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Abstract. Carefully crafted performance characterization can provide
significant insight into application performance and can be beneficial to
computer designers, compiler and application developers, and end users.
To achieve all the benefits of performance characterization, the charac-
terization must incorporate a comprehensive set of characteristics that
affect performance and can be measured with minimal perturbation from
the underlying micro-architecture. To this end, we advocate the use of
application-dependent characteristics that allow general conclusions to
be drawn about the application itself rather than its observed perfor-
mance on a specific architecture. In our prior work [7], we introduced
a set of application-dependent characteristics and showed that they are
consistent across architectures. In this work, we present an efficient char-
acterization methodology that incorporates a more comprehensive set
of application-dependent characteristics. We also explain in detail how
these characteristics can be used to reason about and gain insight into
application performance. Finally, we report characterization results on
SPEC MPI2007 and Mantevo benchmarks. To our knowledge, this is the
first work to present application-dependent characterization results for
SPEC MPI2007 and some of the new Mantevo benchmarks.

1 Introduction

If carefully crafted, application performance characterization can provide valu-
able insight into performance and significant benefits to a wide range of users
from hardware designers to application developers and end users. Architecture
designers can use application performance characterization to quickly define
an optimal initial baseline architecture for a given application or workload.
Performance characterization also helps reveal code optimization opportunities
for application developers and aids end-users in selecting the platform(s) that
result in optimal performance. Furthermore, application benchmark developers
use characterization to choose benchmarks that are representative of a particu-
lar domain and/or to compare benchmarks and determine their (dis)similarity.
Finally, performance characterization can be used to provide insight into why
an application performs the way it does on a particular architecture.
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To achieve these and other benefits of performance characterization, the
characterization must incorporate a comprehensive set of characteristics that
affect performance and the measurements must be done in a micro-architecture-
independent fashion. By using a comprehensive set of important performance
characteristics, a more complete picture of application performance can be drawn.
Therefore, in this work, we present and advocate the use of application-dependent
(i.e., micro-architecture-independent) characteristics that allow general conclu-
sions to be drawn about the application itself rather than its observed performa-
nce on a specific architecture. In other words, because they are the characteristics
of the application that realize the observed performance, application-dependent
characteristics help us understand the fundamental cause of the observed per-
formance on a specific architecture.

In our prior work [7], we introduced a set of application-dependent charac-
teristics and showed that they are consistent across architectures. In this work,
we present an efficient characterization methodology that incorporates a more
comprehensive set of application-dependent characteristics including spatial and
temporal locality, memory usage and memory footprint, branch predictability,
instruction mix, as well as characteristics related to ILP (instruction-level par-
allelism). To allow these characteristics to be measured quickly and in a micro-
architecture independent manner, we define all characteristics such that they are
easily obtainable using dynamic binary instrumentation (DBI). By using only
DBI, our methodology does not depend on slow (possibly inaccurate) simulators
and is, therefore, faster.

Although the idea of micro-architecture-independent characteristics has been
explored in prior studies, the methodology and metrics presented in this paper
are defined and used differently as illustrated below and in Sect. 5. Further, the
set of measured characteristics (metrics) defined is more comprehensive than
prior studies [12–14,20] and includes new metrics.

Workload characterization has been primarily used to understand the behav-
ior of applications on specific platforms and to understand the similarity of
benchmarks within or across benchmark suites. In this work, we define a char-
acterization method that can be applied in a wider context. In particular, we
show how to use the results of application-dependent characterization to

– reason about and gain insight into application performance
– intuitively understand how performance characteristics map to machine char-

acteristics
– aid in benchmark comparison and/or selection.

Additional contributions of this work include (1) a comprehensive set of
application-dependent metrics that includes new performance metrics, and
(2) detailed performance characterization data for benchmarks that have not
been characterized before as well as others that have only been lightly studied.

2 Methodology and Characteristics

In this section, we present our application-dependent performance characteristics
and metrics and show how they can be used to gain insight into application perfor-
mance. Our aim is to define a minimum number of characteristics that maximally
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capture an application’s unique and diverse behavior. We also briefly describe how
to use characterization results to compare applications or to select benchmarks for
a particular study. The application-dependent characteristics are classified into
general and memory characteristics as described below.

2.1 General Characteristics

Dynamic Instruction Mix
The dynamic instruction mix provides information about the types and ratios
of instructions executed by an application and can be used to gain a high-level
understanding of what the application needs in terms of the type of execution
units. To support CISC (e.g., x86) instructions that perform multiple operations,
we decompose each instruction into its single operations (ops) such as add, load,
or store ops. All the operations performed by a program are then grouped into
the following five categories: (1) Loads, (2) Stores, (3) FP Ops, (4) Int Ops,
and (5) Branches. These categories are chosen to correspond to the different
execution units that may be implemented in a micro-architecture. Additionally,
for each category, we capture a frequency distribution of the distance separating
two same-type ops measured in number of instructions. Such a distribution helps
us understand how particular execution units are stressed. For example, having
multiple FP execution units can improve performance if FP ops occur in bursts
(i.e., one after another). The distance distributions contain 513 distances or
bins that start from zero to a maximum distance of 511, with the last entry
representing distances larger than or equal to 512. Figure 1a shows an example
distribution of the distances between load ops for the 104.milc benchmark. The
figure shows that load op pairs that follow each other (i.e., distance of 1) represent
approximately 18 % of the total loads in the benchmark.

Instruction Dependence
We characterize the dependence between instructions using the register depen-
dence distance, which is the distance measured in number of dynamic instruc-
tions between the instruction writing or producing a specific register and the
instruction reading or consuming it. For each application, we capture a frequency
distribution of register dependence distances. This characteristic is indicative
of the amount of ILP (Instruction-Level Parallelism) inherently present in the
application and indicates whether the application can utilize increased proces-
sor issue width, more in-flight instructions (i.e., larger window), or more exe-
cution units. For example, if an application exhibits tight register dependence
distances, the opportunities to execute multiple instructions in parallel become
limited, which in turn leads to decreased performance. In contrast, an applica-
tion with long dependence distances will perform better on wide-issue processors.
Figure 1b shows the register dependence distance distribution for the CloverLeaf
benchmark. The figure shows that CloverLeaf has tight dependence distances;
a register is written and then read by the same instruction (i.e., distance of 0)
32 % of the time while a register is written and read by the next instruction (i.e.,
distance of 1) about 20 % of the time.
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Conditional Branch Predictability
Conditional branch predictability is measured for a given application using a met-
ric called branch transition rate [11]. Branch transition rate measures how often a
branch switches direction between taken and not taken during execution. Branches
are easily predictable if they do not change direction often or if they switch direc-
tion most of the time. Branches that have a transition rate of around 50 % are the
most difficult to predict. We classify branches into 11 groups (0–10) based on their
transition rates: 0–5 %, 5–10 %, 10–15 %, 15–20 %, 20–30 %, 30–70 %, 70–80 %,
80–85 %, 85–90 %, 90–95 %, and 95–100 %. Class 0 corresponds to the percentage
of branches that transition 0–5 % of the time; class 1 corresponds to the percentage
of branches that transition 5–10 % of the time and so on.

An application that has mostly class 0 or class 10 branches requires only a
simple branch predictor and will likely experience a low misprediction rate. In
contrast, an application characterized by primarily class 5 branches requires a
more sophisticated predictor and will more likely have a higher misprediction
rate. Figure 1c shows the percentage of branches in each branch transition rate
class for the miniMD and 104.milc benchmarks. MiniMD has a high percentage
of hard-to-predict branches (Classes 4 and 5) while 104.milc has mostly easy-to-
predict branches (Class 0). Therefore, miniMD is likely to have a higher branch
misprediction rate than 104.milc (see Sect. 4).

Fig. 1. Example general characteristics

Computational Intensity
Computational intensity is the ratio of floating-point operations to memory
accesses and is a commonly used characteristic for floating-point scientific appli-
cations. Computational intensity is an indirect measure of data movement.
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Because moving a piece of data is typically much slower than doing an operation
on it, application and algorithm developers strive to achieve higher computa-
tional intensities. Reducing data movement also reduces energy.

Average Instruction Size
The average size (in bytes) of instructions executed by an application can aid in
understanding how an application utilizes a given fetch width and whether a wider
fetch width is needed. This is particularly useful for CISC (e.g., x86) instructions
that vary in size, affecting both the fetch and decode stages of a processor pipeline.
To achieve optimal performance, the block of bytes (code) fetched on every cycle
must at a minimum contain a number of instructions equal to the processor width
(i.e., dispatch and commit width). We measure a distribution of instruction sizes
from which we calculate the average size.

Average Basic Block Size
A basic block is a single-entry, single-exit sequence of code. Measured in number
of instructions, basic block sizes are indicative of the amount of ILP available to
exploit which, in turn, informs fetch width and is correlated to branch frequency.
Since taken branches typically cause what is called a fetch bubble in a processor
pipeline, an application with small basic blocks (i.e., high rate of branches) may
experience frequent fetch bubbles and thus experience a decreased fetch rate. We
measure a frequency distribution of the dynamic basic block sizes and calculate
the average.

2.2 Memory Characteristics

Due to the dominance of the memory system in affecting performance, under-
standing the inherent memory characteristics of an application is key to under-
standing its performance. To this end, we define a comprehensive set of memory
characteristics and metrics as described below.

Data Working Set Size
The working set size determines the memory size required for an application
and it is defined as the total number of unique memory bytes touched by the
application during its execution. The working set size (or data intensiveness)
helps us understand the memory demands of an application and has been found
to be the biggest differentiator between real applications and benchmarks [18].

Timeline of Memory Usage
This performance metric captures the size of new memory used by an application
as its execution progresses in time. Starting from the beginning of execution and
for every interval of one billion instructions, we track and record the total number
of new and unique memory bytes touched by the application. Besides knowing the
periods of execution at which the application accesses new memory, the memory
usage timeline may be used to identify phases of execution. It has been shown
in [15] that the working set captured for execution intervals can be an effective
phase detection method.
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Figure 2 shows an example timeline for the HPCCG benchmark. The y-axis
shows the size of new memory used as a percentage of the benchmark’s total
working set size, and the x-axis represents execution progress. As illustrated in
the figure, the entire working set size of the HPCCG benchmark is accessed
within the first 4 % of execution; 58 %, 36 %, and 6 % of the working set size is
accessed in the first, second, and forth percent of execution, respectively. This
also suggests that after 4 % of execution elapses, HPCCG goes into a single
execution phase for the remainder of execution. Note that it may well be that
an application initializes all of its data structures (i.e. accesses all its memory)
at the beginning of execution. In such a case, the memory usage timeline can
not provide useful information about execution phases (see Sect. 6).

Fig. 2. Memory usage timeline for HPCCG

Average Requested Memory Size
This metric measures the average number of bytes read/written per memory
operation, indicating the average data size used by the application. This can
be useful when used with computational intensity to determine, on average, the
amount of data being moved per floating-point operation. Note that depending
on their types, memory instructions can read/write a widely varying number of
memory bytes. Therefore, knowing the number of memory operations must be
complemented by knowing the number of bytes those operations read or write.

Temporal and Spatial Locality
To mitigate the high latency of accessing memory, modern micro-architectures
feature small and fast cache memories that hold frequently-accessed data closer
to the processor. All caches work by exploiting the locality of reference exhibited
(to varying extents) by all applications. There are two types of locality: temporal
locality which is the reuse over time of a data item from memory, and spatial
locality which is the use of data items in memory near other recently used items.
By carefully analyzing an application’s temporal and spatial locality, not only
can we understand how effectively the application utilizes a given cache orga-
nization, but we can also reason about the optimal cache configuration for the
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application. Our approach to achieving this goal starts by capturing a frequency
distribution of the application’s memory-reuse distances.

A memory-reuse distance (MRD) is defined as the distance measured in num-
ber of unique memory blocks accessed between two accesses to the same block.
In all of our experiments, the maximum tracked MRD is 32 MB, which corre-
sponds to a cache size of 32 MB. Using 16-byte, 32-byte, 64-byte, and 128-byte
memory block sizes, we capture one MRD distribution for each block size. Note
that these block sizes correspond to four potential cache line sizes. Since higher
levels of cache typically store either data or instructions while lower levels of
cache store both, we capture separate MRD distributions for data references,
instruction references, and unified (both data and instruction) references.

We now illustrate how MRD distributions are used to characterize an appli-
cation’s spatial and temporal locality. Note that the conclusions drawn from the
examples below are only a small sample of the conclusions that can be drawn
from the data. Figure 3a shows a portion of the unified MRD distribution for
the HPCCG benchmark. The x-axis represents the distance in number of unique
64-byte block accesses between two accesses to the same 64-byte block, and the
y-axis represents the percentage of the total memory references.

The goal of characterizing an application’s spatial locality is to help us under-
stand how effectively and quickly the application consumes the data available to it
in a cache block. To achieve this and at the same time visualize spatial locality, we
plot the points from the MRD distribution that correspond to short memory-reuse
distances; zero through 64 (Fig. 3b). In other words, we determine the percentage
of memory references that reuse data from the same block (line) after n accesses to
other blocks, where n = {0, 1, 2, 4, 8, 16, 32, 64}. Other studies [12–14,20] capture
spatial locality only for a distance of zero by considering only successive references.
We believe that using a window of n references intuitively provides more accurate
spatial locality information but is computationally more complex.

As shown in Fig. 3b, about 42 % of the references in HPCCG immediately
reuse the same line (i.e., distance of 0), and around 34 % of references reuse the
same line after one access to a different line (i.e., distance of 1). Figure 3d illus-
trates how HPCCG ’s spatial locality changes over different block sizes. Within
the maximum distance of 64 line accesses, 91 %, 96 %, 98 %, and 99 % of refer-
ences are spatially local using 16-, 32-, 64-, and 128-byte blocks, respectively.
Note that in an n-way set-associative cache, there is a possibility that the inter-
mediate block accesses are to the same set (see discussion below), which may
cause a block to be evicted by the time it is referenced again. Thus, it may be
more accurate to look at spatial locality for short distances (e.g., 2, 4, and 8)
that correspond to the cache associativity of interest. For example, Fig. 3d shows
that the percentage of references spatially local within a distance of 2 is 70 %,
89 %, and 93 % for block sizes of 16, 32, and 64 bytes, respectively. As also seen in
Fig. 3d, HPCCG ’s spatial locality improves only slightly by increasing the block
size from 64 to 128 bytes. From this, we can conclude that the optimal cache line
size for exploiting HPCCG ’s spatial locality is 64 bytes.

To visualize temporal locality, the distances on the x-axis of the MRD distri-
bution are grouped into bins that correspond to potential cache sizes. The first
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Fig. 3. Temporal and spatial locality examples

four distance bins are set to 0, 4, 8, and 64 times the line size. The rest of the bins
go from 32 KB up to 32 MB, doubling each time. Figure 3c shows the temporal
locality plot for HPCCG based on 64-byte blocks and unified references.

The figure shows that 95 %, 97 %, and 98 % of references are temporal within
the distances of 256 B, 512 B, and 1 KB, respectively. This implies that a 1 KB
cache is large enough to keep 98 % of references temporally local within the cache.
Figure 3d shows how HPCCG ’s temporal locality changes over different cache line
sizes. For example, the percentage of references that are temporal within 1 KB is
91 %, 96 %, 98 %, and 99 % for 16-, 32-, 64-, and 128-byte blocks, respectively.

The above temporal and spatial locality analysis assumes that the target cache
is fully associative. However, in an n-way set associative cache, the block accesses
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that occur between two accesses to the same block can be to the same set, which
may cause a block to be evicted by the time it is re-accessed. For caches with a high
degree of associativity, which are typical of lower-level caches and closely approx-
imate fully-associative caches, our above analysis is valid and is confirmed using
actual measurements (see Sect. 4). However, for low associative caches, it is impor-
tant to look at the access patterns of cache sets. To this end, we capture a fre-
quency distribution of the set-reuse distances, where a set-reuse distance (SRD)
is the number of sets accessed between two accesses to the same set. To capture
the SRD distribution, assumptions must be made about the size of the cache, the
size of a cache line, and the number of ways in a cache set. In all our experiments,
the cache size is assumed to be 32 MB. We use four cache line sizes (16, 32, 64, and
128 bytes) and four associativities (2, 4, 8, and 16 ways). One SRD distribution is
captured for every unique combination of line sizes and number of ways.

Fig. 4. Set-reuse distances for HPCCG

Figure 4a shows a portion of the SRD distribution for HPCCG. In capturing
this distribution, the 32 MB cache is assumed to be 8-way set associative with
64-byte lines. As shown in Fig. 4a, about 40 % of references re-access the same
set after accessing eight other sets (i.e., distance of 8). It can also be seen that
around 67 % of references have a set-reuse distance of less than or equal to 10.
This suggests that a set is frequently re-accessed within a short period of time.
This may lead to more conflict misses provided that a low-associative cache is
used and that the MRD distribution shows a high ratio of references with long
MRDs compared to SRDs. That is, different blocks within a set are frequently
accessed within a short period of time, which increases the likelihood of conflict
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misses. In Fig. 4b, we group the set-reuse distances into bins that represent
distances as a percentage of the total sets in the 32 MB cache. As illustrated in
the figure, around 85 %, 90 %, and 99 % of total references re-access the same
set after 1 %, 5 %, and 20 %, respectively, of sets are accessed.

2.3 Selection and Comparison of Benchmarks

In addition to gaining insight into performance and reasoning about hardware
resources optimal for performance, the application-dependent characteristics des-
cribed above can also be used to select an appropriate set of benchmarks for a par-
ticular study or to determine the (dis)similarity among benchmarks. For example,
if one is interested in studying branch behavior or evaluating branch predictors,
they need to choose benchmarks with diverse branch predictability characteris-
tics. On the other hand, if evaluating memory system configurations or studying
memory behavior is of interest, the benchmarks with the most diverse memory
characteristics should be considered.

To compare benchmarks, the metrics used to measure the application-
dependent characteristics for each benchmark can be grouped into a vector that
can be called the performance vector. For example, the percentage of each of the
five categories in the instruction mix and the percentage of references in each bin
of the memory-reuse distance distribution can be included in the performance vec-
tor. The performance vectors of different benchmarks can then be normalized and
compared using a simple distance measure.

3 Experimental Setup

In this section, we briefly describe the platforms and tools used to capture the
application-dependent characteristics described in Sect. 2 as well as the bench-
marks used in this study.

Platforms
All of our experiments are conducted on a Dell cluster that includes eight nodes,
each of which runs the Scientific Linux (version 6.3) operating system [4] and
has 48 GB of available RAM. Each node contains two six-core Intel Xeon X5670
processors that are clocked at 2.93 GHz. While all the cores share a 12 MB 16-
way L3 cache, each core has a 32 KB 4-way L1 instruction cache, a 32 KB 8-way
L1 data cache, and 256 KB 8-way L2 unified cache. A cache line is 64 bytes in all
the levels of cache. Each of the Intel Xeon X5670 processor cores implements the
Westmere-EP micro-architecture which features: (1) a 4-way superscalar out-of-
order execution pipeline, (2) a 128-entry re-order buffer, and (3) three integer,
three floating-point, and four address generation units.

Tools
We capture the application-dependent characteristics described in Sect. 2 using
dynamic binary instrumentation (DBI) tools that we developed in-house using
Pin [17]. The slowdown caused by DBI depends on the type of analysis performed
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and the number of dynamic instructions instrumented. However, DBI is still
orders of magnitude faster than simulation and there exist techniques such as
sampling to effectively speed up the execution of instrumented binaries.

Capturing the memory-reuse and set-reuse distance distributions (see Sect. 2)
is nontrivial and can cause extreme slowdowns. To capture these reuse distances,
a FIFO(First-In-First-Out) queue is typically used to hold memory references
and for every new reference encountered during execution, the queue is searched
for a prior occurrence of the reference to determine a reuse distance. We imple-
ment three optimization methods to speed up our DBI tool. First, we limit the
size of the FIFO queue by restricting the maximum reuse distance to 32 MB
which is sufficient to study the behavior of most modern caches. Second, we
implement the FIFO queue using a balanced binary tree to achieve much faster
search and update times. Finally, rather than instrumenting the entire bench-
mark binary, we use representative sampling [9,10] to select a limited number of
representative samples. Then, the instrumentation is applied only to the selected
samples. For each benchmark, up to ten 100-million-instruction samples are iden-
tified using the PinPoints methodology [19] which is based on the well-known
SimPoint tool [24]. In [7], we show that the reuse distributions measured with
and without sampling are statistically similar at 95 % confidence.

Using our optimized tools and for all the benchmarks listed in Table 1, it
took approximately two weeks to capture all the characterization data on the
8-node platform described above. Finally, the PapiEx [3] tool is used to obtain
counts from the on-chip hardware performance counters

Table 1. List of benchmarks used

Suite Benchmark Lang. Application domain

SPEC MPI2007 104.milc C Quantum chromodynamics

107.leslie3d Fortran Computational fluid dynamics

113.GemsFDTD Fortran Computational electromagnetics

132.zeusmp2 C/Fortran Computational fluid dynamics

137.lu Fortran Computational fluid dynamics

Mantevo MiniApps miniFE C++ Unstructured Implicit Finite Element

HPCCG C++ Unstructured implicit finite element

miniMD C++ Molecular dynamics

miniXyce C + + Circuit simulation

CloverLeaf C/Fortran Hydrodynamics

Benchmarks
Table 1 shows a list of all the benchmarks used in this study. Although all are
parallel benchmarks, we execute them serially for the purposes of this work. All
benchmarks are built using compilers from the Gnu Compiler Collection(GCC) [1]
and are drawn from the following benchmark suites:

1. SPEC MPI2007 (version 1.1) is a benchmark suite from System Perfor-
mance Evaluation Corporation (SPEC) containing thirteen MPI-parallel,
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floating point, compute intensive benchmarks [5]. We select five benchmarks
(Table 1) that are the only benchmarks that can be executed serially.

2. Mantevo MiniApps, developed at Sandia National Laboratories, are small
self-contained proxies of real scientific applications used in the lab [2]. At the
time of doing this study, version 1.0 of the Mantevo suite contained seven
MiniApps. Of these seven MiniApps, we use five (Table 1) and exclude two
(miniGhost and CoMD) that we could not successfully run with our tools.
The problem sizes of the selected MiniApps are manually configured such
that the number of instructions they execute is similar to that of the SPEC
MPI2007 benchmarks (i.e., few trillion instructions per benchmark).

4 Results

In this section, we present measured application-dependent characteristics for all
the studied benchmarks. We also show performance data from on-chip counters
on the platform described in Sect. 3. We select and show only the counts that
help in interpreting the application-dependent characterization data.

Instruction Mix and ILP Characteristics
Figure 5a shows the instruction mix for each of the studied benchmarks. On
average, SPEC benchmarks execute more floating-point instructions (55 % vs
32 %), more loads (28 % vs 24 %), and slightly more stores (7 % vs 5 %) than
Mantevo benchmarks. On the other hand, Mantevo benchmarks execute more
integer operations (30 % vs 8 %) and more branch instructions (9 % vs 2 %).
However, unlike SPEC benchmarks, Mantevo benchmarks exhibit more diversity
in their instruction mixes. For example, CloverLeaf and miniMD have high
ratios of floating-point operations, miniXyce has the highest ratio of integer
operations, and both HPCCG and miniFE have a more even distribution of
integer and floating-point operations. In general, all the SPEC benchmarks will
likely benefit from more floating-point execution resources while the Mantevo
benchmarks will benefit from a mix of more floating-point, integer, and branch
execution resources. Although both benchmark suites have relatively similar
ratios of memory instructions, understanding their optimal memory resources
requires the understanding of their memory access patterns and other memory
characteristics that are presented later in this section.

Figure 5c shows the average register dependence distance as well as the average
distance between a load or a floating-point instruction to their consumer instruc-
tion. On average, Mantevo benchmarks have shorter register dependence distances
(4.1 vs 5.6), shorter FP-to-use distances (4.5 vs 5.4), and much shorter load-to-
use distances (4.4 vs 11.1). Also, on average, Mantevo benchmarks have smaller
basic blocks than SPEC benchmarks (11 vs 33 instructions). From the above,
we can conclude that SPEC benchmarks, on average, exhibit more inherent ILP
(instruction-level parallelism) than Mantevo benchmarks. The long distances bet-
ween load operations and their consumers in SPEC benchmarks suggests that
small memory latencies may be effectively hidden through out-of-order execution.
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Fig. 5. Select general characteristics of SPEC MPI2007 & Mantevo Mini Apps
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On the other hand, depending on their memory access patterns and the likelihood
of experiencing cache misses, benchmarks with short load-to-use distances may
require code optimization to hide memory access latencies.

Branch Predictability
Figure 5d shows the benchmarks’ branch predictability using their branch tran-
sition rates (Sect. 2). For each benchmark, the figure shows the percentage of
branches in each transition rate class. As described in Sect. 2, branches with high
or low transition rates are more easily predictable than branches with around
50 % transition rates. Almost all benchmarks have predominantly easy-to-predict
branches and thus their measured branch misprediction rates are less than 1 %
as seen in Fig. 9b. However, miniMD has the most diverse branch predictability
and the highest ratio of hard-to-predict branches. Therefore, it experiences the
highest branch misprediction rate (11.4 %), which can be a serious performance
bottleneck given that 5.5 % of all instructions in miniMD are branches.

Computational Intensity
Figure 5b shows the computational intensity of all the studied benchmarks. As
can be concluded from their instruction mix, SPEC benchmarks, on average,
have higher computational intensities than Mantevo benchmarks. However, the
Mantevo benchmarks show more diversity in computational intensity with min-
iMD being the most computationally intensive of all benchmarks and miniXyce
the least. Note that with the exception of milc, memory instructions in all bench-
marks read or write 8 bytes of data on average (Fig. 6b).

Data Working Set Size and Usage
Figure 6a shows the data working set size (data intensiveness) for all studied
benchmarks. On average, Mantevo benchmarks have much larger working set
sizes than SPEC benchmarks (4.5 GB vs 0.7 GB). As noted in Sect. 3, all bench-
marks are configured such that they execute a similar number of instructions.
With a working set size of 2 GB, GemsFDTD is the only SPEC benchmark
that accesses more than 1 GB of data. The benchmark HPCCG has the largest
working set size (11 GB) and miniXyce has the smallest (73 MB). Since cache
performance is largely dependent on temporal and spatial locality characteristics
as well as the cache configuration, having larger working sets does not necessar-
ily lead to worse cache performance. This is supported by the actual cache miss
measurements shown in Fig. 9c. These measurements show that some bench-
marks (e.g., miniXyce) with small working sets experience more cache misses
than benchmarks with much larger working sets.

Figure 6c shows the amount of new memory accessed with respect to execu-
tion progress. With the exception of milc and miniFE, all benchmarks access
their entire working sets within the first 1 to 5 percent of execution. miniFE
accesses around 93 % of its working set within the first 3 % of execution while
milc’s memory usage is more distributed between 1 % and 60 % of execution. This
suggests that milc has more diverse execution phases than the other benchmarks.
However, as discussed in Sect. 2, our memory usage timeline may not accurately
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Fig. 6. Select memory characteristics of SPEC MPI2007 & Mantevo mini apps
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reflect execution phase behavior since benchmarks may start their execution by
initializing their entire used memory. This issue will be addressed in future work.

Spatial and Temporal Locality
Spatial and temporal locality plots are presented in Figs. 7 and 8, respectively.
For four different block (cache line) sizes, these plots show only the locality
of data references. We describe below the locality characteristics of individual
benchmarks and relate our conclusions to the actual cache miss measurements
shown in Fig. 9c; cache details are in Sect. 3. To help relate conclusions to actual
measurements, we capture and show in Fig. 6d the percentage of 64-byte ref-
erences that have short set-reuse distances on two cache configurations that
correspond to the actual 8-way 32 KB L1 and the 8-way 256 KB L2 caches imple-
mented in the Westmere architecture (see Sect. 3 and Sect. 2).

Shown in Fig. 7, the spatial locality (i.e., the percentage of accesses reusing
the same block within a small number of other accesses) of milc as well as of
most of the other benchmarks, increases with increasing block sizes. For 16-, 32-,
64-, and 128-byte blocks, the percentage of references reusing the same block
within a distance of 8 is 73 %, 83 %, 90 %, and 91 %, respectively. However,
milc’s spatial locality increases only slightly by going from 64-byte to 128-byte
blocks. As illustrated in Fig. 8, milc also exhibits a high degree of temporal
locality with over 95 % of its 64-byte memory accesses being temporal within
4KB (64 × 64). Similar to its spatial locality, milc’s temporal locality does not
significantly improve by using blocks larger than 64 bytes.

Figure 9c shows that milc experiences fewer L1 and L2 misses compared to
the other SPEC benchmarks. This is due to its better temporal locality and
better spatial locality within a distance of 8 (i.e., the L1/L2 cache associativ-
ity). However, milc encounters L1 and L2 misses despite its excellent temporal
locality. This can be attributed to conflict misses caused by a high percentage
of references re-accessing the same cache set within short distances (Fig. 6d).

Compared to milc, leslie3d, GemsFDTD, and zeusmp2 exhibit less spatial loc-
ality with only 60 %, 50 %, and 50 %, respectively, of their 64-byte references being
spatially local within a distance of 8 (Fig. 7). Also, of GemsFDTD ’s, zeusmp2 ’s,
and leslie3d ’s 64-byte accesses, only 60 %, 50 %, and 50 %, respectively, are tem-
poral within 4 KB (Fig. 8). This explains why these benchmarks experience more
L1 and more L2 (except zeusmp2 ) cache misses than milc (Fig. 9c). The fewer L2
cache misses of zeusmp2 can be attributed to fewer conflict misses since a lower
ratio of its memory accesses reuse a recently-accessed set (Fig. 6d).

With 64-byte blocks, only about 70 % of CloverLeaf ’s references exhibit spa-
tial locality within a distance of 8 (Fig. 7). On the other hand, around 80 % of
the memory references in HPCCG, miniFE, miniMD, and miniXyce are spatially
local within a distance of 8. With the exception of miniXyce’s temporal local-
ity, the spatial and temporal locality of all Mantevo benchmarks improves only
slightly by increasing the block size from 64 to 128 bytes. Figure 8 shows Mantevo
benchmarks have varying temporal locality for long MRDs but also high ratios
of references that are temporal within short MRDs(i.e., small caches).
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Fig. 7. Spatial locality

Because it exhibits less spatial and temporal locality compared to the other
Mantevo benchmarks, CloverLeaf experiences more L1 cache misses (Fig. 9c).
It also encounters more L2 cache misses than the other Mantevo benchmarks
except miniXyce. As seen in Fig. 6d, both CloverLeaf and miniXyce have lower
ratios of references with short set-reuse distances, which further indicates lower
locality. MiniXyce has more L2 and L3 cache misses than all the other Mantevo
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Fig. 8. Temporal locality

benchmarks because around 10 % of its references are not temporal within 256 KB
or 12MB (i.e., L2 and L3 cache sizes). This also explains why most of its L2 cache
misses are not satisfied in the L3 cache. On the other hand, miniMD has the
lowest number of L1 and L2 cache misses because it exhibits the best temporal
locality within 32 KB (99 % of references) and the highest ratio of references
immediately reusing the same cache line.
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Fig. 9. Performance measurements from the intel platform (Sect. 3)

Discussion of Performance Measurements
Figure 9 presents the CPI, branch misprediction rates, and cache misses measured
on the Intel platform described in Sect. 3. On average, Mantevo benchmarks per-
form better than SPEC benchmarks (0.71 vs 0.87 CPI). The relatively low perfor-
mance of SPEC benchmarks could largely be attributed to their higher cache miss
rates and higher ratio of floating-point operations. However, there is substantially
more variance in the CPI’s of the Mantevo benchmarks. This is consistent with the
fact that Mantevo benchmarks exhibit more varying application-dependent char-
acteristics as shown earlier in this section.

Of the SPEC benchmarks, leslie3d shows the worst performance (highest
CPI). We believe this is due to its relatively larger number of L1 and L2 cache
misses. On the other hand, although milc has a low L1 cache miss rate, it exhibits
a relatively high CPI. This may be attributed to its short load-to-use distances
(Fig. 5c) with which cache access latencies can not be effectively hidden.

Of the Mantevo benchmarks, CloverLeaf has the highest CPI which can be
attributed to its relatively high L1, L2, and L3 cache miss rates. Also, with
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CloverLeaf ’s tight register dependence distances, cache miss penalties can not
be hidden. In contrast, miniMD shows a relatively high CPI although it has
the lowest number of cache misses. This may be largely attributed to its high
branch misprediction rate. MiniXyce’s CPI is also high and can be attributed
to its relatively high L1, L2, and L3 miss rates. It also has the smallest basic
blocks (5 instructions on average) and large instruction sizes (4 bytes on average)
which can limit the number of instructions fetched by the processor per cycle
(see Sect. 2). Finally, both HPCCG and miniFE encounter the lowest number of
L2 and L3 cache misses. Because these two benchmarks exhibit relatively good
ILP (long register dependence and load-to-use distances), their L1 cache miss
penalties can be effectively hidden, which may explain their low measured CPI.

5 Related Work

Most prior characterization approaches use hardware-dependent performance
metrics such as CPI or cache miss rates obtained from hardware performance
counters or simulation [6,8,16,23]. The goal is to measure and understand applica-
tion performance on a specific platform. Other approaches use similar hardware-
dependent metrics to study benchmark similarities to find representative subsets
of benchmark suites [21,22]. Besides the pitfalls of hardware-dependent character-
ization mentioned in [12,13], conclusions drawn from these studies only apply to
the specific micro-architecture used. However, using micro-architecture-
independent metrics as presented in this work, allows us to reason about appli-
cation behavior on different machines, even those that do not exist yet.

Other studies use microarchitecture-independent characteristics such as instr-
uction mix and memory footprint to study program similarities [12–14,20]. The
primary objective of these studies is to reduce the number of benchmarks used
in design space exploration and to discover programs with similar or unique
program behavior within a benchmark suite. Besides being applied in a wider
context, our methodology includes a more diverse set of characteristics and met-
rics. Also, the metrics we use are either new or different in that similar metrics
are defined differently and, therefore, capture different behavior. For example,
we capture branch predictability and consider larger windows for capturing ILP
characteristics. Furthermore, we track a much larger number of memory refer-
ences and provide a more precise definition of temporal and spatial locality to
help in correlating with actual cache measurements.

6 Conclusions and Future Work

This work presents an architecture-independent methodology for characterizing
application performance that is based on binary instrumentation and incorpo-
rates a diverse set of application-dependent characteristics. We report results
on SPEC MPI2007 and Mantevo benchmarks. We show that SPEC benchmarks
are more computationally intensive while Mantevo benchmarks have much larger
memory demands. Also, Mantevo benchmarks exhibit more diverse behavior in
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all dimensions than SPEC benchmarks. To our knowledge, this work is the first
to present architecture-independent characterization results for SPEC MPI2007
and some Mantevo benchmarks.

In future work, we plan to enhance our approach to capture the working set
size such that it can accurately be used for detecting execution phases. We also
plan to extend the methodology to characterize more aspects of performance
that are important in multi-threaded and parallel applications such as synchro-
nization and data movement.
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