributing to

unintended consequences as well as discovering solutions to managing these

emerging issues. Through better understanding of UCs, particularly those generated

through human computer interaction, we can build systems that mitigate negative

UCs and reap the benefits of serendipity in unanticipated outcomes.

Discussion Questions

1. How do we design systems such that we mitigate negative unintended conse-

quences while engendering positive unexpected outcomes? Are the solutions for

remediating unintended consequences similar to the processes necessary to

create serendipitous outcomes? Explain.

2. Sociotechnical models highlight the interwoven factors of individual, organiza-

tional, and technical components surrounding unintended consequences (UCs).

Do solutions for UCs necessarily have to bridge domains? That is, can solutions

occur at only one level such as the technical component, or does the management

of UCs require responses from multiple inputs?

Additional Readings

Bloomrosen, M., Starren, J., Lorenzi, N., Ash, J. S., Patel, V. L., & Shortliffe, E. (2011).

Anticipating and addressing the unintended consequences of health IT and policy: A report

from the AMIA 2009 Health Policy Meeting. Journal of the American Medical Informatics
Association, 18(1), 9.

Carayon, P., Wetterneck, T. B., Rivera-Rodriguez, A. J., Hundt, A. S., Hoonakker, P., Holden,

R. J., et al. (2014). Human factors systems approach to healthcare quality and patient safety.

Applied Ergonomics, 45(1), 14–25.
Harrison, M. I., Koppel, R., & Bar-Lev, S. (2007). Unintended consequences of information

technologies in health care an interactive sociotechnical analysis. Journal of the American
Medical Informatics Association, 14, 542e9.

Patel, V. L., & Kannampallil, T. G. (2014). Human factors and health information technology:

Current challenges and future directions. International Medical Informatics Association
(IMIA) Yearbook of Medical Informatics, 58–66.
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Chapter 12

The Role of Human Computer Interaction

in Consumer Health Applications: Current

State, Challenges and the Future

Holly B. Jimison, Misha Pavel, Andrea Parker, and Kristin Mainello

12.1 Introduction

Health technologies for use by consumers and patients run the gamut fromWeb pages

for browsing health information, to disease management systems involving real-time

measurement and tailored feedback on a mobile phone. In this chapter, we will

consider consumer health applications to be the set of technologies used by consumers

to promote their health and wellbeing. One of the distinctions of this chapter, from the

rest of the medical informatics applications described in this book, is that the primary

user of the technology is the consumer or patient. Interactive consumer health

technologies offer a scalable and potentially cost-effective mechanism for engaging

individuals in their own care, certainly an important component of healthcare reform,

as healthcare becomes more proactive and takes place outside the hospital and clinic.

In contrast to medical technologies designed for specific clinicians with common

training and level of education, with consumer health applications we find addi-

tional challenges in designing for a broad base of consumers with varying educa-

tional, cultural, language and literacy levels. Then the need to communicate

medical and health information in lay language and meaningful graphics adds

another level of complexity. The following sections will provide an overview of

the field, as well as background and guidance on addressing the needs of specific

populations of consumers of healthcare.
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12.1.1 Overview of Consumer Health Informatics

Interactive consumer health technology applications are increasingly recognized as

an important component of healthcare services. The Institute of Medicine’s (IOM)

report on Crossing the Quality Chasm (Committee on Quality Health Care in

America 2001) discusses fostering self-management support by encouraging pro-

viders to use education and other supportive interventions in order to systematically

increase patients’ skills and confidence in managing their health problems. Two of

their recommended initiatives refer to patient-centered care and informatics.

Patient-centered care is aligned with consumer health informatics in that it aims

to inform and involve patients and their families in their decision-making and self-

management, apply principles of disease prevention and behavioral change appro-

priate for diverse populations, and understand patients’ concepts regarding their

illness and their cultural beliefs. They additionally recommended informatics

approaches to communicate, manage knowledge, and support decision-making

using information technology (Committee on Quality Health Care in America

2001). Examples of consumer-facing technologies for health include searchable

Web portals for health information (e.g., WebMD.com or MayoClinic.com) and

Web access to newspaper and magazine health articles. These are currently perhaps

the most commonly used consumer health applications. However, systems that

adapt to individual users’ inputs and provide tailored responses or advice can be

much more powerful (Jimison et al. 2008). For example, such interactive health

technologies may include home monitoring sensors with interactive disease-

management or self-management technology, educational or decision-aid software

that is interactively tailored to a patient’s needs, online patient support groups,

tailored interactive health reminder systems where interactions are linked with

electronic medical records, and patient-physician electronic messaging (Jimison

et al. 2008).

Johnson et al. used a framework of modes of engagement to categorize basic

types of consumer health informatics applications, with categories of communica-

tion, data storage, behavior management, and decision support. Table 12.1, adapted

from their chapter in Shortliffe and Cimino’s book on Biomedical Informatics

Computer Applications in Health Care and Biomedicine (Johnson et al. 2013),

provides definitions and examples of such systems. This framework and classifica-

tion scheme shows that consumer health applications range from simple browsing

for health information to interactive systems that provide tailored advice and

interventions. In the category of Communication, we include online support groups

and social networking sites that deal with health issues.

For example, a person interested in learning about multiple sclerosis (MS) could

find structured background information at a Web site like Healthline.com

(Healthline Multiple Sclerosis). The first steps would be viewing the section on

Learning the Basics, which would cover symptoms, vocabulary, causes, risk fac-

tors, tests and diagnoses, and complications of the disease. The use of video,

graphics, simple language and a clear organization can help users successfully
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navigate these sites and help them obtain the information they need. Further

sections on treatment options, finding a doctor, advice on managing the condition,

and links to ongoing clinical trials become important for those diagnosed with

MS. Many health Web sites with disease specific information also offer online

support groups. Continuing with the Healthline.com example for MS, there are

several ways in which patients can reach out to one another online. The site offers a

location where patients can rate their therapies and share results, a place to load and

share video testimonials, a place to share tips for living with MS, a set of MS

patients’ blogs, and also an online support group that links to Facebook. Some

organizations offer online support groups with expert moderators, such as

WebMD’s MS Community. Both types of services serve important functions.

Much of the care for chronic conditions, such as MS, occurs at home and has to

do with managing symptoms and adhering to treatment goals. Oftentimes, other

patients who have long-term experience with a condition can be most helpful.

Additionally, the health benefits of social support from patients in the same

situation can be very powerful (Umberson and Montez 2010). Researchers have

found improved quality-of-life outcomes not only for patients enrolled in face-to-

face support groups for diagnoses like breast cancer (Würtzen et al. 2013), but also

for online patient support groups (Klemm et al. 2003). The social support provided

by patients with similar issues can serve to provide empathy and encouragement in

a way that is difficult for clinicians or even family members. Additionally, patients

who have already learned to cope with self-management challenges can offer just-

in-time information to patients struggling to cope. An online venue makes these

connections more accessible and convenient. Additionally, the anonymity encour-

ages a more honest and open dialogue (Hsuing 2000). It is important that the

computer interface design of the online systems facilitate these important features

Table 12.1 Categorization of types of consumer health informatics applications

Mode of

engagement Definition Examples

Communication Support for patient-to-patient,

computer-to-patient and patient-to-

provider communication or informa-

tion dissemination

Patient portals

Patient-physician secure email

Online support groups

Social networking sites

Data storage A patient-centered and managed

repository for patient-entered data

Personal health records

Data portals for home monitoring

devices

Behavior

management

Tools to support personal health

goals, often by combining data stor-

age, care protocols, information dis-

semination, and communication

Weight management tools

Physical activity tools

Medication reminder systems

Decision

support

Tools to prepare patients to partici-

pate in ‘close call’ decisions that
involve weighing benefits, harms,

and uncertainty

Interactive tools for treatment deci-

sions for Breast Ca, Prostate Ca,

Back Pain, End of Life, Heart

Disease

Adapted from Johnson et al. (2013)
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for patients. Representative interface design issues include clearly communicating

the level of privacy and security of the data being shared, and helping the consumer

in distinguishing advertising from legitimate health information.

Other examples of consumer health applications include personal health records,

decision support tools and health behavior change systems. Personal health records

offer users a mechanism to store and retrieve their health information. Those that

are linked to specific health systems often additionally offer secure patient-

physician email, appointment setting, and medication renewals. Decision support

tools for patients have run the gamut from early interactive video systems designed

to integrate patient preferences on potential health outcomes into medical treatment

decisions such as prostate or breast cancer treatments toWeb-based systems that led

patients through background material and assessments for tailored feedback on

their health care decisions (O’Connor et al. 1999). Finally, systems that offer

monitoring and performance feedback (i.e., Fitbit.com for activity monitoring or

Beddit.com for sleep monitoring) can be clustered in Table 12.1 under Health

Behavior Change systems. User feedback from the monitoring itself has been

shown to influence behavior change (Bravata et al. 2007), but for many chronic

conditions such as diabetes, asthma and heart failure, it is important to have

sophisticated behavior change protocols in consumer systems that can be facilitated

by a coach or nurse care manager (Demiris et al. 2008). Changing health behaviors

is challenging, and user interface design for the necessary prompts and reminders

becomes critical to the success of these systems.

Consumer health applications may be implemented on a variety of platforms

using Web/Internet technology, desktop computer applications, touch screen

kiosks, cell phones, smart watches, or combinations of the above. The human

computer interaction implications of deploying these types of health interventions

on varying display devices with varying types of consumers generates many

challenges for designers. The subsequent sections further elucidate these challenges

and offer potential design guidance.

12.1.2 Needs Assessment as Part of Interface Design
for Consumers

Interface design for a new health information technology must originate with a

careful needs assessment and understanding of goals and tasks to be performed. In

the case of designing a system for consumers, it is important to anticipate whether

the intended users will be from varying age ranges, different cultures, and different

education levels. It is important to determine whether there will be separate systems

for use by specific groups or whether the interface and content need to be adapted to

the type of user (See Chap. 7, this volume, for a more detailed description). Needs

assessment techniques such as focus groups and interviews with stakeholders can

provide feedback to inform these design choices. An example of an iterative needs
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assessment is described in Jimison’s study on multimedia tools for informed

consent (Jimison et al. 1998). The initial challenge was to address the needs of

patients with decisional capacity but varying forms of cognitive impairment.

Standard consent materials were often written at above the college level when

considering trials with complex protocols. The researchers selected consent pro-

cedures associated with trials for patients with schizophrenia, depression, and

newly diagnosed patients with breast cancer. Design specifications for a tool to

help patients decide whether or not to volunteer for a trial were developed with

input from a series of focus groups with representative patients with experience in

these types of trials. The resulting prototype was then tested again as stimulus

material with similar focus groups, followed by usability testing of a following

iteration and then a trial comparing paper consents to the multimedia decision aid.

Breast cancer patients were found to be the most decisionally impaired, wanting

almost uniformly to defer to their doctor. Patients with schizophrenia were better

able to focus with a tool that kept the amount of material on any one screen minimal

and let patients browse for further information, then bring them back to the main

points. A needs assessment with users, encouraging participatory design, is helpful,

especially for rapidly changing technologies.

12.2 How Culture Influences Design Choices

Culture is an umbrella term used to refer to a multi-layered construct influenced by

language, education, societal rules and religion (The Providers Guide to Quality

and Culture; McCrickard et al. 2012). Designing user interfaces for people with

different cultural and health beliefs requires adapting and incorporating a variety of

factors. People from different countries/cultures use interfaces in different ways,

prefer different graphical layouts and have different expectations in how the health

technology interacts (McCrickard et al. 2012). Therefore, user interfaces should be

designed to accommodate the cultural differences of the target end users to provide

an optimum user experience (McCrickard et al. 2012). If you have ever tried to

assemble furniture produced in another country using instructions roughly trans-

lated to your language, you probably have a sense of the frustration or confusion

non-native consumers have when using health information systems that have been

crudely adapted to their language using word-by-word translations instead of

looking for the cultural meaning to convey. The success of a consumer health

intervention in a new culture critically depends on careful and meaningful message

adaptation. Additionally, visuals containing graphics with colors may seem to have

an agreed upon interpretation for many people in the United States with common

experiences, but quite different when shown to immigrant populations or subgroups

with a nonstandard exposure to the media.

As an example of the benefits of user testing of health content, the Los Angeles

Cancer Education Project conducted a learner verification of a number of national

and local publications with potential users from the Hispanic community (Briceno
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and Killam). The materials were found to be unsuitable “because they dealt with

facts rather than with people and their concerns,” meaning that the patients’
emotional responses were felt to be more salient and of concern than finding out

medical facts about cancer. The feedback from this resulted in a new publication

based on one extended family’s experiences with cancer: Hablaremos Sobre Cancer

de la Familia (Let’s Talk About Cancer Among the Family) (Briceno and Killam).

This became the centerpiece for a comprehensive community effort to detect early

cancer. Family participation for cancer detection was more culturally appropriate

than individual participation. Culture involves common beliefs, values, traditions,

lifestyle, communication, region, and the way you look at the world. Another

interesting location requiring multiple styles of communication and influencing

interface design occurs in the Hawaiian Islands. There are several ethnic subcul-

tures there, including Hawaiian, Portuguese, Chinese, Japanese, Korean, Cauca-

sian, Filipino, Vietnamese, Samoan, and other Pacific Island ethnic groups, often

identified as native Hawaiian. Each group, on average, has different cultural

expectations for communication styles and this influences how best to use (or not

use) technology to communicate health messages (e.g., screening for cancer or

appointments) (Evercare; Goebert et al. 2007). Chinese and Caucasian cultures tend

to prefer a more direct style, Japanese a more formal style, and native Hawaiians a

more indirect approach that first addresses social needs. It is important for designers

of health technology tools to consider communication styles as part of the human

computer interaction design process.

12.2.1 Designing for Populations with Health Disparities

There are several subpopulations in the United States who are predisposed to worse

health outcomes than other groups. For example, African Americans when com-

pared to non-Hispanic white Americans, have higher rates of obesity, hypertension,

cardiovascular disease and are disproportionately affected by increased rates of

HIV, especially among African American women (Braveman et al. 2005). Simi-

larly, Hispanic populations also have worse health outcomes when compared to

whites. Latino and Hispanic populations have higher incidences of diabetes, hyper-

tension and obesity in addition to double the amount of cervical cancer among

Latino/Hispanic women (Braveman et al. 2005).

When designing user interfaces for these groups, there are several key consid-

erations to address (Older Americans 2012). Disparities in education and income

levels are intertwined with health disparities. Approximately 16% of African

Americans and Hispanics live below the federal poverty line. 37.7% of Hispanics

and 16.1% of African Americans aged 25 and older did not complete high school

(Healthy Aging Improving and Extending Quality of Life Among Older Ameri-

cans). It is important that the design of health technology interfaces facilitates

bridging the digital divide and embracing disenfranchised populations or those

who are medically underserved. Several studies have demonstrated creative designs
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targeted to the needs and preferences of a variety of populations. These studies have

shown that interfaces that contain culturally appropriate content are more effective

than purely language translations (Healthy Aging Improving and Extending Quality

of Life Among Older Americans; Hedden and Gabrieli 2004).

12.2.2 Access Issues and the Digital Divide

The access to technology for consumer health information and patient-facing

interventions has presented a challenge to researchers, policy makers and clinicians

with an interest in the equitable delivery of care. Populations who most need health

information often lack the means, knowledge, and skills necessary to benefit from

Internet health resources (Smith and Zickhur 2012). In a recent Pew Internet and

American Life Project, they found that more than one quarter of U.S. adults had no

online presence, and many Americans used a slow-speed Internet connection

(Smith and Zickhur 2012). Non-users were more likely to be poor, less educated,

over the age of 65, disabled, members of ethnic minorities, and nonnative English

speakers (Smith and Zickhur 2012). This lack of access to health information and

management tools has direct implications on general access to health care services,

as more and more care will be provided with the use of Internet technologies.

The design choices that developers of consumer health informatics systems

make with regard to media and format have a direct impact on the degree of use

by populations of interest. Access by definition affects degree of use. Even though

conventional access to health information through more traditional Web interfaces

on desktop computers may have less use in minority populations, a design choice to

use mobile phones to communicate may actually increase use above the norm in

targeted populations. Many developers are surprised to learn that according to a

recent Nielsen study of smartphone sales, it was found that White consumers were

less likely than Blacks, Asians or Hispanics to have a smartphone (Nielsen Report).

In fact, only 42 % of White consumers purchasing a mobile phone chose a

smartphone over a feature phone, whereas the percentage choosing a smartphone

was higher for minority populations (44 % for African Americans, 56 % for

Hispanics, and 60 % for Asian and Pacific Islanders).

12.3 Design Considerations According to Age

The population of older adults in the U.S. is increasing dramatically. In 2010, there

were 40 million people age 65 and older, accounting for 13 % of the total

U.S. population. The Older Americans report of 2012 projects an increase of

32 million people in this segment by the year 2030 (20 % of total

U.S. population) (Older Americans 2012). In parallel to this trend is the projected

increase in healthcare expenditures for older adults. According to the Centers for
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Disease Control, Medicare spending has grown in the past 25 years, increasing from

$37 billion to $336 billion, a trend that is expected to continue due to the increases

in aging populations (Healthy Aging Improving and Extending Quality of Life

Among Older Americans).

Empowering patients will apply to all ages, but age must be taken into account in

addition to all other user characteristics in order to optimize the user experience

with consumer health technologies. There are age-related declines in several

cognitive and sensory-motor skills. For example, psychomotor skills such as dex-

terity and hand–eye coordination decline with age and these limitations can make it

more challenging for older users to learn to use a keyboard or control a mouse

device (Hedden and Gabrieli 2004). Age-related declines in working memory and

divided attention have very direct implications for interface design (Fisk

et al. 2009). Interface content must be much simpler and less cluttered to allow

older users to attend to pertinent material. Rogers and Fisk have found that older

adults are limited in their ability to develop automated responses (Rogers and Fisk

1991), which also has implications for needing to keep interface designs simple and

easy to learn. Further, it is important to minimize tasks that might maintain a high

cognitive load over time without the development of an automated response.

Although there are several types of age-related declines, and many are quite severe

with the onset of various pathologies, such as dementia, healthy older adults are

quite adaptive in compensating and can continue to perform interactive tasks with

technology quite successfully (Rogers and Fisk 1991).

An equally important aspect of the design is matching the communication style

of the interface to that of the users, as vocabulary changes over time. The commu-

nication styles vary significantly across generations and ages, but are very impor-

tant in creating trust and acceptance on the part of the users. The rapid evolution of

communication styles is greatly influenced by the advances in communication

technology including email, short message service (SMS) and various social

media. Even adults in their 30s and 40s have a hard time keeping up with the

new tech lingo of the next generation. Language is dynamic and technology content

must match the vocabulary of the targeted audience.

The matching of communication styles is not limited to the textual information,

but rather generalizes to all modalities. In particular, audio and pictorial represen-

tation as well as icon-based systems must be adjusted in accordance with the

expected age and style of the users. Figure 12.1 shows a simple example of various

choices of icons to represent a phone call. The icon on the left is recognizable to

older adults, however, most young people will never have seen a dial phone, or

perhaps even a land line. Additionally, with the advent of smartphones, physical

keypads on a cell phone may not look familiar to some.

Given the effectiveness of video-based communication as demonstrated by

YouTube and similar sites, it is expected that this style of information communi-

cation will find increasing applicability in the domain of consumer health infor-

matics. Much like the text-based communication, these video-based approaches are

likely to comprise a wide range of styles, ranging from cartoon animation, to

interactive avatars and human actors.
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In summary, the dynamics of the cognitive and sensory-motor skills combined

with the heterogeneity in users’ knowledge present significant challenges to the

developers of interactive systems. Although consumer health information technol-

ogy has the potential to empower patients to become more active in the care

process, the elderly may be disadvantaged unless the designers of both software

and hardware technology consider their needs explicitly (Fisk et al. 2009). The

mitigation of these challenges in designing for consumer health technologies across

ages and skill levels will be addressed in the section on the Future of Human

Computer Interaction for Consumer Health. Despite the concerns addressed in this

section, there is evidence suggesting older adults are connecting with technology

more than ever before. According to a GE market research report, of the more than

53 % of older adults who use the Internet or email, 70 % report using the Internet

regularly. However, a majority of older adults preferred simpler technology with

fewer features (Care Innovations).

12.3.1 Additional Design Considerations Based on Chronic
Conditions

If designed appropriately, health technology interventions for older adults could

contain the costs burden on the healthcare system while simultaneously improving

health outcomes for this population. Older populations also experience higher

incidences of chronic conditions, and many of these conditions affect a user’s
ability to interact successfully with health information technology unless specific

adaptations are in place. For example, approximately a third of adults between ages

65 and 74 have hearing loss, and most people notice visual problems around the age

of 40 (Care Innovations). Having adaptable visual and auditory interfaces as

options for technology addresses much of the problem. For example, varying font

size and contrast options can often address the needs of individuals with mild to

medium vision impairment. Common tools with many computers include auditory

feedback and screen magnifying software. There are also several software packages

for screen reading, converting text to speech. The American Foundation for the

Fig. 12.1 Examples of phone icons, showing how the choice of a visual icon may be different for

different age groups (Courtesy dreamstime.com)
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Blind provides a review of 18 such systems (American Foundation for the Blind).

An additional visual factor related to designing consumer health systems is that

about 8 % of the population (mostly males) has a form of color blindness, and

confuse either red and green and/or blue and green. The implication here is that

interfaces should not rely on just color to convey information.

Arthritis is another common condition that affects users’ ability to interact with

keyboards, mouse devices and small phone interfaces. Arthritis is a leading cause of

work disability, and those with the disease may have difficulty performing physi-

cally demanding jobs, and may select jobs that appear less strenuous but require

intensive computer use. In 2010–2012, arthritis was the most frequently occurring

chronic condition among older persons. 50 % of people over 65 were diagnosed

with arthritis (U.S. Department of Health & Human Services 2013). A recent study

of 315 arthritis patients found that 84 % percent of respondents reported a problem

with computer use attributed to their underlying disorder and 77 % reported some

discomfort related to computer use, mainly reporting problems with finding a

comfortable position while using the computer and in manipulating the keyboard

and mouse. Newer speech interfaces may serve to alleviate these issues. For

example, voice browsers for the Web usually adhere to the World Wide Web

Consortium guidelines (World Wide Web Consortium) and use Voice Dialog

Extensible Markup Language (VoiceXML) to interpret and encode the Hypertext

Markup Language (HTML) of a Web page. Voice browsers serve to both interpret

human speech with speech recognition software and generate text-to-speech while

interacting with a given Web page.

12.4 Health Literacy

Health literacy of the target population is a key concern for the design of both the

content and interface of consumer health informatics systems. The lack of under-

standing of the material will hinder both the use and usefulness of a system. Health

Literacy, defined by an IOM report as “the degree to which individuals have the

capacity to obtain, process, and understand basic health information and services

needed to make appropriate health decisions,” is measured across the following

domains: (1) cultural and conceptual knowledge, (2) oral literacy, including speak-

ing and listening skills, (3) print literacy, including writing and reading skills, and

(4) numeracy (Baker 2006; Schillinger et al. 2002). Individual health literacy is

most commonly assessed by using the Rapid Estimate of Adult Literacy in Med-

icine (REALM) and Test of Functional Health Literacy in Adults (TOFHLA) tests.

Both these instruments measure reading skills, word recognition, vocabulary,

reading fluency and to some extent numeracy (Baker 2006). The impact of low

health literacy, while a general concern, is particularly important to address when

designing for groups with known literacy problems. For example, low health

literacy is common among racial and ethnic minorities, older adults, and patients

with chronic conditions (Jimison et al. 2008; Eysenbach 2001). Nearly 9 of 10 adults
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have trouble using the everyday health information that is routinely available in our

healthcare facilities, retail outlets, media, and communities (Smith and Zickhur

2012). Among adult age groups, those aged 65 and older have the smallest per-

centage of people with proficient health literacy skills and the largest percentage

with “below basic” health literacy skills (Jimison et al. 2008).

There are several tools for helping designers of consumer health applications to

provide appropriate text content. For example, Web sites like The Readability Test

Tool and ReadabilityScore.Com provide measures of the reading grade level of any

English language text submitted. These tools typically include several standard

measures, such as

• Flesch Kincaid Reading Ease (Kincaid et al. 1988)

• Flesch Kincaid Grade Level (Kincaid et al. 1988)

• Gunning Fog Score (The Gunning’s Fog Index)

• Coleman Liau Index (Coleman and Liau 1975)

• SMOG Index (Hedman 2008)

• Automated Readability Index (Senter and Smith 1967)

The guidelines for developing patient education materials call for maintaining a

reading level of grade 5 or below (Ochsner Health System). This can sometimes be

quite challenging for designers not trained in writing at this level. FirstClinical.com

has a Web tool that assists in this process by providing a glossary of simple health

terms (First Clinical Research Glossary) and a document analysis tool (First

Clinical Research Document Analysis) to ensure readability by a majority of the

population.

When considering human computer interaction design in consumer health appli-

cations, it is also important to consider what has been termed “eHealth” literacy.

The term eHealth refers to health interventions or information using Internet,

wireless services, and related technologies (Demeris and Eysenbach 2002). These

types of consumer-oriented applications are used to engage consumers in managing

their own health care, communicating with clinicians, making health decisions, and

adhering to their health behavior change goals (Jimison et al. 2008). Several

researchers have proposed methods for measuring eHealth literacy. For example,

vander Vaart et al. use eHEALs, an 8-item scale that measures perceived skills in

finding, evaluating and applying electronic health information to health problems

(van der Vaart et al. 2011). Chan and Kaufman created a theoretical framework for

evaluating eHealth literacy (Kaufman et al. 2003a). They first considered the

dimensions proposed by Norman and Skinner (2006) consisting of computer

literacy, information literacy, media literacy, traditional literacy and numeracy,

science literacy and health literacy. They then integrated a second model to include

variation in task performance along a continuum of cognitive demands (e.g.,

remembering, understanding, applying, analyzing, evaluating, and creating). The

goal of this new framework was to elucidate the barriers to effective user perfor-

mance on intended health management tasks. Given that self-management and

consumer engagement are critical to the success of our new models of care, it is

now well recognized that we must address the barriers of health literacy and
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eHealth literacy more specifically as part of healthcare services. This is increasingly

recognized as a problem that impacts healthcare quality and costs.

12.5 The Future of Human Computer Interaction

for Consumer Health

One important, but often ignored, aspect of interface design involves the conse-

quences of rapid advances in technologies that affect the design approaches. We see

several important trends in the development of systems used to communicate health

information to consumers. First, the interfaces and user designs will be tailored to

target populations and potentially to individuals as well. More importantly, these

interfaces will continuously adapt to changing user needs, for example, as a

consequence of the aging process. Secondly, we will be conducting real-time

remote usability testing using video-conferencing techniques for protocol analysis

and ecological momentary assessment using just-in-time feedback from mobile

phones. Lastly, we see that the move toward pervasive and ubiquitous computing

will impact the design of consumer health systems, especially our notion of user

interface design and usability testing (Chap. 13 provides an overview of the design

considerations for mobile technology in healthcare).

12.5.1 Approaches to Developing Adaptive User Interfaces

Throughout this chapter, we noted that interfaces for consumer health informatics

systems need to be user specific. In particular, the effectiveness of interactions

depends on how closely the interface style is matched to that of the users. In

addition, the state, ability and functionality of the user are not constant over time.

Some of these changes are predictable; others are highly variable. For example, it is

well documented that an individual’s perceptual, cognitive and physical function-

ality declines with aging (Jimison et al. 2008; Hedden and Gabrieli 2004; Fisk

et al. 2009; Rogers and Fisk 1991). In contrast, users’ health literacy is likely to

improve with exposure to information. Less well documented is the short-term

variability, for example, as function of the daily variability in the quality of sleep

(Hedden and Gabrieli 2004). Given the dynamics of users’ characteristics, an

important question faced by the designer is how to optimize interfaces with respect

to these characteristics. There are many options, but two approaches stand out. The

first is based on a prior, population-based characterization of the users, perhaps by

clustering them with respect to their age, functionality, communication styles,

demographics, socio-economic status, etc. The interface design would then be
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tailored to the cluster and its characteristics. Individual users would be categorized

and assigned to the most appropriate interface. Recent advances in commercial

systems (e.g., Amazon.com) have demonstrated the potential of adaptation strate-

gies. For example, a number of Internet-based marketing strategies use history of

users’ visits to various sites and the targets of their prior clicks. Much like these

commercial approaches, using algorithms for collaborative filtering, one could

develop interfaces that adapt their style, knowledge level and information content

to the specific user. Collaborative filtering methods (Su and Khoshgoftaar 2009) are

based on using large amounts of information on users’ quantifiable characteristics,
behaviors, activities or preferences and determining similarity among users that is

then used to infer their preferences and aspects of interactions. Some early work in

this area is described by Yue et al. 2014, where researchers used collaborative

clustering to anticipate users’ intended tasks.We note that this type of implementation

would require more basic research concerning the types of data and their implication

on the interactions before it can be used as a standard interface design practice.

In an alternate approach, interfaces would be designed to adapt to the commu-

nication styles and task-specific information processing capabilities, e.g., domain-

specific health literacy of the individual users. A user may be relatively naı̈ve about

health issues in general, but in short time acquires significant information about a

specific health issue. For example, following a diagnosis of diabetes, an individual

may acquire a sophisticated diabetes-related vocabulary. The recent advances in

sensor technology, networking and inference algorithms open the opportunity to

monitor users’ interactions and make inferences about the individuals’ states. These
inferences can then be used to adapt aspects of the interfaces. Examples of such

adaptive actions can be found in the commercial settings where advertisements are

geared to the search activities of the users. Emotional responses, as assessed by

physiological measurements, can be used to modify consumer information delivery

and presentation. In the field of education, interfaces have been adapted in real time

through signals of pressure-sensitive mouse devices and wrist sensors for heart rate

variability and galvanic skin response. Research versions have been used to cate-

gorize level of understanding for users of interactive educational materials (tenta-

tive movements and pressure correspond to low levels of understanding, and firm

clicks and movements to higher levels of understanding) (Viadero 2010). There is

also indication that in the more distant horizon it is likely that brain-computer

interfaces will enable even finer adaptation and thus track the changing function-

ality of elderly users. This fits within the field of Neuroergonomics – the study of

the human brain in relation to performance in everyday settings, including interac-

tions with devices and systems (Parasuraman and Rizzo 2008; Parasuraman 2011).

One of the objectives of this nascent discipline is to enhance our understanding of

how humans interact with technology and thereby improve the scientific underpin-

ning of user interface design.
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12.5.2 Remote Usability Testing of Consumer Health
Systems

Given that most consumer health systems are used in the home or workplace, it is

important that future usability testing occur in these naturalistic settings and occur

in real-time. Traditional usability testing takes place in a controlled laboratory

setting where a sample of users are asked to perform representative tasks with the

technology being tested, typically while talking aloud as in protocol analysis or task

analysis. The advantages to this approach have been that video recordings of the

user’s face, speech, and interactions with the technology can be carefully recorded

and later analyzed. However, the set of interactions tested can be quite limited and

typically do not have normal background distractions or a normal context. Early

attempts at remote usability testing of naturally occurring interactions with Web

sites used sequences and timings of user clicks to infer intent and to look for

potential misunderstandings. The advantages were that the data collection was

inexpensive and it was possible to test all users of a site. The downside was not

truly knowing what users were thinking or whether they were successful. For

mobile phone health interventions it is possible to use the newer techniques of

Ecological Momentary Assessment (EMA) (Dunton et al. 2012; Heron and Smyth

2010) for testing some aspects of usability. EMA is used more generally for health

assessments, where questions are sent to a user’s phone based on time, location,

and/or context. These questions can be adapted to verify a system’s inference on

context, intended task, and other aspects that influence the content and interface.

This was an important aspect to the participatory design of Goodman et al.’s work
on technology for older adults in the home (Goodman et al. 2002).

Kaufman et al. used a more thorough approach to field testing their diabetes

technology in the homes of older adults (Kaufman et al. 2003b). The researcher

participated in the usability testing in the home environment with cameras record-

ing the user, the researcher and the screen interactions. The usability testing was

coupled with cognitive walkthrough analysis of the telemedicine system.

Researchers at the Oregon Center developed a novel approach to usability testing

for Aging & Technology. They developed and evaluated remote usability testing on

an ongoing basis (without researchers in the home) for participatory design. An

initial implementation of the approach involved a cohort of older adult participants

in their “Living Lab” (a group of approximately 50 cognitively healthy adults over

70 years of age living independently in their homes) (Jimison and Pavel 2008). As

part of a study of health coaching technology, as well as sensors for monitoring of

movement, sleep, socialization, medication management, physical exercise and

cognitive exercise, these seniors were used to using Web cameras and Skype as

part of their coaching and socialization interventions with family members. Usabil-

ity researchers in a central academic setting used the seniors’ Web cameras with

video conferencing software and screen capture software to conduct low-cost

iterative usability tests of new software while users remained in their homes

using their own computers, as shown in the diagram in Fig. 12.2.
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Testers were able to remotely control the computer in the home and obtain video

(face and computer screen) and audio recordings of talk-aloud task analyses as

subjects used the technology in their familiar setting (Yu 2010). Recordings of the

computer screen during the test were synced with the Web camera recording of the

participant’s facial expressions and audio for later analysis. This form of user

testing could be performed quickly and conveniently, allowing for frequent itera-

tions of software design with user participation and immediate feedback. It also

allows the user to feel more comfortable in their own environment with a familiar

computer. The convenience on the part of the developers and usability testers, being

able to conduct the tests from their office or home, is also important in encouraging

frequent iterations to optimize the interface. These remote usability approaches

allow researchers and developers to perform frequent low-cost remote usability

tests of new screen designs and content as part of a participatory iterative design

process.

12.5.3 New Horizons: Human Computer Interaction
with Distributed Computing

The advances in technology, computation and engineering alluded to in the section

on adaptive interfaces have much farther-reaching implications than those

discussed thus far. Perhaps for the first time in history, we have access to technol-

ogy that is capable of monitoring, inference and interpretation of behaviors, ranging

from physical activity to emotional responses. We are in the midst of a rapid

expansion in the availability of sensors to measure motion, acceleration, location,

sleep quality and many physiological quantities. These sensors are now smaller and

cheaper than ever before. There have been advances in energy harvesting, and

Fig. 12.2 Schematic of the video conferencing set-up for remote usability testing from the

research lab to the home (Figure rendered by Jesse Pavel of Electrika, Inc)
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enhancing battery life will continue to make these more convenient to use in

wearable versions.

These sensors add to our ability to collect routine physiological measures in the

home, such as blood glucose for diabetes, peak flows for asthma, and blood pressure

for cardiovascular disease. The new wearable sensors now allow us continuous and

unobtrusive monitoring, and thereby provide more effective tailored interventions

in a variety of areas ranging from cardiovascular monitoring to physical exercise

and weight management. Among the consequences of this technological revolution

is the rise of movements such as “Quantified Self” (Adventures in Self-Surveil-

lance) on the monitoring side and “PatientsLikeMe” (Wicks et al. 2010) on the

networking side. Both of these directions are suggestive of future trends in con-

sumer health informatics that incorporate behavioral inferences, social connectivity

and big data analytics, but will require appropriate human computer interfaces and

data visualization. The raw data from monitoring converted to information will be

increasingly useful in matching consumer needs with available sources of informa-

tion and knowledge.

The concurrent rising ubiquity of smartphones will also play a large role in the

future of interface design. In fact, for many, smartphones are the main method of

interfacing with the Internet. The user interface issues in attempting to convey

complex information on a small screen will remain a challenge. However, more

importantly, users will likely be interacting with displays of varying sizes through-

out their environment, much as the newer displays on cars now can show applica-

tions from the driver’s mobile phone. Linking to displays in varying locations and

of varying dimensions will offer a potentially much improved user experience and

certainly convenience. The sophistication of user interface algorithms will neces-

sarily grow, making this a fertile area for discovery and innovation.

Overall, user interfaces and user-centered design more generally will play a

large role in the success of health interventions in the future, as more healthcare is

provided in the home and environments outside a hospital or clinic. The challenges

in designing systems for a highly variable set of consumers are great, but the

opportunities provided by new monitoring and communications technologies are

also great. This will certainly be a dynamic field for both research and development

of successful systems for consumers of healthcare.

Discussion Questions

1. Imagine that you are working for a clinic that provides consumer technology for

diabetes care in the home, consisting of blood glucose meters, a Web site with

educational material, and automated reminders by cell phone. You have been

asked to develop design specifications to adapt it for a low-income Spanish-

speaking immigrant population living in an urban setting. Describe your process

in adapting this set of technology for this new population.

2. For a new era of pervasive computing, where sensors and communication

displays are distributed throughout the home, workplace, and general environ-

ment, describe the challenges and potential solutions to usability testing of a new

device or tailored health communications tool.
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Additional Readings

Agency for Healthcare Quality and Research. Designing consumer health IT: A guide for devel-
opers and systems designers. http://healthit.ahrq.gov/sites/default/files/docs/page/designing-
consumer-health-it-a-guide-for-developers-and-systems-designers.pdf

Johnson, K., Jimison, H., & Mandl, K. (2013). Chapter 17: Consumer health informatics. In E. H.

Shortliffe & J. J. Cimino (Eds.), Biomedical informatics computer applications in health care
and biomedicine (4th ed.). New York: Springer.

Reinecke, K., & Gajos, K. Z. One size fits many Westerners – How cultural abilities challenge UI

design. http://reinecke.people.si.umich.edu/Publications_files/CulturalAbilities.pdf
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Chapter 13

Designing and Deploying Mobile Health

Interventions

Albert M. Lai and Katie A. Siek

13.1 Introduction

Early uses of mobile devices in healthcare were provider focused that enabled

physicians communicate and access electronic health records whenever and wher-

ever they were. Most healthcare providers are highly mobile and constantly moving

throughout the healthcare environment – moving from patient to patient, making

diagnoses, making treatment decisions, administering medications, and performing

procedures – all of which need documentation.

As healthcare has moved from being acute care and physician-focused to a more

patient- and wellness-centric model, applications of mobile devices in healthcare

have shifted in focus as well. Much of the exciting new innovations in the use of

mobile devices have focused on targeting the healthcare consumer and enabling

them to be better engaged in their own care and efforts to maintain their wellness. In

this chapter, we introduce mobile technology, its use in healthcare, user interface

aspects to consider when using mobile devices, and study design considerations.

We discuss a broad range of mobile devices – covering personal digital assis-

tants, basic cellular phones, feature phones, smartphones, tablets, and wearable

devices. Strongly relevant to this chapter is the exciting and emerging field of

mHealth. mHealth is defined broadly as the use of mobile telecommunication

devices for the delivery of healthcare services. The majority of the sections of

this chapter are encompassed by the term mHealth, but we also cover mobile
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devices that are not telecommunication devices such as PDAs and wearable

devices, and are not traditionally included under mHealth.

This chapter is largely targeted at researchers, but we also discuss ideas that

designers, software developers, and informaticians need to consider when design-

ing and implementing mobile health care solutions. We place these mobile devices

into their historical context and while this chapter does not provide a comprehen-

sive systematic literature review, we cover important representative research that

has been conducted using the variety of mobile devices covered in this chapter.

13.2 An Evolution of Mobile Devices

Mobile technology has undergone rapid advances in the last 20 years and healthcare

adoption of mobile technology, although somewhat slower, has been rapidly

increasing since the early 1990s (See Fig. 13.1). In the early 1990s, the first truly

portable, full-featured laptops were just beginning to come to market. In the mid

1990s, mobile devices that acted as a personal information manager, personal

digital assistants (PDAs), and cellular phones were beginning to have commercial

success. In the early 2000s, smartphones were gaining traction and by the late 2000s

had become widespread. It is around this time that the mobile revolution really took

off and by 2010, tablet computers became very popular and in demand by con-

sumers. Each of these form factors will be discussed in detail in the following

sections of this chapter.

13.2.1 Mobile Stand-Alone

Internet-connected mobile applications are becoming easier to develop thanks to

readily available software libraries (e.g., touchdevelop.com) and the increasingly

pervasiveness of wireless Internet access. Initial mobile prototypes however were

typically stand-alone and not connected to the Internet. Internet connected appli-

cations required the following set of resources that (the designer, evaluator, and

developer need to consider): (1) a mobile Internet accessible area (which is still

challenging in some rural communities); (2) a server or trusted cloud service that

hosts data; a mobile device that can easily access the Internet; (3) a data plan for

each user to access the Internet; and – especially relevant in health applications,

(4) a secure connection to share health information. If resources are restricted, then

researchers may consider a mobile stand-alone application that hosts all of the data

on the device. Researchers can download the data when they meet with the users,

however they also need to inform users of contingency plans and design software

that alerts participants if they are not receiving accurate information because they

are not transferring data in real time.
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An example of a stand-alone mobile application by Apple Research is a record

keeping application to assist nurse midwives in rural India track the thousands of

people that they must care for on a regular basis. The nurse midwives’ responsi-
bilities went beyond the typical ante and postnatal care to include treating injuries,

vaccinating people, administering health tests, and providing health education. The

researchers set out to design a mobile application to help the nurse midwives

accurately and easily record health information so that it could readily be shared

with government policy decision makers. The researchers spent significant time

understanding the needs, expectations, and cultural issues surrounding the care and

documentation of rural populations and ultimately designed an application that was

informed by information resources the nurse midwives made for low literacy birth

attendants. The researchers learned about the resources that the nurse midwives

created after interviewing and shadowing participants (Grisedale et al. 1997).

Researchers at Indiana University experienced a similar design issue when design-

ing a dietary intake monitoring application (DIMA) for a low literacy, chronically

ill population – participants preferred dietary feedback icons that looked similar to a

cup that was used during their initial disease education meetings. Despite

interviewing dietitians and nurses before designing the interfaces, it was not until

the researchers presented the results to the health professionals that the similarity to

the cup was mentioned (Siek et al. 2006). Based on these experiences, we encour-

age researchers to consider contextual inquiry methods (Holtzblatt et al. 2004) to

learn about current processes and information resources so that the researcher can

integrate these processes and artifacts earlier into their design and analysis cycle.

Contextual inquiry methods typically include researchers interviewing (the inquiry)

Fig. 13.1 As each of these form factors of devices became available, they were adopted for use in

healthcare
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target users where they conduct the targeted activity (the context) and asking users

to walk through typical activities to gain a better understanding of what is done

when and how the process works. Researchers can gain rich data on users processes

– specifically an understanding if technology is appropriate and how technology

could enhance these processes.

Similar to the Apple Research example, DIMA researchers spent 2 years meet-

ing with health professionals and patients in an iterative user-centered design

process to design the application. The mobile application used icons, barcode

scanning, and voice recording to provide users with an easy way to input what

they ate and receive real-time feedback. In a pilot study, participants were able to

successfully use DIMA and some noted that it helped them change their diet by

becoming more compliant with their dietary restrictions (Connelly et al. 2012).

Since the application needed to provide real time feedback, the researchers had to

ensure that the database was primed with everything users could possibly input into

the system. In addition, the authors had to iteratively design the interface because

they were working with a low literacy population – a population often overlooked

in the human computer interaction community. The research team had to consider

everything from how to present dietary limits, organize food items (Siek

et al. 2006), and the application’s navigation structure (Chaudry et al. 2012).

13.2.2 Text Messaging

Text messaging – also known as Short Message Service (SMS) – uses standardized

communication protocols to send short text messages via Web or mobile commu-

nication systems. In everyday conversation, we typically say we texted a picture,

video, or other multimedia, however technically messages with multimedia are

called Multimedia Messaging Service (MMS). In this chapter, we broadly define

text messaging interventions that provide information – textual or multimedia – to

individuals. Text messaging interventions provide health informatics researchers

with a low cost, quick way to send and receive data to consumers and health

professionals. Currently, there are two main text messaging programs – push pro-
grams that deliver information to people and two-way programs that can deliver

and receive information from people users.

13.2.2.1 Push Text Messaging Programs

Current mass consumption text messaging programs are push systems in that they

push information to the public to inform them about specific health related issues,

but do not expect user responses. Push systems are fairly straightforward to

implement – researchers could choose to manually send text messages from a

phone or text message app (e.g., iMessage). Alternatively, researchers could create

a more robust and automatic system by maintaining an SMS gateway or using an
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SMS gateway service (e.g., Twilio) to automatically send text message at specific

times.

In the United States, the Department of Health and Human Services compiles a

list of text messaging programs that aim to improve health (http://www.hhs.gov/

open/initiatives/mhealth/projects.html). For example, text4baby (text4baby.org)

provides thousands of moms with three free text messages per week about their

baby’s development from pregnancy through their first year. Smokefreetxt

(smokefree.gov) is a freely available text messaging program for young adults

and adults to aid them in quitting smoking by sending 1–5 text messages per day

for the 2 weeks leading up to their quit date and 6 weeks after their planned quit

date. Smokefreetxt provides users with the ability to gain more information about

specific points in the message by texting back specific words to get more informa-

tion on how to deal with that point (e.g., texting “Cravings” to learn how to deal

with cravings after quitting smoking). Push text message programs are beneficial

because they provide an easy mechanism to send health messages to people and

alert them about specific health considerations, however they are limited because

they may not be customized enough to be relevant to some of the users or the

message may not be delivered at the appropriate time to encourage a change in

decision. For example, imagine designing relevant information about infant devel-

opment that is understandable to someone with an elementary school reading level

and yet still beneficial to the woman with an advanced degree in business.

13.2.2.2 Two-Way Communication Programs

Some health text messaging programs provide two-way communication so that

users can communicate with other users or healthcare professionals. Two-way

communication is slightly more complex to implement than push programs because

the researcher needs to use a SMS gateway service and program some logic into the

system to accommodate the various inputs a user may send to the system.

An example of a two-way communication program would be SMARTDIAB that

provides type 1 diabetes patients with the ability to send and receive information to

their doctor to receive personalized feedback. SMARTDIAB is also integrated with

a web portal and mobile application for the users to transmit secure messages and

reflect on aggregate data (Bin-Sabbar and Al-Rodhaan 2013). Since SMARTDIAB

has multiple ways for people to access information – text message, mobile app, web

portal – it provides users with a lot of flexibility. Researchers should also under-

stand that the more flexibility users have to input and view data, the more time they

must spend in designing, evaluating, and ensuring the users can efficiently interact

with the system to promote ongoing use. For example, researchers have to consider

the interactions users will have with each interface – text messaging, mobile app,

and web portal – and between the interfaces. Do users interact with the application

similarly independent of the platform or are they expected to remember different

interactions for each platform? Can users easily transfer information between the

interfaces and receive immediate feedback on their progress? We understand that
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each platform has different input and output mechanisms, however the overall user

experience has to be similar enough so that users are not overburdened.

Sometimes researchers choose to use text messaging as an easy way to simulate

real-time feedback without a database or Internet connection. For example, Chick

Clique was a mobile phone application for teens to log their daily step counts,

reflect on their progress, and check in on how their clique of friends were doing in

their walking progress. The mobile phone application used text messages from a

specific phone number to update the step counts that were shown on the phone

application (Toscos et al. 2006). Although the application seemed to provide real-

time data, the developer spent significant time ensuring that the most current data

was updating the interface to avoid critical section issues that happen when multiple

pieces of data (e.g., the sent text messages) want to access a shared resource (e.g.,

the individual step counts of each teen on the mobile phone). In addition, the users

had to be warned not to edit any of the text messages received from a specific phone

number otherwise the phone app would not be able to interpret the data properly.

An example that is closely related to a two-way text messaging solution is

@BabySteps, a low-overhead system that uses twitter for parents to manage their

child’s development. For example, BabySteps would tweet to a user, “Can your

baby do a push-up when he’s on his tummy? #baby2325.” The user would respond

with “#yes #Adam can do a push-up when he’s on his tummy! #baby2325.” In this

example, the hashtag #baby2325 helps to identify which milestone is being tracked.

The user’s response could add other free text or additional hashtags in addition to

the necessary response of #yes, #sometimes, #no. In a feasibility study, the

researchers found that parents could learn to use the hashtags, however they plan

to iterate on how many messages parents should receive to keep them engage

without overburdening them. The study shows that although the use of hashtags

in text or twitter messages provides an easy mechanism for researchers to parse data

and provide customized feedback, researchers have to carefully consider how often

the intervention should require input from users and how users want to provide that

input (e.g., using a service they already use in their everyday lives like twitter

instead of a new off-the-app-store app) (Suh et al. 2014).

13.2.3 Feature Phones

Feature phones are mobile phones that contain features in addition to voice calling

and text messaging included in basic mobile phones. Many of these phones

included features such as cameras, mobile broadband access, WiFi, PDA function-

ality (e.g., address book, calendar, and email), and music and video playback.

While there is no standardized way to distinguish feature phones from smartphones,

a major distinguishing factor has been the ability of the phone to run third party

applications. Feature phones typically do not have the ability to run third party

applications or applications not officially certified by the mobile carrier. Many of
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the feature phones use a more traditional touchtone telephone-style keypad, though

in recent times, this has begun shifting to include touchscreen displays as well.

The major benefits that feature phones provide over smartphones are that they

are less expensive, have a longer battery life, and are usually more durable. Another

benefit is that since they tend to utilize a keypad that is close to that of traditional

touchtone phones and basic phones that most individuals are used to, people less

familiar with technology may be able to easily use the basic functions on feature

phones, while adding a few additional features.

However, this same advantage also creates some challenges for using the more

advanced features in feature phones. For example, it can be extremely challenging

to type URLs and browse the web using the basic keypad available on the majority

of feature phones. In addition, building on the two-way text messaging example we

discussed earlier, feature phones are difficult to text on because users have to touch

the same button multiple times to get a specific character. For example, if someone

tried to text “no” using the phone shown in Fig. 13.2, they would have to push the

number 6 twice to get the letter “n” and then wait for the screen cursor to move over

before pushing the number 6 three times to get the letter “o”.

Because feature phones tend to cost less and have longer battery life than

smartphones, feature phones are still relatively popular in developing countries,

such as China, India, and Africa, where cost and availability of power is a major

consideration in comparison to more developed countries.

Attempts to use feature phones for clinical interpretation of ECGs has been tried.

An emergency physician photographed ECGs using a mobile phone and sent to an

interpreting cardiologist (Bilgi et al. 2012). The images were photographed using a

Fig. 13.2 Chick clique

interface
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Nokia N93 mobile phone and sent via multimedia messaging system (MMS) to an

identical phone used by an interpreting cardiologist. A separate cardiologist and an

emergency physician interpreted the paper print out versions of the ECGs. While

the cardiologist reading the paper printouts were deemed to have made the signif-

icantly fewer mistakes in interpretation than the cardiologist who read via the

mobile phone and the emergency physician, the results of the cardiologist

interpreting the ECG on the mobile phone screen were slightly better than those

of the emergency physician who interpreted the ECG paper printouts. This suggests

that sending the ECG images via MMS may be a cost effective telecardiology

procedure, particularly when a cardiologist is not available in the emergency

department.

13.2.4 Smartphones

A smartphone is a mobile phone with advanced computing capabilities and Internet

connectivity. Modern smartphones enable web-browsing, installation of 3rd-party

applications (apps), and since the introduction of the iPhone in 2007, frequently

include a relatively large (approx. 3.500–500 or 90–130 mm when measured diago-

nally) color touchscreen display. With their ever-increasing computational capa-

bilities, memory capacity, and ability to install applications, they are increasingly

being viewed more and more like a handheld computer rather than just a mobile

phone. The relatively compact form factor of smartphones makes them easily

portable and are frequently carried almost everywhere the user goes. In addition

smartphones typically come with the latest networking technology – from short-

range wireless connections, such as Bluetooth, to wireless Internet. It is for these

reasons that there has been a significant push to try to leverage them to enhance

participatory healthcare (Boulos et al. 2011).

While smartphones are incredibly powerful portable devices, there are some

major challenges due to the small form factor. Although the screens on smartphones

tend to be larger than those on basic and feature phones, there is limited screen real

estate compared to that of a desktop computer. This can create significant chal-

lenges for user interface designers, who then have to enable navigation through

nested menus to fit all of the functionality onto a screen. Also, buttons in these user

interfaces cannot be too small or they can be difficult to use for those with limited

vision or dexterity as may occur with older adults or with other patients with health

concerns. While enabling users to zoom into the user interface can compensate for

some of these issues, the gestures required to zoom in can be challenging for users

who are inexperienced with smartphones. In addition, some companies have strict

design guidelines that limit designers’ abilities to customize interface widgets and

interactions.

Research regarding the performance of older adults when using touchscreen

interfaces can provide some general guidance on the recommended button sizes for

most effectively enabling older adults to use touchscreen enabled smartphones
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(Motti et al. 2013). In a number of studies, researchers observed and measured the

actions of study subjects on a variety of touch screen devices and user interfaces. In

these studies, task completion times with various size buttons and gestures such as

taps, drags, and pinching motions were studied.

Kobayashi et al. (2011) suggested that buttons should be at least 8 mm in size on

smaller screens and targets that are located close to each other need to be larger.

However, research has also shown that bigger is not always better. Jin et al. (2007)

suggested that targets with 16.5 mm width and spacing between targets of 3.17 and

6.35 mm are appropriate for older users with good dexterity. For users with poor

dexterity, larger target sizes of 19 mm in width and 6.35–12.7 mm spaces between

targets are preferred. However, while increasing the button sizes and the space

between buttons can increase performance, they can lead to higher response times,

perhaps due to Fitts’s Law. (Fitts’s Law is a model of human movement that

predicts the time required to rapidly move from one target area to another. This

amount of time is proportional to the distance to the target and the size of the

target.) Nischelwitzer et al. (2007) found that older adults preferred to tap on

buttons rather than to use sliders or cursors buttons to select values. Accommodat-

ing these size requirements in an app can be difficult on the screen sizes typically

found in smartphones.

Many early uses of smartphones in health care were focused on bringing

clinicians mobile access to patient and reference information. One such example

was the development of a web-based portal to a clinical information system called

PalmCIS (Chen et al. 2004). PalmCIS was designed to be a wireless handheld

extension to NewYork-Presbyterian Hospital’s web-based clinical information

system, WebCIS. PalmCIS was designed to be HIPAA compliant and to display

as much clinical information as possible while still being easy to navigate and read.

At the time, Palm OS devices were very popular and one of the earliest

smartphones, the Kyocera QCP 6035 was chosen as hardware platform. One of

the limitations of PalmCIS was due to the limited capabilities of mobile web

browsers in the early 2000s. The web browser, EudoraWeb was limited to a subset

of HTML and did not support images. Clinicians were able to view patient reports

that summarized laboratory, cardiology, and radiology results for the current and

previous days. Another interesting feature was that it also enabled clinician to query

PubMed directly from the PalmCIS interface, allowing clinicians to quickly access

relevant article abstracts and citations. A somewhat unique feature of the PalmCIS

interface was how they chose to balance ensuring a high level of security while

enabling ease of use (see Fig. 13.3). PalmCIS required two-factor authentication

through the use of a user name, password, and SecurID token. The SecurID token

was implemented using a series of checkboxes to help the user input the correct

token. This authentication was only required once a week, enabling the provider to

use PalmCIS throughout the week and not constantly interrupting the workflow of

the clinician and making him or her log in at every use. This balance of ready access

for the clinician while ensuring an appropriate level of security is an important

factor to consider when designing clinical applications on mobile devices, as

barriers to efficient clinical workflows will severely hamper adoption rates.
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Another area of significant interest has been the use of smartphones for Personal

Health Records (PHRs). There have been two main approaches to PHRs on

smartphones—integrated and standalone. Within the category of integrated PHRs,

they fall into two subcategories–those that integrate with EHRs and those that

integrate with online PHR systems that contain data maintained by the patient.

Integrated PHRs have been met with great interest and enable patients to access a

subset of information that is stored in their health record that is maintained in their

health care provider’s EHR. They also frequently enable the patient to securely

communicate with their provider. One such app is that of the MyChart for the

iPhone from Epic Systems Corporation (see Fig. 13.4). There are a few PHR apps

for smartphones that access information that are maintained by the patient them-

selves, but they have largely been unsuccessful due to the lack of adoption of these

platforms, even on desktop computers (Kharrazi et al. 2012).

Despite the fact that smartphones have amazing capabilities, effort needs to be

spent on making sure that interventions are designed appropriately and that the new

capabilities of smartphones adds any substantive improvement in health care

interventions over what is available in phones of lesser capabilities. Buller

et al. (2014) performed a randomized trial of comparing the effectiveness of a

smartphone mobile application to text messaging to support smoking cessation

(Buller et al. 2014). Their smartphone application, REQ-Mobile had the ability to

receive and send short messages, enabled smokers to create lists on the reasons for

and benefits of quitting, had interactive tools, had support documents for strategies

and benefits of quitting, and had audio testimonials from former smokers. They

compared REQ-Mobile with the onQ text messaging system, which sent tailored

automated messages to the text inbox of the participants. Their comparison of these

two approaches showed that users of REQ-Mobile took longer to quit and fewer

study subjects were abstinent at 6 weeks than those who were enrolled in the onQ

text messaging approach. They also found that the audio testimonials were rarely

used. One of the resulting hypotheses for why onQ may have been more effective

than REQ-Mobile was that it delivered messages to the normal text messaging

inbox rather than an inbox in the REQ-Mobile app. These results suggest that using

Fig. 13.3 Screenshots of PalmCIS Login Screens. Adapted by permission from BMJ Publishing

Group Limited. PalmCIS: a wireless handheld application for satisfying clinician information

needs, Chen, E. S., Mendonça, E. A., McKnight, L. K., Stetson, P. D., Lei, J., & Cimino, J. J.

(2004). Journal of the American Medical Informatics Association, 11(1), 19–28
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lesser technologies that are available in basic and feature phones, such as such text

messaging, can be as effective if not more effective interventions than those that

require smartphones, while enabling a wider audience to participate and lowering

costs of the intervention.

Another major challenge can be deciding which platform or platforms to sup-

port. This used to be a much larger issue but as of early 2014, the leading two

platforms are Google’s Android and Apple’s iOS, with a total of over 90 % of the

worldwide market share. Researchers are also adopting platform independent

solutions, such as PhoneGap (http://phonegap.com), that allow developers to create

the app using web technologies and deploy the apps on multiple platforms. Most of

the app functionality can be used offline, however researchers can benefit by being

able to collect real time data when the smartphone can access the Internet.

13.2.5 Tablets

Modern tablet computers are typically similar to smartphones and are based on the

same mobile operating systems as smartphones, but are larger with displays mea-

sured at 700 (18 cm) or larger, diagonally. Another differentiation from smartphones

is that while tablets may also have cellular connectivity, they usually do not have

cellular calling as a feature and it can only be used as a data connection. The most

typical form factors for tablets fall into two rough size categories: 700 and 1000

Fig. 13.4 Screenshot of

Epic’s MyChart on iOS.

© 2014 Epic Systems

Corporation. Used with

permission
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(25 cm) displays. The 700 size is obviously more portable and less costly, but the 1000

size offers more screen real estate, which can be highly desirable, particularly for

individuals with lower levels of dexterity and vision. The larger form factor enables

different user interface paradigms than are typically used on smartphones.

As discussed in the smartphone section, touch targets measuring between 16.5

and 19 mm in width and spacing between targets of 3.17 and 12.7 mm spaces

between targets have been shown to be most appropriate in older adult populations.

On screen buttons of these sizes in users interfaces are more easily accommodated

on 700 and 1000 tablets than on devices of smaller form factors. While the larger 1000

tablets can be very attractive from a user interface design and screen real estate

perspective, a major downside is that because of their larger display size, they are

less portable and are more costly. This has major implications for their use in

healthcare interventions.

One application of tablets in the inpatient clinical environment is Epic Systems

Corporation’s MyChart Bedside (see Fig. 13.5). MyChart Bedside enables an

admitted patient the ability to gain access to more information about his or her

stay in the hospital, including knowing about the schedule of events for the day,

who is on the care team, a dashboard of vital signs and lab results, and sending and

receiving messages to/from the care team. As of this writing, MyChart Bedside is

supported only on 1000 tablets because the interface requires a larger screen size.

Because of the reduced hardware costs, support for 700 tablets is planned for future

releases. Some key issues to consider when deploying tablets to patients in the

inpatient domain are who will deploy the devices to the patients, how to keep them

Fig. 13.5 Screenshot of Epic’s MyChart Bedside. © 2014 Epic Systems Corporation. Used with

permission
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charged, how to secure the devices, who will reset the devices between patients, and

who will disinfect the devices before redeployment to the next patient.

Another application of inpatient clinical use of tablets is for clinicians to access

the medical record. There have been two primary approaches to this: native apps

and thin client access. With native tablet apps, EHR vendors build apps that provide

a subset of functionality that is available in the desktop applications. These apps

frequently enable reviewing of patient’s medications, lab results, and other data. In

addition, some apps enable e-prescribing and charting functionality. The native

apps however do not have the full functionality of the regular desktop application

that providers are used to.

The other approach that has been used to enable clinicians to access the medical

record is through thin client access software (such as Citrix). These thin client apps

enable client devices such as tablets to access a remote virtual desktop hosted on a

server. This allows tablets to access the full desktop application even though the

application cannot run natively on the device. The main drawback of this approach

is that the full desktop EHR applications are generally not designed for a touch

screen interface or the screen resolution of the tablet, thus actions – such as right

clicking – are difficult and can require a lot of scrolling to see the full interface.

Display sizes less than 1000 will require extensive scrolling and zooming. Another

significant challenge that is common with all thin client remote desktop systems is

that one needs a relatively high bandwidth network with low latency for the user

experience to be satisfactory. With poor quality networks, the screen refreshes can

have a significant lag. When deciding between the two directions in tablet-based

mobile EHR access, one needs to strongly consider whether full access to the EHR

is necessary and whether or not the network environment can support thin-clients.

Botella et al. (2013) designed a virtual pillbox to help elderly patients with

medication adherence. In their design process, they conducted a focus group with

health professionals. In addition, they selected a patient and a caregiver to help with

the design process. They started with the goal of developing for a mobile phone

with a screen size of 300 or more. After designing some initial prototypes, they

decided to implement the virtual pillbox application for tablets of at least 700. In their
patient satisfaction studies with the tablet, 91.7 % found the tablet easy to use, and

87.5 % found the 700 screen to be of adequate size (Botella et al. 2013).

Tablets and other mobile devices have been heavily used in time-motion studies

studying clinical workflow (Lopetegui et al. 2014). Their portable form factor

enables researchers to be mobile and more effectively collect data. One such

time-motion tool is TimeCaT (Lopetegui et al. 2012). There were a series of crucial

design decisions were made during the development of TimeCaT. One of the major

architectural decisions was to make TimeCaT a web-based tool, rather than a native

tablet or smartphone app. On one hand, making TimeCaT to be a web-based app

instead of a native app, requires it to have a network connection to function. On the

other hand, this choice enabled TimeCaT to be able to be used on a variety of

mobile devices and platforms, including laptop computers, smartphones, and tab-

lets. The decision to make TimeCaT a web-based tool resulted in a series of other

design decisions that needed to be made. Traditional web-based applications have
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been designed around the idea of that a full page refreshes when data is submitted to

a form. However, with the advent of Web 2.0-type technologies such as Ajax, full

page reloads are no longer necessary, enabling web apps to have responsive

behaviors similar to native applications. TimeCaT took advantage of these tech-

nologies, which improved the usability of the software and enabled users to collect

data on short workflow activities that take less time than the time that it could take

for a full page refresh in a web browser.

It was also determined that rather than to allow the client devices to manage the

timestamps of the observed tasks, the time on the web server should be used. The

main drawback of this design decision is that the latency of the network connection

to the web server and the number of users increasing the load on the web server

could perturb the accuracy of the timestamp. This decision enabled multiple users

to simultaneously observe different aspects of the same environment and to more

easily conduct inter-observer reliability studies.

Despite the ability to be used on a variety of devices, it was decided that the

primary target platform for the web app was the tablet form factor. Since time

motion studies tend to have observation times ranging on the order of an hour to a

full workday, battery life and observer comfort is a major factor. The tablet form

factor is nearly ideal for time-motion studies because the battery lives on tablets are

approximately a full workday. In addition to the issue of battery life, tablets and

smartphones have the advantage that they can be easily used while walking, unlike

laptop computers. During the implementation of TimeCaT, it was discovered that

the observers tended to use tablet-sized devices in landscape orientation. In addi-

tion, during longer observation sessions, the observers tended to cradle the tablet

from behind with one hand and arm similar to how one would cradle a baby,

minimizing the strain of carrying and using the device over long periods of time,

while maximizing use of the other hand for capturing data. Researchers are strongly

encouraged to look at how people not only interact with the software, but how they

interact with the hardware to ensure the overall system can sufficiently meet the

needs of the users.

13.2.6 Wearable Systems

There are many wearable systems that are designed, built, and evaluated in the

health and wellness domains to assist users assess specific metrics. Wearable

devices are broadly defined to include any computational device that an individual

wears – from a pedometer that one clips onto their pants to a computationally

enhanced contact lens. Popular off-the-shelf wearable systems provide users with

instant feedback on various metrics – the most popular metrics are step counts and

sleep – and usually with the ability to connect their data to their social networks. On

the horizon are industry research into more integrated systems that enhance every-

day objects such as watches, glasses, and contact lenses. Finally, we will review
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research activities that will further enhance our clothing and empower users to

create their own wearable systems.

Wearable systems are interesting to evaluate because unlike traditional mobile

systems where input and output is for the primary person interacting with the

system, wearable systems may provide outputs that are observable not only by

the primary wearer, but also anyone around the person. For example, if someone is

wearing a running shirt that notes a runner’s pace and heart rate, the runner and

people around them can see this information (Mauriello et al. 2014). Thus,

designers and evaluators must consider how they will evaluate observers in their

study designs. In short – when does an observer become a study participant? If a

user’s pedometer posts weekly stats to a social networking site – is the friend who

comments on the stat another study participant? Where is the line drawn?

Researchers have discussed these issues related to ambient environment user

studies (Hazlewood et al. 2011), but we have not investigated them fully in mobile,

wearable systems for health.

13.2.6.1 Off-the-Shelf Usability

Currently, there seems to be a new off-the-shelf wellness monitoring system each

week – from the long standing Fitbit (fitbit.com), Jawbone UP (jawbone.com/up),

BodyMedia Fit (bodymedia.com), and Nike + Fuelband (nike.com/fuelband) to

newer systems such as Misfit Shine (misfitwearables.com), Basis (mybasis.com)

and Lumo (http://www.lumobodytech.com). The systems typically sense physical

activity at a bare minimum and most also track sleep. Some push the market further

to sense perspiration, skin temperature, heart rate, and posture. Most systems

provide users feedback on the wearable system through an LED display, OLED

display, or – in a small subset – vibrations. All of the systems provide aggregate

data via a mobile application or website. Wearable systems are typically on the

wrist, hip, neck, or upper arm – each of these decisions bring with them their own

set of wear-ability issues. How professional does it look to have a glowing/blinking

bracelet? What if a user’s uniform cannot accommodate a clipped on wearable

system – either because of appearance rules or the garment is not strong enough to

hold the sensor properly?

When researchers choose to use an off-the-shelf wearable sensing system, they

must consider the accuracy of the system, if users can use the system, and how the

system may interfere with users’ lives. For example, Chen et al. (2013) compared

sleep tracking systems – two smartphone systems (an app that requires people to

sleep with the phone to detect movements and an app that detects phone usage and

ambient light to estimate sleep patterns) and two wearable systems (Jawbone and

Zeo) – to better understand what users wanted from a sleep tracking system. They

found that the wearable systems burdened users because the user had to set a sleep

mode input or wear an additional sensor to help monitor sleep, whereas the

smartphone applications required minimal user input. The authors acknowledge,

however that the wearable sensors detected more information about the users’
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sleep. Overall, off-the-shelf wearable systems provide the health informatics com-

munity with a variable cost solution to get baseline data on users’ specific health

metrics. The study design does not necessarily need any development time, thus

non-technical researchers could plan and facilitate the study design easily.

13.2.6.2 Enhanced Everyday Objects

Industry research labs and startups are introducing enhanced everyday objects that

people readily wear to empower them to manage their health. Watches are the most

pervasive example – from the community sourced (via kickstarter.com) Pebble

(https://getpebble.com) to the watches proposed by Google, Motorola, and LG – the

watch form factor ensures that updates are only a quick glance away. Currently,

Pebble can track physical activity and cycling through apps on the users’
smartphones. Users must currently have a smartphone or tablet device to send

updates to the watches – thus the entire system cost must be considered in the

study design.

Another enhanced everyday object is Google Glass (http://www.google.com/

glass/start/), a pair of glasses that has an attached heads-up display to record what

the user is seeing and provide feedback. Google Glass is currently being used in a

small trial at Indiana University Health (IU Health) in some clinical environments

to investigate how health professionals interact with patients to improve the quality

of care and identify patients’ emotional needs. Surgeons at The Ohio State Univer-

sity Wexner Medical Center are using Google Glass to consult with colleagues and

teach students in real-time during surgery as shown in Fig. 13.6. The Australian

Breastfeeding Association and Small World Social are currently conducting a small

trial study where five mothers use Google Glass to help them with issues they

encounter while learning to breastfeed their children – as shown in Fig. 13.7.

Specifically, Google Glass provides the moms with the ability to get hands-free,

step-by-step visual instructions and secure video conferencing with breastfeeding

counselors to receive real-time, personalized feedback from professionals about

issues they are encountering. Similar to the smart watches, Google Glass currently

requires a smartphone to provide the user with full functionality, thus the cost and

data plan for the entire system must be taken into account.

Google developed a contact lens that can measure one’s glucose levels by

sampling the user’s tears via a wireless chip and glucose monitor sandwiched

between two contact lenses (http://googleblog.blogspot.com/2014/01/introducing-

our-smart-contact-lens.html). The researchers are investigating the accuracy of

glucose readings in tears and how to communicate these levels to the user via

LEDs. The current contact lens is in the early stages of clinical trials, however the

technology is promising for future non-invasive ways to measure glucose levels.

Microsoft Research enhanced a bra to empower users to reflect on their own

eating habits in relation to their mood. The bra form factor was selected because it

provided an easy way to collect heart rate and respiration with an electrocardiogram

(ECG) sensor; skin conductance with an electrodermal activity (EDA) sensor; and
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Fig. 13.6 (a) A surgeon at the Ohio State University Wexner Medical Center wearing Google

Glass during surgery; (b) Ohio State University surgeons and students watch the surgery in real-

time remotely

Fig. 13.7 A mother

breastfeeds with the help of

Google Glass, as part of the

Breastfeeding Support

Project trial run by

Australian technology

company, Small World

Social

13 Designing and Deploying Mobile Health Interventions 295



movement with an on-board 3-axis accelerometer without requiring participants to

wear an extra piece of clothing. Researchers recruited a small, convenient sample

for a feasibility study to investigate how accurately the system could infer that a

user may be eating because of emotions. The researchers acknowledged that there

were issues with battery length (the system had to be recharged every 3–4 h),

comfort, and the need for the system to be worn by both genders (Carroll

et al. 2013). Microsoft Research also has investigated providing feedback to users

about their stress levels through Mood Wings, a wearable butterfly that moves its

wings in relation to stressful feelings (MacLean et al. 2013). In a small study where

users wore MoodWings while driving in a simulated environment, users were more

aware of their stress and reported feeling more stressed, however they still thought

the system was promising and researchers found that users needed more informa-

tion on how to mitigate the noted stress.

Industry research continues to integrate intelligence into everyday artifacts to

improve our physical, social, and emotional health. Most of the technology

discussed here requires a smartphone, tablet, or computer to push information to

the enhanced artifact. Thus, researchers must be careful to consider the cost

(material, developmental, and maintenance) and user burden (e.g., putting on

sensors, charging them, debugging the overall system) before deciding on a wear-

able system. Finally, the current technologies are in a nascent stage, thus they have

smaller pilot user studies to assess how people would use the technology (Klasnja

et al. 2011). Researchers who would like to use wearable technologies in large

deployments should carefully consider if a wearable system is robust enough for

general consumption.

13.2.6.3 Future Wearable Systems

Researchers in academia and industry continue to push the bounds about what we

consider enhanced everyday artifacts. For example, researchers at the University of

Minnesota are working on smart fabrics that will one day detect a user’s gait,

posture (Dunne et al. 2011), and joint angles (Gioberto et al. 2013). Indeed, the

researchers used their techniques to sew conductive thread into stockings that

provide a user with vibrotactile feedback if they are bending their knee incorrectly.

Researchers at the University of Colorado and Indiana University are creating a

framework for designing wearable health systems that will empower laypeople to

design and personalize interchangeable components to manage a specific health

metric. For example, they investigated how a small, convenient sample could create

their own system that tracks their outdoor exposure and visualizes their weekly

progress on an ambient tree painting. Overall, participants were interested in

crafting their own health sensing technologies, however the researchers acknowl-

edge that more research has to be done to better understand what specifically people

want to track and how to provide real-time feedback to them (Ananthanarayan

et al. 2014).
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Currently, wearable technologies require the user to wear another device (e.g., a

fitbit) or an enhanced device that may be bulkier to accommodate the electronics

and communication technology necessary to interface with various smart devices.

In the future, researchers are working towards less bulky, more comfortable tech-

nologies that users can easily customize for their own sensing and feedback

preferences. We decided to cover wearable technologies, a burgeoning booming

field, in this mobile HCI section because mobile, which is traditionally thought of in

terms of mobile computers and phones, is quickly morphing into smaller, wearable

systems.

13.2.7 Mobile Digital Pens

Another enhanced mobile artifact, although not a wearable system per se, are

mobile digital pens. These mobile digital pens try to bridge the paper and digital

workflows. They act as an input device that captures the location and marks on

paper and translates them as input into a digital system. Many of these pens use

special paper with locator marks embedded into the surface that helps the pen better

track the location and markings on the paper.

Sarcevic et al. (2012) developed a prototype system called TraumaPen that

utilized an Anoto DP-201 digital pen that captured the user’s writing and check-

marks and transmitted the information via Bluetooth to a nearby computer.

TraumaPen was designed to be a system to help support situation awareness during

trauma resuscitation. Information that was recorded through the pen was processed,

interfaced with a flowsheet, and translated onto a wall display. Handwriting was

processed by handwriting recognition software and mapped into relevant entries in

their data model. One of the challenges with this approach was that the person

recording the information, frequently needed to look up from the paper to the digital

wall display to check the correctness of the data being captured, particularly with

respect to handwritten notes. This would distract the recording nurses from their

primary task of maintaining the documentation. TraumaPen’s research results

showed that handwriting recognition was not always accurate and moved to just

simply displaying an image of the handwriting, but that resulted in some difficulties

in reading the recording nurse’s handwriting. The digital pen worked best for

displaying information that was captured through checkboxes.

Similar to tablets, digital pens are helpful to researchers for in situ data capture

during shadowing studies. Digital pens, such as Livescribe (www.livescribe.com),

can record what is being said around a user. Thus, a researcher could make a quick

mark in her notebook about something that a participant said or an interesting

observation and later reflect on recording by either “playing back” the audio by

touching the pen to the mark in her notebook or downloading the data from the

digital pen and accessing it through the web interface.
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13.2.8 A Summary of Mobile Technology

When selecting a mobile technology, researchers should consider mobility, input,

output, uses, connectivity, and cost. We summarize these key points, as shown in

Fig. 13.8, in relation to the technologies covered in this chapter. By mobility, we

mean how often the technology will be available for participants to use – either all

of the time or when an event occurs. Tablets are the only mobile devices that we

would argue are mostly event driven because of their larger size – thus participants

would be less likely to carry them around all of the time. Digital pens are sometimes

used all of the time, thus the dotted line around the 24/7 icon, however they have

mostly been used in event driven studies (e.g., in an emergency room during a

trauma incident). Although we note that most mobile technology is available 24/7

to participants, most users want breaks from continuously being monitored or

burdened with inputting something into a device. Thus, researchers should consider

how much a sociotechnical intervention will burden the user and what implications

could occur from having continuous monitoring. For example, are there repercus-

sions for a user not being compliant? In addition, if continuous monitoring/input is

part of the study, the researchers must seriously consider the robustness of the

technology. Mobile devices with glass screens easily crack when dropped – thus a

case may be needed (and a budget for fixing the device). Wearable technology must

be comfortable and not get in the way of users’ everyday activities. In addition,

battery power is always a significant challenge when doing continuous monitoring

because monitoring requires computation and computation requires power – thus,

researchers must conduct small, beta tests to ensure the device can handle the

continuous monitoring without burdening users to change batteries or recharge in

the middle of the day.

Input mechanisms include buttons, touchscreen interaction voice, photos or

videos, handwriting recognition via a stylus, touchscreen, or pen, and sensor

input. All of the technologies discussed here with the exception of the digital pen

can accept some sort of button input – whether it is a physical device button, touch

screen button, or touch sensitive button on a wearable item. Only standalone

devices, smartphones, and tablets have specific touch screen inputs. For voice

input, we specifically meant that the voice can be recorded and acted on, thus

only smartphones, tablets, and digital pens can use voice input in this way. Most

higher end phone and tablets can take photos and videos for input. Handwriting

recognition requires either a touch sensitive screen or camera embedded in the

writing instrument, as is the case with digital pens. Only smartphones, tablets, and

wearable systems have sensors for input.

Since we are working with mobile devices, the major output concern is how

much screen space there is a small, medium, or large screen. Mobile devices can

also provide vibrotactile or audio, lights/LEDs, and multimedia outputs. Most

mobile devices can accommodate designs for small displays where information

must be abstracted or divided into small, readable chunks. Some newer mobile

devices, such as smartphones and tablets, have medium to large size displays, thus
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these technologies have more real estate to work with to design an interface with

more information. All of the technologies except for text messaging and provide

vibrotactile or audio feedback to the user. Stand alone, feature phones with screens,

smartphones, and tablets can provide researchers with the ability to present multi-

media information. Finally, wearable systems are currently the only systems that

regularly use lights/LEDs to communicate information to users.

In terms of uses, we looked at what each technology performed best at –

individual usage one-to-one, one-to-many, and many-to-one. The standalone, wear-

able, and digital pen technologies are best when used individually, however we do

note that the latter two could connect one-to-many and many-to-one depending on

connectivity (e.g., sharing over the Internet). Feature phones are good at individual

or one-to-one communication since the device has limited inputs and connectivity.

Finally, text messaging, smartphones, and tablets excel at one-to-many, one-to-one,

and many-to-one communication because it is easy to communicate with multiple

people using multiple connectivity mechanisms (e.g., text messages, emails, social

networking). Researchers should consider the possible privacy issues that users

may encounter when sharing information between various people – just because a

technology provides users with the ability to easily share information does not

necessarily mean that it is in the user’s best interest to share information –

especially information related to one’s health.
We briefly note the type of connectivity each device has – infrared, wireless

Internet, text messaging, short range wireless (e.g., Bluetooth), docking the tech-

nology to another device to connect the technology to a network, and voice, The

connectivity is tightly tied to the cost of the technology – either a one-time cost or a

reoccurring cost which can take the form of a monthly plan or a pay-as-you-go plan.

All of the technologies with the exception of text messaging have a one time cost to

purchase the device. Although it can be argued that text messaging requires a phone

or computer to text message, we were looking at the costs of the specific technol-

ogies. If a researcher would like to automate text messaging, then in addition to the

recurring text messaging costs, the researcher would have to pay for a text mes-

saging gateway service – another reoccurring cost. Any technology that supports

text messaging or voice connectivity has a reoccurring cost associated with it. We

noted that tablets sometimes have a reoccurring cost because some tablets have data

plans to receive Internet connectivity. We also identified that wearable systems

sometimes have reoccurring costs because some systems are paired with a device,

such as a smartphone, to connect to the Internet. Thus, in these wearable systems,

researchers should be prepared for two one-time costs – the wearable costs and

device cost – in addition to the reoccurring cost. Digital pens do not have a monthly

or pay-as-you-go cost, but some may require special paper that has to be purchased

or printed. Researchers should carefully consider the privacy and security of

information when sharing information digitally – since mobile devices are small

and computation drains batteries faster, information is typically not encrypted.

Based on the examples and overview provided in this section, researchers should

be able to find a mobile technology that can meet their needs if their intervention
truly needs to be relatively small, easy to carry, and available most of the time.
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13.3 Methodological Considerations for Conducting Field

Studies

There are a number of unique challenges with conducting studies with mobile

devices. Many of the challenges are because (1) users are mobile and (2) capturing

real world usage is challenging. Unlike capturing interactions on desktop com-

puters, screen capture software generally cannot be used to conduct usability

studies on phones and tablets. Problems with the screen capture approach include

generally the lack of good software for the variety of mobile devices available in the

ecosystem and that screen capture software cannot effectively capture the interac-

tions of the user with the screen. When users interact with mobile devices, they

frequently interact with touch screens. Without the ability to visually capture the

user’s finger taps on the screen, it can be difficult to determine whether or not some

of the usability challenges are related to failure of the hardware device to pick up

the user’s taps or related to the design of the user interface.

To solve this issue, researchers have designed “sleds” to capture a user’s
interaction with the devices. These sleds usually have a camera focused on the

mobile device and occasionally have an additional camera focused on the user (see

Fig. 13.9). They attach to the mobile device to maintain a consistent view on the

device, even when the user picks up the device to use it.

Fig. 13.9 Illustration of a

low cost mobile usability

sled. These sleds are

frequently made from a

sheet of acrylic and bent

into shape
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When designing a user study to evaluate mobile systems in health informatics,

researchers should carefully consider the goal of the mobile system and how it may

impact the study. For example, if a dietary monitoring application was designed to

help users be more compliant with specific dietary restrictions – such as the DIMA

example we discussed earlier – then researchers must account for how the research

team and users think about compliance. During the DIMA study, the research team

found that some participants were not using the application frequently – initially

they thought they had failed to design an application that met the all of the users’
needs. It was not until after the study that the research team learned that a

participant, who did not use DIMA often during the study, only used DIMA to

find out what diet would keep him compliant and then he ate the same things each

day until they got bored with the diet and then used DIMA to find a new diet that

would help him stay compliant. He wanted to use DIMA after the study to help him

decide what he could eat at upcoming holiday parties. This provided the research

team with insights into their expectation of compliance – use the application at

every meal – and the users’ expectation of compliance – use the application when

the user needs help being compliant.

This example also brings up another study design issue especially related to

health and mobile systems – the time of year for the study. If a study is to

investigate a groups’ everyday diet, then the study should be planned around

holidays where people may eat more than normal. If an intervention is aimed to

increase physical activity, then the time of year and the weather during that year

should be considered. If a study is being conducted in a clinical environment, then

the unit and time of year should be considered. For example, conducting a study in

pediatrics in August when children need physicals before school starts in compar-

ison to the summer time when families are away or busy with summer activities.

We always encourage researchers to report on users’ mobile system usage to

provide the research community with an idea of how users appropriated the system

into their daily lives. Usage statistics can take many forms – when the user opened

the application; what screens they used most; how many items were input at one

time; where did they navigate to (a normal navigation segment or are they getting

“stuck” somewhere?). Returning to the example, the research team knew how often

study participants were using DIMA and asked participants about any problems

they were encountering with using the application and monitoring their diet. People

who were not using DIMA as frequently as anticipated, in most cases, said that

everything was fine. They enjoyed using the application – thus, the research team

thought that the participants were possibly telling the researchers what they thought

the researchers wanted to hear. Looking at the usage statistics during the study can

help researchers ask personalized questions to participants to learn about their

usage and acceptance of the system.

Another related issue to usage is to report on when participants used the system

to help create a rich picture of the participants’ interactions with the system. For

example, if a participant was instructed to use a mobile system throughout the day,

but only used the system once during a certain time period, then the research team

has to acknowledge the possibility of recall bias. If participants only used the
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system when the research team contacted them – either to remind them of an

upcoming meeting or right before a meeting – then the researchers have to

acknowledge that usage spiked when the research team contacted the participants

and the accuracy of the data may have been compromised. For example, Stone

et al. coined the term “parking lot compliance” for when participants do their study

participation in the parking lot of the building where they will meet the research

team (Stone et al. 2003).

Since we use mobile systems to manage some health metric, we need to

investigate ways to measure the metric through baseline data, validated instru-

ments, physiological data, and self-report. For example, in the DIMA study, the

research team conducted 24-h recalls and had permission to record patients’
interdialytic weight gain in their medical files to compare with DIMA values. In

the 24-h recall, participants reported what they had consumed in the last 24 h and

the research team compared it with what was recorded in DIMA to note how

accurate digital self report was to recalled, verbal self report. The research team

used the interdialytic weight gain to calculate how much fluid participants’ con-
sumed and compare it with what DIMA recorded as participants’ fluid consump-

tion. These methods help us understand how accurate the system is and how

accurate the self-reporting may be.

If a research team decides to use a fairly new mobile system, we would strongly

recommend that they start the study with a small participant pool and a short

duration– similar to the some of the studies discussed in this chapter. Although

the results may not be generalizable and behavior will not change, researchers will

have the opportunity to understand how and why people use the system and what

changes are needed to provide easier interactions with the system. After the

research team has assured that users want and can use the mobile system, they

can decide to increase the study size and duration.

13.4 Conclusions

In this chapter, we provided a brief overview of howmobile technology has evolved

over the last 20 years – from basic touch screens with infrared connectivity to

wearable devices that can continuously sense information and share it with a larger

community. For each technology, we presented examples from research, industry,

and government to show best practices in design, implementation, and dissemina-

tion. We also closely examined the various functionality available in teach type of

technology to assist researchers understand what types of mobile technologies they

should consider for their own work. Finally, we concluded with some consider-

ations one should make when designing and conducting studies related to

healthcare with mobile technology. With the information in this chapter,

researchers can make an informed decision about whether mobile technology is

right for their system design, what technology they could use, and key consider-

ations they must make when conducting their study.
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Discussion Questions

1. Compare and contrast the similarities and differences in designing a system and

study for a text messaging, smartphone, and wearable system intervention.

2. What are our responsibilities as researchers to consider:

(a) How people want to use a mobile intervention in their everyday lives versus

how the research team envisions the participants using the application?

(b) What happens to the application after the study and funding is completed,

but participants still want to use it?
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306 A.M. Lai and K.A. Siek



Chapter 14

Visual Analytics: Leveraging Cognitive

Principles to Accelerate Biomedical

Discoveries

Suresh K. Bhavnani

14.1 Introduction

The Open Science movement (e.g., data from NIH-funded studies being made

publicly available), combined with digital access to patient clinical records, in

addition to rapid advances in the development of inexpensive high throughput

technologies (e.g., multiplex assays for measuring whole genome data across

many patients) has resulted in vast digital resources accessible by both scientists

and the lay public (Molloy 2011). However, the sheer magnitude of such resources

far exceeds our cognitive abilities to exploit them for the prevention, diagnosis, and

treatment of diseases. For example, translational teams consisting of biologists,

clinicians, and epidemiologists increasingly need to integrate and comprehend the

relationships among large and disparate types of information including molecular,

biochemical, and environmental variables, with the goal of comprehending com-

plex phenomena such as heterogeneities and corresponding pathways underlying

different diseases.
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One approach to integrate and comprehend such vast and disparate information

is through methods being developed in the new field of visual analytics. This

chapter begins by presenting an overview of the evolving theoretical foundations

for visual analytics, and the cognitive and task-based motivations to use methods

from this field to help comprehend complex biomedical data. Next, the chapter

provides a brief overview of visual analytical applications in the biomedical

domain, with a demonstration of how to use one of the most advanced forms of

visual analytics called networks, which are particularly useful for analyzing com-

plex molecular and clinical data. These analyses reveal the strengths and limitations

of network analysis, which are critical for its practical use to analyze ever increas-

ing and complex biomedical data. The chapter concludes with theoretical, applied,

and pedagogical hurdles that need to be addressed through future, research which

will enable visual analytics to fully realize its potential in accelerating biomedical

discoveries.

14.2 Visual Analytics: Theoretical Foundations

Visual analytics is defined as the science of analytical reasoning, facilitated by

interactive visual interfaces (Thomas and Cook 2005). The primary goal of visual

analytics is to augment cognitive reasoning by translating symbolic data (e.g.,

numbers in a spreadsheet) into visualizations (e.g., a scatter plot) which can be

manipulated through interaction (e.g., highlight only some data points in the scatter

plot). As discussed below, visualizations, and interaction with those visualizations,

are powerful for helping analysts comprehend complex relationships in biomedical

data because of the nature of human cognition, and the nature of tasks performed by

analysts.

14.2.1 Why Do Visualizations Matter?

Visualizations of data are often powerful because they leverage the massively

parallel architecture of the human visual system consisting of the eye and the visual

cortex of the brain (Card et al. 1999). This parallel cognitive architecture enables

the rapid comprehension of multiple graphical relationships simultaneously, which

often leads to insights about relationships in complex data such as similarities,

trends, and anomalies (Thomas and Cook 2005). For example, Fig. 14.1a shows a

spreadsheet representing the systolic blood pressure of patients before and after

taking a drug. The task of determining which of the two conditions have more

patients with systolic >140 is time consuming and error prone because the analyst

has to compare the number in each cell with 140, remember the result of each

comparison, and then make a final count to determine which column has a higher

number of patients with systolic>140. Such symbolic processing is serial in nature,
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and therefore highly dependent on the number of data points, which when large can

quickly overwhelm an analyst.

In contrast, as shown in Fig. 14.1b, if all cells in the spreadsheet with values

>140 are colored red, the resulting visual representation enables processing of red

cells in each column to be conducted in parallel, resulting in a more rapid deter-

mination that the left column has more red cells compared to the right column. Such

parallel processing is independent of the number of cells, and therefore scales up

well to large amounts of data. Data visualizations therefore help to shift processing

from the slower symbolic processing areas of the human brain, to the faster

graphical parallel processing of the visual cortex enabling detection of patterns in

large and complex biomedical data sets. Furthermore, by externalizing key aspects

of the task, the representation in Fig. 14.1b shifts information from an internal to an

external representation, making other tasks such as counting the number of patients

with systolic >140 in each column much easier (Zhang and Norman 1994).

Unfortunately, not all data visualizations are effective in augmenting cognition.

For example, a road map pointing south is not effective for a driver who is facing

north because it requires a mental rotation of the map before it can be useful for

navigation. Similarly, an organizational chart of employee names and their loca-

tions laid out in a hierarchy based on seniority is not very useful if the task is to

determine patterns related to the geographical distribution of the employees.

Finally, if a chart has an incorrect or missing legend and axes labels, the visuali-

zation is difficult to comprehend because it cannot be mapped to concepts in the

data. Therefore visualizations need to be aligned with mental representations of the

Fig. 14.1 An example of how symbolic data in a spreadsheet (a) when converted into a visual

representation (b) leverages the parallel processing abilities of the visual cortex which enables

faster comprehension of patterns in the data. Because visual processing is parallel in nature, it

scales to handle large amounts of data. When the same data is sorted by gender (c), the visual

representation reveals yet another pattern demonstrating how interaction with the data is a critical

aspect of visual analytics, and can guide the verification of the patterns using the appropriate

quantitative measures
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user (Tversky et al. 2002), tasks (Norman 1993), and data, before those visualiza-

tions can be effective in augmenting cognition.

14.2.2 Why Does Interactivity Matter?

While static visualizations of data can be powerful if they are aligned with mental

representations, tasks, and data, they are often insufficient for comprehending

complex data. This is because data analysis typically requires many different

tasks performed on the same data such as discovery, inspection, confirmation,

and explanation (Bhavnani et al. 2012), each requiring different transformations

of the data. For example, if the task in Fig. 14.1b is to understand the relationship of

the drug to gender, then the data can be sorted based on gender. As shown,

interaction with the data through such sorting reveals that the drug has no effect

on females (low values remain low, and high values remain high), whereas it has a

dramatic effect on lowering systolic values in males (all high values become low).

Therefore, while it is well accepted that interactivity is crucial for the use of most

computer systems, interaction with data visualizations can help to reveal relation-

ships that are otherwise hidden when using a single representation of the data.

Interactivity is also critical when analysis is done in teams consisting of different

disciplines, where each member often requires a different representation of the

same data. For example, a molecular biologist might be interested in which genes

are co-expressed across patients, whereas a clinician might be interested in the

clinical characteristics of patients with similar gene profiles, and later how they

integrate with the molecular information. To address these changes in task and

mental representation, visualizations require interactivity or the ability to transform

parts, or the entire visual representation.

14.2.3 Theories Related to Visual Analytics

Although the field of visual analytics has drawn on theories and heuristics from

different disciplines such as cognitive psychology, computer science, and graphic

design, the development of theories and taxonomies for visual analytics are still in

early stages of development (Thomas and Cook 2005). For example, there are a

number of attempts to classify visual analytical representations (Heer et al. 2010;

Shneiderman 1996), and interaction intents at different levels of granularities

(Yi et al. 2007; Amar et al. 2005).

One attempt to classify visual analytical representations groups them into

(1) time series (e.g., line graphs showing how the expression of different genes

change over time), (2) statistical distributions (e.g., box-and-whisker plots),

(3) maps (e.g., pie charts showing percentages of different races at different city

locations on the US map), (4) hierarchies (e.g., top-down tree showing the
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management structure of an organization), and networks (e.g., a social network of

how friends connect to other friends such as on Facebook). Once these visualiza-

tions are generated, they are considered visual analytical if they enable interaction

directly or indirectly with part, or all of the information being represented. Exam-

ples for such interactivity include transforming a top-down tree into a circular tree,

coloring nodes in the tree based on specific properties such as gender, or dragging a

node in the tree to swap its location with another sibling node.

Similarly, there have been several attempts to classify interactions with visual-

izations at different levels of granularity. For example, Amar et al. (2005) proposed

8 low-level interaction intents: retrieve value, filter, compute derived value, find

extremum, sort, determine range, characterize distribution, find anomalies, and

cluster and correlate. In contrast, Yi et al. (2007) proposed 6 higher level interaction

intents typically used: select, explore, reconfigure, encode, abstract/elaborate, filter

and connect.

While the above classifications of visual analytical representations and interac-

tion with them are useful as check lists for building effective visual analytical

systems, they do not provide an integrated understanding of how they work together

to enable analytical reasoning, a primary goal of visual analytics. To address this

gap, Liu and Stasko (2010) proposed a framework which integrates visual repre-

sentation, interaction, and analytical reasoning. The framework specifies that cen-

tral to reasoning with an external visual analytical representation (e.g., the table in

Fig. 14.1b) is a mental model which is an analog of the external representation

stored in working memory, and which is “runnable” to enable reasoning of the data

and relationships. This is achieved by creating a mental model in working memory

which is a “collage” of some or all of the structural, semantic, and elemental details

present in the visual representation, in addition to other information from long term

memory relevant to the task. For example as shown in Fig. 14.1b, an analyst

conducting the task of determining which of the two columns have more patients

with systolic >140 might construct a mental model in working memory consisting

of two columns with cells colored red and white, but excluding elements such as the

numbers in the cells. Similar to the speed of accessing information stored in the

memory of a computer versus from disk, a mental model stored in the brain’s
working memory can be used to rapidly achieve tasks such as determining which of

the two columns have more red cells, or even determining that the first column has

approximately three times more red cells compared to the second column.

The framework further specifies that because working memory has size con-

straints, a mental model can typically contain only some of the information present

in the external visualization at any given time. Therefore, when the task changes, it

motivates a tight interactive coupling between the internal mental model and the

external visual representation, through which new information is extracted from the

existing state of the visualization or from long term memory, irrelevant information

in the mental model is discarded to make room for new information, the external

visual representation itself is transformed to reveal new relationships, or the

conceptual information is externalized onto the visual representation to enable

future tasks. For example, when the task described in Fig. 14.1 involves exploring
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or determining the relationship of systolic blood pressure to gender, then a tight

coupling between the internal and external representations is triggered enabling the

extraction of gender-related information and its relationship to systolic blood

pressure. This can be done either by extracting the information from the current

representation (requiring often costly mental manipulations) to identify patterns, or

by transforming the external representation through manipulations such as sorting

(requiring relatively cheaper physical actions) to reveal new relationships, which

are then immediately available for internal reasoning tasks such as determining

inequalities between the columns. Furthermore, information about the current or

previous task such as a discovered pattern can be externalized onto the visual

representation through annotations, and therefore freeing up working memory for

subsequent tasks.

The framework proposes that the coupling of internal and external representa-

tions can be characterized by three interacting goals: (1) External anchoring or the

process of connecting conceptual structures (e.g., systolic blood pressure >140) to

material elements of the visualization (red colored cells), (2) Information foraging
or the process of exploring the external visual representation through extraction

(e.g., counting the red cells related to female patients) or through transformation

(e.g., sorting) of the representation, and (3) Cognitive offloading or the process of

transferring a conceptual structure onto the visual representation to reduce working

memory demands (e.g., encircling or annotating in Fig. 14.1c all female patients

who have systolic >140 before and after taking the drug).

While the above integrated framework of visual representation, interaction, and

analytical reasoning still needs to be elaborated into a theory and tested through

predictive models, it provides a first step into how the critical concepts of visual

analytics could be working together to enable analytical reasoning, leading to

implications for the design and evaluation of effective visual analytical systems.

Finally, it is important to note that visual analytics has considerable overlap with

the fields of scientific visualization (focused on modeling real-world geometric

structures such as earthquakes), and information visualization (focused on model-

ing abstract data structures such as relationships). However, as described above,

visual analytics places a large emphasis on approaches that facilitate reasoning and

making sense of complex information individually and in groups (Thomas and

Cook 2005).

14.3 Visual Analytics: Biomedical Applications

The use of visual analytical representations is increasingly becoming pervasive in

the biomedical domain. The selection of visual analytical representations is highly

dependent on the users of the information and their goals, which can be classified in

the following two broad categories:
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14.3.1 Information Consumers

The primary goal of information consumers is to make biomedical information

actionable in terms of directly affecting change in health-related behaviors. An

important class of information consumers is patients and care providers whose

primary goal is to track and modify personal health and life style behaviors through

the use of biomedical and social data. For example, the website PatientsLikeMe
(2014) enables users to input health and lifestyle variables of specific individuals.

As shown in Fig. 14.2, this information is displayed using visual analytical repre-

sentations such as longitudinal charts and graphs which can be modified to display

Fig. 14.2 A visual analytical display of patient information provided by PatientsLikeMe, a

website that enables patients and caregivers to upload information about individuals, and search

for other patients with a similar condition (Reprinted by permission from Macmillan Publishers

Ltd: Nature Biotechnology (Brownstein et al. 2009), copyright 2009)
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different granularities of data. Users can also find patients who are similar to their

profile, and learn about their real-world experiences of dealing with their diseases,

with the goal of improving the quality of life for themselves or for those they

provide care. Similarly, personal and wearable activity monitors (e.g., fitbit) have

been developed to motivate behavior change such as weight loss by monitoring how

many steps a user has taken on a particular day, and displaying that information on a

smart phone using visualizations such as a progress bar and the recommended

target. Such information can be shared with other users in a social network to

provide additional motivation through competition.

Another important class of information consumers consists of healthcare pro-

viders such as physicians and first-responders whose primary goal is to make

healthcare decisions relevant to specific patients and situations by extracting rele-

vant information from databases such as electronic health records. For example, the

Twinlist system (Plaisant et al. 2013) was developed to reconcile multiple lists of

drugs (e.g., from the hospital records versus what the patient reports taking)

associated with a patient by graphically displaying what is similar and different

among the different lists. The goal of this prototype was to enable caregivers to

rapidly reconcile contradictory information with the goal of reducing errors in

treatment.

A third class of information consumers consists of policy makers from federal

and state agencies whose primary goal is to make policy decisions based on public

health information. For example, the Centers of Disease Control provides interac-

tive maps showing the incidence of different disease outbreaks across the US (CDC

2014), with the goal of enabling faster response.

Given that the primary goal of information consumers is to make specific forms

of biomedical information actionable, an active area of research is to determine

which visual analytical representations are appropriate for which classes of users

and goals, and to design and evaluate systems which are easy to learn, and intuitive

to use (Shneiderman et al. 2013). For example, while interactive time series, maps,

and hierarchies when designed carefully are considered easy to comprehend and to

interact with, other representations such as networks with more than a few dozen

nodes are considered more difficult to comprehend and tend to be avoided as

representations for information consumers.

14.3.2 Information Analysts

In contrast to information consumers, the primary goal of information analysts in

academic and industrial settings is to make contributions to biomedical scientific

knowledge. While the goal of all biomedical information users is to ultimately

improve health outcomes, the process of reaching that long-term goal is achieved

by information analysts through progressive contributions to scientific knowledge.

An important class of information analysts consists of biologists and bioinfor-

maticians whose primary goal is to decipher the biological mechanisms involved
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in different diseases. For example, biologists often use network visualization and

analysis tools like Cytoscape (2014) to comprehend complex disease-protein asso-

ciations (Ideker and Sharan 2008) with the goal of deciphering the functions and

pathways related to proteins of interest.

A second class of information analysts consists of clinical researchers and

medical informaticians whose primary goal is to develop new methods to improve

patient treatment by analyzing the relationship between clinical variables and out-

comes. For example, networks visualizations have been used to analyze Medicare

claims from more than 30 million patients, which enabled researchers to infer

patterns in the progression of different diseases (Hidalgo et al. 2009). One of the

their observations was that that highly connected nodes in the network had high

lethality implying that patients with such diseases are more likely to have an

advanced stage of disease.

A third class of information analysis consists of epidemiologists whose primary

goal is to analyze public health information. For example as shown in Fig. 14.3,

Christakis and Fowler (2010) found that the flu infection in a social network

consisting of Harvard students peaked two weeks earlier compared to a random

set of students from the same population. Such advanced warning could be effective

for planning immunizations during outbreaks of infectious diseases.

An active area of visual analytics research is to develop new approaches that

integrate molecular, clinical, and epidemiological information, in a single repre-

sentation. For example, translational scientists working in teams have used network

visualization and analyses to integrate molecular and clinical information with the

Fig. 14.3 Progression of the flu infection through a social network of students from Harvard

University (Christakis and Fowler 2010). The red nodes represent infected students, the yellow
nodes represent friends of infected students, and the edges connecting the nodes represent self-

reported friendship links (Reprinted under the Creative Commons Attribution license)
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goal of inferring heterogeneity in asthma, and the respective biological mechanisms

(e.g., Bhavnani et al. 2014a, b).

Given the importance of networks for the analysis and presentation of complex

relationships in a wide range of data types, and because it is one of the most

advanced form of visual analytics, the rest of this chapter focuses on providing a

concrete understanding of this approach as applied to the integrative analysis of

molecular and clinical information.

14.4 Network Analysis: Making Discoveries in Complex

Biomedical Data

Networks (Newman 2010) are an effective representation for analyzing biomedical

data because they enable an interactive visualization of complex associations.

Furthermore, because they are based on a graph representation, they also enable

the quantitative analysis and validation of the patterns that become salient through

the visualization. Networks are increasingly being used to analyze a wide range of

molecular measurements related to gene regulation (Albert 2004), disease-gene

associations (Goh et al. 2007), and disease-protein associations (Ideker and Sharan

2008). A network (also called a graph) consists of a set of nodes, connected in pairs

by edges; nodes represent one or more types of entities (e.g., patients or genes).

Edges between nodes represent a specific relationship between the entities (e.g., a

patient has a particular gene expression1 value). Figure 14.4 shows a sample

bipartite network where edges exist only between different types of entities (New-

man 2010), in this case between patients and genes.2

Network analysis of biomedical data typically consists of three steps: (1) explor-

atory visual analysis to identify emergent bipartite relationships such as between

patients and genes; (2) quantitative analysis through the use of methods suggested

by the emergent visual patterns; (3) inference of the biological mechanisms

involved across different emergent phenotypes. This three-step method used across

several studies (Bhavnani et al. 2010, 2011b, 2012) have revealed complex but

comprehensible visual patterns, each prompting the use of quantitative methods

that make the appropriate assumptions about the underlying data, which in turn led

to inferences about the biomarkers and underlying mechanisms involved. Each of

the three steps of this method is described below, followed by its application to

analyze a data set of subjects and gene expressions.

1 Gene expression is the process by which the information in a gene is translated into a gene

product such as a protein which can be involved in biological processes like inflammation during

an infection.
2 Researchers have explored a wide range of network types including unipartite, directed, dynamic,

and networks laid out in three dimensions to analyze complex data. As this wide range is beyond

the scope of this chapter, we suggest other excellent sources (Newman 2010) for such information.
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14.4.1 Exploratory Visual Analysis

Network analysis typically begins by transforming symbolic data into graphical

elements in a network. To achieve this, the analyst needs to decide which entities in
the data represent the nodes in the network, in addition to how other useful

information can be mapped onto the node’s shape, color, and size. Similarly, the

analyst needs to decide which relationships between the entities in the data are

represented by the edges in the network, in addition to how to map other useful

information to the edge’s thickness, color, and style. These selections are made

based on an understanding of the kinds of relationships that need to be explored,

and is often an iterative process based on an understanding of the domain and the

nature of the data being processed.

Once the symbolic data has been mapped to graphical elements, the resulting

network is laid out so the nodes and edges can be visualized. The layout of nodes in

a network can be done where either the distances between nodes has no meaning

(e.g., nodes laid out randomly or along a geometric shape such as a line or circle), or

where the distance between nodes represents a relationship such as similarity (e.g.,

similar cytokine expression profiles). Layouts where distance has meaning are

typically generated through force-directed layout algorithms. For example, the

application of the Kamada-Kawai (1989) layout algorithm to a network results in

nodes with a similar pattern of connecting edge weights to be pulled together, and

those with different patterns to be pushed apart.

Figures 14.5, 14.6, 14.7 and 14.8 show the steps that were used to generate a

bipartite network of 101 subjects and 18 genes, data which is described in more

detail in the original study (Ioannidis et al. 2012). The 101 subjects consisted of

28 influenza (flu), and 51 respiratory syncytial virus (RSV) cases, and 22 age,

Fig. 14.4 A sample bipartite network where edges exist only between two different types of

nodes. In this case, nodes represent either patients (black) or genes (white), and edges connecting

the two represent gene expression
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gender, and race matched healthy controls. The 18 genes were highly significant,

differentially-expressed genes that were common to both infections. The goal of

this analysis was to identify subgroups of cases that had different molecular profiles

and therefore could suggest sub-phenotypes that require different treatments. Fig-

ure 14.5 shows how the three types of subjects were represented as RSV (gray

triangles), flu (gray diamonds), and controls (gray squares), and the genes were

represented as circular black nodes. Furthermore, normalized gene expression

values were represented as edges connecting each subject to each gene. These

nodes were laid out equidistantly around a circle. Figure 14.6 shows the same

network but where the edge thicknesses are proportional to the normalized gene

expression values. Therefore, thicker edges represent higher gene expression values

as compared to the thinner edges. Furthermore, the size of the node was made

proportional to the total expression value of the connecting edges. Therefore, larger

patient nodes have overall higher aggregate gene expression values compared to

smaller patient nodes.

Fig. 14.5 A bipartite network showing subject nodes (RSV patients¼ triangles, flu

patients¼ diamonds, and controls¼ squares) and gene nodes (black circles) connected in pairs

by edges, which represent normalized gene expression. Patient and gene nodes were separately

grouped and randomly laid out equidistantly around a circle
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Although the patients, genes, and the gene expression have been visually

represented, the distances between the nodes have no meaning. To better compre-

hend the data, the subjects that have higher expression value for a particular gene

should be spatially closer to that gene compared to those that have lower gene

expressions. This approach of using short distances between entities to show

similarity, and long distances between entities to show dissimilarity is typical

across clustering algorithms. As shown in Fig. 14.7 and previously reported

(Bhavnani et al. 2014a, b), application of the forced-directed algorithm Kamada-

Kawai to the circular layout results in nodes that have a similar pattern of gene

expression to be pulled together, and those that are not similar to be pushed apart.

The resulting layout suggests that there exist distinct clusters of subjects and

genes. As shown in Fig. 14.7, the subjects had a complex but understandable

topology consisting of a majority of the cases (triangles and diamonds) on the top

cluster which had a preferential expression of the top 14 genes, and a majority of the

Fig. 14.6 The same network as in Fig. 14.5 but where edge thickness is proportional to the

normalized gene expression value and the size of each node is proportional to the total expression

values of the connecting edges. Thick edges represent higher gene expression values compared to

thin edges. Similarly, larger subject nodes have higher aggregate gene expression values compared

to smaller patient nodes
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controls (squares) at the bottom of the network which had preferential expression of

the bottom 4 genes. In addition, the cases on the top had a core-periphery topology,

where there were some cases with high overall gene expression in the center, and

many patients with low overall gene expression in the periphery. Finally, there were

four cases (triangles and diamonds) that were clustered with the controls at the

bottom of the network.

While the network layout suggests the existence of distinct clusters, it is not

designed to reveal the members of each cluster. We therefore need to use quanti-

tative methods that are explicitly designed to identify the boundaries of clusters

based on a multivariate analysis of the data.

PTGDR

FLJ13197
FCER1A

KLRB1

IFI27 LDLR

TRIB1

HIST2H2AA
HIST2H2AA

HIST1H1C

H1F0 FCGR1A
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FCGR1ADEFA1

Controls
Influenza Patients
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Fig. 14.7 Application of Kamada-Kawai, a force-directed algorithm, to the circular layout. The

algorithm pulls nodes with similar gene expression patterns closer together while pushing apart

those with dissimilar expression patterns. The layout of the network suggested the existence of

distinct subject and gene clusters, and revealed inter-cluster relationships such as how the subject

clusters express particular gene clusters. However, quantitative methods must be used to identify

cluster boundaries
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14.4.2 Quantitative Verification and Validation

There exist a wide range of quantitative methods to verify and validate patterns

discovered through network visualization methods. While in principle any statisti-

cal method can be used to quantitatively analyze a pattern observed in a network,

many patterns are often analyzed using graph-based methods (Newman 2010) that

specialize in analyzing complex relationships. For example, degree assortativity
measures whether one type of nodes in a network which have high weighted degree

(e.g., subjects that have large nodes in Fig. 14.7), are preferentially connected to

another type of nodes that have high degree (e.g., genes that have large nodes in

Fig. 14.7), or vice versa.

Another approach that can be used to verify patterns in a network is hierarchical

clustering (Johnson and Wichern 1998). This unsupervised learning method

attempts to identify the number and boundary of clusters in the data. For example,

hierarchical clustering can be used to identify clusters of patients based on their

relationship to genes, or clusters of genes based on their relationship to patients.

The method begins by putting each node in a separate cluster, and then progres-

sively joins nodes that are most similar based on their relationship to connected

nodes. This progressive grouping generates a tree structure called a dendrogram,
where distances between subsequent layers of the tree represent the strength of

Fig. 14.8 A heatmap with dendrogram generated through hierarchical clustering helped to

identify the boundaries of three subject clusters, which were superimposed onto the network

shown in Fig. 14.4 using colored nodes to denote cluster membership. The network also shows the

relationship of the subject clusters to the top gene cluster consisting of 11 genes, and bottom gene

cluster consisting of 4 genes (Bhavnani et al. 2014a)
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dissimilarity between the respective clusters; the larger the distance between two

subsequent layers, the stronger the clustering. Analysts therefore determine the

number and membership of the clusters by identifying relatively large breaks

between the layers in the dendrogram.

Given the wide range of quantitative methods available, the patterns in the

network are used to guide the selection of the appropriate method. For example,

if distinct clusters do not exist in a network, then it is not appropriate to apply a

clustering algorithm to the network. This approach of selecting methods based on

the inspection of the data is similar to how statisticians determine whether to use

parametric or non-parametric inferential methods based on the underlying distri-

bution of the data.

Because the network in Fig. 14.7 suggested the existence of distinct clusters,

hierarchical clustering was used to identify the boundary and members of the

clusters. As shown in Fig. 14.8b, the horizontal dendrogram represents the gene

clusters, the vertical dendrogram represents the patient clusters, and the colored

cells represent normalized gene expression ranging from green (0) to red (1). The

dendrograms shows a clear break at two clusters for the genes, and three clusters for

subjects (as shown by the corresponding blue dotted lines across each dendrogram).

While there may be clear breaks in the dendrograms, the overall pattern could

have occurred by random chance. Patterns discovered in networks, and subse-

quently the dendrograms, are therefore, validated by determining their significance.

One approach to do this is to compare the patterns in the data to random permuta-

tions of the network.

To test whether there were significant breaks in the dendrogram (denoting the

existence of distinct clusters), the variance, skewness, and kurtosis of the dissim-

ilarities (generated by the hierarchical clustering algorithm) in the flu/RSV network

were compared to 1,000 random permutations of the data. For each network

permutation, the number of nodes and the number of edges connected to each

node, in addition to the edge weight distribution of subjects were preserved when

analyzing the gene dendrogram, and vice versa. Significant breaks in the subject or

gene dendrograms would result in a significantly larger variance, skewness, and

kurtosis of the dissimilarity measures, compared to the same measures generated

from the random networks. As previously reported (Bhavnani et al. 2014a, b) the

results showed the clusteredness of the subjects in the network was significant as

measured by the variance of the dissimilarities (flu/RSV¼ 2.75, Random-

Mean¼ 0.88, p< .001 two-tailed test), skewness of the distribution of dissimilar-

ities (flu/RSV¼ 5.55, Random-Mean¼ 3.94, p< .001 two-tailed test), and kurtosis

of the distribution of dissimilarities (flu/RSV¼ 38.69, Random-Mean¼ 25.03,

p< .001 two-tailed test).

The same approach was used to test the clusteredness of the gene clusters. The

results showed that the gene clustering was also significant when compared to 1,000

random networks based on variance of the dissimilarities (flu/RSV¼ 2.91, Ran-

dom-Mean¼ 0.24, p< .001 two-tailed test), skewness of the distribution of dissim-

ilarities (flu/RSV¼ 2.01, Random-Mean¼ 0.80, p< .001 two-tailed test), and
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kurtosis of the distribution of dissimilarities (flu/RSV¼ 7.81, Random-

Mean¼ 3.16, p< .001 two-tailed test).

To understand why the subjects and genes were clustered, and how they related

to each other, the cluster memberships were superimposed onto the network. As

shown in Fig. 14.8a, the subject nodes were colored (blue, yellow, and pink) to

denote their membership in three separate clusters referred to as core cases,

periphery cases, and control-like cases. Furthermore, the 14 genes on the top, and

the 4 genes at the bottom also formed distinct clusters, but because they were easy

to distinguish by their spatial separation, they were kept black to reduce visual

complexity.

As shown in Fig. 14.7, in addition to the above clustering, the core cases

appeared to have higher overall gene expression (based on their size which is

proportional to the sum of their edge weights) compared to the periphery cases.

This pattern was quantitatively verified by comparing the weighted degree central-

ity (sum of edge weights) of the core cases to those of the periphery cases. This can

be done with well-known statistical tests such as the Mann Whitney U test, a

non-parametric test, which can be used to determine if the median of a variable is

significantly different across two groups.

The results showed that the core cases (Median¼ 4.55) was significantly differ-

ent (U¼ 49.00, p< .001, two-tailed test) compared to the periphery cases

(Median¼ 2.52) verifying that the overall gene expression of the patients in the

core was higher compared to those in the periphery. Furthermore, the median gene

expression of the 14 genes across the 25 core cases (Median¼ 4.22) was signifi-

cantly higher (U¼ 16, p< .001, two-tailed test) compared to the 50 periphery cases

(Median¼ 1.95). This pattern can also be seen in the high expression values (shown

in mostly red cells) in the upper left-hand corner of the heatmap in Fig. 14.8b.

Finally, there was no significant difference (χ2(2, N¼ 79)¼ 0.86, p¼ 0.652) in the

proportion of flu vs. RSV patients across the three case clusters, suggesting that the

gene-based clustering was common across both types of infection.

The above results of the cluster analysis superimposed over the network, in

addition to quantitative analysis of gene expression across the clusters enabled the

identification of three potential sub-phenotypes: (1) core-cases who had a signifi-

cantly higher gene expression of the top cluster of 14 genes, (2) periphery cases

who had a medium expression of the top 14 genes, and (3) control-like caseswhose

profiles were similar to the controls with high expression of the bottom cluster

4 genes. These three sub-phenotypes were common across both infections.

14.4.3 Inference of Sub-phenotypes and Biological
Mechanisms

While the visual and quantitative analysis helped to reveal patterns in the data, the

ultimate goal of the network analysis is to infer the biological mechanisms
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involved, and the emergent sub-phenotypes in the data. This inferential step

requires an integrated understanding of the molecular and clinical variables.

One approach to conduct such an integrated analysis, is to analyze how the

patients in each emergent cluster (based on molecular profiles), differ in their

clinical variables. As the primary data included disease severity of each patient

(Ioannidis et al. 2012), we used the Mann Whitney U test to analyze if the core and

periphery cases were significantly different in their disease severity. The test

revealed that the disease severity of core cases (Median¼ 7) was significantly

higher (U¼ 261.50, p< .001, two-tailed test) compared to periphery cases

(Median¼ 2). This result suggested a significant association between the high

gene expression of the 14 top genes in the core-cases, and higher disease severity.

The bipartite visualization and quantitative verifications therefore revealed not

only sub-phenotypes based on the molecular profiles, but also how they related to

clinical variables, which enabled the domain experts to infer three possible

sub-phenotypes and their potential pathways (Bhavnani et al. 2014a, b).

1. The core cases have significantly higher expression of 14 up-regulated genes,

which included 4 histone genes, 4 genes with to date have unknown function in

antiviral response, and 6 immune-related genes each of which has a well-known

non-overlapping antiviral function. An Ingenuity Pathway Analysis (Ingenuity

2014) of the 14 genes suggested an indirect but strong interferon signature

including TNFα and IL-6 cytokines involved in antiviral and innate inflamma-

tory responses. Because the core cases also had a significantly higher disease

severity score, they represent a distinct at-risk sub-phenotype that are hyper

responsive to pathways targeted to viral clearance, and possibly carry a risk for

long-term epithelial cell damage.

2. The periphery cases have a medium expression of all 18 genes and therefore

suggest a second subphenotype with a subdued anti-viral response relative to the

above hyperresponders.

3. The control-like cases have a high expression of 4 down-regulated genes, and

low expression of the 14 up-regulated genes, and therefore mirror the expression

patterns in uninfected controls. The results therefore suggest that the down-

regulation of these 4 genes indicates a “protective” phenotype making them

similar to the uninfected controls. Existing literature on these genes provide

some confirmatory evidence. While the exact role of the high-affinity receptor

which binds to the constant portion of IgE (FcER1) is unknown in viral patho-

genesis, SNPs included on this gene have been shown to be associated with

severe RSV disease (Janssen et al. 2007). Additionally, KLRB1, which has been

shown to have inhibitory functions on natural killer (NK) cells (Pozo et al. 2006)

was downregulated, suggesting an enhanced antiviral response in patients

resembling the immune response of controls. Finally, PTGDR a receptor impor-

tant in mast cell function was downregulated, but the exact role of this receptor

in viral infection is still unknown. Overall, control-like cases suggests a third

subphenotype which have a “just enough” response to the virus, without overt
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stimulation of virally induced genes, and therefore potentially with reduced

bystander damage.

One might argue that the above result could also be the result of the progression

of infection over time. For example, the core cases could be at the peak of infection,

the periphery cases could be later in the infection, and the control-like cases could

be recovering from the infection. However, an additional analysis revealed that the

3 case clusters were not significantly different (H(2, N¼ 79)¼ 2.56, p¼ 0.278) in

time of sample collection after hospitalization. There is of course the possibility that

the children were infected at very different times before hospitalization, but con-

trolling such a variable is practically impossible in the analysis of naturally infected

humans. Therefore, we provide two explanations for why sample collection time is

probably not an adequate explanation for the results: (1) Because all case samples

were collected from patients that were hospitalized indicating severe illness, a

resolution of such severity in the short time window of 42–72 h is unlikely to

occur. (2) The gene expression changes in the PBMCs of the patients suggest a

specific induced innate immune response (e.g., Toll-like receptor) to viruses. Such

signaling pathways (which induce interferon secretion and contribute to anti-viral

immunity) last several days which exceeds the sample collection time window in

this study. We therefore propose that the three case clusters are more likely the

result of inherent host differences in anti-viral responses, and therefore represent

distinct sub-phenotypes.

Informed by these underlying molecular processes, the network analysis of

subjects and genes therefore helped to infer not only the sub-phenotypes, but also

the possible mechanisms involved, and which sub-phenotypes had a high risk of

developing severe complications. The results therefore provided data-driven

hypotheses of sub-phenotypes and their mechanisms which can be validated in

future research with other datasets. Such analysis therefore could lead to future

treatments that are targeted to specific sub-phenotypes, and is therefore an impor-

tant step towards precision medicine.

14.5 Strengths and Limitations of Network Analysis

Network analysis has several strengths and limitations, whose understanding can

lead to informed uses of the method, appropriate interpretation of the results, and

insights for future enhancements and complementary methods.

14.5.1 Strengths

Network visualization and analysis provide four distinct strengths for enabling

rapid discovery of patterns in complex biomedical data.
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1. Provides Integrative Visualizations. Because networks are based on graph

theory, they provide a tight integration between visual and quantitative analysis.

For example as shown in the Fig. 14.8a, networks enable the integrative visual-

ization of multiple raw values (e.g., subject-gene associations, gene expression

values, subject phenotype), aggregated values (e.g., sum of gene values), and

emergent global patterns (e.g., clusters) in a single representation. This uniform

visual representation leverages the parallel processing power of the visual cortex

enabling the comprehension of complex multivariate, quantitative relationships.

2. Guides Quantitative Analysis. Networks do not require a priori assumptions

about the relationship of nodes within the data, in contrast to hierarchical

clustering or k-means which assume the data is hierarchically organized or

contain disjoint clusters, respectively. Instead, by using a simple pairwise

representation of nodes and edges, network layouts enable the identification of

multiple structures (e.g., hierarchical, disjoint, overlapping, nested) in a single

representation (Nooy et al. 2005). Therefore, while layout algorithms such as

Kamada-Kawai depend on the force-directed assumption and its implementa-

tion, such algorithms are viewed as less biased for data exploration because they

do not impose a particular cluster structure on the data, often leading to the

identification of more complex structures in the data (Bhavnani et al. 2010). The

overall approach therefore enables a more informed selection of quantitative

methods to verify the patterns in the data.

3. Enables Pathway Inference through Co-occurrence. Network layouts such as

the one shown in Fig. 14.8a, preserve highly-correlated variables (such as genes)

and display them through clustering. Furthermore, the bipartite network repre-

sentation enables the comprehension of inter-cluster relationships such as

between variable (e.g., genes) clusters and subject clusters. These features

provide important clues to domain experts about the pathways that involve

those variables. This is in contrast to many supervised learning methods which

drop highly correlated variables in an attempt to identify a small number of

variables that together can explain the maximum amount of variance in the data.

While this approach is powerful for developing predictive models, the reduction

in variables could limit the inference of biological pathways involved in the

disease.

4. Accelerates Discovery through Interactivity. Networks enable high interac-

tivity enabling the rapid modification of the visual representation to match the

changing task and representation needs of analysts during the analysis process.

For example, nodes that represent patients in a network can be interactively

colored or reshaped to represent different variables such as gender and race,

enabling the discovery of how they relate to the rest of the network.
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14.5.2 Limitations

Networks have three important limitations that are important to understand for their

current use, and need to be addressed in future research.

1. Constrains Number of Node Properties.While node shape, color and size can

represent different variables, there is a limit on the number of variables that can

be simultaneously represented. Furthermore, a visual representation can get

overloaded with too many colors and shapes, which can mask rather than reveal

important patterns in the data. Therefore, while networks can reveal complex

multivariate patterns in the data based on a few variables, they often require

complimentary visual analytical representations such as Circos ideograms

(Krzywinski et al. 2009; Bhavnani et al. 2011a) to explore data that is high-

dimensional (e.g., large number of attributes related to entities such as subjects

in the network).

2. Requires Advanced Computational Skills. While networks provide a rich

vocabulary of graphical elements to represent data, their design and use requires

iterative refinement based on an understanding of the domain, knowledge of

graphic design and cognitive heuristics, and the use of complex interfaces that

are designed for those facile in computation. This combination of knowledge

required to conduct network analyses makes domain experts dependent on

network analysts to generate and refine the representations, which can limit

the rapid exploration and interpretation of complex data.

3. Lacks Systematic Approaches for Finding Structure in Hairballs. While

network layout algorithms are designed to reveal complex and unbiased patterns

in multivariate data, they often fail to show any patterns in the data resulting in

what is colloquially called a “hairball”. In such cases, the nodes appear to be

randomly laid out providing little guidance for how to proceed with the analysis.

While network applications offer many interactive methods to filter data such as

by dropping edges and nodes based on different thresholds, many of these

methods are arbitrary and therefore unjustifiable to use when searching for

patterns especially in important domains such as biomedicine. There is therefore

a need to develop more systematic and defensible methods to find hidden

patterns in network hairballs.

14.6 Future Directions in Network Analysis

of Biomedical Data

The limitations of networks discussed above motivate future research with the goal

of overcoming theoretical, practical, and pedagogical hurdles. Theoretically, we

need better frameworks that tightly integrate existing theories from cognition,

mathematics, and graphic design. Such theories can help predict for example
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which combination of visual representations can together help researchers to best

comprehend patterns in different types of data such as genes versus cytokines.

Furthermore, given that many network layouts show no structure, future algorithms

should attempt to integrate different methods from machine learning to enable the

discovery of hidden patterns. These research directions could enable the rapid

discovery of patterns in the age of big data and translational medicine. Practically,

visual analytical tools tend to be designed for analysts, often requiring substantial

programming to make a dataset ready for visualization, and therefore limiting the

use of the methods to only a few biologists and physicians. This hurdle motivates

the need for tools that enable biologists and physicians to explore data on their own

so that they can better leverage their domain knowledge in interpreting the patterns

in the data. Of course such patterns need to be statistically validated by subsequent

analyses, but currently the exploration and validation is done mostly by analysts,

who could miss important associations due to the lack of domain knowledge.

Pedagogically there needs to be a concerted effort to train the next generation of

biomedical informaticians for developing and using novel visual analytical

approaches, and to train biologists and physicians on how to make important

biomedical discoveries in visual analytical representations of their data. Such

advances should enable visual analytics to fully realize its potential to accelerate

discoveries in increasingly complex and big biomedical data.

Discussion Questions

1. Why are visualizations and interactivity critical in making discoveries in com-

plex biomedical data?

2. What are the strengths and limitations of networks, and how can future research

fully exploit the strengths, and overcome the limitations?
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