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Abstract. Tensor operations are surging as the computational building
blocks for a variety of scientific simulations and the development of high-
performance kernels for such operations is known to be a challenging task.
While for operations on one- and two-dimensional tensors there exist
standardized interfaces and highly-optimized libraries (BLAS), for higher
dimensional tensors neither standards nor highly-tuned implementations
exist yet. In this paper, we consider contractions between two tensors of
arbitrary dimensionality and take on the challenge of generating high-
performance implementations by resorting to sequences of BLAS kernels.
The approach consists in breaking the contraction down into operations
that only involve matrices or vectors. Since in general there are many
alternative ways of decomposing a contraction, we are able to methodi-
cally derive a large family of algorithms. The main contribution of this
paper is a systematic methodology to accurately identify the fastest algo-
rithms in the bunch, without executing them. The goal is instead accom-
plished with the help of a set of cache-aware micro-benchmarks for the
underlying BLAS kernels. The predictions we construct from such bench-
marks allow us to reliably single out the best-performing algorithms in a
tiny fraction of the time taken by the direct execution of the algorithms.

1 Introduction

Tensor contractions play an increasingly important role in various scientific
computations such as general relativity [1,2] and electronic structure calcula-
tions in quantum chemistry [3–5]. Computationally, contractions are general-
izations of matrix-vector and matrix-matrix products that involve operands of
higher dimensionality. While there are several highly-tuned implementations of
the Basic Linear Algebra Subprograms (BLAS) [6–8] for operands with up to
2 dimensions, there are no equivalently standardized high-performance libraries
for general tensor contractions. Fortunately, just as matrix-matrix products can
computationally be decomposed into a sequence of matrix-vector products, most
higher dimensional tensor contractions can be cast in terms of matrix-matrix or
matrix-vector BLAS kernels. However, each tensor contraction can be computed
via BLAS kernels in many, even hundreds, of different ways, each with its own
performance signature. This work addresses the problem of accurately predicting
the performance of BLAS-based algorithms for tensor contractions.
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One could argue that only algorithms that use the gemm kernel1 are real can-
didates to achieve the best performance; while for the most part this observation
is true, due to the fact that in practical contractions it is often the case that one
or more dimensions are very small (while BLAS is mostly optimized for large
dimensions), the difference in performance between two gemm-based algorithms
can be dramatic. At any rate, with this work we aim at the accurate predic-
tion of any BLAS-based contraction, irrespective of which kernel is used. Our
approach, which never resorts to timing a full algorithm, makes use of what we
call micro-benchmarks. These benchmarks execute only one BLAS operation in
a prescribed memory environment. The idea is to analyze the structure of the
code, and determine the state of the cache (precondition) prior to the execution
of the kernel; we carefully recreate this state within the micro-benchmark so
that the specific kernel can be timed in conditions analogous to those experi-
enced in the actual algorithm. Based on these timings, we extrapolate the total
algorithm execution times with sufficient accuracy to single out the fastest algo-
rithms. This micro-benchmark-based prediction proves to be several orders of
magnitude faster than executions of the actual algorithms.

Tensor Notation. In the following, we denote tensor contractions by means of
the Einstein notation;2 let us briefly explain said notation by means of an exam-
ple. In the contraction Cabc := AaiBibc, the entries C[a,b,c] of the resulting
three-dimensional tensor C ∈ R

a×b×c are computed as

∀a∀b∀c.C[a,b,c] :=
∑

i

A[a,i]B[i,b,c].

(In this notation, a matrix-matrix product is denoted by Cab := AaiBib.) The
indices that appear in both tensors A and B — the summation indices i, j, . . .
— are called contracted, while those that only appear in either A or B (and thus
in C) — a, b, c, . . . — are called free or uncontracted. W.l.o.g., we assume that
tensors are stored as Fortran-style contiguous multidimensional double precision
arrays: vectors (1D tensors) are stored contiguously, matrices (2D tensors) are
stored as sequence of column vectors, 3D tensors (visualized as cubes) are stored
as a sequence of matrices (planes of the cube), and so on.

Related Work. The most prominent project targeting the efficient computa-
tion of tensor contractions is probably the Tensor Contraction Engine, a com-
piler built specifically for multi-tensor multi-index contractions to be executed
within memory constraints [9]; in light of the wide diffusion and nearly optimal
efficiency of the BLAS library, an extension to TCE was proposed to compute

1 gemm is the BLAS-3 routine for matrix-matrix multiplication, which on many systems
is optimized within a few percent of peak performance.

2 For the sake of simplicity and without any loss of generality, we ignore any distinction
between covariant and contravariant vectors; this means we treat any index as a
subscript.
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contractions via BLAS operations [10]. In the same spirit, we provided simple
rules to build a taxonomy for all contractions between two tensors, identifying
which BLAS routines are usable and how to best exploit them [11].

There also exists a variety of work in the field of performance prediction in the
context of dense linear algebra. A notable example is Iakymchuk et al. [12,13],
where the authors model the performance of dense linear algebra algorithms
analytically based on very detailed models of the occurring cache-misses. Also,
in [14], we use measurement-based performance models to predict the behavior
of blocked algorithms. However, none of these works target or address high-
performance tensor contractions and their peculiarities, i.e., very regular patterns
in routine invocation and memory access, but highly skewed dimensionality (tiny
sizes for at least one of the dimensions).

Structure of the Paper. The rest of this paper is structured as follows. The
systematic generation of BLAS-based algorithms for tensor contractions is dis-
cussed in Sect. 2. Our performance prediction framework is introduced in Sect. 3,
and experimental results for a range of contractions are presented Sect. 4.

2 Algorithm Generation

In this section, we briefly explain how we systematically generate a family of
BLAS-based algorithms for a tensor contraction. For a detailed discussion of the
topic, we refer the reader to [11].

Aware of the extreme level of efficiency inherent to the best BLAS imple-
mentations, our approach for computing a contraction consists in reducing it to
a sequence of calls to one of the BLAS kernels. Since BLAS operates on scalars,
vectors and matrices (zero-, one- and two-dimensional objects), tensors must
be expressed in terms of a collection of such objects. To this end, we intro-
duce the concept of slicing: With the help of Matlab’s “:” notation,3 slicing a
d-dimensional operand Op ∈ R

n1×n2×···×nd along the i-th index (or dimension)
means creating the ni (d−1)-dimensional slices Op[:, . . . ,:︸ ︷︷ ︸

i−1

,k, :, . . . ,:︸ ︷︷ ︸
d−i

], where

k = 1, . . . , ni.

Example 1. Consider the matrix-matrix product Cab := AaiBib. Slicing the
matrix B along dimension b reduces the matrix to a collection of column vectors;
accordingly, the matrix-matrix product is reduced to a sequence of matrix-vector
operations:4

3 In the Matlab-like notation used in this paper, 1:b are the numbers from 1 to b,
while an index : in a tensor refers to all elements along that dimension, e.g., C[:,b]

is the b-th column of C.
4 The pictogram next to the algorithm visualizes the slicing of the tensors that origi-

nates the algorithm’s sequence of gemvs. The red objects represent the operands of
the BLAS kernel.



196 E. Peise et al.

Similarly, a multi-dimensional tensor contraction can be reduced to opera-
tions involving solely matrices and vectors.

Depending on the slicing choices, a contraction is reduced to a number of
nested loops with one of the following kernels at the innermost loop’s body:

– BLAS-1:
• dot (vector-vector inner product: α := xT y),
• axpy (vector scaling and addition: y := αx + y),

– BLAS-2:
• gemv (matrix-vector product: y := Ax + y),
• ger (vector-vector outer product: A := xyT + A), and

– BLAS-3:
• gemm (matrix-matrix product: C := AB + C).

Notice that to comply with the BLAS interface, the elements in one of the
two dimensions of a matrix must be contiguous. Therefore, algorithms that rely
on gemv, ger, or gemm as their computational kernel may require a temporary
copy of slices before and/or after the invocation of the corresponding BLAS
routine.

As a case study, let us consider the contraction

Cabc := AaiBibc, (1)

which is visualized as follows:

Instead of a blind search for appropriate slicings, we generate algorithms by
following a goal-oriented approach: For each of the five kernels of interest, we
know the dimensionality required for each operand; accordingly, we deduce how
many slices are needed and which combination of free/contracted indices to slice.
Table 1 (left) exhibits, for each kernel, the conditions necessary for a contraction
to be computed in terms of that kernel. In particular, the second and the third
columns indicate how many contracted and free indices, respectively, appear in
each kernel. A and B refer to the first and the second input operand of the kernel;
in a contraction between tensors of arbitrary dimension, all indices beyond those
indicated in these columns must be sliced.

Example 2. Since gemm involves one free index in each of its operands A and
B, and one contracted index (common to both A and B), in order to reduce
a contraction to a sequence of gemm calls, one must slice all free indices of A
but one, all free indices of B but one, and all contracted indices but one. With
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reference to (1), this is achieved by slicing either dimension b or c, resulting
in the two algorithms (b-gemm and c-gemm)5 shown in the last two examples
of Algorithm 16.

As already mentioned, given a contraction, there is no obvious a-priori choice
of kernel and slicings to attain the highest performance. We therefore generate
all possible combinations. Moreover, due to their impact on performance and to
further stress our modeling tool, we generate all possible permutations of the
loops.

We developed a small algorithm and code generator that produces all such
algorithms, constructs for each of them a C-implementation, as well as an abstract
5 The algorithm names are composed of two parts: The first part is the list of sliced

tensor indices iterated over by the algorithm’s loops including an apostrophe ′ for
each copy-kernel; the second part is the BLAS-kernel at the algorithm’s core.

6 For algorithms with more than 1 for-loop, all slicings are visualized in blue and only
the kernel operands (the slicings’ intersections) are in red.
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Table 1. Rules for tensor slicing to obtain a given BLAS kernel. Left: how many
contracted and free indices appear in a kernel. Right: different slicings make it possible
to express one contraction in terms of different kernels. The names in the rightmost
column refer to Algorithm 1.

Kernel Number of indices Examples from Cabc := AaiBibc

Contracted Free Kernel indices Sliced indices Resulting

algorithm

dot 1 0 i c, a, b cab-dot

axpy 0 (1 inA ∧ 0 inB) ∨ a b, c, i bci-axpy

(0 inA ∧ 1 inB) c a, i, b aib-axpy

gemv 1 (1 inA ∧ 0 inB) ∨ i, a b, c bc-gemv

(0 inA ∧ 1 inB) i, b c, a ca-gemv

ger 0 1 in A ∧ 1 in B a, c i, b ib-ger

gemm 1 1 in A ∧ 1 in B i, a, b c c-gemm

syntax tree (AST) representing its loop-based structure. The ASTs are then
passed to the prediction tool introduced in the following section.

3 Performance Prediction

In this section, we present how to accurately model the performance of algo-
rithms that compute tensor contractions through BLAS kernels. These algo-
rithms consist of one or more nested loops and cast all computation in terms of
one single BLAS kernel. Taking advantage of this structure, we aim at estimat-
ing the execution time of a target algorithm with the help of only few micro-
benchmarks of the kernels, i.e., with no direct execution of the algorithm itself. In
order to obtain reliable estimates, the micro-benchmarks need to be executed in
a setup that mirrors as closely as possible the computing environment (most
importantly the cache) within the contraction algorithm. In the following, we
incrementally go through the steps required to build a meaningful “replica” of
the computing environment.

Throughout this section, we track the changes in the performance prediction
by considering the exemplary contraction Cabc := AaiBibc. We chose the tensors
A ∈ R

a×i and B ∈ R
i×b×c of size i = 8 and a = b = c = 8, . . . , 1,000 — a

deliberately challenging scenario due to the thin tensor dimension i, for which
BLAS kernels are generally not optimized. Our generator produces 36 algorithms
for the considered contraction, some of which are shown in Algs. 1:

– 6 dot-based,
– 18 axpy-based,
– 6 gemv-based: bc-gemv , cb-gemv , ac-gemv , ca-gemv ,

ab-gemv , ba-gemv ,
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– 4 ger-based: ci-ger , ic-ger , bi-ger , ib-ger , and
– 2 gemm-based: c-gemm , b-gemm .

In this section, to focus our attention, we will only consider the BLAS-2 and
BLAS-3 based algorithms (i.e., with kernels gemv, ger, and gemm).

We execute these algorithms on 1 core of an Intel Penryn E5450 (Harpertown)
CPU7 linking with the OpenBLAS library [15]. Figure 1a displays the perfor-
mance, in terms of computed floating point operations per clock cycle (flops/cycle),
measured for each algorithm; our goal is to accurately reproduce, without execut-
ing the algorithms, such performance profiles. While it is evident that only two of
the algorithms — the gemm-based c-gemm and b-gemm — are compet-
itive, we aim at predicting the behavior of all algorithms to develop and demon-
strate the broad applicability of our methodology.

3.1 Repeated Execution

The first, most intuitive, attempt to predict the performance of an algorithm relies
on the isolated and repeated measurement of its BLAS kernel’s performance. We
implemented this approach by executing each kernel ten times and extracting the
median execution time; the corresponding estimate is then obtained by multiply-
ing the median by the number of kernel invocations within the algorithm. In our
example, this boils down to multiplying the kernel execution time with the prod-
uct of all loop lengths.

The performance profiles predicted by this first, rough approach are shown
in Fig. 1b. By comparing this figure with the reference Fig. 1a, it becomes appar-
ent that while the two top algorithms are already correctly identified, the per-
formance of almost all algorithms is consistently overestimated — the average
absolute error with respect to the measured performance is 154%. In other words,
when executed as part of the algorithms, the BLAS kernels take longer to com-
plete than in the isolated micro-benchmarks. The reason for this discrepancy is
that the micro-benchmarks invoke the kernels repeatedly with the same memory
regions as operands, i.e., they operate on warm data (the operands remain in the
CPU’s cache). Within the algorithm, by contrast, at least one, and potentially
even all of the operands, vary from one invocation to the next, i.e., the kernels
operate at least partially on cold data.

3.2 Operand Access Distance

In order to improve the accuracy of the predictions, the idea is to first identify
the state of the cache in the algorithm prior to the invocation of the BLAS kernel
(“precondition”), and to then replicate this status in the micro-benchmark. For
this purpose, each algorithm is symbolically analyzed to reconstruct the order of
memory accesses involving the kernel’s operands. For each operand, we determine
the set of memory regions M that were loaded into cache since its last access,
and define the access distance as the sum of the size of these regions M .
7 2 GHz, 4 cores, 4 double precision flops/cycle/core, 6 MB L2 cache/2 cores.
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Fig. 1. Cabc := AaiBibc: Performance measurements and various stages of performance
predictions (BLAS-2 and BLAS-3). The presented errors for the predictions (b) – (f)
are the average absolute difference with respect to the measurements (a).
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Once the access distances for all operands of a kernel are determined, we
can create an artificial sequence of memory accesses to reconstruct the cache
precondition. Based on this cache setup, the BLAS kernels are timed in a micro-
benchmark that closely resembles the actual execution of the algorithm. As
before, these micro-benchmarks are repeated and timed ten times to yield a
stable median. From the median, the performance of the algorithm is again
obtained based on the number of kernel invocations per algorithm execution.

To predict which memory regions are in cache, we assume a fully associative
Least Recently Used (LRU) cache replacement policy8 and sum up the size of
all memory regions accessed since an operand’s last use, yielding the access
distance. In first instance, we also assume that all loops surrounding the kernel
are somewhere in the middle of their traversal (i.e., not in their first iteration);
this assumption will be lifted later.

We now describe how to obtain the access distance for each operand. The
presented method is general and allows for any combinations of loops and multi-
ple kernels within the abstract syntax tree (AST), however for the sake of clarity,
we limit the discussion to ASTs that only consist of a series of loops with a single
call to a BLAS kernel at their core.

For each operand Op, we examine the algorithm’s AST (see Sect. 2) with the
kernel of interest as a starting point. The AST is traversed backwards until the
previous access to Op (or the AST’s root) is found, thereby collecting all other
operands involved in kernels in the initially empty set M . Going up the AST,
three different cases can be encountered.

1. Op does not vary across the surrounding loop.
Example 3. In algorithm ca-gemv , repeated below, the operand b[:,:,c]
does not depend on the surrounding loop’s iterator a. Hence, M = ∅ and
b[:,:,c]’s access distance is 0.

Op refers to the same memory region as in the previous iteration of the
surrounding loop. The back-traversal therefore terminates and the memory
regions collected in M so far determine the access distance.

2. Op varies across the surrounding loop.
Example 4. In algorithm ca-gemv , the operand A[a,:] depends on the
surrounding loop’s iterator a.
Op referred to a different memory region in the previous iteration of the loop.
As a result, it is safe to assume that at least all memory regions covered by all
kernel operands throughout this loop’s iterations were accessed since the last
access to Op. Hence, all operands are added to M and the memory regions
are symbolically joined along the dimensions the loop iterates over.

8 Due to the regular storage format and memory access strides of dense linear algebra
operations such as the considered tensor contractions, this simplifying assumption
does not affect the reliability of the results.
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Example 4 (continued). The algorithm’s kernel operates on A[a,:],
B[:,:,c], and C[a,:,c]. Joining these operands across the index a yields
the memory regions M = {A[:,:], B[:,:,c], C[:,:,c]}.
Since a previous access to Op was not yet detected, the traversal proceeds
by going up one level in the AST, and applying the method recursively: the
surrounding loop now takes the role of the starting node and we look for a
previous access to Op joined across this loop.
Example 4 (continued). The back-traversal now looks for a previous access
to A[:,:] (A[a,:] joint across a) on the second-innermost loop. This time,
the region is independent of the surrounding loop’s iterator c; therefore, in
this second step, case 1. above applies and the access distance is computed
from the previously collected set M = {A[:,:], B[:,:,c], C[:,:,c]}.

3. The parent node is the AST’s root.
Example 5. In algorithm ca-gemv , the operand C[a,:,c] depends on
both of the surrounding loops’ iterators a and c. Therefore, the back-traversal
encounters case 2. above in both its first and second step, joining the ker-
nel’s operands A[a,:], B[:,:,c], and C[a,:,c] across first a and then c,
yielding M = {A[:,:], B[:,:,:], C[:,:,:]}. In the third step of the back-
traversal, the outermost loop is already the starting point — the algorithm’s
root is reached.
In this case, the considered region is accessed only once (and for the first time).
Since we do not know how the contraction is used (within a surrounding pro-
gram), we can generally not make any assertions on the access distance. For
the purpose of this paper, in which we execute the contraction repeatedly to
measure its performance, however, we assume that no further memory regions
were loaded since the last invocation of the contraction — i.e., we compute the
access distance from the previously collected memory regions in M .

Based on the such obtained access distance for each operand of an algorithm’s
kernel, we now construct a list of memory accesses that emulates the accesses
within the algorithm prior to the kernel’s execution. This list consists of accesses
to the kernel’s operands, interleaved with accesses to remote memory regions, in
order to flush portions of the cache corresponding to the access distances: First,
we access the operand with the largest access distance, then a remote region
that accounts for the difference to the next smaller access distance, followed
by the next operand, and so on until the operands with the smallest access
distance followed by a remote access of this size. If the access distances to the
first operands in this list are larger than 5

4 times the cache size, the list is
truncated down to this limit at the front.

Example 6. For algorithm ca-gemv , the following table summarizes the
operands Op, their sizes s, the corresponding collections M and the implicated
access distances d for contraction sizes a = b = c = 400 and i = 8 (all sizes in
doubles = 8 bytes):
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Op s M d

B[:,:,c] 3,200 ∅ 0

A[a,:] 8 {A[:,:], B[:,:,c], C[:,:,c]} 166,400

C[a,:,c] 400 {A[:,:], B[:,:,:], C[:,:,:]} 65,283,200

From these distances, we get the following list of memory accesses as a setup
for the gemv-kernel, where [s] correspond to remote memory accesses of size s:

C[a, :, c], [65,116,792], A[a, :], [163,200], B[:, :, c].

Note, that the remote accesses do not directly correspond to the access distances;
instead, this size is reached for each operand as the sum of the sizes of all
accesses to its right in this list. (e.g., the access distances of A[a,:] is reached
as 163,200 + sizeof(B[:,:,c]) = 166,400).

Now, the largest access distance is at 65,283,200 considerably larger than
983,040 (54 times the cache size of 6MB

8 = 786,432 doubles). Hence, the list is
cut at this size, yielding the final setup for this algorithm’s micro-benchmark:

[816,632], A[a, :], [163,200], B[:, :, c].

The thus obtained benchmark, consisting of the setup followed by the kernel
invocation, is once more executed ten times. The median of the kernel run-times
of these ten benchmarks is then used to compute our second execution time
estimate.

In Fig. 1c, we present the flops/cycle performance of our new estimates. These
predictions are much closer to the measured performance (Fig. 1a) than the first
rough estimates (Fig. 1b): the average error is reduced to 26.3%. For several
algorithms (such as ic-ger , Algs. 1), the error is already within a few
percent; for many others instead, the predictions are still off. In particular, the
performance of some algorithms — for instance, bi-ger (see Algs. 1) — is
now underestimated; this is due to the fact that based on the access distance,
certain operands are placed out of cache, while in practice they are (partially)
brought into cache through either prefetching or because they share cache-lines
across the innermost loop’s iterations. We address this discrepancy by further
refining our micro-benchmarks.

3.3 Cache Prefetching

In the considered type of tensor contraction algorithms, prefetching of operands
or sharing of cache lines across loop iterations occur frequently.

Example 7. In algorithm bi-ger , the operand A[:,i] points to a different
memory location in each iteration of the inner loop across i. However, these
vectors-operands are consecutive in memory; thus, when reaching the end of
A[:,i], the prefetcher will likely already load the next memory elements, which
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constitute A[:,i] in the next iteration. Likewise, operand B[i,b,:] varies
across inner loop iterations; however, since this loop iterates over the region’s
first dimension i, 8 consecutive operands9 B[i,b,:] will occupy the same cache-
line.

Such prefetching situations occur when a certain set of conditions are met,
namely:

1. the operand varies across the directly surrounding loop, and
2. the iterator of this loop indexes

– either the first dimension of the operand,
– or its second dimension, while the first is accessed entirely, or fits in a

single cache-line.

As part of our AST-based algorithm analysis, these conditions are tested; when
both of them are met, we can use a slight modification of the previously intro-
duced method to compute the prefetch distance, i.e., how long ago the prefetching
occurred. These prefetch distances are then integrated into the micro-bench-
mark’s setup list just like the access distances, only that for prefetch accesses
the access is limited to one cache-line along an operand’s first dimension.

Example 8. In algorithm ca-gemv , for which we explicitly constructed the
setup list in the previous section, both operands A[a,:] and C[a,:,b]meet both
prefetching conditions: 1. they vary across the surrounding loop iterator a and 2.
a indexes their first dimensions (sharing of cache-lines). As a result, their prefetch
distances are 0 and the prefetching access will load the entire operands since their
extension along the first, contiguously stored dimension is 1. Since the remain-
ing operand B[:,:,c] has an access distance of 0, all operands are now accessed
immediately before the kernel invocation; the setup list is reduced to

C[a, :, c], A[a, :], B[:, :, c].

(Since this setup consists only of accesses to the operands, it becomes redundant
in our micro-benchmarks, because each of the ten repetitions will already touch
all operands for the next repetition; hence, in such a case, we omit the setup
altogether.)

Now accounting for prefetching, we obtain the performance estimates shown
in Fig. 1d. Here, several algorithms, such as ba-gemv , are estimated closer
to their measured performance, leading to an improved average error of 19.1%.
However, several other algorithms, including ca-gemv , are overestimated
in performance (i.e., underestimated in execution time). There are two separate
causes for this discrepancy.

– In several algorithms, such as ca-gemv , where prefetching implicitly
happens due to sharing of cache-lines, the prefetcher fails once a new cache-
line is reached.

9 The cache-line size is 64B = 8 doubles.
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– In other algorithms, such as bi-ger , the innermost loop is so short
(here: 8 iterations) that each first iteration of the loop significantly impacts
performance.

These two causes are treated separately in the following sections.

3.4 Prefetching Failures

For those algorithms in which certain operands are identified as prefetched
because they share cache lines across iterations (i.e., the surrounding loop indexes
their first dimension), the CPU would need to prefetch the next cache-line every
8 iterations (1 cache-line = 8 doubles). However, as a detailed analysis of hand-
instrumented algorithms has shown, it fails to do so. As a result, in every 8th
iteration of the innermost loop, the operand is not available and the kernel may
take significantly longer.

We account for this prefetching-artifact by performing two separate micro-
benchmarks: one simulating the 7 iterations in which the operand is available
in cache as before, and one for the 8th iteration, where we account for the
failure to prefetch and eliminate the emulated prefetching from our setup-list.
The prediction for the total execution time is now obtained from weighting
these two benchmark timings according to their number of occurrences in the
algorithm and summing them up.

Example 9. In algorithm ca-gemv , the memory regions of both A[a,:] and
C[a,:,c], respectively, share cache-lines across iterations of the innermost loops
over a. Hence, affecting not one but two of the kernel’s operands, in every 8th
iteration the kernel execution time increases drastically by a factor of about 4.5.
To account for these “prefetching failures”, we introduce a second set of micro-
benchmarks, where the prefetching emulating accesses are removed from the setup
list, resulting for a = b = c = 400 and i = 8, as without prefetching, in:

[816,632], A[a, :], [163,200], B[:, :, c].

Fig. 1e shows the predictions obtained after this improvement: the error is
further reduced to 14.7%. Most apparent in ca-gemv , the overestimation
of algorithms where iterations share cache-lines are now corrected.

3.5 First Loop Iterations

The predictions for several algorithms, such as ci-ger , are still severely off,
because the innermost loop of these algorithms is very short (in our example 8
iterations long). In such a case, the predictions are very accurate for all but the
first iteration. Due to vastly different cache preconditions for this first iteration,
however, its performance can be significantly different (in our case, up to 10×
slower). Combined with the low total iteration count, this results in predictions
that are off by a factor of up to 2.
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To treat such situations, we introduce separate benchmarks to predict the
performance of the first iteration of the innermost loop (and further loops if their
first iterations account for more than 1 % of the total kernel invocations). For
this purpose, the access distance evaluation method is slightly modified: instead
of the kernel itself, the starting point is now the loop whose first iteration is
considered, and the set M already contains all of the kernel’s memory regions
joined across this loop.

Example 10. In algorithm ci-ger , the innermost loop over i is in our exam-
ple only 8 iterations long. For all but the first iteration, the operand C[:,:,c]
stays the same, while A[:,i] and B[i,:,c] are prefetched, leading to optimal
conditions for performance. In the first iteration (i.e., the next c iteration) how-
ever, C[:,:,c] refers to a different memory location and prefetching fails for
both A[:,i] and B[i,:,c], leading to severely lower performance.

From these improved access distances, the cache setup and micro-benchmark
are performed just as before. As for the “prefetching failures”, the prediction for
the total execution time is now obtained from weighting of all relevant benchmark
timings with the corresponding number of occurrences within the algorithm.

In Fig. 1f, we present the improved performance predictions obtained from
this modification. The performance of all algorithms is now predicted with sat-
isfying accuracy — the average absolute error is 9.47%.

4 Results

In order to showcase its applicability and effectiveness, in this section we apply
our technique for performance prediction to a range of contractions. We consider
three test cases: In Sect. 4.1, we use different hard- and software, as well as
changing the problem sizes. In Sect. 4.2, we consider a contraction that only
allows the use of BLAS-1 and BLAS-2. Finally, in Sect. 4.3, we consider a more
complex contraction with numerous alternative algorithms and multithreading.

4.1 Test 1: Cabc := AaiBibc, Different Setup

We commence with the same contraction used as a case study in the previous
section, yet with an entirely different setup: the sizes a, b, and c are now fixed to
128, while i ranges from 8 to 1,000. As experimental environment, we use a 10-
core Intel Ivy Bridge-EP E5-2680 v2 processor running at 3.6 GHz (Turbo Boost)
and 25 MB of L3 cache. Each core can execute 8 double precision flops/cycle.
The routines for both the actual measurements and the micro-benchmarks were
linked to the BLAS implementation of Intel’s Math Kernel Library (MKL, ver-
sion 11.0). Figure 2 contains the performance measurements and corresponding
predictions for all 36 algorithms (see Algs. 1). Although everything, ranging
from the problem size to the machine and BLAS library was changed in this
setup, the predictions are of equivalent quality and our tool correclty determines
that the gemm-based algorithms (c-gemm and b-gemm ) perform best
and equally well.
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Fig. 2. Cabc := AaiBibc, different setup: Performance measurements and predictions.

Fig. 3. Ca := AiajBji: Performance measurements and predictions.

4.2 Test 2: Ca := AiajBji, only BLAS-1 and BLAS-2

For certain contractions (e.g., those involving 1D tensors), gemm cannot be used
as a compute kernel, and only algorithms based on BLAS-2 or BLAS-1 are
possible. One such scenario is encontered in the contraction Ca := AiajBji, for
which our generator yields 8 algorithms:

– 4 dot-based: aj-dot , ja-dot , ai-dot , ia-dot ,
– 2 axpy-based: ij-axpy , ji-axpy , and
– 2 gemv-based (see Algs. 2): j-gemv , i′-gemv .
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The measured and predicted performance for these algorithms is shown in
Fig. 3. Our predictions clearly discriminate the fastest algorithm j-gemv
across the board. Furthermore, the next group of four algorithms is also cor-
rectly identified and the low performance of the second gemv-based algorithm
i′-gemv (due to the overhead of the involved matrix-copy operation) is
predicted too.

4.3 Test 3: Cabc := AijaBjbic, Challenging Contraction

We now turn to a more complex example inspired by space-time continuum
computations in the field general relativity [1]: Cabc := AijaBjbic. For this con-
traction, we generated a total of 176 different algorithms:

– 48 dot-based ,
– 72 axpy-based ,
– 36 gemv-based ,
– 12 ger-based , and
– 8 gemm-based:

cj′-gemm , jc′-gemm , ci′-gemm , i′c-gemm , bj′-gemm ,
jb′-gemm , bi′-gemm , i′b-gemm .

Fig. 4. Cabc := AijaBjbic: Performance prediction and measurements.
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All gemm-based (see Algs. 3) and several of the gemv-based algorithms involve
copy operations to ensure that each matrix has a contiguously stored dimension,
as required by the BLAS interface. Once again, we consider a very challenging
scenario where both contracted indices are of size i = j = 8 and the free indices
a = b = c vary together.

Starting with the predictions, in Fig. 4a, we present the expected performance
in flops/cycle of the 176 algorithms, where BLAS-1 and BLAS-2 algorithms
are grouped by kernel. Even with the copy operations, the gemm-based algorithms
are the fastest. However, within these 8 algorithms, the performance differs by
more than 20 %. Focusing on the gemm-algorithms, we compare with corresponding
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Fig. 5. Cabc := AijaBjbic: Performance prediction and measurements with 10 threads.

performance measurements10 in Fig. 4b. The comparison shows that our predic-
tions clearly separate the bulk of fast algorithms from the slightly less efficient ones.

Multithreading. The algorithms considered here can make use of shared mem-
ory parallelism by employing multithreaded BLAS kernels. To focus on the
impact of parallelism, we increase the contracted tensor dimension sizes to
i = j = 32 and use all 10 cores of the Ivy Bridge-EP CPU with OpenBLAS.

Performance predictions and measurements for this setup are presented in
Fig. 5. Our predictions correctly separate the three groups of gemm-based imple-
mentations; moreover, algorithms i′c-gemm and i′b-gemm (see Algs.
3), which reach 60 flops/cycle,11 are identified as the fastest. The slowest algo-
rithm (jb′-gemm ) on the other hand merely reaches 20 flops/per cycle.
This 3× difference in performance among gemm-based algorithms emphasizes
the importance of selecting the right algorithm.

4.4 Efficiency Study

The ultimate goal of this work is to automatically and quickly select the fastest
algorithm for a given tensor contraction. The experiments presented so far pro-
vide evidence that our automated approach successfully identifies the fastest
algorithm(s). In this last study, we investigate the efficiency of our micro-bench-
mark-based approach. For this purpose, we once more consider the contraction
Cabc := AaiBibc, with i = 8 and varying a = b = c. Figure 6 displays the ratio
of how much faster our micro-benchmark is compared to executing the corre-
sponding algorithm. In general, our prediction proves to be several orders of
magnitude faster than the algorithm itself. At a = b = c = 1,000, this rela-
tive improvement is smallest for the gemm-based algorithms at 103×, since
10 Slow tensor contraction algorithms were stopped before reaching the largest test-cases

by limiting the total measurement time per algorithm to 15 minutes.
11 Using 10 cores, the theoretical peak performance is 80 flops/cycle.
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Fig. 6. Cabc := AaiBibc: Prediction efficiency.

each gemm performs a significant portion of the computation; for the ger-based
algorithms , it lies between 6 · 103 and 104× and for the gemv-based algo-
rithms the gain is 5 · 105 to 106×; finally, the gain for both BLAS-1-based
algorithms , where each BLAS-call only performs a tiny fraction of
the contraction, our prediction is between 6 and 9 orders of magnitude faster
than the execution.

5 Conclusion

In this paper, we focused on the performance prediction of BLAS-based algo-
rithms for tensors contractions. First, based on previous work, we developed an
algorithm and code generator that given the mathematical description of a ten-
sor contraction, casts the computation in terms of five different BLAS kernels;
since, in general, a tensor contraction may be decomposed in terms of matrix
and vector products in many different ways, the generator often returns dozens
of alternative algorithms.

Then, we tackled the problem of selecting the fastest algorithms without
ever executing them. Instead of executing the full algorithms, our approach is
based on timing the BLAS kernels in a small set of micro-benchmarks. These
micro-benchmarks are run in a context that emulates that of the actual compu-
tation; thanks to careful treatment of cache-locality and a model of the cache
prefetcher’s behavior, our performance prediction tool is capable of identifying
the best-performing algorithms in a tiny fraction of the time required to actually
run and time all of them.

The quality of the predictions was showcased for a number of challenging sce-
narios, including contractions among tensors with small dimensions, contractions
that can only be cast in terms of BLAS 1 and BLAS 2 kernels, and multi-threaded
computations.
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