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Preface

This volume contains the 14 papers that were presented at the Sth International
Workshop on Performance Modeling, Benchmarking, and Simulation of High Per-
formance Computing Systems (PMBS 2014), which was held as part of the 26th ACM/
IEEE International Conference for High Performance Computing, Networking, Stor-
age, and Analysis (SC 2014) at the Ernest N. Morial Convention Centre in New
Orleans during November 16-21, 2014.

The SC conference series is the premier international forum for high-performance
computing, networking, storage, and analysis. The conference is unique in that it hosts
a wide range of international participants from academia, national laboratories, and
industry; this year’s conference attracted over 10,000 attendees and featured over 350
exhibitors in the industry’s largest HPC technology fair.

This year’s conference was themed HPC Matters, recognizing the immense impact
that high-performance computing has on our lives. Specifically, SC 2014 was focused
not only on the very visible way in which HPC is changing the world around us, but
also on how HPC is improving every aspect of our lives in the most unexpected ways.

SC offers a vibrant technical program, which includes technical papers, tutorials in
advanced areas, Birds of a Feather sessions (BoFs), panel debates, a doctoral showcase,
and a number of technical workshops in specialist areas (of which PMBS is one).

The focus of the PMBS 2014 workshop was comparing high-performance com-
puting systems through performance modeling, benchmarking, or the use of tools such
as simulators. We were particularly interested in receiving research papers which
reported the ability to measure and make tradeoffs in hardware/software co-design to
improve sustained application performance. We were also keen to capture the
assessment of future systems, for example, through work that ensured continued
application scalability through peta- and exa-scale systems.

The aim of the PMBS 2014 workshop was to bring together researchers from industry,
national laboratories, and academia, who were concerned with the qualitative and quan-
titative evaluation and modeling of high-performance computing systems. Authors were
invited to submit novel research in all areas of performance modeling, benchmarking, and
simulation, and we welcomed research that combined novel theory and practice. We also
expressed an interest in submissions that included analysis of power consumption and
reliability, and were receptive to performance modeling research that made use of ana-
Iytical methods as well as those based on tracing tools and simulators.

Technical submissions were encouraged in areas including: performance modeling
and analysis of applications and high-performance computing systems; novel tech-
niques and tools for performance evaluation and prediction; advanced simulation
techniques and tools; micro-benchmarking, application benchmarking, and tracing;
performance-driven code optimization and scalability analysis; verification and
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validation of performance models; benchmarking and performance analysis of novel
hardware; performance concerns in software/hardware co-design; tuning and auto-
tuning of HPC applications and algorithms; benchmark suites and proxy apps; per-
formance visualization; real-world case studies; studies of novel hardware such as Intel
Xeon Phi coprocessor technology, NVIDIA Kepler GPUs, and AMD Fusion APU.

PMBS 2014

We received an excellent number of submissions for this year’s workshop. As a result
of this we were able to be very selective in those papers that were chosen; 14 full
papers were accepted from a total of 53 submissions (26%). The resulting papers show
worldwide programs of research committed to understanding application and archi-
tecture performance to enable peta-scale computational science.

Contributors to the workshop included Argonne National Laboratory, the Barcelona
Supercomputing Center, IBM, Inria, Jiilich Supercomputing Centre, Lawrence Berkeley
National Laboratory, Lawrence Livermore National Laboratory, NVIDIA, Sandia
National Laboratories, Technische Universitét Dresden, the University of Illinois, the
University of Oxford, and the University of Stuttgart, among many others.

Several of the papers are concerned with Performance Benchmarking and Opti-
mization, see Section A. The paper by Hormozd Gahvari et al. explores the use of a
Cray XC30 system using a Dragonfly interconnect topology for running an Algebraic
Multigrid solver application. Andrew V. Adinetz et al. present initial benchmarking
results for IBM’s new POWERS architecture. The paper by Guido Juckeland et al.
outlines a new SPEC benchmark suite specifically designed for accelerator architec-
tures. Everett Phillips and Massimiliano Fatica outline the development of a CUDA
implementation of the HPCG benchmark — a benchmark that is growing in popularity
due to LINPACK’s well-documented shortcomings. Gihan Mudalige et al. present the
porting of the CloverLeaf hydrodynamics application, from Sandia National Labora-
tories” Mantevo proxy app suite, to the OPS high-level abstraction framework being
developed at the University of Oxford.

Section B of the proceedings collates papers concerned with Performance Analysis
and Prediction. Waleed Alkohlani and colleagues utilize dynamic binary instrumen-
tation in order to identify characteristics that affect an applications performance. Yu
Jung Lo et al. build upon previous work with the Roofline model to develop a toolkit
for auto-generating Roofline models, including extending these models to accelerator
architectures. Rautl de la Cruz et al. document the development of a performance model
for Intel’s Xeon Phi coprocessor architecture with a particular focus on stencil com-
putations. A performance model for the HPCG benchmark is presented by Vladimir
Marjanovi¢ et al. showing a strong correlation between memory bandwidth and HPCG
performance. Elmar Peise et al. build performance models for tensor contraction cal-
culations. Their models allow the most efficient algorithm to be chosen ahead of
runtime using the results from a set of micro-benchmarks to inform algorithm choice.

The final section of the proceedings, Section C, is concerned with Power, Energy,
and Checkpointing. Anne Benoit et al. present a general-purpose model to handle both
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fail-stop and silent errors, utilizing this model to determine the optimal checkpoint
and verification period under a variety of different execution scenarios. The work by
Shane Snyder et al. explores the use of an infection-style group membership protocol
for managing faults in HPC storage systems. Prasanna Balaprakash et al. build upon
work presented at the previous PMBS workshop showing the tradeoffs that exist
between performance and energy consumption when using multilevel checkpointing
libraries. The final paper by Balaji Subramaniam and Wu-chun Feng deals with the
energy consumption for distributed NoSQL data stores under load. Specifically, they
analyze the use of three resource provisioning techniques, demonstrating a significant
power saving when both power and performance are considered as part of the provi-
sioning algorithm.
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Algebraic Multigrid on a Dragonfly Network:
First Experiences on a Cray XC30

Hormozd Gahvari'®), William Gropp?, Kirk E. Jordan®, Martin Schulz!,
and Ulrike Meier Yang?!

! Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
{gahvaril,schulzm,umyang}@llnl.gov
2 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
wgropp@illinois.edu
3 IBM TJ Watson Research Center, Cambridge, MA 02142, USA
kjordan@us.ibm.com

Abstract. The Cray XC30 represents the first appearance of the drag-
onfly interconnect topology in a product from a major HPC vendor. The
question of how well applications perform on such a machine naturally
arises. We consider the performance of an algebraic multigrid solver on
an XC30 and develop a performance model for its solve cycle. We use this
model to both analyze its performance and guide data redistribution at
runtime aimed at improving it by trading messages for increased compu-
tation. The performance modeling results demonstrate the ability of the
dragonfly interconnect to avoid network contention, but speedups when
using the redistribution scheme were enough to raise questions about the
ability of the dragonfly topology to handle very communication-intensive
applications.

1 Introduction

The network topology of an HPC system has a critical impact on the perfor-
mance of parallel applications. In recent years, vendors have experimented with a
wide range of topologies. A topology that has found wide interest is the dragonfly
topology [18]. Introduced several years ago, it has seen its first major deploy-
ment in the Cray XC30. As more XC30s and other machines that make use of
dragonfly interconnects are deployed, the question of application performance
on these machines becomes paramount. How suited is the dragonfly topology for
particular applications? What are its advantages and disadvantages? What are
its future prospects as machines get even larger?

This paper examines one application, algebraic multigrid (AMG), on an
X(C30, to see how well it performs on this topology and get a first look at poten-
tial hazards it and other applications would face on a dragonfly machine. AMG is
a popular solver for large, sparse linear systems of equations with many scientific
and engineering applications. It is very attractive for HPC owing to ideal com-
putational complexity, but faces challenges on emerging parallel machines [3,4]
that served as motivation for a recent in-depth study [11] into its performance

© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 3-23, 2015.
DOI: 10.1007/978-3-319-17248-4_1



4 H. Gahvari et al.

and ways to improve it. We present results from that study on modeling the
performance of the AMG solve cycle on an XC30 and using the performance
model to improve its performance on that architecture.

Our specific contributions are as follows:

— We successfully extend a performance model that previously covered fat-tree
and torus interconnects to a dragonfly interconnect.

— We use that model at runtime to guide data redistribution within the AMG
solve cycle to improve its performance on a dragonfly machine.

— We point out an important hazard faced by the dragonfly interconnect in a
real-world scenario.

The model predicts cycle times to accuracies mostly between 85 and 93 percent in
our experiments, and covers both all-MPI and hybrid MPI/OpenMP program-
ming models. The data redistribution involves having processes combine data,
trading messages they would send amongst themselves for increased computation.
Resulting speedups range from modest to over 2x overall, with the large speedups
occurring during the communication-heavy setup phase of AMG or when solving
a communication-intense linear elasticity problem. This occurs despite the model
rating the XC30 interconnect as being effective overall at avoiding network con-
tention, leading to questions about the ability of the dragonfly interconnect when
tasked with handling a large number of messages.

2 Dragonfly Networks

The general principle behind dragonfly interconnects is to keep the minimum
hop distance low like a fat-tree, while also providing high bandwidth between
nodes and low network contention at less cost [18]. This is accomplished through
a generalized two-level design. The core of the network is formed by a number
of groups of routers, with each group connected by optical cables to every other
group. The routers in each individual group have their own specific topology.
This is diagrammed in Fig. 1.

2.1 Implementation on the Cray XC30

The dragonfly implementation on the XC30 is called the Aries interconnect [2].
In the Aries interconnect, the routers in each group are arranged as rows and
columns of a rectangle, with all-to-all links across each row and column but not
diagonally. There are 16 routers in the horizontal dimension and 6 in the vertical
dimension, for a total of 96 routers per group. Four nodes are connected to each
router, bringing the number of nodes per group to 384. This is illustrated in
Fig. 2.

2.2 Target System

We ran our experiments on FEos, an XC30 at Oak Ridge National Laboratory.
Eos consists of 744 compute nodes with two eight-core 2.6 GHz Intel Xeon E5-
2670 processors per node. The hardware bandwidth between nodes is 16 GB/s.
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Fig. 1. Dragonfly network basics. Routers (boxes) are in groups (circled), with each
group connected to every other group. The routers within groups can be connected in
many different ways; no particular topology is shown here.

Fig. 2. Group topology in the Aries network, with 16 routers in the horizontal dimen-
sion and 6 in the vertical dimension. Each router is connected to every other router
in its row and column, which is shown for the router in the lower left-hand corner.
Four nodes are connected to each router, which is shown for one of the routers in the
rightmost column.

All experiments save for those in Sect. 6.2 use the Intel compiler, version 13.1.3.
The MPI implementation is Cray’s native MPI. Eos also features simultaneous
multithreading (SMT) in the form of Intel Hyper-Threading [19]. This allows for
users to run their jobs on up to two times the number of physical cores. However,
we do not consider it here, as we have yet to have developed a performance model
for this form of SMT.
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3 Algebraic Multigrid

The application we focus on in our study is algebraic multigrid (AMG). It is one
of the multigrid solvers, which are best known for having a computational cost
linear in the number of unknowns being solved. This is very attractive for HPC,
where the goal is to solve large problems, and it is therefore of great interest
to study the performance of multigrid methods on HPC platforms. Multigrid
methods operate by performing some of the work on smaller “coarse grid” prob-
lems instead of concentrating it all on the original “fine grid” problem. On each
grid, a smoother, typically a simple iterative method like Jacobi or Gauss-Seidel,
is applied. Afterwards, a correction is typically solved for on the next coarsest
grid, which except for the very coarsest grid involves solving another coarse grid
problem. This correction is then applied to accelerate the solution process. The
coarsest grid is often solved directly. This particular order of progression through
grids, from finest to coarsest and back to finest, is called a V-cycle, which is the
most basic multigrid cycle and the one we consider here.

AMG is a means of leveraging multigrid, which was originally developed
to solve problems on structured grids, to solve problems with no explicit grid
structure, where all that is known is a sparse linear system A4 = £(0) This
requires AMG to consist of two phases, setup and solve, which are illustrated
in Fig. 3. The setup phase involves selecting the variables that will remain on
each coarser grid and defining the restriction (R(™)) and interpolation (P(™))
operators that control the transfer of data between levels. There are a number
of algorithms for doing this, and they can be quite complicated. For our experi-
ments, we use the AMG code BoomerAMG [16] in the hypre software library [17]
We use HMIS coarsening [7] with extended+i interpolation [6] truncated to at
most 4 coefficients per row and aggressive coarsening with multipass interpo-
lation [22] on the finest level. Each coarse grid operator A(™*1) is formed by
computing the triple matrix product R(™ A(™) P(™)  This operation, particu-
larly for unstructured problems, leads to increasing matrix density on coarse
grids, which in turn results in an increasing number of messages being sent
among an increasing number of communication partners. These have resulted
in substantial challenges to performance and scalability on some machines [3,4],
even when using advanced coarsening and interpolation schemes like the ones
we use in our experiments, and serve as added motivation for studying AMG on
the XC30.

In the solve phase, the primary operations are the smoothing operator and
matrix-vector multiplication to form r™ and perform restriction and interpola-
tion. In our experiments, we use hybrid Gauss-Seidel as the smoother. Hybrid
Gauss-Seidel uses the sequential Gauss-Seidel algorithm to compute local data
within process boundaries, but uses Jacobi smoothing across process boundaries
to preserve parallelism. Applying this smoother is a very similar operation to
matrix-vector multiplication.

Sparse matrices in BoomerAMG are stored in the ParCSR data structure.
A matrix A is partitioned by rows into matrices Ax, k = 0,1,..., P — 1, where
P is the number of MPI processes. Each matrix Ay is stored locally as a pair
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Setup Phase

* Select coarse “grids”
Define interpolation, P™ , m=1,2,...
Define restriction, R™ = (P(M)T
¢ Define coarse-grid operators, A(™*1) = Rm A(m p(m)

Solve Phase (level m)

Smooth A™ ym = fm Smooth AM ym = fm
Compute r™ = fm - Am) ym Correct u™ « um + e™
Restrict rm*1 = R(m) rm Interpolate e™ = P(m) gm+1

Oummmm Solve A(m*1) gm+1 = pm+t »(/

Fig. 3. Setup and solve phase of AMG.

of CSR (compressed sparse row) matrices Dy and Oy. Dy contains all entries of
Ay, with column indices that point to rows stored locally on process k, and Oy,
contains the remaining entries. Matrix-vector multiplication Az or smoothing
requires computing Apxz = Dpa? + Orz® on each process, where 2P is the
portion of x stored locally and 29 is the portion that needs to be sent from
other processes. More detail can be found in [9].

The ability to use a shared memory programming model is provided in
BoomerAMG in the form of OpenMP parallelization within MPI processes. This
is done using parallel for constructs at the loop level, which spawn a num-
ber of threads that can each execute a portion of the loop being parallelized.
Static scheduling is used, which means the work is divided equally among the
threads before the loop starts. The loops parallelized in this fashion are the ones
that perform smoother application, matrix-vector multiplication, and the triple
matrix product.

4 Performance Model

In previous work [12-14], we developed an accurate performance model for AMG
and validated it on a wide range of platforms and network topologies, includ-
ing Linux clusters, prior Cray machines, and IBM Blue Gene systems. We now
expand the model to the dragonfly interconnect and contrast the results.

4.1 Model Specifics

Our model is based on the simple a-3 model for interprocessor communication.
The time to send a message consisting of n double precision floating-point values
is given by

Tsena = o + ’I’Lﬁ )

where « is the communication startup time, and 3 is the per value send cost. We
model computation time by multiplying the number of floating-point operations
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by a computation rate t;. We allow this to vary with each level i in the multigrid
hierarchy because the operations in an AMG cycle are either sparse matrix-
vector multiplication or a smoother application, which is a similar operation. An
in-depth study [10] found that the computation time for sparse matrix-vector
multiplication varies with the size and density of the matrix, and the operators
in an AMG hierarchy have varying sizes and densities. We do not consider the
overlap of communication and computation, as there is very little room for this
on the communication-intensive coarse grid problems on which our concerns our
focused.

We treat the AMG cycle level-by-level. If there are L levels, numbered 0 to
L — 1, the total cycle time is given by

L-1
AMG __ § : %
Tcycle - cycle’
=0

where Tciycle is the amount of time spent at level ¢ of the cycle. This is in turn

broken down into component steps, diagrammed in Fig. 4, which we write as

7 _ T T
cycle — Tsmooth + Trestrict + Tinterp'

Smoothing and residual formation, which are combined into T _ ... are treated
as matrix-vector multiplication with the solve operator. Interpolation is treated
as matrix-vector multiplication with the interpolation operator. Restriction is
treated as matrix-vector multiplication with the restriction operator, which for

the purposes of our experiments is the transpose of the interpolation operator.

prolong to
% ’ level i-1
smooth,
. smooth
form residual X p)

restrict to
level i+1

Fig. 4. Fundamental operations at each level of an AMG V-cycle.

To enable us to write expressions for each component operation, we define
the following terms to cover different components of the operators that form the
multigrid hierarchy:

— P — total number of processes.
— (C; — number of unknowns on grid level 3.
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— 8i,8; — average number of nonzero entries per row in the level i solve and
interpolation operators, respectively.

— p;, P; — maximum number of sends over all processes in the level i solve and
interpolation operators, respectively.

— n;,n; — maximum number of elements sent over all processes in the level 4
solve and interpolation operators, respectively.

We assume one smoothing step before restriction and one smoothing step after
interpolation, which is the default in BoomerAMG. The time spent smoothing
on level ¢ is given by

Tsimooth = G#Sztz + 3(?101 + nzﬂ)

The time spent restricting from level ¢ to level 7 + 1 is given by

i [298st + o+ aBif i < L—1
restrict 0 fim L1

The time spent interpolating from level i to level i — 1 is given by

{0 iti=0
interp 20;1 $;_1t; +ﬁi_1a + ﬁi—lﬂ if ¢ > 0.

To this baseline, we add terms and penalties to cover phenomena seen in
practice that the a-8 model alone does not cover. One such phenomenon is
communication distance. While it is assumed that the hop count has a very small
effect on communication time, we cannot assume this on coarse grid problems in
AMG where many messages are being sent at once. The further a message has to
travel, the more likely it is to run into delays from conflicts with other messages.
To take this into account, we introduce a communication distance term ~ that
represents the delay per hop, changing the model by replacing o with

a(h) = a(hm) + (h = hy)y,

where h is the number of hops a message travels, and h,, is the smallest possible
number of hops a message can travel in the network.

Another issue is limited bandwidth, of which we consider two sources. One
is the inability to make full use of the hardware. The peak hardware bandwidth
is rarely achieved even under ideal conditions, let alone the non-ideal conditions
under which applications usually run. The other source of limited bandwidth is
network contention from messages sharing links. Let By,.x be the peak aggregate
per-node hardware bandwidth, and B be the measured bandwidth corresponding
to B. Let m be the total number of messages being sent, and [ be the number of
network links available. Then we multiply 8 by the sum % + 1 to take both of
these factors into account. The limited hardware bandwidth penalty functions
as a baseline, with link contention becoming the dominant factor when it is
significant (it might not be significant in certain problems on which the fine
grids do not feature much communication).
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Multicore nodes are another potential source of difficulties. If the interconnect
is not suited to handle message passing traffic from many cores at once, then
there can be contention in accessing the interconnect and contention at each
hop when routing messages. To capture these effects, we multiply either or both
of the terms a(h,,) and ~ described earlier by (t%w, where t is the number of
MPI tasks per node, and P; is the number of active processes on level i. Active
processes mean ones that still have unknowns in their domains on coarse grids
and thus have not “dropped out.”

We treat hybrid MPI/OpenMP as follows. The message counts for MPI com-
munication are assumed to change with the number of processes. What we modify
explicitly is the computation term ¢;. Let b; be the available memory bandwidth
per thread for j threads. We then multiply ¢; by 1% We do this to take into
account limited memory bandwidth from threads contending to access memory
shared by multiple cores. We expect a slowdown here versus the all-MPI case
because there is no longer a definite partitioning of memory when using threads.
Our original hybrid/OpenMP model also had a penalty to cover slowdowns from
threads being migrated across cores that reside on different sockets [13]; we do
not consider this here as it can be readily mitigated by pinning threads to specific
cores.

4.2 Adaptation to Dragonfly Networks

The model as presented above is straightforward to adapt to dragonfly networks.
It boils down to how to best determine the needed machine parameters. Most
of them are readily determined from benchmark measurements, as was the case
with other machines. o and 8 were measured using the latency-bandwidth bench-
mark in the HPC Challenge suite [8]. @ was set to the best reported latency,
and 3 was set to the value corresponding to the best reported bandwidth, which
for a reported bandwidth of B bytes per second is % for sending double preci-
sion floating point data. The t; terms were measured by performing serial sparse
matrix-vector multiplications using the operators for the test problem we used
when validating the model; this is further described in Sect.5.1. The values for
b; needed to evaluate the penalty for hybrid MPI/OpenMP were taken by using
the STREAM Triad benchmark [20] and dividing by the number of threads
being used.

We determined v from the measured values of o and 3. Starting with the
formulation of « as a function of the number of hops h

a(h) = alhm) +7(h = hm),

we set a(hyy,) to be the measured value of a.. If D is the diameter of the network,
the maximum latency possible is

a(D) = allm) +7(D = h):
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We use the maximum latency reported by the same benchmark we used to
measure « as a value for «(D). Then

a(D) — alhm)
5 :

_ -«
Y= “h,
For dragonfly interconnects, we set h,, to 2 (reflecting the case where two nodes
connected to the same router are communicating). We charge the distance D
to each message sent, analogous to the role the height of the tree played for
fat-tree interconnects in [12,13]. Though pessimistic, this distance is charged to
reflect the potential impact of routing delays. When counting the number of links
available to a message for determining the link contention portion of the limited
bandwidth penalty, we use the midpoint of the fewest possible (all the nodes in
one group are filled before moving onto the next one) and most possible (each
node is in a new group until all groups are in use), as there is no simple geometric
formula like there is with a mesh or torus network.

To make the numbers specific to the Aries interconnect, we set D equal to 7;
the maximum shortest path between two nodes involves traversing one link to
get to the routers in that node’s group, two links to find an available connection
to reach the next group (not all routers in the Aries interconnect are connected
to the optical network), one link to reach that group, two more links to traverse
the routers, and then one last link to reach the target node. When counting links
for the limited bandwidth penalty, we treat the optical links between groups as
four links because they have four times the bandwidth. If there are N nodes
in use, and G groups in the network, then the minimum possible number of
available links is

N ) N | GG-1)
N 4170 [384—‘ —|—4m1n{ \‘384J ,2},

and the maximum possible number of available links is

N 4 170 min{ N, G} +4min{N 1G(G21)}

In both expressions, the first term accounts for the number of links connecting
nodes to routers. The second accounts for the number of router-to-router links
in groups, which number 16 -5+ 6 - 15 = 170 per group. The third accounts for
the number of optical links.

5 Model Validation

5.1 Experimental Setup

For each of our experiments on Fos, the Cray XC30 we are evaluating, we ran 10
AMG solve cycles and measured the amount of time spent in each level, dividing
by 10 to get average times spent at each level. For our test problem, we used a
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3D 7-point Laplace problem on a cube with 50 x 50 x 25 points per core, as was
done in past experiments used to validate this model on other machines [12-14].
The mapping of MPI tasks to nodes was the default block mapping, in which
each node is filled with MPI tasks before moving onto the next one. We report
results on 1024 and 8192 cores.

Machine parameters for Eos are given in Table 1. How we obtained the values
for a, B, and v was described in Sect. 4.2. We measured ¢; by measuring the time
for 10 sparse matrix-vector multiplies using the local portion of the solve operator
A; on each level in the MPI-only case and dividing the largest time over all the
processes by the number of floating point operations. For ¢ > 3, we used the value
measured for t5. Per-thread memory bandwidths for the hybrid MPI/OpenMP
penalty are in Table 2.

Table 1. Measured machine parameters on Eos.

Parameter | o I5] vy to t1 to
Value 0.238 ps|0.858 ns|0.416 ws|1.59 ns|0.806 ns|0.545 ns

Table 2. Per thread memory bandwidths on Eos.

No. Threads 1 2 4 8 16
Bandwidth (MB/s) | 11106 | 5335.5 | 2755.0 | 1374.8 | 678.56

5.2 Results

To help us understand the XC30 interconnect, we compared the measured AMG
cycle time at each level with what the performance model would predict, with
the different penalties turned on and off. Results are plotted in Fig.5 for the
all-MPT case and in Fig. 6 for the hybrid MPI/OpenMP case. In each plot, the
measured cycle time at each level is shown as a solid black line. Six different
model scenarios are also shown as colored lines with markers, with the best fit
solid and the others dotted:

Baseline model (a-8 Model).

Baseline model plus distance penalty («a-3-v Model).

Baseline model plus distance penalty and bandwidth penalty on 3 (5 Penalty).

Baseline model plus distance penalty, bandwidth penalty on £, and multicore

penalty on « («,(3 Penalties).

5. Baseline model plus distance penalty, bandwidth penalty on £, and multicore
penalty on v (8,7 Penalties).

6. Baseline model plus distance penalty, bandwidth penalty on §, and multicore

penalties on a and v («,83,y Penalties).

Ll
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Cycle Time by Level on Eos, 1024 Processes Cycle Time by Level on Eos, 8192 Processes

Time (s)
Time (s)

10 10
0—B Model o,p Penalties o—B Model o,f Penalties
-%- -y Model -3-B,y Penalties -% - 0—B—y Model -3-B,y Penalties
B -&-p Penalty o,f,y Penalties s -&-p Penalty «,B,y Penalties
1 1
0 0 1 2 3 4 5 6 7 0 0 2 4 6 8
Level Level

Fig. 5. Measured and modeled AMG cycle time by level on Eos using 1024 (left) and
8192 (right) cores, running all-MPL

We did not allow the best fit to be a model with more penalties than the best fit
for a configuration with more MPI tasks per node. We enforced this constraint
because the penalties listed above deal specifically with issues resulting from
there being many messages in the network, so it would not make sense for there
to be a greater number of penalties when there are fewer MPI tasks per node.
All levels are plotted except for the coarsest level. It is not shown because it was
solved directly using Gaussian Elimination instead of smoothing.

In all cases, the best fit model was the baseline model plus only the distance
penalty. We chose this over the model which also had the bandwidth penalty
because the latter was overly pessimistic on 8192 cores in the all-MPI case but not
so for 1024 cores. Given that using 8192 cores on Eos involves using 69 % of the
machine while using 1024 cores on Eos involves using only 9% of it, including
limited bandwidth from link contention would, if it were a big factor, more
accurately capture the performance when using more of the machine. Overall
cycle time prediction accuracies are in Table3. They are almost all at least
85 %, and in some cases above 90 %.

From these results, it is clear that the Aries interconnect does a good job
avoiding contention, which is one of the goals of the dragonfly topology [18]. In
fact, it is better at doing so in terms of penalty scenarios than any other inter-
connect on which the performance model has been tested [12-14]. There is also
not much slowdown in cycle time when going from 1024 to 8192 cores. However,
even with these key positives, there is still a lot of room for improvement. In
spite of the lack of contention penalties, the baseline a-3 model predicted much
better performance than what was actually observed. The v term was actually
larger than the o term; the only other machines on which we observed this were
a pair of fat-tree machines on which performance on coarse grids and scalability
were very poor [12]. Hybrid MPI/OpenMP performance was also disappoint-
ing, highlighted by more rapid deterioration in the available memory bandwidth
per thread than was seen in other machines on which the hybrid model was
tested [11].
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Fig. 6. Measured and modeled AMG cycle time by level on Eos using 1024 (left column)
and 8192 (right column) cores, running hybrid MPI/OpenMP. The plot titles show the
total number of MPI tasks and the number of OpenMP threads per MPI task.
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Table 3. Measured and modeled AMG cycle times and cycle time prediction accuracies
on Eos, organized by on-node MPI x OpenMP mix.

Mix | 1024 Cores 8192 Cores

Modeled | Measured | Accuracy | Modeled | Measured | Accuracy
16 x1| 9.75ms| 11.3ms |86.0% 11.7ms 13.0ms [90.4%
8x2 |14.9ms 16.3ms |91.3% 16.8 ms 18.1ms |92.8%
4x4 |242ms | 27.6ms |87.4% 26.5ms | 29.7ms |89.2%
2x8 [442ms | 51.8ms |85.3% 46.7ms | 53.9ms |86.6%
1x1686.4ms |104ms 83.4% 88.4ms | 104 ms 85.9%

6 Model-Guided Performance Improvements

We have observed that, even with low network contention, there is still much
room for improvement in the performance of AMG on Eos. We will now turn to
a systematic means of improving the performance, driven by the performance
model, that will also enable us to gain further insight into the machine.

6.1 Approach

We build on earlier work [15] that used a performance model to drive data
redistribution in AMG. This work tested a method which reduced the number
of messages sent between processes on coarse grids by having certain groups
of processes combine their data and redundantly store it amongst themselves.
The method was driven by applying the performance model we described in
Sect. 4 during the setup phase before performing each coarsening step to make a
decision on whether to redistribute or not. Once redistribution was performed,
the remaining levels of the setup phase, and the corresponding level and all
coarser ones in the solve phase, were performed using the redistributed operators.
Processes would then only communicate with only a handful of other processes,
rather than potentially hundreds of them, resulting in speedups often exceeding
2x on an Opteron cluster on which performance and scalability problems had
been observed in the past. We use a similar approach with some differences; we
will explain as we describe our approach and make note of the differences as
they come up.

What we specifically need from the performance model are two quantities,
which we call T¢, ;. j, and T .. .. The former represents the time spent at level
7 in the AMG cycle if we perform redistribution, and the latter represents the
time spent at that level if we do not. We compute these at each level ¢ > 0, and
perform redistribution on the first level for which 77, ;, < 1% witen- We assume
the network parameters «, 3, and ~ are available to us, along with the partic-
ular combination of penalties that is the best match to the overall performance
on the machine. The other information we need is problem dependent. Much
of it, however, is already available to us. The needed communication and com-
putation counts for the solve operator can be obtained from the ParCSR data
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structure. The interpolation operator is not available; forming it would require
actually performing coarsening, and we want to decide on redistribution before
doing that, so we instead approximate both restriction and interpolation with
matrix-vector multiplication using the solve operator. This enables us to write

. ’L . . .
an expression for T7 _ .. . in terms of the baseline model:

Téoswitch = 10F151tz + 5(pla + nlﬁ)

We still need a value for t;, which we measure on all active processes like we

described in Sect. 5.1. However, instead of stopping after measuring s, we stop
when the measured value for ¢; is greater than the measured value for ¢;_;. This
happens when processes are close to running out of data. Then their ¢; mea-
surements are measuring primarily loop overhead instead of computation. ¢; is
expected to decrease as i increases because the time per floating-point operation
has been observed to decrease with the trend of decreasing matrix dimension and
increasing matrix density [10] that is seen when progressing from fine to coarse
in AMG. Once we stop measuring, we set t; = ¢;_; and t; = ¢;—1 for all levels
J > 4. A question arises of what to do in the hybrid MPI/OpenMP case, which
was not covered in [15]. What we do here is use the same measurement scheme
we just described, which measures ¢; within MPI processes. The measured value
will implicitly take the further division of labor into account.
We now turn to computing 77, .- An expression for this requires both an
expression for collective communication used to perform the data redistribution
itself and an expression for matrix-vector multiplication with the redistributed
solve operator. Reference [15] used an all-gather operation to distribute data
redundantly among processes that combined data. We instead use nonredundant
data redistribution, where groups of processes combine their data but only one
process stores the combined data. The reason for this is that the use of fully
redundant redistribution creates many new MPI communicators, and at scale
there would be enough to run into a memory-based or implementation-based
upper limit on the number of new communicators [5]. Performing nonredundant
redistribution in the solve cycle involves two gather operations to combine data
from the solution vector and the right-hand side, and one scatter operation when
it is time to transfer the result from the levels treated using the redistributed
operators to the finer grids that do not use them.

Assuming that C' groups of processes combine their data over a binary tree,
we get a total of ﬂog2 %w sends for each collective operation. The gather oper-
ations involve sends of approximately size QCC, 400", 806",, ... to combine the data,

which we charge as the geometric sum % 1_11 -1) = % units of data sent.
2

The scatter operation is assumed to send approximately % ﬂog2 %1 units of
data per send. In terms of the baseline model, the time spent in collective oper-
ations is then

Tclollective =3 ’710g2 C—‘ a+ 6 (2 + ’710g2 C—‘> 8.
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The work in [15] sought to keep data movement on-node through a combination
of a cyclic mapping of MPI tasks to nodes and having groups of g adjacent MPI
ranks combine their data. The machine it considered, however, exhibited much
better on-node MPI performance than off-node MPI performance [4]. Running
on a newer machine, and lacking an on-node performance model, we do not
consider localizing data movement. We instead form an MPI communicator out
of the processes that still have data and form groups consisting of % adjacent
MPI ranks. If C' does not evenly divide P;, then the first P, mod C groups have
(%W processes, and the rest have L%J processes.

We now derive an expression for the amount of time matrix-vector multiplica-
tion with the redistributed operator would take. We assume equal division of the
gathered data, and equal division of the amount of data sent per message among
the total number of sends in the nonredistributed operator. We also assume the
number of groups of processes that combine data is less than the largest number
of messages a process would send before redistribution, i.e., we are capping the
number of communication partners a process could have at C' — 1 < p;, and we
assume this number of communication partners for each process. The cost for
matrix-vector multiplication using the redistributed operator then becomes, in
terms of the baseline model,

Téew,matvec = 2%Sltl + (C - 1) (a + nlﬁ) .
pi

Treating the operations at level 7 in the AMG solve cycle as five matrix-
vector multiplications with the solve operator, as we did for the case with no
redistribution, gives us the expression

Tslwitch = 5Trllew,matvec + Tclollective
for the predicted time at level ¢ when performing redistribution.

We note here that redistribution, by increasing the amount of data per
process, will likely result in a different value for ¢; that would ideally be used
when computing 7%, . Measuring this value, however, could only be done
after redistribution is performed. To avoid incurring this expense, we instead,
as we search for the number of groups of processes C to form, restrict the lower
end of the search space so that the locally stored data in the redistributed oper-
ator on each process participating in redistribution does not increase too much
in size. Without this constraint, the minimum possible value for C' is 1, which
corresponds to all of the involved processes combining their data onto just one
process. The size of the local data is determined to be one of three possibilities,

which were used in [10] to classify sparse matrix-vector multiplication problems:

— Small: the matrix and the source vector fit in cache
— Medium: the source vector fits in cache, but the matrix does not
— Large: the source vector does not fit in cache.

We specifically exclude values of C' that result in the problem category being at
least halfway towards one of the larger ones. Crossing the boundaries from one
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size classification to another typically results in substantial changes in observed
performance, and degradation when moving into a larger problem category some-
times occurs well before the boundary is crossed [10]. For categorization, the
cache size is determined by dividing the size of the shared on-node cache by the
number of MPI processes per node, as our t; measurement occurs within MPI
processes. The value of C resulting in the lowest value for 77 _ .., is what is
used when making a decision on whether or not to redistribute. When searching
for this value, we searched over the powers of two less than p; to save time in
the setup phase; a more thorough search is an item for future work.

We employ one other safeguard against overeager redistribution. We do not
redistribute if doing so is expected to have a big impact on the overall cycle time.
To accomplish this, we keep track of a running sum of the time at each level in
the solve cycle as predicted by the model, summing up 77 . i, for the current
level and all finer ones. If there is a projected gain from switching, but that gain
is projected to be less than 5 %, then we do not switch. This was not done in [15],
but the experiments in that work were performed on an older machine on which
coarse grid performance dominated overall runtime when no redistribution was
performed. On a newer machine, we want to be more careful, and would rather
miss a speedup than risk slowing the cycle down while chasing a small gain.

6.2 Redistribution Experiments

We tested model-guided data redistribution on Eos on two different problems,
a 3D T7-point Laplacian and a linear elasticity problem on a 3D cantilever beam
with an 8:1 aspect ratio. The 3D Laplacian was run with 30 x 30 x 30 points per
core on 512, 4096, and 8000 cores to match one of the test problems from [15]. The
linear elasticity problem, which was generated by the MFEM software library [1],
was run on 1024 and 8192 cores. Weak scaling in MFEM is accomplished by
additional refinement of the base mesh, which resulted in a problem with 6350
points per core on 1024 cores and 6246 points per core on 8192 cores. The
elasticity problem is governed by the equation

—div(o(u)) =0,

where
o(u) = Adiv(u)I + p(Vu + uV).

The beam has two material components discretized using linear tetrahedral finite
elements. A = p = 50 on the first component, and A = g = 1 on the second.
u is a vector-valued function u(z,y, z) with a component in each of the three
dimensions. The boundary conditions are u = 0 on the boundary of the first
component, which is fixed to a wall, o(u) - n = 0 elsewhere on the boundary
of the first component, and o(u) - n = f on the boundary of the second compo-
nent. The force f is a vector pointing in the downward direction with magnitude
0.01. The beam is diagrammed in Fig. 7.

We ran 10 trials of solving each problem to a tolerance of 108 using conjugate
gradient preconditioned by AMG, recording both the setup and solve phase
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o(u)en=0 o(u)en= lf

Fig. 7. 3D cantilever beam for the linear elasticity problem. The first component (left)
is attached to the wall. The downward force f is pulling on the second component
(right).

times. Like with the model validation experiments, we used the default block
mapping of MPI tasks to nodes. We had to switch compilers to the PGI compiler,
version 13.7-0, because the default Intel compiler failed to compile MFEM. When
making the switching decision, we used the best fit performance model from
Sect. 5.2, the baseline model plus the distance penalty term ~.

For the Laplace problem, we ran three different on-node mixes of MPI and
OpenMP: 16 x 1, 8 x 2, and 4 x 4. We ran the elasticity problem using exclusively
MPI, owing to difficulties compiling MFEM with OpenMP enabled, as hybrid
MPI/OpenMP support in MFEM is currently experimental [1]. We did not use
aggressive coarsening for the linear elasticity problem due to much poorer con-
vergence when using it, following the default behavior of the linear elasticity
solver in MFEM. Results for the Laplace problem are in Fig. 8, and results for
the elasticity problem are in Table4.

Table 4. Results on Eos for the Linear Elasticity problem.

1024 Cores 8192 Cores

Setup | Solve | Total | Setup | Solve | Total
No redistribution 0.78s1.06s1.84s|6.72s|2.645|9.36s
With redistribution | 0.75 s | 0.82 s|1.58 s|2.99 s| 1.55 s|4.54 s
Speedup 1.04 |1.29 |1.16 |2.25 |1.93 |2.06

The Laplace results reveal some interesting behavior. In the case of the solve
phase, the best performance was using exclusively MPI, and there were mostly
modest gains from data redistribution. This is not surprising when considering
that the best fit from the performance modeling experiments was the model
with no penalties to the baseline beyond the introduction of the distance term,
a very favorable contention scenario. The setup phase, however, was a different
story. Here, performance improved with the introduction of OpenMP, and the
more MPI-rich configurations showed substantial speedups from redistribution
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Fig. 8. Results and corresponding speedups when using model-guided data redistrib-
ution for the 3D 7-point Laplace problem on Eos. The bars on the left in each graph
show timings when doing no redistribution, while the bars on the right show timings
when doing redistribution.

Fig. 9. Communication patterns on levels 4 (left) and 5 (right) for the 3D Laplace
problem from the performance model validation experiments, with the setup phase on
the left and the solve phase on the right.

at scale. This is a significant discrepancy in performance between the two phases;
we will comment further in the next section.

Moving onto the linear elasticity problem, we see a modest speedup for the
run on 1024 cores, but a large one for the run on 8192 cores. There was no
big discrepancy between setup and solve phase speedup either. We should note
that this problem had coarse grids with much larger stencils than the Laplace
problem, with the largest coarse grid stencil for the elasticity problem averaging
just under 500 nonzero entries per row compared to just under 100 for the
Laplace problem. This means more messages are being sent over the interconnect,
and we are seeing a big performance gain from reducing the number of messages
even with an interconnect that was not showing much in the way of contention
problems when we were validating the model. We will discuss this further in our
concluding remarks.
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7 Conclusions

To better understand the HPC potential of the dragonfly interconnect, we stud-
ied the performance of algebraic multigrid on a Cray XC30, developing a perfor-
mance model and using it to analyze the performance of the AMG solve cycle.
We made further use of the same performance model to guide data redistribution
to improve performance. Substantial improvements in the setup phase for a 3D
Laplace problem and in both phases for a linear elasticity problem showed that
even an interconnect that rated very strongly in terms of penalties added on top
of a basic a-3 model does not automatically mean that there are no issues with
interprocessor communication that could be improved upon.

One trait of note that was mentioned before is that the v term in the perfor-
mance model is larger than the a term, which was observed on two older fat-tree
machines that suffered from poor coarse grid performance that hurt overall scal-
ability. Though Eos features a much better interconnect, the presence of this
property is still noteworthy, and suggests that communication between different
router groups could suffer from substantial delays. That data redistribution has
its biggest effect on runs using the majority of the machine hints at this.

What really stood out were the difference between the solve and setup phase
speedups when using data redistribution for the 3D Laplace problem and the
large speedup when solving the linear elasticity problem on 8192 cores. We men-
tioned earlier that the linear elasticity problem features much larger stencil
sizes on coarse grids and thus dramatically increased interprocessor commu-
nication compared to the Laplace problem. The setup phase of AMG also fea-
tures increased communication, substantially more than the solve phase. Figure 9
shows the communication patterns on the two most communication-intensive lev-
els in the hierarchy from the 3D Laplace problem from the performance model
validation experiments, levels 4 and 5, run in an all-MPI programming model
on 128 cores on a multicore Opteron cluster that was analyzed in [12]. The plots
were obtained using the performance analysis tool TAU [21]. On both levels,
there was a lot more communication in the setup phase, with it being almost
all-to-all on level 5.

So while the XC30 interconnect rated favorably in terms of contention penal-
ties when we were testing our performance model, we saw that there were still
large benefits to reducing the number of messages sent when that number was
very large, whether it was through data redistribution, using a hybrid pro-
gramming model, or a combination of both. In contrast, these benefits were
found to be more modest for the same test problems on an IBM Blue Gene/Q,
where reported overall speedups from data redistribution peaked at 17 % for the
Laplace problem and 39 % for the linear elasticity problem, even though its inter-
connect did not rate as well in terms of the network contention penalties in our
performance model [11]. Future work will involve examining the communication
behavior and its effects on performance in more detail, including the construc-
tion of a performance model for the setup phase of AMG, to help pinpoint the
major bottlenecks and see if there is a threshold at which network contention
becomes a serious problem and if so, map it.
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What we have seen so far on the Cray XC30, though, hints that the dragonfly
topology will have problems with communication-heavy applications. Though
the topology allows for wide variety in the specifics of the individual groups of
routers that comprise the overall network, there is still the unifying feature of
the all-to-all connections between the groups. Experiments in which we tasked
the interconnect with handling a large number of messages led to performance
degradation, especially when using the majority of the machine, that was readily
improved when messages were traded for computation. These results point to a
risk of slowdowns when communicating between groups of routers that will need
to be addressed to make dragonfly interconnects effective at scale.
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Abstract. With POWERS8 a new generation of POWER processors
became available. This architecture features a moderate number of cores,
each of which expose a high amount of instruction-level as well as thread-
level parallelism. The high-performance processing capabilities are inte-
grated with a rich memory hierarchy providing high bandwidth through
a large set of memory chips. For a set of applications with significantly
different performance signatures we explore efficient use of this processor
architecture.

1 Introduction

With power consumption limiting the performance of scalar processors there
is a growing trend in high-performance computing (HPC) towards low clock
frequencies but extremely parallel computing devices to achieve high floating-
point compute performance. A remarkable increase in the number of systems
exploiting accelerators like GPGPUs and Xeon Phi for leading Top500 systems
can be observed. The POWER server processors, while providing increasing on-
chip parallelism, continue to be optimized for high single-thread performance. In
June 2014 the most recent generation of POWER processors, namely POWERS,
became available in a pre-release program. In this paper we investigate the
performance of this processor for a set of micro-benchmarks as well as mini-
applications based on real-life scientific HPC applications.

A description of the processor architecture with up to 12 cores be found in
[1,2]. POWERS complies with version 2.07 of the Power ISA like its predecessor,
but features changes to the underlying micro-architecture. For an early evalua-
tion of the architecture we used a single SMP server with two dual-chip-modules
(DCM) and a total of twenty cores. Each core can be clocked at up to 4.2 GHz
and is capable of running up to eight hardware threads per core in simultaneous
multi-threading (SMT) mode. Per core there are two floating point pipelines
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capable of executing single and double precision scalar instruction or vector
instructions on 128 bit registers. Alternatively, this VSX unit can operate on
fixed point vectors. Further, two fixed point pipelines are present. All arith-
metic functional units can execute fused-multiply-add instructions and variants
thereof. The interface to the memory system consists of two load/store units and
two dedicated load units. All of these may execute simple fixed point computa-
tions. The dispatch unit is capable of out-of-order execution.

The cache hierarchy consists of three levels. L1 and L2 are core private and
inclusive. L1 is split between data and instructions with a capacity of 64 KiB
and 32KiB, respectively. The 512KiB L2 cache is unified. The L2 caches are
connected via a cache coherency protocol and can move data between caches.
The store engine is located in L2, with L1 being write-through. L3 consists of
8 MiB of embedded DRAM (eDRAM) per core and functions as a victim cache
for the local L2 and remote L3 caches. The pre-fetch engine pulls data into L3
directly and into L1 over the normal demand load path.

One of the differentiating features of the POWERS architecture is the inclu-
sion of external memory interface chips with an integrated cache, the Centaur
chip. Its additional cache level of 16 MiB eDRAM is some times referred to as
the fourth level cache (L4). Each link connecting processor and memory buffer
offers an 8 GB/s to 9.6 GB/s write and 16 GB/s to 19.2 GB/s read bandwidth.
With up to 8 links the aggregate peak bi-section bandwidth per socket is 192 to
230.4 GB/s. The dual-socket system evaluated in this paper featured an aggre-
gated read bandwidth of 256 GB/s and 128 GB/s for write access.

We used a pre-release version of Red Hat Enterprise Linux 7.0 which features
support for the POWERS architecture. In this paper we only report on results
obtained using the GCC compiler version 4.8.2 which includes POWERS support
and offers access to vector intrinsics.

As SMP domains grow in size and heterogeneity, the placement of memory
allocations becomes more important. The test system comprises four NUMA
domains, as each socket consists of a dual-chip-module. The standard tool numactl
was used for pinning allocations.

With this paper we make the following contributions:

— Performance evaluation of different aspects of the POWERS through micro-
benchmarks.

— Performance characterization on POWERS for different scientific applications.

— Identification of a set of events relevant for analyzing performance of such
applications.

2 Related Work

Recently various papers have been published exploring the POWERY architec-
ture and investigating its performance. Very few papers have been published
about the new POWERS processor.

The approach taken in [3] is close to our’s in the sense that the performance
of relevant scientific applications was analysed on a POWERT7-TH system. In this
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paper a system comprising 8 nodes and a total of 256 POWERT7 cores was used.
Focussing on scale-up capabilities of POWERY, analysis of data transport perfor-
mance, like memory-to-processor or processor-to-processor, was given more atten-
tion than evaluation of the micro-architecture which is the focus of this paper.

The performance evaluation presented in [4] takes a more architectural app-
roach by analysing the performance benefits of specific features of the POWERY
processor like different SMT modes, support of different clock speeds and the use
of (at that time new) VSX instructions. For this purpose synthetic benchmarks
are used. Detailed information on the POWERT7 performance measurement capa-
bilities is given.

First papers on POWERS [1,2] mainly focus on chip design, applied tech-
nologies and I/O capabilities.

3 Methodology

3.1 Hardware Counters

The POWERS processor allows for monitoring of up to six hardware events in a
single set. These events can be chosen out of more than a thousand defined coun-
ters. We identify those that map to the functional units at the disposal of the core:

Unit Counter
Vector scalar units | VSU{0,1}_FIN
Fixed point units |FXU{0,1}_FIN
Branch unit BRU_FIN

The common prefix PM_ has been suppressed for brevity in all counter names.
We use PAPI version 5.3.2 to access the counter values via the interface to plat-
form specific hardware counters [5]. In Fig. 1 we summarize our analysis of the
memory architecture for the propagation of load requests. As to our knowledge,
all counters are specific to the core executing the read request. However, some
information is missing, like how to compute data movements from L2 to L3 and
from L1 to L2.

3.2 Performance Metrics

In [6] a set of performance metrics was defined in order to characterize application
behavior on the BG/Q architecture. We use these metrics as a basis for our work
on the POWERS architecture. However, we focus on those relevant to the core
micro-architecture, mainly instruction counts and their interplay with the avail-
able functional units. Further we address the data movement between the CPU
and memory, as well as chip-internal traffic. We give a summary in Table 1.
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Fig. 1. Memory hierarchy for load request propagation and prefetch resolution. All
values have to be scaled by the width of a cache line of 128 B, except the traffic between
register file and L1 where the factor is the register width of 8 B.

3.3 Porting and Tuning

All applications and micro-benchmarks were ported to the POWERS architec-
ture. We give results for the optimal performance we were able to attain. Details
for tuning applications can be found in the relevant sections, but we give some
general methods here.

OpenMP: Thread placement — the mapping of threads to CPU cores — is a critical
factor for the performance of concurrent applications beyond modest numbers
of threads. We use the GNU OpenMP runtime control variables to control the
layout. The best results are achieved by using a round-robin allocation with
stride s = min(8, 182) for T' threads.

NUMA: The Linux tool numactl was used to tune memory allocation, where
the interleaving of the four NUMA domains shows the best results.

4 Micro-benchmark Results

We investigated the baseline of available performance in terms of instruction
throughput, memory bandwidth and multi-threading overhead by a series of
micro-benchmarks.

4.1 Instruction Throughput and Latency

We use an in-house tool to measure the latency and saturated throughput of var-
ious assembly instructions. The basic approach is to time a tight loop of assembly
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Table 1. Performance metrics for characterizing applications on POWERS.
Name Description Formula
twe Wallclock time cyc*
N, Instructions INST_CMPL
Nrx Fixed point instructions FXU{01} _FIN + LSU_FX_FIN
Nrp Floating point instructions |- VSU{01}_nFLOP
Nrs Load/Store instructions LD_CMPL + ST_FIN
NBr Branch instructions BRU_FIN
Nep—op FLOPs S VSU{01}nFLOP
Reg—L1$ | Data read from L1 8- (LD_CMPL + LSU_LDX)B
Reg—12$ | Data written L.21 8 - (ST_CMPL + VSU{01}_SQ)B
L1$—12$ |Data from L2 into L1T 128 - DATA_FROM_L2B
L1$—L3$ |Data from L3 into L1 128 - DATA_ALL_FROM_L3B
L1$—Mem | Data from memory into L1 | 128 - (DATA_ALL_FROM_{LDR}MEM+
DATA_ALL_FROM_{LDR}L4) B
L3$—Mem | Data from memory into L3 | 128 - (L3_PREF_ALL)B
L3$—Mem | Data into memory from L3 |128 - (L3.C0_ALL)B
Noem Total data from/to memory | L1$<—Mem + L3$—Mem + L3$—Mem

* Only incremented while thread is active.
t L1 is store-through.
*1L1 and L2 have the same prefetch states, so no prefetch is excluded.

instructions, which is then repeatedly executed to achieve stable results. Using
independent instructions allows for estimating the maximum throughput, while
the introduction of dependencies will yield the minimal latency between instruc-
tions. Results for a selection of assembly instructions are given in Table 2.

4.2 Memory Sub-system (STREAM)

We first investigated the behavior of the memory sub-system under an artifi-
cial load designed to exercise the memory bandwidth. We used version 5.9 of
the STREAM benchmark [7], which we tuned for the POWERS architecture.
STREAM consists of four micro-benchmarks on the vectors a, b, ¢ and a scalar

scale b+ s-c
triada<+ s-b+c

copy € < a
sum a«<— b +c

The GCC compiler fails to recognize the opportunity to vectorize the copy bench-
mark. The necessary vectorization was done by hand using VSX intrinsics. To
achieve better parallel performance, core binding and NUMA placement were
investigated, see Sect. 3.

First, we turn to the raw bandwidth between CPU and main memory. The
working set size was chosen to be 512 MiB per array in order to avoid cache
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Table 2. Latency and maximum throughput for examples of fixed point, simple and
complex floating point and memory access instructions.

Instruction | Type Latency | Throughput
add Fixed 8 1

1d Memory - 1

st Memory - 1

ld+st Memory - /7

xsmuldp 64 b Floating | 6 1

xsdivdp 64 b Floating | 33 1/29

effects. As the STREAM benchmarks are highly regular, the efficiency of the
pre-fetching mechanism has a large impact on the results. To obtain statistically
sound results, we repeated the measurements 1000 times. We give the optimal
results as the median values for all four benchmarks in Fig.2 as a function of
the number of threads. We find sustainable bandwidths for ¢riad of just over
320 GB/s, corresponding to roughly 84.6% of the maximum sustained band-
width. The achievable bandwidth for copy and scale is lower than for sum and
triad. The later use two load and one store streams which fits the balance of
the memory links exactly. The peak performance is achieved with 40 threads,
at which point every LSU is busy. For this case, the inset in Fig.2 shows the
distribution of the results over 1000 runs of the benchmark. We notice a clearly
peaked distribution at the median and a quite long tail towards smaller values.

Next, we investigate the impact of the different cache levels. Due to the
prefetch mechanism, we expect only the first and third level to have impact on
the STREAM benchmarks. Cache lines recognized as part of a prefetch stream
are fetched into L1 and L2 up to six cache lines ahead of the stream. These
requests traverse the cache hierarchy like demand loads. The last level cache L3
is populated by the prefetcher directly from the memory up to 16 lines ahead of
the stream. STREAM is perfectly regular, so we expect no significant impact of
the L2 on the memory bandwidths. In the steady state of the prefetch engine,
every load request must hit in L1 as it is large enough to hold three streams
for eight threads per core. Prefetch requests themselves miss L2, as it has the
same data prefetched, and hit L3 as it is ahead of the L1 prefetch. Every line is
only traversed once. We monitor hardware counters to understand the impact of
the prefetcher and cache hierarchy, and recorded the counter values for different
array lengths. The data for the copy benchmark is presented in Fig. 3. Despite
the effort of rotating the arrays to avoid such behavior, for small n, when the
majority of the working set fits in L2, it supplies the full data to the core. For
larger n, the traffic from L2 into L1 drops to a constant, due to remnants of the
working set in L2. The last level cache satisfies almost all requests, including
prefetches, beyond the size of L2. A constant amount of data is fetched directly
from memory into L1, most likely before prefetch streams are established.
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Fig. 2. Median bandwidths for the STREAM benchmarks over number of threads.
We mark the thread counts where every core is occupied by single thread (#Core), by
two threads (#LSU) and the SMT capacity is fully used (#HWT). Beyond using every
LSU on all cores, the achievable bandwidth drops off sharply. Inset: Probability density
estimates for the bandwidths at 40 threads over 1000 repetitions of the experiment.
Note the clear peak at the median value and the relatively long tail towards smaller
values, most probably indicating other system activity at the time of the iteration

The traffic volumes between the register file and the L1 cache fit the predic-
tion of 8 - nB perfectly, as does the store volume (not shown). The accumulated
transfers into L1, from L2, L3 and memory, sum up to the same values within the
margin of error. We find a clear effect of cache sizes as the data set grows too large
for each level. The impact of the second level cache at small sizes is explained by
the fact that at this point the full working set fit into L2. Although the design
of the benchmark tries to avoid caching effects by rotating the assignments, this
does not fully work for small sizes n.

4.3 OpenMP Overheads

The POWERS system is relying on thread-level parallelism for optimal per-
formance. A total of 20 threads are needed to occupy all cores with a single
thread (ST mode). Further gains may be achieved by using multiple threads
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Fig. 3. Memory traffic as derived by monitoring hardware counters over the number
of double precision array elements for STREAM copy. Counters were summarized into
traffic volumes according to Sect. 3.1 and scaled into units of bytes. The predicted value
of 8 - nB perfectly matches the line for Reg«—L18$.

on a single core in simultaneous multi-threading mode (SMT). This has the
benefit of issuing more instructions per cycle, thus utilizing voids in the execu-
tion pipelines. However, as more threads are executing on the same hardware, the
overheads for managing these threads, synchronization and bookkeeping grow.
Since almost all applications and micro-benchmarks in this study are parallelized
using OpenMP, we can estimate an upper bound for the number of threads to
be used productively.

We use the OpenMP micro-benchmark suite (version 3.X) from EPCC to
quantify these overheads [8]. The overhead 7(n) at n threads is here defined as
the difference in execution time between expected and measured timings. We
execute independent workloads, essentially empty loops, for a given number of
iterations and time the execution ¢(n) with n threads

o
r(n) = t(n) -
where ty is the timing of serial execution of the same workload. The whole
measurement is repeated to achieve a representative result.

The central component is the GNU OpenMP runtime shipped with GCC
4.8.2 and its interaction with the test-system. Relevant environment variables
for distributing threads over cores and tuning thread migration and waiting

policy are tuned for performance as described in Sect. 3.3.
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Fig. 4. Overheads for OpenMP threading as measured by the EPCC suite v3.X. The
baseline cost setting up worksharing constructs and synchronization is well below one
micro-second. Left: Explicit synchronization constructs. The most expensive state-
ment to use is barrier, consuming up to 0.75ms on 160 threads. Right: Implicit
synchronization by closing a parallel region and the overhead of various worksharing
constructs. Apart from a few outliers, we observe overheads of 0.6 us to 0.7 ms.

Figure 4 summarizes our findings for the impact of various explicit and impli-
cit synchronization constructs. These are the relevant sources of overhead for the
further workloads in this report. The large overhead at the maximum number of
160 threads of around a millisecond suggests that using this level of concurrency
will generally not be beneficial for worksharing. Regarding explicit synchroniza-
tion, using atomic sections is to be preferred over the alternatives.

5 Application Performance Results

We present results on the analysis of three scientific applications on the POWERS
architecture: Lattice Boltzmann, MAFIA and NEST. The applications cover a
wide scientific field: fluid dynamics (LB), data analysis (MAFIA) and neuronal
networks (NEST). Furthermore, their performance profiles are diverse and gives
good coverage of the architectural features.

5.1 Lattice Boltzmann Performance Results

The Lattice Boltzmann (LB) method is widely used in computational fluid
dynamics, to numerically solve the equation of motion of flows in two and
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Fig. 5. The 37 element stencil for the propagate function.

three dimensions. While conceptually less efficient than spectral methods, LB
approaches are able to handle complex and irregular geometries as well as com-
plex and multi-phase flows. From a computational point of view, LB methods
are “easy” to implement and a large degree of parallelism is exposed.

LB methods (see, e.g., [9] for an introduction) are discrete in position and
momentum spaces; they are based on the synthetic dynamics of populations
located at the sites of a discrete lattice. At each time step, populations are
propagated from lattice-site to lattice-site and then incoming populations collide
among one another, that is, they mix and their values change accordingly.

LB models in z dimensions with y populations are labeled as DzQy. Here,
we consider the D2@Q37 a state-of-the-art bi-dimensional model with 37 popula-
tions per site, see Fig. 5, that correctly reproduces the thermo-hydrodynamical
equations of motion of a fluid in two dimensions and automatically enforces the
equation of state for an ideal gas (p = pT") [10,11].

From a computational point of view the most relevant steps performed by a
LB simulations are the computation of the propagate and collide functions:

1. propagate moves populations across lattice sites according to a stencil extent
pattern of 7 x 7 excluding corners; it collects at each site all populations that
will interact at the next phase: collide. Implementation-wise, propagate
moves blocks of memory locations allocated at sparse memory addresses,
corresponding to populations of neighbor cells.

2. collide performs all the mathematical steps associated to the computation
of the collisional function, and computes the population values at each lattice
site at the new time step. Input data for this phase are the populations
gathered by the previous propagate phase.

We stress again that the D2Q37 LB method correctly and consistently describes
the thermo-hydrodynamical equations of motion as well as the equation of state
of a perfect gas; the price to pay is that, from a computational point of view, its
implementation is more complex than simpler LB models. This translates into sev-
ere requirements in terms of memory bandwidth and floating-point throughput.
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Fig. 6. Performance of the D2Q37 kernels over the number of threads used. The
efficiency of collide is given in GF/s and propagate measured in GB/s.

Indeed, propagate implies accessing 37 neighbor cells to gather all populations;
this step is mainly memory-bound and takes approximately 10% of the total
run-time. The collide requires approximately 7600 double-precision floating
point operations per lattice point, some of which can be optimized away by the
compiler, see later sub-section. collide exhibits a significant arithmetic intensity
and is the dominating part of the overall computation, taking roughly 90 % of the
total run-time. All tests have been performed on a lattice of 3200 x 2000 sites,
corresponding to 1.76 GiB of data per lattice. Input/output, diagnostics and
computation of boundary conditions are not accounted for in this benchmark.

The D2Q37 model is highly adaptable and has been implemented on a wide
range of parallel machines like BG/Q [12] as well as on a cluster of nodes based on
commodity CPUs [13], GPGPUs [14] and Xeon-Phi [15]. It has been extensively
used for large scale simulations of convective turbulence (see e.g., [16,17]). These
implementations have been extensively tuned for the hardware in question, which
is beyond scope of this study.

The collide-operation consists of three phases, first computing the moments
of the distribution function, then resolving the collision effects in terms of these
moments and those of the equilibrium distribution and finally transforming
the result back. All transformations are linear. The GCC compiler generates
optimized code with 4550 instructions. The main optimization is unrolling of



Performance Evaluation of Scientific Applications on POWERS 35

each of the three loops over 37 into one single iteration and 18 iterations with vec-
torized load and FP instructions. All results for the hardware counter analysis are
given per lattice site, corresponding to 37 elements of 64 b floating point data. For
a break-down of the instruction mix and pipeline filling refer to Table 3. We find
that the required 6200 floating point operations are performed in 2100 instruc-
tions, which are mostly vectorized fused-multiply-add instructions. Address cal-
culation and loop variables contribute roughly 860 fixed-point instructions. There
are just above 1500 load instructions plus close to 100 store instructions, in addi-
tion to the input data of 37 - 8 B we have to read some constants, but the bulk
of this overhead stems from spilling the working set to L1. The actual amount
of data read from memory is 459 B, roughly 50 % more than the 37 populations.
The additional traffic may be explained by the coefficients for the polynomial
expansions and the data that is prefetched but cast-out of L3 before it is used
and re-read later. This is supported by the fact that almost all incoming memory
traffic is due to pre-fetches (457 B). The function stores 37-8 B = 296 B, which is
the updated site data, into memory. The full operation take 3000 cycles per site.
A thread scaling analysis of collide in Fig.6 shows that the peak perfor-
mance of 194 GF/s is reached with 80 threads on 20 cores, i.e. 9.7 GF/s per core
in SMT4 mode, closely followed by 9.65 GF /s in SMT2 mode. It is interesting to see
that further oversubscription of the core (160 threads, SMT8) reduces the perfor-
mance by 11 % compared to the maximum. The performance of a single thread
per core is reported as 7 GF/s. The POWERS core architecture is optimized for
both single threaded execution (ST) as well as SMT threading; it adapts the
way instruction dispatch works accordingly. This explains the subtle differences
in the interplay of functional units that can be observed in the two modes. The
peak performance is about 74 % higher than running on a single thread per core
(ST mode). This gain stems from better filling of the instruction pipelines.
Propagate performs a swap on 37 memory locations per lattice site and
is, therefore, limited by the effective random access memory bandwidth. Bench-
marking with thread numbers between 1 and 160 shows that the shortest runtime
of propagate is reached at 20 threads, i.e. one thread per core (ST mode).
The structure of memory access leads to a factor 3 to 4 lower bandwidth
compared to values for the sustained bandwidth obtained with the STREAM
benchmark Sect. 4.2. Here, we can see that the throughput of instructions is high-
est in ST mode and, similar to the performance of the collide-kernel, degrades
the more threads we use per core. The lower part of the scaling analysis — 1 to
20 threads — shows the effect of shared resources. The original version of the
code exhibited less than optimal performance due to misuse of the cache hier-
archy. The loop over the lattice was optimized by using cache blocking, giving
a gain of 20 % in bandwidth. Again, Table 3 shows a detailed breakdown of the
instruction mix and pipeline filling. No floating point operations are performed,
although the VSU pipelines report significant filling, since store instructions are
executed in both LSU and VSU. We find exactly 37 load and store instructions,
one per population. These result in 296 B of write traffic and 1837B are read
from memory. This is roughly six times more than we would naively expect.



36 A.V. Adinetz et al.

Table 3. Left: Characteristics of LBM seen by the instruction pipelines; measured
on a single thread. Given are the relative fractions dispatched to the pipelines and the
throughput relative to the maximum for different numbers of threads per core. Right:
Instruction counts and general metrics for the LBM application.

Throughput Metric collide propagate
Function Unit Fraction ST SMT2 SMT4 SMT8  twe 3007 214
Nz 4933 87
collide  LSU 0.35 0.28 0.42 0.43 0.38 Npx ]57 12
VSuU 0.50 0.41 0.57 0.57 0.51 Npp 2129 -
FXU 0.14 0.11 0.13 0.12 0.11 Npn 0 9
propagate LSU 0.45 0.04 0.04 0.05 0.04 Nis 1641 74

VsSU 0.41 0.04 0.06 0.12 0.05 Nonern 755 2141
FXU 0.11 0.01 0.02 0.05 0.03 Nip_op 6197 _

Again, almost every incoming byte is due to pre-fetching (1537 B), indicating
that streams may be established, but never fully utilized. Further, due to the
nature of the stencil the read accesses are not continuous, potentially resulting
partially consumed cache lines. Addressing and loop computations result in 12
fixed point computations per site. Processing a single site requires 214 cycles.

In summary, LBM is split into two parts, both of which have completely dif-
ferent performance requirements. The computationally expensive collide oper-
ation, which is largely vectorized by the compiler, reaches about 29 % of the
peak floating point performance. It further benefits from the higher pipeline fill-
ing by using up to four threads per core. On the other hand propagate which
is purely memory bound can capitalize roughly 20 % of the aggregated read-
/write bandwidth. However, the maximum achievable bandwidth is 256 GB/s as
the requirements of propagate are symmetric in read and write. Of this figure,
we can exploit close to 30 %, the remaining gap is mainly a result of the non-
continuous access pattern.

The overall performance is summarized in Fig. 6, the maximum achieved for
40 threads or two per core, which is due to the unequal shares of both phases on
the total runtime. We find close to ideal scaling up to twenty threads and signifi-
cant gains from using two threads per core, beyond that, performance stagnates
(SMT4) and finally degrades (SMTS). This is expected as the application utilizes
the available pipelines efficiently at SMT2. Gains from filling potential voids in
the pipelines are offset by threading overheads as described in Sect. 4.3. We are
investigating the reduced bandwidth at more than one thread per core.

5.2 MAFIA Performance Results

MAFTIA is a subspace clustering application [18] which implements the algorithm
of the same name [19]. For the purpose of this report, we concentrate on the CPU
version implemented using OpenMP. MAFIA algorithm builds dense units (DUs)
starting from lower dimensionalities and progressing to higher ones, until no new
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DUs can be built. For each dimensionality, it generates candidate DUs (CDUs)
from DUs of lower dimensionality. The CDU is accepted as a DU if the number
of contained points lies above a certain threshold. The cardinality computation,
pcount, is the most computationally intensive kernel of the algorithm. The
generated DUs are then merged into clusters, which are the final output.

In MAFTA, each CDU is represented as a cartesian product of windows, one
window per dimension of the CDU. Each window, in turn, is represented by a
set of contained points, implemented as a bit array. Thus, the number of points
inside a CDU can be computed as the number of bits set in intersection (bitwise
AND) of all windows. The loop over words of the bit array was strip-mined, so
that auto-vectorization by the compiler is possible.

Reference [18] presents performance estimates as well as an empirical analysis
of MAFTA. Assume that the algorithm runs on n points in d dimensions, and
the dataset contains a single hidden cluster of dimensionality k. Then the total
number of logical bit AND operations in pcount kernel for the entire program
run is given by the equation

Npitops =1 - k- 2871, (1)

As the number of windows is several orders of magnitude smaller than the num-
ber of points (O(10) versus O(10%)), it can be assumed that the array of window
indices is cached, and only bit arrays need to be transferred from memory. Thus,
Eq.1 also gives the number of bits transferred from memory by the pcount
kernel.

We started by analyzing the scaling behavior of MAFIA with different OpenMP
thread placements, by altering the stride s with which the threads are spread out
across cores. The pcount kernel was parallelized across CDUs, with only a sin-
gle thread executing the point count loop for each CDU. Scalability results for the
pcount kernel for a dataset with n = 107 points of dimensionality d = 20 and a
cluster of dimensionality & = 14 are presented in Fig. 7. The scalability is quite
good, with a speedup of up to 25 achieved with 80 threads and threads allocated
round-robin to every second core, see Sect. 3.

We then proceeded to analyzing counter values. The MAFIA application was
run with 20, 40, 80 and 160 threads with the same point and cluster dimensional-
ities as above (k = 14, d = 20). The number of points, n, varied on a logarithmic
scale between 1 -10° to 64 - 10°. Counter values are given as averages across
three runs.

Next, we analyze vector instruction throughput. As MAFIA pcount contains
only integer vector instructions, counters for floating-point vector instructions
are of no interest here. For each of the three counters, we assume that its value
can be modeled by the equation

c(n) = (co2® + c k2871 o (2)

128
where the coefficients ¢y and ¢ are both in terms of operations performed on
a single vector. The term with ¢; is derived from Eq. 1, and corresponds to the



38 A.V. Adinetz et al.

=0— stride=1
~—4— stride =2 200
12 ~@— stride =4
=~ stride =8

Time (s)
Bandwidth (GiB/s)

1 10 20 40 80 160 2 2 by 2 2! 2z 2
Threads n, x10°
Fig. 7. MAFIA OpenMP scaling Fig. 8. Theoretical memory bandwidth for
MAFIA
10"
—e— VSUFIN

—4— VSU SQ
=#= LSU.LDX Table 4. Coefficients for vector coun-
ters, both expected based on the code

and actual extracted from the assembly

y

Instructions

! Counter | Assembly Expected
1 Co C1 Co | C1
vsu.sqQ |0.125/1.0 (0 |0
- r—c— VSUFIN 2.5 3.0 |1 1
. X10° LSU_LDX | 1 21250 |1

Fig. 9. Predicted and measured values for
vector instruction counters for 20 threads

loop over windows, where the number of iterations varies with CDU dimension-
ality. The term with cg corresponds to the rest of the iteration of the loop over
words, where the number of instructions executed does not depend on CDU
dimensionality.

For prediction purposes, we derived values for ¢y and ¢; from the assembly
code generated by the compiler. Their values for different counters are listed
in Table4. The innermost loop was unrolled by the compiler, therefore some
coefficients have a fractional part. Figure 9 compares predictions with the actual
measured values. The predictions are almost perfect, with less than 0.001 %
difference. Numbers for other thread counts are very similar and are omitted for
brevity.

It is also worth comparing coefficients extracted from assembly to the mini-
mum values expected by looking at the original code; both are listed in Table 4.

— One store instruction is executed per vector instead of none expected. This
indicates that the storage for words resulting from logical AND operation is
in L1 rather than registers.
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— Similarly, there are 2.125 load instructions instead of one expected. One of
those is needed to load the array holding result of logical AND to registers
(from cache), and 0.125 is due to imperfect alignment of bit arrays in main
memory.

— Three vector instructions are generated instead of one expected. One is due
to vector store counted as a vector instruction, and the second is a permuta-
tion instruction, again to compensate for mis-alignment of the bit arrays in
memory.

The values obtained from the assembly differ from minimum values expected
from the original code, which indicates optimization potential. Compiler optimiza-
tion is one of the way to address that, and we are planning to look into that.

We then proceeded with analyzing the memory traffic. Figure 8 plots a semi-
empirical memory bandwidth, i.e. the estimate of memory traffic divided by
measured running time. For a given number of points, more bandwidth actually
indicates lower running times, as the theoretical memory traffic does not depend
on the number of threads. Figure 10 plots the ratio of traffic between main memory
and various levels of caches to the theoretical value, derived from Eq. 1.

With 20 threads, L1/L2 caches and L3 cache partition of a single core are
used by a single thread only, which gives the most predictable plot. Indeed, the
amount of data flowing into L1 cache is very close to the theoretical prediction.
L1 is mostly filled from L3, and data flow from L2 is almost non-existent. Up to
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and including 4-10° points, the aggregated size of the bit arrays fits into L3; only
after that is data fetched from main memory. Even then, it is mostly prefetched
into L3, from where it goes further up. Because of that, there is almost no need
to fetch the data from main memory directly into L1.

The plots for 40 and 80 threads show the same qualitative behavior, although
effects of cache sharing play a role. On the positive side, the same cache lines
can be used by multiple threads; as a result, the amount of data loaded into L1
is actually less than the theoretical prediction, down to 50 % for 80 threads. On
the negative side, as the amount of cache of all levels per thread is lower, there
is less space to store data on-chip. As a result, for 80 threads, data should be
fetched from memory for all dataset sizes. However, this does not seem to affect
performance, as the 80-thread version is actually the fastest for the cases when
the data size fits into L3 cache. It may be that though the L3 prefetcher kicks
in, it does not provide the data further referenced by the algorithm. For 20 to
80 threads, there is also a small but not insignificant amount of data retrieved
from cache partitions of other cores.

The plot for 160 threads differs qualitatively from the others. First of all, there
is significant over-prefetching of data from the main memory. We assume that
due to too many threads contending for prefetcher resources, prefetch streams
get tried but do not reach steady state. Also, a much larger fraction of data
is sourced from L2. Again, we assume that due to over-subscription of over-
prefetching into L1, many of the prefetched L1 cache lines get cast out into L2
even before they get accessed. This agrees with other counters, which indicate
that lines from L2 and L3 come due to explicit accesses and not due to prefeches.
Nevertheless, overall use of hardware with 160 threads is relatively good, as for
more than 8 - 108 points this is where the maximum performance is achieved.

To summarize, MAFIA’s pcount loop is rather regular, and we can get a
good understanding of it. Vector instruction counters are perfectly understood in
terms of algorithmic properties and instructions in the assembler code. Memory
behavior is also understandable, particularly for lower number of threads nts <
40, where effects of L3 cache size are clearly visible. With larger number of
threads, however, our understanding is limited, and it is here where the highest
performance is achieved. We thus assume that the application is latency-limited,
as neither instruction throughput nor memory bandwidth limit its performance.

5.3 NEST Performance Results

NEST (NEural Simulation Tool) is an application from the field of computational
neurobiology [20]. It models brain tissue as a graph of neurons interconnected
by synapses. Neurons exchange spikes along the synapse connections. On an
abstract level, NEST can be understood as a discrete event simulator on a dis-
tributed sparse graph. It is built as an interpreter of a domain specific modeling
language on top of a C++ simulation core. Most simulations include stochastic
connections and sources of spikes, which makes static analysis and load balancing
unfeasible.
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Fig. 11. NEST scaling behavior with OpenMP

The performance profile of NEST leans towards fixed point operations due to
the necessary graph operations and dynamic dispatch of events. Memory capacity
is a major bottleneck for large-scale simulations with NEST, so optimizations
tend to favor size over speed. Despite the obvious need for good fixed point
performance, a small but non-negligible fraction of floating point operations is
needed to update the neuron models.

For our experiments, we used dry run mode of NEST. This enables simulating
performance characteristics of a NEST run on many thousands of nodes by
running on a single system. The parameters of a run are the simulated number
of MPI processes, M, and the number of threads running on a single node, T'.
Typically, NEST run parameters also include n, the number of neurons owned
by a single process, which is fixed at n = 9375, and therefore omitted, in our
experiments. The total number of neurons is proportional to M. Each active
thread is called a wvirtual process (VP) and the total number of VPs is given by
M - T. For our experiments, we simulate random balanced networks with nM
neurons and both static and adaptive synapses [21].

We started with analyzing performance of NEST simulation loop with dif-
ferent OpenMP settings. We performed experiments with 10, 20, 40, 80 and 160
threads strided by 1, 2, 4 and 8 over the cores under 3 values of M. Results for
M =512 and M = 16384 processes are depicted in Fig. 11; results for M = 4096
(not shown) exhibit the same behavior.

NEST exhibits non-trivial scaling behavior. Some parts, such as neuron update
or synapse processing, scale well, while others, such as spike buffer processing, do
not scale, as all threads should go through the entire spike buffer. Moreover, with
larger number of processes, and as a consequence, of neurons, the relative weight
of spike buffer processing increases. Therefore, while with M = 512 having more
threads per core improves performance to some extent, with M = 16384, more
threads always means worse performance. For each T, the optimal stride is given
by min(160/T, 8), which we use for further experiments.

We then proceeded to analyzing hardware performance counters for NEST.
Understanding how resource contention affects running times of various parts of
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NEST is still a work in progress. We therefore restrict ourselves to counters which
can be characterized as amount of work performed, such as the number of instruc-
tions or loads executed. We analyzed only the spike delivery phase, as for a large
number of processors, it takes more than 90 % of simulation time. We performed
experiments with 7" = 1,5,10, 20,40,80,160 and M = 512,2048, 4096, 16384.
The work done in spike delivery phase can be broken into contributions from
processing the following items:

— synapses, which is constant for fixed n;

— spikes in the buffer, proportional to M - T, as the number of spikes is
proportional to M, and this work has to be done by each thread;

— markers in the buffer, proportional to M -T2, as the number of markers is
equal to the number of virtual processes and the work is done in each thread;

Note that the code for all components is intermixed, so it is impossible to
accurately measure each of them without introducing significant measurement
bias. The total amount of work done can be written as the sum of all components

C=co+c-MT+cy- MT?, (3)

The coefficients of the Eq. 3 has been derived by fitting it into experimental
data using least squares method. Figure 12 plots values for both total instructions
(N,) and loads executed. The points represent the measured values, and the
lines represent the fitted values. The fits are very close, with the deviation being
less than 5.5% (mostly less than 3.3 %) for instructions and less than 7.5%
(most less than 3.7 %) for loads. Note that Eq. 3 also holds for other work-related
counters, which include: floating point loads and stores, vector instructions, both
the total and actual arithmetic operations.

To summarize, though our understanding of NEST performance characteris-
tics is far from complete, some points are clear. Specifically, spike delivery takes
most of the time for simulations with large number of MPI processes M. We also
understand the number of instructions executed by spike delivery, and it is clear
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that it contains parts that do not scale with either the number of processes M
or threads 7. And while scalability with 7" could be improved by parallelizing
the loop processing spikes in the buffer, improving scalability with M requires
more fundamental changes in NEST architecture, specifically the way spikes are
exchanged between processes.

6 Summary and Conclusions

We presented the characterization of three different scientific codes on a new
server-class processor, the POWERS. Further, results of micro-benchmarks were
collected as a first impression of the performance characteristics.

The LBM and MAFITA applications benefit from the available instruction-
level parallelism and vectorization capabilities. Although parts of LBM depend
strongly on the memory bandwidth, the available capacity can only be exploited
to a fraction, due to the access pattern. NEST is an irregular application limited
by memory accesses, and could, in theory, benefit from SMT. However, in order
to achieve this, its scalability should be improved first.

On the basis of the performance we were able to achieve in our tests, POWERS
is a candidate for the host CPU in GPU-accelerated systems. The focus on inte-
ger performance, out-of-order execution and memory bandwidth complement the
floating-point optimized profile of the accelerator. Exploring this direction is plan-
ned for the near future.

With up to 160 threads in total or eight per core, overheads from thread
management, especially by the OpenMP runtime, become an important factor.
This is even more critical, as the SMT facilities are means to optimize pipeline
filling and therefore require lightweight threading. However, the gains from these
large numbers of threads per core are expected to be significant only if the
pipelines are not sufficiently saturated to begin with. The applications we tested
did not suffer from this problem, so speed-ups were not expected. We were not
able to obtain results with an OpenMP runtime optimized for POWERS in the
time frame of the preview. This too, is planned for the near future.
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1 Introduction

The Standard Performance Evaluation Cooperation (SPEC) stands as a successful
example of collaboration among vendors and researchers in creating benchmarks
that lead to fair comparison and reproducible results. SPEC’s High Performance
Group (HPG) has been active for over 20 years — since its initial benchmark derived
from David Kuck’s Perfect Suite — in creating industry standard benchmarks that
highlight and compare various aspects of high performance computing systems.
The group’s members are leading high performance computing (HPC) vendors,
national laboratories, and universities from all around the world.

SPEC HPG has been developing and maintaining application based bench-
marks and performance metrics supporting a variety of programming models and
stressing various hardware features. This includes inter-node parallelism (covered
by SPEC MPI2007), intra-node parallelism (covered by SPEC OMP2012), and off-
loading computation to a hardware accelerator (covered by SPEC ACCEL in this
paper). SPEC MPI2007 offers a suite of 18 applications running on up to 2,048
message passing interface (MPI) ranks [22]. Its goal is to evaluate MPI-parallel,
floating point, compute intensive performance of clusters and multi-processor sys-
tems. SPEC OMP2012 offers a suite of 14 applications based on scientific and engi-
neering application codes using the OpenMP 3.1 standard [21]. The benchmark
also includes an optional metric for measuring energy consumption.

The advent of hardware accelerators as a standard component in high perfor-
mance computers led SPEC HPG to investigate performance characterization in
this additional layer of parallelism. Keeping with the group’s guidelines, a perfor-
mance evaluation must be based on an open programming model so that multiple
hardware and software environments can be evaluated. As a result, the popular
but vendor specific programming model-—CUDA-—was not investigated. Instead
OpenCL, as a low level, and OpenACC, as a high level, hardware accelerator pro-
gramming models have been chosen to provide two independent subsuites within
SPEC ACCEL!. In a similar manner, the group has carefully brought together
applications from various computational and scientific domains that stress the
accelerator with very different demands. The runtime and energy consumption
of the application is monitored during multiple runs and results are presented
in the typical SPEC manner. The peer review process for every published result
ensures the validity and reproducibility of a SPEC ACCEL run.

This paper first presents previous work in Sect. 2, then introduces the measure-
ment methodology in Sect. 3. The selected applications for each of the two sub-
suites/programming model are discussed in Sect. 4. Section 5 shows how energy

! Since OpenMP 4.0 offloading is still limited to one hardware platform and one com-
piler it has at the moment vendor specific characteristics. OpenACC on the other
hand offers three different compilers and also four (via the CAPS compilers, two via
the PGI compilers) hardware platforms.
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measurements can enrich the performance data. Section 6 demonstrates how the
first published results underline the usefulness of the benchmark in comparing
both hardware and software environment for accelerators.

2 Related Work

There has been work done in creating benchmarks for measuring hardware accel-
erator performance, but all of them are academic in nature and none of them
share SPEC’s philosophy when it comes to design for standard benchmarks.
SPEC strongly believes in same source code for all, a detailed set of run and
reporting rules for compliant results, and a peer review process for all results
before publication on the SPEC website. This enables fair comparison of results.

With respect to OpenCL benchmarking, both the Parboil [27] and Rodinia
[4,5] have been very popular academic benchmarks with more than 1,000 cita-
tions between them in research papers. The Parboil and Rodinia developers
approached SPEC to standardize the benchmark, to develop a set of run and
reporting rules that enable fair performance metrics, and to build a result repos-
itory, since the groups could not provide that themselves. SPEC HPG worked
with both groups of developers to ensure that the benchmarks taken into the
OpenCL suite are running on all available platforms. A number of improvements
suggested by SPEC HPG has made it into recent releases of Parboil and Rodinia.

SHOC [7] is a benchmark suite that evolved in the academic circles and
includes both the OpenCL and CUDA implementations. As another approach
for OpenCL, the SHOC benchmark measures low level hardware performance
features rather than general application run time performance. It is, therefore,
not suitable for the SPEC approach, but has its relevance on comparing very
specific small scale algorithms on various platforms.

On the OpenACC side, the Edinburgh Parallel Computing Centre (EPCC)
has developed a benchmark suite [14] comprising a set of low-level operations
designed to test raw performance of compilers and hardware and a set of kernels
found in scientific codes. The SPEC ACCEL OpenACC suite, on the other hand,
is comprised of full scientific applications rather than kernels.

3 Design and Principles of SPEC ACCEL

3.1 Benchmark Philosophy and General Design

The goal of SPEC ACCEL is to measure the performance of compute intensive
applications using hardware acceleration. It is designed to compare different
accelerator platforms, but also different devices within a platform. A platform
consists of all the hardware and software components necessary to execute SPEC
ACCEL: the accelerator, the host system including its CPU, the interconnect
or bus used for the data transfers between host and accelerator, the support
libraries and drivers, and the compiler.
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SPEC ACCEL uses vendor independent programming standards to target
the accelerators. In its current implementation, OpenCL and OpenACC are sup-
ported. Both standards apply the offload model for the accelerated computation.
The offload model consists of a CPU (host) which runs the main program, copies
the data needed by the accelerated computation to and from discrete memory
on the accelerator, and launches the accelerated routines.

The SPEC ACCEL benchmark is provided within the SPEC harness that is
also used for other SPEC benchmarks like SPEC CPU2006, SPEC OMP2012,
and SPEC MPI2007. With the help of a user supplied config file, the benchmark
codes are automatically compiled, the total execution times measured, the results
verified for correctness, and a report generated. Optionally, a power measurement
is also included to allow the comparison of both time-to-solution and energy-to-
solution [16].

The generated performance reports may be submitted to SPEC for publica-
tion. The SPEC HPG committee reviews SPEC ACCEL results for consistency,
adherence to the run rules, and whether enough details have been supplied for
others to reproduce the results. If the committee accepts the results, they are
published together with the config file on the SPEC website.

3.2 Run Rules

The run rules cover the procedure for the building and running the benchmark
and disclosing the benchmark results. They closely follow the established SPEC
run rules but need to take into account the peculiarities of systems with hard-
ware accelerators. This section explains where the run rules from SPEC ACCEL
extend or deviate from the common rule set of SPEC. The goal is that users of
accelerator systems can compare objectively the accelerators of different vendors
on the SPEC web site.

The SPEC ACCEL benchmark suite supports base, peak, and power metrics.
The performance metrics are the geometric mean of the run time ratios of the
system under test with the run time of the reference machine. The reference sys-
tem is a SGI C3108-TY11 (a dual socket Intel Xeon E5620 system with 24 GB of
main memory) using an NVIDIA Tesla C2070 with error checking and correcting
(ECC) enabled as the accelerator. The system runs SLES11 SP2 as the operating
system and uses the built-in GNU compilers for the OpenCL suite and the PGI
compilers version 13.9 for the OpenACC suite. The reference measurements also
include energy metrics recorded from a ZES Zimmer LMG450 power analyzer.
All benchmarks in the two suites were targeted to run for at least 100s on the
reference machine in order to provide a useful time for measurements, even for
future hardware with significantly higher performance.

A set of tools is supplied to build and run the benchmarks. These SPEC tools
must be used to generate publishable results. This helps ensure reproducibility
of results by requiring that all individual benchmarks in the suite are run in the
same way and that a configuration is available that defines the optimizations
used.
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The optimizations used are expected to be applicable beyond the SPEC
benchmarks, and it is expected that system or compiler vendors would endorse
the general use of these optimizations by customers who seek to achieve good
application performance. The system components, including software, must be
generally available within 90 days of publication; there needs to be a certain level
of maturity and general applicability in the methods.

For the base metric, the same compiler must be used for all applications of a
given language within a benchmark suite. Except for portability flags, all flags
or options that affect the transformation process from SPEC-supplied source to
the completed executable must be the same for all modules of a given language.
For the peak metric, each module may be compiled with a different compiler
and a different set of flags or options. For the OpenCL suite, it is also allowed to
change the work distribution on the accelerator by using a different work group
size per benchmark.

As used in these run rules, the term run-time dynamic optimization (RDO)
refers broadly to any method by which a system adapts an executing program
for improved performance based upon observation of its behavior as it runs.
Run time dynamic optimization is allowed, subject to the provisions that the
techniques must be generally available, documented, and supported.

Results are published on the SPEC web site. A published result must contain
enough information to enable others to replicate the result. The information to
document an accelerator includes the model name, name of hardware vendor,
name and type of the accelerator, description of the connection to the host sys-
tem, whether ECC is enabled or not, and the device driver names and versions.

4 Description of the Applications

The applications comprising the SPEC ACCEL benchmark fall into two cate-
gories depending on the programming model: OpenCL or OpenACC. They cover
a wide range of scientific domains and also have very different performance char-
acteristics as shown in Tables1 and 2. The SPEC ACCEL suite is written to
comply with OpenCL 1.1 [15] and OpenACC 1.0 [1]. This section introduces
both suites of the SPEC ACCEL benchmark.

4.1 SPEC ACCEL OCL Suite

In order to fit into the design principles for SPEC ACCEL (see Sect.3), the
original benchmarks taken into the OpenCL suite were in part heavily modi-
fied. Some benchmarks were dropped when they could not be modified to meet
the SPEC HPG requirements. The Parboil Benchmark Suite [27] is the origin of
the first nine OpenCL applications of SPEC ACCEL, the other ten applications
are taken from the Rodinia Benchmark Suite [4,5]. A number of benchmarks
received larger data sets than they originally had, so that their runtime increased
to the required 100s on the reference machine. All benchmarks were tested on
all hard- and software platforms available to the HPG members. This resulted in
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numerous bug fixes both in the benchmarks but also in OpenCL runtime envi-
ronments, thus, showcasing how this benchmark suite can be used as a validation
suite for OpenCL hardware and software as well.

The selected applications span a wide area of science ranging from astronomy,
bioinformatics, computer science, electrical engineering, mathematics, mechan-
ical engineering, medicine and physics. They are also selected to cover dif-
ferent usage modes for hardware accelerators. Benchmarks like 101.tpacf and
121.lavamd use one or two long running kernels. Other benchmarks like 123.nw
use almost 350,000 very short kernel launches in order to see how well the acceler-
ator ecosystem can handle such extreme cases. The same is true for the number
of data transfers between the host and device and the amount of data being
transferred. While most benchmarks follow the usual offloading scheme of limit-
ing the amount of transfers, 116.histo, 117.bfs, and 127.srad use well over 10,000
data transfers, in case of 127.srad also of very small size. The accelerator utiliza-
tion (which is the amount of time the accelerator is occupied), as well as the time
for data transfers, also offers a broad spectrum of load situations. However, most
applications try to utilize the accelerator fully, while only a few like 116.histo,
120.kmeans, or 127.srad primarily stress the host-device transfers. 114.mriq is
a special case since it shows both a high device utilization, but also high data
transfer time. In this case, the data transfers are launched asynchronously, but
the NVIDIA OpenCL runtime forces them to synchronize, thus, completing the
transfer only after the previously launched kernel has completed.

The computational algorithms employed by the applications of the bench-
mark suite also vary widely:

101.tpacf computes the two-point angular correlation function of a collection
of observed and randomly generated astronomical bodies. It compares pairs of
angular coordinates, computes their angular distance, and computes a histogram
of those distances. The histogram is privatized, with multiple copies in each work
group, reducing bandwidth and atomic operation demand on the global memory
system.

103.stencil implements an iterative Jacobi solver of the heat equation on
a 3-D structured grid. The implementation uses double buffering to eliminate
timing effects on numerical output values for a fixed number of iterations. On
the reference machine, each iteration completes quickly enough so that platform
overheads for kernel launches and other operations has an impact on the total
performance.

104.1bm is related to the SPEC CPU2006 benchmark of the same name, and
implements the Lattice-Boltzmann Method for fluid dynamics simulation [23].
This particular implementation supports immobile solid obstacles to fluid flow in
a lid-driven closed cavity. Individual iterations have a long enough runtime that
kernel execution performance is the most relevant factor for the total application
performance.

110.fft implements a 1-D, Radix-2 Fast Fourier Transform. The kernel source
included could be configured to support other radices, but for consistency, the
benchmark only supports Radix-2.
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Table 1. OpenCL application key facts. Profiling data taken from VampirTrace
OpenCL tracing when running on NVIDA Tesla K20 using NVIDIA OpenCL.

Application Lines Language Area

of code
101.tpacf 520 C++  Astrophysics
103.stencil 308 C++  Thermodynamics
104.1bm 853 C++  Fluid dynamics
110.ft 642 C Signal processing
112.spmv 1,108 C++  Sparse linear algebra
114.mriq 569 C Medicine
116.histo 1,174 C Silicon wafer verification
117.bfs 452 C Electronic design automation, graph traversals
118.cutcp 1,192 C Molecular dynamics
120.kmeans 2,243  C++  Dense linear algebra, data mining
121.]Javamd 773 C N-body, molecular dynamics
122.cfd 1,677 C++4+  Unstructured grid, fluid dynamics
123.nw 468 C++  Dynamic programming, bioinformatics
124.hotspot 407 C Structured grid, physics simulation
125.1ud 656 C++4+  Dense linear algebra, linear algebra
126.ge 1,497 C++  Dense linear algebra, linear algebra
127.srad 1,499 C Structured grid, image processing

128 .heartwall 4,671 C Structured grid, medical imaging
140.bplustree 2,870 C Graph traversal, search

Application Kernel Accelerator MiBytes Number of Transfer

invocations utilization transferred transfers time
101.tpacf 1 98.7% 56.2 3 0.02%
103.stencil 20,000 97.0% 294 3 0.10%
104.1bm 5,000 95.3% 331 3 0.15%
110.f1t 12,800 97.9% 200 1 0.07%
112.spmv 50,000 88.3% 161 8 0.04%
114.mriq 197 94.2% 61.3 206 96.0%
116.histo 48,000 0.29% 186,755 37,041 95.8%
117.bfs 40,977 73.2% 17,636 84,349 20.8%
118.cutcp 3,250 94.3% 72.6 5 0.07%
120.kmeans 1,617 4.74% 6,296 3,233 60.0%
121.lavamd 2 94.8% 2,650 5 0.94%
122.cfd 72,217 81.9% 12.5 8 0.49%
123.nw 347,088 70.4% 512 2 0.51%
124.hotspot 30,000 85.8% 16.0 1 0.01%
125.1ud 17,988 97.2% 6,836 7 1.43%
126.ge 11,262 97.9% 484 6  0.19%
127.srad 39,002 23.2% 112 13,006 97.1%
128.heartwall 100 99.0% 186 109 0.05%

140.bplustree 3,200 98.6% 68.7 18 0.14%
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112.spmv implements a sparse-matrix, dense-vector multiplication. The input
sparse matrix file format is given in coordinate (COO) format, which is inter-
nally translated into a transposed jagged diagonal storage (JDS) format before
multiplication. The benchmark reflects classes of applications where the sparse
matrix remains constant, but is iteratively multiplied into a variety of vectors,
allowing the cost of the data format conversion to be amortized over a large
number of operations.

114.mriq computes the Q matrix used in non-Cartesian magnetic resonance
image reconstruction algorithms [26]. It is used to compensate for artifacts
caused by the sampling trajectory on the actual samples recorded. The first
kernel preprocesses one of the input sets, and is negligible in the total runtime.
The second kernel accumulates contributions from each sample point to each
cell in a 3-D regular grid, using a large number of trigonometric operations. The
combination of the multiplicative algorithm complexity and the more complex
mathematical operations cause this second kernel to dominate the runtime.

116.histo implements a saturating histogram, which is a very large, two-
dimensional matrix of char-type bins with a maximum value of 255. The bench-
mark is customized to a certain class of input, exemplary of a silicon wafer
verification application, which follows a nearly Gaussian distribution, roughly cen-
tered in the output histogram. The benchmark executes kernels in four phases.
It first runs a small kernel on a subset of the input to estimate the centroid
of the output distribution. Second, it decomposes the histogram indexes of the
input into separate row and column indexes. Work-groups in the third kernel
privatize a portion of the histogram locally, and scan the input for items that
fall within that region. Finally, the results from all the privatized histograms
are combined into the complete results. Each kernel runs very quickly, and the
benchmark executes iteratively, representing the streaming analysis application
in which it would be deployed. The relatively small runtime for each individual
kernel increase the relative impact of kernel launch and device communication
overheads in the platform.

117.bfs implements a single-source shortest-path search through a graph
using a breadth-first search [20]. The application performs multiple simulta-
neous searches on the same graph to estimate the average distance between each
node in the graph and all other nodes, based on a sampled subset of sources.

118.cutcp computes a cutoff-limited Coulomb potential field for a set of
charges distributed in a volume [10]. The application is set to use a cutoff dis-
tance of 12 A, and builds a spatial data structure of the input charges to reduce
the number of distance tests that must be performed for each output cell. The
field calculation is performed iteratively, reflecting the computational pattern of
a typical analysis of the time-averaged field values.

120.kmeans [3] implements the well-known clustering algorithm of data-
mining - K-means. In 7120.kmeans, a data object is comprised of several features.
By dividing a set of data objects into K clusters, k-means represents all the data
objects by the mean values or centroids of their respective clusters. In each iter-
ation, the algorithm associates each data object with its nearest center, based
on some chosen distance metric. The new centroids are calculated by taking the
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mean of all the data objects within each cluster respectively. As a data inten-
sive application, 120.kmeans transposes the data matrix before doing clustering
for better coalesced memory access. However, this benchmark still stresses the
memory bandwidth when many single instruction multiple data (SIMD) com-
pute units access global memory simultaneously.

121.lavamd [29] implements an algorithm of molecular dynamic simulation
in 3D space. The code calculates particle potential and relocation due to mutual
forces between particles within a large 3D space. This space is divided into cubes,
or large boxes, that are allocated to individual cluster nodes. The large box at
each node is further divided into cubes, called boxes. 26 neighbor boxes surround
each box (the home box). Home boxes at the boundaries of the particle space
have fewer neighbors. Cutoff-radius strategy is applied enforcing short-range
interaction between particles, which stress communication between neighboring
work-item groups. 121.lavamd requires the communication of boundary elements
of each box with it neighbor boxes. On a typical GPU, the inter-work-group
communication can only be done via synchronized global-memory-access. This
benchmark stresses both memory latency and synchronization.

122.¢fd [6] is an unstructured-grid, finite-volume solver for the 3D Euler
equations for compressible flow. The Runge-Kutta method is used to solve a
differential equation. Effective GPU memory bandwidth is improved by reducing
total global memory access and overlapping computation, as well as using an
appropriate numbering scheme and data layout. Each time step depends on the
results of the previous time step and each time step needs a kernel finalization
(an implicit synchronization) and re-launch. This benchmark stresses memory
bandwidth and has many kernel launches.

123.nw [3] is a nonlinear global optimization method for DNA sequence align-
ments - Needleman-Wunsch. The potential pairs of sequences are organized in a
2D matrix. In the first step, the algorithm fills the matrix from top left to bottom
right, step-by-step. The optimum alignment is the pathway through the array
with maximum score, where the score is the value of the maximum weighted
path ending at that cell. Thus, the value of each data element depends on the
values of its northwest-, north-, and west-adjacent elements. The first step is
parallelized on the GPU. Data blocks in each diagonal strip can be processed in
parallel with serial dependency across strips. Blocks are mapped to local memory
for data locality. In the second step, the maximum path is traced backward to
deduce the optimal alignment. When computation is going on, the workload of
each step increases at first and then decreases. At some steps, the computation
workload is not enough to fill up all the computation units. In certain phases,
the throughput is constrained by 123.nw’s limited parallelism.

124.hotspot [3,13] is a widely used tool to estimate processor temperature
based on an architectural floor plan and simulated power measurements. This
benchmark solves a differential equation boundary-value problem on a 2D struc-
tured grid by using a finite difference method. Each output cell in the computa-
tional grid represents the average temperature value of the corresponding area
of the chip.
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125.1ud [5] implements the well-known LU decomposition for a non-singular
matrix. The block-wise operation provides enough parallelism for a GPU-like
SIMD device. The degree of block-level parallelism reduces as execution pro-
ceeds. 125.lud utilizes the local memory improve data reuse and coalesced mem-
ory access. This benchmark stresses floating point computation units and the
compute units’ local memory.

126.ge solves linear equations using a row-by-row Gaussian elimination. The
algorithm requires synchronization between row-wise iterations, but the values
calculated in each iteration can be computed in parallel. This benchmark stre-
sses fine-grained global communication and synchronization with many kernel
launches.

127.srad [3,28] implements the speckle reducing anisotropic diffusion
(SRAD) method, which is a diffusion method for ultrasonic and radar imaging
applications based on partial differential equations (PDEs). It is used to remove
locally correlated noise, known as speckles, without destroying important image
features. SRAD consists of several pieces of work: image extraction, continuous
iterations over the image (preparation, reduction, statistics, computation, and
image compression). Each stage requires global synchronization across all the
workgroups (kernel calls) before proceeding to the next stage. This benchmark
also presents a lot of global memory accesses. This benchmark stresses floating
point units, global memory access, and global synchronization.

128.heartwall [28] tracks the movement of a mouse heart over a sequence of
ultrasound images to record response to the stimulus. In order to reconstruct
approximated full shapes of heart walls, the program generates ellipses that are
superimposed over the image and sampled to mark points on the heart walls
(Hough search). In its final stage (heart wall tracking presented in Ref. [5]), the
program tracks movement of surfaces by detecting the movement of image areas
under sample points as the shapes of the heart walls change throughout the
sequence of images. The tracking kernel continues dealing with consecutive image
frames. This benchmark stress floating point units and memory bandwidth.

140.bplustree [9] traverses B+ trees in parallel, avoiding the overhead of
selecting the entire table to transform into row-column format and leveraging
the logarithmic nature of tree searches. This benchmark utilizes braided paral-
lelism, running independent queries in each work group concurrently, to avoid the
need of global synchronization. It involves irregular memory access and therefore
stresses memory bandwidth and latency.

4.2 SPEC ACCEL ACC Suite

The OpenACC suite consists of 15 applications. Some applications are direct
ports from the OpenCL suite, others have been ported from the SPEC OMP2012
suite. A number of numerical aerodynamic simulation (NAS) parallel bench-
marks as well as a few novel applications are included as well.

Similar to the OpenCL suite, the OpenACC suite of the SPEC ACCEL
benchmarks also tries to stress the hardware accelerator ecosystem in various
ways. The applications vary between few (314.omrig) or lots of accelerator
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Table 2. OpenACC application key facts. Profiling data taken from PGI OpenACC
runtime using an NVIDIA Tesla K40 and the CUDA 5.5 backend

Application Lines Language Area
of code
303.ostencil 796 C Thermodynamics
304.olbm 923 C Computational fluid Dynamics, Lattice Boltz-
mann method

314.omriq 693 C Medicine

350.md 2,479 Fortran Molecular dynamics

351.palm 48,583 Fortran Large-eddy simulation, atmospheric turbu-

lence

352.ep 480 C Random number generation

353.clvrleaf 6,477 C, Fortran Explicit hydrodynamics

354.cg 638 C Conjugate gradient

355.seismic 750 Fortran Seismic wave modeling

356.sp 2,693 Fortran Scalar Penta-diagonal solver

357.csp 2,364 C Scalar Penta-diagonal solver

359.miniGhost 6,334 C, Fortran Finite difference

360.ilbdc 1,065 Fortran Fluid Mechanics

363.swim 249 Fortran Weather: shallow water modeling

370.bt 5,524 C Block tridiagonal solver for 3D PDE
Application Kernel # of Accel. MiBytes # of Transfer

invocations regions usage transferred transfers time

303.ostencil 20,000 20,000 92.2% 392 28 0.07%
304.0lbm 5,000 5,000 96.2% 16,562 1,053 0.72%
314.omriq 2 2 99.1% 112 12 0.00%
350.md 607 607 97.3% 1,019 2,428 0.01%
351.palm 50,185 46,584 35.4% 102,438 26,377 5.02%
352.ep 1,760 1,760 97.0% 0.027 2,345 0.00%
353.clvrleaf 256,021 203,821 94.4% 3,445 9,678 0.21%
3b4.cg 13,234 13,234 80.4% 1,173 10,781 0.08%
355.seismic 10,402 3,201 92.8% 6,142 4,431 0.66%
356.sp 27,691 27,691 95.1% 657 46 0.04%
357.csp 26,087 26,087 95.4% 657 46 0.04%
359.miniGhost 72,040 64,040 73.1% 1,622 112,124 1.14%
360.ilbdc 5,000 5,000 88.7% 1,925 121 0.42%
363.swim 90,999 26,000 44.2% 198,563 26,000 40.0%
370.bt 8,051 8,051 95.3% 206 15 0.02%

regions (353.clurleaf), as well as one (most of the applications) or multiple kernel
invocation per accelerator region (363.swim). In the same manner, the amount
and number of data transfers between the host and device differ. At the moment
a large amount of data transfers also results in a poorer accelerator utilization.
This can, however, change for future OpenACC implementations that better
overlap computation and transfer.
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The included applications cover a wide area of scientific domains and com-
putational schemes:

303.0stencil is an iterative Jacobi solver of the heat equation on a 3-D struc-
tured grid, which can also be used as a building block for more advanced multi-
grid PDE solvers. This code it ported from the serial version of 103.stencil from
Parboil. While the accelerated loop is a fairly simple stencil operation, the code
shares the same workload as 103.stencil and offers a way to directly compare an
OpenCL and OpenACC implementation of the same code.

304.0lbm, like 104.lbm, is ported from the SPEC CPU2006 benchmark and
uses the Lattice Boltzmann Method (LBM) to simulate incompressible fluids in
3D. The accelerated portion of the code is a more complex 19-point stencil which
stresses the accelerator’s global memory and potential cache infrastructure.

314.omriq simulates magnetic resonance imaging (MRI) image reconstruc-
tion by converting sampled radio responses into magnetic field gradients. This is
a port of the serial version of 114.mriq also from Parboil and uses the same work-
load. The accelerated loop is fairly small but includes an inner loop reduction,
use of cos and sin functions, and due to the use of an array of structs, some
memory accesses are not coalesced. Non-coalesced memory accesses are generally
not well suited for accelerators, but are often found in complex applications.

350.md was written at Indiana University to perform molecular dynamics
simulations of dense nuclear matter such as those occurring in Type II super-
novas, the outer layers of neutron stars, and white dwarf stars [12]. While an
earlier version of this code appears in the SPEC OMP2012 benchmark suite, this
version has been updated to better utilize the massive parallelization available
with accelerators.

351.palm is a large-eddy simulation (LES) model for atmospheric and oceanic
flows from Leibniz University of Hannover [25]. It solves prognostic equations for
velocity (Navier-Stokes equation), temperature (first law of thermodynamics),
and humidity (transport equation for scalar). 351.palm is the largest and most
complex of the codes in SPEC ACCEL and best represents how large scale appli-
cations can utilize accelerators. The source code includes a host implementation
of the Temperton fast Fourier transform (FFT) routines which dominates the
compute time spent on the host. However, for the peak metric, an optimized
host or accelerated Fastest Fourier Transform in the West (FFTW) library may
be used.

352.ep is from the University of Houston and is a port of the embarrassing
parallel (EP) benchmark from the NAS Parallel Benchmark (NPB) suite [2]. The
port required the use of a blocking algorithm since the entire problem size could
not fit within the 2 GB memory limit set in SPEC ACCEL. The benchmark also
tests the use of reductions. [17-19]

353.clvleaf is the CloverLeaf [11] mini-application which is used to solve the
compressible Euler equations on a Cartesian grid, using an explicit, second-order
method.

354.cqg is NPB’s conjugate gradient (CG) OpenMP benchmark ported to
OpenACC by the University of Houston. This benchmark uses the inverse power
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method to find an estimate of the largest eigenvalue of a symmetric positive
definite sparse matrix with a random pattern of nonzeros. The code required
few changes from the OpenMP version. [17,18].

355.seismic is ported from University of Pau’s SEISMIC_CPML perfectly
matched layer (PML) Collino 3D isotropic solver [8], a 3D classical split PML
program for an isotropic medium using a second-order, finite-difference spatial
operator, for comparison. The code was originally ported to OpenACC for use in
tutorials, but due to the minimal number of OpenACC directives used, highlights
a compiler’s ability to schedule loops and perform reduction operations.

356.sp and 357.csp are both derived from NPB’s singal processing (SP)
benchmark, using different languages. Although they do both solve the same
problem using the same data set, the SPEC HPG committee thought having
both would give a good comparison of using OpenACC with Fortran versus C.
The SP benchmark solves a synthetic system of partial differential equations
using a penta-diagonal matrix.

859.miniGhost is a finite difference mini-application from Sandia National
Laboratory [24] used to test a broad range of stencil algorithms on accelerators.
The code also performs inter-process boundary (halo, ghost) exchange and global
summation of grid values.

360.1lbdc is an OpenACC port from SPEC OMP2012 [21] and is geared to the
collision-propagation routine of an advanced 3-D lattice Boltzmann flow solver
using a two-relaxation-time (TRT-type) collision operator for the D3Q19 model.
The code uses a similar algorithm to 304.lbm although written in Fortran and
uses a minimal number of OpenACC directives.

363.swim is also ported from SPEC OMP2012 and is a finite-difference
approximation of the shallow-water equations. Because the data is printed after
each time step, the benchmark highlights the cost of moving data between the
accelerator and the host which also includes the data movement between the
hosts application user memory space and the accelerator driver memory space.

870.bt is NPB’s BT benchmark ported to OpenACC. Like SP, it solves a
synthetic system of partial differential equations, but instead uses a block tridi-
agonal matrix.

5 Energy Awareness

Computer systems using hardware accelerators are seen as one method for more
energy efficient data processing. The SPEC ACCEL benchmark suites take that
into account by providing the same power measurement capabilities as the pre-
viously released SPEComp2012 suite. As a result, the energy consumption can
be recorded during a measurement run as well. Recording energy consumption
is not mandatory but encouraged.

Energy measurement is enabled by changing the power setting in the configu-
ration file for the measurement run to yes and setting up power and temperature
measurement daemons (PTDaemon). The SPEC runtime system then connects
to these daemons and continuously samples the energy consumption of the whole
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system under test every second and the air intake temperature every five sec-
onds. The SPEC ACCEL run rules define how the energy measurement needs
to be set up. The power analyzers need to be calibrated in the last 12 months
to ensure the energy measurement accuracy. The temperature is measured to
prevent reducing the energy consumption by running the system under test at
unusually low temperatures — a valid run needs to be carried out with at least
20 °C air intake temperature. The PTDaemon can connect to a variety of power
meters and temperature probes and offers range checking, uncertainty calcula-
tion, and multi-channel measurements. The SPEC runtime system ensures that
at least 99 % of all power samples are reported as valid samples by the PTDae-
mon. Otherwise, it will abort the run or mark it as invalid.

When the SPEC ACCEL benchmark is run with energy measurement enabled,
it will generate two additional metrics per suite:

SPECaccel {acc|ocl} energy {base|peak}.

Similar to the standard metrics, the energy metrics compare the energy con-
sumption of the system under test to the energy consumption of the reference
system. A higher number indicates a lower energy consumption or better energy
efficiency. Energy for this metric means power consumption integrated over time,
hence an energy metric of 2 indicates that the system under test consumed half
the energy (measured in Joules) than the reference system on the benchmark. As
a result, the SPEC ACCEL energy metrics can be used for an energy-to-solution
comparison. While the standard SPEC ACCEL metrics provide a measurement
for time-to-solution, they may be used in combination to determine the reason
why a system under test consumes more or less energy than the reference sys-
tem. A SPEC_ocl_base rating of 2 and a SPEC_ocl_energy_base rating of 2 indi-
cate that the system under test ran the benchmarks twice as fast as the reference
system, but on average consumed the same amount of power. A SPEC_ocl_base
rating of 1 and a SPEC_ocl_energy_base rating of 2 indicate that the system
under test ran the benchmark in the same time as the reference system, but
used on average half the power. In total, both systems consumed half the energy
than the reference system, thus, running the benchmark induces only half the
energy costs.

The report for a benchmark run lists the consumed energy, the maximum
power usage, the average power usage, and the energy ratio for each individual
benchmark. The idle power consumption can be taken from the log-file of the
benchmark run. Figure 1 shows that the maximum and average power consump-
tion varies quite a lot between benchmarks. The power measurement can be used
to indirectly deduce the behavior of the various benchmarks:

— A benchmark with low maximum and average power consumption is mainly
data transfer bound since both the host and the device are idle during the
transfers.

— A benchmark with a high maximum and average power is largely device
bound. There can be both compute or memory access activity on the device.
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Power Consumption of SPECACCEL OCL Benchmarks (in W)
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Fig. 1. Maximum and average power consumption for all benchmarks as well as idle
power consumption when running both SPEC ACCEL suites on the reference system

— A benchmark with a significantly higher maximum than average power con-
sumption has both: phases with lots of data transfers, but also device bound
phases resulting in a high variation in power consumption.
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6 Discussion of First Results

A run of SPEC ACCEL produces a number of output files in the result sub-

directory. It writes a logfile of the benchmark run — in case of any errors also

a more detailed debug log — as well as text and raw output for each data set

(test, train, or ref) it was run on. The runtime and energy consumption of the

benchmarks, when executed on the reference machine serve as the basis for nor-

malization. If your SPEC rate is larger than 1, this indicates that your system
performs better at running the workload of the selected benchmark suite than
the reference system. As a result, the single metric enables a first method of
comparing hardware platforms and software environments. The text output for
the ref data set also allows a benchmark-by-benchmark comparison with the
published results, as shown in Table3. In this result, it can be seen that not
all benchmarks benefit equally from the more modern accelerator. 120.kmeans,
for example, only shows an 11 % performance increase while 114.mriq runs over
three times as fast. In a similar manner, one can see that this hardware platform
is more energy efficient than the reference system and requires less than half the
energy to run the suite (as indicated by the SPECaccel ocl_energy_base value).

The SPEC tool rawformat can produce reports from a measurement run that
are comparable to the results officially published on the SPEC website. It shows
the results from all runs of the ref data set, so that run-to-run variation can
be examined as well. The SPEC tools also run tests to determine the hardware
and software configuration to aid the gathering of all performance relevant data
about the setup of the system under test.

In order to share your results with others on the SPEC website, a reportable
run must be done. This will invoke the benchmark suite with the test and train
data set once, and the ref data set at least three times. The rawformat tool checks
for missing system setup information in the result file. One very common issue is
a lack of compiler flag description. SPEC requires an xml-based description of all
used compiler commands and compiler flags. A result that has been submitted
for publication is peer reviewed by HPG members in order to ensure compliance
of the benchmark result with the run rules. The review process also ensures that
the result contains all information necessary to reproduce the measurement. All
published results have passed multiple stages of checking, verification, and cross-
checking, thus, serving as a sustainable source for performance data.

A published result is split into multiple sections?:

— The header lists the hardware vendor, the used accelerator, and the system
name, along with results in all four metrics of the benchmark. It also lists who
ran the benchmark, when it was carried out, and when the used hardware and
software components are available.

— It is followed by a diagram that shows the distribution of the individual bench-
marks. The distribution provides insight into which applications perform well

2 The reference result for the OpenCL suite is available at http://spec.org/accel/
results/res2014ql /accel-20140228-00006.html and for the OpenACC suite at http://
spec.org/accel /results/res2014ql /accel-20140228-00005.html.


http://spec.org/accel/results/res2014q1/accel-20140228-00006.html
http://spec.org/accel/results/res2014q1/accel-20140228-00006.html
http://spec.org/accel/results/res2014q1/accel-20140228-00005.html
http://spec.org/accel/results/res2014q1/accel-20140228-00005.html
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Table 3. SPEC ACCEL OpenCL results for an ASUS P9X79 Motherboard with an
Intel Core i7-3930K and an NVIDIA Tesla K40c (ECC enabled) using base optimiza-
tions.

Benchmarks Ref. |Run |Ratio|Energy | Max | Average | Energy

time | time power | power | ratio
101.tpacf 107 |67.7 |1.58 |15.3 241|225 2.14
103.stencil 125 [61.6 [2.03 |17.5 296 284 2.59
104.1bm 112 |43.4 |2.58 |12.2 289 280 3.16
110.fft 111 |76.0 |1.46 22.9 316 302 1.79
112.spmv 147 179.0 |1.86 |21.8 293 |276 2.41
114.mriq 109 [33.2 13.28 | 8.49 [271 |256 4.25
116.histo 114 |80.8 /11.41 |16.0 216 198 1.95
117.bfs 117 159.2 |1.98 |14.7 266 |248 2.59
118.cutcp 99 1344 /2.88 | 9.01 |273 |262 3.68
120.kmeans 100 [90.1 |1.11 [18.0 211 199 1.50
121.lavamd 109 60.2 |1.81 |17.3 307 288 2.28
122.cfd 126 |73.3 11.72 |19.1 273 260 2.26
123.nw 115 169.8 |1.65 |16.0 237 229 2.26
124.hotspot 114 |38.7 12.95 |10.9 303 |281 3.48
125.1ud 119 |80.9 |1.47 22.8 295 282 1.93
126.ge 155 |54.1 |2.86 |14.3 280 265 3.74
127.srad 114 60.7 |1.88 |16.9 292 278 2.36
128.heartwall 106 |88.0 {1.20 |21.7 255 247 1.66
140.bplustree 108 |70.0 |1.54 |17.3 257|247 2.05
SPECaccel_ocl_energy _base 2.43
SPECaccel_ocl_base 1.87

or not so well on the system under test. The bars also have ticks for all runs
of the ref data set so that run-to-run variation is also easily visible.

— The system description section lists the host and accelerator’s hardware prop-
erties along with the software set up.

— With energy measurement enabled, the next section shows the properties of
its setup including power supply, power analyzer used, and the temperature
probe.

— The result table(s) lists the execution time and the ratio for each iteration
of every benchmark, as well as the energy measurement results (if energy
measurement is enabled).

— The notes section shows the output from the SPEC sysinfo tool and any
custom notes by the submitter of the result.
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Table 4. SPEC ACCEL OpenACC results for an ASUS P9X79 Motherboard with an
Intel Core i7-3930K and an NVIDIA Tesla K40c (ECC enabled) running at various
GPU clock frequencies using base optimizations

745 MHz 810 MHz
Benchmarks |[Ratio ERatio|Ratio Speedup ERatio ESaving
303.o0stencil 2.60 3.09] 2.96 13% 3.27 5%
304.0lbm 1.99 2.61| 2.20 9% 2.74 5%
314.omriq 2.37 2.96| 2.57 8% 2.99 1%
350.md 2.31 2.97 2.59 11% 3.05 3%
351.palm 1.88 2.50, 1.97 5% 2.57 2%
352.ep 1.36 1.80| 1.49 9% 1.91 5%
353.clvrleaf 2.65 3.37 2.94 10% 3.48 3%
354.cg 2.50 3.24| 2.74 9% 3.40 5%
355.seismic 2.38 3.20| 2.64 10% 3.37 5%
356.sp 2.04 2.65| 2.26 10% 2.78 5%
357.csp 1.65 2.16| 1.82 10% 2.28 5%
359.miniGhost| 2.17 2.82| 2.69 19% 3.25 13%
360.ilbdc 3.11 4.10| 3.64 14% 4.45 8%
363.swim 2.31 3.14] 2.50 7% 3.25 4%
370.bt 2.50 3.35| 2.81 11% 3.58 7%
Overall 2.21 2.88| 2.47 10% 3.03 4%
745 MHz 875 MHz
Benchmarks |Ratio ERatio|Ratio Speedup ERatio ESaving
303.ostencil 2.60 3.09] 3.17 18% 3.16 2%
304.0lbm 1.99 2.61| 2.35 15% 2.78 6%
314.omriq 2.37 2.96| 2.70 12% 2.91 -2%
350.md 2.31 297 2.78 17% 2.97 0%
351.palm 1.88 2.50, 2.01 7% 2.54 2%
352.ep 1.36 1.80| 1.61 16% 1.96 8%
353.clvrleaf 2.65 3.37] 3.07 14% 3.44 2%
354.cg 2.50 3.24| 2.84 12% 3.37 4%
355.seismic 2.38 3.20] 2.79 15% 3.38 5%
356.sp 2.04 2.65| 2.35 13% 2.74 3%
357.csp 1.65 2.16/ 1.89 13% 2.25 4%
359.miniGhost| 2.17 2.82| 2.80 22% 3.21 12%
360.ilbdc 3.11 4.10f 3.77 18% 4.37 6%
363.swim 2.31 3.14] 2.60 11% 3.25 3%
370.bt 2.50 3.35] 2.95 15% 3.56 6%
Overall 2.21 2.88| 2.59 14% 3.01 4%

— The compiler section lists the compiler(s) and compiler flags used for every
individual application in the suite. It also provides a link to the previously
mentioned flags file explaining the compiler settings in more detail.

Among the initially submitted results from the SPEC ACCEL OpenACC suite
is an experiment on how different GPU clock frequency affects application per-
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Table 5. SPEC ACCEL OpenACC results for an ASUS P9X79 Motherboard with an
Intel Core i7-3930K and an NVIDIA Tesla K40c using base optimizations with ECC
enabled and disabled

Benchmarks ECC enabled | ECC disabled
Ratio | ERatio | Ratio | Speedup | ERatio | ESaving

303.ostencil 2.60 |3.09 2.67 2.7% 13.19 3.2%
304.0lbm 1.99 |2.61 4.37 120% 5.62 115 %
314.omriq 2.37 12.96 2.86 |20.7% 3.45 16.6 %
350.md 2.31 |2.97 2.35 1.7% 3.00 1.0%
351.palm 1.88 |2.50 1.96 4.3% 2.62 4.8%
352.ep 1.36 |1.80 1.37 | 0.7% |1.81 0.6 %
353.clvrleaf 2.65 |3.37 298 [12.5% 3.72 10.4%
354.cg 2.50 |3.24 2.60 4.0% 3.43 5.9%
355.seismic 2.38 ]3.20 2.55 71% 3.43 72%
356.sp 2.04 |2.65 2.45 20.1% 3.19 20.4 %
357.csp 1.65 |2.16 1.91 |15.8% 2.51 16.2%
359.miniGhost | 2.17 | 2.82 2.84 [30.9% 3.62 28.4%
360.ilbdc 3.11 [4.10 4.09 |31.5% 5.21 27.1%
363.swim 231 |3.14 2.46 6.5 % 3.35 6.7%
370.bt 2.50 |3.35 2.80 |12.0% |3.79 13.1%
Overall 2.21 | 2.88 2.59 [22.7% |3.35 16.3 %

formance. The experiment uses the GPU Boost capabilities of the NVIDIA
K40c GPU where the clock speed can be increased from the default 745 MHz
to 810 and 875 MHz. The results are shown in Table4. All benchmarks benefit
from the increased GPU clock rate and none consume more energy to run the
applications. Since the energy savings are less than the performance gain, the
system actually draws more power, but over a shorter period of time. Increasing
the GPU’s clock speed also helps with memory bandwidth efficiency, hence, some
benchmarks see improvements greater than the clock boost. Other benchmarks
see less performance since they either have a high percentage of time spent on
the host (351.palm, 354.cg) or have higher memory transfer rate between the
host and device (363.swim). As a result of this study, a site such as Oak Ridge
or or National Center for Supercomputing Applications (NCSA) could decide
to increase the GPU clock rate by default since a broad range of applications
benefit from it (reduced runtime) without extra costs (same or less energy con-
sumption).

Another widely discussed question that can be answered with the currently
published results is the impact of ECC on accelerator performance. Table 5 shows
the results for the SPEC ACCEL OpenACC benchmarks with ECC turned on
and off. As expected, performance improvements, due to the increased memory
bandwidth when ECC is disabled, actually vary by a very large amount for the
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applications used. On average, disabling ECC yields a performance increase of
22.7%, and the energy consumption also slightly improves due to the reduced
computing times. Whether this nominal performance increase is worth the risk
of wrong results is a different discussion. Within the SPEC harness, the result
verification routine ensures that the applications generate the expected results.

7 Summary and Future Work

SPEC HPG set out to develop a performance measurement environment based
on the SPEC principles for hardware accelerators. As a result, two application
suites — one with OpenCL and one with OpenACC applications — have been rel-
eased with SPEC ACCEL. They deliver performance and energy consumption
metrics that enable comparing hardware devices and software environments.
The goals set by HPG for the development of these application suites are met.
The metrics reflect the impact of different hardware and hardware settings, but
also show how different software environments (e.g., compilers, runtimes) affect
application performance. The mix of selected applications also demonstrates that
not all applications react in a similar manner to such a change. The suites can
also serve as a yardstick for determining the best hardware and software for
solving particular scientific problems. Furthermore, the suites have already been
used by compiler and runtime vendors as a mean for verification of the developed
software stacks.

SPEC ACCEL is set apart from other accelerator benchmarks for hardware
accelerators since it is simple to run, yet has a performance evaluation process
that uses real world applications under a strict measurement environment and a
peer review process for published results. Furthermore, the energy consumption
metric enables comparison between results not only by runtime of the applica-
tions, but also energy consumed.

HPG plans to extend SPEC ACCEL with a third suite covering OpenMP 4.0
target directives in the near future. The OpenACC applications will be ported to
support OpenMP 4.0 target directive so that devices that are currently not sup-
ported by OpenACC may be compared to devices that are. Beyond that effort,
SPEC HPG is investigating future updates to the various suites to support more
current versions of OpenCL and OpenACC.
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Abstract. The High Performance Conjugate Gradient (HPCG) bench-
mark has been recently proposed as a complement to the High Perfor-
mance Linpack (HPL) benchmark currently used to rank supercomputers
in the Top500 list. This new benchmark solves a large sparse linear system
using a multigrid preconditioned conjugate gradient (PCG) algorithm.
The PCG algorithm contains the computational and communication pat-
terns prevalent in the numerical solution of partial differential equations
and is designed to better represent modern application workloads which
rely more heavily on memory system and network performance than HPL.
GPU accelerated supercomputers have proved to be very effective, espe-
cially with regard to power efficiency, for accelerating compute intensive
applications like HPL. This paper will present the details of a CUDA
implementation of HPCG, and the results obtained at full scale on the
largest GPU supercomputers available: the Cray XK7 at ORNL and the
Cray XC30 at CSCS. The results indicate that GPU accelerated super-
computers are also very effective for this type of workload.

1 Introduction

After twenty years of the High Performance Linpack (HPL) benchmark, it is
now time to complement this benchmark with a new one that can stress dif-
ferent components in a supercomputer. HPL solves a dense linear system using
Gaussian Elimination with partial pivoting, and its performance is directly cor-
related with dense matrix-matrix multiplication. While there are applications
with similar workload (material science codes like DCA++ or WL-LSMS, both
winners of the Gordon Bell awards), the vast majority of applications cannot be
recast in terms of dense linear algebra and their performance poorly correlates
with the performance of HPL.

In 2013, Dongarra and Heroux [1] proposed a new benchmark designed to
better represent modern application workloads that rely more heavily on memory
system and network performance than HPL. The new benchmark, HPCG, solves
a large sparse linear system using an iterative method. It is an evolution of one
of the Mantevo Project applications from Sandia [12]. The Mantevo Project was
an effort to provide open-source software packages for the analysis, prediction
and improvement of high performance computing applications. This is not the
first time that a new benchmark has been proposed to replace or augment the
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Top 500 list. The HPCC benchmark suite [2] and the Graph 500 benchmark [4]
are two well known proposals, but up to now the uptake has been limited. Graph
500 after 4 years is still listing only 160 systems.

This paper presents a CUDA implementation of HPCG and the results on
large supercomputers. Although we use CUDA, the algorithms and methods are
applicable in general on highly parallel processors. The paper is organized as
follows: after a short introduction to CUDA, we describe the algorithmic details
of HPCG. A description of the CUDA implementation and optimization is then
given, followed by a section on results and comparison with available data.

2 GPU Computing and CUDA

The use of GPUs in high performance computing, sometimes referred to as GPU
computing, is becoming very popular due to the high computational power and
high memory bandwidth of these devices coupled with the availability of high
level programming languages.

CUDA is an entire computing platform for C/C++/Fortran on the GPU.
Using high-level languages, GPU-accelerated applications run the sequential
part of their workload on the CPU - which is optimized for single-threaded
performance - while accelerating parallel processing on the GPU.

CUDA follows the data-parallel model of computation. Typically each thread
executes the same operation on different elements of the data in parallel. Threads
are organized into a 1D, 2D or 3D grid of thread-blocks. Each block can be 1D,
2D or 3D in shape, and can consist of up to 1024 threads on current hardware.
Threads within a thread block can cooperate via lightweight synchronization
primitives and a high-speed on-chip shared memory cache.

Kernel invocations in CUDA are asynchronous, so it is possible to run CPU
and GPU in parallel. Data movement can also be overlapped with computations
and GPU can DMA directly from page-locked host memory. There are also a
large number of libraries, from linear algebra to random number generation. Two
libraries that are particularly relevant to this benchmark are CUBLAS [8] and
CUSPARSE [9], that implement linear algebra operations on dense or sparse
matrices. In the benchmark, we also used Thrust [10], a C++ template library
for CUDA based on the Standard Template Library (STL), to sort and find
unique values.

3 HPCG

The new HPCG benchmark is based on an additive Schwarz Preconditioned
Conjugate Gradient (PCG) algorithm [3].

The benchmark has 8 distinct phases:

1. Problem and Preconditioner setups
2. Optimization phase



70 E. Phillips and M. Fatica

Validation testing

Reference sparse Matrix-vector multiply and Gauss-Seidel kernel timings
Reference PCG timing and residual reduction

Optimized PCG setup

Optimized PCG timing and analysis

Report results

XN oW

During the initial setup, data structures are allocated and the sparse matrix is
generated. The sparse linear system used in HPCG is based on a simple elliptic
partial differential equation discretized with a 27-point stencil on a regular 3D
grid. Each processor is responsible for a subset of matrix rows corresponding to a
local domain of size IV, x N, x IV, chosen by the user in the hpcg.dat input file.
The number of processors is automatically detected at runtime, and decomposed
into Py x P, x P,, where P = P, PP, is the total number of processors. This
creates a global domain G, x Gy, x G, where G, = P,N,, G, = P,N,, and
G, = P.N,. Although the matrix has a simple structure, it is only intended to
facilitate the problem setup and validation of the solution, and may not be taken
advantage of to optimize the solver.

Between the initial setup and validation, the benchmark calls a user-defined
optimization routine, which allows for analysis of the matrix, reordering of the
matrix rows, and transformation of data structures, in order to expose paral-
lelism and improve performance of the SYMGS smoother. This generally requires
reordering matrix rows using graph coloring for performance on highly parallel
processors such as GPUs. However, this introduces a slowdown in the rate of
convergence, which in turn increases the number of iterations required to reach
the solution. The time for these additional iterations, as well as the time for the
optimization routine, is counted against the final performance result.

Next, the benchmark calls the reference PCG solver for 50 iterations and
stores the final residual. The optimized PCG is then executed for one cycle to
find out how many iterations are needed to match the reference residual. Once
the number of iterations is known, the code computes the number of PCG sets
required to fill the entire execution time. The benchmark can complete in a
matter of minutes, but official results submitted to Top500 require a minimum
of one hour duration.

3.1 The PCG Algorithm

The PCG algorithm solves a linear system Az = b given an initial guess z¢ with
the following iterations:
We can identify these basic operations:

A. Vector inner products o := y” z. Each MPI process computes its local inner
product and then calls a collective reduction to get the final value.

B. Vector updates w = ay + Bz. These are local updates, where performance is
limited by the memory system.
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Algorithm 1. Preconditioned Conjugate Gradient [1]

1:
2:

k=0
Compute the residual ro = b — Axo

3: while (||ri|| < €) do

4: 2k = M_lrk

5: k=k+1

6: if k=1 then

71 P1 = 2o

8: else

9: Bk = Th_12k-1/TF_o2k—2
10: Pk = 2k—1 + BrDr—1

11: end if

12: ar = 18_126-1/DF Apr

13: Tk = Tk—1 + QkDk

14: Tk = Thk—1 — OCkApk

15: end while

16: x = xg
C. Application of the preconditioner w := M 'y, where M ! is an approxima-

tion to A~1. The preconditioner is an iterative multigrid solver using a sym-
metric Gauss-Seidel smoother (SYMGS). Application of SYMGS at each grid
level involves neighborhood communication, followed by local computation
of a forward sweep (update local elements in row order) and backward sweep
(update local elements in reverse row order) of Gauss-Seidel. The ordering
constraint makes the SYMGS routine difficult to parallelize, and is the main
challenge of the benchmark.

. Matrix-vector products Ay. This operation requires neighborhood communi-

cation to collect the remote values of y owned by neighbor processors, followed
by multiplication of the local matrix rows with the input vector. The pattern
of data access is similar to a sweep of SYMGS, however the rows may be
trivially processed in parallel since there are no data dependencies between
rows (the output vector is distinct from the input vector).

All of these are BLAS1 (vector-vector) or BLAS2 (sparse matrix-vector) opera-
tions. We are not able to use BLAS3 operations, such as DGEMM, as we were
able to do for HPL. An important point is that the benchmark is not about
computing a highly accurate solution to this problem, but is only intended to
measure performance of the algorithm.

3.2 Preconditioner

The problem is solved using a domain decomposition where each subdomain is
locally preconditioned. The preconditioner in initial version (v1.x) was based
on a symmetric Gauss-Seidel sweep. The latest version (v2.x) is based on a
multigrid preconditioner where the pre and post smoothers are also a symmetric
Gauss-Seidel sweep.
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Gauss-Seidel Preconditioner. Since the PCG method could be used only on
a symmetric positive definite matrix, the preconditioner must also be symmetric
and positive definite. The matrix M is computed from lower triangular (L),
diagonal (D) and upper triangular (U) parts of A:

Msgs = (D + L)D™ (D +U)

It is easy to verify that this matrix is symmetric and positive definite using the
identity (D +U)T = (D + L). The application of the preconditioner requires the
solution of upper and lower triangular systems.

Multigrid Preconditioner. The latest version of the benchmark is using a
multigrid preconditioner instead of the simple iterative Gauss-Seidel. An iter-
ative solver like Gauss-Seidel is very effective in damping the high frequency
components of the error, but is not very effective on the low frequency ones. The
idea of the multigrid is to represent the error from the initial grid on a coarser
grid where the low frequency components of the original grid become high fre-
quency components on the coarser one [14]. The multigrid V-cycle includes the
following steps:

A. Perform a number of Gauss-Seidel iterations to smooth the high frequencies
and compute the residual r = Azx* — b, where the superscript H denotes
the grid spacing.

B. Transfer the residual ¥ on a coarser grid of space 2H. This operation is
often called restriction, and R the restriction matrix.

TQH — RTH
C. Perform a number of Gauss-Seidel iterations to smooth the error on the
coarser grid residual equation
Ae2H — j2H

D. Transfer the correction e*# back on the fine grid of space H. This operation
is often called prolongation, and P the prolongation matrix.

el = pe?H

The process can be extended to multiple levels. The HPCG benchmark is
using a V-cycle strategy with 3 coarser levels and performs a single pre- and
post- smoother Gauss-Seidel at each level.

3.3 Selecting Node Count

HPCG detects the number of MPI tasks at runtime and tries to build a 3D
decomposition. Clearly if the number of tasks, N, is a prime, the only possible
3D decomposition is N x 1 x 1 (or a permutation). While this is a valid configu-
ration, it is highly unlikely that a real code would run with such a configuration.
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We always try to select a 3D configuration that is as balanced as possible. Since
the jobs on large supercomputers go through a batching system and the number
of available nodes may vary due to down nodes, it is useful to know the best
node count in a certain range. We have extracted the routine internally used
by HPCG and made a standalone program that we use to analyze the possible
decompositions. A simple criterion is to sort N1, N2, N3 and compute the prod-
uct of the ratios N_max/N_min and N_mid/N_min. The closer to the unity this
product is, the more balanced the decomposition is.

4 CUDA Implementation

The GPU porting strategy is primarily focused on the parallelization of the
Symmetric Gauss-Seidel smoother (SYMGS), which accounts for approximately
two thirds of the benchmark Flops. This function is difficult to parallelize due to
the data dependencies imposed by the ordering of the matrix rows. Although it
is possible to use analysis of the matrix structure to build a dependency graph
which exposes parallelism, we find it is more effective to reorder the rows using
graph coloring.

Our implementation begins with a baseline using CUDA libraries, and pro-
gresses into our final version in the following steps:

A. CUSPARSE (CSR)

B. CUSPARSE + color ordering (CSR)

C. Custom Kernels + color ordering (CSR)
D. Custom Kernels + color ordering (ELL)

4.1 Baseline CUSPARSE

Starting with CUSPARSE has the benefit of keeping the coding effort low, and
hiding the complexity of parallelizing the Symmetric-Gauss-Siedel smoother. It
also allows us to easily validate the results against the reference solution, and
perform experiments with matrix reordering.

With CUSPARSE, we are required to use a compatible matrix data format,
which is based on compressed sparse row (CSR). The matrix elements and col-
umn index arrays must be stored in contiguous memory in row major order.
An additional requirement is a row_start index array which gives the position of
the starting element of each row. By contrast, the matrix format in HPCG uses
arrays of row pointers, with a separate memory allocation for the elements and
column indices for each row. There is also an array which gives the number of
nonzero elements per row.

Additionally, the CUSPARSE triangular solver routine requires elements
within each row to be sorted such that elements with column index smaller
than the diagonal appear before the diagonal, and elements with column index
larger than the diagonal appear after the diagonal. The default matrix format
in HPCG violates this assumption in rows that are on the boundary of the
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local domain. In these rows the halo elements (those received from a neighbor
processor) have column indices larger than the number of rows, but may appear
before the diagonal because the order is inherited from the natural ordering of
the global matrix.

Next, we describe the implementation of the SYMGS smoother, using the
CUSPARSE and CUBLAS library routines. The main computational kernel, the
sparse triangular solve, requires information about the structure of the matrix
in order to expose parallelism. Thus, a pre-processing step is required to ana-
lyze the matrix structure using cusparseDcsrsv_analysis before any calls to
cusparseDcsrsv_solve can be made. The analysis function essentially builds a
task dependency graph that is later used when the solver is called. We must per-
form the analysis for both the upper and lower triangular portions of the matrix.
This analysis phase maps nicely to the optimization phase of the benchmark,
and the time spent here is recorded in the optimization timing.

The following lists the library calls that are made to perform SYMGS:

r <-- rhs cublasDcopy
r <-- r - Axx cusparseDcsrmv (SPMV)
y <-= Lxy=r cusparseDcsrsv_solve
y <-- y*D cublasDaxpy
dx <-- Uxdx=y cusparseDcsrsv_solve
X <-- x+dx cublasDaxpy

This sequence is not as efficient as the reference algorithm which combines
the SPMV, vector updates, and triangular solves, reducing the number of steps
and the number of times data must be accessed from memory. The WAXPBY
is another example of a function which looses efficiency when implemented with
library calls, in general it requires three calls: cublasDcopy, cublasDscale, and
cublasDaxpy. Other routines are more straightforward using the libraries, Dot-
Product is simply a call to cublasDdot, SPMV is a single call to cusparseDcsrmv.

The only CUDA kernels we wrote for this version, are for the routines which
have irregular access patterns to gather or scatter values based on an index array.
This occurs when gathering elements from the local domain that must be sent
to neighbor processors, and also when performing restriction and prolongation
operators (the coarse grid elements each read or write to a fine grid element
given by the £2¢ index array).

4.2 Reordering with Graph Coloring

The matrix can be re-ordered based on a multi-coloring where every row is
assigned a color that is not shared with any rows to which it has a connection.
Parallel algorithms have been developed to solve this problem [19,20]. The basic
idea is to assign a random value to each row, and then designate a color to rows
whose values are local maxima when comparing their random values with con-
nected uncolored rows. The process is repeated, adding a new color in each step.
Although this can be done completely in parallel, several iterations are required
before all rows are assigned a color, and the number of colors is typically sub
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optimal (larger than the minimum number of colors which would be computed
using a serial greedy algorithm).

We adopt several improvements proposed by Cohen et al. [21]. Namely, we
replace the random number generation with an on-the-fly hash of the row index,
and each row redundantly computes the hash of all neighbors. This trades off
additional computation in order to avoid storing the hash values and reduces
memory bandwidth requirements. We also compute two independent sets of
colors in each step, one for local maxima, and another for local minima. The
following code illustrates the basic coloring algorithm where minmax_hash_step
assigns two colors in each iteration, where A _col is the matrix column index
array, and colors is a vector of integers representing the color of each row:

while( colored < rows ){
minmax_hash_step<<<>>>(A_col, colors...);
colored += thrust::count(colors, ...);

}

We improve the coloring quality in cases where the number of colors is too large,
by performing a re-coloring. We loop over each original color, from greatest to
smallest, and every row of that color attempts to reassign itself a lower color
not shared with any neighbors. Since all rows of the same color are independent,
we can safely update their colors in parallel. The process could be repeated to
further reduce the color count, but the benefits are reduced with each pass. The
following code snippet shows a single re-coloring pass:

if ( max_color > target ){
for( color=max_color; color>0; color-- )
recolor_step<<<>>>(A_col, colors...);

}

After the coloring is completed, we use the color information to create a
permutation vector, which is used to reorder the rows in the matrix according
to their colors. The permutation vector is initialized with the natural order, and
then sorted by key, using colors as the key. The following code snippet shows the
creation of the perm vector using the THRUST sort_by_key routine:

thrust::sort_by_key(colors, colors+rows, perm);

4.3 Custom Kernels CSR Version

Next, we replace the CUSPARSE calls with our own routines. This allows us to
adopt a more flexible matrix format which simplifies the reordering of the matrix,
and removes the need for sorting of the row elements with respect to the diagonal.
Using the reordered matrix, we can perform the SYMGS sweeps using the same
algorithm as the reference. The following code shows the SYMGS kernel:

__global_
{

int row_index = threadIldx.x ...

void smooth(double* A_vals,
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if ( row_index < last_row ){

double sum = rhs[row_index];

for( i=start_index; i<end_index; i+=stride ){
if(A_col[i] '= -1 )
if (A_col[i] !'= row_index ){
sum += -A_vals[i] * x[A_col[il];

Yelseq{
diag = A_vals[i];
}
}
x[row_index] = sum/diag;
}
}

The smoother is applied to one color at a time for both the forward and backward
sweeps. The following is the CPU code which calls the smoother kernels:

for( color=0; color<num_colors; color++ )
smooth<<<>>>(A_vals, A_col, rhs, x,...);

for( color=num_colors; color>=0; color-- )
smooth<<<>>>(A_vals, A_col, rhs, x,...);

4.4 Optimized Version

From our experience in the CUDA porting of the Himeno benchmark on clus-
ters with GPUs [17], optimizing memory bandwidth utilization is a key design
element to achieve good performance on codes with low compute intensity (the
ratio between floating point operations and memory accesses). In this case most
of the data access is to the matrix, so we are able to improve the performance
by storing the matrix in the ELLPACK format. This allows matrix elements to
be accessed in a coalesced access pattern.

In addition to the optimized matrix storage format, we also performed several
other optimizations, listed here:

A. SYMGS: removing redundant communications and work
B. SPMV: overlapping communications with computations
C. CG: overlapping MPI_Allreduce with vector update

D. SYMGS + SPMV: using LDG load instructions

SYMGS: Removing Redundant Work. The SYMGS routine is called for
the pre-smoother and post-smoother of the multi-grid V-cycle. The initial value
of the solution at each level is set to zero, which allows us to avoid some of
the communications and computations that occur during the first application
of the smoother at each level. The SYMGS smoother routine begins by calling
exchange_halo, which communicates boundary elements of the local matrix with
neighbor processors. Since we know the values are all zeros, we can skip this
communication step. We may also avoid processing the zero elements of the
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initial solution vector by restricting the forward sweep to matrix elements below
the diagonal. We use a special smoother kernel for this case that checks if the
column index is lower than the row index by adding if (A_col[i] < row_index)
in the kernel code. We also note that in the CUSPARSE implementation, the
zero values could allow one to skip the SPMV used to construct the residual
(since the right hand side will be equal to the residual in this case), and the
vector update in the last step of SYMGS where the computed delta is added to
the initial solution.

SPMYV: Overlapping Communications with Computations. The SPMV
routine also begins with a call to exchange_halo, which updates the portion of
the solution that is owned by other processors. However, these points, referred
to as the halo points, are only required for the computation of the rows that
are along the boundary of the local domain. Thus, we can safely split the com-
putation into two phases, first computing the points which do not require the
boundary, called interior, and next computing those which do require the bound-
ary, called exterior. In this way we can overlap the computation of the interior
with the halo communications.

The communications involve copying of the boundary data from GPU to
CPU, MPT send/recv with neighbor processes, and copy results back to the
GPU. We overlap the CPU to GPU communication by using cuda streams, with
the copies placed into a different stream than the computation kernels.

While it is possible to use the same matrix structure for both interior and exte-
rior computations, the efficiency of the exterior is greatly reduced because there
is little locality in the access of the boundary matrix entries. It is more efficient
to use a separate data structure, which only contains the boundary rows of the
matrix, to process the boundary elements. For this purpose we also construct a
boundary row index array which gives the row index of all boundary rows.

The fastest way to compute the boundary index array is to start with a
copy of the already existing elementsToSend index array, and simply apply
thrust: :sort and thrust: :unique functions. Then the boundary index array
can be used to copy rows from the original matrix into the much smaller bound-
ary matrix. The overhead of these operations are included in the optimization
phase timing, and represent only a small fraction of the total optimization time.

CG: Overlapping MPI_Allreduce with Vector Update. In the CG algo-
rithm, the solution vector x is never required as an input to any of the steps. So
we may delay the vector update of the solution in order to overlap the update
time with the next dot product MPI_Allreduce () time. This scheme allows one
of the three dot products in the CG solver to overlap with computations.

LDG: Read-Only Cache Load Instructions. The Kepler class of GPUs have
a read-only data cache, which is well suited for reading data with spatial locality
or with irregular access patterns. In previous GPU generations, a programmer
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would have to bind memory to texture objects and load data with special texture
instructions to achieve this. However, on Kepler, the GPU cores can access any
data with a new compute instruction called LDG. These special load instructions
may be generated by the compiler provided it can detect that the data is read-
only and no aliasing is occurring. This can be achieved by marking all the pointer
arguments to a kernel with __restrict keywords. Unfortunately, this method
will not always produce the best use of the memory system. For example, in
the SYMGS kernels, the matrix is read-only, but the X vector is both read
and written. Thus, when using __restrict, the compiler will use LDG for the
matrix data, and regular loads for the solution vector. Ironically, the Matrix
data is better suited to regular loads, since there is no data reuse and the access
pattern is coalesced, while the irregular access of the solution vector is better
suited to the read-only cache. By omiting the __restrict keywords, and using
the __1dg( ) intrinsic for the load of X, we are able to increase performance by
an additional 4 %.

5 Results

In this section, we present results for single node and for clusters. The single
node experiments allow us to have a better understanding of the relationship
between HPCG performance and processor floating point and memory band-
width capabilities.

5.1 Comparison of Different Versions

Before looking at the single node results on different hardware, we compare the
effects of the optimizations applied in the four implementations discussed in the
previous section. Figurel shows the timing of the four versions of the code on
a K20X GPU with ECC enabled. As we can see the matrix reordering has the
most relevant effect, since it exposes more parallelism in the SYMGS routine.

HPCG time comparison (K20X 128/3)

#SYMGS MSPMV = OTHER =OPT

| ) | -~
BASELINE CUSPARSE

=
COLOR/REORER
CUSTOM KERNELS
OPTIMIZED

0 50 100 150 200 250

Time in one CG iteration (ms)

Fig. 1. Time comparison between the initial CUSPARSE implementation and the other
custom versions, with 128% domain, on K20X with ECC enabled
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Optimized HPCG time (K20X)
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Fig. 2. Time distribution for optimized version with 128 domain, on K20X with ECC
enabled

Table 1. Specs of the GPUs and CPU used in the benchmark, with clocks in MHz.

Processor CC | # # Cores | Core | GFLOPS | Memory | Memory Memory DP flops
SM | SP/DP clock | DP/SP clock bus width | bandwidth | per byte
Tegra K1 3.2 1 192/8 852 | 13.6/327 924 64 bit 14.7GB/s | 0.93
Tesla K10 3.0 8 1536/64 745 | 95/2289 2500 256 bit 160 GB/s 0.59
Tesla K20X 3.5 14 2688/896 | 732 | 1312/3935 | 2600 384 bit 250GB/s |5.28
Tesla K40 3.5 15 2880/960 745 | 1430/4291 | 3000 384 bit 288 GB/s 4.96
Xeon E5-2697 | N/A | N/A | 12 2700 | 259/518 1866 256 bit 60 GB/s 4.32

Figure 2 shows a detailed timing breakdown for the optimized version on a
single GPU. The SYMGS kernel on all the multigrid levels takes up 55 % of the
time, followed by the SPMV kernel with 26 %.

5.2 Single Node Results

Next, we compare the performance on different classes of Kepler GPUs rang-
ing from the smallest CUDA-capable GK20A found in the Tegra K1 mobile
processor, to the highest performing Tesla K40. The Tesla K20X and K40 are
both Kepler based, but they differ in the number of Symmetric Multiprocessors
(SM), the amount of memory (6 GB for the K20X vs 12 GB for the K40) and
the core/memory clocks (detailed specs are in Table 1). The K40 can also boost
the core clock to 875 MHz, which also results in a better memory throughput.

The Compute intensity, or flops/bytes ratio, is a useful metric for deter-
mining whether an application will be bandwidth or floating point limited.
In this case, the workload is dominated by Matrix-Vector operations, where
the compute intensity may be estimated as 2 % nonzerosperrowFlops/(16 +
12 x nonzerosperrow)Bytes = 54/340 = 0.158. This is much lower than the
flop/byte ratios for the hardware given in Table 1. Therefore, we can expect
performance to be limited much more by memory bandwidth than floating point
throughput capabilities.

Fig. 3 shows the scaling of HPCG performance across the GPUs used in our
study. Figure4 demonstrates the efficiency of our implementation by compar-
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Fig. 3. Comparison of HPCG flop rate on single GPUs and Xeon E5-2697-v2 12-core
CPU
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Fig. 4. Comparison of HPCG flop rate and bandwidth on single GPUs and Xeon E5-
2697-v2 12-core CPU

ing the performance of the SYMGS and SPMV routines with the STREAM
banchmark [16]. We also include the same metrics for an optimized CPU imple-
mentation developed by Park and Smelyanskiy [18]. As we can see in Fig.5,
there is an excellent correlation between the HPCG score and the STREAM
benchmark result.
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Fig. 5. Correlation between STREAM and HPCG benchmark results on single GPUs
and E5-2697-v2 12-core CPU

5.3 Multi Node Results

The cluster runs were performed on the Titan system at the Oak Ridge National
Laboratory (ORNL) and on the Piz Daint system at the Swiss National Super-
computing Centre (CSCS). They are both Cray systems, but while Titan is a
Cray XK7 based on AMD Opteron and a Gemini network, Piz Daint is a new
Cray XC30 with Intel Xeon and the new Aries network. Titan has 18,688 nodes,
each with a 16-core AMD Opteron processor, 32 GB of system memory and a
6 GB NVIDIA K20X GPU. The network uses the Gemini routing and communi-
cations ASICs and a 3D torus network topology. Piz Daint has 5,272 nodes, each
with an Intel Xeon E5 processor, 32 GB of system memory and a 6 GB NVIDIA
K20X GPU. The network uses the new Aries routing and communications ASICs
and a dragonfly network topology.

Table 2 shows the performance of the optimized version on a wide range of
nodes, up to the full size machine on Titan and Piz-Daint. The raw number is the
total performance number, before the reduction due to the increased iteration
count caused by the multi-coloring.

Table 2. HPCG supercomputer results in GFlops: local grid size 256 x 256 x 128

Nodes | Titan raw | Titan final | Titan Eff. | Piz-Daint raw | Piz-Daint final | Piz-Daint Eff.
1 21.23 20.77 100.0 21.25 20.79 100.0

8 168.3 161.4 99.1 168.8 161.9 99.3

64 1321 1221 97.2 1341 1239 98.6

512 10414 9448 95.8 10719 9904 98.5

2048 42777 38806 98.3

3200 | 62239 56473 91.6

5265 109089 98972 97.5

8192 | 158779 144071 91.3

18648 | 355189 322299 89.7
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Fig. 6. Scaling overhead on Titan.

Table 3. HPCG supercomputer results comparison

HPCG | System HPCG Iterations | #:Procs | Processor HPCG Bandwidth | Efficiency
rank GFLOPS type Per Proc | Per Proc FLOP/BYTE
1 Tianhe-2 | 580,109 |57 46,080 |Xeon-Phi-31S1P 12.59 GF | 320GB/s |0.039
2 K 426,972 |51 82,944 | Sparc64-viiifx 5.15GF |64 GB/s 0.080
3 Titan 322,321 |55 18,648 | Tesla-K20X+4+ECC |17.28 GF |250 GB/s | 0.069
5 Piz-Daint | 98,979 |55 5,208 | Tesla-K20X+ECC |19.01 GF |250GB/s |0.076
8 HPC2 49,145 |54 2,610 | Tesla-K20X+4+ECC |18.83GF |250GB/s |0.075
HPC2 60,642 |54 2,600 | Tesla-K20X 23.32GF |250GB/s |0.093

At full scale, Piz-Daint is reaching 0.098 PF, compared to the 6.2 PF during
HPL. Since we are running very close to peak bandwidth and the code has no
problem scaling up to the full machine, there is not much space left for large
improvements. Even with no coloring overhead, the full machine will deliver
only 0.1 PF. Same conclusion holds for Titan, the achieved HPCG performance
of 0.322 PF is far away from the sustained 17.59 PF during HPL.

In Fig.6, we analyize the communication time on the Titan runs. The dot
products require all_reduce communications, that scale as the logarithm of the
node count. The other communications are instead with neighbors and remain
constant with the number of nodes. The ones in the SPMV phase are completely
overlapped with computations, in the current version the ones in the multigrid
phase are not but the overlapping will be implemented in an upcoming version.

5.4 Comparisons

The first official HPCG ranking was published at the International Supercom-
puting Conference in June 2014 and included 15 supercomputers. All the GPU
supercomputers on the list ran the optimized version described in this paper.
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Table 3 summarizes the results of several of the top systems: Thiane-2 is based
on Xeon Phi processors (currently number one in the Top500 list), K is a CPU-
only system based on Sparc64 Processors. Instead of looking at the peak flops
of these machines, we evaluate the efficiency based on the ratio of the HPCG
result to the memory bandwidth of the processors.

The efficiency of the GPU implementation is comparable to the one of K and
the performance per processor is noticeably higher.

6 Conclusion and Future Plans

The results in the paper show that GPU accelerated clusters perform very well
in the new HPCG benchmark. Our results are the fastest per processor ever
reported. GPUs, with their excellent floating point performance and high mem-
ory bandwidth, are very well-suited to tackle workloads dominated by floating
point, like HPL, as well as those dominated by memory bandwidth, like HPCG.

The current implementation is all on the GPUs, but since the CPUs could
give a significant contribution, we are investigating a hybrid scheme where both
CPU and GPU are used together.
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Abstract. In this paper we present research on applying a domain spe-
cific high-level abstractions (HLA) development strategy with the aim
to “future-proof” a key class of high performance computing (HPC)
applications that simulate hydrodynamics computations at AWE plc. We
build on an existing high-level abstraction framework, OPS, that is being
developed for the solution of multi-block structured mesh-based applica-
tions at the University of Oxford. OPS uses an “active library” approach
where a single application code written using the OPS API can be trans-
formed into different highly optimized parallel implementations which
can then be linked against the appropriate parallel library enabling exe-
cution on different back-end hardware platforms. The target application
in this work is the CloverLeaf mini-app from Sandia National Labora-
tory’s Mantevo suite of codes that consists of algorithms of interest from
hydrodynamics workloads. Specifically, we present (1) the lessons learnt
in re-engineering an industrial representative hydro-dynamics application
to utilize the OPS high-level framework and subsequent code generation
to obtain a range of parallel implementations, and (2) the performance
of the auto-generated OPS versions of CloverLeaf compared to that of
the performance of the hand-coded original CloverLeaf implementations
on a range of platforms. Benchmarked systems include Intel multi-core
CPUs and NVIDIA GPUs, the Archer (Cray XC30) CPU cluster and the
Titan (Cray XK7) GPU cluster with different parallelizations (OpenMP,
OpenACC, CUDA, OpenCL and MPI). Our results show that the devel-
opment of parallel HPC applications using a high-level framework such as
OPS is no more time consuming nor difficult than writing a one-off par-
allel program targeting only a single parallel implementation. However
the OPS strategy pays off with a highly maintainable single application
source, through which multiple parallelizations can be realized, without
compromising performance portability on a range of parallel systems.
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1 Introduction

High performance computing (HPC) is currently in a period of enormous change.
For many years, increased performance was achieved through higher clock fre-
quencies, but that trend was brought to an abrupt halt by the corresponding
increase in energy consumption. The clear direction now is towards improved
performance through increasing parallelism, even reducing the clock frequency
a little to improve the energy efficiency, which is becoming a key concern. How-
ever, there is no clear consensus yet on the best architecture for HPC. On the
one hand there are many-core accelerators such as GPUs and the new Intel
Xeon Phi, usually with 16-64 functional units, each of which can be viewed as a
vector processor with many elements (cores) performing the same operation at
the same time but with different data. On the other hand, we have mainstream
Intel/AMD CPUs with very large caches and a more modest number of func-
tional units (cores) each with their own vector components (e.g. AVX units), or
the IBM BlueGene systems which are based on a large network of relatively small
but energy-efficient CPUs. In the future, we may also have interesting energy-
efficient designs from ARM [9] and other companies[19] which have achieved
great energy efficiency for mobile and embedded applications, and are now tar-
geting HPC which increasingly shares similar goals.

In the light of these developments, an application developer faces a tough
problem. Optimizing their application for execution on a particular platform
requires an increasing amount of platform-specific knowledge, and possibly a
major re-write to reduce data communications. At the same time, there is con-
siderable uncertainty about which platform to target; it is not clear which archi-
tectural approach is likely to “win” in the long-term, and it is not even clear in
the short-term which platform is best for any given application.

Currently the common approach for utilizing novel hardware, or different
many-core accelerators is to manually port the legacy application, in many cases
by converting key compute kernels to utilize the accelerators. In some cases
a major ground-up rewrite is required, for example if you need to reduce data
communications to efficiently utilize the new hardware. The conversion process is
highly error-prone and takes significant amounts of developer effort to program,
validate and optimize. It is unreasonable for domain scientists to be engaged in
such optimization work that will require them to port the application for each
new generation of systems. Thus “future proofing” HPC applications for their
continued performance and portability on a diverse range of hardware and future
emerging systems is of critical importance.

One such approach, is the use of domain specific high-level abstractions (HLAs),
such as domain specific languages (DSLs) and active libraries [13,31]. The key idea
is to provide the application developer with a set of domain specific constructs to
declare the problem to be computed, without specifying its implementation [18].
It is then the task of a lower implementation level to apply automated techniques
for translating the specification into different implementations for different hard-
ware and software platforms. The use of such a development strategy has previ-
ously been shown to have significant benefits both for developer productivity and
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gaining near-optimal performance [14,28]. However, currently these still remain
as experimental research projects and have not yet been adopted by a wider HPC
community. Partly the reason is a lack of DSLs or high-level frameworks that are
actively used for creating production level applications. On the other hand, previ-
ous work has only developed such frameworks for a few application domains.

The research in this paper is thus motivated by the need to explore fur-
ther the utility of high-level abstraction frameworks for future proofing parallel
scientific simulation applications from a range of application domains. Here we
focus on a hydro-dynamics application, belonging to an important class of codes
which form a key part of the HPC workload at many organizations such as the
AWE. We make use of a previously developed mini-application called Clover-
Leaf [8], which implements algorithms of interest related to this workload. This
research explores the performance of CloverLeaf after re-engineering the appli-
cation based on a domain specific HLA framework. CloverLeaf is open source
software and forms part of Sandia National Laboratory’s Mantevo project [5].
With the use of an unrestricted application as a proxy, our aim is to demon-
strate to a wider HPC audience the performance portability resulting from an
HLA based development and how this strategy might help in addressing various
scientific simulation challenges on future emerging systems.

The CloverLeaf mini-application has been previously manually ported
[16,17,20] to execute on many parallel platforms. These include parallelizations
based on single-instruction-multiple-data (SIMD, e.g. SSE and AVX) and shared
memory multi-threading for multi-core CPUs (e.g. OpenMP), single instruction
multiple thread (SIMT, e.g. CUDA, OpenCL and OpenACC) for GPUs and the
Intel’s Xeon Phi and distributed memory parallelization (e.g. MPI) for clusters
of CPUs/GPUs. Recently the code was re-written [10] with a domain specific
high-level abstraction framework, called OPS which resulted in a single high-
level application source. Automated code generation techniques of OPS were
then used to generate a range of parallel implementations. In this paper we
compare the performance of the resulting parallelizations to that of the origi-
nal hand-tuned CloverLeaf applications. Unlike previous work, the availability
of highly optimized, manually hand-tuned parallel versions gives us a unique
opportunity to compare and contrast the high-level development process both
in terms of developer productivity and performance portability. Our research
demonstrates, through performance analysis and benchmarking on a range of
hardware and software systems, the benefits of the HLA approach giving signif-
icant insights into high-level methods for “future proofing” HPC applications.
The main contributions of this paper are twofold:

1. We present lessons learnt in re-engineering an industrially representative
hydro-dynamics application to utilize the OPS high-level framework and
subsequent code generation to obtain a range of parallel implementations.
Through OPS we generate code targeting OpenMP thread level multi-core
parallelism, single-instruction multiple-thread (SIMT) many-core parallelism
using CUDA, OpenCL and OpenACC and distributed memory parallelism
with MPI.
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2. The performance of the OPS versions of CloverLeaf is compared to that of
the performance of the original CloverLeaf implementations on a range of
platforms. These include the latest Intel multi-core CPUs (Sandy Bridge),
NVIDIA GPUs (Kepler K20c), a Cray XC30 distributed memory cluster
(Archer [7]) and a large Cray XK7 GPU cluster (Titan [11]). Key perfor-
mance bottlenecks are analyzed and further optimizations are discussed.

The rest of this paper is organized as follows: in Sect. 2 we briefly present the OPS
abstraction, its API, design and code generation process; in Sect. 3, a benchmark-
ing and performance analysis of the of the application is carried out comparing
the OPS based CloverLeaf with the original hand-tuned version; Sect.4 will
briefly detail related work in this area and compare them to our contributions
in this paper. Finally Sect.5 notes future work and conclusions.

2 OPS

Previous work at the University of Oxford developed a high-level abstraction
framework called OP2 [6] targeting the domain of unstructured mesh based appli-
cations. With OP2 we demonstrated that both developer productivity as well as
near-optimal performance could be achieved on a wide range of parallel hard-
ware. Research published as a result of this work includes a number of perfor-
mance analysis studies on standard CFD benchmark applications [23] as well as
a full industrial-scale application from the production work-load at Rolls-Royce
plc. [28].

OPS (Oxford Parallel Library for Structured-mesh solvers) follows much of
the design of OP2, but targets the domain of multi-block structured applications.
Multi-block structured mesh applications can be viewed as an unstructured col-
lection of structured mesh blocks. As CloverLeaf is a single block-structured
mesh code, it only required OPS’s single block API to re-engineer the appli-
cation. The structured mesh domain is distinct from the unstructured mesh
applications domain due to the implicit connectivity between neighboring mesh
elements (such as vertices, cells) in structured meshes/grids. The key idea is
that operations involve looping over a “rectangular” multi-dimensional set of
grid points using one or more “stencils” to access data.

OPS is designed to appear as a classical software library with a domain
specific API. It then uses source-to-source translation techniques to parse the
APIT calls and generate different parallel implementations. These can then be
linked against the appropriate parallel library enabling execution on different
back-end hardware platforms. The aim is to generate highly optimized platform
specific code and link with equally efficient back-end libraries utilizing the best
low-level features of a target architecture. The next section briefly illustrates the
OPS API using examples from CloverLeaf.

2.1 The OPS API

The CloverLeaf mini-app involves the solution of the compressible Euler equa-
tions, which form a system of four partial differential equations. The equations are
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statements of the conservation of energy, density and momentum and are solved
using a finite volume method on a structured staggered grid. The cell centers hold
internal energy and density while nodes hold velocities. The solution involves an
explicit Lagrangian step using a predictor/corrector method to update the hydro-
dynamics, followed by an advective remap that uses a second order Van Leer up-
winding scheme. The advective remap step returns the grid to its original position.
The original application [8] is written in Fortran and operates on a 2D structured
mesh. It is of fixed size in both x and y dimensions.

OPS separates the specification of such a problem into four distinct parts:
(1) structured blocks, (2) data defined on blocks, (3) stencils defining how data
is accessed and (4) operations over blocks. Thus the first aspect of declaring such
a single-block structured mesh application with OPS is to define the size of the
regular mesh over which the computations will be carried out. In OPS vernacular
this is called an ops_block. OPS declares a block with the ops_decl_block API
call by indicating the dimension of the block (2D in this case) and assigning it
a name for identification and runtime checks (see Fig. 1).

/* Declare a single structured block */
ops_block cgrd = ops_decl_block(2, "clover grid");

int size[2] = {x_cells+5, y_cells+5};
doublex dat = NULL;

/* Declare data on block */
ops_dat densityO, energy0O, ..., pressure, volume;

densityO=ops_decl_dat(cgrd,1,size,dat,"double","density0");
energy0 =ops_decl_dat(cgrd,1,size,dat,"double","energy0");

pressure=ops_decl_dat(cgrd,1,size,dat,"double", "pressure");
volume =ops_decl_dat(cgrd,l,size,dat,"double","volume");

Fig. 1. OPS API example for declaring blocks, data and stencils

CloverLeaf works on a number of data arrays (or fields) which are defined on
the 2D structured mesh (e.g. density, energy, x and y velocity of particles). OPS
allows users to declare these using the ops_decl_dat API call; the density0,
energy0, ... pressure and volume are ops_dats that are declared through this
API. A key idea is that once a field’s data is declared via ops_decl_dat the owner-
ship of the data is transfered from the user to OPS, where it is free to rearrange
the memory layout as is optimal for the final parallelization and execution hard-
ware. In contrast, each of the original CloverLeaf implementations explicitly
involve the allocation and management of memory specific to each parallel imple-
mentation at the application source level. In this example a NULL pointer of
type double is passed as an argument. CloverLeaf initializes these values later,
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as part of the application itself. When a NULL array is supplied, OPS will inter-
nally allocate the required amount of memory based on the type of the data
array and its size. On the other hand an array containing the relevant initial
data can be used in declaring an ops_dat. In the future we will provide the
ability to read in data from HDFS5 files directly using a ops_decl_dat_hdf5 API
call. Note above in an ops_decl_dat call, a single double precision value per grid
element is declared. A vector of a number of values per grid element could also
be declared (e.g. a vector with three doubles per grid point to store z,y and z
velocities).

All the numerically intensive computations in the structured mesh applica-
tion can be described as operations over the block. Within an application code,
this corresponds to loops over a given block, accessing data through a stencil,
performing some calculations, then writing back (again through the stencils)
to the data arrays. A loop from the advec_cell routine in CloverLeaf’s refer-
ence implementation [8] is detailed in Fig. 2, operating over each grid point in
the structured mesh. Note that here the data arrays are all declared as Fortran
allocatable 2D arrays. The loop operates in column major order.

1 DO k=y_min-2,y_max+2

2 DO j=x_min-2,x_max+2

3 pre_vol(j,k)=volume(j,k)+

4 (vol_flux_x(j+1,k)-vol_flux_x(j,k)+
5 vol_flux_y(j,k+1)-vol_flux_y(j,k))
6 post_vol(j,k)=pre_vol(j,k)-

7 (vol_flux_x(j+1,k)-vol_flux_x(j,k))
8
9

Fig. 2. Original loop from advec_cell kernel

An application developer declares this loop using the OPS APT as illustrated
in Fig. 3 (lines 31-37), together with the “elemental” kernel function (lines 2-14).
The elemental function is called a “user kernel” in OPS to indicate that it repre-
sents a computation specified by the user (i.e. the domain scientist) to apply to
each element (i.e. grid point). User kernels are usually placed in a separate header
file, which gets included in the file declaring the ops_par_loop. By “outlining”
the user kernel in this fashion, OPS can factor out the declaration of the problem
from its parallel implementation. The macros 0PS_ACCO, OPS_ACC1, OPS_ACC2 etc.
will be resolved to the relevant array index to access the data stored in density0,
energy0, pressure etc.! The explicit declaration of the stencil (lines 19-28) addi-
tionally will allow for error checking of the user code. In this case we use three

1A similar approach is used in the C kernel implementations of the original CloverLeaf
application.
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1 /*user kernel*/

2 inline void advec_cell_kernell_xdir (
3 double *pre_vol, double *post_vol,
4 const double *volume,

5 const double *vol_flux_x,

6 const double *vol_flux_y){

8 pre_vol[OPS_ACCO(0,0)] = volume[OPS_ACC2(0,0)] +
9 (vol_flux_x[0OPS_ACC3(1,0)]- vol_flux_x[0PS_ACC3(0,0)]+
10 vol_flux_y[OPS_ACC4(0,1)]- vol_flux_y[0OPS_ACC4(0,0)1);

12 post_vol[0OPS_ACC1(0,0)] = pre_vol[0OPS_ACCO(0,0)] -

13 (vol_flux_x[0PS_ACC3(1,0)]- vol_flux_x[0PS_ACC3(0,0)1);
14 }

15 //mesh ezecution range

16 int rangexy[] = {x_min-2,x_max+2,y_min-2,y_max+2};

18 //declare stencils
19 ops_stencil 82D_00, S2D_00_P10, S2D_00_OP1;

20 /*single point stencil*/

21 int s2D_00[] = {0,0};

22 82D_00 = ops_decl_stencil( 2, 1, s2D_00, "00");

23

24 /*2 point stencils*/

25 int s2D_00_P10[] = {0,0, 1,0};

26 S2D_00_P10 = ops_decl_stencil(2,1,s2D_00_P10,"0,0,:1,0");
27 int s2D_00_OP1[] = {0,0, 0,1};

28 82D_00_0P1 = ops_decl_stencil(2,1,s2D_00_OP1,"0,0,:0,1");
29

30 /*parallel loop declaration*/

31 ops_par_loop(advec_cell_kernell_xdir,

32 "advec_cell_kernell_xdir", clover_grid, 2, rangexy,

w

ops_arg_dat (work_arrayl,S2D_00, "double",0PS_WRITE),
ops_arg_dat (work_array2,S2D_00, "double" ,0PS_WRITE) ,
ops_arg_dat (volume,S2D_00, "double",0PS_READ),
ops_arg_dat(vol_flux_x,S2D_00_P10,"double",0PS_READ),
ops_arg_dat(vol_flux_y,S2D_00_OP1, "double",0PS_READ));

w W w
(o IS, B

w
Ny

Fig. 3. Loop from advec_cell converted to use the OPS API

stencils, one consisting of a single point referring to the current element, the sec-
ond accessing the (1,0) stencil and the third accessing the (0,1) stencil. More
complicated stencils can be declared giving the relative position from the current
(0,0) element. The ops_par_loop declares the structured block to be iterated
over, its dimension, the iteration range and the ops_dats involved in the compu-
tation. OPS_READ indicates that densityO will be read only. The actual parallel
implementation of the loop is specific to the parallelization strategy involved. OPS
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is free to implement this with any optimizations necessary to obtain maximum
performance. The ops_arg_dat(..) in Fig. 3 indicates an argument to the paral-
lel loop that refers to an ops_dat. A similar function ops_arg_gbl () enables users
to indicate global reductions.

2.2 Porting CloverLeaf to OPS

The original CloverLeaf 2D application written in Fortran 90 was converted to
the OPS API by manually extracting the user kernels, outlining them in header
files and converting the application to the OPS’s C/C++ APIL. All effort was
taken to keep the naming conventions of routines and files as similar to the
original as possible. After conversion, the OPS CloverLeaf version consists of
80 ops_par_loops spread across 16 files with about 7000 lines of code. This
application can be code generated to obtain a range of parallel implementations.
In comparison each of the original CloverLeaf implementations are self contained
separate parallel implementations, one for each of MPI+CUDA, MPI+OpenMP
etc. The original CloverLeaf reference implementation (i.e. the MPI+OpenMP
parallelization) consists of about 7000 lines of source code. The OPS back-end
library (implemented in C and C++) which currently supports parallelizing
with OpenMP, CUDA, OpenACC, OpenCL and MPT including common support
functions for all these parallelizations and other utility functions, plus the code
generation tools, in total consists of about 15000 lines of source code. However,
the important fact to note here is that the back-end libraries and code generation
tools are generic to be applicable to any application developed with the OPS
API, not just CloverLeaf.

Once converted to the OPS API, an application can be validated as a single
threaded implementation, simply by including the header file ops_seq.h and
linking with OPS’s sequential back-end library. The header file and the library
implement API calls for a single threaded CPU and can be compiled and linked
using conventional (platform specific) compilers (e.g. gee, ice) and executed as
a serial application.

The serial developer version allows for the application’s scientific results to
be inspected before code generation takes place. It also validates the OPS API
calls and provides feedback on any errors, such as differences between declared
stencils and the corresponding user kernels or differences between data types.
All such feedback is intended to reduce the complexity of programming and ease
debugging. There is opportunity at this stage to add further checks and tests
to increase developer productivity, for example report cases where the iteration
range of a loop written by a developer attempts to access elements beyond the
number of grid points in any dimension of an ops_dat. Including the developer
header file and linking with OPS’s distributed memory (MPI) back-end libraries
can also be used to obtain a low performance MPI parallelization of the appli-
cation for testing purposes. The full CloverLeaf developer version can be found
under the OPS git-hub repository [10].

The manual conversion of the original application to the OPS API required
no more effort than what is typically required by a developer proficient in a given
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Fig. 4. OPS code generation and build process

parallel computing model (OpenMP, CUDA etc.) for directly porting to a differ-
ent parallel implementation. However once converted, the use of OPS to generate
different parallelizations of the application was trivial. Therefore we believe that
the conversion is an acceptable one-off cost for legacy applications attempting to
utilize the benefits of high level frameworks such as DSLs or Active Libraries. As
we will show in this paper, the advantages of such frameworks far outweigh the
costs, by significantly improving the maintainability of the application source,
while making it possible to also gain near optimal performance and performance
portability across a wide range of hardware.

Once the application developer is satisfied with the validity of the results pro-
duced by the sequential application, parallel code can be generated. The build
process to obtain a parallel executable as illustrated in Fig. 4 follows that of OP2’s
code generation process [23]. The API calls in the application are parsed by the
OPS source-to-source translator which will produce a modified main program and
back-end specific code. These are then compiled using a conventional compiler
(e.g. gee, ice, nvee) and linked against platform specific OPS back-end libraries
to generate the final executable. As mentioned before, there is the option to read
in the mesh data at runtime. The source-to-source code translator is written in
Python and only needs to recognize OPS API calls; it does not need to parse the
rest of the code. We have deliberately chosen to use Python and a simple source-
to-source translation strategy to significantly simplify the complexity of the code
generation tools and to ensure that the software technologies on which it is based
have long-term support. The use of Python makes the code generator easily mod-
ifiable allowing for it to even be maintained internally within an organization.
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Furthermore, the code generated through OPS is itself human readable which
helps with maintenance and development of new optimizations.

OPS currently supports parallel code generation for execution on (1) single
threaded vectorized CPUs, (2) multi-threaded CPUs/SMPs using OpenMP, (3)
NVIDIA GPUs using CUDA and OpenACC, (4) OpenCL devices such as AMD
GPUs, the Intel XeonPhi, etc. (5) distributed memory clusters of single threaded
CPUs using MPI (6) a cluster of multi-threaded CPUs using MPI and OpenMP
and (7) a cluster of GPUs using MPI and CUDA. A more complete discussion
of the code generation and optimizations for the multi-core CPU, NVIDIA GPU
and MPT parallelizations is given in [10]. In the next section we delve directly
into the performance of each of these generated versions.

3 Performance

In this section, we present quantitative results exploring the performance porta-
bility and scaling of CloverLeaf developed with OPS and compare it to the perfor-
mance of the various original implementations. Tables 1 and 2 provide details of
the hardware and software specifications of the benchmark systems. The first two
systems, Broomway and K20 are single node systems which we use to benchmark
the multi-threaded CPU and GPU performance respectively. The third system is
the UK national supercomputing resource — Archer [7] which we use to benchmark
OPS’s distributed memory performance. The final system is Titan [11], the large
scale K20x GPU based Cray XK7 system at ORNL. To be consistent with the

Table 1. Single node benchmark systems

System Broomway K20

Node architecture |2 x 8-core Intel NVIDIA Tesla
Xeon E5-2680 2.70 GHz K20c
(Sandy bridge)

Memory per node |64 GB 5GB/GPU (ECC off)

0S Red Hat Red Hat
Enterprise Enterprise
Linux 6 Linux 6.4

Compilers and flags | Intel CC 14.0.0 CUDA 6.0 IEEE_FLAGS*
Intel MPT 4.1.3 -gencode arch=compute_35,
-0O3 IEEE_FLAGS* code=sm_35 -O3

NVIDIA OpenCL
PGI compiler
14.2 (for OpenACC)

“On Intel compilers, IEEE_FLAGS=-ipo -fp-model strict -fp-model source -prec-
div -prec-sqrt
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Table 2. Distributed memory benchmark systems

System Archer Titan
Node architecture | 2 x 12-core Intel 16-core AMD
Xeon E5-2697 2.70 GHz Opteron 6274
(Ivy Bridge) + NVIDIA K20X
Memory per node | 64 GB 32GB +
6 GB/GPU (ECC on)
Interconnect Cray Aries Cray Gemini
0S CLE CLE
Compilers and Cray C Compilers 8.2.1 Cray C Compilers 8.2.2
flags cray-mpich/6.1.1 -cray-mpich/6.3.0
-03 -Kieee -03 -hgnu -0O3 -arch=sm_35
PGI Compiler 13.10-0

compiler flags recommended for gaining accurate results from the original Clover-
Leaf application, we enforce IEEE floating-point mathematics compliance on each
compiler and benchmark?

On the single node systems we present the total runtime of the hydro loop
of CloverLeaf for the 960 x 960 (clover_bm.in) and 3840 x 3840 (clover_bm16_
short.in) mesh input decks. Figures5 and 6 present times taken by the main
hydro iteration loop to solve these problems. The MPI and OpenMP results are
from the dual socket Intel CPUs on Broomway while the CUDA and OpenACC
results are from the NVIDIA K20c GPU. We also ran the OpenCL version of
the application on both the CPU and GPU. To reduce the NUMA effects on
performance, both the original and OPS OpenMP versions were executed with
the KMP_AFINITY environmental variable set to compact. We found that this
gave the best performance on this two socket CPU node. Additionally, the MPI
processes were bound to a specific core using the numactl command at runtime,
again to reduce NUMA issues on the two socket CPU node.

We see that on the Intel CPU node for both problems with the exception of the
OpenMP only parallelization, the OPS version executes within 10 % of the original
implementation’s runtime. The OPS’s OpenMP parallelization gives better per-
formance. We believe that this is due to OPS explicitly partitioning the iteration
space and allocating them to be computed by the available OpenMP threads. In the
original version allocating work to threads is handled automatically by OpenMP.
The best runtime for the 960 x 960 mesh is achieved using OPS’s pure MPI version,
which is about 3 % faster than the best runtime achieved with the original MPI ver-
sion. The OpenCL runtime on the CPUs are about 30 % worse than the OpenMP
versions, however OPS matches the runtime of the original CloverLeaf OpenCL
version. The poor OpenCL performance on the CPU may be due to NUMA effects

2 On Intel compilers, IEEE_FLAGS=-ipo -fp-model strict -fp-model source -prec-div
-prec-sqrt.
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Fig. 5. CloverLeaf performance - 960 x 960 mesh (/22955 iterations)

as the OpenCL runtime does not yet have facilities for explicitly placing and bind-
ing threads to cores. A further reason could be poorer vectorization from OpenCL
compared to vectorization achieved with SIMD pragmas using the Intel compiler.
On the NVIDIA K20c GPU with CUDA, OpenCL and OpenACC all application
versions perform approximately the same. The CUDA version gives a speedup of
3x over the best runtime on the two socket Intel CPU node.

The code generated with OPS additionally consists of profiling instrumen-
tation for capturing ops_par_loop execution times and achieved bandwidths.
This information, together with details of approximate number of double preci-
sion floating-point operations executed per ops_par_loop (gathered through a
profiler) enables us to compute the achieved floating-point operation rates and
memory bandwidths. Table 3 details this achieved performance per single node
on the CPU and GPU systems for each of the related parallelizations. Only the
results for the most time consuming routines are given in the table. As a com-
parison we note the achieved DGEMM (double precision generic matrix-matrix
multiply [15]) floating point operation rate on both the CPU and GPU, the
STREAM [22] memory bandwidth achieved on the CPU node, and the resulting
bandwidth from NVIDIA’s bandwidthTest [2] benchmark. The peak achievable
performance (Number of Cores x Average frequency x Operations per cycle for
Intel CPUs and for NVIDIA K20c GPU [3]), for each platform is also presented.
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On the two socket Intel CPU node, Broomway, we see that some loops achieve
over 80% of the STREAM memory bandwidth (with MPI). However, only a
small fraction out of the 304 GFlops/s DGEMM floating-point operation rate is
achieved. On the K20c GPU, the achieved fraction of peak bandwidth is even
higher, with loops in flux_calc obtaining 155.27 GB/s (with CUDA), which is
over 90 % of the bandwidth achieved with the bandwidthTest benchmark. Again,
the achieved floating-point rate is significantly smaller compared to the GPU’s
theoretical and practical peak rates. Thus we can say that the CloverLeaf appli-
cation is much more bandwidth limited, than compute limited. OpenCL paral-
lelization on the CPU performs considerably less well than MPI and OpenMP.
However on the K20c GPU, OpenCL was as good as the CUDA implementation.

Next, we benchmark the scaling performance of the distributed memory par-
allelization, on two large-scale clusters. The first is on Archer, a Cray XC30, on
which we benchmark CloverLeaf’s pure MPI performance. Figure 7 details the
results from this system for both strong scaling and weak scaling on up to 1024
nodes (12,288 cores). The strong scaling mesh consists of 153602 (/230 million)
grid points, while for weak scaling a mesh size of 38402 is assigned per socket
of a node (i.e. for the 2 socket Archer node a mesh of 2 x 38407 is assigned per
node). We see that again, OPS CloverLeaf version’s runtime at increasing scale
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Table 3. Single node performance - 960 x 960 mesh (/2955 iterations)

Broomway CPU Node (2 x Intel Xeon E5-2680)
Peakpiops = 345.6GFlops/s, Peakpw = 102.4GB/s
DGEM Mpiops = 304G Flops/s, STREAMpw = T8GB/s

Loop 32 OpenMP 32 MPI OpenCL
GFlops/s  GB/s|GFlops/s  GB/s|GFlops/s GB/s
viscosity 81.79 23.72 86.48 20.14 81.86 23.66
accelerate 25.67  43.45 30.42 50.81 21.45 36.17
pdv 48.92 53.55 42.46 47.28 38.59 42.10
ideal_gas 43.92  50.19 57.79  63.29 25.52 29.06
flux_ calc 9.44 50.33 12.19 64.27 5.18 27.52
advec_ mom 17.04 46.69 21.39 63.79 10.44 28.51
advec__cell 25.70 44.02 30.04 54.88 18.52 31.61

K20 GPU (NVIDIA K20c)

Peakpiops = 1.1TTF /s, Peakpw = 208G B/sec
DGEM Mpiops = 625G Flops/s, BWTestpw = 166GB/s
Loop CUDA OpenCL OpenACC
GFlops/s  GB/s|GFlops/s  GB/s|GFlops/s GB/s
viscosity 248.55 72.08 250.26 72.57 176.35 51.16
accelerate 90.84 153.75 69.37 11741 39.36 66.64

pdv 126.78  138.80f 122.20 133.78] 131.52  103.08
ideal gas 127.43 145.64] 125.71 143.67 52.85  122.82
flux_ calc 29.11 155.27 23.66 126.18 25.10 133.93

advec_ mom 47.08 129.01 4252  116.54 39.43  108.10
advec_ cell 76.09 130.33 74.53 127.66 64.70  110.85

matches that of the original MPI version to within less than 10 %. This is true
for both configurations. A closer look at the compute time vs communications
time reveals that for both strong and weak scaling the time spent in communica-
tions, including message set up costs and time to communicate messages is less
than 10 % of the total run time for any execution on Archer. Profiling the num-
ber of MPI messages sent/received in both OPS and original Cloverleaf versions
reveals that OPS performs 4 x more MPI messages than the original version.
This is due to the finer granularity of each ops_par_loop, each of which only
sends MPI messages for data sets belonging to it. In contrast the original version
only does halo exchanges in the update_halo routine, aggregating all the MPI
messages that need to be sent/received for all subsequent loops. In other words,
OPS communicates messages as and when required (i.e. on demand) which only
enables a much smaller number of halos to be aggregated.

Figure 8 presents the benchmarking results from Titan. One node in Titan
contains one NVIDIA K20x GPU, thus we have allocated one MPI process per
node when executing the MPI+CUDA parallelizations. The figure also plots the
run times gained on this system with the MPI only parallelization. In this case,
we have allocated 8 MPI processes per node, the reason being that on Titan,
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there is only one AMD Interlagos CPU consisting of 16 cores, where two cores
share one floating point operation unit (FPU). For the weak scaling runs the
mesh size allocated per Titan node is 3840 x 3840 as there is only one CPU
socket per node on Titan.

The OPS MPI4+CUDA results again match the original CloverLeaf applica-
tion’s hand tuned MPI+CUDA version and demonstrates that the HLA app-
roach to OPS’s development has not resulted in any performance degradation.
However, comparing OPS’s MPI only version to that of the original, OPS loses
about 30 % performance at 8 K nodes. We believe that the reason is due to OPS’s
on-demand MPI messaging strategy which at the very large scale results in sig-
nificantly larger number of messages. The latency of these messages dominates
the runtime due to the very low amount of compute performed on each MPI
process. Currently we are exploring further message aggregation strategies for
improving performance of OPS to resolve this issue.
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The MPI only version strong-scales better than the MPI4+CUDA version,
where beyond 2K nodes on Titan, MPI4+CUDA does not give any additional
speedups. We believe that this is almost certainly due to the cost of the PCle
latencies dominating the computation of the small problems at the higher node
sizes. Even using NVIDIA’s GPU direct, which can be utilized with OPS for
MPI+CUDA applications did not give any notable benefits. The MPI-only ver-
sions do not suffer from this issue. However MPI+CUDA achieves a higher
speedup (up to 8x) at very low node counts, which then subsequently diminishes
at scale. With weak scaling this 8 x speedup is maintained at increasing scale.
Additionally, at the higher node scales, the same performance loss experienced
with OPS when strong-scaling does not occur with weak-scaling. We believe
that in this case, the amount of computation carried out per MPI process is
large enough to hide the MPI message latencies.
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4 Related Work

Several similar research projects have shown the significant benefits of utilizing
high-level frameworks such as domain specific languages (DSLs) or active libraries.
These include Firedrake [1], FENiCS [25] and Liszt [14], OP2 [6] for unstructured
mesh applications and Paraiso [24], Ypnos [26], Pochoir [30] and SBLOCK [12] for
explicit stencil based applications (structured mesh applications).

Ypnos [26] is a functional, declarative domain specific language, embedded
in Haskell and extends it for parallel structured grid programming. The lan-
guage introduces a number of domain specific abstract structures, such as grids
(representing the discrete space over which computations are carried out), grid
patterns (stencils) etc. in to Haskell, allowing different back-end implementa-
tions, such as C with MPI or CUDA. Similarly, Paraiso [24] is a domain-specific
language embedded in Haskell, for the automated tuning of explicit solvers of
partial differential equations (PDEs) on GPUs, and multi-core CPUs. It uses
algebraic concepts such as tensors, hydrodynamic properties, interpolation meth-
ods and other building blocks in describing the PDE solving algorithms. In con-
trast SBLOCK [12] uses extensive automatic source code generation very much
similar to the approach taken by OP2 and OPS, and expresses computations as
kernels applied to elements of a set.

Pochoir [30] is a compiler and runtime system for implementing stencil com-
putations on multi-core processors. The main aim of the project is to generate
cache efficient multi-threaded CPU code for structured mesh (i.e. stencil) com-
putations. The OPS project also aims to implement cache efficient, “tiling” algo-
rithms through lazy-execution techniques in the future. The work presented in this
paper is created from static source-to-source translation techniques to investigate
the performance of the resulting code that we believe will be improved via tiling.

Liszt [14] from Stanford University implements a domain specific language
(embedded in Scala [4]) for the solution of unstructured mesh based partial dif-
ferential equations (PDEs). A Liszt application is translated to an intermediate
representation which is then compiled by the Liszt compiler to generate native
code for multiple platforms. The aim, as with OP2, is to exploit information about
the structure of data and the nature of the algorithms in the code and to apply
aggressive and platform specific optimizations. Performance results from a range
of systems (a single GPU, a multi-core CPU, and an MPI based cluster) executing
a number of applications written using Liszt have been presented in [14].

The FEniCS [25] project defines a high-level language, UFL, for the specifi-
cation of finite element algorithms. The FEniCS abstraction allows the user to
express the problem in terms of differential equations, leaving the details of the
implementation to a lower level library. Although well established finite element
methods could be supported by such a declarative abstraction, it lacks the flexibil-
ity offered by frameworks such as OP2 for developing new applications/algorithms.
Currently, a runtime code generation, compilation and execution framework that
is based on Python, called PyOP2 [27], and a larger framework that supports
finite element application development called Firedrake [1,21] is being developed
at Imperial College London.
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Another related project of note is Delite [29] a compiler framework and run-
time for developing parallel embedded domain-specific languages (DSLs) where
the aim is to enable the rapid construction DSLs for a given domain.

5 Conclusions

In this paper, we explored the performance of a Hydrodynamics mini-app called
CloverLeaf, after re-engineering it to use the OPS domain specific high-level
abstractions framework. OPS provides an API for developing multi-block struc-
tured mesh applications and uses code generation techniques to translate an
application to a range of parallel implementations.

The OPS based CloverLeaf’s performance was compared to that of the various
original hand-tuned versions on a number of single-node multi-core/many-core
platforms and distributed memory cluster systems. OPS based CloverLeaf’s per-
formance on single node systems matched the original versions to within 10 % for
most parallelizations and sometimes out-performed it by up to about 20 %. The
achieved memory bandwidth on single node systems showed that the OPS imple-
mentations achieve over 80 % of the practical peak bandwidth of each system for
some parallel loops. However only a small fraction of the peak floating-point rates
are reached on all single node systems. This points to the fact that CloverLeaf is
much more constrained by bandwidth than the compute capability of a system.
Distributed memory parallelizations on both the Archer (Cray XC30) and Titan
(Cray XK7) systems showed excellent scalability, matching that of the original
application on both strong- and weak-scaling configurations. However we found
that OPS’s MPI implementation exchanges about 4x more shorter messages than
that of the original. Further MPI message aggregation strategies for OPS are cur-
rently being explored to improve strong-scaling performance.

Nevertheless, our experience clearly shows that the development of parallel
HPC applications through the careful factorization of a parallel program’s func-
tionality and implementation, using a high-level framework such as OPS, is no
more time consuming nor difficult than writing a one-off parallel program tar-
geting only a single parallel implementation. However the OPS strategy pays off
with a highly maintainable single application source without compromising per-
formance portability on parallel systems on which it will be executed. It also lays
the groundwork for providing support for execution on future parallel systems.
We believe such an approach will be an essential paradigm shift for utilizing the
ever-increasing complexity of novel hardware and software technologies.
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Abstract. Carefully crafted performance characterization can provide
significant insight into application performance and can be beneficial to
computer designers, compiler and application developers, and end users.
To achieve all the benefits of performance characterization, the charac-
terization must incorporate a comprehensive set of characteristics that
affect performance and can be measured with minimal perturbation from
the underlying micro-architecture. To this end, we advocate the use of
application-dependent characteristics that allow general conclusions to
be drawn about the application itself rather than its observed perfor-
mance on a specific architecture. In our prior work [7], we introduced
a set of application-dependent characteristics and showed that they are
consistent across architectures. In this work, we present an efficient char-
acterization methodology that incorporates a more comprehensive set
of application-dependent characteristics. We also explain in detail how
these characteristics can be used to reason about and gain insight into
application performance. Finally, we report characterization results on
SPEC MPI2007 and Mantevo benchmarks. To our knowledge, this is the
first work to present application-dependent characterization results for
SPEC MPI2007 and some of the new Mantevo benchmarks.

1 Introduction

If carefully crafted, application performance characterization can provide valu-
able insight into performance and significant benefits to a wide range of users
from hardware designers to application developers and end users. Architecture
designers can use application performance characterization to quickly define
an optimal initial baseline architecture for a given application or workload.
Performance characterization also helps reveal code optimization opportunities
for application developers and aids end-users in selecting the platform(s) that
result in optimal performance. Furthermore, application benchmark developers
use characterization to choose benchmarks that are representative of a particu-
lar domain and/or to compare benchmarks and determine their (dis)similarity.
Finally, performance characterization can be used to provide insight into why
an application performs the way it does on a particular architecture.

© Springer International Publishing Switzerland 2015
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To achieve these and other benefits of performance characterization, the
characterization must incorporate a comprehensive set of characteristics that
affect performance and the measurements must be done in a micro-architecture-
independent fashion. By using a comprehensive set of important performance
characteristics, a more complete picture of application performance can be drawn.
Therefore, in this work, we present and advocate the use of application-dependent
(i.e., micro-architecture-independent) characteristics that allow general conclu-
sions to be drawn about the application itself rather than its observed performa-
nce on a specific architecture. In other words, because they are the characteristics
of the application that realize the observed performance, application-dependent
characteristics help us understand the fundamental cause of the observed per-
formance on a specific architecture.

In our prior work [7], we introduced a set of application-dependent charac-
teristics and showed that they are consistent across architectures. In this work,
we present an efficient characterization methodology that incorporates a more
comprehensive set of application-dependent characteristics including spatial and
temporal locality, memory usage and memory footprint, branch predictability,
instruction mix, as well as characteristics related to ILP (instruction-level par-
allelism). To allow these characteristics to be measured quickly and in a micro-
architecture independent manner, we define all characteristics such that they are
easily obtainable using dynamic binary instrumentation (DBI). By using only
DBI, our methodology does not depend on slow (possibly inaccurate) simulators
and is, therefore, faster.

Although the idea of micro-architecture-independent characteristics has been
explored in prior studies, the methodology and metrics presented in this paper
are defined and used differently as illustrated below and in Sect.5. Further, the
set of measured characteristics (metrics) defined is more comprehensive than
prior studies [12-14,20] and includes new metrics.

Workload characterization has been primarily used to understand the behav-
ior of applications on specific platforms and to understand the similarity of
benchmarks within or across benchmark suites. In this work, we define a char-
acterization method that can be applied in a wider context. In particular, we
show how to use the results of application-dependent characterization to

— reason about and gain insight into application performance

— intuitively understand how performance characteristics map to machine char-
acteristics

— aid in benchmark comparison and/or selection.

Additional contributions of this work include (1) a comprehensive set of
application-dependent metrics that includes new performance metrics, and
(2) detailed performance characterization data for benchmarks that have not
been characterized before as well as others that have only been lightly studied.

2 Methodology and Characteristics

In this section, we present our application-dependent performance characteristics
and metrics and show how they can be used to gain insight into application perfor-
mance. Our aim is to define a minimum number of characteristics that maximally
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capture an application’s unique and diverse behavior. We also briefly describe how
to use characterization results to compare applications or to select benchmarks for
a particular study. The application-dependent characteristics are classified into
general and memory characteristics as described below.

2.1 General Characteristics

Dynamic Instruction Mix

The dynamic instruction mix provides information about the types and ratios
of instructions executed by an application and can be used to gain a high-level
understanding of what the application needs in terms of the type of execution
units. To support CISC (e.g., x86) instructions that perform multiple operations,
we decompose each instruction into its single operations (ops) such as add, load,
or store ops. All the operations performed by a program are then grouped into
the following five categories: (1) Loads, (2) Stores, (3) FP Ops, (4) Int Ops,
and (5) Branches. These categories are chosen to correspond to the different
execution units that may be implemented in a micro-architecture. Additionally,
for each category, we capture a frequency distribution of the distance separating
two same-type ops measured in number of instructions. Such a distribution helps
us understand how particular execution units are stressed. For example, having
multiple FP execution units can improve performance if FP ops occur in bursts
(i.e., one after another). The distance distributions contain 513 distances or
bins that start from zero to a maximum distance of 511, with the last entry
representing distances larger than or equal to 512. Figure la shows an example
distribution of the distances between load ops for the 104.milc benchmark. The
figure shows that load op pairs that follow each other (i.e., distance of 1) represent
approximately 18 % of the total loads in the benchmark.

Instruction Dependence

We characterize the dependence between instructions using the register depen-
dence distance, which is the distance measured in number of dynamic instruc-
tions between the instruction writing or producing a specific register and the
instruction reading or consuming it. For each application, we capture a frequency
distribution of register dependence distances. This characteristic is indicative
of the amount of ILP (Instruction-Level Parallelism) inherently present in the
application and indicates whether the application can utilize increased proces-
sor issue width, more in-flight instructions (i.e., larger window), or more exe-
cution units. For example, if an application exhibits tight register dependence
distances, the opportunities to execute multiple instructions in parallel become
limited, which in turn leads to decreased performance. In contrast, an applica-
tion with long dependence distances will perform better on wide-issue processors.
Figure 1b shows the register dependence distance distribution for the CloverLeaf
benchmark. The figure shows that CloverLeaf has tight dependence distances;
a register is written and then read by the same instruction (i.e., distance of 0)
32 % of the time while a register is written and read by the next instruction (i.e.,
distance of 1) about 20 % of the time.
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Conditional Branch Predictability

Conditional branch predictability is measured for a given application using a met-
ric called branch transition rate [11]. Branch transition rate measures how often a
branch switches direction between taken and not taken during execution. Branches
are easily predictable if they do not change direction often or if they switch direc-
tion most of the time. Branches that have a transition rate of around 50 % are the
most difficult to predict. We classify branches into 11 groups (0-10) based on their
transition rates: 0-5 %, 5-10 %, 10-15 %, 15-20 %, 20-30 %, 30-70 %, 70-80 %,
80-85 %, 85-90 %, 90-95 %, and 95-100 %. Class 0 corresponds to the percentage
of branches that transition 0-5 % of the time; class 1 corresponds to the percentage
of branches that transition 5-10 % of the time and so on.

An application that has mostly class 0 or class 10 branches requires only a
simple branch predictor and will likely experience a low misprediction rate. In
contrast, an application characterized by primarily class 5 branches requires a
more sophisticated predictor and will more likely have a higher misprediction
rate. Figure 1c shows the percentage of branches in each branch transition rate
class for the miniMD and 104.milc benchmarks. MiniMD has a high percentage
of hard-to-predict branches (Classes 4 and 5) while 104.milc has mostly easy-to-
predict branches (Class 0). Therefore, miniMD is likely to have a higher branch
misprediction rate than 104.milc (see Sect. 4).
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Fig. 1. Example general characteristics

Computational Intensity

Computational intensity is the ratio of floating-point operations to memory
accesses and is a commonly used characteristic for floating-point scientific appli-
cations. Computational intensity is an indirect measure of data movement.
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Because moving a piece of data is typically much slower than doing an operation
on it, application and algorithm developers strive to achieve higher computa-
tional intensities. Reducing data movement also reduces energy.

Average Instruction Size

The average size (in bytes) of instructions executed by an application can aid in
understanding how an application utilizes a given fetch width and whether a wider
fetch width is needed. This is particularly useful for CISC (e.g., x86) instructions
that vary in size, affecting both the fetch and decode stages of a processor pipeline.
To achieve optimal performance, the block of bytes (code) fetched on every cycle
must at a minimum contain a number of instructions equal to the processor width
(i-e., dispatch and commit width). We measure a distribution of instruction sizes
from which we calculate the average size.

Average Basic Block Size

A basic block is a single-entry, single-exit sequence of code. Measured in number
of instructions, basic block sizes are indicative of the amount of ILP available to
exploit which, in turn, informs fetch width and is correlated to branch frequency.
Since taken branches typically cause what is called a fetch bubble in a processor
pipeline, an application with small basic blocks (i.e., high rate of branches) may
experience frequent fetch bubbles and thus experience a decreased fetch rate. We
measure a frequency distribution of the dynamic basic block sizes and calculate
the average.

2.2 Memory Characteristics

Due to the dominance of the memory system in affecting performance, under-
standing the inherent memory characteristics of an application is key to under-
standing its performance. To this end, we define a comprehensive set of memory
characteristics and metrics as described below.

Data Working Set Size

The working set size determines the memory size required for an application
and it is defined as the total number of unique memory bytes touched by the
application during its execution. The working set size (or data intensiveness)
helps us understand the memory demands of an application and has been found
to be the biggest differentiator between real applications and benchmarks [18].

Timeline of Memory Usage

This performance metric captures the size of new memory used by an application
as its execution progresses in time. Starting from the beginning of execution and
for every interval of one billion instructions, we track and record the total number
of new and unique memory bytes touched by the application. Besides knowing the
periods of execution at which the application accesses new memory, the memory
usage timeline may be used to identify phases of execution. It has been shown
in [15] that the working set captured for execution intervals can be an effective
phase detection method.
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Figure 2 shows an example timeline for the HPCCG benchmark. The y-axis
shows the size of new memory used as a percentage of the benchmark’s total
working set size, and the x-axis represents execution progress. As illustrated in
the figure, the entire working set size of the HPCCG benchmark is accessed
within the first 4% of execution; 58 %, 36 %, and 6 % of the working set size is
accessed in the first, second, and forth percent of execution, respectively. This
also suggests that after 4% of execution elapses, HPCCG goes into a single
execution phase for the remainder of execution. Note that it may well be that
an application initializes all of its data structures (i.e. accesses all its memory)
at the beginning of execution. In such a case, the memory usage timeline can
not provide useful information about execution phases (see Sect. 6).
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Fig. 2. Memory usage timeline for HPCCG

Average Requested Memory Size

This metric measures the average number of bytes read/written per memory
operation, indicating the average data size used by the application. This can
be useful when used with computational intensity to determine, on average, the
amount of data being moved per floating-point operation. Note that depending
on their types, memory instructions can read/write a widely varying number of
memory bytes. Therefore, knowing the number of memory operations must be
complemented by knowing the number of bytes those operations read or write.

Temporal and Spatial Locality

To mitigate the high latency of accessing memory, modern micro-architectures
feature small and fast cache memories that hold frequently-accessed data closer
to the processor. All caches work by exploiting the locality of reference exhibited
(to varying extents) by all applications. There are two types of locality: temporal
locality which is the reuse over time of a data item from memory, and spatial
locality which is the use of data items in memory near other recently used items.
By carefully analyzing an application’s temporal and spatial locality, not only
can we understand how effectively the application utilizes a given cache orga-
nization, but we can also reason about the optimal cache configuration for the
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application. Our approach to achieving this goal starts by capturing a frequency
distribution of the application’s memory-reuse distances.

A memory-reuse distance (MRD) is defined as the distance measured in num-
ber of unique memory blocks accessed between two accesses to the same block.
In all of our experiments, the maximum tracked MRD is 32 MB, which corre-
sponds to a cache size of 32 MB. Using 16-byte, 32-byte, 64-byte, and 128-byte
memory block sizes, we capture one MRD distribution for each block size. Note
that these block sizes correspond to four potential cache line sizes. Since higher
levels of cache typically store either data or instructions while lower levels of
cache store both, we capture separate MRD distributions for data references,
instruction references, and unified (both data and instruction) references.

We now illustrate how MRD distributions are used to characterize an appli-
cation’s spatial and temporal locality. Note that the conclusions drawn from the
examples below are only a small sample of the conclusions that can be drawn
from the data. Figure3a shows a portion of the unified MRD distribution for
the HPCCG benchmark. The x-axis represents the distance in number of unique
64-byte block accesses between two accesses to the same 64-byte block, and the
y-axis represents the percentage of the total memory references.

The goal of characterizing an application’s spatial locality is to help us under-
stand how effectively and quickly the application consumes the data available to it
in a cache block. To achieve this and at the same time visualize spatial locality, we
plot the points from the MRD distribution that correspond to short memory-reuse
distances; zero through 64 (Fig. 3b). In other words, we determine the percentage
of memory references that reuse data from the same block (line) after n accesses to
other blocks, where n = {0, 1,2, 4, 8,16,32,64}. Other studies [12-14,20] capture
spatial locality only for a distance of zero by considering only successive references.
We believe that using a window of n references intuitively provides more accurate
spatial locality information but is computationally more complex.

As shown in Fig. 3b, about 42 % of the references in HPCCG immediately
reuse the same line (i.e., distance of 0), and around 34 % of references reuse the
same line after one access to a different line (i.e., distance of 1). Figure 3d illus-
trates how HPCCG’s spatial locality changes over different block sizes. Within
the maximum distance of 64 line accesses, 91 %, 96 %, 98 %, and 99 % of refer-
ences are spatially local using 16-, 32-, 64-, and 128-byte blocks, respectively.
Note that in an n-way set-associative cache, there is a possibility that the inter-
mediate block accesses are to the same set (see discussion below), which may
cause a block to be evicted by the time it is referenced again. Thus, it may be
more accurate to look at spatial locality for short distances (e.g., 2, 4, and 8)
that correspond to the cache associativity of interest. For example, Fig. 3d shows
that the percentage of references spatially local within a distance of 2 is 70 %,
89 %, and 93 % for block sizes of 16, 32, and 64 bytes, respectively. As also seen in
Fig.3d, HPCCG’s spatial locality improves only slightly by increasing the block
size from 64 to 128 bytes. From this, we can conclude that the optimal cache line
size for exploiting HPCCG'’s spatial locality is 64 bytes.

To visualize temporal locality, the distances on the x-axis of the MRD distri-
bution are grouped into bins that correspond to potential cache sizes. The first
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Fig. 3. Temporal and spatial locality examples

four distance bins are set to 0, 4, 8, and 64 times the line size. The rest of the bins
go from 32 KB up to 32 MB, doubling each time. Figure 3¢ shows the temporal
locality plot for HPCCG based on 64-byte blocks and unified references.

The figure shows that 95 %, 97 %, and 98 % of references are temporal within
the distances of 256 B, 512 B, and 1 KB, respectively. This implies that a 1 KB
cache is large enough to keep 98 % of references temporally local within the cache.
Figure 3d shows how HPCCG’s temporal locality changes over different cache line
sizes. For example, the percentage of references that are temporal within 1 KB is
91 %, 96 %, 98 %, and 99 % for 16-, 32-, 64-, and 128-byte blocks, respectively.

The above temporal and spatial locality analysis assumes that the target cache
is fully associative. However, in an n-way set associative cache, the block accesses
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that occur between two accesses to the same block can be to the same set, which
may cause a block to be evicted by the time it is re-accessed. For caches with a high
degree of associativity, which are typical of lower-level caches and closely approx-
imate fully-associative caches, our above analysis is valid and is confirmed using
actual measurements (see Sect. 4). However, for low associative caches, it is impor-
tant to look at the access patterns of cache sets. To this end, we capture a fre-
quency distribution of the set-reuse distances, where a set-reuse distance (SRD)
is the number of sets accessed between two accesses to the same set. To capture
the SRD distribution, assumptions must be made about the size of the cache, the
size of a cache line, and the number of ways in a cache set. In all our experiments,
the cache size is assumed to be 32 MB. We use four cache line sizes (16, 32, 64, and
128 bytes) and four associativities (2, 4, 8, and 16 ways). One SRD distribution is
captured for every unique combination of line sizes and number of ways.
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Fig. 4. Set-reuse distances for HPCCG

Figure 4a shows a portion of the SRD distribution for HPCCG. In capturing
this distribution, the 32 MB cache is assumed to be 8-way set associative with
64-byte lines. As shown in Fig.4a, about 40 % of references re-access the same
set after accessing eight other sets (i.e., distance of 8). It can also be seen that
around 67 % of references have a set-reuse distance of less than or equal to 10.
This suggests that a set is frequently re-accessed within a short period of time.
This may lead to more conflict misses provided that a low-associative cache is
used and that the MRD distribution shows a high ratio of references with long
MRDs compared to SRDs. That is, different blocks within a set are frequently
accessed within a short period of time, which increases the likelihood of conflict
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misses. In Fig.4b, we group the set-reuse distances into bins that represent
distances as a percentage of the total sets in the 32 MB cache. As illustrated in
the figure, around 85 %, 90 %, and 99 % of total references re-access the same
set after 1%, 5%, and 20 %, respectively, of sets are accessed.

2.3 Selection and Comparison of Benchmarks

In addition to gaining insight into performance and reasoning about hardware
resources optimal for performance, the application-dependent characteristics des-
cribed above can also be used to select an appropriate set of benchmarks for a par-
ticular study or to determine the (dis)similarity among benchmarks. For example,
if one is interested in studying branch behavior or evaluating branch predictors,
they need to choose benchmarks with diverse branch predictability characteris-
tics. On the other hand, if evaluating memory system configurations or studying
memory behavior is of interest, the benchmarks with the most diverse memory
characteristics should be considered.

To compare benchmarks, the metrics used to measure the application-
dependent characteristics for each benchmark can be grouped into a vector that
can be called the performance vector. For example, the percentage of each of the
five categories in the instruction mix and the percentage of references in each bin
of the memory-reuse distance distribution can be included in the performance vec-
tor. The performance vectors of different benchmarks can then be normalized and
compared using a simple distance measure.

3 Experimental Setup

In this section, we briefly describe the platforms and tools used to capture the
application-dependent characteristics described in Sect.2 as well as the bench-
marks used in this study.

Platforms

All of our experiments are conducted on a Dell cluster that includes eight nodes,
each of which runs the Scientific Linux (version 6.3) operating system [4] and
has 48 GB of available RAM. Each node contains two six-core Intel Xeon X5670
processors that are clocked at 2.93 GHz. While all the cores share a 12 MB 16-
way L3 cache, each core has a 32 KB 4-way L1 instruction cache, a 32 KB 8-way
L1 data cache, and 256 KB 8-way L2 unified cache. A cache line is 64 bytes in all
the levels of cache. Each of the Intel Xeon X5670 processor cores implements the
Westmere-EP micro-architecture which features: (1) a 4-way superscalar out-of-
order execution pipeline, (2) a 128-entry re-order buffer, and (3) three integer,
three floating-point, and four address generation units.

Tools

We capture the application-dependent characteristics described in Sect. 2 using
dynamic binary instrumentation (DBI) tools that we developed in-house using
Pin [17]. The slowdown caused by DBI depends on the type of analysis performed
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and the number of dynamic instructions instrumented. However, DBI is still
orders of magnitude faster than simulation and there exist techniques such as
sampling to effectively speed up the execution of instrumented binaries.

Capturing the memory-reuse and set-reuse distance distributions (see Sect. 2)
is nontrivial and can cause extreme slowdowns. To capture these reuse distances,
a FIFO(First-In-First-Out) queue is typically used to hold memory references
and for every new reference encountered during execution, the queue is searched
for a prior occurrence of the reference to determine a reuse distance. We imple-
ment three optimization methods to speed up our DBI tool. First, we limit the
size of the FIFO queue by restricting the maximum reuse distance to 32 MB
which is sufficient to study the behavior of most modern caches. Second, we
implement the FIFO queue using a balanced binary tree to achieve much faster
search and update times. Finally, rather than instrumenting the entire bench-
mark binary, we use representative sampling [9,10] to select a limited number of
representative samples. Then, the instrumentation is applied only to the selected
samples. For each benchmark, up to ten 100-million-instruction samples are iden-
tified using the PinPoints methodology [19] which is based on the well-known
SimPoint tool [24]. In [7], we show that the reuse distributions measured with
and without sampling are statistically similar at 95 % confidence.

Using our optimized tools and for all the benchmarks listed in Tablel, it
took approximately two weeks to capture all the characterization data on the
8-node platform described above. Finally, the PapiEx [3] tool is used to obtain
counts from the on-chip hardware performance counters

Table 1. List of benchmarks used

Suite Benchmark Lang. Application domain
SPEC MPI2007 104.milc (@] Quantum chromodynamics
107 leslie3d Fortran Computational fluid dynamics
113.GemsFDTD | Fortran Computational electromagnetics
132.zeusmp?2 C/Fortran | Computational fluid dynamics
137.1u Fortran Computational fluid dynamics
Mantevo MiniApps | miniFE C++ Unstructured Implicit Finite Element
HPCCG C++ Unstructured implicit finite element
miniMD C++ Molecular dynamics
miniXyce C++ Circuit simulation
CloverLeaf C/Fortran | Hydrodynamics

Benchmarks

Table 1 shows a list of all the benchmarks used in this study. Although all are
parallel benchmarks, we execute them serially for the purposes of this work. All
benchmarks are built using compilers from the Gnu Compiler Collection(GCC) [1]
and are drawn from the following benchmark s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>