
SPEC ACCEL: A Standard Application Suite
for Measuring Hardware Accelerator

Performance

Guido Juckeland1,2(B), William Brantley1,3, Sunita Chandrasekaran1,4,
Barbara Chapman1,4, Shuai Che1,3, Mathew Colgrove1,5, Huiyu Feng1,6,

Alexander Grund1,2, Robert Henschel1,7, Wen-Mei W. Hwu1,8, Huian Li1,7,
Matthias S. Müller1,9, Wolfgang E. Nagel1,2, Maxim Perminov1,10,

Pavel Shelepugin1,10, Kevin Skadron1,11, John Stratton1,8,12,
Alexey Titov1,3, Ke Wang1,11, Matthijs van Waveren1,13,

Brian Whitney1,14, Sandra Wienke1,9, Rengan Xu1,4,
and Kalyan Kumaran1,15

1 SPEC High Performance Group, Gainesville, USA
info@spec.org

http://www.spec.org/hpg
2 Center for Information Services and High Performance Computing (ZIH),

Technische Universität Dresden, 01062 Dresden, Germany
guido.juckeland@tu-dresden.de

3 Advanced Micro Devices, Inc., Sunnyvale, CA, USA
4 University of Houston, Houston, TX, USA

5 NVIDIA, Santa Clara, CA, USA
6 Silicon Graphics International Corp., Milpitas, CA, USA

7 Indiana University, Bloomington, IN, USA
8 University of Illinois (UIUC), Champaign, IL, USA

9 RWTH Aachen University, Aachen, Germany
10 Intel, Nizhny Novgorod, Russia

11 University of Virginia, Charlottesville, VA, USA
12 Colgate University, Hamilton, NY, USA

13 Compilaflows, Toulouse, France
14 Oracle, Redwood Shores, CA, USA

15 Argonne National Laboratory, Lemont, IL, USA

Abstract. Hybrid nodes with hardware accelerators are becoming very
common in systems today. Users often find it difficult to characterize
and understand the performance advantage of such accelerators for their
applications. The SPEC High Performance Group (HPG) has developed
a set of performance metrics to evaluate the performance and power
consumption of accelerators for various science applications. The new
benchmark comprises two suites of applications written in OpenCL and
OpenACC and measures the performance of accelerators with respect
to a reference platform. The first set of published results demonstrate
the viability and relevance of the new metrics in comparing accelerator
performance. This paper discusses the benchmark suites and selected
published results in great detail.

c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 46–67, 2015.
DOI: 10.1007/978-3-319-17248-4 3

SPEC ACCEL: A Standard Application Suite 47

Keywords: SPEC · SPEC ACCEL · OpenCL · OpenACC · Energy
measurements

1 Introduction

The Standard Performance Evaluation Cooperation (SPEC) stands as a successful
example of collaboration among vendors and researchers in creating benchmarks
that lead to fair comparison and reproducible results. SPEC’s High Performance
Group (HPG) has been active for over 20 years – since its initial benchmark derived
from David Kuck’s Perfect Suite – in creating industry standard benchmarks that
highlight and compare various aspects of high performance computing systems.
The group’s members are leading high performance computing (HPC) vendors,
national laboratories, and universities from all around the world.

SPEC HPG has been developing and maintaining application based bench-
marks and performance metrics supporting a variety of programming models and
stressing various hardware features. This includes inter-node parallelism (covered
by SPEC MPI2007), intra-node parallelism (covered by SPEC OMP2012), and off-
loading computation to a hardware accelerator (covered by SPEC ACCEL in this
paper). SPEC MPI2007 offers a suite of 18 applications running on up to 2,048
message passing interface (MPI) ranks [22]. Its goal is to evaluate MPI-parallel,
floating point, compute intensive performance of clusters and multi-processor sys-
tems. SPEC OMP2012 offers a suite of 14 applications based on scientific and engi-
neering application codes using the OpenMP 3.1 standard [21]. The benchmark
also includes an optional metric for measuring energy consumption.

The advent of hardware accelerators as a standard component in high perfor-
mance computers led SPEC HPG to investigate performance characterization in
this additional layer of parallelism. Keeping with the group’s guidelines, a perfor-
mance evaluation must be based on an open programming model so that multiple
hardware and software environments can be evaluated. As a result, the popular
but vendor specific programming model—CUDA—was not investigated. Instead
OpenCL, as a low level, and OpenACC, as a high level, hardware accelerator pro-
gramming models have been chosen to provide two independent subsuites within
SPEC ACCEL1. In a similar manner, the group has carefully brought together
applications from various computational and scientific domains that stress the
accelerator with very different demands. The runtime and energy consumption
of the application is monitored during multiple runs and results are presented
in the typical SPEC manner. The peer review process for every published result
ensures the validity and reproducibility of a SPEC ACCEL run.

This paper first presents previous work in Sect. 2, then introduces the measure-
ment methodology in Sect. 3. The selected applications for each of the two sub-
suites/programming model are discussed in Sect. 4. Section 5 shows how energy
1 Since OpenMP 4.0 offloading is still limited to one hardware platform and one com-

piler it has at the moment vendor specific characteristics. OpenACC on the other
hand offers three different compilers and also four (via the CAPS compilers, two via
the PGI compilers) hardware platforms.

48 G. Juckeland et al.

measurements can enrich the performance data. Section 6 demonstrates how the
first published results underline the usefulness of the benchmark in comparing
both hardware and software environment for accelerators.

2 Related Work

There has been work done in creating benchmarks for measuring hardware accel-
erator performance, but all of them are academic in nature and none of them
share SPEC’s philosophy when it comes to design for standard benchmarks.
SPEC strongly believes in same source code for all, a detailed set of run and
reporting rules for compliant results, and a peer review process for all results
before publication on the SPEC website. This enables fair comparison of results.

With respect to OpenCL benchmarking, both the Parboil [27] and Rodinia
[4,5] have been very popular academic benchmarks with more than 1,000 cita-
tions between them in research papers. The Parboil and Rodinia developers
approached SPEC to standardize the benchmark, to develop a set of run and
reporting rules that enable fair performance metrics, and to build a result repos-
itory, since the groups could not provide that themselves. SPEC HPG worked
with both groups of developers to ensure that the benchmarks taken into the
OpenCL suite are running on all available platforms. A number of improvements
suggested by SPEC HPG has made it into recent releases of Parboil and Rodinia.

SHOC [7] is a benchmark suite that evolved in the academic circles and
includes both the OpenCL and CUDA implementations. As another approach
for OpenCL, the SHOC benchmark measures low level hardware performance
features rather than general application run time performance. It is, therefore,
not suitable for the SPEC approach, but has its relevance on comparing very
specific small scale algorithms on various platforms.

On the OpenACC side, the Edinburgh Parallel Computing Centre (EPCC)
has developed a benchmark suite [14] comprising a set of low-level operations
designed to test raw performance of compilers and hardware and a set of kernels
found in scientific codes. The SPEC ACCEL OpenACC suite, on the other hand,
is comprised of full scientific applications rather than kernels.

3 Design and Principles of SPEC ACCEL

3.1 Benchmark Philosophy and General Design

The goal of SPEC ACCEL is to measure the performance of compute intensive
applications using hardware acceleration. It is designed to compare different
accelerator platforms, but also different devices within a platform. A platform
consists of all the hardware and software components necessary to execute SPEC
ACCEL: the accelerator, the host system including its CPU, the interconnect
or bus used for the data transfers between host and accelerator, the support
libraries and drivers, and the compiler.

SPEC ACCEL: A Standard Application Suite 49

SPEC ACCEL uses vendor independent programming standards to target
the accelerators. In its current implementation, OpenCL and OpenACC are sup-
ported. Both standards apply the offload model for the accelerated computation.
The offload model consists of a CPU (host) which runs the main program, copies
the data needed by the accelerated computation to and from discrete memory
on the accelerator, and launches the accelerated routines.

The SPEC ACCEL benchmark is provided within the SPEC harness that is
also used for other SPEC benchmarks like SPEC CPU2006, SPEC OMP2012,
and SPEC MPI2007. With the help of a user supplied config file, the benchmark
codes are automatically compiled, the total execution times measured, the results
verified for correctness, and a report generated. Optionally, a power measurement
is also included to allow the comparison of both time-to-solution and energy-to-
solution [16].

The generated performance reports may be submitted to SPEC for publica-
tion. The SPEC HPG committee reviews SPEC ACCEL results for consistency,
adherence to the run rules, and whether enough details have been supplied for
others to reproduce the results. If the committee accepts the results, they are
published together with the config file on the SPEC website.

3.2 Run Rules

The run rules cover the procedure for the building and running the benchmark
and disclosing the benchmark results. They closely follow the established SPEC
run rules but need to take into account the peculiarities of systems with hard-
ware accelerators. This section explains where the run rules from SPEC ACCEL
extend or deviate from the common rule set of SPEC. The goal is that users of
accelerator systems can compare objectively the accelerators of different vendors
on the SPEC web site.

The SPEC ACCEL benchmark suite supports base, peak, and power metrics.
The performance metrics are the geometric mean of the run time ratios of the
system under test with the run time of the reference machine. The reference sys-
tem is a SGI C3108-TY11 (a dual socket Intel Xeon E5620 system with 24 GB of
main memory) using an NVIDIA Tesla C2070 with error checking and correcting
(ECC) enabled as the accelerator. The system runs SLES11 SP2 as the operating
system and uses the built-in GNU compilers for the OpenCL suite and the PGI
compilers version 13.9 for the OpenACC suite. The reference measurements also
include energy metrics recorded from a ZES Zimmer LMG450 power analyzer.
All benchmarks in the two suites were targeted to run for at least 100 s on the
reference machine in order to provide a useful time for measurements, even for
future hardware with significantly higher performance.

A set of tools is supplied to build and run the benchmarks. These SPEC tools
must be used to generate publishable results. This helps ensure reproducibility
of results by requiring that all individual benchmarks in the suite are run in the
same way and that a configuration is available that defines the optimizations
used.

50 G. Juckeland et al.

The optimizations used are expected to be applicable beyond the SPEC
benchmarks, and it is expected that system or compiler vendors would endorse
the general use of these optimizations by customers who seek to achieve good
application performance. The system components, including software, must be
generally available within 90 days of publication; there needs to be a certain level
of maturity and general applicability in the methods.

For the base metric, the same compiler must be used for all applications of a
given language within a benchmark suite. Except for portability flags, all flags
or options that affect the transformation process from SPEC-supplied source to
the completed executable must be the same for all modules of a given language.
For the peak metric, each module may be compiled with a different compiler
and a different set of flags or options. For the OpenCL suite, it is also allowed to
change the work distribution on the accelerator by using a different work group
size per benchmark.

As used in these run rules, the term run-time dynamic optimization (RDO)
refers broadly to any method by which a system adapts an executing program
for improved performance based upon observation of its behavior as it runs.
Run time dynamic optimization is allowed, subject to the provisions that the
techniques must be generally available, documented, and supported.

Results are published on the SPEC web site. A published result must contain
enough information to enable others to replicate the result. The information to
document an accelerator includes the model name, name of hardware vendor,
name and type of the accelerator, description of the connection to the host sys-
tem, whether ECC is enabled or not, and the device driver names and versions.

4 Description of the Applications

The applications comprising the SPEC ACCEL benchmark fall into two cate-
gories depending on the programming model: OpenCL or OpenACC. They cover
a wide range of scientific domains and also have very different performance char-
acteristics as shown in Tables 1 and 2. The SPEC ACCEL suite is written to
comply with OpenCL 1.1 [15] and OpenACC 1.0 [1]. This section introduces
both suites of the SPEC ACCEL benchmark.

4.1 SPEC ACCEL OCL Suite

In order to fit into the design principles for SPEC ACCEL (see Sect. 3), the
original benchmarks taken into the OpenCL suite were in part heavily modi-
fied. Some benchmarks were dropped when they could not be modified to meet
the SPEC HPG requirements. The Parboil Benchmark Suite [27] is the origin of
the first nine OpenCL applications of SPEC ACCEL, the other ten applications
are taken from the Rodinia Benchmark Suite [4,5]. A number of benchmarks
received larger data sets than they originally had, so that their runtime increased
to the required 100 s on the reference machine. All benchmarks were tested on
all hard- and software platforms available to the HPG members. This resulted in

SPEC ACCEL: A Standard Application Suite 51

numerous bug fixes both in the benchmarks but also in OpenCL runtime envi-
ronments, thus, showcasing how this benchmark suite can be used as a validation
suite for OpenCL hardware and software as well.

The selected applications span a wide area of science ranging from astronomy,
bioinformatics, computer science, electrical engineering, mathematics, mechan-
ical engineering, medicine and physics. They are also selected to cover dif-
ferent usage modes for hardware accelerators. Benchmarks like 101.tpacf and
121.lavamd use one or two long running kernels. Other benchmarks like 123.nw
use almost 350,000 very short kernel launches in order to see how well the acceler-
ator ecosystem can handle such extreme cases. The same is true for the number
of data transfers between the host and device and the amount of data being
transferred. While most benchmarks follow the usual offloading scheme of limit-
ing the amount of transfers, 116.histo, 117.bfs, and 127.srad use well over 10,000
data transfers, in case of 127.srad also of very small size. The accelerator utiliza-
tion (which is the amount of time the accelerator is occupied), as well as the time
for data transfers, also offers a broad spectrum of load situations. However, most
applications try to utilize the accelerator fully, while only a few like 116.histo,
120.kmeans, or 127.srad primarily stress the host-device transfers. 114.mriq is
a special case since it shows both a high device utilization, but also high data
transfer time. In this case, the data transfers are launched asynchronously, but
the NVIDIA OpenCL runtime forces them to synchronize, thus, completing the
transfer only after the previously launched kernel has completed.

The computational algorithms employed by the applications of the bench-
mark suite also vary widely:

101.tpacf computes the two-point angular correlation function of a collection
of observed and randomly generated astronomical bodies. It compares pairs of
angular coordinates, computes their angular distance, and computes a histogram
of those distances. The histogram is privatized, with multiple copies in each work
group, reducing bandwidth and atomic operation demand on the global memory
system.

103.stencil implements an iterative Jacobi solver of the heat equation on
a 3-D structured grid. The implementation uses double buffering to eliminate
timing effects on numerical output values for a fixed number of iterations. On
the reference machine, each iteration completes quickly enough so that platform
overheads for kernel launches and other operations has an impact on the total
performance.

104.lbm is related to the SPEC CPU2006 benchmark of the same name, and
implements the Lattice-Boltzmann Method for fluid dynamics simulation [23].
This particular implementation supports immobile solid obstacles to fluid flow in
a lid-driven closed cavity. Individual iterations have a long enough runtime that
kernel execution performance is the most relevant factor for the total application
performance.

110.fft implements a 1-D, Radix-2 Fast Fourier Transform. The kernel source
included could be configured to support other radices, but for consistency, the
benchmark only supports Radix-2.

52 G. Juckeland et al.

Table 1. OpenCL application key facts. Profiling data taken from VampirTrace
OpenCL tracing when running on NVIDA Tesla K20 using NVIDIA OpenCL.

SPEC ACCEL: A Standard Application Suite 53

112.spmv implements a sparse-matrix, dense-vector multiplication. The input
sparse matrix file format is given in coordinate (COO) format, which is inter-
nally translated into a transposed jagged diagonal storage (JDS) format before
multiplication. The benchmark reflects classes of applications where the sparse
matrix remains constant, but is iteratively multiplied into a variety of vectors,
allowing the cost of the data format conversion to be amortized over a large
number of operations.

114.mriq computes the Q matrix used in non-Cartesian magnetic resonance
image reconstruction algorithms [26]. It is used to compensate for artifacts
caused by the sampling trajectory on the actual samples recorded. The first
kernel preprocesses one of the input sets, and is negligible in the total runtime.
The second kernel accumulates contributions from each sample point to each
cell in a 3-D regular grid, using a large number of trigonometric operations. The
combination of the multiplicative algorithm complexity and the more complex
mathematical operations cause this second kernel to dominate the runtime.

116.histo implements a saturating histogram, which is a very large, two-
dimensional matrix of char-type bins with a maximum value of 255. The bench-
mark is customized to a certain class of input, exemplary of a silicon wafer
verification application, which follows a nearly Gaussian distribution, roughly cen-
tered in the output histogram. The benchmark executes kernels in four phases.
It first runs a small kernel on a subset of the input to estimate the centroid
of the output distribution. Second, it decomposes the histogram indexes of the
input into separate row and column indexes. Work-groups in the third kernel
privatize a portion of the histogram locally, and scan the input for items that
fall within that region. Finally, the results from all the privatized histograms
are combined into the complete results. Each kernel runs very quickly, and the
benchmark executes iteratively, representing the streaming analysis application
in which it would be deployed. The relatively small runtime for each individual
kernel increase the relative impact of kernel launch and device communication
overheads in the platform.

117.bfs implements a single-source shortest-path search through a graph
using a breadth-first search [20]. The application performs multiple simulta-
neous searches on the same graph to estimate the average distance between each
node in the graph and all other nodes, based on a sampled subset of sources.

118.cutcp computes a cutoff-limited Coulomb potential field for a set of
charges distributed in a volume [10]. The application is set to use a cutoff dis-
tance of 12 Å, and builds a spatial data structure of the input charges to reduce
the number of distance tests that must be performed for each output cell. The
field calculation is performed iteratively, reflecting the computational pattern of
a typical analysis of the time-averaged field values.

120.kmeans [3] implements the well-known clustering algorithm of data-
mining - K-means. In 120.kmeans, a data object is comprised of several features.
By dividing a set of data objects into K clusters, k-means represents all the data
objects by the mean values or centroids of their respective clusters. In each iter-
ation, the algorithm associates each data object with its nearest center, based
on some chosen distance metric. The new centroids are calculated by taking the

54 G. Juckeland et al.

mean of all the data objects within each cluster respectively. As a data inten-
sive application, 120.kmeans transposes the data matrix before doing clustering
for better coalesced memory access. However, this benchmark still stresses the
memory bandwidth when many single instruction multiple data (SIMD) com-
pute units access global memory simultaneously.

121.lavamd [29] implements an algorithm of molecular dynamic simulation
in 3D space. The code calculates particle potential and relocation due to mutual
forces between particles within a large 3D space. This space is divided into cubes,
or large boxes, that are allocated to individual cluster nodes. The large box at
each node is further divided into cubes, called boxes. 26 neighbor boxes surround
each box (the home box). Home boxes at the boundaries of the particle space
have fewer neighbors. Cutoff-radius strategy is applied enforcing short-range
interaction between particles, which stress communication between neighboring
work-item groups. 121.lavamd requires the communication of boundary elements
of each box with it neighbor boxes. On a typical GPU, the inter-work-group
communication can only be done via synchronized global-memory-access. This
benchmark stresses both memory latency and synchronization.

122.cfd [6] is an unstructured-grid, finite-volume solver for the 3D Euler
equations for compressible flow. The Runge-Kutta method is used to solve a
differential equation. Effective GPU memory bandwidth is improved by reducing
total global memory access and overlapping computation, as well as using an
appropriate numbering scheme and data layout. Each time step depends on the
results of the previous time step and each time step needs a kernel finalization
(an implicit synchronization) and re-launch. This benchmark stresses memory
bandwidth and has many kernel launches.

123.nw [3] is a nonlinear global optimization method for DNA sequence align-
ments - Needleman-Wunsch. The potential pairs of sequences are organized in a
2D matrix. In the first step, the algorithm fills the matrix from top left to bottom
right, step-by-step. The optimum alignment is the pathway through the array
with maximum score, where the score is the value of the maximum weighted
path ending at that cell. Thus, the value of each data element depends on the
values of its northwest-, north-, and west-adjacent elements. The first step is
parallelized on the GPU. Data blocks in each diagonal strip can be processed in
parallel with serial dependency across strips. Blocks are mapped to local memory
for data locality. In the second step, the maximum path is traced backward to
deduce the optimal alignment. When computation is going on, the workload of
each step increases at first and then decreases. At some steps, the computation
workload is not enough to fill up all the computation units. In certain phases,
the throughput is constrained by 123.nw’ s limited parallelism.

124.hotspot [3,13] is a widely used tool to estimate processor temperature
based on an architectural floor plan and simulated power measurements. This
benchmark solves a differential equation boundary-value problem on a 2D struc-
tured grid by using a finite difference method. Each output cell in the computa-
tional grid represents the average temperature value of the corresponding area
of the chip.

SPEC ACCEL: A Standard Application Suite 55

125.lud [5] implements the well-known LU decomposition for a non-singular
matrix. The block-wise operation provides enough parallelism for a GPU-like
SIMD device. The degree of block-level parallelism reduces as execution pro-
ceeds. 125.lud utilizes the local memory improve data reuse and coalesced mem-
ory access. This benchmark stresses floating point computation units and the
compute units’ local memory.

126.ge solves linear equations using a row-by-row Gaussian elimination. The
algorithm requires synchronization between row-wise iterations, but the values
calculated in each iteration can be computed in parallel. This benchmark stre-
sses fine-grained global communication and synchronization with many kernel
launches.

127.srad [3,28] implements the speckle reducing anisotropic diffusion
(SRAD) method, which is a diffusion method for ultrasonic and radar imaging
applications based on partial differential equations (PDEs). It is used to remove
locally correlated noise, known as speckles, without destroying important image
features. SRAD consists of several pieces of work: image extraction, continuous
iterations over the image (preparation, reduction, statistics, computation, and
image compression). Each stage requires global synchronization across all the
workgroups (kernel calls) before proceeding to the next stage. This benchmark
also presents a lot of global memory accesses. This benchmark stresses floating
point units, global memory access, and global synchronization.

128.heartwall [28] tracks the movement of a mouse heart over a sequence of
ultrasound images to record response to the stimulus. In order to reconstruct
approximated full shapes of heart walls, the program generates ellipses that are
superimposed over the image and sampled to mark points on the heart walls
(Hough search). In its final stage (heart wall tracking presented in Ref. [5]), the
program tracks movement of surfaces by detecting the movement of image areas
under sample points as the shapes of the heart walls change throughout the
sequence of images. The tracking kernel continues dealing with consecutive image
frames. This benchmark stress floating point units and memory bandwidth.

140.bplustree [9] traverses B+ trees in parallel, avoiding the overhead of
selecting the entire table to transform into row-column format and leveraging
the logarithmic nature of tree searches. This benchmark utilizes braided paral-
lelism, running independent queries in each work group concurrently, to avoid the
need of global synchronization. It involves irregular memory access and therefore
stresses memory bandwidth and latency.

4.2 SPEC ACCEL ACC Suite

The OpenACC suite consists of 15 applications. Some applications are direct
ports from the OpenCL suite, others have been ported from the SPEC OMP2012
suite. A number of numerical aerodynamic simulation (NAS) parallel bench-
marks as well as a few novel applications are included as well.

Similar to the OpenCL suite, the OpenACC suite of the SPEC ACCEL
benchmarks also tries to stress the hardware accelerator ecosystem in various
ways. The applications vary between few (314.omriq) or lots of accelerator

56 G. Juckeland et al.

Table 2. OpenACC application key facts. Profiling data taken from PGI OpenACC
runtime using an NVIDIA Tesla K40 and the CUDA 5.5 backend

regions (353.clvrleaf), as well as one (most of the applications) or multiple kernel
invocation per accelerator region (363.swim). In the same manner, the amount
and number of data transfers between the host and device differ. At the moment
a large amount of data transfers also results in a poorer accelerator utilization.
This can, however, change for future OpenACC implementations that better
overlap computation and transfer.

SPEC ACCEL: A Standard Application Suite 57

The included applications cover a wide area of scientific domains and com-
putational schemes:

303.ostencil is an iterative Jacobi solver of the heat equation on a 3-D struc-
tured grid, which can also be used as a building block for more advanced multi-
grid PDE solvers. This code it ported from the serial version of 103.stencil from
Parboil. While the accelerated loop is a fairly simple stencil operation, the code
shares the same workload as 103.stencil and offers a way to directly compare an
OpenCL and OpenACC implementation of the same code.

304.olbm, like 104.lbm, is ported from the SPEC CPU2006 benchmark and
uses the Lattice Boltzmann Method (LBM) to simulate incompressible fluids in
3D. The accelerated portion of the code is a more complex 19-point stencil which
stresses the accelerator’s global memory and potential cache infrastructure.

314.omriq simulates magnetic resonance imaging (MRI) image reconstruc-
tion by converting sampled radio responses into magnetic field gradients. This is
a port of the serial version of 114.mriq also from Parboil and uses the same work-
load. The accelerated loop is fairly small but includes an inner loop reduction,
use of cos and sin functions, and due to the use of an array of structs, some
memory accesses are not coalesced. Non-coalesced memory accesses are generally
not well suited for accelerators, but are often found in complex applications.

350.md was written at Indiana University to perform molecular dynamics
simulations of dense nuclear matter such as those occurring in Type II super-
novas, the outer layers of neutron stars, and white dwarf stars [12]. While an
earlier version of this code appears in the SPEC OMP2012 benchmark suite, this
version has been updated to better utilize the massive parallelization available
with accelerators.

351.palm is a large-eddy simulation (LES) model for atmospheric and oceanic
flows from Leibniz University of Hannover [25]. It solves prognostic equations for
velocity (Navier-Stokes equation), temperature (first law of thermodynamics),
and humidity (transport equation for scalar). 351.palm is the largest and most
complex of the codes in SPEC ACCEL and best represents how large scale appli-
cations can utilize accelerators. The source code includes a host implementation
of the Temperton fast Fourier transform (FFT) routines which dominates the
compute time spent on the host. However, for the peak metric, an optimized
host or accelerated Fastest Fourier Transform in the West (FFTW) library may
be used.

352.ep is from the University of Houston and is a port of the embarrassing
parallel (EP) benchmark from the NAS Parallel Benchmark (NPB) suite [2]. The
port required the use of a blocking algorithm since the entire problem size could
not fit within the 2 GB memory limit set in SPEC ACCEL. The benchmark also
tests the use of reductions. [17–19]

353.clvleaf is the CloverLeaf [11] mini-application which is used to solve the
compressible Euler equations on a Cartesian grid, using an explicit, second-order
method.

354.cg is NPB’s conjugate gradient (CG) OpenMP benchmark ported to
OpenACC by the University of Houston. This benchmark uses the inverse power

58 G. Juckeland et al.

method to find an estimate of the largest eigenvalue of a symmetric positive
definite sparse matrix with a random pattern of nonzeros. The code required
few changes from the OpenMP version. [17,18].

355.seismic is ported from University of Pau’s SEISMIC CPML perfectly
matched layer (PML) Collino 3D isotropic solver [8], a 3D classical split PML
program for an isotropic medium using a second-order, finite-difference spatial
operator, for comparison. The code was originally ported to OpenACC for use in
tutorials, but due to the minimal number of OpenACC directives used, highlights
a compiler’s ability to schedule loops and perform reduction operations.

356.sp and 357.csp are both derived from NPB’s singal processing (SP)
benchmark, using different languages. Although they do both solve the same
problem using the same data set, the SPEC HPG committee thought having
both would give a good comparison of using OpenACC with Fortran versus C.
The SP benchmark solves a synthetic system of partial differential equations
using a penta-diagonal matrix.

359.miniGhost is a finite difference mini-application from Sandia National
Laboratory [24] used to test a broad range of stencil algorithms on accelerators.
The code also performs inter-process boundary (halo, ghost) exchange and global
summation of grid values.

360.ilbdc is an OpenACC port from SPEC OMP2012 [21] and is geared to the
collision-propagation routine of an advanced 3-D lattice Boltzmann flow solver
using a two-relaxation-time (TRT-type) collision operator for the D3Q19 model.
The code uses a similar algorithm to 304.lbm although written in Fortran and
uses a minimal number of OpenACC directives.

363.swim is also ported from SPEC OMP2012 and is a finite-difference
approximation of the shallow-water equations. Because the data is printed after
each time step, the benchmark highlights the cost of moving data between the
accelerator and the host which also includes the data movement between the
hosts application user memory space and the accelerator driver memory space.

370.bt is NPB’s BT benchmark ported to OpenACC. Like SP, it solves a
synthetic system of partial differential equations, but instead uses a block tridi-
agonal matrix.

5 Energy Awareness

Computer systems using hardware accelerators are seen as one method for more
energy efficient data processing. The SPEC ACCEL benchmark suites take that
into account by providing the same power measurement capabilities as the pre-
viously released SPEComp2012 suite. As a result, the energy consumption can
be recorded during a measurement run as well. Recording energy consumption
is not mandatory but encouraged.

Energy measurement is enabled by changing the power setting in the configu-
ration file for the measurement run to yes and setting up power and temperature
measurement daemons (PTDaemon). The SPEC runtime system then connects
to these daemons and continuously samples the energy consumption of the whole

SPEC ACCEL: A Standard Application Suite 59

system under test every second and the air intake temperature every five sec-
onds. The SPEC ACCEL run rules define how the energy measurement needs
to be set up. The power analyzers need to be calibrated in the last 12 months
to ensure the energy measurement accuracy. The temperature is measured to
prevent reducing the energy consumption by running the system under test at
unusually low temperatures – a valid run needs to be carried out with at least
20 ◦C air intake temperature. The PTDaemon can connect to a variety of power
meters and temperature probes and offers range checking, uncertainty calcula-
tion, and multi-channel measurements. The SPEC runtime system ensures that
at least 99 % of all power samples are reported as valid samples by the PTDae-
mon. Otherwise, it will abort the run or mark it as invalid.

When the SPEC ACCEL benchmark is run with energy measurement enabled,
it will generate two additional metrics per suite:

SPECaccel {acc|ocl} energy {base|peak}.
Similar to the standard metrics, the energy metrics compare the energy con-
sumption of the system under test to the energy consumption of the reference
system. A higher number indicates a lower energy consumption or better energy
efficiency. Energy for this metric means power consumption integrated over time,
hence an energy metric of 2 indicates that the system under test consumed half
the energy (measured in Joules) than the reference system on the benchmark. As
a result, the SPEC ACCEL energy metrics can be used for an energy-to-solution
comparison. While the standard SPEC ACCEL metrics provide a measurement
for time-to-solution, they may be used in combination to determine the reason
why a system under test consumes more or less energy than the reference sys-
tem. A SPEC ocl base rating of 2 and a SPEC ocl energy base rating of 2 indi-
cate that the system under test ran the benchmarks twice as fast as the reference
system, but on average consumed the same amount of power. A SPEC ocl base
rating of 1 and a SPEC ocl energy base rating of 2 indicate that the system
under test ran the benchmark in the same time as the reference system, but
used on average half the power. In total, both systems consumed half the energy
than the reference system, thus, running the benchmark induces only half the
energy costs.

The report for a benchmark run lists the consumed energy, the maximum
power usage, the average power usage, and the energy ratio for each individual
benchmark. The idle power consumption can be taken from the log-file of the
benchmark run. Figure 1 shows that the maximum and average power consump-
tion varies quite a lot between benchmarks. The power measurement can be used
to indirectly deduce the behavior of the various benchmarks:

– A benchmark with low maximum and average power consumption is mainly
data transfer bound since both the host and the device are idle during the
transfers.

– A benchmark with a high maximum and average power is largely device
bound. There can be both compute or memory access activity on the device.

60 G. Juckeland et al.

Fig. 1. Maximum and average power consumption for all benchmarks as well as idle
power consumption when running both SPEC ACCEL suites on the reference system

– A benchmark with a significantly higher maximum than average power con-
sumption has both: phases with lots of data transfers, but also device bound
phases resulting in a high variation in power consumption.

SPEC ACCEL: A Standard Application Suite 61

6 Discussion of First Results

A run of SPEC ACCEL produces a number of output files in the result sub-
directory. It writes a logfile of the benchmark run – in case of any errors also
a more detailed debug log – as well as text and raw output for each data set
(test, train, or ref) it was run on. The runtime and energy consumption of the
benchmarks, when executed on the reference machine serve as the basis for nor-
malization. If your SPEC rate is larger than 1, this indicates that your system
performs better at running the workload of the selected benchmark suite than
the reference system. As a result, the single metric enables a first method of
comparing hardware platforms and software environments. The text output for
the ref data set also allows a benchmark-by-benchmark comparison with the
published results, as shown in Table 3. In this result, it can be seen that not
all benchmarks benefit equally from the more modern accelerator. 120.kmeans,
for example, only shows an 11 % performance increase while 114.mriq runs over
three times as fast. In a similar manner, one can see that this hardware platform
is more energy efficient than the reference system and requires less than half the
energy to run the suite (as indicated by the SPECaccel ocl energy base value).

The SPEC tool rawformat can produce reports from a measurement run that
are comparable to the results officially published on the SPEC website. It shows
the results from all runs of the ref data set, so that run-to-run variation can
be examined as well. The SPEC tools also run tests to determine the hardware
and software configuration to aid the gathering of all performance relevant data
about the setup of the system under test.

In order to share your results with others on the SPEC website, a reportable
run must be done. This will invoke the benchmark suite with the test and train
data set once, and the ref data set at least three times. The rawformat tool checks
for missing system setup information in the result file. One very common issue is
a lack of compiler flag description. SPEC requires an xml-based description of all
used compiler commands and compiler flags. A result that has been submitted
for publication is peer reviewed by HPG members in order to ensure compliance
of the benchmark result with the run rules. The review process also ensures that
the result contains all information necessary to reproduce the measurement. All
published results have passed multiple stages of checking, verification, and cross-
checking, thus, serving as a sustainable source for performance data.

A published result is split into multiple sections2:

– The header lists the hardware vendor, the used accelerator, and the system
name, along with results in all four metrics of the benchmark. It also lists who
ran the benchmark, when it was carried out, and when the used hardware and
software components are available.

– It is followed by a diagram that shows the distribution of the individual bench-
marks. The distribution provides insight into which applications perform well

2 The reference result for the OpenCL suite is available at http://spec.org/accel/
results/res2014q1/accel-20140228-00006.html and for the OpenACC suite at http://
spec.org/accel/results/res2014q1/accel-20140228-00005.html.

http://spec.org/accel/results/res2014q1/accel-20140228-00006.html
http://spec.org/accel/results/res2014q1/accel-20140228-00006.html
http://spec.org/accel/results/res2014q1/accel-20140228-00005.html
http://spec.org/accel/results/res2014q1/accel-20140228-00005.html

62 G. Juckeland et al.

Table 3. SPEC ACCEL OpenCL results for an ASUS P9X79 Motherboard with an
Intel Core i7-3930K and an NVIDIA Tesla K40c (ECC enabled) using base optimiza-
tions.

Benchmarks Ref. Run Ratio Energy Max Average Energy

time time power power ratio

101.tpacf 107 67.7 1.58 15.3 241 225 2.14

103.stencil 125 61.6 2.03 17.5 296 284 2.59

104.lbm 112 43.4 2.58 12.2 289 280 3.16

110.fft 111 76.0 1.46 22.9 316 302 1.79

112.spmv 147 79.0 1.86 21.8 293 276 2.41

114.mriq 109 33.2 3.28 8.49 271 256 4.25

116.histo 114 80.8 1.41 16.0 216 198 1.95

117.bfs 117 59.2 1.98 14.7 266 248 2.59

118.cutcp 99 34.4 2.88 9.01 273 262 3.68

120.kmeans 100 90.1 1.11 18.0 211 199 1.50

121.lavamd 109 60.2 1.81 17.3 307 288 2.28

122.cfd 126 73.3 1.72 19.1 273 260 2.26

123.nw 115 69.8 1.65 16.0 237 229 2.26

124.hotspot 114 38.7 2.95 10.9 303 281 3.48

125.lud 119 80.9 1.47 22.8 295 282 1.93

126.ge 155 54.1 2.86 14.3 280 265 3.74

127.srad 114 60.7 1.88 16.9 292 278 2.36

128.heartwall 106 88.0 1.20 21.7 255 247 1.66

140.bplustree 108 70.0 1.54 17.3 257 247 2.05

SPECaccel ocl energy base 2.43

SPECaccel ocl base 1.87

or not so well on the system under test. The bars also have ticks for all runs
of the ref data set so that run-to-run variation is also easily visible.

– The system description section lists the host and accelerator’s hardware prop-
erties along with the software set up.

– With energy measurement enabled, the next section shows the properties of
its setup including power supply, power analyzer used, and the temperature
probe.

– The result table(s) lists the execution time and the ratio for each iteration
of every benchmark, as well as the energy measurement results (if energy
measurement is enabled).

– The notes section shows the output from the SPEC sysinfo tool and any
custom notes by the submitter of the result.

SPEC ACCEL: A Standard Application Suite 63

Table 4. SPEC ACCEL OpenACC results for an ASUS P9X79 Motherboard with an
Intel Core i7-3930K and an NVIDIA Tesla K40c (ECC enabled) running at various
GPU clock frequencies using base optimizations

– The compiler section lists the compiler(s) and compiler flags used for every
individual application in the suite. It also provides a link to the previously
mentioned flags file explaining the compiler settings in more detail.

Among the initially submitted results from the SPEC ACCEL OpenACC suite
is an experiment on how different GPU clock frequency affects application per-

64 G. Juckeland et al.

Table 5. SPEC ACCEL OpenACC results for an ASUS P9X79 Motherboard with an
Intel Core i7-3930K and an NVIDIA Tesla K40c using base optimizations with ECC
enabled and disabled

Benchmarks ECC enabled ECC disabled

Ratio ERatio Ratio Speedup ERatio ESaving

303.ostencil 2.60 3.09 2.67 2.7 % 3.19 3.2 %

304.olbm 1.99 2.61 4.37 120 % 5.62 115 %

314.omriq 2.37 2.96 2.86 20.7 % 3.45 16.6 %

350.md 2.31 2.97 2.35 1.7 % 3.00 1.0 %

351.palm 1.88 2.50 1.96 4.3 % 2.62 4.8 %

352.ep 1.36 1.80 1.37 0.7 % 1.81 0.6 %

353.clvrleaf 2.65 3.37 2.98 12.5 % 3.72 10.4 %

354.cg 2.50 3.24 2.60 4.0 % 3.43 5.9 %

355.seismic 2.38 3.20 2.55 7.1 % 3.43 7.2 %

356.sp 2.04 2.65 2.45 20.1 % 3.19 20.4 %

357.csp 1.65 2.16 1.91 15.8 % 2.51 16.2 %

359.miniGhost 2.17 2.82 2.84 30.9 % 3.62 28.4 %

360.ilbdc 3.11 4.10 4.09 31.5 % 5.21 27.1 %

363.swim 2.31 3.14 2.46 6.5 % 3.35 6.7 %

370.bt 2.50 3.35 2.80 12.0 % 3.79 13.1 %

Overall 2.21 2.88 2.59 22.7% 3.35 16.3%

formance. The experiment uses the GPU Boost capabilities of the NVIDIA
K40c GPU where the clock speed can be increased from the default 745 MHz
to 810 and 875 MHz. The results are shown in Table 4. All benchmarks benefit
from the increased GPU clock rate and none consume more energy to run the
applications. Since the energy savings are less than the performance gain, the
system actually draws more power, but over a shorter period of time. Increasing
the GPU’s clock speed also helps with memory bandwidth efficiency, hence, some
benchmarks see improvements greater than the clock boost. Other benchmarks
see less performance since they either have a high percentage of time spent on
the host (351.palm, 354.cg) or have higher memory transfer rate between the
host and device (363.swim). As a result of this study, a site such as Oak Ridge
or or National Center for Supercomputing Applications (NCSA) could decide
to increase the GPU clock rate by default since a broad range of applications
benefit from it (reduced runtime) without extra costs (same or less energy con-
sumption).

Another widely discussed question that can be answered with the currently
published results is the impact of ECC on accelerator performance. Table 5 shows
the results for the SPEC ACCEL OpenACC benchmarks with ECC turned on
and off. As expected, performance improvements, due to the increased memory
bandwidth when ECC is disabled, actually vary by a very large amount for the

SPEC ACCEL: A Standard Application Suite 65

applications used. On average, disabling ECC yields a performance increase of
22.7 %, and the energy consumption also slightly improves due to the reduced
computing times. Whether this nominal performance increase is worth the risk
of wrong results is a different discussion. Within the SPEC harness, the result
verification routine ensures that the applications generate the expected results.

7 Summary and Future Work

SPEC HPG set out to develop a performance measurement environment based
on the SPEC principles for hardware accelerators. As a result, two application
suites – one with OpenCL and one with OpenACC applications – have been rel-
eased with SPEC ACCEL. They deliver performance and energy consumption
metrics that enable comparing hardware devices and software environments.
The goals set by HPG for the development of these application suites are met.
The metrics reflect the impact of different hardware and hardware settings, but
also show how different software environments (e.g., compilers, runtimes) affect
application performance. The mix of selected applications also demonstrates that
not all applications react in a similar manner to such a change. The suites can
also serve as a yardstick for determining the best hardware and software for
solving particular scientific problems. Furthermore, the suites have already been
used by compiler and runtime vendors as a mean for verification of the developed
software stacks.

SPEC ACCEL is set apart from other accelerator benchmarks for hardware
accelerators since it is simple to run, yet has a performance evaluation process
that uses real world applications under a strict measurement environment and a
peer review process for published results. Furthermore, the energy consumption
metric enables comparison between results not only by runtime of the applica-
tions, but also energy consumed.

HPG plans to extend SPEC ACCEL with a third suite covering OpenMP 4.0
target directives in the near future. The OpenACC applications will be ported to
support OpenMP 4.0 target directive so that devices that are currently not sup-
ported by OpenACC may be compared to devices that are. Beyond that effort,
SPEC HPG is investigating future updates to the various suites to support more
current versions of OpenCL and OpenACC.

Acknowledgments. The authors thank Cloyce Spradling for his work on the SPEC
harness as well as the SPEC POWER group for their work on enabling the integration
of power measurements into other SPEC suites.

SPEC R©, SPEC ACCELTM, SPEC CPUTM, SPEC MPI R©, and SPEC OMP R© are
registered trademarks of the Standard Performance Evaluation Corporation (SPEC).
AMD is a trademarks of Advanced Micro Devices, Inc. OpenCL is a trademark of
Apple, Inc. used by permission by Khronos. Other names used in this presentation are
for identification purposes only and may be trademarks of their respective owners.

Contributions by the University of Houston were supported in part by NVIDIA
and Department of Energy under Award Agreement No. DE-FC02-12ER26099.

66 G. Juckeland et al.

References

1. The OpenACC Application Programming Interface, November 2011. http://www.
openacc.org/sites/default/files/OpenACC.1.0 0.pdf, version 1.0

2. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Fineberg, S., Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V., Weer-
atunga, S.: The NAS parallel benchmarks. Technical report RNR-94-2007, NASA
(1994). http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf

3. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.:
A performance study of general-purpose applications on graphics proces-
sors using CUDA. J. Parallel Distrib. Comput. 68(10), 1370–1380 (2008).
http://dx.doi.org/10.1016/j.jpdc.2008.05.014

4. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, W.J., Lee, S.H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: Proceedings of the
IEEE International Symposium on Workload Characterization (IISWC), pp. 44–
54, October 2009

5. Che, S., Sheaffer, W.J., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A charac-
terization of the rodinia benchmark suite with comparison to contemporary CMP
workloads. In: Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), December 2010

6. Corrigan, A., Camelli, F., Lohner, R., Wallin, J.: Running unstructured grid CFD
solvers on modern graphics hardware. In: Proceedings of the 19th AIAA Compu-
tational Fluid Dynamics Conference, June 2009

7. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tip-
paraju, V., Vetter, J.S.: The scalable heterogeneous computing (SHOC) benchmark
suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, GPGPU 2010, pp. 63–74. ACM, New York (2010).
http://doi.acm.org/10.1145/1735688.1735702

8. Komatitsch, D., Martin, R.: University of Pau: SEISMIC CPML. http://
geodynamics.org/cig/software/seismic cpml/

9. Fix, J., Wilkes, A., Skadron, K.: Accelerating braided B+ tree searches on a GPU
with CUDA. In: Proceedings of the 2nd Workshop on Applications for Multi and
Many Core Processors: Analysis, Implementation, and Performance (A4MMC), in
Conjunction with ISCA, June 2011

10. Hardy, D.J., Stone, J.E., Vandivort, K.L., Gohara, D., Rodrigues, C., Schulten,
K.: Fast molecular electrostatics algorithms on GPUs. In: GPU Computing Gems
(2010)

11. Herdman, J., Gaudin, W., McIntosh-Smith, S., Boulton, M., Beckingsale, D.,
Mallinson, A., Jarvis, S.: Accelerating hydrocodes with OpenACC, OpeCL and
CUDA. In: 2012 SC Companion: High Performance Computing, Networking, Stor-
age and Analysis (SCC), pp. 465–471, November 2012

12. Horowitz, C.J., Berry, D.K., Brown, E.F.: Phase separation in the
crust of accreting neutron stars. Phys. Rev. E 75, 066101 (2007).
http://link.aps.org/doi/10.1103/PhysRevE.75.066101

13. Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., Stan, M.:
HotSpot: a compact thermal modeling methodology for early-stage VLSI design.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14(5), 501–513 (2006)

14. Johnson, N.: EPCC OpenACC benchmark suite. https://www.epcc.ed.ac.
uk/research/computing/performance-characterisation-and-benchmarking/
epcc-openacc-benchmark-suite

http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf
http://dx.doi.org/10.1016/j.jpdc.2008.05.014
http://doi.acm.org/10.1145/1735688.1735702
http://geodynamics.org/cig/software/seismic_cpml/
http://geodynamics.org/cig/software/seismic_cpml/
http://link.aps.org/doi/10.1103/PhysRevE.75.066101
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite

SPEC ACCEL: A Standard Application Suite 67

15. Khronos Group: OpenCL 1.1 API and C Language Specification, June 2011.
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf, revision 44

16. Lange, K.D.: Identifying shades of green: the SPECpower benchmarks. Computer
42, 95–97 (2009)

17. Lee, S., Eigenmann, R.: OpenMPC: extended OpenMP programming and tuning
for GPUs. In: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE
Computer Society (2010)

18. Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. ACM Sigplan Not. 44(4), 101–110 (2009)

19. Lee, S., Vetter, J.S.: Early evaluation of directive-based gpu programming models
for productive exascale computing. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, p. 23. IEEE
Computer Society Press (2012)

20. Luo, L., Wong, M., Hwu, W.W.: An effective GPU implementation of breadth-first
search. In: Proceedings of the 47th Design Automation Conference, pp. 52–55, June
2010

21. Müller, M.S., et al.: SPEC OMP2012 — an application benchmark suite for parallel
systems using OpenMP. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M.
(eds.) IWOMP 2012. LNCS, vol. 7312, pp. 223–236. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-30961-8 17

22. Müller, M.S., van Waveren, M., Lieberman, R., Whitney, B., Saito, H.,
Kumaran, K., Baron, J., Brantley, W.C., Parrott, C., Elken, T., Feng, H.,
Ponder, C.: SPEC MPI2007 - an application benchmark suite for parallel
systems using MPI. Concurr. Comput. Pract. Exper. 22(2), 191–205 (2010).
http://dx.doi.org/10.1002/cpe.v22:2

23. Qian, Y.H., D’Humieres, D., Lallemand, P.: Lattice BGK models for navier-stokes
equation. Europhys. Lett. 17, 479–484 (1992)

24. Barrett, R.F., Vaughan, C.T., Heroux, M.A.: MiniGhost: A miniapp for explor-
ing boundary exchange strategies using stencil computations in scientific parallel
computing, Version 1.0. Techical report (2012)

25. Raasch, S.: Leibniz University of Hannover: PALM. http://palm.muk.
uni-hannover.de/

26. Stone, S.S., Haldar, J.P., Tsao, S.C., Hwu, W.W., Liang, Z., Sutton, B.P.: Accel-
erating advanced MRI reconstructions on GPUs. In: International Conference on
Computing Frontiers, pp. 261–272 (2008)

27. Stratton, J.A., Rodrigues, C., Sung, I.J., Obeid, N., Chang, L., Liu, G., Hwu,
W.W.: Parboil: a revised benchmark suite for scientific and commercial through-
put computing. Technical report IMPACT-12-01. University of Illinois at Urbana-
Champaign, Urbana, March 2012

28. Szafaryn, L.G., Skadron, K., Saucerman, J.J.: Experiences accelerating MATLAB
systems biology applications. In: Proceedings of the Workshop on Biomedicine in
Computing: Systems, Architectures, and Circuits (BiC) 2009, in Conjunction with
the 36th IEEE/ACM International Symposium on Computer Architecture (ISCA),
June 2009

29. Szafaryn, L.G., Gamblin, T., de Supinski, B.R., Skadron, K.: Trellis: portabil-
ity across architectures with a high-level framework. J. Parallel Distrib. Comput.
73(10), 1400–1413 (2013)

https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://dx.doi.org/10.1007/978-3-642-30961-8_17
http://dx.doi.org/10.1002/cpe.v22:2
http://palm.muk.uni-hannover.de/
http://palm.muk.uni-hannover.de/

	SPEC ACCEL: A Standard Application Suite for Measuring Hardware Accelerator Performance
	1 Introduction
	2 Related Work
	3 Design and Principles of SPEC ACCEL
	3.1 Benchmark Philosophy and General Design
	3.2 Run Rules

	4 Description of the Applications
	4.1 SPEC ACCEL OCL Suite
	4.2 SPEC ACCEL ACC Suite

	5 Energy Awareness
	6 Discussion of First Results
	7 Summary and Future Work
	References

