
Assessing General-Purpose Algorithms to Cope
with Fail-Stop and Silent Errors

Anne Benoit1, Aurélien Cavelan1(B), Yves Robert1,2, and Hongyang Sun1

1 CNRS and INRIA, École Normale Supérieure de Lyon, Lyon, France
aurelien.cavelan@ens-lyon.fr

2 University of Tennessee Knoxville, Knoxville, USA

Abstract. In this paper, we combine the traditional checkpointing and
rollback recovery strategies with verification mechanisms to address both
fail-stop and silent errors. The objective is to minimize either makespan
or energy consumption. While DVFS is a popular approach for reduc-
ing the energy consumption, using lower speeds/voltages can increase
the number of errors, thereby complicating the problem. We consider
an application workflow whose dependence graph is a chain of tasks,
and we study three execution scenarios: (i) a single speed is used during
the whole execution; (ii) a second, possibly higher speed is used for any
potential re-execution; (iii) different pairs of speeds can be used through-
out the execution. For each scenario, we determine the optimal check-
pointing and verification locations (and the optimal speeds for the third
scenario) to minimize either objective. The different execution scenarios
are then assessed and compared through an extensive set of experiments.

1 Introduction

For HPC applications, scale is a major opportunity. Massive parallelism with
100,000+ nodes is the most viable path to achieving sustained petascale per-
formance. Future platforms will enrol even more computing resources to enter
the exascale era. Unfortunately, scale is also a major threat. Resilience is the
first challenge. Even if each node provides an individual MTBF (Mean Time
Between Failures) of, say, one century, a machine with 100,000 such nodes will
encounter a failure every 9 h in average, which is larger than the execution time
of many HPC applications. Furthermore, a one-century MTBF per node is an
optimistic figure, given that each node is composed of several hundreds of cores.
Worse, several types of errors need to be considered when computing at scale.
In addition to classical fail-stop errors (such as hardware failures), silent errors
(a.k.a silent data corruptions) cannot be ignored any longer.

Another challenge is energy consumption. The power requirement of current
petascale platforms is that of a small town, hence measures must be taken to
reduce the energy consumption of future platforms. A widely-used strategy is
to use DVFS techniques: modern processors can run at different speeds, and
lower speeds induce big savings in energy consumption. In a nutshell, this is
because the dynamic power consumed when computing at speed s is proportional
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 215–236, 2015.
DOI: 10.1007/978-3-319-17248-4 11

216 A. Benoit et al.

to s3, while execution time is proportional to 1/s. As a result, computing energy
(which is time times power) is proportional to s2, and using lower speeds reduces
global energy consumption in most practical settings, where static power is not
too high. To further complicate the picture, energy savings have an impact on
resilience. Obviously, the longer the execution, the higher the expected number of
errors, hence using a lower speed to save energy may well induce extra time and
overhead to cope with more errors throughout execution. Even worse (again!),
lower speeds are usually obtained via lower voltages, which themselves induce
higher error rates and further increase the latter overhead.

In this paper, we introduce a model that addresses both challenges: resilience
and energy consumption. In addition, we address both fail-stop and silent errors,
which, to the best of our knowledge, has never been achieved before. While
checkpoint and rollback recovery is the de-facto standard for dealing with fail-
stop errors, there is no widely adopted general-purpose technique to cope with
silent errors. The problem with silent errors is detection latency : contrarily to a
fail-stop error whose detection is immediate, a silent error is identified only when
the corrupted data is activated and/or leads to an unusual application behavior.
However, checkpoint and rollback recovery assumes instantaneous error detec-
tion, and this raises a new difficulty: if the error stroke before the last checkpoint,
and is detected after that checkpoint, then the checkpoint is corrupted and can-
not be used to restore the application. To solve this problem, one may envision
to keep several checkpoints in memory, and to restore the application from the
last valid checkpoint [23]. This multiple-checkpoint approach has three major
drawbacks. First, it is very demanding in terms of stable storage. The second
drawback is the possibility of fatal failures. Indeed, if we keep k checkpoints in
memory, the approach assumes that the error that is currently detected did not
strike before all the checkpoints still kept in memory, which would be fatal: in
that latter case, all live checkpoints are corrupted, and one would have to re-
execute the entire application from scratch. The third drawback of the approach
is the most serious, and applies even without memory constraints, i.e., if we
could store an infinite number of checkpoints in storage. The critical question is
to determine which checkpoint is the last valid one. We need this information to
safely recover from that point on. However, because of the detection latency, we
do not know when the silent error has indeed occurred, hence we cannot identify
the last valid checkpoint, unless some verification system is enforced.

We introduce such a verification system in this paper. This approach is agnos-
tic of the nature of this verification mechanism (checksum, error correcting code,
coherence tests, etc.). It is also fully general-purpose, although application-
specific information, if available, can always be used to decrease the cost of
verification: see the overview of related work in Sect. 2 for examples. In this
context, the simplest protocol is to take only verified checkpoint (VC). This cor-
responds to performing a verification just before taking each checkpoint. If the
verification succeeds, then one can safely store the checkpoint. If the verification
fails, then a silent error has struck since the last checkpoint, which was duly ver-
ified, and one can safely recover from that checkpoint to resume the execution

Assessing General-Purpose Algorithms to Cope with Fail-Stop 217

of the application. Of course, if a fail-stop error strikes, we also safely recover
from the last checkpoint, just as in the classical checkpoint and rollback recovery
method. This VC-only protocol basically amounts to replacing the cost C of a
checkpoint by the cost V +C of a verification followed by a checkpoint. However,
because we deal with two sources of errors, one detected immediately and the
other only when we reach the verification, the analysis of the optimal strategy is
more involved. We extend both the classical bound by Young [33] or Daly [11],
and the dynamic programming algorithm of Toueg and Babaoglu [31], to deal
with these error sources.

While taking checkpoints without verifications seems a bad idea (because of
the memory cost, and of the risk of saving corrupted data), taking a verification
without checkpointing may be interesting. Indeed, if silent errors are frequent
enough, it is worth verifying the data in between two (verified) checkpoints, so as
to detect a possible silent error earlier in the execution, and thereby re-executing
less work. We refer to VC+V as the protocol that allows for both verified check-
points and isolated verifications. One major objective of this paper is to study
VC+V algorithms coupling verification and checkpointing, and to analytically
determine the best balance of verifications between checkpoints so as to minimize
either makespan (total execution time) or energy consumption. To achieve this
ambitious goal, we restrict to a simplified, yet realistic, application framework.
We consider application workflows that consist of a number of parallel tasks that
execute on the platform, and that exchange data at the end of their executions.
In other words, the task graph is a linear chain, and each task (except maybe
the first one and the last one) reads data from its predecessor and produces data
for its successor. This scenario corresponds to a high-performance computing
application whose workflow is partitioned into a succession of (typically large)
tightly-coupled computational kernels, each of them being identified as a task
by the model. At the end of each task, we can either perform a verification on
the task’s output, or perform a verification followed by a checkpoint.

In addition, we have to select a speed for each execution of each task. We
envision three different execution scenarios. In the simple SingleSpeed sce-
nario, a unique speed s is available throughout execution. In the intermediate
ReExecSpeed scenario, the same speed s is used for the first execution of each
task, but another speed σ is available for re-execution after a fail-stop or silent
error. Here the first speed s can be seen as the regular speed, while the second
speed σ corresponds to an adjusted speed to either speed up or to slow down
the re-execution after an error strikes, depending on the optimization objective.
Finally, in the advanced MultiSpeed scenario, two different speeds si and σi

can be used to execute the tasks in between two consecutive checkpoints (which
we call a task segment). Each speed si or σi can be freely chosen from a set of
K discrete speeds. Note that these speeds may well vary from one segment to
another. For each execution scenario, we provide a dynamic programming algo-
rithm to determine the optimal locations of checkpoints and verifications (and
for the MultiSpeed scenario we also provide the corresponding optimal pair of
speeds for each segment).

218 A. Benoit et al.

The main contributions of this paper are the following:

– We introduce a general-purpose model to deal with both fail-stop and silent
errors, combining checkpoints with a verification mechanism.

– We consider several execution scenarios, first with a single speed, then in case
of re-execution, and finally with several discrete speeds that can freely change
after each checkpoint.

– For all scenarios and for both makespan and energy objectives, we consider two
approaches, one using verified checkpoints only, and the other using additional
isolated verifications. We provide a dynamic programming algorithm that
determines the best locations of checkpoints and verifications across appli-
cation tasks for each scenario/approach/objective combination.

– We provide an extensive set of simulations to support the theory and which
enables us to assess the usefulness of each algorithm.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work. Section 3 is devoted to formally defining the framework and all
model parameters. Section 4 deals with the main algorithmic contributions: for
all three execution scenarios, we design optimal algorithms for the VC-only

approach, and then for the VC+V approach, targeting either time or energy
minimization. Then in Sect. 5, we report on a comprehensive set of experiments
to assess the impact of each scenario and approach. Finally, we outline main
conclusions and directions for future work in Sect. 6.

2 Related Work

2.1 Fail-Stop Errors

The de-facto general-purpose error recovery technique in high performance com-
puting is checkpoint and rollback recovery [9,16]. Such protocols employ check-
points to periodically save the state of a parallel application, so that when an
error strikes some process, the application can be restored back to one of its for-
mer states. There are several families of checkpointing protocols, but they share
a common feature: each checkpoint forms a consistent recovery line, i.e., when an
error is detected, one can rollback to the last checkpoint and resume execution,
after a downtime and a recovery time.

Many models are available to understand the behavior of checkpoint and
restart [7,11,25,33]. For a divisible load application where checkpoints can be
inserted at any point in execution for a nominal cost C, there exist well-known
formulas due to Young [33] and Daly [11] to determine the optimal checkpointing
period. For an application composed of a chain of tasks, which is also the sub-
ject of this paper, the problem of finding the optimal checkpoint strategy, i.e., of
determining which tasks to checkpoint, in order to minimize the expected exe-
cution time, has been solved by Toueg and Babaoglu [31], using a dynamic pro-
gramming algorithm. One major contribution of this paper is to extend both the
Young/Daly formulas and the result of Toueg and Babaoglu to deal with silent
errors in addition to fail-stop errors, and with several discrete speeds instead of
a single one.

Assessing General-Purpose Algorithms to Cope with Fail-Stop 219

2.2 Silent Errors

Most traditional approaches maintain a single checkpoint. If the checkpoint file
includes errors, the application faces an irrecoverable failure and must restart
from scratch. This is because error detection latency is ignored in traditional roll-
back and recovery schemes, which assume instantaneous error detection (there-
fore mainly targeting fail-stop failures) and are unable to accommodate silent
errors. We focus in this section on related work about silent errors. A compre-
hensive list of techniques and references is provided by Lu, Zheng and Chien [23].

Considerable efforts have been directed at error-checking to reveal silent
errors. Error detection is usually very costly. Hardware mechanisms, such as
ECC memory, can detect and even correct a fraction of errors, but in practice
they are complemented with software techniques. The simplest technique is triple
modular redundancy and voting [24], which induces a highly costly verification.
For high-performance scientific applications, process replication (each process is
equipped with a replica, and messages are quadruplicated) is proposed in the
RedMPI library [18]. Elliot et al. [15] combine partial redundancy and check-
pointing, and confirm the benefit of dual and triple redundancy. The drawback is
that twice the number of processing resources is required (for dual redundancy).

Application-specific information can be very useful to enable ad-hoc solu-
tions, which dramatically decrease the cost of detection. Many techniques have
been advocated. They include memory scrubbing [22] and ABFT techniques
[6,21,30], such as coding for sparse-matrix vector multiplication kernels [30] and
coupling a higher-order with a lower-order scheme for PDEs [5]. These methods
can only detect an error but do not correct it. Self-stabilizing corrections after
error detection in the conjugate gradient method are investigated by Sao and
Vuduc [28]. Heroux and Hoemmen [19] design a fault-tolerant GMRES capable
of converging despite silent errors. Bronevetsky and de Supinski [8] provide a
comparative study of detection costs for iterative methods.

A nice instantiation of the checkpoint and verification mechanism that we
study in this paper is provided by Chen [10], who deals with sparse iterative
solvers. Consider a simple method such as the PCG, the Preconditioned Conju-
gate Gradient method: Chen’s approach performs a periodic verification every d
iterations, and a periodic checkpoint every d × c iterations, which is a particu-
lar case of the VC+V approach with equi-distance verifications. For PCG, the
verification amounts to checking the orthogonality of two vectors and to recom-
puting and checking the residual. The cost of the verification is small in front of
the cost of an iteration, especially when the preconditioner requires much more
flops than a sparse matrix-vector product.

As already mentioned, our work is agnostic of the underlying error-detection
technique and takes the cost of verification as an input parameter to the model.

2.3 Energy Model and Error Rate

Modern processors are equipped with dynamic voltage and frequency scaling
(DVFS) capability. The total power consumption is the sum of the static/idle

220 A. Benoit et al.

power and the dynamic power, which is proportional to the cube of the processing
speed s [3,32], i.e., P (s) = Pidle + β · s3, where β > 0. A widely used reliabil-
ity model assumes that radiation-induced transient faults (soft errors) follow a
Poisson process with an average arrival rate λ. The impact of DVFS on the error
rate is, however, not completely clear.

On the one hand, lowering the voltage/frequency is believed to have an
adverse effect on the system reliability [13,35]. In particular, many papers
(e.g., [2,12,34,35]) have assumed the following exponential error rate model:

λ(s) = λ0 · 10
d(smax−s)
smax−smin , where λ0 denotes the average error rate at the max-

imum speed smax, d > 0 is a constant indicating the sensitivity of error rate
to voltage/frequency scaling, and smin is the minimum speed. This model sug-
gests that the error rate increases exponentially with decreased processing speed,
which is a result of decreasing the voltage/frequency and hence lowering the cir-
cuit’s critical charge (i.e., the minimum charge required to cause an error in the
circuit).

On the other hand, the failure rates of computing nodes have also been
observed to increase with temperature [17,20,26,29], which generally increases
together with the processing speed (voltage/frequency). As a rule of thumb,
Arrenhius’ equation when applied to microelectronic devices suggests that the
error rate doubles for every 10◦C increase in the temperature [17]. In general,
the mean time between failure (MTBF) of a processor, which is the reciprocal
of failure rate, can be expressed as [29]: MTBF = 1

λ = A · e−b·T , where A
and b are thermal constants, and T denotes the temperature of the processor.
Under the reasonable assumption that higher operating voltage/frequency leads
to higher temperature, this model suggests that the error rate increases with
increased processing speed. Clearly, the two models above draw contradictory
conclusions on the impact of DVFS on error rates. In practice, the impact of the
first model may be more evident, as the temperature dependency in some systems
has been observed to be linear (or even not exist) instead of being exponential
[14]. Generally speaking, the processing speed should have a composite effect on
the average error rate by taking both voltage level and temperature into account.
In the experimental section of this paper (Sect. 5), we adopt a tradeoff model to
include the impact of temperature.

3 Framework

In this section we introduce all model parameters. We start with a description
of the application workflows. Then we present parameters related to energy
consumption. Next we detail the resilient model to deal with fail-stop and silent
errors. We conclude by presenting the various execution scenarios.

Application Workflows. We consider application workflows whose task graph
is a linear chain T1 → T2 · · · → Tn. Here n is the number of tasks, and each task
Ti is weighted by its computational cost wi. We target a platform with p identical

Assessing General-Purpose Algorithms to Cope with Fail-Stop 221

processors. Each task is a parallel task that is executed on the whole platform.
A fundamental characteristic of the application model is that it allows to view the
platform as a single (albeit very powerful) macro-processor, thereby providing a
tractable abstraction of the problem.

EnergyConsumption. When computing (including verification), we use DVFS
to change the speed of the processors, and assume a set S = {s1, s2, . . . , sK} of
K discrete computing speeds. During checkpointing and recovery, we assume a
dedicated (constant) power consumption. Altogether, the total power consump-
tion of the macro-processor is p times the power consumption of each individual
resource. It is decomposed into three different components:

– Pidle, the static power dissipated when the platform is on (even idle);
– Pcpu(s), the dynamic power spent by operating the CPU at speed s;
– Pio, the dynamic power spent by I/O transfers (checkpoints and recoveries).

Assume w.l.o.g. that there is no overlap between CPU operations and I/O
transfers. Then the total energy consumed during the execution of the applica-
tion can be expressed as: Energy = Pidle(Tcpu + Tio) +

∑K
i=1 Pcpu(si)Tcpu(si) +

PioTio, where Tcpu(si) is the time spent on computing at speed si, Tcpu =
∑K

i=1 Tcpu(si) is the total time spent on computing, and Tio is the total time
spent on I/O transfers. The time to compute tasks Ti to Tj at speed s is Ti,j(s) =
1
s

∑j
k=i wi and the corresponding energy is Ei,j(s) = Ti,j(s)(Pidle + Pcpu(s)).

Resilience. We assume that errors only strike during computations, and not
during I/O transfers (checkpoints and recoveries) nor verifications. We consider
two types of errors: fail-stop and silent.

To cope with fail-stop errors, we use checkpointing, and to cope with silent
errors, an additional verification mechanism is used. The time to checkpoint (the
output of) task Ti is Ci, the time to recover from (the checkpoint of) task Ti

is Ri, and the time to verify (the output of) task Ti at speed s is Vi(s). We
assume that both fail-stop errors and silent errors follow an exponential distri-
bution with average rates λF (s) and λS(s), respectively, where s denotes the
current computing speed. Given an error rate λ, let p(λ,L) = 1 − e−λL denote
the probability that a error strikes during an execution of length L. For conve-
nience, we define pF

i,j(s) = p(λF (s), Ti,j(s)) to be the probability that a fail-stop
error strikes when executing from Ti to Tj , and define pS

i,j(s) = p(λS(s), Ti,j(s))
similarly for silent errors.

Resilience also has a cost in terms of energy consumption. Specifically, the
energy to checkpoint task Ti is EC

i = Ci(Pidle + Pio), to recover from task Ti is
ER

i = Ri (Pidle +Pio), and to verify task Ti at speed s is EV
i (s) = Vi(s)(Pidle +

Pcpu(s)).

Execution Scenarios. We consider three different execution scenarios: (i)
SingleSpeed: a single speed s is used during the whole execution (K = 1);
(ii) ReExecSpeed: there are two speeds, s for the first execution of each task,

222 A. Benoit et al.

and σ for any potential re-execution (K = 2); (iii) MultiSpeed: we are given K
discrete speeds, where K is arbitrary. The workflow chain is cut into subchains
called segments, which are delimited by checkpoints. For each segment, we can
freely choose a speed for the first execution, and a (possibly different) speed for
any ulterior execution, among the K speeds.

Optimization Problems. For each execution scenario, we deal with four prob-
lems: (i) Time-VC: minimize the makespan using the VC-only approach; (ii)
Time-VC+V: minimize the makespan using the VC+V approach; (iii) Energy-
VC: minimize the total energy consumption using the VC-only approach; (iv)
Energy-VC+V: minimize the total energy consumption using the VC+V app-
roach. For the SingleSpeed and ReExecSpeed scenarios, we have to decide
for the optimal locations of the checkpoints (VC-only) and of the verifications
(VC+V). For the MultiSpeed scenario, we further have to select a pair of
speeds (first execution and re-execution) for each segment.

4 Optimal Algorithms

In this section, we present optimal algorithms for the three execution scenarios.
For each scenario, we have four combinations: two approaches—VC-only and
VC+V, and two objectives—makespan and energy. Due to the lack of space,
we include only two (representative) proofs here, namely those of the Time-VC

and Time-VC+V algorithms for the SingleSpeed scenario. The other proofs
can be found in the companion research report [4] of this paper.

4.1 SingleSpeed Scenario

In this scenario, we are given a single processing speed, and we investigate the
VC-only and VC+V approaches. For each approach, we present an optimal
polynomial-time dynamic programming algorithm. As only one speed is present,
the speed parameter s is omitted in all expressions for notational convenience.

VC-Only: Using Verified Checkpoints Only. In this approach, we aim at
finding the best checkpointing positions in order to minimize the total execution
time (Time-VC) or the total energy consumption (Energy-VC).

Theorem 1. For the SingleSpeed scenario, the Time-VC and Energy-VC

problems can be solved by a dynamic programming algorithm in O(n2) time.

Proof. Due to the lack of space, we only present the optimal algorithm to com-
pute the expected makespan for the Time-VC problem. The optimal solution
for the Energy-VC problem can be similarly derived.

We define TimeC(j) to be the optimal expected time to successfully execute
tasks T1, . . . , Tj , where Tj has a verified checkpoint, and there are possibly other
verified checkpoints from T1 to Tj−1. We always verify and checkpoint the last

Assessing General-Purpose Algorithms to Cope with Fail-Stop 223

task Tn to save the final result. Therefore, the goal is to find TimeC(n). To
compute TimeC(j), we formulate the following dynamic program by trying all
possible locations for the last checkpoint before Tj :

TimeC(j) = min
0≤i<j

{TimeC(i) + TC(i + 1, j)} + Cj ,

where TC(i, j) denotes the expected time to successfully execute tasks Ti to Tj ,
provided that Ti−1 and Tj are both verified and checkpointed while no other
task in between is verified nor checkpointed. Note that we also account for the
checkpointing cost Cj for task Tj , which is not included in the definition of TC .
To initialize the dynamic program, we define TimeC(0) = 0.

In the following, we show how to compute TC(i, j) for each (i, j) pair with
i ≤ j. We start by considering only silent errors and use the notation TS

C (i, j)
for that purpose. Silent errors can occur at any time during the computation
but we can only detect them after all tasks have been executed. Thus, we always
have to pay Ti,j + Vj , the time to execute from task Ti to Tj and then to verify
Tj . If the verification fails, which happens with probability pS

i,j , a silent error has
occurred and we have to recover from Ti−1 and start anew. For convenience, we
assume that there is a virtual task T0 that is always verified and checkpointed,
with a recovery cost R0 = 0. Mathematically, we can express TS

C (i, j) as

TS
C (i, j) = Ti,j + Vj + pS

i,j

(
Ri−1 + TS

C (i, j)
)
,

⇒ TS
C (i, j) = eλSTi,j (Ti,j + Vj) + (eλSTi,j − 1)Ri−1.

Things are different when accounting for fail-stop errors, because the appli-
cation will stop immediately when a fail-stop error occurs, even in the middle of
the computation. Let Tlosti,j denote the expected time lost during the execution
from Ti to Tj if a fail-stop error strikes, and it can be expressed as

Tlosti,j =
∫ ∞

0

xP(X = x|X < Ti,j)dx =
1

P(X < Ti,j)

∫ Ti,j

0

xλF e−λF xdx,

where P(X = x) denotes the probability that a fail-stop error strikes at time x.
By definition, we have P(X < Ti,j) = 1 − e−λF Ti,j . Integrating by parts, we get

Tlosti,j =
1

λF
− Ti,j

eλF Ti,j − 1
.

Therefore, the expected execution time TF
C (i, j) when considering only fail-

stop errors is given by

TF
C (i, j) = pF

i,j

(
Tlosti,j + Ri−1 + TF

C (i, j)
)

+
(
1 − pF

i,j

)
Ti,j ,

⇒ TF
C (i, j) = (eλF Ti,j − 1)

(
1

λF
+ Ri−1

)

.

We now account for both fail-stop and silent errors, and use the notation
TSF

C (i, j) for that purpose. To this end, we consider fail-stop errors first. If the

224 A. Benoit et al.

application stops, then we do not need to perform verification since we must do
a recovery anyway. If no fail-stop error stroke during the execution, we can then
proceed with the verification and check for silent errors. Therefore,

TSF
C (i, j) = pF

i,j

(
Tlosti,j + Ri−1 + TSF

C (i, j)
)

+
(
1 − pF

i,j

) (
Ti,j + Vj + pS

i,j

(
Ri−1 + TSF

C (i, j)
))

.

When plugging pF
i,j , pS

i,j and Tlosti,j into the above equation, we get

TSF
C (i, j) = eλSTi,j

(
eλF Ti,j − 1

λF
+ Vj

)

+
(
e(λ

F+λS)Ti,j − 1
)

Ri−1.

By setting TC(i, j) = TSF
C (i, j), we can now compute TimeC(j) for all j =

1, · · · , n. For the complexity, the computation of TSF
C (i, j) for all (i, j) pairs with

i ≤ j takes O(n2) time. The computation of the dynamic programming table
for TimeC(j) also takes O(n2) time, as TimeC(j) depends on at most j other
entries in the same table, which are already computed. Therefore, the overall
complexity is O(n2), and this concludes the proof. ��
Theorem 1 nicely extends the result of Toueg and Babaoglu [31] to a linear chain
of tasks subject to both fail-stop and silent errors. For the sake of comparing
with the case of a divisible load application, we can extend Young/Daly’s formula
[11,33] in the following. Again, the proof can be found in [4].

Proposition 1. For a divisible load application subject to both fail-stop and
silent errors, a first-order approximation of the optimal checkpointing period is

Topt(s) =

√
2(V + C)
λF + 2λS

,

where C is the checkpointing cost, V is the verification cost, λF is the rate of
fail-stop errors and λS is the rate of silent errors.

VC+V: Using Verified Checkpoints and Single Verifications. In this
approach, we can place additional verifications between two checkpoints, which
allows to detect (silent) errors before reaching the next checkpoint, and hence to
avoid wasted execution by performing early recoveries. We aim at finding the
best positions for checkpoints and verifications in order to minimize the total exe-
cution time (Time-VC+V) or the total energy consumption (Energy-VC+V).
For both objectives, adding extra verifications between two checkpoints adds an
extra step in the algorithm, which results in a higher complexity.

Theorem 2. For the SingleSpeed scenario, the Time-VC+V and Energy-

VC+V problems can be solved by a dynamic programming algorithm in O(n3)
time.

Assessing General-Purpose Algorithms to Cope with Fail-Stop 225

Proof. Due to the lack of space, we only deal with the Time-VC+V problem,
while the solution for Energy-VC+V can be similarly derived.

The main idea is to replace TC in the dynamic program of Theorem1 by
another expression TimeV (i, j), which denotes the optimal expected time to
successfully execute from task Ti to task Tj (and to verify it), provided that
Ti−1 has a verified checkpoint and only single verifications are allowed from task
Ti to task Tj−1. Furthermore, we use TimeV C(j) to denote the optimal expected
time to successfully execute the first j tasks, where Tj has a verified checkpoint,
and there are possibly other verified checkpoints and single verifications before
Tj . The goal is to find TimeV C(n). The dynamic program can then be formu-
lated as:

TimeV C(j) = min
0≤i<j

{TimeV C(i) + TimeV (i + 1, j)} + Cj .

In particular, we try all possible locations for the last checkpoint before Tj , and
for each location Ti, we compute the optimal expected time TimeV (i + 1, j) to
executed tasks Ti+1 to Tj−1 with only single verifications in between. We also
account for the checkpointing time Cj , which is not included in the definition of
TimeV . By initializing the dynamic program with TimeV C(0) = 0, we can then
compute the optimal solution as in the Time-VC problem.

It remains to compute TimeV (i, j) for each (i, j) pair with i ≤ j. To this
end, we formulate another dynamic program by trying all possible locations for
the last single verification before Tj :

TimeV (i, j) = min
i−1≤l<j

{TimeV (i, l) + TV (l + 1, j, i − 1)} ,

where TV (i, j, lc) is the expected time to successfully execute all the tasks from
Ti to Tj (and to verify Tj), knowing that if an error strikes, we can recover from
Tlc , the last task before Ti to have a verified checkpoint.

First, we show how to compute TV (i, j, lc). When accounting for only silent
errors (with notation TS

V), we always execute from task Ti to task Tj and then
verify Tj . In case of failure, we recover from Tlc and redo the entire computation
from Tlc+1 to Tj , which contains a single verification after Ti−1 and possibly
other single verifications between Tlc+1 and Ti−2. Hence, we have

TS
V (i, j, lc) = Ti,j + Vj + pS

i,j

(
Rlc + TimeV (lc + 1, i − 1) + TS

V (i, j, lc)
)
,

⇒ TS
V (i, j, lc) = eλSTi,j (Ti,j + Vj) + (eλSTi,j − 1) (Rlc + TimeV (lc + 1, i − 1)) .

When there are only fail-stop errors, we do not need to perform any single ver-
ification, and hence the problem becomes simply the Time-VC problem. When
accounting for both silent and fail-stop errors (with notation TSF

V), we apply
the same method as in the previous proof. Specifically, if a fail-stop error strikes
between two verifications, we directly perform a recovery; otherwise we check
for silent errors:

226 A. Benoit et al.

TSF
V (i, j, lc) = pF

i,j

(
Tlosti,j + Rlc + TimeV (lc + 1, i − 1) + TSF

V (i, j, lc)
)

+ (1 − pF
i,j)

(
Ti,j + Vj + pS

i,j

(
Rlc + TimeV (lc + 1, i − 1) + TSF

V (i, j, lc)
))

,

⇒ TSF
V (i, j, lc) = eλSTi,j

(
eλF Ti,j − 1

λF
+ Vj

)

+ (e(λ
F+λS)Ti,j − 1) (Rlc + TimeV (lc + 1, i − 1)) .

Notice that TV (i, j, lc) depends on the value of TimeV (lc + 1, i − 1), except
when lc + 1 = i, in which case we initialize TimeV (i, i − 1) = 0. Hence, in the
dynamic program, TimeV (i, j) can be expressed as a function of TimeV (i, l) for
all l = i − 1, · · · , j − 1.

Finally, the complexity is dominated by the computation of the second dyna-
mic programming table for TimeV (i, j), which contains O(n2) entries and each
entry depends on at most n other entries that are already computed. Hence, the
overall complexity of the algorithm is O(n3), and this concludes the proof.

4.2 ReExecSpeed Scenario

Despite the additional speed, the ReExecSpeed scenario turns out to have the
same complexity as the SingleSpeed scenario.

Theorem 3. For the ReExecSpeed scenario:

• The Time-VC and Energy-VC problems can be solved by a dynamic pro-
gramming algorithm in O(n2) time.

• The Time-VC+V and Energy-VC+V problems can be solved by a dynamic
programming algorithm in O(n3) time.

4.3 MultiSpeed Scenario

Optimal algorithms for the MultiSpeed scenario are more intricate and have
higher complexity than the other scenarios.

Theorem 4. For the MultiSpeed scenario:

• The Time-VC and Energy-VC problems can be solved by a dynamic pro-
gramming algorithm in O(n2K2) time.

• The Time-VC+V and Energy-VC+V problems can be solved by a dynamic
programming algorithm in O(n3K2) time.

5 Experiments

We conduct simulations to evaluate the performance of the dynamic program-
ming algorithms under different execution scenarios and parameter settings. We
instantiate the model parameters with realistic values taken from the literature,
and we point out that the code for all algorithms and simulations is publicly
available at http://graal.ens-lyon.fr/∼yrobert/failstop-silent, so that interested
readers can build relevant scenarios of their choice.

http://graal.ens-lyon.fr/~yrobert/failstop-silent

Assessing General-Purpose Algorithms to Cope with Fail-Stop 227

5.1 Simulation Settings

We generate linear chains with different number n of tasks while keeping the total
computational cost at W = 5 × 104 s ≈ 14 h. The total amount of computation
is distributed among the tasks in three different patterns: (1) Uniform, all tasks
share the same cost W/n, as in matrix multiplication or in some iterative stencil
kernels; (2) Decrease, task Ti has cost α · (n + 1 − i)2, where α ≈ 3W/n3.
This quadratically decreasing function resembles some dense matrix solvers,
e.g., using LU or QR factorization. (3) HighLow, a set of identical tasks with
large cost is followed by tasks with small cost. This distribution is created to
distinguish the performance of different execution scenarios. In this case, we fix
the number of large tasks to be 10 % of the total number n of tasks while varying
the computational cost dedicated to them.

We adopt the set of speeds from the Intel Xscale processor. Following [27],
the normalized speeds are {0.15, 0.4, 0.6, 0.8, 1} and the fitted power function
is given by P (s) = 1550s3 + 60. From the discussion in Sect. 2.3, we assume the
following model for the average error rate of fail-stop errors:

λF (s) = λF
ref · 10

d·|sref−s|
smax−smin , (1)

where sref ∈ [smin, smax] denotes the reference speed with the lowest error rate
λF
ref among all possible speeds in the range. The above equation allows us to

account for higher fail-stop error rates when the CPU speed is either too low
or too high. In the simulations, the reference speed is set to be sref = 0.6 with
an error rate of λF

ref = 10−5 for fail-stop errors, and the sensitivity parameter
is set to be d = 3. These parameters represent realistic settings reported in the
literature [1,2,34], and they correspond to 0.83 ∼ 129 errors over the entire chain
of computation depending on the processing speed chosen.

For silent errors, we assume that its error rate is related to that of the fail-
stop errors by λS(s) = η · λF (s), where η > 0 is constant parameter. To achieve
realistic scenarios, we try to vary η to assess the impact of both error sources
on the performance. However, we point out that our approach is completely
independent of the evolution of the error rates as a function of the speed. In a
practical setting, we are given a set of discrete speeds and two error rates for
each speed, one for fail-stop errors and one for silent errors. This is enough to
instantiate our model.

In addition, we define cr to be the ratio between the checkpointing/recovery
cost and the computational cost for the tasks, and define vr to be the ratio
between the verification cost and the computational cost. By default, we execute
the tasks using the reference speed sref, and set η = 1, cr = 1 and vr = 0.01.
This initial setting corresponds to tasks with costly checkpoints (same order of
magnitude as the costs of the tasks) and lightweight verifications (average cost
1 % of task cost); examples of such tasks are data-oriented kernels processing
large files and checksumming for verification. We will vary these parameters to
study their impacts on the performance.

228 A. Benoit et al.

5.2 Results

SingleSpeed Scenario for Makespan. The first set of experiments is devoted
to the evaluation of the time-optimal algorithms in the SingleSpeed scenario.

Impact of n and cost distribution. Figure 1(a) shows the expected makespan
(normalized by the ideal execution time at the default speed, i.e., W/0.6) with
different n and cost distributions. For the HighLow distribution, the large tasks
are configured to contain 60 % of the total computational cost. The results show
that having more tasks reduces the expected makespan, since it enables the algo-
rithms to place more checkpoints and verifications, as can be seen in Fig. 1(b).
The distribution that renders a larger variation in task sizes create more difficulty
in the placement of checkpoints/verfications, thus resulting in worse makespan.
The figure also compares the performance of the Time-VC algorithm with that
of Time-VC+V. The latter algorithm, being more flexible, naturally leads to
improved makespan under all cost distributions. Because of the additionally
placed verifications, it also reduces the number of verified checkpoints in the
optimal solution.

Comparison with a divisible load application. Figure 2(a) compares the makespan
of the Time-VC algorithm under Uniform cost distribution with the makespan
of a divisible load application, whose total load is W and whose checkpointing
cost is the same as the corresponding discrete tasks. For the divisible load appli-
cation, we use Proposition 1 to compute the optimal period, the waste and then
derive the makespan. In addition, Fig. 2(b) compares the number of verified
checkpoints in the two cases. We see that the makespan for divisible load is worse
for large cr and becomes better as cr decreases. Furthermore, the makespans in
both cases get closer when the number of tasks increases. This is because the
checkpointing cost decreases with cr and as n increases, which makes the first
order approximation used in Proposition 1 more accurate. Moreover, as divisible

10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2

2.2

Number of tasks

N
or

m
al

iz
ed

 E
xp

ec
te

d
M

ak
es

pa
n

Uniform_VC
Uniform_VC+V
Decrease_VC
Decrease_VC+V
HighLow_VC
HighLow_VC+V

(a)

10 40 70 100
0

10

20

30

40

50

60

70

Number of tasks

#V
C

 a
nd

 #
V

Uniform_VC
Uniform_VC+V
Decrease_VC
Decrease_VC+V
HighLow_VC
HighLow_VC+V

(b)

Fig. 1. Impact of n and cost distribution on the performance of the Time-VC and
Time-VC+V algorithms. In (b), the thick bars represent the verified checkpoints and
the yellow thin bars represent the total number of verifications.

Assessing General-Purpose Algorithms to Cope with Fail-Stop 229

10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2

2.2

Number of tasks

N
or

m
al

iz
ed

 E
xp

ec
te

d
M

ak
es

pa
n

Uniform_VC (cr=0.01)
Divisible load (cr=0.01)
Uniform_VC (cr=0.1)
Divisible load (cr=0.1)
Uniform_VC (cr=1)
Divisible load (cr=1)

(a)

10 40 70 100
0

20

40

60

80

100

120

Number of tasks

#V
C

Uniform_VC (cr=0.01)
Divisible load (cr=0.01)
Uniform_VC (cr=0.1)
Divisible load (cr=0.1)
Uniform_VC (cr=1)
Divisible load (cr=1)

(b)

Fig. 2. Performance comparison of the Time-VC algorithm for tasks with Uniform cost
distribution and the optimal checkpointing algorithm for divisible load application.

0.4 0.6 0.8 1
0.7

1

1.3

1.6

1.9

2.2

2.5

CPU speed s

N
or

m
al

iz
ed

 E
xp

ec
te

d
M

ak
es

pa
n

F (η = 0)
S
η=0.5
η=1
η=1.5
η=2

(a)

0.4 0.6 0.8 1
0

20

40

60

80

100

CPU speed s

#V
C

 a
nd

 #
V

F (η = 0)
S
η=0.5
η=1
η=1.5
η=2

(b)

Fig. 3. Impact of η and speed s on the performance. F denotes fail-stop error only and
S denotes silent error only. Speed s = 0.15 leads to extremely large makespan, which
is omitted in the figure.

load does not impose restrictions in the checkpointing positions, it tends to place
more checkpoints than the case with discrete tasks.

We could think of the following greedy algorithm as an alternative to theTime-

VC algorithm for a linear chain of tasks: position the next checkpoint as soon as
the time spent on computing since the last checkpoint plus the checkpointing cost
of the current task exceeds the optimal period given by Proposition 1. Figure 2 sug-
gests that this linear-time algorithm (with cost O(n)) would give a good approx-
imation of the optimal solution (returned by the Time-VC algorithm with cost
O(n2)), at least for uniform distribution of task costs.

In the rest of this section, we will focus on the Time-VC+V algorithm and
n = 100 tasks with Uniform cost distribution.

Impact of η and error mode. Figure 3(a) compares the performance under dif-
ferent error modes, namely, fail-stop (F) only, silent (S) only, and fail-stop plus
silent with different values of η. As silent errors are harder to detect and hence
to deal with, the S-only case leads to larger makespan than the F-only case.

230 A. Benoit et al.

In the presence of both types of errors, the makespan becomes worse with larger
η, i.e., with increased rate for silent errors, despite the algorithm’s effort to place
more checkpoints as shown in Fig. 3(b). Moreover, the performance degrades sig-
nificantly as the CPU speed is set below the reference speed sref for the error rate
increases exponentially. A higher CPU speed, on the other hand, first improves
the makespan by executing the tasks faster and then causes degradation due to
a larger increase in the error rate.

Impact of cr and vr. Figure 4(a) presents the impact of checkpointing/recovery
ratio (cr) and verification ratio (vr) on the performance. Clearly, a smaller cr
(or vr) enables the algorithm to place more checkpoints (or verifications), which
leads to better makespan. Having more checkpoints also allows the algorithm
to use faster speeds to complete the tasks. Finally, if checkpointing cost is on
par with verification cost (e.g., cr = 0.1), reducing the verification cost can
additionally increase the number of checkpoints (e.g., at s = 0.6), since each
checkpoint also has a verification cost associated with it. For high checkpoint-
ing cost, however, reducing the verification cost could no longer influence the
algorithm’s checkpointing decisions.

SingleSpeed Scenario for Energy. This set of experiments focuses on the
evaluation of the Energy-VC+V algorithm in the SingleSpeed scenario. The
default power parameters are set to be Pidle = 60 and Pcpu(s) = 1550s3 accord-
ing to [27]. The dynamic power consumption due to I/O is equal to the dynamic
power of the CPU at the lowest discrete speed 0.15. We will also vary these
parameters to study their impacts.

Impact of CPU speed s. Figure 5 compares the performance of the Energy-

VC+V algorithm in comparison with its makespan counterpart Time-VC+V

for n = 100 tasks. At speed 0.15, the power consumed by the CPU is identical
to that of I/O. This yields the same number of checkpoints placed by the two
algorithms, which in turn leads to the same performance for both makespan and
energy. As the CPU speed increases, the I/O power consumption becomes much
smaller, so the energy algorithm tends to place more checkpoints to improve
the energy consumption at the expense of makespan. From Fig. 3, we know that
the makespan of Time-VC+V degrades at speed s = 1. This diminishes its
makespan advantage at the highest discrete speed. Figure 5 also suggests that
the Time-VC+V algorithm running at speed s = 0.8 offers a good energy-
makespan tradeoff. Compared to the Energy-VC+V algorithm, it provides
more than 25 % improvement in makespan with only 10 % degradation in energy
under the default parameter settings.

Impact of Pidle and Pio. Figure 6 shows the relative performance of the two
algorithms by varying Pidle and Pio separately according to the dynamic power
function 1550s3, while keeping the other one at the smallest CPU power, i.e.,
1550 · 0.153. The CPU speed is fixed at s = 0.6. Figure 6 further shows the
number of checkpoints in the Energy-VC+V algorithm at different Pidle and
Pio values. (The Time-VC+V algorithm is apparently not affected by these

Assessing General-Purpose Algorithms to Cope with Fail-Stop 231

0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

CPU speed s

N
or

m
al

iz
ed

 E
xp

ec
te

d
M

ak
es

pa
n cr=0.1, vr=0.1

cr=0.1, vr=0.01
cr=1, vr=0.1
cr=1, vr=0.01
cr=5, vr=0.1
cr=5, vr=0.01

(a)

0.4 0.6 0.8 1
0

20

40

60

80

100

CPU speed s

#V
C

 a
nd

 #
V

cr=0.1, vr=0.1
cr=0.1, vr=0.01
cr=1, vr=0.1
cr=1, vr=0.01
cr=5, vr=0.1
cr=5, vr=0.01

(b)

Fig. 4. Impact of cr and vr on the performance with different CPU speeds.

0.15 0.4 0.6 0.8 1
0.7

0.8

0.9

1

1.1

1.2

1.3

CPU speed s

S
in

gl
eS

pe
ed

T
im

e /
S

in
gl

eS
pe

ed
E

ne
rg

y Energy ratio
Makespan ratio

(a)

0.15 0.4 0.6 0.8 1
0

20

40

60

80

100

CPU speed s

#V
C

 a
nd

 #
V

(b)

SingleSpeed

SingleSpeed

Time

Energy

Fig. 5. Relative performance of the Energy-VC+V and Time-VC+V algorithms with
different CPU speeds.

0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

1.05

1.1

P
idle

 = 1550s3

S
in

gl
eS

pe
ed

T
im

e /
S

in
gl

eS
pe

ed
E

ne
rg

y

Energy ratio
Makespan ratio

(a)

0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

1.05

1.1

P
io

 = 1550s3

S
in

gl
eS

pe
ed

T
im

e /
S

in
gl

eS
pe

ed
E

ne
rg

y

Energy ratio
Makespan ratio

(b)

0.15
0.4

0.6
0.8

1

0.15
0.4

0.6
0.8

1

0

20

40

60

P
idle

P
io

#V
C

(c)

Fig. 6. (a) and (b): Impact of Pidle and Pio on the relative performance of the Energy-

VC+V and Time-VC+V algorithms at s = 0.6. (c): Number of checkpoints placed by
the Energy-VC+V algorithm with different Pio, Pidle values (= 1550s3) at s = 0.6.

232 A. Benoit et al.

two parameters and always places 11 checkpoints in this experiment.) First,
setting the smallest value for both parameters creates a big gap between the
CPU and I/O power consumptions. This leads to a large number of checkpoints
placed by the Energy-VC+V algorithm. Increasing Pidle closes this gap and
hence reduces the number of checkpoints, which leads to the performance con-
vergence of the two algorithms. While increasing Pio has the same effect, a larger
value than Pcpu = 1550 · 0.63 further reduces the number of checkpoints below
11, since checkpointing is now less power-efficient. This again gives the Energy-

VC+V algorithm advantage in terms of energy.

ReExecSpeed and MultiSpeed Scenarios. This set of experiments eval-
uates the ReExecSpeed and MultiSpeed scenarios for both makespan and
energy. To distinguish them from the SingleSpeed model, we consider the
HighLow distribution, which yields a larger variance among the computational
costs of the tasks. In the simulation, we again focus on the VC+V algorithms for
n = 100 tasks, and vary the cost ratio, which is the percentage of computational
cost in the large tasks compared to the total computational cost.

Figure 7(a) compares the makespan of the Time-VC+V algorithms under
the three scenarios. For the SingleSpeed and ReExecSpeed scenarios, only
s = 0.6 and s = 0.8 are drawn, since the other speeds lead to much larger
makespans. For a small cost ratio, no task has a very large computational cost,
so the faster speed s = 0.8, despite its higher error rate, appears to give the
best performance as we have already seen in Fig. 3(a). When the cost ratio
increases, tasks with large cost start to emerge. With the high error rate of
s = 0.8, these tasks will experience many re-executions, thus degrading the
makespan. Here, s = 0.6 becomes the best speed due to its smaller error rate.
In the ReExecSpeed scenario, regardless of the initial speed s, the best re-
execution speed σ is always 0.6 or 0.8 depending on the cost ratio, and it improves
upon the respective SingleSpeed scenario with the same initial speed, as we
can see in Fig. 7(b) for cost ratio of 0.6. However, the improvement is marginal
compared to the best performance achievable in the SingleSpeed scenario. The
MultiSpeed scenario, with its flexibility to choose different speeds depending
on the costs of the tasks, always provides the best performance. The advantage
is especially evident at medium cost ratios with up to 6 % improvement, as
this situation contains a good mix of large and small tasks, which is hard to
deal with by using fixed speed(s). Figure 8 shows similar results for the energy
consumption of the Energy-VC+V algorithms under the three scenarios, with
more than 7 % improvement in the MultiSpeed scenario. In this case, speed
s = 0.4 consumes less energy at small cost ratio due to its better power efficiency.

Finally, Fig. 9 shows the relative performance of the Energy-VC+V and
Time-VC+V algorithms under the MultiSpeed scenario. As small cost ratio
favors speed 0.4 for the energy algorithm and 0.8 for the time algorithm, it distin-
guishes the two algorithms in terms of their respective optimization objectives,
by up to 100 % in makespan and even more in energy consumption. Increasing
the cost ratio creates more computationally demanding tasks, which need to be
executed at speed 0.6 for both makespan and energy efficiency as it incurs fewer

Assessing General-Purpose Algorithms to Cope with Fail-Stop 233

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.2

1.4

1.6

1.8

2

cost ratio

N
or

m
al

iz
ed

 E
xp

ec
te

d
M

ak
es

pa
n

SingleSpeed
Time

 (s=0.6)

SingleSpeed
Time

 (s=0.8)

ReExecSpeed
Time

 (s=0.6)

ReExecSpeed
Time

 (s=0.8)

MultiSpeed
Time

(a)

0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

First speed s

N
or

m
al

iz
ed

 E
xp

ec
te

d
M

ak
es

pa
n SingleSpeed

ReExecSpeed
σ = 0.4
σ = 0.6
σ = 0.8
σ = 1.0

(b)

Fig. 7. Performance comparison of the Time-VC+V algorithms in MultiSpeed,
ReExecSpeed and SingleSpeed scenarios for n = 100 tasks with HighLow cost dis-
tribution. In (b), the cost ratio is 0.6.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

3

4

5

6
x 10

7

cost ratio

E
xp

ec
te

d
E

ne
rg

y
C

on
su

m
pt

io
n

SingleSpeed
Energy

 (s=0.6)

SingleSpeed
Energy

 (s=0.4)

ReExecSpeed
Energy

 (s=0.6)

ReExecSpeed
Energy

 (s=0.4)

MultiSpeed
Energy

(a)

0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

8

First speed s

E
xp

ec
te

d
E

ne
rg

y
C

on
su

m
pt

io
n SingleSpeed

ReExecSpeed
σ = 0.4
σ = 0.6
σ = 0.8
σ = 1.0

(b)

Fig. 8. Performance comparison of the Energy-VC+V algorithms in MultiSpeed,
ReExecSpeed and SingleSpeed scenarios for n = 100 tasks with HighLow cost
distribution. In (b), the cost ratio is 0.6.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

cost ratio

M
ul

tiS
pe

ed
T

im
e /

M
ul

tiS
pe

ed
E

ne
rg

y

Energy ratio
Makespan ratio

(a)

0.1 0.3 0.5 0.7 0.9
0

10

20

30

40

50

60

cost ratio

#V
C

MultiSpeed
Energy

MultiSpeed
Time

(b)

Fig. 9. Impact of cost ratio on the relative performance of the Energy-VC+V and
Time-VC+V algorithms under the MultiSpeed scenario.

234 A. Benoit et al.

errors. This closes the performance gap of the two algorithms as well as the num-
ber of checkpoints placed by them. In either case, the number of checkpoints also
reduces with the cost ratio, because the total computational cost in the small
tasks shrinks, thus fewer checkpoints are needed among them.

Summary. To summarize, we have evaluated and compared various algorithms
under different execution scenarios. The algorithms under the most flexible
VC+V and MultiSpeed scenario generally provide better performance, which
in practice would translate to shorter makespan or lower energy consumption.

For tasks with similar computational costs as in the Uniform distribution, we
observe that the SingleSpeed algorithm, or the greedy approximation in the con-
text of divisible load application, could in fact provide comparable solutions with
lower computational complexity. The ReExecSpeed algorithms show only mar-
ginal benefit compared to SingleSpeed, but clear performance improvements are
observed from the MultiSpeed algorithms, especially for tasks with very differ-
ent costs. The results also show that the optimal solutions are often achieved by
processing around the reference speed that yields the least number of failures.

In terms of computation time, the most advanced VC+V algorithms in the
MultiSpeed scenario take less than a second to find the optimal solution for
n = 100 tasks. As application workflows rarely exceed a few tens of tasks, these
algorithms could be efficiently applied in many practical contexts to determine
the optimal checkpointing and verification locations.

6 Conclusion

In this paper, we have presented a general-purpose solution that combines check-
pointing and verification mechanisms to cope with both fail-stop errors and silent
data corruptions. By using dynamic programming, we have devised polynomial-
time algorithms that decide the optimal checkpointing and verification positions
on a linear chain of tasks. The algorithms can be applied to several execution
scenarios to minimize the expected execution time (makespan) or energy con-
sumption. In addition, we have extended the classical bound of Young/Daly for
divisible load applications to handle both fail-stop and silent errors. The results
are supported by a set of extensive simulations, which demonstrate the quality
and tradeoff of our optimal algorithms under a wide range of parameter set-
tings. One useful future direction is to extend our study from linear chains to
other application workflows, such as tree graphs, fork-join graphs, series-parallel
graphs, or even general DAGs.

References

1. Assayad, I., Girault, A., Kalla, H.: Tradeoff exploration between reliability, power
consumption, and execution time for embedded systems. Int. J. Softw. Tools Tech-
nol. Transf. 15(3), 229–245 (2013)

Assessing General-Purpose Algorithms to Cope with Fail-Stop 235

2. Aupy, G., Benoit, A., Robert, Y.: Energy-aware scheduling under reliability and
makespan constraints. In: Proceedings of the International Conference on High
Performance Computing (HiPC), pp. 1–10 (2012)

3. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temper-
ature. J. ACM 54(1), 3:1–3:39 (2007)

4. Benoit, A., Cavelan, A., Robert, Y., Sun, H.: Assessing general-purpose algo-
rithms to cope with fail-stop and silent errors. Research report RR-8599, INRIA,
September 2014

5. Benson, A.R., Schmit, S., Schreiber, R.: Silent error detection in numerical time-
stepping schemes. CoRR, abs/1312.2674 (2013)

6. Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: Algorithm-based fault tolerance
applied to high performance computing. J. Parallel Distrib. Comput. 69(4), 410–
416 (2009)

7. Bougeret, M., Casanova, H., Rabie, M., Robert, Y., Vivien, F.: Checkpointing
strategies for parallel jobs. In: 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 1–11 (2011)

8. Bronevetsky, G., de Supinski, B.: Soft error vulnerability of iterative linear algebra
methods. In: Proceedings 22nd International Conference on Supercomputing, ICS
2008, pp. 155–164. ACM (2008)

9. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

10. Chen, Z., Online-ABFT: an online algorithm based fault tolerance scheme for soft
error detection in iterative methods. In: Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 2013,
pp. 167–176. ACM (2013)

11. Daly, J.T.: A higher order estimate of the optimum checkpoint interval for restart
dumps. FGCS 22(3), 303–312 (2004)

12. Das, A., Kumar, A., Veeravalli, B., Bolchini, C., Miele, A.: Combined DVFS
and mapping exploration for lifetime and soft-error susceptibility improvement
in MPSoCs. In: Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), pp. 1–6 (2014)

13. Dixit, A., Wood, A.: The impact of new technology on soft error rates. In: IEEE
International on Reliability Physics Symposium (IRPS), pp. 5B.4.1–5B.4.7 (2011)

14. El-Sayed, N., Stefanovici, I.A., Amvrosiadis, G., Hwang, A.A., Schroeder, B.: Tem-
perature management in data centers: why some (might) like it hot. SIGMETRICS
Perform. Eval. Rev. 40(1), 163–174 (2012)

15. Elliott, J., Kharbas, K., Fiala, D., Mueller, F., Ferreira, K., Engelmann, C.: Com-
bining partial redundancy and checkpointing for HPC. In: Proceedings of the
ICDCS 2012. IEEE Computer Society (2012)

16. Elnozahy, E.N.M., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv. 34, 375–408
(2002)

17. Feng, W.-C.: Making a case for efficient supercomputing. Queue 1(7), 54–64 (2003)
18. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.:

Detection and correction of silent data corruption for large-scale high-performance
computing. In: Proceedings of the ACM/IEEE SC International Conference SC
2012. IEEE Computer Society Press (2012)

19. Heroux, M., Hoemmen, M.: Fault-tolerant iterative methods via selective reliability.
Research report SAND2011-3915 C, Sandia National Laboratories (2011)

236 A. Benoit et al.

20. Hsu, C.-H., Chun Feng, W.: A power-aware run-time system for high-performance
computing. In: Proceedings of the ACM/IEEE Supercomputing Conference,
pp. 1–9 (2005)

21. Huang, K.-H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Trans. Comput. 33(6), 518–528 (1984)

22. Hwang, A.A., Stefanovici, I.A., Schroeder, B.: Cosmic rays don’t strike twice:
understanding the nature of dram errors and the implications for system design.
SIGARCH Comput. Archit. News 40(1), 111–122 (2012)

23. Lu, G., Zheng, Z., Chien, A.A.: When is multi-version checkpointing needed. In:
3rd Workshop for Fault-Tolerance at Extreme Scale (FTXS). ACM Press (2013).
https://sites.google.com/site/uchicagolssg/lssg/research/gvr

24. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve
computer reliability. IBM J. Res. Dev. 6(2), 200–209 (1962)

25. Ozaki, T., Dohi, T., Okamura, H., Kaio, N.: Distribution-free checkpoint placement
algorithms based on min-max principle. IEEE TDSC 3, 130–140 (2006)

26. Patterson, M.: The effect of data center temperature on energy efficiency. In: Pro-
ceedings of 11th Intersociety Conference on Thermal and Thermomechanical Phe-
nomena in Electronic Systems, pp. 1167–1174 (2008)

27. Rizvandi, N.B., Zomaya, A.Y., Lee, Y.C., Boloori, A.J., Taheri, J.: Multiple fre-
quency selection in DVFS-enabled processors to minimize energy consumption. In:
Zomaya, A.Y., Lee, Y.C. (eds.) Energy-Efficient Distributed Computing Systems.
Wiley, Hoboken (2012)

28. Sao, P., Vuduc, R.:Self-stabilizing iterative solvers. In: Proceedings ScalA 2013.
ACM (2013)

29. Sarood, O., Meneses, E., Kale, L. V.: A ‘cool’ way of improving the reliability of
HPC machines. In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 58:1–58:12 (2013)

30. Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Fault tolerant preconditioned
conjugate gradient for sparse linear system solution. In: Proceedings of the ICS
2012. ACM (2012)

31. Toueg, S., Babaoglu, Ö.: On the optimum checkpoint selection problem. SIAM J.
Comput. 13(3), 630–649 (1984)

32. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proceedings of the 36th Annual Symposium on Foundations of Computer Science
(FOCS), p. 374 (1995)

33. Young, J.W.: A first order approximation to the optimum checkpoint interval.
Comm. ACM 17(9), 530–531 (1974)

34. Zhao, B., Aydin, H., Zhu, D.: Reliability-aware dynamic voltage scaling for energy-
constrained real-time embedded systems. In: Proceedings of the IEEE International
Conference on Computer Design (ICCD), pp. 633–639 (2008)

35. Zhu, D., Melhem, R., Mosse, D.: The effects of energy management on reliability
in real-time embedded systems. In: Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 35–40 (2004)

https://sites.google.com/site/uchicagolssg/lssg/research/gvr

	Assessing General-Purpose Algorithms to Cope with Fail-Stop and Silent Errors
	1 Introduction
	2 Related Work
	2.1 Fail-Stop Errors
	2.2 Silent Errors
	2.3 Energy Model and Error Rate

	3 Framework
	4 Optimal Algorithms
	4.1 SingleSpeed Scenario
	4.2 ReExecSpeed Scenario
	4.3 MultiSpeed Scenario

	5 Experiments
	5.1 Simulation Settings
	5.2 Results

	6 Conclusion
	References

