
Algebraic Multigrid on a Dragonfly Network:
First Experiences on a Cray XC30

Hormozd Gahvari1(B), William Gropp2, Kirk E. Jordan3, Martin Schulz1,
and Ulrike Meier Yang1

1 Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
{gahvari1,schulzm,umyang}@llnl.gov

2 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
wgropp@illinois.edu

3 IBM TJ Watson Research Center, Cambridge, MA 02142, USA
kjordan@us.ibm.com

Abstract. The Cray XC30 represents the first appearance of the drag-
onfly interconnect topology in a product from a major HPC vendor. The
question of how well applications perform on such a machine naturally
arises. We consider the performance of an algebraic multigrid solver on
an XC30 and develop a performance model for its solve cycle. We use this
model to both analyze its performance and guide data redistribution at
runtime aimed at improving it by trading messages for increased compu-
tation. The performance modeling results demonstrate the ability of the
dragonfly interconnect to avoid network contention, but speedups when
using the redistribution scheme were enough to raise questions about the
ability of the dragonfly topology to handle very communication-intensive
applications.

1 Introduction

The network topology of an HPC system has a critical impact on the perfor-
mance of parallel applications. In recent years, vendors have experimented with a
wide range of topologies. A topology that has found wide interest is the dragonfly
topology [18]. Introduced several years ago, it has seen its first major deploy-
ment in the Cray XC30. As more XC30s and other machines that make use of
dragonfly interconnects are deployed, the question of application performance
on these machines becomes paramount. How suited is the dragonfly topology for
particular applications? What are its advantages and disadvantages? What are
its future prospects as machines get even larger?

This paper examines one application, algebraic multigrid (AMG), on an
XC30, to see how well it performs on this topology and get a first look at poten-
tial hazards it and other applications would face on a dragonfly machine. AMG is
a popular solver for large, sparse linear systems of equations with many scientific
and engineering applications. It is very attractive for HPC owing to ideal com-
putational complexity, but faces challenges on emerging parallel machines [3,4]
that served as motivation for a recent in-depth study [11] into its performance
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 3–23, 2015.
DOI: 10.1007/978-3-319-17248-4 1



4 H. Gahvari et al.

and ways to improve it. We present results from that study on modeling the
performance of the AMG solve cycle on an XC30 and using the performance
model to improve its performance on that architecture.

Our specific contributions are as follows:

– We successfully extend a performance model that previously covered fat-tree
and torus interconnects to a dragonfly interconnect.

– We use that model at runtime to guide data redistribution within the AMG
solve cycle to improve its performance on a dragonfly machine.

– We point out an important hazard faced by the dragonfly interconnect in a
real-world scenario.

The model predicts cycle times to accuracies mostly between 85 and 93 percent in
our experiments, and covers both all-MPI and hybrid MPI/OpenMP program-
ming models. The data redistribution involves having processes combine data,
trading messages they would send amongst themselves for increased computation.
Resulting speedups range from modest to over 2x overall, with the large speedups
occurring during the communication-heavy setup phase of AMG or when solving
a communication-intense linear elasticity problem. This occurs despite the model
rating the XC30 interconnect as being effective overall at avoiding network con-
tention, leading to questions about the ability of the dragonfly interconnect when
tasked with handling a large number of messages.

2 Dragonfly Networks

The general principle behind dragonfly interconnects is to keep the minimum
hop distance low like a fat-tree, while also providing high bandwidth between
nodes and low network contention at less cost [18]. This is accomplished through
a generalized two-level design. The core of the network is formed by a number
of groups of routers, with each group connected by optical cables to every other
group. The routers in each individual group have their own specific topology.
This is diagrammed in Fig. 1.

2.1 Implementation on the Cray XC30

The dragonfly implementation on the XC30 is called the Aries interconnect [2].
In the Aries interconnect, the routers in each group are arranged as rows and
columns of a rectangle, with all-to-all links across each row and column but not
diagonally. There are 16 routers in the horizontal dimension and 6 in the vertical
dimension, for a total of 96 routers per group. Four nodes are connected to each
router, bringing the number of nodes per group to 384. This is illustrated in
Fig. 2.

2.2 Target System

We ran our experiments on Eos, an XC30 at Oak Ridge National Laboratory.
Eos consists of 744 compute nodes with two eight-core 2.6 GHz Intel Xeon E5-
2670 processors per node. The hardware bandwidth between nodes is 16 GB/s.



Algebraic Multigrid on a Dragonfly Network 5

Fig. 1. Dragonfly network basics. Routers (boxes) are in groups (circled), with each
group connected to every other group. The routers within groups can be connected in
many different ways; no particular topology is shown here.

Fig. 2. Group topology in the Aries network, with 16 routers in the horizontal dimen-
sion and 6 in the vertical dimension. Each router is connected to every other router
in its row and column, which is shown for the router in the lower left-hand corner.
Four nodes are connected to each router, which is shown for one of the routers in the
rightmost column.

All experiments save for those in Sect. 6.2 use the Intel compiler, version 13.1.3.
The MPI implementation is Cray’s native MPI. Eos also features simultaneous
multithreading (SMT) in the form of Intel Hyper-Threading [19]. This allows for
users to run their jobs on up to two times the number of physical cores. However,
we do not consider it here, as we have yet to have developed a performance model
for this form of SMT.



6 H. Gahvari et al.

3 Algebraic Multigrid

The application we focus on in our study is algebraic multigrid (AMG). It is one
of the multigrid solvers, which are best known for having a computational cost
linear in the number of unknowns being solved. This is very attractive for HPC,
where the goal is to solve large problems, and it is therefore of great interest
to study the performance of multigrid methods on HPC platforms. Multigrid
methods operate by performing some of the work on smaller “coarse grid” prob-
lems instead of concentrating it all on the original “fine grid” problem. On each
grid, a smoother, typically a simple iterative method like Jacobi or Gauss-Seidel,
is applied. Afterwards, a correction is typically solved for on the next coarsest
grid, which except for the very coarsest grid involves solving another coarse grid
problem. This correction is then applied to accelerate the solution process. The
coarsest grid is often solved directly. This particular order of progression through
grids, from finest to coarsest and back to finest, is called a V-cycle, which is the
most basic multigrid cycle and the one we consider here.

AMG is a means of leveraging multigrid, which was originally developed
to solve problems on structured grids, to solve problems with no explicit grid
structure, where all that is known is a sparse linear system A(0)u(0) = f (0). This
requires AMG to consist of two phases, setup and solve, which are illustrated
in Fig. 3. The setup phase involves selecting the variables that will remain on
each coarser grid and defining the restriction (R(m)) and interpolation (P (m))
operators that control the transfer of data between levels. There are a number
of algorithms for doing this, and they can be quite complicated. For our experi-
ments, we use the AMG code BoomerAMG [16] in the hypre software library [17]
We use HMIS coarsening [7] with extended+i interpolation [6] truncated to at
most 4 coefficients per row and aggressive coarsening with multipass interpo-
lation [22] on the finest level. Each coarse grid operator A(m+1) is formed by
computing the triple matrix product R(m)A(m)P (m). This operation, particu-
larly for unstructured problems, leads to increasing matrix density on coarse
grids, which in turn results in an increasing number of messages being sent
among an increasing number of communication partners. These have resulted
in substantial challenges to performance and scalability on some machines [3,4],
even when using advanced coarsening and interpolation schemes like the ones
we use in our experiments, and serve as added motivation for studying AMG on
the XC30.

In the solve phase, the primary operations are the smoothing operator and
matrix-vector multiplication to form rm and perform restriction and interpola-
tion. In our experiments, we use hybrid Gauss-Seidel as the smoother. Hybrid
Gauss-Seidel uses the sequential Gauss-Seidel algorithm to compute local data
within process boundaries, but uses Jacobi smoothing across process boundaries
to preserve parallelism. Applying this smoother is a very similar operation to
matrix-vector multiplication.

Sparse matrices in BoomerAMG are stored in the ParCSR data structure.
A matrix A is partitioned by rows into matrices Ak, k = 0, 1, . . . , P − 1, where
P is the number of MPI processes. Each matrix Ak is stored locally as a pair



Algebraic Multigrid on a Dragonfly Network 7

Fig. 3. Setup and solve phase of AMG.

of CSR (compressed sparse row) matrices Dk and Ok. Dk contains all entries of
Ak with column indices that point to rows stored locally on process k, and Ok

contains the remaining entries. Matrix-vector multiplication Ax or smoothing
requires computing Akx = Dkx

D + Okx
O on each process, where xD is the

portion of x stored locally and xO is the portion that needs to be sent from
other processes. More detail can be found in [9].

The ability to use a shared memory programming model is provided in
BoomerAMG in the form of OpenMP parallelization within MPI processes. This
is done using parallel for constructs at the loop level, which spawn a num-
ber of threads that can each execute a portion of the loop being parallelized.
Static scheduling is used, which means the work is divided equally among the
threads before the loop starts. The loops parallelized in this fashion are the ones
that perform smoother application, matrix-vector multiplication, and the triple
matrix product.

4 Performance Model

In previous work [12–14], we developed an accurate performance model for AMG
and validated it on a wide range of platforms and network topologies, includ-
ing Linux clusters, prior Cray machines, and IBM Blue Gene systems. We now
expand the model to the dragonfly interconnect and contrast the results.

4.1 Model Specifics

Our model is based on the simple α-β model for interprocessor communication.
The time to send a message consisting of n double precision floating-point values
is given by

Tsend = α + nβ,

where α is the communication startup time, and β is the per value send cost. We
model computation time by multiplying the number of floating-point operations



8 H. Gahvari et al.

by a computation rate ti. We allow this to vary with each level i in the multigrid
hierarchy because the operations in an AMG cycle are either sparse matrix-
vector multiplication or a smoother application, which is a similar operation. An
in-depth study [10] found that the computation time for sparse matrix-vector
multiplication varies with the size and density of the matrix, and the operators
in an AMG hierarchy have varying sizes and densities. We do not consider the
overlap of communication and computation, as there is very little room for this
on the communication-intensive coarse grid problems on which our concerns our
focused.

We treat the AMG cycle level-by-level. If there are L levels, numbered 0 to
L − 1, the total cycle time is given by

TAMG
cycle =

L−1∑

i=0

T i
cycle,

where T i
cycle is the amount of time spent at level i of the cycle. This is in turn

broken down into component steps, diagrammed in Fig. 4, which we write as

T i
cycle = T i

smooth + T i
restrict + T i

interp.

Smoothing and residual formation, which are combined into T i
smooth, are treated

as matrix-vector multiplication with the solve operator. Interpolation is treated
as matrix-vector multiplication with the interpolation operator. Restriction is
treated as matrix-vector multiplication with the restriction operator, which for
the purposes of our experiments is the transpose of the interpolation operator.

Fig. 4. Fundamental operations at each level of an AMG V-cycle.

To enable us to write expressions for each component operation, we define
the following terms to cover different components of the operators that form the
multigrid hierarchy:

– P – total number of processes.
– Ci – number of unknowns on grid level i.



Algebraic Multigrid on a Dragonfly Network 9

– si, ŝi – average number of nonzero entries per row in the level i solve and
interpolation operators, respectively.

– pi, p̂i – maximum number of sends over all processes in the level i solve and
interpolation operators, respectively.

– ni, n̂i – maximum number of elements sent over all processes in the level i
solve and interpolation operators, respectively.

We assume one smoothing step before restriction and one smoothing step after
interpolation, which is the default in BoomerAMG. The time spent smoothing
on level i is given by

T i
smooth = 6

Ci

P
siti + 3(piα + niβ).

The time spent restricting from level i to level i + 1 is given by

T i
restrict =

{
2Ci+1

P ŝiti + p̂iα + n̂iβ if i < L − 1
0 if i = L − 1.

The time spent interpolating from level i to level i − 1 is given by

T i
interp =

{
0 if i = 0
2Ci−1

P ŝi−1ti + p̂i−1α + n̂i−1β if i > 0.

To this baseline, we add terms and penalties to cover phenomena seen in
practice that the α-β model alone does not cover. One such phenomenon is
communication distance. While it is assumed that the hop count has a very small
effect on communication time, we cannot assume this on coarse grid problems in
AMG where many messages are being sent at once. The further a message has to
travel, the more likely it is to run into delays from conflicts with other messages.
To take this into account, we introduce a communication distance term γ that
represents the delay per hop, changing the model by replacing α with

α(h) = α(hm) + (h − hm)γ,

where h is the number of hops a message travels, and hm is the smallest possible
number of hops a message can travel in the network.

Another issue is limited bandwidth, of which we consider two sources. One
is the inability to make full use of the hardware. The peak hardware bandwidth
is rarely achieved even under ideal conditions, let alone the non-ideal conditions
under which applications usually run. The other source of limited bandwidth is
network contention from messages sharing links. Let Bmax be the peak aggregate
per-node hardware bandwidth, and B be the measured bandwidth corresponding
to β. Let m be the total number of messages being sent, and l be the number of
network links available. Then we multiply β by the sum Bmax

B + m
l to take both of

these factors into account. The limited hardware bandwidth penalty functions
as a baseline, with link contention becoming the dominant factor when it is
significant (it might not be significant in certain problems on which the fine
grids do not feature much communication).



10 H. Gahvari et al.

Multicore nodes are another potential source of difficulties. If the interconnect
is not suited to handle message passing traffic from many cores at once, then
there can be contention in accessing the interconnect and contention at each
hop when routing messages. To capture these effects, we multiply either or both
of the terms α(hm) and γ described earlier by

⌈
tPi

P

⌉
, where t is the number of

MPI tasks per node, and Pi is the number of active processes on level i. Active
processes mean ones that still have unknowns in their domains on coarse grids
and thus have not “dropped out.”

We treat hybrid MPI/OpenMP as follows. The message counts for MPI com-
munication are assumed to change with the number of processes. What we modify
explicitly is the computation term ti. Let bj be the available memory bandwidth
per thread for j threads. We then multiply ti by b1

bj
. We do this to take into

account limited memory bandwidth from threads contending to access memory
shared by multiple cores. We expect a slowdown here versus the all-MPI case
because there is no longer a definite partitioning of memory when using threads.
Our original hybrid/OpenMP model also had a penalty to cover slowdowns from
threads being migrated across cores that reside on different sockets [13]; we do
not consider this here as it can be readily mitigated by pinning threads to specific
cores.

4.2 Adaptation to Dragonfly Networks

The model as presented above is straightforward to adapt to dragonfly networks.
It boils down to how to best determine the needed machine parameters. Most
of them are readily determined from benchmark measurements, as was the case
with other machines. α and β were measured using the latency-bandwidth bench-
mark in the HPC Challenge suite [8]. α was set to the best reported latency,
and β was set to the value corresponding to the best reported bandwidth, which
for a reported bandwidth of B bytes per second is 8

B for sending double preci-
sion floating point data. The ti terms were measured by performing serial sparse
matrix-vector multiplications using the operators for the test problem we used
when validating the model; this is further described in Sect. 5.1. The values for
bj needed to evaluate the penalty for hybrid MPI/OpenMP were taken by using
the STREAM Triad benchmark [20] and dividing by the number of threads
being used.

We determined γ from the measured values of α and β. Starting with the
formulation of α as a function of the number of hops h

α(h) = α(hm) + γ(h − hm),

we set α(hm) to be the measured value of α. If D is the diameter of the network,
the maximum latency possible is

α(D) = α(hm) + γ(D − hm).



Algebraic Multigrid on a Dragonfly Network 11

We use the maximum latency reported by the same benchmark we used to
measure α as a value for α(D). Then

γ =
α(D) − α(hm)

D − hm
.

For dragonfly interconnects, we set hm to 2 (reflecting the case where two nodes
connected to the same router are communicating). We charge the distance D
to each message sent, analogous to the role the height of the tree played for
fat-tree interconnects in [12,13]. Though pessimistic, this distance is charged to
reflect the potential impact of routing delays. When counting the number of links
available to a message for determining the link contention portion of the limited
bandwidth penalty, we use the midpoint of the fewest possible (all the nodes in
one group are filled before moving onto the next one) and most possible (each
node is in a new group until all groups are in use), as there is no simple geometric
formula like there is with a mesh or torus network.

To make the numbers specific to the Aries interconnect, we set D equal to 7;
the maximum shortest path between two nodes involves traversing one link to
get to the routers in that node’s group, two links to find an available connection
to reach the next group (not all routers in the Aries interconnect are connected
to the optical network), one link to reach that group, two more links to traverse
the routers, and then one last link to reach the target node. When counting links
for the limited bandwidth penalty, we treat the optical links between groups as
four links because they have four times the bandwidth. If there are N nodes
in use, and G groups in the network, then the minimum possible number of
available links is

N + 170
⌈

N

384

⌉
+ 4min

{⌊
N

384

⌋
,
G(G − 1)

2

}
,

and the maximum possible number of available links is

N + 170min{N,G} + 4min
{

N − 1,
G(G − 1)

2

}
.

In both expressions, the first term accounts for the number of links connecting
nodes to routers. The second accounts for the number of router-to-router links
in groups, which number 16 · 5 + 6 · 15 = 170 per group. The third accounts for
the number of optical links.

5 Model Validation

5.1 Experimental Setup

For each of our experiments on Eos, the Cray XC30 we are evaluating, we ran 10
AMG solve cycles and measured the amount of time spent in each level, dividing
by 10 to get average times spent at each level. For our test problem, we used a



12 H. Gahvari et al.

3D 7-point Laplace problem on a cube with 50 × 50 × 25 points per core, as was
done in past experiments used to validate this model on other machines [12–14].
The mapping of MPI tasks to nodes was the default block mapping, in which
each node is filled with MPI tasks before moving onto the next one. We report
results on 1024 and 8192 cores.

Machine parameters for Eos are given in Table 1. How we obtained the values
for α, β, and γ was described in Sect. 4.2. We measured ti by measuring the time
for 10 sparse matrix-vector multiplies using the local portion of the solve operator
Ai on each level in the MPI-only case and dividing the largest time over all the
processes by the number of floating point operations. For i ≥ 3, we used the value
measured for t2. Per-thread memory bandwidths for the hybrid MPI/OpenMP
penalty are in Table 2.

Table 1. Measured machine parameters on Eos.

Parameter α β γ t0 t1 t2

Value 0.238 µs 0.858 ns 0.416 µs 1.59 ns 0.806 ns 0.545 ns

Table 2. Per thread memory bandwidths on Eos.

No. Threads 1 2 4 8 16

Bandwidth (MB/s) 11106 5335.5 2755.0 1374.8 678.56

5.2 Results

To help us understand the XC30 interconnect, we compared the measured AMG
cycle time at each level with what the performance model would predict, with
the different penalties turned on and off. Results are plotted in Fig. 5 for the
all-MPI case and in Fig. 6 for the hybrid MPI/OpenMP case. In each plot, the
measured cycle time at each level is shown as a solid black line. Six different
model scenarios are also shown as colored lines with markers, with the best fit
solid and the others dotted:

1. Baseline model (α-β Model).
2. Baseline model plus distance penalty (α-β-γ Model).
3. Baseline model plus distance penalty and bandwidth penalty on β (β Penalty).
4. Baseline model plus distance penalty, bandwidth penalty on β, and multicore

penalty on α (α,β Penalties).
5. Baseline model plus distance penalty, bandwidth penalty on β, and multicore

penalty on γ (β,γ Penalties).
6. Baseline model plus distance penalty, bandwidth penalty on β, and multicore

penalties on α and γ (α,β,γ Penalties).



Algebraic Multigrid on a Dragonfly Network 13

Fig. 5. Measured and modeled AMG cycle time by level on Eos using 1024 (left) and
8192 (right) cores, running all-MPI.

We did not allow the best fit to be a model with more penalties than the best fit
for a configuration with more MPI tasks per node. We enforced this constraint
because the penalties listed above deal specifically with issues resulting from
there being many messages in the network, so it would not make sense for there
to be a greater number of penalties when there are fewer MPI tasks per node.
All levels are plotted except for the coarsest level. It is not shown because it was
solved directly using Gaussian Elimination instead of smoothing.

In all cases, the best fit model was the baseline model plus only the distance
penalty. We chose this over the model which also had the bandwidth penalty
because the latter was overly pessimistic on 8192 cores in the all-MPI case but not
so for 1024 cores. Given that using 8192 cores on Eos involves using 69 % of the
machine while using 1024 cores on Eos involves using only 9 % of it, including
limited bandwidth from link contention would, if it were a big factor, more
accurately capture the performance when using more of the machine. Overall
cycle time prediction accuracies are in Table 3. They are almost all at least
85 %, and in some cases above 90 %.

From these results, it is clear that the Aries interconnect does a good job
avoiding contention, which is one of the goals of the dragonfly topology [18]. In
fact, it is better at doing so in terms of penalty scenarios than any other inter-
connect on which the performance model has been tested [12–14]. There is also
not much slowdown in cycle time when going from 1024 to 8192 cores. However,
even with these key positives, there is still a lot of room for improvement. In
spite of the lack of contention penalties, the baseline α-β model predicted much
better performance than what was actually observed. The γ term was actually
larger than the α term; the only other machines on which we observed this were
a pair of fat-tree machines on which performance on coarse grids and scalability
were very poor [12]. Hybrid MPI/OpenMP performance was also disappoint-
ing, highlighted by more rapid deterioration in the available memory bandwidth
per thread than was seen in other machines on which the hybrid model was
tested [11].



14 H. Gahvari et al.

Fig. 6. Measured and modeled AMG cycle time by level on Eos using 1024 (left column)
and 8192 (right column) cores, running hybrid MPI/OpenMP. The plot titles show the
total number of MPI tasks and the number of OpenMP threads per MPI task.



Algebraic Multigrid on a Dragonfly Network 15

Table 3. Measured and modeled AMG cycle times and cycle time prediction accuracies
on Eos, organized by on-node MPI × OpenMP mix.

Mix 1024 Cores 8192 Cores

Modeled Measured Accuracy Modeled Measured Accuracy

16 × 1 9.75 ms 11.3 ms 86.0 % 11.7 ms 13.0 ms 90.4 %

8 × 2 14.9 ms 16.3 ms 91.3 % 16.8 ms 18.1 ms 92.8 %

4 × 4 24.2 ms 27.6 ms 87.4 % 26.5 ms 29.7 ms 89.2 %

2 × 8 44.2 ms 51.8 ms 85.3 % 46.7 ms 53.9 ms 86.6 %

1 × 16 86.4 ms 104 ms 83.4 % 88.4 ms 104 ms 85.9 %

6 Model-Guided Performance Improvements

We have observed that, even with low network contention, there is still much
room for improvement in the performance of AMG on Eos. We will now turn to
a systematic means of improving the performance, driven by the performance
model, that will also enable us to gain further insight into the machine.

6.1 Approach

We build on earlier work [15] that used a performance model to drive data
redistribution in AMG. This work tested a method which reduced the number
of messages sent between processes on coarse grids by having certain groups
of processes combine their data and redundantly store it amongst themselves.
The method was driven by applying the performance model we described in
Sect. 4 during the setup phase before performing each coarsening step to make a
decision on whether to redistribute or not. Once redistribution was performed,
the remaining levels of the setup phase, and the corresponding level and all
coarser ones in the solve phase, were performed using the redistributed operators.
Processes would then only communicate with only a handful of other processes,
rather than potentially hundreds of them, resulting in speedups often exceeding
2x on an Opteron cluster on which performance and scalability problems had
been observed in the past. We use a similar approach with some differences; we
will explain as we describe our approach and make note of the differences as
they come up.

What we specifically need from the performance model are two quantities,
which we call T i

switch and T i
noswitch. The former represents the time spent at level

i in the AMG cycle if we perform redistribution, and the latter represents the
time spent at that level if we do not. We compute these at each level i > 0, and
perform redistribution on the first level for which T i

switch < T i
noswitch. We assume

the network parameters α, β, and γ are available to us, along with the partic-
ular combination of penalties that is the best match to the overall performance
on the machine. The other information we need is problem dependent. Much
of it, however, is already available to us. The needed communication and com-
putation counts for the solve operator can be obtained from the ParCSR data



16 H. Gahvari et al.

structure. The interpolation operator is not available; forming it would require
actually performing coarsening, and we want to decide on redistribution before
doing that, so we instead approximate both restriction and interpolation with
matrix-vector multiplication using the solve operator. This enables us to write
an expression for T i

noswitch in terms of the baseline model:

T i
noswitch = 10

Ci

P
siti + 5(piα + niβ)

We still need a value for ti, which we measure on all active processes like we
described in Sect. 5.1. However, instead of stopping after measuring t2, we stop
when the measured value for ti is greater than the measured value for ti−1. This
happens when processes are close to running out of data. Then their ti mea-
surements are measuring primarily loop overhead instead of computation. ti is
expected to decrease as i increases because the time per floating-point operation
has been observed to decrease with the trend of decreasing matrix dimension and
increasing matrix density [10] that is seen when progressing from fine to coarse
in AMG. Once we stop measuring, we set ti = ti−1 and tj = ti−1 for all levels
j > i. A question arises of what to do in the hybrid MPI/OpenMP case, which
was not covered in [15]. What we do here is use the same measurement scheme
we just described, which measures ti within MPI processes. The measured value
will implicitly take the further division of labor into account.

We now turn to computing T i
switch. An expression for this requires both an

expression for collective communication used to perform the data redistribution
itself and an expression for matrix-vector multiplication with the redistributed
solve operator. Reference [15] used an all-gather operation to distribute data
redundantly among processes that combined data. We instead use nonredundant
data redistribution, where groups of processes combine their data but only one
process stores the combined data. The reason for this is that the use of fully
redundant redistribution creates many new MPI communicators, and at scale
there would be enough to run into a memory-based or implementation-based
upper limit on the number of new communicators [5]. Performing nonredundant
redistribution in the solve cycle involves two gather operations to combine data
from the solution vector and the right-hand side, and one scatter operation when
it is time to transfer the result from the levels treated using the redistributed
operators to the finer grids that do not use them.

Assuming that C groups of processes combine their data over a binary tree,
we get a total of

⌈
log2

Pi

C

⌉
sends for each collective operation. The gather oper-

ations involve sends of approximately size Ci

2C , Ci

4C , Ci

8C , . . . to combine the data,

which we charge as the geometric sum Ci

C

(
1

1− 1
2

− 1
)

= Ci

C units of data sent.

The scatter operation is assumed to send approximately Ci

C

⌈
log2

Pi

C

⌉
units of

data per send. In terms of the baseline model, the time spent in collective oper-
ations is then

T i
collective = 3

⌈
log2

Pi

C

⌉
α +

Ci

C

(
2 +

⌈
log2

Pi

C

⌉)
β.



Algebraic Multigrid on a Dragonfly Network 17

The work in [15] sought to keep data movement on-node through a combination
of a cyclic mapping of MPI tasks to nodes and having groups of P

C adjacent MPI
ranks combine their data. The machine it considered, however, exhibited much
better on-node MPI performance than off-node MPI performance [4]. Running
on a newer machine, and lacking an on-node performance model, we do not
consider localizing data movement. We instead form an MPI communicator out
of the processes that still have data and form groups consisting of Pi

C adjacent
MPI ranks. If C does not evenly divide Pi, then the first Pi mod C groups have⌈
Pi

C

⌉
processes, and the rest have

⌊
Pi

C

⌋
processes.

We now derive an expression for the amount of time matrix-vector multiplica-
tion with the redistributed operator would take. We assume equal division of the
gathered data, and equal division of the amount of data sent per message among
the total number of sends in the nonredistributed operator. We also assume the
number of groups of processes that combine data is less than the largest number
of messages a process would send before redistribution, i.e., we are capping the
number of communication partners a process could have at C − 1 < pi, and we
assume this number of communication partners for each process. The cost for
matrix-vector multiplication using the redistributed operator then becomes, in
terms of the baseline model,

T i
new matvec = 2

Ci

C
siti + (C − 1)

(
α +

ni

pi
β

)
.

Treating the operations at level i in the AMG solve cycle as five matrix-
vector multiplications with the solve operator, as we did for the case with no
redistribution, gives us the expression

T i
switch = 5T i

new matvec + T i
collective

for the predicted time at level i when performing redistribution.
We note here that redistribution, by increasing the amount of data per

process, will likely result in a different value for ti that would ideally be used
when computing T i

new matvec. Measuring this value, however, could only be done
after redistribution is performed. To avoid incurring this expense, we instead,
as we search for the number of groups of processes C to form, restrict the lower
end of the search space so that the locally stored data in the redistributed oper-
ator on each process participating in redistribution does not increase too much
in size. Without this constraint, the minimum possible value for C is 1, which
corresponds to all of the involved processes combining their data onto just one
process. The size of the local data is determined to be one of three possibilities,
which were used in [10] to classify sparse matrix-vector multiplication problems:

– Small: the matrix and the source vector fit in cache
– Medium: the source vector fits in cache, but the matrix does not
– Large: the source vector does not fit in cache.

We specifically exclude values of C that result in the problem category being at
least halfway towards one of the larger ones. Crossing the boundaries from one



18 H. Gahvari et al.

size classification to another typically results in substantial changes in observed
performance, and degradation when moving into a larger problem category some-
times occurs well before the boundary is crossed [10]. For categorization, the
cache size is determined by dividing the size of the shared on-node cache by the
number of MPI processes per node, as our ti measurement occurs within MPI
processes. The value of C resulting in the lowest value for T i

noswitch is what is
used when making a decision on whether or not to redistribute. When searching
for this value, we searched over the powers of two less than pi to save time in
the setup phase; a more thorough search is an item for future work.

We employ one other safeguard against overeager redistribution. We do not
redistribute if doing so is expected to have a big impact on the overall cycle time.
To accomplish this, we keep track of a running sum of the time at each level in
the solve cycle as predicted by the model, summing up T i

noswitch for the current
level and all finer ones. If there is a projected gain from switching, but that gain
is projected to be less than 5 %, then we do not switch. This was not done in [15],
but the experiments in that work were performed on an older machine on which
coarse grid performance dominated overall runtime when no redistribution was
performed. On a newer machine, we want to be more careful, and would rather
miss a speedup than risk slowing the cycle down while chasing a small gain.

6.2 Redistribution Experiments

We tested model-guided data redistribution on Eos on two different problems,
a 3D 7-point Laplacian and a linear elasticity problem on a 3D cantilever beam
with an 8:1 aspect ratio. The 3D Laplacian was run with 30×30×30 points per
core on 512, 4096, and 8000 cores to match one of the test problems from [15]. The
linear elasticity problem, which was generated by the MFEM software library [1],
was run on 1024 and 8192 cores. Weak scaling in MFEM is accomplished by
additional refinement of the base mesh, which resulted in a problem with 6350
points per core on 1024 cores and 6246 points per core on 8192 cores. The
elasticity problem is governed by the equation

−div(σ(u)) = 0,

where
σ(u) = λdiv(u)I + μ(∇u + u∇).

The beam has two material components discretized using linear tetrahedral finite
elements. λ = μ = 50 on the first component, and λ = μ = 1 on the second.
u is a vector-valued function u(x, y, z) with a component in each of the three
dimensions. The boundary conditions are u = 0 on the boundary of the first
component, which is fixed to a wall, σ(u) · n = 0 elsewhere on the boundary
of the first component, and σ(u) · n = f on the boundary of the second compo-
nent. The force f is a vector pointing in the downward direction with magnitude
0.01. The beam is diagrammed in Fig. 7.

We ran 10 trials of solving each problem to a tolerance of 10−8 using conjugate
gradient preconditioned by AMG, recording both the setup and solve phase



Algebraic Multigrid on a Dragonfly Network 19

Fig. 7. 3D cantilever beam for the linear elasticity problem. The first component (left)
is attached to the wall. The downward force f is pulling on the second component
(right).

times. Like with the model validation experiments, we used the default block
mapping of MPI tasks to nodes. We had to switch compilers to the PGI compiler,
version 13.7-0, because the default Intel compiler failed to compile MFEM. When
making the switching decision, we used the best fit performance model from
Sect. 5.2, the baseline model plus the distance penalty term γ.

For the Laplace problem, we ran three different on-node mixes of MPI and
OpenMP: 16×1, 8×2, and 4×4. We ran the elasticity problem using exclusively
MPI, owing to difficulties compiling MFEM with OpenMP enabled, as hybrid
MPI/OpenMP support in MFEM is currently experimental [1]. We did not use
aggressive coarsening for the linear elasticity problem due to much poorer con-
vergence when using it, following the default behavior of the linear elasticity
solver in MFEM. Results for the Laplace problem are in Fig. 8, and results for
the elasticity problem are in Table 4.

Table 4. Results on Eos for the Linear Elasticity problem.

1024 Cores 8192 Cores

Setup Solve Total Setup Solve Total

No redistribution 0.78 s 1.06 s 1.84 s 6.72 s 2.64 s 9.36 s

With redistribution 0.75 s 0.82 s 1.58 s 2.99 s 1.55 s 4.54 s

Speedup 1.04 1.29 1.16 2.25 1.93 2.06

The Laplace results reveal some interesting behavior. In the case of the solve
phase, the best performance was using exclusively MPI, and there were mostly
modest gains from data redistribution. This is not surprising when considering
that the best fit from the performance modeling experiments was the model
with no penalties to the baseline beyond the introduction of the distance term,
a very favorable contention scenario. The setup phase, however, was a different
story. Here, performance improved with the introduction of OpenMP, and the
more MPI-rich configurations showed substantial speedups from redistribution



20 H. Gahvari et al.

Fig. 8. Results and corresponding speedups when using model-guided data redistrib-
ution for the 3D 7-point Laplace problem on Eos. The bars on the left in each graph
show timings when doing no redistribution, while the bars on the right show timings
when doing redistribution.

Fig. 9. Communication patterns on levels 4 (left) and 5 (right) for the 3D Laplace
problem from the performance model validation experiments, with the setup phase on
the left and the solve phase on the right.

at scale. This is a significant discrepancy in performance between the two phases;
we will comment further in the next section.

Moving onto the linear elasticity problem, we see a modest speedup for the
run on 1024 cores, but a large one for the run on 8192 cores. There was no
big discrepancy between setup and solve phase speedup either. We should note
that this problem had coarse grids with much larger stencils than the Laplace
problem, with the largest coarse grid stencil for the elasticity problem averaging
just under 500 nonzero entries per row compared to just under 100 for the
Laplace problem. This means more messages are being sent over the interconnect,
and we are seeing a big performance gain from reducing the number of messages
even with an interconnect that was not showing much in the way of contention
problems when we were validating the model. We will discuss this further in our
concluding remarks.



Algebraic Multigrid on a Dragonfly Network 21

7 Conclusions

To better understand the HPC potential of the dragonfly interconnect, we stud-
ied the performance of algebraic multigrid on a Cray XC30, developing a perfor-
mance model and using it to analyze the performance of the AMG solve cycle.
We made further use of the same performance model to guide data redistribution
to improve performance. Substantial improvements in the setup phase for a 3D
Laplace problem and in both phases for a linear elasticity problem showed that
even an interconnect that rated very strongly in terms of penalties added on top
of a basic α-β model does not automatically mean that there are no issues with
interprocessor communication that could be improved upon.

One trait of note that was mentioned before is that the γ term in the perfor-
mance model is larger than the α term, which was observed on two older fat-tree
machines that suffered from poor coarse grid performance that hurt overall scal-
ability. Though Eos features a much better interconnect, the presence of this
property is still noteworthy, and suggests that communication between different
router groups could suffer from substantial delays. That data redistribution has
its biggest effect on runs using the majority of the machine hints at this.

What really stood out were the difference between the solve and setup phase
speedups when using data redistribution for the 3D Laplace problem and the
large speedup when solving the linear elasticity problem on 8192 cores. We men-
tioned earlier that the linear elasticity problem features much larger stencil
sizes on coarse grids and thus dramatically increased interprocessor commu-
nication compared to the Laplace problem. The setup phase of AMG also fea-
tures increased communication, substantially more than the solve phase. Figure 9
shows the communication patterns on the two most communication-intensive lev-
els in the hierarchy from the 3D Laplace problem from the performance model
validation experiments, levels 4 and 5, run in an all-MPI programming model
on 128 cores on a multicore Opteron cluster that was analyzed in [12]. The plots
were obtained using the performance analysis tool TAU [21]. On both levels,
there was a lot more communication in the setup phase, with it being almost
all-to-all on level 5.

So while the XC30 interconnect rated favorably in terms of contention penal-
ties when we were testing our performance model, we saw that there were still
large benefits to reducing the number of messages sent when that number was
very large, whether it was through data redistribution, using a hybrid pro-
gramming model, or a combination of both. In contrast, these benefits were
found to be more modest for the same test problems on an IBM Blue Gene/Q,
where reported overall speedups from data redistribution peaked at 17 % for the
Laplace problem and 39 % for the linear elasticity problem, even though its inter-
connect did not rate as well in terms of the network contention penalties in our
performance model [11]. Future work will involve examining the communication
behavior and its effects on performance in more detail, including the construc-
tion of a performance model for the setup phase of AMG, to help pinpoint the
major bottlenecks and see if there is a threshold at which network contention
becomes a serious problem and if so, map it.



22 H. Gahvari et al.

What we have seen so far on the Cray XC30, though, hints that the dragonfly
topology will have problems with communication-heavy applications. Though
the topology allows for wide variety in the specifics of the individual groups of
routers that comprise the overall network, there is still the unifying feature of
the all-to-all connections between the groups. Experiments in which we tasked
the interconnect with handling a large number of messages led to performance
degradation, especially when using the majority of the machine, that was readily
improved when messages were traded for computation. These results point to a
risk of slowdowns when communicating between groups of routers that will need
to be addressed to make dragonfly interconnects effective at scale.

Acknowledgements. This work was supported in part by the Office of Advanced Sci-
entific Computing Research, Office of Science, U.S. Department of Energy awards DE-
SC0004131 and DE-FG02-13ER26138/DE-SC0010049, and performed in part under
the auspices of the U.S. Department of Energy by Lawrence Livermore National Labo-
ratory under contract DE-AC52-07NA27344 (LLNL-CONF-659475). It used resources
of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725. Neither Contractor, DOE, or the U.S. Govern-
ment, nor any person action on their behalf: (a) makes any warranty or representation,
express or implied, with respect to the information contained in this document; or
(b) assumes any liabilities with respect to the use of, or damages resulting from the
use of any information contained in this document.

References

1. MFEM: Finite Element Discretization Library. https://code.google.com/p/mfem
2. Alverson, B., Froese, E., Kaplan, L., Roweth, D.: Cray XC R© Series Network

(2012). http://www.cray.com/Assets/PDF/products/xc/CrayXC30Networking.
pdf

3. Baker, A.H., Gamblin, T., Schulz, M., Yang, U.M.: Challenges of scaling alge-
braic multigrid across modern multicore architectures. In: 25th IEEE Parallel
and Distributed Processing Symposium, Anchorage, AK, May 2011

4. Baker, A.H., Schulz, M., Yang, U.M.: On the performance of an algebraic multi-
grid solver on multicore clusters. In: Palma, J.M.L.M., Daydé, M., Marques,
O., Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 102–115. Springer,
Heidelberg (2011)

5. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Kumar, S., Lusk, E., Thakur, R.,
Träff, J.L.: MPI on a million processors. In: Ropo, M., Westerholm, J., Dongarra,
J. (eds.) EuroPVM/MPI. LNCS, vol. 5759, pp. 20–30. Springer, Heidelberg (2009)

6. De Sterck, H., Falgout, R.D., Nolting, J.W., Yang, U.M.: Distance-two interpo-
lation for parallel algebraic multigrid. Numer. Linear Algebra Appl. 15, 115–139
(2008)

7. De Sterck, H., Yang, U.M., Heys, J.J.: Reducing complexity in parallel algebraic
multigrid preconditioners. SIAM J. Matrix Anal. Appl. 27, 1019–1039 (2006)

8. Dongarra, J., Luszczek, P.: Introduction to the HPCChallenge Benchmark Suite.
Technical report ICL-UT-05-01, University of Tennessee, Knoxville, March 2005

https://code.google.com/p/mfem
http://www.cray.com/Assets/PDF/products/xc/CrayXC30Networking.pdf
http://www.cray.com/Assets/PDF/products/xc/CrayXC30Networking.pdf


Algebraic Multigrid on a Dragonfly Network 23

9. Falgout, R.D., Jones, J.E., Yang, U.M.: Pursuing scalability for hypre’s conceptual
interfaces. ACM Trans. Math. Softw. 31, 326–350 (2005)

10. Gahvari, H.: Benchmarking Sparse Matrix-Vector Multiply. Master’s thesis,
University of California, Berkeley, December 2006

11. Gahvari, H.: Improving the Performance and Scalability of Algebraic Multi-
grid Solvers through Applied Performance Modeling. Ph.D. thesis, University of
Illinois at Urbana-Champaign (2014)

12. Gahvari, H., Baker, A.H., Schulz, M., Yang, U.M., Jordan, K.E., Gropp, W.:
Modeling the performance of an algebraic multigrid cycle on HPC platforms. In:
25th ACM International Conference on Supercomputing, Tucson, AZ, June 2011

13. Gahvari, H., Gropp, W., Jordan, K.E., Schulz, M., Yang, U.M.: Modeling
the performance of an algebraic multigrid cycle on HPC platforms using
hybrid MPI/OpenMP. In: 41st International Conference on Parallel Processing,
Pittsburgh, PA, September 2012

14. Gahvari, H., Gropp, W., Jordan, K.E., Schulz, M., Yang, U.M.: Performance mod-
eling of algebraic multigrid on blue Gene/Q: lessons learned. In: 3rd In-ternational
Workshop on Performance Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems, Salt Lake City, UT, November 2012

15. Gahvari, H., Gropp, W., Jordan, K.E., Schulz, M., Yang, U.M.: Systematic reduc-
tion of data movement in algebraic multigrid solvers. In: 5th Workshop on Large-
Scale Parallel Processing, Cambridge, MA, May 2013

16. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and
preconditioner. Appl. Numer. Math. 41, 155–177 (2002)

17. hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre/
18. Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-scalable drag-

onfly topology. In: 35th International Symposium on Computer Architecture,
Beijing, China, June 2008

19. Marr, D.T., Binns, F., Hill, D.L., Hinton, G., Koufaty, D.A., Miller, J.A., Upton,
M.: Hyper-threading technology architecture and microarchitecture. Intel Tech-
nol. J. 6, 4–15 (2002)

20. McCalpin, J.D.: Sustainable Memory Bandwidth in Current High Performance
Computers. Technical report, Advanced Systems Division, Silicon Graphics Inc.
(1995)

21. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High
Perform. Comput. Appl. 20, 287–311 (2006)

22. Yang, U.M.: On long-range interpolation operators for aggressive coarsening.
Numer. Linear Algebra Appl. 17, 453–472 (2010)

http://www.llnl.gov/CASC/hypre/

	Algebraic Multigrid on a Dragonfly Network: First Experiences on a Cray XC30
	1 Introduction
	2 Dragonfly Networks
	2.1 Implementation on the Cray XC30
	2.2 Target System

	3 Algebraic Multigrid
	4 Performance Model
	4.1 Model Specifics
	4.2 Adaptation to Dragonfly Networks

	5 Model Validation
	5.1 Experimental Setup
	5.2 Results

	6 Model-Guided Performance Improvements
	6.1 Approach
	6.2 Redistribution Experiments

	7 Conclusions
	References


