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Abstract. In this paper we present research on applying a domain spe-
cific high-level abstractions (HLA) development strategy with the aim
to “future-proof” a key class of high performance computing (HPC)
applications that simulate hydrodynamics computations at AWE plc. We
build on an existing high-level abstraction framework, OPS, that is being
developed for the solution of multi-block structured mesh-based applica-
tions at the University of Oxford. OPS uses an “active library” approach
where a single application code written using the OPS API can be trans-
formed into different highly optimized parallel implementations which
can then be linked against the appropriate parallel library enabling exe-
cution on different back-end hardware platforms. The target application
in this work is the CloverLeaf mini-app from Sandia National Labora-
tory’s Mantevo suite of codes that consists of algorithms of interest from
hydrodynamics workloads. Specifically, we present (1) the lessons learnt
in re-engineering an industrial representative hydro-dynamics application
to utilize the OPS high-level framework and subsequent code generation
to obtain a range of parallel implementations, and (2) the performance
of the auto-generated OPS versions of CloverLeaf compared to that of
the performance of the hand-coded original CloverLeaf implementations
on a range of platforms. Benchmarked systems include Intel multi-core
CPUs and NVIDIA GPUs, the Archer (Cray XC30) CPU cluster and the
Titan (Cray XK7) GPU cluster with different parallelizations (OpenMP,
OpenACC, CUDA, OpenCL and MPI). Our results show that the devel-
opment of parallel HPC applications using a high-level framework such as
OPS is no more time consuming nor difficult than writing a one-off par-
allel program targeting only a single parallel implementation. However
the OPS strategy pays off with a highly maintainable single application
source, through which multiple parallelizations can be realized, without
compromising performance portability on a range of parallel systems.
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1 Introduction

High performance computing (HPC) is currently in a period of enormous change.
For many years, increased performance was achieved through higher clock fre-
quencies, but that trend was brought to an abrupt halt by the corresponding
increase in energy consumption. The clear direction now is towards improved
performance through increasing parallelism, even reducing the clock frequency
a little to improve the energy efficiency, which is becoming a key concern. How-
ever, there is no clear consensus yet on the best architecture for HPC. On the
one hand there are many-core accelerators such as GPUs and the new Intel
Xeon Phi, usually with 16–64 functional units, each of which can be viewed as a
vector processor with many elements (cores) performing the same operation at
the same time but with different data. On the other hand, we have mainstream
Intel/AMD CPUs with very large caches and a more modest number of func-
tional units (cores) each with their own vector components (e.g. AVX units), or
the IBM BlueGene systems which are based on a large network of relatively small
but energy-efficient CPUs. In the future, we may also have interesting energy-
efficient designs from ARM [9] and other companies [19] which have achieved
great energy efficiency for mobile and embedded applications, and are now tar-
geting HPC which increasingly shares similar goals.

In the light of these developments, an application developer faces a tough
problem. Optimizing their application for execution on a particular platform
requires an increasing amount of platform-specific knowledge, and possibly a
major re-write to reduce data communications. At the same time, there is con-
siderable uncertainty about which platform to target; it is not clear which archi-
tectural approach is likely to “win” in the long-term, and it is not even clear in
the short-term which platform is best for any given application.

Currently the common approach for utilizing novel hardware, or different
many-core accelerators is to manually port the legacy application, in many cases
by converting key compute kernels to utilize the accelerators. In some cases
a major ground-up rewrite is required, for example if you need to reduce data
communications to efficiently utilize the new hardware. The conversion process is
highly error-prone and takes significant amounts of developer effort to program,
validate and optimize. It is unreasonable for domain scientists to be engaged in
such optimization work that will require them to port the application for each
new generation of systems. Thus “future proofing” HPC applications for their
continued performance and portability on a diverse range of hardware and future
emerging systems is of critical importance.

One suchapproach, is theuse of domain specifichigh-level abstractions (HLAs),
such as domain specific languages (DSLs) and active libraries [13,31]. The key idea
is to provide the application developer with a set of domain specific constructs to
declare the problem to be computed, without specifying its implementation [18].
It is then the task of a lower implementation level to apply automated techniques
for translating the specification into different implementations for different hard-
ware and software platforms. The use of such a development strategy has previ-
ously been shown to have significant benefits both for developer productivity and
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gaining near-optimal performance [14,28]. However, currently these still remain
as experimental research projects and have not yet been adopted by a wider HPC
community. Partly the reason is a lack of DSLs or high-level frameworks that are
actively used for creating production level applications. On the other hand, previ-
ous work has only developed such frameworks for a few application domains.

The research in this paper is thus motivated by the need to explore fur-
ther the utility of high-level abstraction frameworks for future proofing parallel
scientific simulation applications from a range of application domains. Here we
focus on a hydro-dynamics application, belonging to an important class of codes
which form a key part of the HPC workload at many organizations such as the
AWE. We make use of a previously developed mini-application called Clover-
Leaf [8], which implements algorithms of interest related to this workload. This
research explores the performance of CloverLeaf after re-engineering the appli-
cation based on a domain specific HLA framework. CloverLeaf is open source
software and forms part of Sandia National Laboratory’s Mantevo project [5].
With the use of an unrestricted application as a proxy, our aim is to demon-
strate to a wider HPC audience the performance portability resulting from an
HLA based development and how this strategy might help in addressing various
scientific simulation challenges on future emerging systems.

The CloverLeaf mini-application has been previously manually ported
[16,17,20] to execute on many parallel platforms. These include parallelizations
based on single-instruction-multiple-data (SIMD, e.g. SSE and AVX) and shared
memory multi-threading for multi-core CPUs (e.g. OpenMP), single instruction
multiple thread (SIMT, e.g. CUDA, OpenCL and OpenACC) for GPUs and the
Intel’s Xeon Phi and distributed memory parallelization (e.g. MPI) for clusters
of CPUs/GPUs. Recently the code was re-written [10] with a domain specific
high-level abstraction framework, called OPS which resulted in a single high-
level application source. Automated code generation techniques of OPS were
then used to generate a range of parallel implementations. In this paper we
compare the performance of the resulting parallelizations to that of the origi-
nal hand-tuned CloverLeaf applications. Unlike previous work, the availability
of highly optimized, manually hand-tuned parallel versions gives us a unique
opportunity to compare and contrast the high-level development process both
in terms of developer productivity and performance portability. Our research
demonstrates, through performance analysis and benchmarking on a range of
hardware and software systems, the benefits of the HLA approach giving signif-
icant insights into high-level methods for “future proofing” HPC applications.
The main contributions of this paper are twofold:

1. We present lessons learnt in re-engineering an industrially representative
hydro-dynamics application to utilize the OPS high-level framework and
subsequent code generation to obtain a range of parallel implementations.
Through OPS we generate code targeting OpenMP thread level multi-core
parallelism, single-instruction multiple-thread (SIMT) many-core parallelism
using CUDA, OpenCL and OpenACC and distributed memory parallelism
with MPI.



88 G.R. Mudalige et al.

2. The performance of the OPS versions of CloverLeaf is compared to that of
the performance of the original CloverLeaf implementations on a range of
platforms. These include the latest Intel multi-core CPUs (Sandy Bridge),
NVIDIA GPUs (Kepler K20c), a Cray XC30 distributed memory cluster
(Archer [7]) and a large Cray XK7 GPU cluster (Titan [11]). Key perfor-
mance bottlenecks are analyzed and further optimizations are discussed.

The rest of this paper is organized as follows: in Sect. 2 we briefly present the OPS
abstraction, its API, design and code generation process; in Sect. 3, a benchmark-
ing and performance analysis of the of the application is carried out comparing
the OPS based CloverLeaf with the original hand-tuned version; Sect. 4 will
briefly detail related work in this area and compare them to our contributions
in this paper. Finally Sect. 5 notes future work and conclusions.

2 OPS

Previous work at the University of Oxford developed a high-level abstraction
framework called OP2 [6] targeting the domain of unstructured mesh based appli-
cations. With OP2 we demonstrated that both developer productivity as well as
near-optimal performance could be achieved on a wide range of parallel hard-
ware. Research published as a result of this work includes a number of perfor-
mance analysis studies on standard CFD benchmark applications [23] as well as
a full industrial-scale application from the production work-load at Rolls-Royce
plc. [28].

OPS (Oxford Parallel Library for Structured-mesh solvers) follows much of
the design of OP2, but targets the domain of multi-block structured applications.
Multi-block structured mesh applications can be viewed as an unstructured col-
lection of structured mesh blocks. As CloverLeaf is a single block-structured
mesh code, it only required OPS’s single block API to re-engineer the appli-
cation. The structured mesh domain is distinct from the unstructured mesh
applications domain due to the implicit connectivity between neighboring mesh
elements (such as vertices, cells) in structured meshes/grids. The key idea is
that operations involve looping over a “rectangular” multi-dimensional set of
grid points using one or more “stencils” to access data.

OPS is designed to appear as a classical software library with a domain
specific API. It then uses source-to-source translation techniques to parse the
API calls and generate different parallel implementations. These can then be
linked against the appropriate parallel library enabling execution on different
back-end hardware platforms. The aim is to generate highly optimized platform
specific code and link with equally efficient back-end libraries utilizing the best
low-level features of a target architecture. The next section briefly illustrates the
OPS API using examples from CloverLeaf.

2.1 The OPS API

The CloverLeaf mini-app involves the solution of the compressible Euler equa-
tions, which form a system of four partial differential equations. The equations are
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statements of the conservation of energy, density and momentum and are solved
using a finite volume method on a structured staggered grid. The cell centers hold
internal energy and density while nodes hold velocities. The solution involves an
explicit Lagrangian step using a predictor/corrector method to update the hydro-
dynamics, followed by an advective remap that uses a second order Van Leer up-
winding scheme. The advective remap step returns the grid to its original position.
The original application [8] is written in Fortran and operates on a 2D structured
mesh. It is of fixed size in both x and y dimensions.

OPS separates the specification of such a problem into four distinct parts:
(1) structured blocks, (2) data defined on blocks, (3) stencils defining how data
is accessed and (4) operations over blocks. Thus the first aspect of declaring such
a single-block structured mesh application with OPS is to define the size of the
regular mesh over which the computations will be carried out. In OPS vernacular
this is called an ops block. OPS declares a block with the ops decl block API
call by indicating the dimension of the block (2D in this case) and assigning it
a name for identification and runtime checks (see Fig. 1).

Fig. 1. OPS API example for declaring blocks, data and stencils

CloverLeaf works on a number of data arrays (or fields) which are defined on
the 2D structured mesh (e.g. density, energy, x and y velocity of particles). OPS
allows users to declare these using the ops decl dat API call; the density0,
energy0, ... pressure and volume are ops dats that are declared through this
API. A key idea is that once a field’s data is declared via ops decl dat the owner-
ship of the data is transfered from the user to OPS, where it is free to rearrange
the memory layout as is optimal for the final parallelization and execution hard-
ware. In contrast, each of the original CloverLeaf implementations explicitly
involve the allocation and management of memory specific to each parallel imple-
mentation at the application source level. In this example a NULL pointer of
type double is passed as an argument. CloverLeaf initializes these values later,
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as part of the application itself. When a NULL array is supplied, OPS will inter-
nally allocate the required amount of memory based on the type of the data
array and its size. On the other hand an array containing the relevant initial
data can be used in declaring an ops dat. In the future we will provide the
ability to read in data from HDF5 files directly using a ops decl dat hdf5 API
call. Note above in an ops decl dat call, a single double precision value per grid
element is declared. A vector of a number of values per grid element could also
be declared (e.g. a vector with three doubles per grid point to store x,y and z
velocities).

All the numerically intensive computations in the structured mesh applica-
tion can be described as operations over the block. Within an application code,
this corresponds to loops over a given block, accessing data through a stencil,
performing some calculations, then writing back (again through the stencils)
to the data arrays. A loop from the advec cell routine in CloverLeaf’s refer-
ence implementation [8] is detailed in Fig. 2, operating over each grid point in
the structured mesh. Note that here the data arrays are all declared as Fortran
allocatable 2D arrays. The loop operates in column major order.

Fig. 2. Original loop from advec cell kernel

An application developer declares this loop using the OPS API as illustrated
in Fig. 3 (lines 31–37), together with the “elemental” kernel function (lines 2–14).
The elemental function is called a “user kernel” in OPS to indicate that it repre-
sents a computation specified by the user (i.e. the domain scientist) to apply to
each element (i.e. grid point). User kernels are usually placed in a separate header
file, which gets included in the file declaring the ops par loop. By “outlining”
the user kernel in this fashion, OPS can factor out the declaration of the problem
from its parallel implementation. The macros OPS ACC0, OPS ACC1, OPS ACC2 etc.
will be resolved to the relevant array index to access the data stored in density0,
energy0, pressure etc.1 The explicit declaration of the stencil (lines 19–28) addi-
tionally will allow for error checking of the user code. In this case we use three
1 A similar approach is used in the C kernel implementations of the original CloverLeaf

application.
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Fig. 3. Loop from advec cell converted to use the OPS API

stencils, one consisting of a single point referring to the current element, the sec-
ond accessing the (1, 0) stencil and the third accessing the (0, 1) stencil. More
complicated stencils can be declared giving the relative position from the current
(0,0) element. The ops par loop declares the structured block to be iterated
over, its dimension, the iteration range and the ops dats involved in the compu-
tation. OPS READ indicates that density0 will be read only. The actual parallel
implementation of the loop is specific to the parallelization strategy involved. OPS
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is free to implement this with any optimizations necessary to obtain maximum
performance. The ops arg dat(..) in Fig. 3 indicates an argument to the paral-
lel loop that refers to an ops dat. A similar function ops arg gbl() enables users
to indicate global reductions.

2.2 Porting CloverLeaf to OPS

The original CloverLeaf 2D application written in Fortran 90 was converted to
the OPS API by manually extracting the user kernels, outlining them in header
files and converting the application to the OPS’s C/C++ API. All effort was
taken to keep the naming conventions of routines and files as similar to the
original as possible. After conversion, the OPS CloverLeaf version consists of
80 ops par loops spread across 16 files with about 7000 lines of code. This
application can be code generated to obtain a range of parallel implementations.
In comparison each of the original CloverLeaf implementations are self contained
separate parallel implementations, one for each of MPI+CUDA, MPI+OpenMP
etc. The original CloverLeaf reference implementation (i.e. the MPI+OpenMP
parallelization) consists of about 7000 lines of source code. The OPS back-end
library (implemented in C and C++) which currently supports parallelizing
with OpenMP, CUDA, OpenACC, OpenCL and MPI including common support
functions for all these parallelizations and other utility functions, plus the code
generation tools, in total consists of about 15000 lines of source code. However,
the important fact to note here is that the back-end libraries and code generation
tools are generic to be applicable to any application developed with the OPS
API, not just CloverLeaf.

Once converted to the OPS API, an application can be validated as a single
threaded implementation, simply by including the header file ops seq.h and
linking with OPS’s sequential back-end library. The header file and the library
implement API calls for a single threaded CPU and can be compiled and linked
using conventional (platform specific) compilers (e.g. gcc, icc) and executed as
a serial application.

The serial developer version allows for the application’s scientific results to
be inspected before code generation takes place. It also validates the OPS API
calls and provides feedback on any errors, such as differences between declared
stencils and the corresponding user kernels or differences between data types.
All such feedback is intended to reduce the complexity of programming and ease
debugging. There is opportunity at this stage to add further checks and tests
to increase developer productivity, for example report cases where the iteration
range of a loop written by a developer attempts to access elements beyond the
number of grid points in any dimension of an ops dat. Including the developer
header file and linking with OPS’s distributed memory (MPI) back-end libraries
can also be used to obtain a low performance MPI parallelization of the appli-
cation for testing purposes. The full CloverLeaf developer version can be found
under the OPS git-hub repository [10].

The manual conversion of the original application to the OPS API required
no more effort than what is typically required by a developer proficient in a given
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Fig. 4. OPS code generation and build process

parallel computing model (OpenMP, CUDA etc.) for directly porting to a differ-
ent parallel implementation. However once converted, the use of OPS to generate
different parallelizations of the application was trivial. Therefore we believe that
the conversion is an acceptable one-off cost for legacy applications attempting to
utilize the benefits of high level frameworks such as DSLs or Active Libraries. As
we will show in this paper, the advantages of such frameworks far outweigh the
costs, by significantly improving the maintainability of the application source,
while making it possible to also gain near optimal performance and performance
portability across a wide range of hardware.

Once the application developer is satisfied with the validity of the results pro-
duced by the sequential application, parallel code can be generated. The build
process to obtain a parallel executable as illustrated in Fig. 4 follows that of OP2’s
code generation process [23]. The API calls in the application are parsed by the
OPS source-to-source translator which will produce a modified main program and
back-end specific code. These are then compiled using a conventional compiler
(e.g. gcc, icc, nvcc) and linked against platform specific OPS back-end libraries
to generate the final executable. As mentioned before, there is the option to read
in the mesh data at runtime. The source-to-source code translator is written in
Python and only needs to recognize OPS API calls; it does not need to parse the
rest of the code. We have deliberately chosen to use Python and a simple source-
to-source translation strategy to significantly simplify the complexity of the code
generation tools and to ensure that the software technologies on which it is based
have long-term support. The use of Python makes the code generator easily mod-
ifiable allowing for it to even be maintained internally within an organization.
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Furthermore, the code generated through OPS is itself human readable which
helps with maintenance and development of new optimizations.

OPS currently supports parallel code generation for execution on (1) single
threaded vectorized CPUs, (2) multi-threaded CPUs/SMPs using OpenMP, (3)
NVIDIA GPUs using CUDA and OpenACC, (4) OpenCL devices such as AMD
GPUs, the Intel XeonPhi, etc. (5) distributed memory clusters of single threaded
CPUs using MPI (6) a cluster of multi-threaded CPUs using MPI and OpenMP
and (7) a cluster of GPUs using MPI and CUDA. A more complete discussion
of the code generation and optimizations for the multi-core CPU, NVIDIA GPU
and MPI parallelizations is given in [10]. In the next section we delve directly
into the performance of each of these generated versions.

3 Performance

In this section, we present quantitative results exploring the performance porta-
bility and scaling of CloverLeaf developed with OPS and compare it to the perfor-
mance of the various original implementations. Tables 1 and 2 provide details of
the hardware and software specifications of the benchmark systems. The first two
systems, Broomway and K20 are single node systems which we use to benchmark
the multi-threaded CPU and GPU performance respectively. The third system is
the UK national supercomputing resource – Archer [7] which we use to benchmark
OPS’s distributed memory performance. The final system is Titan [11], the large
scale K20x GPU based Cray XK7 system at ORNL. To be consistent with the

Table 1. Single node benchmark systems

System Broomway K20

Node architecture 2 × 8-core Intel NVIDIA Tesla

Xeon E5-2680 2.70 GHz K20c

(Sandy bridge)

Memory per node 64 GB 5 GB/GPU (ECC off)

OS Red Hat Red Hat

Enterprise Enterprise

Linux 6 Linux 6.4

Compilers and flags Intel CC 14.0.0 CUDA 6.0 IEEE FLAGSa

Intel MPI 4.1.3 -gencode arch=compute 35,

-O3 IEEE FLAGSa code=sm 35 -O3

NVIDIA OpenCL

PGI compiler

14.2 (for OpenACC)
aOn Intel compilers, IEEE FLAGS=-ipo -fp-model strict -fp-model source -prec-
div -prec-sqrt
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Table 2. Distributed memory benchmark systems

System Archer Titan

Node architecture 2 × 12-core Intel 16-core AMD

Xeon E5-2697 2.70 GHz Opteron 6274

(Ivy Bridge) + NVIDIA K20X

Memory per node 64 GB 32 GB +

6 GB/GPU (ECC on)

Interconnect Cray Aries Cray Gemini

OS CLE CLE

Compilers and Cray C Compilers 8.2.1 Cray C Compilers 8.2.2

flags cray-mpich/6.1.1 -cray-mpich/6.3.0

-O3 -Kieee -O3 -hgnu -O3 -arch=sm 35

PGI Compiler 13.10-0

compiler flags recommended for gaining accurate results from the original Clover-
Leaf application, we enforce IEEE floating-point mathematics compliance on each
compiler and benchmark2

On the single node systems we present the total runtime of the hydro loop
of CloverLeaf for the 960× 960 (clover bm.in) and 3840× 3840 (clover bm16
short.in) mesh input decks. Figures 5 and 6 present times taken by the main
hydro iteration loop to solve these problems. The MPI and OpenMP results are
from the dual socket Intel CPUs on Broomway while the CUDA and OpenACC
results are from the NVIDIA K20c GPU. We also ran the OpenCL version of
the application on both the CPU and GPU. To reduce the NUMA effects on
performance, both the original and OPS OpenMP versions were executed with
the KMP AFINITY environmental variable set to compact. We found that this
gave the best performance on this two socket CPU node. Additionally, the MPI
processes were bound to a specific core using the numactl command at runtime,
again to reduce NUMA issues on the two socket CPU node.

We see that on the Intel CPU node for both problems with the exception of the
OpenMP only parallelization, the OPS version executes within 10 % of the original
implementation’s runtime. The OPS’s OpenMP parallelization gives better per-
formance. We believe that this is due to OPS explicitly partitioning the iteration
space and allocating them to be computed by the availableOpenMPthreads. In the
original version allocating work to threads is handled automatically by OpenMP.
The best runtime for the 960×960 mesh is achieved using OPS’s pure MPI version,
which is about 3 % faster than the best runtime achieved with the original MPI ver-
sion. The OpenCL runtime on the CPUs are about 30 % worse than the OpenMP
versions, however OPS matches the runtime of the original CloverLeaf OpenCL
version. The poor OpenCL performance on the CPU may be due to NUMA effects
2 On Intel compilers, IEEE FLAGS=-ipo -fp-model strict -fp-model source -prec-div

-prec-sqrt.
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Fig. 5. CloverLeaf performance - 960 × 960 mesh (≈2955 iterations)

as the OpenCL runtime does not yet have facilities for explicitly placing and bind-
ing threads to cores. A further reason could be poorer vectorization from OpenCL
compared to vectorization achieved with SIMD pragmas using the Intel compiler.
On the NVIDIA K20c GPU with CUDA, OpenCL and OpenACC all application
versions perform approximately the same. The CUDA version gives a speedup of
3× over the best runtime on the two socket Intel CPU node.

The code generated with OPS additionally consists of profiling instrumen-
tation for capturing ops par loop execution times and achieved bandwidths.
This information, together with details of approximate number of double preci-
sion floating-point operations executed per ops par loop (gathered through a
profiler) enables us to compute the achieved floating-point operation rates and
memory bandwidths. Table 3 details this achieved performance per single node
on the CPU and GPU systems for each of the related parallelizations. Only the
results for the most time consuming routines are given in the table. As a com-
parison we note the achieved DGEMM (double precision generic matrix-matrix
multiply [15]) floating point operation rate on both the CPU and GPU, the
STREAM [22] memory bandwidth achieved on the CPU node, and the resulting
bandwidth from NVIDIA’s bandwidthTest [2] benchmark. The peak achievable
performance (Number of Cores×Average frequency ×Operations per cycle for
Intel CPUs and for NVIDIA K20c GPU [3]), for each platform is also presented.
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Fig. 6. CloverLeaf performance - 3840 × 3840 mesh (≈87 iterations)

On the two socket Intel CPU node, Broomway, we see that some loops achieve
over 80 % of the STREAM memory bandwidth (with MPI). However, only a
small fraction out of the 304 GFlops/s DGEMM floating-point operation rate is
achieved. On the K20c GPU, the achieved fraction of peak bandwidth is even
higher, with loops in flux calc obtaining 155.27 GB/s (with CUDA), which is
over 90 % of the bandwidth achieved with the bandwidthTest benchmark. Again,
the achieved floating-point rate is significantly smaller compared to the GPU’s
theoretical and practical peak rates. Thus we can say that the CloverLeaf appli-
cation is much more bandwidth limited, than compute limited. OpenCL paral-
lelization on the CPU performs considerably less well than MPI and OpenMP.
However on the K20c GPU, OpenCL was as good as the CUDA implementation.

Next, we benchmark the scaling performance of the distributed memory par-
allelization, on two large-scale clusters. The first is on Archer, a Cray XC30, on
which we benchmark CloverLeaf’s pure MPI performance. Figure 7 details the
results from this system for both strong scaling and weak scaling on up to 1024
nodes (12,288 cores). The strong scaling mesh consists of 153602 (≈230 million)
grid points, while for weak scaling a mesh size of 38402 is assigned per socket
of a node (i.e. for the 2 socket Archer node a mesh of 2 × 38402 is assigned per
node). We see that again, OPS CloverLeaf version’s runtime at increasing scale
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Table 3. Single node performance - 960 × 960 mesh (≈2955 iterations)

matches that of the original MPI version to within less than 10 %. This is true
for both configurations. A closer look at the compute time vs communications
time reveals that for both strong and weak scaling the time spent in communica-
tions, including message set up costs and time to communicate messages is less
than 10 % of the total run time for any execution on Archer. Profiling the num-
ber of MPI messages sent/received in both OPS and original Cloverleaf versions
reveals that OPS performs 4× more MPI messages than the original version.
This is due to the finer granularity of each ops par loop, each of which only
sends MPI messages for data sets belonging to it. In contrast the original version
only does halo exchanges in the update halo routine, aggregating all the MPI
messages that need to be sent/received for all subsequent loops. In other words,
OPS communicates messages as and when required (i.e. on demand) which only
enables a much smaller number of halos to be aggregated.

Figure 8 presents the benchmarking results from Titan. One node in Titan
contains one NVIDIA K20x GPU, thus we have allocated one MPI process per
node when executing the MPI+CUDA parallelizations. The figure also plots the
run times gained on this system with the MPI only parallelization. In this case,
we have allocated 8 MPI processes per node, the reason being that on Titan,
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Fig. 7. CloverLeaf scaling performance on Archer (≈87 iterations)

there is only one AMD Interlagos CPU consisting of 16 cores, where two cores
share one floating point operation unit (FPU). For the weak scaling runs the
mesh size allocated per Titan node is 3840 × 3840 as there is only one CPU
socket per node on Titan.

The OPS MPI+CUDA results again match the original CloverLeaf applica-
tion’s hand tuned MPI+CUDA version and demonstrates that the HLA app-
roach to OPS’s development has not resulted in any performance degradation.
However, comparing OPS’s MPI only version to that of the original, OPS loses
about 30 % performance at 8 K nodes. We believe that the reason is due to OPS’s
on-demand MPI messaging strategy which at the very large scale results in sig-
nificantly larger number of messages. The latency of these messages dominates
the runtime due to the very low amount of compute performed on each MPI
process. Currently we are exploring further message aggregation strategies for
improving performance of OPS to resolve this issue.
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Fig. 8. CloverLeaf scaling performance on Titan (≈87 iterations) - 1 MPI process per
node for MPI+CUDA, 8 MPI processes per node for pure MPI

The MPI only version strong-scales better than the MPI+CUDA version,
where beyond 2 K nodes on Titan, MPI+CUDA does not give any additional
speedups. We believe that this is almost certainly due to the cost of the PCIe
latencies dominating the computation of the small problems at the higher node
sizes. Even using NVIDIA’s GPU direct, which can be utilized with OPS for
MPI+CUDA applications did not give any notable benefits. The MPI-only ver-
sions do not suffer from this issue. However MPI+CUDA achieves a higher
speedup (up to 8×) at very low node counts, which then subsequently diminishes
at scale. With weak scaling this 8× speedup is maintained at increasing scale.
Additionally, at the higher node scales, the same performance loss experienced
with OPS when strong-scaling does not occur with weak-scaling. We believe
that in this case, the amount of computation carried out per MPI process is
large enough to hide the MPI message latencies.
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4 Related Work

Several similar research projects have shown the significant benefits of utilizing
high-level frameworks such as domain specific languages (DSLs) or active libraries.
These include Firedrake [1], FENiCS [25] and Liszt [14], OP2 [6] for unstructured
mesh applications and Paraiso [24], Ypnos [26], Pochoir [30] and SBLOCK [12] for
explicit stencil based applications (structured mesh applications).

Ypnos [26] is a functional, declarative domain specific language, embedded
in Haskell and extends it for parallel structured grid programming. The lan-
guage introduces a number of domain specific abstract structures, such as grids
(representing the discrete space over which computations are carried out), grid
patterns (stencils) etc. in to Haskell, allowing different back-end implementa-
tions, such as C with MPI or CUDA. Similarly, Paraiso [24] is a domain-specific
language embedded in Haskell, for the automated tuning of explicit solvers of
partial differential equations (PDEs) on GPUs, and multi-core CPUs. It uses
algebraic concepts such as tensors, hydrodynamic properties, interpolation meth-
ods and other building blocks in describing the PDE solving algorithms. In con-
trast SBLOCK [12] uses extensive automatic source code generation very much
similar to the approach taken by OP2 and OPS, and expresses computations as
kernels applied to elements of a set.

Pochoir [30] is a compiler and runtime system for implementing stencil com-
putations on multi-core processors. The main aim of the project is to generate
cache efficient multi-threaded CPU code for structured mesh (i.e. stencil) com-
putations. The OPS project also aims to implement cache efficient, “tiling” algo-
rithms through lazy-execution techniques in the future. The work presented in this
paper is created from static source-to-source translation techniques to investigate
the performance of the resulting code that we believe will be improved via tiling.

Liszt [14] from Stanford University implements a domain specific language
(embedded in Scala [4]) for the solution of unstructured mesh based partial dif-
ferential equations (PDEs). A Liszt application is translated to an intermediate
representation which is then compiled by the Liszt compiler to generate native
code for multiple platforms. The aim, as with OP2, is to exploit information about
the structure of data and the nature of the algorithms in the code and to apply
aggressive and platform specific optimizations. Performance results from a range
of systems (a single GPU, a multi-core CPU, and an MPI based cluster) executing
a number of applications written using Liszt have been presented in [14].

The FEniCS [25] project defines a high-level language, UFL, for the specifi-
cation of finite element algorithms. The FEniCS abstraction allows the user to
express the problem in terms of differential equations, leaving the details of the
implementation to a lower level library. Although well established finite element
methods could be supported by such a declarative abstraction, it lacks the flexibil-
ity offered by frameworks such as OP2 for developing new applications/algorithms.
Currently, a runtime code generation, compilation and execution framework that
is based on Python, called PyOP2 [27], and a larger framework that supports
finite element application development called Firedrake [1,21] is being developed
at Imperial College London.
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Another related project of note is Delite [29] a compiler framework and run-
time for developing parallel embedded domain-specific languages (DSLs) where
the aim is to enable the rapid construction DSLs for a given domain.

5 Conclusions

In this paper, we explored the performance of a Hydrodynamics mini-app called
CloverLeaf, after re-engineering it to use the OPS domain specific high-level
abstractions framework. OPS provides an API for developing multi-block struc-
tured mesh applications and uses code generation techniques to translate an
application to a range of parallel implementations.

The OPS based CloverLeaf’s performance was compared to that of the various
original hand-tuned versions on a number of single-node multi-core/many-core
platforms and distributed memory cluster systems. OPS based CloverLeaf’s per-
formance on single node systems matched the original versions to within 10 % for
most parallelizations and sometimes out-performed it by up to about 20 %. The
achieved memory bandwidth on single node systems showed that the OPS imple-
mentations achieve over 80 % of the practical peak bandwidth of each system for
some parallel loops. However only a small fraction of the peak floating-point rates
are reached on all single node systems. This points to the fact that CloverLeaf is
much more constrained by bandwidth than the compute capability of a system.
Distributed memory parallelizations on both the Archer (Cray XC30) and Titan
(Cray XK7) systems showed excellent scalability, matching that of the original
application on both strong- and weak-scaling configurations. However we found
that OPS’s MPI implementation exchanges about 4× more shorter messages than
that of the original. Further MPI message aggregation strategies for OPS are cur-
rently being explored to improve strong-scaling performance.

Nevertheless, our experience clearly shows that the development of parallel
HPC applications through the careful factorization of a parallel program’s func-
tionality and implementation, using a high-level framework such as OPS, is no
more time consuming nor difficult than writing a one-off parallel program tar-
geting only a single parallel implementation. However the OPS strategy pays off
with a highly maintainable single application source without compromising per-
formance portability on parallel systems on which it will be executed. It also lays
the groundwork for providing support for execution on future parallel systems.
We believe such an approach will be an essential paradigm shift for utilizing the
ever-increasing complexity of novel hardware and software technologies.
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