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Abstract. In high-performance computing, there is a perpetual hunt
for performance and scalability. Supercomputers grow larger offering
improved computational science throughput. Nevertheless, with an incre-
ase in the number of systems’ components and their interactions, the
number of failures and the power consumption will increase rapidly.
Energy and reliability are among the most challenging issues that need to
be addressed for extreme scale computing. We develop analytical models
for run time and energy usage for multilevel fault-tolerance schemes. We
use these models to study the tradeoff between run time and energy in
FTI, a recently developed multilevel checkpoint library, on an IBM Blue
Gene/Q. Our results show that energy consumed by FTI is low and the
tradeoff between the run time and energy is small. Using the analytical
models, we explore the impact of various system-level parameters on run
time and energy tradeoffs.

1 Introduction

Large-scale scientific simulations require larger supercomputers to produce more
accurate results. In high-performance computing (HPC) researchers and engi-
neers are pushing the envelops to increase scalability and performance. As sys-
tems scale, new challenges appear, in particular, two major challenges for next
generation supercomputers consists of minimizing power/energy consumption
and maximizing reliability. However, these two objectives are in conflict which
each other because increased reliability comes at the expense of power and energy
usage.

Researchers in the HPC community have developed various fault tolerance
techniques to improve the reliability of current and future machines. Neverthe-
less, all these techniques involve overheads in terms of storage space, computation
and their respective energy consumption, hinting at the existence of a tradeoff
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between execution run time and energy efficiency. Multilevel checkpointing is a
promising approach to deal with reliability at extreme scale. The key idea of
this approach consists in using layers of checkpointing, each one of them offer-
ing different levels of resilience and overheads. Low-cost levels offer limited fault
tolerance while highly resilient levels involve large overheads. Consequently, the
correct usage of the multiple levels should lead to substantial gains in perfor-
mance, resilience, and energy consumption.

In this paper, we study the impact of optimal multilevel checkpointing inter-
vals on the tradeoffs between run time and energy consumption. Our experimen-
tal study with FTI, a multilevel checkpointing library on an IBM Blue Gene/Q
supercomputer shows that performance-energy tradeoffs are minimal, but may
be significantly larger under certain future exascale HPC scenarios. The contri-
butions of this paper are as follows:

– We derive analytical models for expected run time and energy consumption
for multilevel checkpointing.

– We characterize the Pareto-optimal solution set and investigate the tradeoffs
between time and energy consumption.

– We perform power consumption measurements of large-scale executions on an
IBM Blue Gene/Q with several applications.

– We present an experimental study to analyze several system-level parameters
for multilevel checkpointing that can potentially impact the tradeoffs.

The rest of the paper is organized as follows. Section 2 describes the main
concepts used by multilevel checkpointing. Section 3 introduces models for time
and energy for multilevel checkpointing strategies. We introduce the notion of
Pareto optimality in Sect. 4. Section 5 presents the results of our empirical eval-
uation and several future tradeoff projections. Section 6 reviews related work,
and Sect. 7 presents conclusions and a brief look at future work.

2 Multilevel Checkpointing

Long-running scientific simulations executed on large supercomputers are check-
pointed periodically to stable storage in order to avoid having to restart from
the beginning in case of failure. Traditionally, applications will stop, write all the
required data to the parallel file system (PFS), and then continue. Checkpoint
sizes have been constantly increasing with the exponential growth of supercom-
puters. Unfortunately, the speed at which one can write to the PFS has been
increasing only linearly, leading to long checkpointing times and causing large
overhead to the application.

To minimize the impact of checkpointing on run time, researchers have pro-
posed multilevel checkpointing [4,13] which leverages multiple storage layers and
limits the load on the PFS. This is achieved by using local storage in the com-
pute nodes. However, local storage is not resilient against node crashes, even for
persistent storage devices, as access to those devices might be lost after a fail-
ure. Therefore, local storage is usually coupled with data replication or erasure



Energy-Performance Tradeoffs in Multilevel Checkpoint Strategies 251

codes to guarantee that any unaccessible data can be reconstructed. We used
the multilevel checkpointing library FTI [4] that provides four checkpoint levels,
namely, Local checkpoint, Local checkpoint + Partner-copy, Local checkpoint +
Reed-Solomon coding, and PFS-based checkpoint. Note that the model devel-
oped proposed in this paper can be used to analyze other multilevel checkpoint
libraries.

Applications using FTI can perform checkpoints of different levels at different
frequencies. Those frequencies can be easily configured through a configuration
file. When a checkpoint of level i is done, FTI automatically removes all previous
checkpoints of level j for j ≤ i because i is more recent and offers more reliability.
Previous checkpoints of level k for k > i are kept however, so that if a failure
cannot be recovered by using level i, it can try to recover from a higher level.
In addition to these four checkpointing levels, FTI offers features such as having
dedicated processes that perform fault-tolerance tasks in the background, which
speeds the checkpoints and limits the overhead imposed on the application’s
run. Dedicated processes could, for instance, copy a local checkpoint to the PFS
in the background at the same time the application is running. In this way,
applications are blocked only to perform the local checkpoint; all the rest of the
work associated with addressing fault tolerance is hidden.

3 Energy and Checkpoint Models

A multilevel checkpoint strategy is defined by the intervals between checkpoints.
We denote these intervals by the vector τ ∈ R

L
+, where L is number of different

levels of checkpointing and the ith component, τi, of the vector τ denotes the
amount of time between checkpoints at level i. The checkpoint cost (in terms of
time) at level i is denoted by ci.

After a failure, the application uses the most recent checkpoint to restart
the application. Suppose we have a failure at level i, the restart time is ri and
the down time is di. For a failure model we consider μi as the rate of failures
affecting only level i. Hence, μ1 corresponds to the rate of transient failures; μ2

is the rate of permanent failures that affect many nodes but not two buddies at
the same time; μ3 represents the rate of failures affecting at least one partner
node at the same time; and μ4 is the rate of failures that occur at the same
time and affect at least one group at the same time. Several derivations of μi are
provided in [7,13]. Also, we note that 1/μi can be interpreted as the mean time
between failures at level i. The basic model notation is summarized in Table 1,
with all times and powers taken in expectation.

3.1 Model for Run Time

We express the expected overall completion time as the sum of two times: the
time for a failure-free execution of an application without checkpointing and
the expected time wasted because of failures and/or checkpointing, Toverall =
Ta+Twasted = Ta+WToverall. The amount of waste per unit of time, W, comprises



252 P. Balaprakash et al.

Table 1. Summary of model notation.

Description

τi Time between level i checkpoints

ci Time for a level i checkpoint

ri Time for a restart from level i

Ta Time for a failure-free computation without checkpointing

di Downtime after a failure affecting level i

L Number of levels

μi Expected rate for failure affecting level i

Pc
i Power for a level i checkpoint

Pr
i Power for a restart from level i

Pa Power for a failure-free computation without checkpointing

the time to perform checkpointing, rework, and restart, as well as the downtime.
We now examine the contributors to the wasted time: the checkpoint overhead
per unit of time Wch, the rework overhead per unit of time Wrew, and the restart
per unit of time Wdown.

Checkpoint overhead. We have two sources of overhead because of checkpointing.
The first is based on the number of checkpoints performed in one unit of time.
The number of checkpoints can be approximated by 1

τi
. A tighter approximation

is given by 1
τi+ci

, but 1
τi

is a good upper bound. The second term, μiτi

∑i−1
j=1

cj
2τj

,
represents the expected lost time due to extra checkpoints at levels 1, . . . , i − 1
if a failure occurs at level i. The overall fraction of time spent in checkpointing
is thus given by

Wch =
L∑

i=1

⎛

⎝ci

τ i
+ μiτi

i−1∑

j=1

cj

2τj

⎞

⎠.

Rework time. We follow the classical first-order approximation and assume that
a failure occurs at the half of the interval. The expected lost time due to re-
execution (rework) is thus

Wrew =
L∑

i=1

μiτi

2
.

Downtime and restart. The expected wasted time because of downtime and
restart is

Wdown =
L∑

i=1

μi(ri + di).
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The total waste per unit time, W, is thus given by
L∑

i=1

(
ci

τi
+

μiτi

2

(
1 +

i−1∑

j=1

cj

2τj

)
+ μi (ri + di)

)
. (1)

3.2 Model for Energy

We now develop a model for the expected wasted energy per unit of time. We let
Pa, Pc

i , and Pr
i denote respectively the amount of power (e.g., in watts) used by

the user application to perform computation, checkpoint at level i, and restart
from level i. Note that Pa, Pc

i , and Pr
i include the idle power as well.

We have the three sources of wasted energy:

Ech =
L∑

i=1

⎛

⎝Pc
i

ci

τi
+ μiτi

i−1∑

j=1

Pc
j cj

2τj

⎞

⎠,

Erew =
L∑

i=1

Pa μiτi

2
,

Edown =
L∑

i=1

Pr
i μi(ri + di),

corresponding to the checkpoint energy, the energy for rework because of failures,
and the energy for restart, respectively.

3.3 Optimal Checkpoint Intervals

The optimal checkpoint intervals with respect to run time are obtained by mini-
mizing (1) as a function of τ ∈ R

L
+. Similarly, the optimal intervals with respect

to energy are obtained by minimizing the wasted energy during one unit of time,

E =
∑L

i=1

(Pc
i ci
τi

+ μiτi

(
Pa

2 +
∑i−1

j=1

Pc
j cj
2τj

))

+
∑L

i=1 Pr
i μi(ri + di), (2)

as a function of τ .
Under reasonable restrictions on the checkpoint intervals (based only on the

failure rates μ; see the Appendix), one can show that W and E are both convex
over this restricted domain. Thus each has a unique optimal solution, which we
can obtain, for example, using an iterative method such as Newton’s method.

The first derivatives of Eqs. (1) and (2) with respect to τi are given by

∂W

∂τi
=

μi

2

(
1 +

i−1∑

j=1

cj

τj

)
− ci

τ2
i

(
1 +

L∑

j=i+1

μjτj

2

)
(3)

∂E

∂τi
=

μi

2

(
Pa +

i−1∑

j=1

Pc
j cj

τj

)
− Pc

i ci

τ2
i

(
1 +

L∑

j=i+1

μjτj

2

)
. (4)
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Setting these derivatives to zero, we note that the solutions for time and energy
satisfy

τW

i =

√
√
√
√

ci(2 +
∑L

j=i+1 μjτW

j )

μi(1 +
∑i−1

j=1
cj
τW

j
)

τE

i =

√
√
√
√

ρici(2 +
∑L

j=i+1 μjτE

j )

μi(1 +
∑i−1

j=1
ρjcj
τE

j
)

,

respectively, with ρi = Pc
i /Pa.

When there is only a single level, the interval that minimizes run time is
τW =

√
2c/μ, while the interval that minimizes energy is τE = τW

√Pc/Pa.
Whenever Pc �= Pa, we have that τW �= τE, and hence the two objectives are
conflicting, a subject we formalize next.

4 Tradeoffs Between Time and Energy

We now turn to the checkpoint-scheduling problem of minimizing both time and
energy. Sometimes such bi-objective optimization problems have a single solution:
there is a single decision that minimizes both objectives simultaneously. In other
cases (such as seen at the end of Sect. 3), the objectives are conflicting, and many
solutions may be “optimal” in the bi-objective sense.

The concept of two conflicting objectives is best illustrated by an example.
Figure 1 shows the wasted time and energy per unit of time for a single-level

Fig. 1. Pareto front for single-level checkpointing for LAMMPS on BG/Q. The power
for computing and checkpointing are 2 kW and 1.8 kW, respectively; μ=1/36000 Hz
and the cost of a checkpoint is 10 s. The thin line shows the strategies dominated by
the Pareto front (thick line).
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checkpointing scheme (see Sect. 5 for details). The thinner curve illustrates the
behavior of the objective pairs (W(τ),E(τ)). If the objective W [E] is mini-
mized in isolation, then we obtain the solution τW [τE] and the corresponding
point (W(τW),E(τW))

[
(W(τE),E(τE))

]
in Fig. 1. From a bi-objective perspec-

tive however, τW and τE provide only the boundary of the solution set: for any τ
between the values τW and τE, we obtain time and energy quantities that cannot
both be improved upon. Formally, a point τ j is dominated by a point τ i when
W(τ i) ≤ W(τ j) and E(τ i) ≤ E(τ j) (with at least one of these inequalities being
strict). A point τ i is said to be Pareto-optimal if it is not dominated by any
other τ j . The set of (W,E) values from all Pareto-optimal points is called the
Pareto front (illustrated by the bold portion of the curve in Fig. 1); see [3,8] for
further details.

In general, Pareto fronts can be nonconvex, and finding Pareto-optimal points
can be a task significantly more challenging than optimizing a single objective.
When the Pareto front is convex, any point on the front can be obtained by min-
imizing a linear combination of the objectives. This corresponds to minimizing
the single objective

fλ(τ) = λW(τ) + (1 − λ)E(τ), (5)

where λ ∈ [0, 1] represents the weight placed on W(τ). For convex Pareto fronts,
solving (5) for all λ ∈ [0, 1] yields the Pareto-optimal solutions, with the extreme
case λ = 1 (λ = 0) corresponding to minimizing time (energy) in isolation.

Because W and E are convex, it follows that the function fλ is convex for every
λ ∈ [0, 1] and thus has a unique minimizer τ∗(λ). Using the derivatives in (3) and
(4), one can easily show that the optimal τ∗

i (λ) satisfies

τ∗
i (λ) =

√√√√√√√√√

ci(λ + (1 − λ)Pc
i )

(
2 +

L∑
j=i+1

μjτ∗
j

)

μi

(
λ + (1 − λ)Pa +

i−1∑
j=1

(λ + (1 − λ)Pc
j )

cj
τ∗
j

) , (6)

where each τ∗
j = τ∗

j (λ) depends on λ. For example, in the single-level case, we
have that

τ∗(λ) = τW

√
λ + (1 − λ)Pc

λ + (1 − λ)Pa
. (7)

Equation (7) reiterates that tradeoffs are present in the single-level case when-
ever Pc �= Pa. When L > 1, the situation is more complex; in the next section
we investigate the behavior for specific values of the multilevel parameters.

5 Experiments

Our evaluation was performed on MIRA, a 10-petaflops IBM Blue Gene/Q
(BG/Q) system and Vesta, a developmental platform for Mira, at the Argonne
Leadership Computing Facility. Mira has 48 racks with a total of 49,152 nodes,
each one with 16 cores of 1.6 GHz PowerPC A2 and 16 GB of DDR3 memory.
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The compute nodes run on CNK, a proprietary, lightweight kernel that minimizes
OS noise. A proprietary 5-D torus network connects all the compute nodes and
the PFS. The machine is water-cooled for thermal efficiency. Vesta’s architec-
ture is the same as Mira’s but with 2,048 nodes. For measuring power on BG/Q,
we use MonEQ, a low overhead power-profiling library [16] that samples power
readings at a frequency of 560 ms. The power measurements include the overall
node consumption as well as core, DRAM and network. Further details on the
power profiling used can be found in [16]. Because of control system limitations,
MonEQ can collect power data only at the node-card level which includes 32
compute nodes. In addition, MonEQ only measures power consumption on the
compute nodes, and does not provide data for the I/O power consumption. We
revisit this issue in Sect. 5.2.

5.1 FTI on BG/Q

Our first set of experiments was done with LAMMPS, a production-level molecu-
lar dynamics application [14]. First, we measured the performance of LAMMPS on
Mira to confirm that our setup was correct. We next ported LAMMPS to perform
checkpoints with FTI and confirmed that the performance overhead imposed by
FTI was low. We then added the MonEQ library to our setup and ran several
tests to verify that the power measurements were being correctly logged. With
this configuration, we ran a Lennard-Jones simulation of 1.3 billion atoms using
512 nodes and launching 64 MPI processes per node (32,678 ranks in total). Mole-
cular dynamics applications such as LAMMPS are known to have a low memory
footprint. Each rank used 16.2 MB of memory and checkpointed 2.9 MB of data.
Thus, the checkpoint size per node is about 187 MB, and the total checkpoint
size for the whole execution is roughly 93 GB. The checkpoint intervals for levels
1, 2, 3, and 4 were set to 4, 8, 16, and 32 min, respectively, producing the check-
point order {1, 2, 1, 3, 1, 2, 1, 4}. This first experiment was done without using
dedicated processes for fault tolerance. Thus, every process participated in the
application, and the execution was blocked during the checkpoints.

Figure 2a shows the power consumption of LAMMPS checkpointing with FTI in
a synchronous fashion. During normal execution, LAMMPS consumes about 32 kW
on 512 nodes (32,678 processes). We introduce one minute idle phase (i.e. sleep)
before the application starts, to measure the idle power consumption of the nodes.
We observe that the idle phase consumes roughly 25 kW. The periodic drop (every
four minutes) in power consumption is due to checkpointing. We can identify the
checkpoint levels by measuring the time that nodes spend in different power con-
sumption regimes. Short drops in DRAM corresponds to the checkpoint level 1.
Checkpoints level 2 and 3 expose two parts of checkpoint: DRAM power drop when
the checkpoint data is being copied locally and core power drop where the check-
point is either being transferred to a partner copy or a encoded with Reed-Solomon
encoding, for level 2 and 3 respectively. Finally, PFS-based checkpoint is visible
as a long drop in power consumption due to the time that it takes to transfer the
checkpoint data to the PFS via I/O nodes and erase the previous local checkpoints.
Since MonEQ provides only the power consumption of the participating compute
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(a) Synchronous multilevel checkpointing

(b) Asynchronous multilevel checkpointing

Fig. 2. Power profile of LAMMPS running a 1.3 billion-atom Lennard-Jones simula-
tion and checkpointing with FTI on BG/Q. Execution on 512 nodes running 64 MPI
ranks per node (32,678 proc.). The power consumption of node is a sum of all power
consumptions of the components.

nodes, the experiments do not allow us to accurately quantify the energy usage
for level 4 PFS-based checkpointing. The power consumption of all other check-
point levels vary between 27 kW and 30 kW. We note that although they have
relatively similar power costs, their run times vary significantly. We verified that
all node cards (set of 32 nodes) consume the same power, roughly 1.6 kW, 1.8 kW,
and 2 kW during idle time, checkpointing, and execution, respectively.

The next experiment aims to test the asynchronous feature of FTI to speed the
checkpoints. LAMMPS is a good candidate for this type of optimization because it
does not require a particular number of MPI ranks. Therefore, one can easily dedi-
cate one MPI process per node (out of 64) for fault tolerance. The same checkpoint
frequencies are kept, producing the same checkpointing pattern as in the previous
configuration. The results in Fig. 2b illustrate that the drops in power consump-
tion are much shorter because the application is blocked only during the local
copy; the rest of the work is done in the background by the dedicated processes
(one per node), and does not involve a significant extra power cost. As a result
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of this optimization, the application runs about 20 % faster than in the previous
configuration.

We also study the power profile of four mini-applications from the CORAL
benchmark suite developed for the procurement of pre-exascale systems [1]. Qbox

is a first-principles molecular dynamics code used to compute the properties of
materials from the underlying physics equations. AMG is a parallel algebraic
multigrid solver for linear systems arising from problems on unstructured grids.
LULESH performs hydrodynamics stencil calculations, and miniFE is a finite-
element code.

We ran the four applications on a single-node board of 32 nodes of Vesta
with 512 MPI ranks (16 MPI ranks per node). Figure 3 shows the power profile
of the fault-free computations, Pa, on a node card. Except for Qbox, on average,
the observed Pa values are similar to those of LAMMPS; for Qbox, Pa reaches
up to 2.2 kW.

(a) LULESH (b) MiniFE

(c) AMG (d) Qbox

Fig. 3. Power profile of CORAL benchmark applications on a BG/Q node board of
32 nodes. Each application is run with a configuration of 16 MPI ranks per node (512
processes).
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5.2 Tradeoff Analysis

We now revisit the energy-performance models from Sect. 3 and use the power
consumption and checkpointing cost observed on BG/Q and presented in Sect. 5.1.
In particular, we examine several system-level parameters that can affect the
energy-performance tradeoffs.

For this analysis, we consider values at a node-board level and applications
with similar checkpoint sizes as the ones observed for LAMMPS. As a default,
we use the configuration c = [10, 30, 50, 150] s; μ = [1, 0.5, 0.25, 0.05]/36000 Hz;
Pa = 2 kW; Pc

1 = Pc
2 = Pc

3 = 1.8 kW; and, since there is no power monitoring
infrastructure to measure the I/O power involved in level 4 checkpointing, we
take Pc

4 = 2×Pc
3 . We note that the default failure rates are those commonly used

for petascale HPC systems [4,7,13]. Note that, given a fixed checkpoint size, the
wasted time and energy consumption per unit time during checkpointing will
be the same for different applications, because FTI performs the same amount
of work (e.g., transfer) independently of the content of the checkpoint data. In
what follows we report the expected waste in time and energy per minute.

With all other values held fixed, we first vary the number of levels considered
for checkpointing (and at which failures can occur). Table 2 illustrates that the
optimal checkpoint intervals depend on what is happening at all other levels.
Despite the overall time between any failure (the final column) decreasing, the
checkpoint intervals at a level actually increase because of the increases in the
number of levels. Furthermore, differences in wasted time and energy between
the two single-objective solutions τW and τE increase as the number of levels
grows. Nevertheless, for a given number of levels, these differences are small.

Table 2. Optimal multilevel checkpoint intervals (s) for schemes with 1, 2, 3, and 4 levels.

Level 1 2 3 4 W(τ),E(τ) (
L∑

j=1

μj)
−1

τW 848.5 n/a n/a n/a (1.41, 2.69) 36000 (s)

τE 805.0 n/a n/a n/a (1.42, 2.68)

τW 854.6 2066 n/a n/a (3.16, 6.00) 108000 (s)

τE 810.5 1961 n/a n/a (3.16, 5.99)

τW 860.1 2080 3746 n/a (4.76, 9.04) 252000 (s)

τE 815.4 1973 3556 n/a (4.76, 9.02)

τW 864.3 2090 3765 14417 (6.01, 12.53) 972000 (s)

τE 820.8 1986 3580 19362 (6.07, 12.37)

Since we cannot measure I/O-intensive level 4 power consumption, we ana-
lyze the tradeoffs under various Pc

4 scenarios. We consider Pc
4 = αPc

3 , where
α ∈ [1, 2, 4, 6, 8, 10] and the default Pc

3 . Figure 4a shows that increasing Pc
4 rel-

ative to other levels has a significant impact on the observed tradeoff between
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(a) Level 4 power consumption Pc
4 (b) Computation power Pa (c) Power ratio Pc

Pa

Fig. 4. Time-energy Pareto fronts for multilevel schemes as different parameters are
varied. The two end points represent only the boundary of the solution set: all values
between them correspond to non-dominated points.

W and E. In particular, richer tradeoff is observed for α = 10 (18 kW). We also
analyze the impact of different Pa values on time and energy. Figure 4b shows
that varying Pa increases energy, but the tradeoffs are insignificant.

The projected low power consumption and high failure rate for next-generation
systems can have a significant impact on energy-performance tradeoffs. Here,
we characterize power consumption by the ratio Pc

Pa . We set the Pa and Pc
1

values to obtain Pc

Pa ∈ {0.5, 1.0, 2.0, 4.0, 6.0, 8.0}, with all other default values
unchanged. Recall that Pc

1 = Pc
2 = Pc

3 and Pc
4 = 2Pc

3 . In Fig. 4c, we see that Pc

Pa

has a significant impact on the tradeoffs between W and E, with these tradeoffs
increasing as ρ increases. This suggests that power for computation should be
significantly less than that for checkpointing in order for richer tradeoffs to exist.
This situation could happen for several reasons. For instance, applications could
be significantly more aware of data locality than what multilevel checkpointing
techniques could achieve, because resilience can be achieved only through data
dispersion across space, which requires communication. We also analyzed the
tradeoffs by increasing μ values, but we did not observe significant tradeoffs.

6 Related Work

A rich body of literature exists for computing an optimal checkpoint period with
respect to run time for various checkpoint protocols [5–7]. However, energy mod-
els and analysis of tradeoffs in current and future HPC systems are still in their
infancy. Diouri et al. [9] modeled and evaluated the energy consumption of check-
pointing, task coordination, and message logging components of a fault tolerance
protocol. They showed that neither of these tasks significantly increases the power
draw of a node and that minimizing execution time will minimize energy con-
sumption. Later, they developed the ECOFIT framework [10] using component
power models, and studied energy consumption of an application using coordi-
nated, uncoordinated, and hierarchical protocols. Meneses et al. [12] developed
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models for expected run time and energy consumption for global recovery, message
logging, and parallel recovery protocols. They observed tradeoffs in message log-
ging due to significant run time overhead but faster recovery. They applied these
models in an exascale scenario and showed that parallel recovery is more effec-
tive than a checkpointing protocol since parallel recovery reduces the rework time.
A limitation of the model is that it considers failures at a single node level. More-
over, the RAPL API used to report the power consumption measures only the
energy consumption at a processor-level and does not cover the I/O, or the com-
munication [11]. Aupy et al. [2] developed performance and energy models and
applied them to analyze the minimizers of each objective in isolation. Under an
expensive I/O scenario with a low idle power of 10 mW/node, the authors showed
different tradeoffs. However, the proposed models do not take into account mul-
tilevel checkpointing and are not used to assess the tradeoffs more generally. The
authors considered the power consumption values from elsewhere [15]: the check-
pointing power consumption was set to 10 times the computer power, a primary
reason for the significant differences in time and energy.

7 Conclusions

We developed analytical models of performance and energy for multilevel check-
point schemes. We went beyond minimizing the two corresponding objectives in
isolation and examined them simultaneously. We proved that both models—and
hence their shared Pareto front—are convex and used this result to analyze the
performance-energy tradeoffs for the FTI multilevel checkpoint library on BG/Q.
We ran a well-known molecular dynamics application (LAMMPS) over 32,000
ranks as well as other CORAL applications and performed detailed power mea-
surements on them. The empirical results and analysis showed that the relative
energy overhead due to the adoption of FTI is small on the studied applications
and thus the tradeoffs between the run time and the energy consumption is not
significant. This is due to the fact that the difference between power consump-
tion during computation and multilevel checkpointing is minor. The exploratory
analysis showed the existence of richer tradeoffs where the power consumption of
checkpointing is significantly higher than that of the computation such a situa-
tion can be observed when using I/O-intensive and/or data-intensive checkpoint
strategies.

Our future work includes analyzing power profile of different fault tolerance
protocols such as full/partial replication and message logging. We plan to develop
performance and energy models for replication and checkpointing in order to
assess the viability of both protocols with respect to the power cap of future
exascale platforms.
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Appendix

We first formalize our assumption on the checkpoint intervals of interest.

Assumption (A1). We consider checkpoint intervals τ ∈ R
L
+ that satisfy (for

i = 1, . . . , L): (i) τi > 0; (ii) τj > τi/2 whenever j > i; and (iii) τi < 4/
∑i−1

j=1 μj.

The second condition says that the checkpoint at level j cannot be that
frequent relative to checkpoints at lower levels. The third condition says that
the time between checkpoints needs to be sufficiently smaller than the expected
time between any failure at a lower level.

Theorem 1. If (A1) holds, then the time W and energy E are convex functions
of τ ∈ R

L.

Proof. Following (3) and (4), the second-order derivatives of W are given by

∂2
W

∂τ2
i

=
ci

τ3
i

⎛

⎝2 +
L∑

j=i+1

μjτj

⎞

⎠

∂2
W

∂τi∂τj
= −ciμj

2τ2
i

, j �= i.

We then have
∂2

W

∂τ2
i
−∑j �=i

∣∣∣ ∂2
W

∂τi∂τj

∣∣∣

= ci
τ2
i

(
L∑

j=i+1

μj

(
τj
τi

− 1
2

)
+ 2

τi
−

i−1∑
j=1

μj

2

)
,

(8)

which is positive by (A1). Equation (8) being positive for all i means that the
Hessian ∇2

ττW(τ) is diagonally dominant, and thus W is a convex function of τ
over the domain prescribed by (A1).

The convexity of E follows by a similar argument, with the derivatives of E
given by

∂2
E

∂τ2
i

=
Pc

i ci

τ3
i

⎛

⎝2 +
L∑

j=i+1

μjτj

⎞

⎠

∂2
E

∂τi∂τj
= −Pc

i ciμj

2τ2
i

, j �= i.

As a result, there are unique minimizers τW and τE over the domain pre-
scribed by (A1).
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