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Abstract. Fault response strategies are crucial to maintaining perfor-
mance and availability in HPC storage systems, and the first responsibil-
ity of a successful fault response strategy is to detect failures and maintain
an accurate view of group membership. This is a nontrivial problem given
the unreliable nature of communication networks and other system com-
ponents. As with many engineering problems, trade-offs must be made to
account for the competing goals of fault detection efficiency and accuracy.

Today’s production HPC services typically rely on distributed con-
sensus algorithms and heartbeat monitoring for group membership. In
this work, we investigate epidemic protocols to determine whether they
would be a viable alternative. Epidemic protocols have been proposed in
previous work for use in peer-to-peer systems, but they have the poten-
tial to increase scalability and decrease fault response time for HPC sys-
tems as well. We focus our analysis on the Scalable Weakly-consistent
Infection-style Process Group Membership (SWIM) protocol.

We begin by exploring how the semantics of this protocol differ from
those of typical HPC group membership protocols, and we discuss how
storage systems might need to adapt as a result. We use existing analyti-
cal models to choose appropriate SWIM parameters for an HPC use case.
We then develop a new, high-resolution parallel discrete event simulation
of the protocol to confirm existing analytical models and explore proto-
col behavior that cannot be readily observed with analytical models.
Our preliminary results indicate that the SWIM protocol is a promis-
ing alternative for group membership in HPC storage systems, offering
rapid convergence, tolerance to transient network failures, and minimal
network load.

1 Introduction

As the scale of modern distributed systems continues to grow, so too does the
frequency of system component failures. Ensuring efficient and correct behavior
in the presence of such failures requires both a reliable fault detection mech-
anism and a suitable strategy for fault recovery. Example distributed services
that rely on efficient and accurate fault detection include distributed storage
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systems [16,21] and reliable multicast protocols [6,7]. Fault detection is one
component of broader group membership protocols [6,11,19] that are used to
maintain a global view of available participants as they enter or leave the sys-
tem. An HPC storage system might use this view to determine the set of available
servers for data placement, and changes to the group membership can be used
to trigger the re-replication of data in order to maintain resilience. An inefficient
failure detector (i.e., one that takes too long to disseminate failure notifications
to the group) could lead to data loss if data is not re-replicated before addi-
tional failures occur, while an inaccurate failure detector could lead to costly,
unnecessary rebuilds of the storage system.

Group membership protocols often use heartbeat mechanisms to detect faults
[1,8,15,20]: each participant sends out periodic “heartbeat” messages to inform
other participants that it is alive. If no new heartbeat messages are received for
some prescribed duration, the participant is declared faulty and removed from
the group. Unfortunately, the scalability of heartbeat protocols has proven unac-
ceptable for group sizes exceeding more than a few hundred participants [7]. This
limitation arises from the network load imposed by group membership protocols
in order to provide complete and efficient detection of failures [13]. In practice,
failure detector implementations usually divide systems into smaller groups with
independent failure domains (introducing artificial limitations on the range of
failures the system can tolerate) or delegate group membership maintenance to a
specialized subset of participants (increasing engineering complexity and failing
to leverage the full network capacity of the system).

In this work, we analyze the efficiency and scalability of the SWIM (Scalable
Weakly-consistent Infection-style Process Group Membership) protocol. Previ-
ous work [11] proposed the SWIM protocol and evaluated it using both analytical
models and a prototype implementation, but to the best of our knowledge it is
not used in production on any present-day system. SWIM achieves scalability
through the use of a randomized, probe-based failure detection mechanism cou-
pled with an epidemic-style (also known as infection-style or gossip-style) failure
dissemination component. As a result, neither the expected network load per
participant nor the expected time to first detect a failed participant will depend
directly on the size of the group. While much of the analysis given in [11] assumes
a distributed peer-to-peer environment, we instead explore how to adapt SWIM
to a horizontally scalable data center storage environment as would be used for
HPC or big data applications. This environment is characterized by lower net-
work latency and lower churn rate but also higher expectations of consistency
and responsiveness. Although failure modes such as silent data corruption are
important considerations in HPC storage system design, in this work we focus
on total server failures and assume that additional mechanisms will be used to
detect silent errors.

The rest of this paper is organized as follows. In Sect. 2, we summarize the
SWIM group membership protocol. Section 3 explores the implications of using
the SWIM protocol in an HPC storage system, while Sect. 4 analyzes how to
tune its parameters for that environment. In Sect. 5 we provide initial simulation
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results to confirm its performance and to explore its behavior in lossy network
environments. In Sect. 6 we summarize our findings and propose avenues for
future research.

2 Background: SWIM

As defined in [11], the SWIM group membership protocol can be functionally
decomposed into two primary components: a failure detector and a mechanism
for disseminating group membership updates. The failure detection mechanism
is based on the periodic probing of random group participants, while the failure
dissemination component is implemented by using an epidemic protocol.

To provide a high-level overview of the SWIM failure detector, we outline
its operation at an arbitrary participant Pi. The failure detection protocol is
governed by two key parameters: protocol period length T ′ and size of failure
detection subgroups k. At the beginning of each of its protocol periods, Pi will
select a random participant (which we refer to as Pj) from its local group mem-
bership view and probe it using a direct ping request. Pi then waits a prespecified
timeout duration to receive an ack from Pj . If no ack is received, the protocol
selects k more participants at random and sends an indirect ping request to each
of them. Each participant in this subgroup will then ping Pj on behalf of Pi,
forwarding any received acks back to Pi to inform that Pj is alive. The indirect
ping requests are used to circumvent potential congestion on the network path
between Pi and Pj and other phenomena that may have caused the loss of the
original direct ping request or response. At the end of the protocol period (of
duration T ′), if no ack has been received by Pi (whether from direct or indirect
probes), then a subprotocol is triggered that marks Pj as suspected, and this
update is passed to the SWIM dissemination component to be communicated to
the rest of the group.

After a participant is declared as suspected by the SWIM failure detector,
the protocol continues normal operation—the suspected participant may still be
selected as a probe target in future iterations of the protocol. However, if a
participant Pj remains suspected for more than s iterations (i.e., the suspicion
timeout) of the protocol on Pi, then Pi will mark Pj as failed and dissemi-
nate that information to other participants. If a suspected participant becomes
responsive again before the suspicion timeout expires, it will be marked as alive
with a corresponding update disseminated to rejuvenate it in other participants’
membership views.

While it seems natural to disseminate membership updates throughout the
group by using traditional multicast primitives (e.g., hardware, IP), this approach
is unlikely to work at larger scales because of the cost of implementing multicast
portably in unreliable networks. For this reason, SWIM disseminates membership
information using a gossip-style strategy [20], where information propagates sim-
ilarly to the way that gossip propagates through society. Compared with typical
multicast protocols, gossip-style protocols offer higher efficiency and robustness
to failures, although at the cost of a higher dissemination latency. In the SWIM



240 S. Snyder et al.

protocol, group membership updates are disseminated by piggybacking this data
on the ping and ack messages already generated by the failure detection protocol.
This dissemination therefore introduces no extra packets and imposes minimal
additional network load. The information then spreads through the group as par-
ticipants randomly ping (and ack) each other, ultimately resulting in complete
dissemination of the update.

3 Implications of Using SWIM in HPC Storage Systems

Current production HPC storage systems typically use distributed consensus
algorithms on subsets of servers to maintain a coherent view of group member-
ship; examples include the Totem single-ring protocol [3] in Corosync [10] (used
by a variety of distributed services) and the PAXOS protocol [17] in Ceph [21].
The SWIM protocol semantics differ from such protocols in two notable ways
with respect to storage system design. First, SWIM does not provide a strongly
consistent view of membership among all participants. At any given time, two
participants may have different views of the system. Second, it does not guaran-
tee that updates are disseminated in a consistent order.

SWIM does guarantee, however, that all participants will converge to agree-
ment on the state of a failed participant. SWIM also guarantees time-bounded
strong completeness when using a randomized round-robin ping strategy [11].
We can therefore calculate both an upper bound and an expected amount of
time needed to disseminate a membership update.

Based on these properties, we propose the following design recommendations
for fault recovery in storage systems using SWIM for group membership. Note
that we leave fault detection and group membership entirely to storage system
servers; storage clients are excluded as participants in order to simplify the fault
recovery process.

– Avoid the use of fault response protocols that require strict ordering of group
updates across servers.

– Allow each server to initiate its own fault response (e.g., generating replicas
or recalculating parity) once it has confirmed a fault.

– Validate state agreement between pairs of servers that coordinate during
recovery by piggybacking state information on recovery messages. This app-
roach ensures consistency while limiting synchronization overhead.

In general, we observe that the SWIM protocol is not a drop-in replacement
for existing fault detection mechanisms in today’s storage systems. We will con-
trast with conventional approaches and explore their impact on storage system
design in future work based on the outcome of this preliminary study.

4 SWIM Parameter Selection

Before evaluating SWIM’s performance in the context of a large-scale HPC stor-
age system, we must select appropriate protocol parameters. As we vary the
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number of storage servers (n), we focus on two key input parameters: the proto-
col period length (T ′) and the suspicion timeout in periods (s). These parameters
can be used in conjunction with existing analytical models for SWIM to calcu-
late the expected time before a fault is detected by a single server (tdetect ) as
well as the expected time for a given status update to be disseminated to all
alive servers (tdissem). We define tdetect (derived entirely from analytical models
in [13]) as follows, where qf is the probability that a server is not faulty.

tdetect = T ′ × 1
1 − e−qf

We obtain tdissem using the following equation from [11], where x is the
number of infected servers (initially 1), n is the group size, and t is time (in
protocol periods): x = n

1+(n−1)e−(2− 1
n

)t
. Then, tdissem may be given as follows,

where pdissem is the number of complete protocol periods t from above that
results in total dissemination to all alive storage servers.

tdissem = T ′ × pdissem

We further define the total time elapsed from the occurrence of a fault to all
servers being aware of the confirmed failure as follows.

ttotal = tdetect + (T ′ × s) + tdissem

We observe the following constraints in order to select SWIM parameters
(particularly s and T ′) that are appropriate for HPC storage systems:

– Network RTT: According to the original SWIM protocol definition [11], a
participant must wait at least three round-trip times for a ping response from
a remote peer. This produces the constraint that T ′ > 3 × RTT .

– Network Load: The minimum value of T ′ is further bounded by the network
capacity of the system. If the period length is too short, then the SWIM net-
work traffic (defined by analytical models in [13] in terms of average number
of messages per time unit per participant) may perturb the I/O performance.
The acceptable network traffic load threshold depends on the available net-
work capacity.

– Fault Response Time: The ultimate value of ttotal should be complemen-
tary to the time needed by the storage system to assess a fault and plan
a fault response. Otherwise the fault detection may become a bottleneck to
system availability. In this study we propose a goal of ttotal ≤ 30 s. For com-
parison, popular moderate-scale group membership implementations such as
Pacemaker [5] are often deployed with a 30-s monitoring interval, which does
not include time to reach consensus.

– Transient Failure Sensitivity: If the suspicion time in seconds (T ′×s) is too
short, then the protocol may be susceptible to false positives due to congestion
or transient network card errors. We propose a goal of (T ′ × s) ≥ 10 s, which
is long enough to account for the default network driver transmission timeout
of 5 s as of Linux 3.15.
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Table 1. Effect of SWIM group size, period length, and suspect timeout on expected
performance. †

Table 1 shows the impact of protocol period length (T ′) for storage system
sizes (n) ranging from 1,024 to 4,096 servers, given a constant suspicion time
(T ′ × s). Smaller values of T ′ lead to faster failure detection and dissemination
times at the cost of a higher network load. For a given value of T ′, tolerance to
transient failures can be tuned by setting s such that T ′ × s is larger than the
expected transient failure duration. We can therefore use these parameters to
balance performance, network load, and transient failure tolerance.

We selected the example system size (2,048 servers) and parameters (T ′ =
200 ms, s = 75) highlighted in gray for in-depth analysis via parallel discrete
event simulation. The period length of 200 ms allows us to detect faults and
disseminate notifications rapidly in 318 ms and 1.6 s, respectively. Further, the
average network load imposed by this configuration is still negligible compared
with the bandwidth of typical network interconnects in high-performance data
centers. A suspicion timeout of 75 protocol period lengths allows the protocol
to be resilient to transient failures of up to 15 s, depending on how fast sub-
sequent alive updates are disseminated to the group. This greatly reduces the
probability of unnecessary recovery actions, such as rebuilding storage system
data. Note that Das et al. [11] recommend a shorter s value of (3�log(n + 1)�),
but we extend it in this context to account for shorter period intervals (T ′)
while still remaining tolerant of transient failures. The total time expected for
the protocol to reach global consensus on a failed server is approximately 17 s.
This combination of parameters readily meets the constraints described at the
beginning of this section. We believe these constraints to be a reasonable start-
ing point for configuring SWIM for use in a large-scale data center, although
in-depth characterization of data center failure scenarios could warrant further
parameter tuning.

One detail of the SWIM protocol that has been neglected thus far is the
number of membership updates to piggyback on each ping and ack message.
This piggyback buffer must be large enough to effectively disseminate (poten-
tially numerous) membership updates throughout the system. This requirement
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is particularly important in groups where membership is continually changing
or in systems with high message loss rates, since the dissemination component
may become overwhelmed by the volume of membership updates. However, it is
also important to bound the size of this piggyback buffer as part of minimizing
the network load imposed by the protocol. For our simulation model, we use a
piggyback buffer size of 12, which yields a total message size of 256 bytes if we
assume a 64-byte base message and 16 bytes per membership update. This mes-
sage size in conjunction with the selected configuration parameters in Table 1
produces an expected network consumption of roughly 2.5 KiB/s per server.

5 Simulation Analysis

We developed a parallel discrete event model of the protocol in order to perform
an in-depth analysis of an example configuration with the following goals: vali-
dation of the analytical model results from Sect. 4 and analysis of the protocol’s
performance in failure scenarios that are not captured by the analytical model.
This simulation will also enable integration with complete storage system mod-
els in future work. We constructed our model using the CODES [9,18] storage
simulation framework. CODES is built on top of ROSS [4], a high-performance
parallel discrete event simulator capable of processing billions of events per sec-
ond. To our knowledge this is the first discrete event simulation of the SWIM
protocol.

Our simulator uses a LogGP network model [2] to calculate network delays.
The model assumes full-duplex network cards with independent send and receive
queues and infinite buffering in the switch complex. The parameters for our
LogGP model were obtained by using the netgauge utility [14] on the Tukey
Linux cluster at the Argonne Leadership Computing Facility. Each Tukey node
uses a single-port Mellanox ConnectX 2 QDR InfiniBand NIC. The netgauge
utility assumes that the overhead parameter (o) (representing the CPU time
consumed during transmission) overlaps with network fabric transmission costs,
so we do not apply the o parameter to the communication time calculation.
We also take advantage of the fact that netgauge calculates LogGP parameters
independently for a range of message sizes, creating a lookup table to reflect
varying protocol characteristics.
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Fig. 1. Point-to-point empirical and simu-
lated bandwidth on QDR InfiniBand net-
work with MPI.

Figure 1 compares the empirically
measured point-to-point bandwidth on
the Linux cluster (measured by using
mpptest [12]) with a simulation of the
point-to-point performance using our
simulation framework. We see that the
simulated performance closely matches
the performance trends on the example
system, including protocol crossover
points.
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5.1 Sensitivity to Message Loss

We executed a collection of 30-min., 2,048-server simulations of the SWIM proto-
col in order to evaluate the protocol’s sensitivity to message loss. The simulation
was configured such that no server failed completely, but the probability of packet
loss was varied between 0.2 %, 1 %, and 5 %. A 5 % message loss rate would be
an extraordinary occurrence in a data center environment, but we include it as
a demonstration of SWIM behavior in extreme conditions. Figure 2 illustrates
several performance and accuracy metrics as the SWIM subgroup size k is var-
ied from 1 to 6. The first two figures are accuracy metrics: the number of false
positives (i.e., the number of servers falsely confirmed as failed) and the number
of servers falsely suspected as failed. The last two are performance metrics: the
message rate for each server and the average number of membership updates
piggybacked on each message. We gathered the performance metrics from the
beginning of the simulation (the first 15 to 30 s) before any false positives were
generated that would reduce the number of alive servers.
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Fig. 2. Accuracy and network load metrics over a 30 min interval with 2,048 servers,
a piggyback buffer size of 12, and varying message loss rates.

Protocol accuracy is particularly poor at k values of 1 or 2 for high message
loss rates. With a 5 % message loss rate almost all servers are falsely confirmed
as failed. In this configuration, the probability of failed direct and indirect pings
generates a large volume of failure suspicions that overwhelms the capacity of
the dissemination component to correct them. With a subgroup size of 3 there is
only a single false positive at a message loss rate of 5 %, although we still observe
that nearly all servers are suspected at some point. The piggyback buffer size is
near capacity (as evidenced by the piggyback/message metric) but the increased
subgroup size allows the dissemination component to more effectively propagate
membership updates. We further observe that the protocol can easily manage the
1 % message loss rate at this subgroup size. At a subgroup size of 4, the number
of suspect servers declines and the protocol no longer produces any false positives
at any message loss rate. With subgroup sizes of 5 or 6 the number of suspected
servers diminishes because of the decreased likelihood of all direct and indirect
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pings failing for a given target. We observe that the network load imposed by
the protocol (measured in the average number of messages per server per second)
scales linearly with k, while the accuracy of the protocol increases exponentially
with k.

5.2 Validation

Based on our findings from the previous section, we set k = 6 to make the proto-
col more robust against message loss. Using this configuration, in conjunction with
the parameters derived in Sect. 4, we performed a set of simulation experiments
to measure the response time to single server failures (with no message loss) as we
varied the storage system size. We configured our simulation to choose a random
server to fail at a random time. We also configured each server in the model to
begin its period at a random point within the first T ′ seconds of the simulation, in
order to prevent the SWIM algorithm from producing synchronized bursts of ping
traffic. Figure 3 compares the performance measured by simulation with expected
values based on the existing analytical models. To be concise, we consider only
the time taken to detect a fault (tdetect) and the time to disseminate updates to
all servers (tdissem). The overall time from fault occurrence to global convergence
(ttotal) is dominated by the suspicion time T ′×s, which is a fixed value. We observe
that, on average, tdetect remains roughly constant regardless of scale and tracks
closely with the expected detection time calculated by using the analytical mod-
els. In some instances, however, the measured time to detect a server failure is sig-
nificantly slower (multiple protocol period lengths) than expected. The analytical
model includes simplifying assumptions (e.g., it assumes immediate delivery of all
pings and acks) that we believe accounts for some of this deviation. The time taken
to first detect a failure also depends on when the failure occurs relative to the start
of the next protocol period. The tdissem shown in Fig. 3 exhibits O(log(n)) scaling
as expected but is consistently faster than predicted by the analytical model. One
factor contributing to this discrepancy is that we deliberately desynchronized the
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period start times for each server by a random amount, meaning that it typically
does not take a full T ′ = 200 ms for a given update to be relayed between two
servers. We are also using a more efficient round-robin probing strategy (as sug-
gested by Das et al. [11]) that is not accounted for in the analytical dissemination
time calculation. This round-robin probing causes wider dispersal on average than
does purely random selection of ping targets in each interval.

These results confirm that both tdetect and tdissem are relatively minor compo-
nents of performance and that they scale well with system size. The largest factor
influencing overall performance will be the suspicion timeout s. This SWIM con-
figuration with 4,096 servers would reliably propagate fault notifications to all
servers in roughly 17 s while still remaining resilient to transient faults of up to
15 s and imposing negligible network load (still about 2.5 KiB/s, since the load
does not scale with the group size). In addition, the constraints from Sect. 4
could readily be modified to accommodate other use cases.

6 Conclusion

In this work we explored the feasibility of adapting peer-to-peer style epidemic
fault detection and group membership protocols for use in large-scale HPC stor-
age systems. We identified a set of characteristics necessary for using eventually
consistent group membership protocols such as SWIM in HPC storage systems.
We used a combination of analytical models and simulation to select appropriate
SWIM parameters for an HPC environment while still being tolerant of extraor-
dinary message loss rates. We also studied the SWIM protocol response time as
we varied the number of storage servers from 128 to 4,096, and we confirmed that
the protocol scales well for basic failure cases. We found that the SWIM proto-
col could be configured to detect and fully disseminate failure notifications in an
exemplar 4,096-server storage system in roughly 17 s, while remaining resilient
to transient failures of up to 15 s and imposing a negligible network load. These
results suggest that the SWIM protocol is a promising solution for fault detection
and group membership in future HPC storage architectures.

We intend to analyze more complex, statistically generated failure scenarios
across extended time spans in future work. We also plan to develop models
for more traditional group membership protocols, such as those based on the
PAXOS family of distributed consensus protocols, in order to perform head-to-
head comparisons.
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