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Preface

This volume contains the 14 papers that were presented at the 5th International
Workshop on Performance Modeling, Benchmarking, and Simulation of High Per-
formance Computing Systems (PMBS 2014), which was held as part of the 26th ACM/
IEEE International Conference for High Performance Computing, Networking, Stor-
age, and Analysis (SC 2014) at the Ernest N. Morial Convention Centre in New
Orleans during November 16–21, 2014.

The SC conference series is the premier international forum for high-performance
computing, networking, storage, and analysis. The conference is unique in that it hosts
a wide range of international participants from academia, national laboratories, and
industry; this year’s conference attracted over 10,000 attendees and featured over 350
exhibitors in the industry’s largest HPC technology fair.

This year’s conference was themed HPC Matters, recognizing the immense impact
that high-performance computing has on our lives. Specifically, SC 2014 was focused
not only on the very visible way in which HPC is changing the world around us, but
also on how HPC is improving every aspect of our lives in the most unexpected ways.

SC offers a vibrant technical program, which includes technical papers, tutorials in
advanced areas, Birds of a Feather sessions (BoFs), panel debates, a doctoral showcase,
and a number of technical workshops in specialist areas (of which PMBS is one).

The focus of the PMBS 2014 workshop was comparing high-performance com-
puting systems through performance modeling, benchmarking, or the use of tools such
as simulators. We were particularly interested in receiving research papers which
reported the ability to measure and make tradeoffs in hardware/software co-design to
improve sustained application performance. We were also keen to capture the
assessment of future systems, for example, through work that ensured continued
application scalability through peta- and exa-scale systems.

The aim of the PMBS 2014 workshop was to bring together researchers from industry,
national laboratories, and academia, who were concerned with the qualitative and quan-
titative evaluation and modeling of high-performance computing systems. Authors were
invited to submit novel research in all areas of performance modeling, benchmarking, and
simulation, and we welcomed research that combined novel theory and practice. We also
expressed an interest in submissions that included analysis of power consumption and
reliability, and were receptive to performance modeling research that made use of ana-
lytical methods as well as those based on tracing tools and simulators.

Technical submissions were encouraged in areas including: performance modeling
and analysis of applications and high-performance computing systems; novel tech-
niques and tools for performance evaluation and prediction; advanced simulation
techniques and tools; micro-benchmarking, application benchmarking, and tracing;
performance-driven code optimization and scalability analysis; verification and



validation of performance models; benchmarking and performance analysis of novel
hardware; performance concerns in software/hardware co-design; tuning and auto-
tuning of HPC applications and algorithms; benchmark suites and proxy apps; per-
formance visualization; real-world case studies; studies of novel hardware such as Intel
Xeon Phi coprocessor technology, NVIDIA Kepler GPUs, and AMD Fusion APU.

PMBS 2014

We received an excellent number of submissions for this year’s workshop. As a result
of this we were able to be very selective in those papers that were chosen; 14 full
papers were accepted from a total of 53 submissions (26%). The resulting papers show
worldwide programs of research committed to understanding application and archi-
tecture performance to enable peta-scale computational science.

Contributors to the workshop included Argonne National Laboratory, the Barcelona
Supercomputing Center, IBM, Inria, Jülich Supercomputing Centre, Lawrence Berkeley
National Laboratory, Lawrence Livermore National Laboratory, NVIDIA, Sandia
National Laboratories, Technische Universität Dresden, the University of Illinois, the
University of Oxford, and the University of Stuttgart, among many others.

Several of the papers are concerned with Performance Benchmarking and Opti-
mization, see Section A. The paper by Hormozd Gahvari et al. explores the use of a
Cray XC30 system using a Dragonfly interconnect topology for running an Algebraic
Multigrid solver application. Andrew V. Adinetz et al. present initial benchmarking
results for IBM’s new POWER8 architecture. The paper by Guido Juckeland et al.
outlines a new SPEC benchmark suite specifically designed for accelerator architec-
tures. Everett Phillips and Massimiliano Fatica outline the development of a CUDA
implementation of the HPCG benchmark – a benchmark that is growing in popularity
due to LINPACK’s well-documented shortcomings. Gihan Mudalige et al. present the
porting of the CloverLeaf hydrodynamics application, from Sandia National Labora-
tories’ Mantevo proxy app suite, to the OPS high-level abstraction framework being
developed at the University of Oxford.

Section B of the proceedings collates papers concerned with Performance Analysis
and Prediction. Waleed Alkohlani and colleagues utilize dynamic binary instrumen-
tation in order to identify characteristics that affect an applications performance. Yu
Jung Lo et al. build upon previous work with the Roofline model to develop a toolkit
for auto-generating Roofline models, including extending these models to accelerator
architectures. Raúl de la Cruz et al. document the development of a performance model
for Intel’s Xeon Phi coprocessor architecture with a particular focus on stencil com-
putations. A performance model for the HPCG benchmark is presented by Vladimir
Marjanović et al. showing a strong correlation between memory bandwidth and HPCG
performance. Elmar Peise et al. build performance models for tensor contraction cal-
culations. Their models allow the most efficient algorithm to be chosen ahead of
runtime using the results from a set of micro-benchmarks to inform algorithm choice.

The final section of the proceedings, Section C, is concerned with Power, Energy,
and Checkpointing. Anne Benoit et al. present a general-purpose model to handle both

VI Preface



fail-stop and silent errors, utilizing this model to determine the optimal checkpoint
and verification period under a variety of different execution scenarios. The work by
Shane Snyder et al. explores the use of an infection-style group membership protocol
for managing faults in HPC storage systems. Prasanna Balaprakash et al. build upon
work presented at the previous PMBS workshop showing the tradeoffs that exist
between performance and energy consumption when using multilevel checkpointing
libraries. The final paper by Balaji Subramaniam and Wu-chun Feng deals with the
energy consumption for distributed NoSQL data stores under load. Specifically, they
analyze the use of three resource provisioning techniques, demonstrating a significant
power saving when both power and performance are considered as part of the provi-
sioning algorithm.
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Algebraic Multigrid on a Dragonfly Network:
First Experiences on a Cray XC30

Hormozd Gahvari1(B), William Gropp2, Kirk E. Jordan3, Martin Schulz1,
and Ulrike Meier Yang1

1 Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
{gahvari1,schulzm,umyang}@llnl.gov

2 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
wgropp@illinois.edu

3 IBM TJ Watson Research Center, Cambridge, MA 02142, USA
kjordan@us.ibm.com

Abstract. The Cray XC30 represents the first appearance of the drag-
onfly interconnect topology in a product from a major HPC vendor. The
question of how well applications perform on such a machine naturally
arises. We consider the performance of an algebraic multigrid solver on
an XC30 and develop a performance model for its solve cycle. We use this
model to both analyze its performance and guide data redistribution at
runtime aimed at improving it by trading messages for increased compu-
tation. The performance modeling results demonstrate the ability of the
dragonfly interconnect to avoid network contention, but speedups when
using the redistribution scheme were enough to raise questions about the
ability of the dragonfly topology to handle very communication-intensive
applications.

1 Introduction

The network topology of an HPC system has a critical impact on the perfor-
mance of parallel applications. In recent years, vendors have experimented with a
wide range of topologies. A topology that has found wide interest is the dragonfly
topology [18]. Introduced several years ago, it has seen its first major deploy-
ment in the Cray XC30. As more XC30s and other machines that make use of
dragonfly interconnects are deployed, the question of application performance
on these machines becomes paramount. How suited is the dragonfly topology for
particular applications? What are its advantages and disadvantages? What are
its future prospects as machines get even larger?

This paper examines one application, algebraic multigrid (AMG), on an
XC30, to see how well it performs on this topology and get a first look at poten-
tial hazards it and other applications would face on a dragonfly machine. AMG is
a popular solver for large, sparse linear systems of equations with many scientific
and engineering applications. It is very attractive for HPC owing to ideal com-
putational complexity, but faces challenges on emerging parallel machines [3,4]
that served as motivation for a recent in-depth study [11] into its performance
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 3–23, 2015.
DOI: 10.1007/978-3-319-17248-4 1



4 H. Gahvari et al.

and ways to improve it. We present results from that study on modeling the
performance of the AMG solve cycle on an XC30 and using the performance
model to improve its performance on that architecture.

Our specific contributions are as follows:

– We successfully extend a performance model that previously covered fat-tree
and torus interconnects to a dragonfly interconnect.

– We use that model at runtime to guide data redistribution within the AMG
solve cycle to improve its performance on a dragonfly machine.

– We point out an important hazard faced by the dragonfly interconnect in a
real-world scenario.

The model predicts cycle times to accuracies mostly between 85 and 93 percent in
our experiments, and covers both all-MPI and hybrid MPI/OpenMP program-
ming models. The data redistribution involves having processes combine data,
trading messages they would send amongst themselves for increased computation.
Resulting speedups range from modest to over 2x overall, with the large speedups
occurring during the communication-heavy setup phase of AMG or when solving
a communication-intense linear elasticity problem. This occurs despite the model
rating the XC30 interconnect as being effective overall at avoiding network con-
tention, leading to questions about the ability of the dragonfly interconnect when
tasked with handling a large number of messages.

2 Dragonfly Networks

The general principle behind dragonfly interconnects is to keep the minimum
hop distance low like a fat-tree, while also providing high bandwidth between
nodes and low network contention at less cost [18]. This is accomplished through
a generalized two-level design. The core of the network is formed by a number
of groups of routers, with each group connected by optical cables to every other
group. The routers in each individual group have their own specific topology.
This is diagrammed in Fig. 1.

2.1 Implementation on the Cray XC30

The dragonfly implementation on the XC30 is called the Aries interconnect [2].
In the Aries interconnect, the routers in each group are arranged as rows and
columns of a rectangle, with all-to-all links across each row and column but not
diagonally. There are 16 routers in the horizontal dimension and 6 in the vertical
dimension, for a total of 96 routers per group. Four nodes are connected to each
router, bringing the number of nodes per group to 384. This is illustrated in
Fig. 2.

2.2 Target System

We ran our experiments on Eos, an XC30 at Oak Ridge National Laboratory.
Eos consists of 744 compute nodes with two eight-core 2.6 GHz Intel Xeon E5-
2670 processors per node. The hardware bandwidth between nodes is 16 GB/s.
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Fig. 1. Dragonfly network basics. Routers (boxes) are in groups (circled), with each
group connected to every other group. The routers within groups can be connected in
many different ways; no particular topology is shown here.

Fig. 2. Group topology in the Aries network, with 16 routers in the horizontal dimen-
sion and 6 in the vertical dimension. Each router is connected to every other router
in its row and column, which is shown for the router in the lower left-hand corner.
Four nodes are connected to each router, which is shown for one of the routers in the
rightmost column.

All experiments save for those in Sect. 6.2 use the Intel compiler, version 13.1.3.
The MPI implementation is Cray’s native MPI. Eos also features simultaneous
multithreading (SMT) in the form of Intel Hyper-Threading [19]. This allows for
users to run their jobs on up to two times the number of physical cores. However,
we do not consider it here, as we have yet to have developed a performance model
for this form of SMT.
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3 Algebraic Multigrid

The application we focus on in our study is algebraic multigrid (AMG). It is one
of the multigrid solvers, which are best known for having a computational cost
linear in the number of unknowns being solved. This is very attractive for HPC,
where the goal is to solve large problems, and it is therefore of great interest
to study the performance of multigrid methods on HPC platforms. Multigrid
methods operate by performing some of the work on smaller “coarse grid” prob-
lems instead of concentrating it all on the original “fine grid” problem. On each
grid, a smoother, typically a simple iterative method like Jacobi or Gauss-Seidel,
is applied. Afterwards, a correction is typically solved for on the next coarsest
grid, which except for the very coarsest grid involves solving another coarse grid
problem. This correction is then applied to accelerate the solution process. The
coarsest grid is often solved directly. This particular order of progression through
grids, from finest to coarsest and back to finest, is called a V-cycle, which is the
most basic multigrid cycle and the one we consider here.

AMG is a means of leveraging multigrid, which was originally developed
to solve problems on structured grids, to solve problems with no explicit grid
structure, where all that is known is a sparse linear system A(0)u(0) = f (0). This
requires AMG to consist of two phases, setup and solve, which are illustrated
in Fig. 3. The setup phase involves selecting the variables that will remain on
each coarser grid and defining the restriction (R(m)) and interpolation (P (m))
operators that control the transfer of data between levels. There are a number
of algorithms for doing this, and they can be quite complicated. For our experi-
ments, we use the AMG code BoomerAMG [16] in the hypre software library [17]
We use HMIS coarsening [7] with extended+i interpolation [6] truncated to at
most 4 coefficients per row and aggressive coarsening with multipass interpo-
lation [22] on the finest level. Each coarse grid operator A(m+1) is formed by
computing the triple matrix product R(m)A(m)P (m). This operation, particu-
larly for unstructured problems, leads to increasing matrix density on coarse
grids, which in turn results in an increasing number of messages being sent
among an increasing number of communication partners. These have resulted
in substantial challenges to performance and scalability on some machines [3,4],
even when using advanced coarsening and interpolation schemes like the ones
we use in our experiments, and serve as added motivation for studying AMG on
the XC30.

In the solve phase, the primary operations are the smoothing operator and
matrix-vector multiplication to form rm and perform restriction and interpola-
tion. In our experiments, we use hybrid Gauss-Seidel as the smoother. Hybrid
Gauss-Seidel uses the sequential Gauss-Seidel algorithm to compute local data
within process boundaries, but uses Jacobi smoothing across process boundaries
to preserve parallelism. Applying this smoother is a very similar operation to
matrix-vector multiplication.

Sparse matrices in BoomerAMG are stored in the ParCSR data structure.
A matrix A is partitioned by rows into matrices Ak, k = 0, 1, . . . , P − 1, where
P is the number of MPI processes. Each matrix Ak is stored locally as a pair
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Fig. 3. Setup and solve phase of AMG.

of CSR (compressed sparse row) matrices Dk and Ok. Dk contains all entries of
Ak with column indices that point to rows stored locally on process k, and Ok

contains the remaining entries. Matrix-vector multiplication Ax or smoothing
requires computing Akx = Dkx

D + Okx
O on each process, where xD is the

portion of x stored locally and xO is the portion that needs to be sent from
other processes. More detail can be found in [9].

The ability to use a shared memory programming model is provided in
BoomerAMG in the form of OpenMP parallelization within MPI processes. This
is done using parallel for constructs at the loop level, which spawn a num-
ber of threads that can each execute a portion of the loop being parallelized.
Static scheduling is used, which means the work is divided equally among the
threads before the loop starts. The loops parallelized in this fashion are the ones
that perform smoother application, matrix-vector multiplication, and the triple
matrix product.

4 Performance Model

In previous work [12–14], we developed an accurate performance model for AMG
and validated it on a wide range of platforms and network topologies, includ-
ing Linux clusters, prior Cray machines, and IBM Blue Gene systems. We now
expand the model to the dragonfly interconnect and contrast the results.

4.1 Model Specifics

Our model is based on the simple α-β model for interprocessor communication.
The time to send a message consisting of n double precision floating-point values
is given by

Tsend = α + nβ,

where α is the communication startup time, and β is the per value send cost. We
model computation time by multiplying the number of floating-point operations
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by a computation rate ti. We allow this to vary with each level i in the multigrid
hierarchy because the operations in an AMG cycle are either sparse matrix-
vector multiplication or a smoother application, which is a similar operation. An
in-depth study [10] found that the computation time for sparse matrix-vector
multiplication varies with the size and density of the matrix, and the operators
in an AMG hierarchy have varying sizes and densities. We do not consider the
overlap of communication and computation, as there is very little room for this
on the communication-intensive coarse grid problems on which our concerns our
focused.

We treat the AMG cycle level-by-level. If there are L levels, numbered 0 to
L − 1, the total cycle time is given by

TAMG
cycle =

L−1∑

i=0

T i
cycle,

where T i
cycle is the amount of time spent at level i of the cycle. This is in turn

broken down into component steps, diagrammed in Fig. 4, which we write as

T i
cycle = T i

smooth + T i
restrict + T i

interp.

Smoothing and residual formation, which are combined into T i
smooth, are treated

as matrix-vector multiplication with the solve operator. Interpolation is treated
as matrix-vector multiplication with the interpolation operator. Restriction is
treated as matrix-vector multiplication with the restriction operator, which for
the purposes of our experiments is the transpose of the interpolation operator.

Fig. 4. Fundamental operations at each level of an AMG V-cycle.

To enable us to write expressions for each component operation, we define
the following terms to cover different components of the operators that form the
multigrid hierarchy:

– P – total number of processes.
– Ci – number of unknowns on grid level i.
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– si, ŝi – average number of nonzero entries per row in the level i solve and
interpolation operators, respectively.

– pi, p̂i – maximum number of sends over all processes in the level i solve and
interpolation operators, respectively.

– ni, n̂i – maximum number of elements sent over all processes in the level i
solve and interpolation operators, respectively.

We assume one smoothing step before restriction and one smoothing step after
interpolation, which is the default in BoomerAMG. The time spent smoothing
on level i is given by

T i
smooth = 6

Ci

P
siti + 3(piα + niβ).

The time spent restricting from level i to level i + 1 is given by

T i
restrict =

{
2Ci+1

P ŝiti + p̂iα + n̂iβ if i < L − 1
0 if i = L − 1.

The time spent interpolating from level i to level i − 1 is given by

T i
interp =

{
0 if i = 0
2Ci−1

P ŝi−1ti + p̂i−1α + n̂i−1β if i > 0.

To this baseline, we add terms and penalties to cover phenomena seen in
practice that the α-β model alone does not cover. One such phenomenon is
communication distance. While it is assumed that the hop count has a very small
effect on communication time, we cannot assume this on coarse grid problems in
AMG where many messages are being sent at once. The further a message has to
travel, the more likely it is to run into delays from conflicts with other messages.
To take this into account, we introduce a communication distance term γ that
represents the delay per hop, changing the model by replacing α with

α(h) = α(hm) + (h − hm)γ,

where h is the number of hops a message travels, and hm is the smallest possible
number of hops a message can travel in the network.

Another issue is limited bandwidth, of which we consider two sources. One
is the inability to make full use of the hardware. The peak hardware bandwidth
is rarely achieved even under ideal conditions, let alone the non-ideal conditions
under which applications usually run. The other source of limited bandwidth is
network contention from messages sharing links. Let Bmax be the peak aggregate
per-node hardware bandwidth, and B be the measured bandwidth corresponding
to β. Let m be the total number of messages being sent, and l be the number of
network links available. Then we multiply β by the sum Bmax

B + m
l to take both of

these factors into account. The limited hardware bandwidth penalty functions
as a baseline, with link contention becoming the dominant factor when it is
significant (it might not be significant in certain problems on which the fine
grids do not feature much communication).
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Multicore nodes are another potential source of difficulties. If the interconnect
is not suited to handle message passing traffic from many cores at once, then
there can be contention in accessing the interconnect and contention at each
hop when routing messages. To capture these effects, we multiply either or both
of the terms α(hm) and γ described earlier by

⌈
tPi

P

⌉
, where t is the number of

MPI tasks per node, and Pi is the number of active processes on level i. Active
processes mean ones that still have unknowns in their domains on coarse grids
and thus have not “dropped out.”

We treat hybrid MPI/OpenMP as follows. The message counts for MPI com-
munication are assumed to change with the number of processes. What we modify
explicitly is the computation term ti. Let bj be the available memory bandwidth
per thread for j threads. We then multiply ti by b1

bj
. We do this to take into

account limited memory bandwidth from threads contending to access memory
shared by multiple cores. We expect a slowdown here versus the all-MPI case
because there is no longer a definite partitioning of memory when using threads.
Our original hybrid/OpenMP model also had a penalty to cover slowdowns from
threads being migrated across cores that reside on different sockets [13]; we do
not consider this here as it can be readily mitigated by pinning threads to specific
cores.

4.2 Adaptation to Dragonfly Networks

The model as presented above is straightforward to adapt to dragonfly networks.
It boils down to how to best determine the needed machine parameters. Most
of them are readily determined from benchmark measurements, as was the case
with other machines. α and β were measured using the latency-bandwidth bench-
mark in the HPC Challenge suite [8]. α was set to the best reported latency,
and β was set to the value corresponding to the best reported bandwidth, which
for a reported bandwidth of B bytes per second is 8

B for sending double preci-
sion floating point data. The ti terms were measured by performing serial sparse
matrix-vector multiplications using the operators for the test problem we used
when validating the model; this is further described in Sect. 5.1. The values for
bj needed to evaluate the penalty for hybrid MPI/OpenMP were taken by using
the STREAM Triad benchmark [20] and dividing by the number of threads
being used.

We determined γ from the measured values of α and β. Starting with the
formulation of α as a function of the number of hops h

α(h) = α(hm) + γ(h − hm),

we set α(hm) to be the measured value of α. If D is the diameter of the network,
the maximum latency possible is

α(D) = α(hm) + γ(D − hm).
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We use the maximum latency reported by the same benchmark we used to
measure α as a value for α(D). Then

γ =
α(D) − α(hm)

D − hm
.

For dragonfly interconnects, we set hm to 2 (reflecting the case where two nodes
connected to the same router are communicating). We charge the distance D
to each message sent, analogous to the role the height of the tree played for
fat-tree interconnects in [12,13]. Though pessimistic, this distance is charged to
reflect the potential impact of routing delays. When counting the number of links
available to a message for determining the link contention portion of the limited
bandwidth penalty, we use the midpoint of the fewest possible (all the nodes in
one group are filled before moving onto the next one) and most possible (each
node is in a new group until all groups are in use), as there is no simple geometric
formula like there is with a mesh or torus network.

To make the numbers specific to the Aries interconnect, we set D equal to 7;
the maximum shortest path between two nodes involves traversing one link to
get to the routers in that node’s group, two links to find an available connection
to reach the next group (not all routers in the Aries interconnect are connected
to the optical network), one link to reach that group, two more links to traverse
the routers, and then one last link to reach the target node. When counting links
for the limited bandwidth penalty, we treat the optical links between groups as
four links because they have four times the bandwidth. If there are N nodes
in use, and G groups in the network, then the minimum possible number of
available links is

N + 170
⌈

N

384

⌉
+ 4min

{⌊
N

384

⌋
,
G(G − 1)

2

}
,

and the maximum possible number of available links is

N + 170min{N,G} + 4min
{

N − 1,
G(G − 1)

2

}
.

In both expressions, the first term accounts for the number of links connecting
nodes to routers. The second accounts for the number of router-to-router links
in groups, which number 16 · 5 + 6 · 15 = 170 per group. The third accounts for
the number of optical links.

5 Model Validation

5.1 Experimental Setup

For each of our experiments on Eos, the Cray XC30 we are evaluating, we ran 10
AMG solve cycles and measured the amount of time spent in each level, dividing
by 10 to get average times spent at each level. For our test problem, we used a
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3D 7-point Laplace problem on a cube with 50 × 50 × 25 points per core, as was
done in past experiments used to validate this model on other machines [12–14].
The mapping of MPI tasks to nodes was the default block mapping, in which
each node is filled with MPI tasks before moving onto the next one. We report
results on 1024 and 8192 cores.

Machine parameters for Eos are given in Table 1. How we obtained the values
for α, β, and γ was described in Sect. 4.2. We measured ti by measuring the time
for 10 sparse matrix-vector multiplies using the local portion of the solve operator
Ai on each level in the MPI-only case and dividing the largest time over all the
processes by the number of floating point operations. For i ≥ 3, we used the value
measured for t2. Per-thread memory bandwidths for the hybrid MPI/OpenMP
penalty are in Table 2.

Table 1. Measured machine parameters on Eos.

Parameter α β γ t0 t1 t2

Value 0.238 µs 0.858 ns 0.416 µs 1.59 ns 0.806 ns 0.545 ns

Table 2. Per thread memory bandwidths on Eos.

No. Threads 1 2 4 8 16

Bandwidth (MB/s) 11106 5335.5 2755.0 1374.8 678.56

5.2 Results

To help us understand the XC30 interconnect, we compared the measured AMG
cycle time at each level with what the performance model would predict, with
the different penalties turned on and off. Results are plotted in Fig. 5 for the
all-MPI case and in Fig. 6 for the hybrid MPI/OpenMP case. In each plot, the
measured cycle time at each level is shown as a solid black line. Six different
model scenarios are also shown as colored lines with markers, with the best fit
solid and the others dotted:

1. Baseline model (α-β Model).
2. Baseline model plus distance penalty (α-β-γ Model).
3. Baseline model plus distance penalty and bandwidth penalty on β (β Penalty).
4. Baseline model plus distance penalty, bandwidth penalty on β, and multicore

penalty on α (α,β Penalties).
5. Baseline model plus distance penalty, bandwidth penalty on β, and multicore

penalty on γ (β,γ Penalties).
6. Baseline model plus distance penalty, bandwidth penalty on β, and multicore

penalties on α and γ (α,β,γ Penalties).
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Fig. 5. Measured and modeled AMG cycle time by level on Eos using 1024 (left) and
8192 (right) cores, running all-MPI.

We did not allow the best fit to be a model with more penalties than the best fit
for a configuration with more MPI tasks per node. We enforced this constraint
because the penalties listed above deal specifically with issues resulting from
there being many messages in the network, so it would not make sense for there
to be a greater number of penalties when there are fewer MPI tasks per node.
All levels are plotted except for the coarsest level. It is not shown because it was
solved directly using Gaussian Elimination instead of smoothing.

In all cases, the best fit model was the baseline model plus only the distance
penalty. We chose this over the model which also had the bandwidth penalty
because the latter was overly pessimistic on 8192 cores in the all-MPI case but not
so for 1024 cores. Given that using 8192 cores on Eos involves using 69 % of the
machine while using 1024 cores on Eos involves using only 9 % of it, including
limited bandwidth from link contention would, if it were a big factor, more
accurately capture the performance when using more of the machine. Overall
cycle time prediction accuracies are in Table 3. They are almost all at least
85 %, and in some cases above 90 %.

From these results, it is clear that the Aries interconnect does a good job
avoiding contention, which is one of the goals of the dragonfly topology [18]. In
fact, it is better at doing so in terms of penalty scenarios than any other inter-
connect on which the performance model has been tested [12–14]. There is also
not much slowdown in cycle time when going from 1024 to 8192 cores. However,
even with these key positives, there is still a lot of room for improvement. In
spite of the lack of contention penalties, the baseline α-β model predicted much
better performance than what was actually observed. The γ term was actually
larger than the α term; the only other machines on which we observed this were
a pair of fat-tree machines on which performance on coarse grids and scalability
were very poor [12]. Hybrid MPI/OpenMP performance was also disappoint-
ing, highlighted by more rapid deterioration in the available memory bandwidth
per thread than was seen in other machines on which the hybrid model was
tested [11].
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Fig. 6. Measured and modeled AMG cycle time by level on Eos using 1024 (left column)
and 8192 (right column) cores, running hybrid MPI/OpenMP. The plot titles show the
total number of MPI tasks and the number of OpenMP threads per MPI task.
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Table 3. Measured and modeled AMG cycle times and cycle time prediction accuracies
on Eos, organized by on-node MPI × OpenMP mix.

Mix 1024 Cores 8192 Cores

Modeled Measured Accuracy Modeled Measured Accuracy

16 × 1 9.75 ms 11.3 ms 86.0 % 11.7 ms 13.0 ms 90.4 %

8 × 2 14.9 ms 16.3 ms 91.3 % 16.8 ms 18.1 ms 92.8 %

4 × 4 24.2 ms 27.6 ms 87.4 % 26.5 ms 29.7 ms 89.2 %

2 × 8 44.2 ms 51.8 ms 85.3 % 46.7 ms 53.9 ms 86.6 %

1 × 16 86.4 ms 104 ms 83.4 % 88.4 ms 104ms 85.9 %

6 Model-Guided Performance Improvements

We have observed that, even with low network contention, there is still much
room for improvement in the performance of AMG on Eos. We will now turn to
a systematic means of improving the performance, driven by the performance
model, that will also enable us to gain further insight into the machine.

6.1 Approach

We build on earlier work [15] that used a performance model to drive data
redistribution in AMG. This work tested a method which reduced the number
of messages sent between processes on coarse grids by having certain groups
of processes combine their data and redundantly store it amongst themselves.
The method was driven by applying the performance model we described in
Sect. 4 during the setup phase before performing each coarsening step to make a
decision on whether to redistribute or not. Once redistribution was performed,
the remaining levels of the setup phase, and the corresponding level and all
coarser ones in the solve phase, were performed using the redistributed operators.
Processes would then only communicate with only a handful of other processes,
rather than potentially hundreds of them, resulting in speedups often exceeding
2x on an Opteron cluster on which performance and scalability problems had
been observed in the past. We use a similar approach with some differences; we
will explain as we describe our approach and make note of the differences as
they come up.

What we specifically need from the performance model are two quantities,
which we call T i

switch and T i
noswitch. The former represents the time spent at level

i in the AMG cycle if we perform redistribution, and the latter represents the
time spent at that level if we do not. We compute these at each level i > 0, and
perform redistribution on the first level for which T i

switch < T i
noswitch. We assume

the network parameters α, β, and γ are available to us, along with the partic-
ular combination of penalties that is the best match to the overall performance
on the machine. The other information we need is problem dependent. Much
of it, however, is already available to us. The needed communication and com-
putation counts for the solve operator can be obtained from the ParCSR data
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structure. The interpolation operator is not available; forming it would require
actually performing coarsening, and we want to decide on redistribution before
doing that, so we instead approximate both restriction and interpolation with
matrix-vector multiplication using the solve operator. This enables us to write
an expression for T i

noswitch in terms of the baseline model:

T i
noswitch = 10

Ci

P
siti + 5(piα + niβ)

We still need a value for ti, which we measure on all active processes like we
described in Sect. 5.1. However, instead of stopping after measuring t2, we stop
when the measured value for ti is greater than the measured value for ti−1. This
happens when processes are close to running out of data. Then their ti mea-
surements are measuring primarily loop overhead instead of computation. ti is
expected to decrease as i increases because the time per floating-point operation
has been observed to decrease with the trend of decreasing matrix dimension and
increasing matrix density [10] that is seen when progressing from fine to coarse
in AMG. Once we stop measuring, we set ti = ti−1 and tj = ti−1 for all levels
j > i. A question arises of what to do in the hybrid MPI/OpenMP case, which
was not covered in [15]. What we do here is use the same measurement scheme
we just described, which measures ti within MPI processes. The measured value
will implicitly take the further division of labor into account.

We now turn to computing T i
switch. An expression for this requires both an

expression for collective communication used to perform the data redistribution
itself and an expression for matrix-vector multiplication with the redistributed
solve operator. Reference [15] used an all-gather operation to distribute data
redundantly among processes that combined data. We instead use nonredundant
data redistribution, where groups of processes combine their data but only one
process stores the combined data. The reason for this is that the use of fully
redundant redistribution creates many new MPI communicators, and at scale
there would be enough to run into a memory-based or implementation-based
upper limit on the number of new communicators [5]. Performing nonredundant
redistribution in the solve cycle involves two gather operations to combine data
from the solution vector and the right-hand side, and one scatter operation when
it is time to transfer the result from the levels treated using the redistributed
operators to the finer grids that do not use them.

Assuming that C groups of processes combine their data over a binary tree,
we get a total of

⌈
log2

Pi

C

⌉
sends for each collective operation. The gather oper-

ations involve sends of approximately size Ci

2C , Ci

4C , Ci

8C , . . . to combine the data,

which we charge as the geometric sum Ci

C

(
1

1− 1
2

− 1
)

= Ci

C units of data sent.

The scatter operation is assumed to send approximately Ci

C

⌈
log2

Pi

C

⌉
units of

data per send. In terms of the baseline model, the time spent in collective oper-
ations is then

T i
collective = 3

⌈
log2

Pi

C

⌉
α +

Ci

C

(
2 +

⌈
log2

Pi

C

⌉)
β.
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The work in [15] sought to keep data movement on-node through a combination
of a cyclic mapping of MPI tasks to nodes and having groups of P

C adjacent MPI
ranks combine their data. The machine it considered, however, exhibited much
better on-node MPI performance than off-node MPI performance [4]. Running
on a newer machine, and lacking an on-node performance model, we do not
consider localizing data movement. We instead form an MPI communicator out
of the processes that still have data and form groups consisting of Pi

C adjacent
MPI ranks. If C does not evenly divide Pi, then the first Pi mod C groups have⌈
Pi

C

⌉
processes, and the rest have

⌊
Pi

C

⌋
processes.

We now derive an expression for the amount of time matrix-vector multiplica-
tion with the redistributed operator would take. We assume equal division of the
gathered data, and equal division of the amount of data sent per message among
the total number of sends in the nonredistributed operator. We also assume the
number of groups of processes that combine data is less than the largest number
of messages a process would send before redistribution, i.e., we are capping the
number of communication partners a process could have at C − 1 < pi, and we
assume this number of communication partners for each process. The cost for
matrix-vector multiplication using the redistributed operator then becomes, in
terms of the baseline model,

T i
new matvec = 2

Ci

C
siti + (C − 1)

(
α +

ni

pi
β

)
.

Treating the operations at level i in the AMG solve cycle as five matrix-
vector multiplications with the solve operator, as we did for the case with no
redistribution, gives us the expression

T i
switch = 5T i

new matvec + T i
collective

for the predicted time at level i when performing redistribution.
We note here that redistribution, by increasing the amount of data per

process, will likely result in a different value for ti that would ideally be used
when computing T i

new matvec. Measuring this value, however, could only be done
after redistribution is performed. To avoid incurring this expense, we instead,
as we search for the number of groups of processes C to form, restrict the lower
end of the search space so that the locally stored data in the redistributed oper-
ator on each process participating in redistribution does not increase too much
in size. Without this constraint, the minimum possible value for C is 1, which
corresponds to all of the involved processes combining their data onto just one
process. The size of the local data is determined to be one of three possibilities,
which were used in [10] to classify sparse matrix-vector multiplication problems:

– Small: the matrix and the source vector fit in cache
– Medium: the source vector fits in cache, but the matrix does not
– Large: the source vector does not fit in cache.

We specifically exclude values of C that result in the problem category being at
least halfway towards one of the larger ones. Crossing the boundaries from one
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size classification to another typically results in substantial changes in observed
performance, and degradation when moving into a larger problem category some-
times occurs well before the boundary is crossed [10]. For categorization, the
cache size is determined by dividing the size of the shared on-node cache by the
number of MPI processes per node, as our ti measurement occurs within MPI
processes. The value of C resulting in the lowest value for T i

noswitch is what is
used when making a decision on whether or not to redistribute. When searching
for this value, we searched over the powers of two less than pi to save time in
the setup phase; a more thorough search is an item for future work.

We employ one other safeguard against overeager redistribution. We do not
redistribute if doing so is expected to have a big impact on the overall cycle time.
To accomplish this, we keep track of a running sum of the time at each level in
the solve cycle as predicted by the model, summing up T i

noswitch for the current
level and all finer ones. If there is a projected gain from switching, but that gain
is projected to be less than 5 %, then we do not switch. This was not done in [15],
but the experiments in that work were performed on an older machine on which
coarse grid performance dominated overall runtime when no redistribution was
performed. On a newer machine, we want to be more careful, and would rather
miss a speedup than risk slowing the cycle down while chasing a small gain.

6.2 Redistribution Experiments

We tested model-guided data redistribution on Eos on two different problems,
a 3D 7-point Laplacian and a linear elasticity problem on a 3D cantilever beam
with an 8:1 aspect ratio. The 3D Laplacian was run with 30×30×30 points per
core on 512, 4096, and 8000 cores to match one of the test problems from [15]. The
linear elasticity problem, which was generated by the MFEM software library [1],
was run on 1024 and 8192 cores. Weak scaling in MFEM is accomplished by
additional refinement of the base mesh, which resulted in a problem with 6350
points per core on 1024 cores and 6246 points per core on 8192 cores. The
elasticity problem is governed by the equation

−div(σ(u)) = 0,

where
σ(u) = λdiv(u)I + μ(∇u + u∇).

The beam has two material components discretized using linear tetrahedral finite
elements. λ = μ = 50 on the first component, and λ = μ = 1 on the second.
u is a vector-valued function u(x, y, z) with a component in each of the three
dimensions. The boundary conditions are u = 0 on the boundary of the first
component, which is fixed to a wall, σ(u) · n = 0 elsewhere on the boundary
of the first component, and σ(u) · n = f on the boundary of the second compo-
nent. The force f is a vector pointing in the downward direction with magnitude
0.01. The beam is diagrammed in Fig. 7.

We ran 10 trials of solving each problem to a tolerance of 10−8 using conjugate
gradient preconditioned by AMG, recording both the setup and solve phase
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Fig. 7. 3D cantilever beam for the linear elasticity problem. The first component (left)
is attached to the wall. The downward force f is pulling on the second component
(right).

times. Like with the model validation experiments, we used the default block
mapping of MPI tasks to nodes. We had to switch compilers to the PGI compiler,
version 13.7-0, because the default Intel compiler failed to compile MFEM. When
making the switching decision, we used the best fit performance model from
Sect. 5.2, the baseline model plus the distance penalty term γ.

For the Laplace problem, we ran three different on-node mixes of MPI and
OpenMP: 16×1, 8×2, and 4×4. We ran the elasticity problem using exclusively
MPI, owing to difficulties compiling MFEM with OpenMP enabled, as hybrid
MPI/OpenMP support in MFEM is currently experimental [1]. We did not use
aggressive coarsening for the linear elasticity problem due to much poorer con-
vergence when using it, following the default behavior of the linear elasticity
solver in MFEM. Results for the Laplace problem are in Fig. 8, and results for
the elasticity problem are in Table 4.

Table 4. Results on Eos for the Linear Elasticity problem.

1024 Cores 8192 Cores

Setup Solve Total Setup Solve Total

No redistribution 0.78 s 1.06 s 1.84 s 6.72 s 2.64 s 9.36 s

With redistribution 0.75 s 0.82 s 1.58 s 2.99 s 1.55 s 4.54 s

Speedup 1.04 1.29 1.16 2.25 1.93 2.06

The Laplace results reveal some interesting behavior. In the case of the solve
phase, the best performance was using exclusively MPI, and there were mostly
modest gains from data redistribution. This is not surprising when considering
that the best fit from the performance modeling experiments was the model
with no penalties to the baseline beyond the introduction of the distance term,
a very favorable contention scenario. The setup phase, however, was a different
story. Here, performance improved with the introduction of OpenMP, and the
more MPI-rich configurations showed substantial speedups from redistribution
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Fig. 8. Results and corresponding speedups when using model-guided data redistrib-
ution for the 3D 7-point Laplace problem on Eos. The bars on the left in each graph
show timings when doing no redistribution, while the bars on the right show timings
when doing redistribution.

Fig. 9. Communication patterns on levels 4 (left) and 5 (right) for the 3D Laplace
problem from the performance model validation experiments, with the setup phase on
the left and the solve phase on the right.

at scale. This is a significant discrepancy in performance between the two phases;
we will comment further in the next section.

Moving onto the linear elasticity problem, we see a modest speedup for the
run on 1024 cores, but a large one for the run on 8192 cores. There was no
big discrepancy between setup and solve phase speedup either. We should note
that this problem had coarse grids with much larger stencils than the Laplace
problem, with the largest coarse grid stencil for the elasticity problem averaging
just under 500 nonzero entries per row compared to just under 100 for the
Laplace problem. This means more messages are being sent over the interconnect,
and we are seeing a big performance gain from reducing the number of messages
even with an interconnect that was not showing much in the way of contention
problems when we were validating the model. We will discuss this further in our
concluding remarks.



Algebraic Multigrid on a Dragonfly Network 21

7 Conclusions

To better understand the HPC potential of the dragonfly interconnect, we stud-
ied the performance of algebraic multigrid on a Cray XC30, developing a perfor-
mance model and using it to analyze the performance of the AMG solve cycle.
We made further use of the same performance model to guide data redistribution
to improve performance. Substantial improvements in the setup phase for a 3D
Laplace problem and in both phases for a linear elasticity problem showed that
even an interconnect that rated very strongly in terms of penalties added on top
of a basic α-β model does not automatically mean that there are no issues with
interprocessor communication that could be improved upon.

One trait of note that was mentioned before is that the γ term in the perfor-
mance model is larger than the α term, which was observed on two older fat-tree
machines that suffered from poor coarse grid performance that hurt overall scal-
ability. Though Eos features a much better interconnect, the presence of this
property is still noteworthy, and suggests that communication between different
router groups could suffer from substantial delays. That data redistribution has
its biggest effect on runs using the majority of the machine hints at this.

What really stood out were the difference between the solve and setup phase
speedups when using data redistribution for the 3D Laplace problem and the
large speedup when solving the linear elasticity problem on 8192 cores. We men-
tioned earlier that the linear elasticity problem features much larger stencil
sizes on coarse grids and thus dramatically increased interprocessor commu-
nication compared to the Laplace problem. The setup phase of AMG also fea-
tures increased communication, substantially more than the solve phase. Figure 9
shows the communication patterns on the two most communication-intensive lev-
els in the hierarchy from the 3D Laplace problem from the performance model
validation experiments, levels 4 and 5, run in an all-MPI programming model
on 128 cores on a multicore Opteron cluster that was analyzed in [12]. The plots
were obtained using the performance analysis tool TAU [21]. On both levels,
there was a lot more communication in the setup phase, with it being almost
all-to-all on level 5.

So while the XC30 interconnect rated favorably in terms of contention penal-
ties when we were testing our performance model, we saw that there were still
large benefits to reducing the number of messages sent when that number was
very large, whether it was through data redistribution, using a hybrid pro-
gramming model, or a combination of both. In contrast, these benefits were
found to be more modest for the same test problems on an IBM Blue Gene/Q,
where reported overall speedups from data redistribution peaked at 17 % for the
Laplace problem and 39 % for the linear elasticity problem, even though its inter-
connect did not rate as well in terms of the network contention penalties in our
performance model [11]. Future work will involve examining the communication
behavior and its effects on performance in more detail, including the construc-
tion of a performance model for the setup phase of AMG, to help pinpoint the
major bottlenecks and see if there is a threshold at which network contention
becomes a serious problem and if so, map it.
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What we have seen so far on the Cray XC30, though, hints that the dragonfly
topology will have problems with communication-heavy applications. Though
the topology allows for wide variety in the specifics of the individual groups of
routers that comprise the overall network, there is still the unifying feature of
the all-to-all connections between the groups. Experiments in which we tasked
the interconnect with handling a large number of messages led to performance
degradation, especially when using the majority of the machine, that was readily
improved when messages were traded for computation. These results point to a
risk of slowdowns when communicating between groups of routers that will need
to be addressed to make dragonfly interconnects effective at scale.
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Abstract. With POWER8 a new generation of POWER processors
became available. This architecture features a moderate number of cores,
each of which expose a high amount of instruction-level as well as thread-
level parallelism. The high-performance processing capabilities are inte-
grated with a rich memory hierarchy providing high bandwidth through
a large set of memory chips. For a set of applications with significantly
different performance signatures we explore efficient use of this processor
architecture.

1 Introduction

With power consumption limiting the performance of scalar processors there
is a growing trend in high-performance computing (HPC) towards low clock
frequencies but extremely parallel computing devices to achieve high floating-
point compute performance. A remarkable increase in the number of systems
exploiting accelerators like GPGPUs and Xeon Phi for leading Top500 systems
can be observed. The POWER server processors, while providing increasing on-
chip parallelism, continue to be optimized for high single-thread performance. In
June 2014 the most recent generation of POWER processors, namely POWER8,
became available in a pre-release program. In this paper we investigate the
performance of this processor for a set of micro-benchmarks as well as mini-
applications based on real-life scientific HPC applications.

A description of the processor architecture with up to 12 cores be found in
[1,2]. POWER8 complies with version 2.07 of the Power ISA like its predecessor,
but features changes to the underlying micro-architecture. For an early evalua-
tion of the architecture we used a single SMP server with two dual-chip-modules
(DCM) and a total of twenty cores. Each core can be clocked at up to 4.2 GHz
and is capable of running up to eight hardware threads per core in simultaneous
multi-threading (SMT) mode. Per core there are two floating point pipelines
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 24–45, 2015.
DOI: 10.1007/978-3-319-17248-4 2
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capable of executing single and double precision scalar instruction or vector
instructions on 128 bit registers. Alternatively, this VSX unit can operate on
fixed point vectors. Further, two fixed point pipelines are present. All arith-
metic functional units can execute fused-multiply-add instructions and variants
thereof. The interface to the memory system consists of two load/store units and
two dedicated load units. All of these may execute simple fixed point computa-
tions. The dispatch unit is capable of out-of-order execution.

The cache hierarchy consists of three levels. L1 and L2 are core private and
inclusive. L1 is split between data and instructions with a capacity of 64 KiB
and 32 KiB, respectively. The 512 KiB L2 cache is unified. The L2 caches are
connected via a cache coherency protocol and can move data between caches.
The store engine is located in L2, with L1 being write-through. L3 consists of
8 MiB of embedded DRAM (eDRAM) per core and functions as a victim cache
for the local L2 and remote L3 caches. The pre-fetch engine pulls data into L3
directly and into L1 over the normal demand load path.

One of the differentiating features of the POWER8 architecture is the inclu-
sion of external memory interface chips with an integrated cache, the Centaur
chip. Its additional cache level of 16 MiB eDRAM is some times referred to as
the fourth level cache (L4). Each link connecting processor and memory buffer
offers an 8 GB/s to 9.6 GB/s write and 16 GB/s to 19.2 GB/s read bandwidth.
With up to 8 links the aggregate peak bi-section bandwidth per socket is 192 to
230.4 GB/s. The dual-socket system evaluated in this paper featured an aggre-
gated read bandwidth of 256 GB/s and 128 GB/s for write access.

We used a pre-release version of Red Hat Enterprise Linux 7.0 which features
support for the POWER8 architecture. In this paper we only report on results
obtained using the GCC compiler version 4.8.2 which includes POWER8 support
and offers access to vector intrinsics.

As SMP domains grow in size and heterogeneity, the placement of memory
allocations becomes more important. The test system comprises four NUMA
domains, as each socket consists of a dual-chip-module. The standard tool numactl
was used for pinning allocations.

With this paper we make the following contributions:

– Performance evaluation of different aspects of the POWER8 through micro-
benchmarks.

– Performance characterization on POWER8 for different scientific applications.
– Identification of a set of events relevant for analyzing performance of such

applications.

2 Related Work

Recently various papers have been published exploring the POWER7 architec-
ture and investigating its performance. Very few papers have been published
about the new POWER8 processor.

The approach taken in [3] is close to our’s in the sense that the performance
of relevant scientific applications was analysed on a POWER7-IH system. In this
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paper a system comprising 8 nodes and a total of 256 POWER7 cores was used.
Focussing on scale-up capabilities of POWER7, analysis of data transport perfor-
mance, like memory-to-processor or processor-to-processor, was given more atten-
tion than evaluation of the micro-architecture which is the focus of this paper.

The performance evaluation presented in [4] takes a more architectural app-
roach by analysing the performance benefits of specific features of the POWER7
processor like different SMT modes, support of different clock speeds and the use
of (at that time new) VSX instructions. For this purpose synthetic benchmarks
are used. Detailed information on the POWER7 performance measurement capa-
bilities is given.

First papers on POWER8 [1,2] mainly focus on chip design, applied tech-
nologies and I/O capabilities.

3 Methodology

3.1 Hardware Counters

The POWER8 processor allows for monitoring of up to six hardware events in a
single set. These events can be chosen out of more than a thousand defined coun-
ters. We identify those that map to the functional units at the disposal of the core:

Unit Counter

Vector scalar units VSU{0,1} FIN

Fixed point units FXU{0,1} FIN

Branch unit BRU FIN

The common prefix PM has been suppressed for brevity in all counter names.
We use PAPI version 5.3.2 to access the counter values via the interface to plat-
form specific hardware counters [5]. In Fig. 1 we summarize our analysis of the
memory architecture for the propagation of load requests. As to our knowledge,
all counters are specific to the core executing the read request. However, some
information is missing, like how to compute data movements from L2 to L3 and
from L1 to L2.

3.2 Performance Metrics

In [6] a set of performance metrics was defined in order to characterize application
behavior on the BG/Q architecture. We use these metrics as a basis for our work
on the POWER8 architecture. However, we focus on those relevant to the core
micro-architecture, mainly instruction counts and their interplay with the avail-
able functional units. Further we address the data movement between the CPU
and memory, as well as chip-internal traffic. We give a summary in Table 1.
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Fig. 1. Memory hierarchy for load request propagation and prefetch resolution. All
values have to be scaled by the width of a cache line of 128 B, except the traffic between
register file and L1 where the factor is the register width of 8 B.

3.3 Porting and Tuning

All applications and micro-benchmarks were ported to the POWER8 architec-
ture. We give results for the optimal performance we were able to attain. Details
for tuning applications can be found in the relevant sections, but we give some
general methods here.

OpenMP: Thread placement – the mapping of threads to CPU cores – is a critical
factor for the performance of concurrent applications beyond modest numbers
of threads. We use the GNU OpenMP runtime control variables to control the
layout. The best results are achieved by using a round-robin allocation with
stride s = min(8, 160

T ) for T threads.

NUMA: The Linux tool numactl was used to tune memory allocation, where
the interleaving of the four NUMA domains shows the best results.

4 Micro-benchmark Results

We investigated the baseline of available performance in terms of instruction
throughput, memory bandwidth and multi-threading overhead by a series of
micro-benchmarks.

4.1 Instruction Throughput and Latency

We use an in-house tool to measure the latency and saturated throughput of var-
ious assembly instructions. The basic approach is to time a tight loop of assembly



28 A.V. Adinetz et al.

Table 1. Performance metrics for characterizing applications on POWER8.

Name Description Formula

twc Wallclock time CYC∗

Nx Instructions INST CMPL

NFX Fixed point instructions FXU{01} FIN + LSU FX FIN

NFP Floating point instructions
∑

n VSU{01} nFLOP

NLS Load/Store instructions LD CMPL + ST FIN

NBR Branch instructions BRU FIN

Nfp−op FLOPs
∑

n VSU{01}nFLOP
Reg←L1$ Data read from L1 8 · (LD CMPL + LSU LDX)B

Reg→L2$ Data written L2† 8 · (ST CMPL + VSU{01} SQ)B

L1$←L2$ Data from L2 into L1+ 128 · DATA FROM L2B

L1$←L3$ Data from L3 into L1 128 · DATA ALL FROM L3B

L1$←Mem Data from memory into L1 128 · (DATA ALL FROM {LDR}MEM+
DATA ALL FROM {LDR}L4)B

L3$←Mem Data from memory into L3 128 · (L3 PREF ALL)B

L3$→Mem Data into memory from L3 128 · (L3 CO ALL)B

Nmem Total data from/to memory L1$←Mem + L3$←Mem + L3$→Mem
∗ Only incremented while thread is active.
† L1 is store-through.
+ L1 and L2 have the same prefetch states, so no prefetch is excluded.

instructions, which is then repeatedly executed to achieve stable results. Using
independent instructions allows for estimating the maximum throughput, while
the introduction of dependencies will yield the minimal latency between instruc-
tions. Results for a selection of assembly instructions are given in Table 2.

4.2 Memory Sub-system (STREAM)

We first investigated the behavior of the memory sub-system under an artifi-
cial load designed to exercise the memory bandwidth. We used version 5.9 of
the STREAM benchmark [7], which we tuned for the POWER8 architecture.
STREAM consists of four micro-benchmarks on the vectors a, b, c and a scalar

copy c ← a scale b ← s · c
sum a ← b + c triad a ← s · b + c

The GCC compiler fails to recognize the opportunity to vectorize the copy bench-
mark. The necessary vectorization was done by hand using VSX intrinsics. To
achieve better parallel performance, core binding and NUMA placement were
investigated, see Sect. 3.

First, we turn to the raw bandwidth between CPU and main memory. The
working set size was chosen to be 512 MiB per array in order to avoid cache
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Table 2. Latency and maximum throughput for examples of fixed point, simple and
complex floating point and memory access instructions.

Instruction Type Latency Throughput

add Fixed 8 1

ld Memory − 1

st Memory − 1

ld+st Memory − 1/7

xsmuldp 64 b Floating 6 1

xsdivdp 64 b Floating 33 1/29

effects. As the STREAM benchmarks are highly regular, the efficiency of the
pre-fetching mechanism has a large impact on the results. To obtain statistically
sound results, we repeated the measurements 1000 times. We give the optimal
results as the median values for all four benchmarks in Fig. 2 as a function of
the number of threads. We find sustainable bandwidths for triad of just over
320 GB/s, corresponding to roughly 84.6% of the maximum sustained band-
width. The achievable bandwidth for copy and scale is lower than for sum and
triad. The later use two load and one store streams which fits the balance of
the memory links exactly. The peak performance is achieved with 40 threads,
at which point every LSU is busy. For this case, the inset in Fig. 2 shows the
distribution of the results over 1000 runs of the benchmark. We notice a clearly
peaked distribution at the median and a quite long tail towards smaller values.

Next, we investigate the impact of the different cache levels. Due to the
prefetch mechanism, we expect only the first and third level to have impact on
the STREAM benchmarks. Cache lines recognized as part of a prefetch stream
are fetched into L1 and L2 up to six cache lines ahead of the stream. These
requests traverse the cache hierarchy like demand loads. The last level cache L3
is populated by the prefetcher directly from the memory up to 16 lines ahead of
the stream. STREAM is perfectly regular, so we expect no significant impact of
the L2 on the memory bandwidths. In the steady state of the prefetch engine,
every load request must hit in L1 as it is large enough to hold three streams
for eight threads per core. Prefetch requests themselves miss L2, as it has the
same data prefetched, and hit L3 as it is ahead of the L1 prefetch. Every line is
only traversed once. We monitor hardware counters to understand the impact of
the prefetcher and cache hierarchy, and recorded the counter values for different
array lengths. The data for the copy benchmark is presented in Fig. 3. Despite
the effort of rotating the arrays to avoid such behavior, for small n, when the
majority of the working set fits in L2, it supplies the full data to the core. For
larger n, the traffic from L2 into L1 drops to a constant, due to remnants of the
working set in L2. The last level cache satisfies almost all requests, including
prefetches, beyond the size of L2. A constant amount of data is fetched directly
from memory into L1, most likely before prefetch streams are established.
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Fig. 2. Median bandwidths for the STREAM benchmarks over number of threads.
We mark the thread counts where every core is occupied by single thread (#Core), by
two threads (#LSU) and the SMT capacity is fully used (#HWT). Beyond using every
LSU on all cores, the achievable bandwidth drops off sharply. Inset: Probability density
estimates for the bandwidths at 40 threads over 1000 repetitions of the experiment.
Note the clear peak at the median value and the relatively long tail towards smaller
values, most probably indicating other system activity at the time of the iteration

The traffic volumes between the register file and the L1 cache fit the predic-
tion of 8 · nB perfectly, as does the store volume (not shown). The accumulated
transfers into L1, from L2, L3 and memory, sum up to the same values within the
margin of error. We find a clear effect of cache sizes as the data set grows too large
for each level. The impact of the second level cache at small sizes is explained by
the fact that at this point the full working set fit into L2. Although the design
of the benchmark tries to avoid caching effects by rotating the assignments, this
does not fully work for small sizes n.

4.3 OpenMP Overheads

The POWER8 system is relying on thread-level parallelism for optimal per-
formance. A total of 20 threads are needed to occupy all cores with a single
thread (ST mode). Further gains may be achieved by using multiple threads
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Fig. 3. Memory traffic as derived by monitoring hardware counters over the number
of double precision array elements for STREAM copy. Counters were summarized into
traffic volumes according to Sect. 3.1 and scaled into units of bytes. The predicted value
of 8 · nB perfectly matches the line for Reg←L1$.

on a single core in simultaneous multi-threading mode (SMT). This has the
benefit of issuing more instructions per cycle, thus utilizing voids in the execu-
tion pipelines. However, as more threads are executing on the same hardware, the
overheads for managing these threads, synchronization and bookkeeping grow.
Since almost all applications and micro-benchmarks in this study are parallelized
using OpenMP, we can estimate an upper bound for the number of threads to
be used productively.

We use the OpenMP micro-benchmark suite (version 3.X) from EPCC to
quantify these overheads [8]. The overhead τ(n) at n threads is here defined as
the difference in execution time between expected and measured timings. We
execute independent workloads, essentially empty loops, for a given number of
iterations and time the execution t(n) with n threads

τ(n) = t(n) − t0
n

where t0 is the timing of serial execution of the same workload. The whole
measurement is repeated to achieve a representative result.

The central component is the GNU OpenMP runtime shipped with GCC
4.8.2 and its interaction with the test-system. Relevant environment variables
for distributing threads over cores and tuning thread migration and waiting
policy are tuned for performance as described in Sect. 3.3.
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Fig. 4. Overheads for OpenMP threading as measured by the EPCC suite v3.X. The
baseline cost setting up worksharing constructs and synchronization is well below one
micro-second. Left: Explicit synchronization constructs. The most expensive state-
ment to use is barrier, consuming up to 0.75 ms on 160 threads. Right: Implicit
synchronization by closing a parallel region and the overhead of various worksharing
constructs. Apart from a few outliers, we observe overheads of 0.6µs to 0.7 ms.

Figure 4 summarizes our findings for the impact of various explicit and impli-
cit synchronization constructs. These are the relevant sources of overhead for the
further workloads in this report. The large overhead at the maximum number of
160 threads of around a millisecond suggests that using this level of concurrency
will generally not be beneficial for worksharing. Regarding explicit synchroniza-
tion, using atomic sections is to be preferred over the alternatives.

5 Application Performance Results

We present results on the analysis of three scientific applications on the POWER8
architecture: Lattice Boltzmann, MAFIA and NEST. The applications cover a
wide scientific field: fluid dynamics (LB), data analysis (MAFIA) and neuronal
networks (NEST). Furthermore, their performance profiles are diverse and gives
good coverage of the architectural features.

5.1 Lattice Boltzmann Performance Results

The Lattice Boltzmann (LB) method is widely used in computational fluid
dynamics, to numerically solve the equation of motion of flows in two and
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Fig. 5. The 37 element stencil for the propagate function.

three dimensions. While conceptually less efficient than spectral methods, LB
approaches are able to handle complex and irregular geometries as well as com-
plex and multi-phase flows. From a computational point of view, LB methods
are “easy” to implement and a large degree of parallelism is exposed.

LB methods (see, e.g., [9] for an introduction) are discrete in position and
momentum spaces; they are based on the synthetic dynamics of populations
located at the sites of a discrete lattice. At each time step, populations are
propagated from lattice-site to lattice-site and then incoming populations collide
among one another, that is, they mix and their values change accordingly.

LB models in x dimensions with y populations are labeled as DxQy. Here,
we consider the D2Q37 a state-of-the-art bi-dimensional model with 37 popula-
tions per site, see Fig. 5, that correctly reproduces the thermo-hydrodynamical
equations of motion of a fluid in two dimensions and automatically enforces the
equation of state for an ideal gas (p = ρT ) [10,11].

From a computational point of view the most relevant steps performed by a
LB simulations are the computation of the propagate and collide functions:

1. propagate moves populations across lattice sites according to a stencil extent
pattern of 7× 7 excluding corners; it collects at each site all populations that
will interact at the next phase: collide. Implementation-wise, propagate
moves blocks of memory locations allocated at sparse memory addresses,
corresponding to populations of neighbor cells.

2. collide performs all the mathematical steps associated to the computation
of the collisional function, and computes the population values at each lattice
site at the new time step. Input data for this phase are the populations
gathered by the previous propagate phase.

We stress again that the D2Q37 LB method correctly and consistently describes
the thermo-hydrodynamical equations of motion as well as the equation of state
of a perfect gas; the price to pay is that, from a computational point of view, its
implementation is more complex than simpler LB models. This translates into sev-
ere requirements in terms of memory bandwidth and floating-point throughput.
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Fig. 6. Performance of the D2Q37 kernels over the number of threads used. The
efficiency of collide is given in GF/s and propagate measured in GB/s.

Indeed, propagate implies accessing 37 neighbor cells to gather all populations;
this step is mainly memory-bound and takes approximately 10 % of the total
run-time. The collide requires approximately 7600 double-precision floating
point operations per lattice point, some of which can be optimized away by the
compiler, see later sub-section. collide exhibits a significant arithmetic intensity
and is the dominating part of the overall computation, taking roughly 90% of the
total run-time. All tests have been performed on a lattice of 3200 × 2000 sites,
corresponding to 1.76GiB of data per lattice. Input/output, diagnostics and
computation of boundary conditions are not accounted for in this benchmark.

The D2Q37 model is highly adaptable and has been implemented on a wide
range of parallel machines like BG/Q [12] as well as on a cluster of nodes based on
commodity CPUs [13], GPGPUs [14] and Xeon-Phi [15]. It has been extensively
used for large scale simulations of convective turbulence (see e.g., [16,17]). These
implementations have been extensively tuned for the hardware in question, which
is beyond scope of this study.

The collide-operation consists of three phases, first computing the moments
of the distribution function, then resolving the collision effects in terms of these
moments and those of the equilibrium distribution and finally transforming
the result back. All transformations are linear. The GCC compiler generates
optimized code with 4550 instructions. The main optimization is unrolling of
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each of the three loops over 37 into one single iteration and 18 iterations with vec-
torized load and FP instructions. All results for the hardware counter analysis are
given per lattice site, corresponding to 37 elements of 64 b floating point data. For
a break-down of the instruction mix and pipeline filling refer to Table 3. We find
that the required 6200 floating point operations are performed in 2100 instruc-
tions, which are mostly vectorized fused-multiply-add instructions. Address cal-
culation and loop variables contribute roughly 860 fixed-point instructions. There
are just above 1500 load instructions plus close to 100 store instructions, in addi-
tion to the input data of 37 · 8B we have to read some constants, but the bulk
of this overhead stems from spilling the working set to L1. The actual amount
of data read from memory is 459B, roughly 50% more than the 37 populations.
The additional traffic may be explained by the coefficients for the polynomial
expansions and the data that is prefetched but cast-out of L3 before it is used
and re-read later. This is supported by the fact that almost all incoming memory
traffic is due to pre-fetches (457B). The function stores 37 ·8B = 296B, which is
the updated site data, into memory. The full operation take 3000 cycles per site.

A thread scaling analysis of collide in Fig. 6 shows that the peak perfor-
mance of 194GF/s is reached with 80 threads on 20 cores, i.e. 9.7GF/s per core
in SMT4 mode, closely followed by 9.65GF/s in SMT2 mode. It is interesting to see
that further oversubscription of the core (160 threads, SMT8) reduces the perfor-
mance by 11% compared to the maximum. The performance of a single thread
per core is reported as 7GF/s. The POWER8 core architecture is optimized for
both single threaded execution (ST) as well as SMT threading; it adapts the
way instruction dispatch works accordingly. This explains the subtle differences
in the interplay of functional units that can be observed in the two modes. The
peak performance is about 74% higher than running on a single thread per core
(ST mode). This gain stems from better filling of the instruction pipelines.

Propagate performs a swap on 37 memory locations per lattice site and
is, therefore, limited by the effective random access memory bandwidth. Bench-
marking with thread numbers between 1 and 160 shows that the shortest runtime
of propagate is reached at 20 threads, i.e. one thread per core (ST mode).

The structure of memory access leads to a factor 3 to 4 lower bandwidth
compared to values for the sustained bandwidth obtained with the STREAM
benchmark Sect. 4.2. Here, we can see that the throughput of instructions is high-
est in ST mode and, similar to the performance of the collide-kernel, degrades
the more threads we use per core. The lower part of the scaling analysis – 1 to
20 threads – shows the effect of shared resources. The original version of the
code exhibited less than optimal performance due to misuse of the cache hier-
archy. The loop over the lattice was optimized by using cache blocking, giving
a gain of 20% in bandwidth. Again, Table 3 shows a detailed breakdown of the
instruction mix and pipeline filling. No floating point operations are performed,
although the VSU pipelines report significant filling, since store instructions are
executed in both LSU and VSU. We find exactly 37 load and store instructions,
one per population. These result in 296B of write traffic and 1837B are read
from memory. This is roughly six times more than we would naively expect.
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Table 3. Left: Characteristics of LBM seen by the instruction pipelines; measured
on a single thread. Given are the relative fractions dispatched to the pipelines and the
throughput relative to the maximum for different numbers of threads per core. Right:
Instruction counts and general metrics for the LBM application.

Again, almost every incoming byte is due to pre-fetching (1537B), indicating
that streams may be established, but never fully utilized. Further, due to the
nature of the stencil the read accesses are not continuous, potentially resulting
partially consumed cache lines. Addressing and loop computations result in 12
fixed point computations per site. Processing a single site requires 214 cycles.

In summary, LBM is split into two parts, both of which have completely dif-
ferent performance requirements. The computationally expensive collide oper-
ation, which is largely vectorized by the compiler, reaches about 29% of the
peak floating point performance. It further benefits from the higher pipeline fill-
ing by using up to four threads per core. On the other hand propagate which
is purely memory bound can capitalize roughly 20% of the aggregated read-
/write bandwidth. However, the maximum achievable bandwidth is 256GB/s as
the requirements of propagate are symmetric in read and write. Of this figure,
we can exploit close to 30%, the remaining gap is mainly a result of the non-
continuous access pattern.

The overall performance is summarized in Fig. 6, the maximum achieved for
40 threads or two per core, which is due to the unequal shares of both phases on
the total runtime. We find close to ideal scaling up to twenty threads and signifi-
cant gains from using two threads per core, beyond that, performance stagnates
(SMT4) and finally degrades (SMT8). This is expected as the application utilizes
the available pipelines efficiently at SMT2. Gains from filling potential voids in
the pipelines are offset by threading overheads as described in Sect. 4.3. We are
investigating the reduced bandwidth at more than one thread per core.

5.2 MAFIA Performance Results

MAFIA is a subspace clustering application [18] which implements the algorithm
of the same name [19]. For the purpose of this report, we concentrate on the CPU
version implemented using OpenMP. MAFIA algorithm builds dense units (DUs)
starting from lower dimensionalities and progressing to higher ones, until no new
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DUs can be built. For each dimensionality, it generates candidate DUs (CDUs)
from DUs of lower dimensionality. The CDU is accepted as a DU if the number
of contained points lies above a certain threshold. The cardinality computation,
pcount, is the most computationally intensive kernel of the algorithm. The
generated DUs are then merged into clusters, which are the final output.

In MAFIA, each CDU is represented as a cartesian product of windows, one
window per dimension of the CDU. Each window, in turn, is represented by a
set of contained points, implemented as a bit array. Thus, the number of points
inside a CDU can be computed as the number of bits set in intersection (bitwise
AND) of all windows. The loop over words of the bit array was strip-mined, so
that auto-vectorization by the compiler is possible.

Reference [18] presents performance estimates as well as an empirical analysis
of MAFIA. Assume that the algorithm runs on n points in d dimensions, and
the dataset contains a single hidden cluster of dimensionality k. Then the total
number of logical bit AND operations in pcount kernel for the entire program
run is given by the equation

Nbitops = n · k · 2k−1. (1)

As the number of windows is several orders of magnitude smaller than the num-
ber of points (O(10) versus O(106)), it can be assumed that the array of window
indices is cached, and only bit arrays need to be transferred from memory. Thus,
Eq. 1 also gives the number of bits transferred from memory by the pcount
kernel.

We started by analyzing the scaling behavior ofMAFIAwith differentOpenMP
thread placements, by altering the stride s with which the threads are spread out
across cores. The pcount kernel was parallelized across CDUs, with only a sin-
gle thread executing the point count loop for each CDU. Scalability results for the
pcount kernel for a dataset with n = 107 points of dimensionality d = 20 and a
cluster of dimensionality k = 14 are presented in Fig. 7. The scalability is quite
good, with a speedup of up to 25 achieved with 80 threads and threads allocated
round-robin to every second core, see Sect. 3.

We then proceeded to analyzing counter values. The MAFIA application was
run with 20, 40, 80 and 160 threads with the same point and cluster dimensional-
ities as above (k = 14, d = 20). The number of points, n, varied on a logarithmic
scale between 1 · 106 to 64 · 106. Counter values are given as averages across
three runs.

Next, we analyze vector instruction throughput. As MAFIA pcount contains
only integer vector instructions, counters for floating-point vector instructions
are of no interest here. For each of the three counters, we assume that its value
can be modeled by the equation

c(n) = (c02k + c1k2k−1) · n

128
(2)

where the coefficients c0 and c1 are both in terms of operations performed on
a single vector. The term with c1 is derived from Eq. 1, and corresponds to the
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Fig. 7. MAFIA OpenMP scaling Fig. 8. Theoretical memory bandwidth for
MAFIA

Fig. 9. Predicted and measured values for
vector instruction counters for 20 threads

Table 4. Coefficients for vector coun-
ters, both expected based on the code
and actual extracted from the assembly

Counter Assembly Expected
c0 c1 c0 c1

VSU SQ 0.125 1.0 0 0

VSU FIN 2.5 3.0 1 1

LSU LDX 1 2.125 0 1

loop over windows, where the number of iterations varies with CDU dimension-
ality. The term with c0 corresponds to the rest of the iteration of the loop over
words, where the number of instructions executed does not depend on CDU
dimensionality.

For prediction purposes, we derived values for c0 and c1 from the assembly
code generated by the compiler. Their values for different counters are listed
in Table 4. The innermost loop was unrolled by the compiler, therefore some
coefficients have a fractional part. Figure 9 compares predictions with the actual
measured values. The predictions are almost perfect, with less than 0.001%
difference. Numbers for other thread counts are very similar and are omitted for
brevity.

It is also worth comparing coefficients extracted from assembly to the mini-
mum values expected by looking at the original code; both are listed in Table 4.

– One store instruction is executed per vector instead of none expected. This
indicates that the storage for words resulting from logical AND operation is
in L1 rather than registers.
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– Similarly, there are 2.125 load instructions instead of one expected. One of
those is needed to load the array holding result of logical AND to registers
(from cache), and 0.125 is due to imperfect alignment of bit arrays in main
memory.

– Three vector instructions are generated instead of one expected. One is due
to vector store counted as a vector instruction, and the second is a permuta-
tion instruction, again to compensate for mis-alignment of the bit arrays in
memory.

The values obtained from the assembly differ from minimum values expected
from the original code, which indicates optimization potential. Compiler optimiza-
tion is one of the way to address that, and we are planning to look into that.

We then proceeded with analyzing the memory traffic. Figure 8 plots a semi-
empirical memory bandwidth, i.e. the estimate of memory traffic divided by
measured running time. For a given number of points, more bandwidth actually
indicates lower running times, as the theoretical memory traffic does not depend
on the number of threads. Figure 10 plots the ratio of traffic between main memory
and various levels of caches to the theoretical value, derived from Eq. 1.

With 20 threads, L1/L2 caches and L3 cache partition of a single core are
used by a single thread only, which gives the most predictable plot. Indeed, the
amount of data flowing into L1 cache is very close to the theoretical prediction.
L1 is mostly filled from L3, and data flow from L2 is almost non-existent. Up to

Fig. 10. Memory traffic ratio for various thread counts. Ratio for L1$ ← Mem is very
close to zero and therefore not shown.
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and including 4·106 points, the aggregated size of the bit arrays fits into L3; only
after that is data fetched from main memory. Even then, it is mostly prefetched
into L3, from where it goes further up. Because of that, there is almost no need
to fetch the data from main memory directly into L1.

The plots for 40 and 80 threads show the same qualitative behavior, although
effects of cache sharing play a role. On the positive side, the same cache lines
can be used by multiple threads; as a result, the amount of data loaded into L1
is actually less than the theoretical prediction, down to 50 % for 80 threads. On
the negative side, as the amount of cache of all levels per thread is lower, there
is less space to store data on-chip. As a result, for 80 threads, data should be
fetched from memory for all dataset sizes. However, this does not seem to affect
performance, as the 80-thread version is actually the fastest for the cases when
the data size fits into L3 cache. It may be that though the L3 prefetcher kicks
in, it does not provide the data further referenced by the algorithm. For 20 to
80 threads, there is also a small but not insignificant amount of data retrieved
from cache partitions of other cores.

The plot for 160 threads differs qualitatively from the others. First of all, there
is significant over-prefetching of data from the main memory. We assume that
due to too many threads contending for prefetcher resources, prefetch streams
get tried but do not reach steady state. Also, a much larger fraction of data
is sourced from L2. Again, we assume that due to over-subscription of over-
prefetching into L1, many of the prefetched L1 cache lines get cast out into L2
even before they get accessed. This agrees with other counters, which indicate
that lines from L2 and L3 come due to explicit accesses and not due to prefeches.
Nevertheless, overall use of hardware with 160 threads is relatively good, as for
more than 8 · 106 points this is where the maximum performance is achieved.

To summarize, MAFIA’s pcount loop is rather regular, and we can get a
good understanding of it. Vector instruction counters are perfectly understood in
terms of algorithmic properties and instructions in the assembler code. Memory
behavior is also understandable, particularly for lower number of threads nts ≤
40, where effects of L3 cache size are clearly visible. With larger number of
threads, however, our understanding is limited, and it is here where the highest
performance is achieved. We thus assume that the application is latency-limited,
as neither instruction throughput nor memory bandwidth limit its performance.

5.3 NEST Performance Results

NEST (NEural Simulation Tool) is an application from the field of computational
neurobiology [20]. It models brain tissue as a graph of neurons interconnected
by synapses. Neurons exchange spikes along the synapse connections. On an
abstract level, NEST can be understood as a discrete event simulator on a dis-
tributed sparse graph. It is built as an interpreter of a domain specific modeling
language on top of a C++ simulation core. Most simulations include stochastic
connections and sources of spikes, which makes static analysis and load balancing
unfeasible.
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Fig. 11. NEST scaling behavior with OpenMP

The performance profile of NEST leans towards fixed point operations due to
the necessary graph operations and dynamic dispatch of events. Memory capacity
is a major bottleneck for large-scale simulations with NEST, so optimizations
tend to favor size over speed. Despite the obvious need for good fixed point
performance, a small but non-negligible fraction of floating point operations is
needed to update the neuron models.

For our experiments, we used dry run mode of NEST. This enables simulating
performance characteristics of a NEST run on many thousands of nodes by
running on a single system. The parameters of a run are the simulated number
of MPI processes, M , and the number of threads running on a single node, T .
Typically, NEST run parameters also include n, the number of neurons owned
by a single process, which is fixed at n = 9375, and therefore omitted, in our
experiments. The total number of neurons is proportional to M . Each active
thread is called a virtual process (VP) and the total number of VPs is given by
M · T . For our experiments, we simulate random balanced networks with nM
neurons and both static and adaptive synapses [21].

We started with analyzing performance of NEST simulation loop with dif-
ferent OpenMP settings. We performed experiments with 10, 20, 40, 80 and 160
threads strided by 1, 2, 4 and 8 over the cores under 3 values of M . Results for
M = 512 and M = 16384 processes are depicted in Fig. 11; results for M = 4096
(not shown) exhibit the same behavior.

NEST exhibits non-trivial scaling behavior. Some parts, such as neuron update
or synapse processing, scale well, while others, such as spike buffer processing, do
not scale, as all threads should go through the entire spike buffer. Moreover, with
larger number of processes, and as a consequence, of neurons, the relative weight
of spike buffer processing increases. Therefore, while with M = 512 having more
threads per core improves performance to some extent, with M = 16384, more
threads always means worse performance. For each T , the optimal stride is given
by min(160/T, 8), which we use for further experiments.

We then proceeded to analyzing hardware performance counters for NEST.
Understanding how resource contention affects running times of various parts of
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Fig. 12. Modeling values of NEST “work-related” counters

NEST is still a work in progress. We therefore restrict ourselves to counters which
can be characterized as amount of work performed, such as the number of instruc-
tions or loads executed. We analyzed only the spike delivery phase, as for a large
number of processors, it takes more than 90% of simulation time. We performed
experiments with T = 1, 5, 10, 20, 40, 80, 160 and M = 512, 2048, 4096, 16384.
The work done in spike delivery phase can be broken into contributions from
processing the following items:

– synapses, which is constant for fixed n;
– spikes in the buffer, proportional to M · T , as the number of spikes is

proportional to M , and this work has to be done by each thread;
– markers in the buffer, proportional to M · T 2, as the number of markers is

equal to the number of virtual processes and the work is done in each thread;

Note that the code for all components is intermixed, so it is impossible to
accurately measure each of them without introducing significant measurement
bias. The total amount of work done can be written as the sum of all components

C = c0 + c1 · MT + c2 · MT 2. (3)

The coefficients of the Eq. 3 has been derived by fitting it into experimental
data using least squares method. Figure 12 plots values for both total instructions
(Nx) and loads executed. The points represent the measured values, and the
lines represent the fitted values. The fits are very close, with the deviation being
less than 5.5 % (mostly less than 3.3 %) for instructions and less than 7.5 %
(most less than 3.7 %) for loads. Note that Eq. 3 also holds for other work-related
counters, which include: floating point loads and stores, vector instructions, both
the total and actual arithmetic operations.

To summarize, though our understanding of NEST performance characteris-
tics is far from complete, some points are clear. Specifically, spike delivery takes
most of the time for simulations with large number of MPI processes M . We also
understand the number of instructions executed by spike delivery, and it is clear
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that it contains parts that do not scale with either the number of processes M
or threads T . And while scalability with T could be improved by parallelizing
the loop processing spikes in the buffer, improving scalability with M requires
more fundamental changes in NEST architecture, specifically the way spikes are
exchanged between processes.

6 Summary and Conclusions

We presented the characterization of three different scientific codes on a new
server-class processor, the POWER8. Further, results of micro-benchmarks were
collected as a first impression of the performance characteristics.

The LBM and MAFIA applications benefit from the available instruction-
level parallelism and vectorization capabilities. Although parts of LBM depend
strongly on the memory bandwidth, the available capacity can only be exploited
to a fraction, due to the access pattern. NEST is an irregular application limited
by memory accesses, and could, in theory, benefit from SMT. However, in order
to achieve this, its scalability should be improved first.

On the basis of the performance we were able to achieve in our tests, POWER8
is a candidate for the host CPU in GPU-accelerated systems. The focus on inte-
ger performance, out-of-order execution and memory bandwidth complement the
floating-point optimized profile of the accelerator. Exploring this direction is plan-
ned for the near future.

With up to 160 threads in total or eight per core, overheads from thread
management, especially by the OpenMP runtime, become an important factor.
This is even more critical, as the SMT facilities are means to optimize pipeline
filling and therefore require lightweight threading. However, the gains from these
large numbers of threads per core are expected to be significant only if the
pipelines are not sufficiently saturated to begin with. The applications we tested
did not suffer from this problem, so speed-ups were not expected. We were not
able to obtain results with an OpenMP runtime optimized for POWER8 in the
time frame of the preview. This too, is planned for the near future.
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1 Introduction

The Standard Performance Evaluation Cooperation (SPEC) stands as a successful
example of collaboration among vendors and researchers in creating benchmarks
that lead to fair comparison and reproducible results. SPEC’s High Performance
Group (HPG) has been active for over 20 years – since its initial benchmark derived
from David Kuck’s Perfect Suite – in creating industry standard benchmarks that
highlight and compare various aspects of high performance computing systems.
The group’s members are leading high performance computing (HPC) vendors,
national laboratories, and universities from all around the world.

SPEC HPG has been developing and maintaining application based bench-
marks and performance metrics supporting a variety of programming models and
stressing various hardware features. This includes inter-node parallelism (covered
by SPEC MPI2007), intra-node parallelism (covered by SPEC OMP2012), and off-
loading computation to a hardware accelerator (covered by SPEC ACCEL in this
paper). SPEC MPI2007 offers a suite of 18 applications running on up to 2,048
message passing interface (MPI) ranks [22]. Its goal is to evaluate MPI-parallel,
floating point, compute intensive performance of clusters and multi-processor sys-
tems. SPEC OMP2012 offers a suite of 14 applications based on scientific and engi-
neering application codes using the OpenMP 3.1 standard [21]. The benchmark
also includes an optional metric for measuring energy consumption.

The advent of hardware accelerators as a standard component in high perfor-
mance computers led SPEC HPG to investigate performance characterization in
this additional layer of parallelism. Keeping with the group’s guidelines, a perfor-
mance evaluation must be based on an open programming model so that multiple
hardware and software environments can be evaluated. As a result, the popular
but vendor specific programming model—CUDA—was not investigated. Instead
OpenCL, as a low level, and OpenACC, as a high level, hardware accelerator pro-
gramming models have been chosen to provide two independent subsuites within
SPEC ACCEL1. In a similar manner, the group has carefully brought together
applications from various computational and scientific domains that stress the
accelerator with very different demands. The runtime and energy consumption
of the application is monitored during multiple runs and results are presented
in the typical SPEC manner. The peer review process for every published result
ensures the validity and reproducibility of a SPEC ACCEL run.

This paper first presents previous work in Sect. 2, then introduces the measure-
ment methodology in Sect. 3. The selected applications for each of the two sub-
suites/programming model are discussed in Sect. 4. Section 5 shows how energy
1 Since OpenMP 4.0 offloading is still limited to one hardware platform and one com-

piler it has at the moment vendor specific characteristics. OpenACC on the other
hand offers three different compilers and also four (via the CAPS compilers, two via
the PGI compilers) hardware platforms.
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measurements can enrich the performance data. Section 6 demonstrates how the
first published results underline the usefulness of the benchmark in comparing
both hardware and software environment for accelerators.

2 Related Work

There has been work done in creating benchmarks for measuring hardware accel-
erator performance, but all of them are academic in nature and none of them
share SPEC’s philosophy when it comes to design for standard benchmarks.
SPEC strongly believes in same source code for all, a detailed set of run and
reporting rules for compliant results, and a peer review process for all results
before publication on the SPEC website. This enables fair comparison of results.

With respect to OpenCL benchmarking, both the Parboil [27] and Rodinia
[4,5] have been very popular academic benchmarks with more than 1,000 cita-
tions between them in research papers. The Parboil and Rodinia developers
approached SPEC to standardize the benchmark, to develop a set of run and
reporting rules that enable fair performance metrics, and to build a result repos-
itory, since the groups could not provide that themselves. SPEC HPG worked
with both groups of developers to ensure that the benchmarks taken into the
OpenCL suite are running on all available platforms. A number of improvements
suggested by SPEC HPG has made it into recent releases of Parboil and Rodinia.

SHOC [7] is a benchmark suite that evolved in the academic circles and
includes both the OpenCL and CUDA implementations. As another approach
for OpenCL, the SHOC benchmark measures low level hardware performance
features rather than general application run time performance. It is, therefore,
not suitable for the SPEC approach, but has its relevance on comparing very
specific small scale algorithms on various platforms.

On the OpenACC side, the Edinburgh Parallel Computing Centre (EPCC)
has developed a benchmark suite [14] comprising a set of low-level operations
designed to test raw performance of compilers and hardware and a set of kernels
found in scientific codes. The SPEC ACCEL OpenACC suite, on the other hand,
is comprised of full scientific applications rather than kernels.

3 Design and Principles of SPEC ACCEL

3.1 Benchmark Philosophy and General Design

The goal of SPEC ACCEL is to measure the performance of compute intensive
applications using hardware acceleration. It is designed to compare different
accelerator platforms, but also different devices within a platform. A platform
consists of all the hardware and software components necessary to execute SPEC
ACCEL: the accelerator, the host system including its CPU, the interconnect
or bus used for the data transfers between host and accelerator, the support
libraries and drivers, and the compiler.
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SPEC ACCEL uses vendor independent programming standards to target
the accelerators. In its current implementation, OpenCL and OpenACC are sup-
ported. Both standards apply the offload model for the accelerated computation.
The offload model consists of a CPU (host) which runs the main program, copies
the data needed by the accelerated computation to and from discrete memory
on the accelerator, and launches the accelerated routines.

The SPEC ACCEL benchmark is provided within the SPEC harness that is
also used for other SPEC benchmarks like SPEC CPU2006, SPEC OMP2012,
and SPEC MPI2007. With the help of a user supplied config file, the benchmark
codes are automatically compiled, the total execution times measured, the results
verified for correctness, and a report generated. Optionally, a power measurement
is also included to allow the comparison of both time-to-solution and energy-to-
solution [16].

The generated performance reports may be submitted to SPEC for publica-
tion. The SPEC HPG committee reviews SPEC ACCEL results for consistency,
adherence to the run rules, and whether enough details have been supplied for
others to reproduce the results. If the committee accepts the results, they are
published together with the config file on the SPEC website.

3.2 Run Rules

The run rules cover the procedure for the building and running the benchmark
and disclosing the benchmark results. They closely follow the established SPEC
run rules but need to take into account the peculiarities of systems with hard-
ware accelerators. This section explains where the run rules from SPEC ACCEL
extend or deviate from the common rule set of SPEC. The goal is that users of
accelerator systems can compare objectively the accelerators of different vendors
on the SPEC web site.

The SPEC ACCEL benchmark suite supports base, peak, and power metrics.
The performance metrics are the geometric mean of the run time ratios of the
system under test with the run time of the reference machine. The reference sys-
tem is a SGI C3108-TY11 (a dual socket Intel Xeon E5620 system with 24 GB of
main memory) using an NVIDIA Tesla C2070 with error checking and correcting
(ECC) enabled as the accelerator. The system runs SLES11 SP2 as the operating
system and uses the built-in GNU compilers for the OpenCL suite and the PGI
compilers version 13.9 for the OpenACC suite. The reference measurements also
include energy metrics recorded from a ZES Zimmer LMG450 power analyzer.
All benchmarks in the two suites were targeted to run for at least 100 s on the
reference machine in order to provide a useful time for measurements, even for
future hardware with significantly higher performance.

A set of tools is supplied to build and run the benchmarks. These SPEC tools
must be used to generate publishable results. This helps ensure reproducibility
of results by requiring that all individual benchmarks in the suite are run in the
same way and that a configuration is available that defines the optimizations
used.
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The optimizations used are expected to be applicable beyond the SPEC
benchmarks, and it is expected that system or compiler vendors would endorse
the general use of these optimizations by customers who seek to achieve good
application performance. The system components, including software, must be
generally available within 90 days of publication; there needs to be a certain level
of maturity and general applicability in the methods.

For the base metric, the same compiler must be used for all applications of a
given language within a benchmark suite. Except for portability flags, all flags
or options that affect the transformation process from SPEC-supplied source to
the completed executable must be the same for all modules of a given language.
For the peak metric, each module may be compiled with a different compiler
and a different set of flags or options. For the OpenCL suite, it is also allowed to
change the work distribution on the accelerator by using a different work group
size per benchmark.

As used in these run rules, the term run-time dynamic optimization (RDO)
refers broadly to any method by which a system adapts an executing program
for improved performance based upon observation of its behavior as it runs.
Run time dynamic optimization is allowed, subject to the provisions that the
techniques must be generally available, documented, and supported.

Results are published on the SPEC web site. A published result must contain
enough information to enable others to replicate the result. The information to
document an accelerator includes the model name, name of hardware vendor,
name and type of the accelerator, description of the connection to the host sys-
tem, whether ECC is enabled or not, and the device driver names and versions.

4 Description of the Applications

The applications comprising the SPEC ACCEL benchmark fall into two cate-
gories depending on the programming model: OpenCL or OpenACC. They cover
a wide range of scientific domains and also have very different performance char-
acteristics as shown in Tables 1 and 2. The SPEC ACCEL suite is written to
comply with OpenCL 1.1 [15] and OpenACC 1.0 [1]. This section introduces
both suites of the SPEC ACCEL benchmark.

4.1 SPEC ACCEL OCL Suite

In order to fit into the design principles for SPEC ACCEL (see Sect. 3), the
original benchmarks taken into the OpenCL suite were in part heavily modi-
fied. Some benchmarks were dropped when they could not be modified to meet
the SPEC HPG requirements. The Parboil Benchmark Suite [27] is the origin of
the first nine OpenCL applications of SPEC ACCEL, the other ten applications
are taken from the Rodinia Benchmark Suite [4,5]. A number of benchmarks
received larger data sets than they originally had, so that their runtime increased
to the required 100 s on the reference machine. All benchmarks were tested on
all hard- and software platforms available to the HPG members. This resulted in
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numerous bug fixes both in the benchmarks but also in OpenCL runtime envi-
ronments, thus, showcasing how this benchmark suite can be used as a validation
suite for OpenCL hardware and software as well.

The selected applications span a wide area of science ranging from astronomy,
bioinformatics, computer science, electrical engineering, mathematics, mechan-
ical engineering, medicine and physics. They are also selected to cover dif-
ferent usage modes for hardware accelerators. Benchmarks like 101.tpacf and
121.lavamd use one or two long running kernels. Other benchmarks like 123.nw
use almost 350,000 very short kernel launches in order to see how well the acceler-
ator ecosystem can handle such extreme cases. The same is true for the number
of data transfers between the host and device and the amount of data being
transferred. While most benchmarks follow the usual offloading scheme of limit-
ing the amount of transfers, 116.histo, 117.bfs, and 127.srad use well over 10,000
data transfers, in case of 127.srad also of very small size. The accelerator utiliza-
tion (which is the amount of time the accelerator is occupied), as well as the time
for data transfers, also offers a broad spectrum of load situations. However, most
applications try to utilize the accelerator fully, while only a few like 116.histo,
120.kmeans, or 127.srad primarily stress the host-device transfers. 114.mriq is
a special case since it shows both a high device utilization, but also high data
transfer time. In this case, the data transfers are launched asynchronously, but
the NVIDIA OpenCL runtime forces them to synchronize, thus, completing the
transfer only after the previously launched kernel has completed.

The computational algorithms employed by the applications of the bench-
mark suite also vary widely:

101.tpacf computes the two-point angular correlation function of a collection
of observed and randomly generated astronomical bodies. It compares pairs of
angular coordinates, computes their angular distance, and computes a histogram
of those distances. The histogram is privatized, with multiple copies in each work
group, reducing bandwidth and atomic operation demand on the global memory
system.

103.stencil implements an iterative Jacobi solver of the heat equation on
a 3-D structured grid. The implementation uses double buffering to eliminate
timing effects on numerical output values for a fixed number of iterations. On
the reference machine, each iteration completes quickly enough so that platform
overheads for kernel launches and other operations has an impact on the total
performance.

104.lbm is related to the SPEC CPU2006 benchmark of the same name, and
implements the Lattice-Boltzmann Method for fluid dynamics simulation [23].
This particular implementation supports immobile solid obstacles to fluid flow in
a lid-driven closed cavity. Individual iterations have a long enough runtime that
kernel execution performance is the most relevant factor for the total application
performance.

110.fft implements a 1-D, Radix-2 Fast Fourier Transform. The kernel source
included could be configured to support other radices, but for consistency, the
benchmark only supports Radix-2.



52 G. Juckeland et al.

Table 1. OpenCL application key facts. Profiling data taken from VampirTrace
OpenCL tracing when running on NVIDA Tesla K20 using NVIDIA OpenCL.



SPEC ACCEL: A Standard Application Suite 53

112.spmv implements a sparse-matrix, dense-vector multiplication. The input
sparse matrix file format is given in coordinate (COO) format, which is inter-
nally translated into a transposed jagged diagonal storage (JDS) format before
multiplication. The benchmark reflects classes of applications where the sparse
matrix remains constant, but is iteratively multiplied into a variety of vectors,
allowing the cost of the data format conversion to be amortized over a large
number of operations.

114.mriq computes the Q matrix used in non-Cartesian magnetic resonance
image reconstruction algorithms [26]. It is used to compensate for artifacts
caused by the sampling trajectory on the actual samples recorded. The first
kernel preprocesses one of the input sets, and is negligible in the total runtime.
The second kernel accumulates contributions from each sample point to each
cell in a 3-D regular grid, using a large number of trigonometric operations. The
combination of the multiplicative algorithm complexity and the more complex
mathematical operations cause this second kernel to dominate the runtime.

116.histo implements a saturating histogram, which is a very large, two-
dimensional matrix of char-type bins with a maximum value of 255. The bench-
mark is customized to a certain class of input, exemplary of a silicon wafer
verification application, which follows a nearly Gaussian distribution, roughly cen-
tered in the output histogram. The benchmark executes kernels in four phases.
It first runs a small kernel on a subset of the input to estimate the centroid
of the output distribution. Second, it decomposes the histogram indexes of the
input into separate row and column indexes. Work-groups in the third kernel
privatize a portion of the histogram locally, and scan the input for items that
fall within that region. Finally, the results from all the privatized histograms
are combined into the complete results. Each kernel runs very quickly, and the
benchmark executes iteratively, representing the streaming analysis application
in which it would be deployed. The relatively small runtime for each individual
kernel increase the relative impact of kernel launch and device communication
overheads in the platform.

117.bfs implements a single-source shortest-path search through a graph
using a breadth-first search [20]. The application performs multiple simulta-
neous searches on the same graph to estimate the average distance between each
node in the graph and all other nodes, based on a sampled subset of sources.

118.cutcp computes a cutoff-limited Coulomb potential field for a set of
charges distributed in a volume [10]. The application is set to use a cutoff dis-
tance of 12 Å, and builds a spatial data structure of the input charges to reduce
the number of distance tests that must be performed for each output cell. The
field calculation is performed iteratively, reflecting the computational pattern of
a typical analysis of the time-averaged field values.

120.kmeans [3] implements the well-known clustering algorithm of data-
mining - K-means. In 120.kmeans, a data object is comprised of several features.
By dividing a set of data objects into K clusters, k-means represents all the data
objects by the mean values or centroids of their respective clusters. In each iter-
ation, the algorithm associates each data object with its nearest center, based
on some chosen distance metric. The new centroids are calculated by taking the
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mean of all the data objects within each cluster respectively. As a data inten-
sive application, 120.kmeans transposes the data matrix before doing clustering
for better coalesced memory access. However, this benchmark still stresses the
memory bandwidth when many single instruction multiple data (SIMD) com-
pute units access global memory simultaneously.

121.lavamd [29] implements an algorithm of molecular dynamic simulation
in 3D space. The code calculates particle potential and relocation due to mutual
forces between particles within a large 3D space. This space is divided into cubes,
or large boxes, that are allocated to individual cluster nodes. The large box at
each node is further divided into cubes, called boxes. 26 neighbor boxes surround
each box (the home box). Home boxes at the boundaries of the particle space
have fewer neighbors. Cutoff-radius strategy is applied enforcing short-range
interaction between particles, which stress communication between neighboring
work-item groups. 121.lavamd requires the communication of boundary elements
of each box with it neighbor boxes. On a typical GPU, the inter-work-group
communication can only be done via synchronized global-memory-access. This
benchmark stresses both memory latency and synchronization.

122.cfd [6] is an unstructured-grid, finite-volume solver for the 3D Euler
equations for compressible flow. The Runge-Kutta method is used to solve a
differential equation. Effective GPU memory bandwidth is improved by reducing
total global memory access and overlapping computation, as well as using an
appropriate numbering scheme and data layout. Each time step depends on the
results of the previous time step and each time step needs a kernel finalization
(an implicit synchronization) and re-launch. This benchmark stresses memory
bandwidth and has many kernel launches.

123.nw [3] is a nonlinear global optimization method for DNA sequence align-
ments - Needleman-Wunsch. The potential pairs of sequences are organized in a
2D matrix. In the first step, the algorithm fills the matrix from top left to bottom
right, step-by-step. The optimum alignment is the pathway through the array
with maximum score, where the score is the value of the maximum weighted
path ending at that cell. Thus, the value of each data element depends on the
values of its northwest-, north-, and west-adjacent elements. The first step is
parallelized on the GPU. Data blocks in each diagonal strip can be processed in
parallel with serial dependency across strips. Blocks are mapped to local memory
for data locality. In the second step, the maximum path is traced backward to
deduce the optimal alignment. When computation is going on, the workload of
each step increases at first and then decreases. At some steps, the computation
workload is not enough to fill up all the computation units. In certain phases,
the throughput is constrained by 123.nw’ s limited parallelism.

124.hotspot [3,13] is a widely used tool to estimate processor temperature
based on an architectural floor plan and simulated power measurements. This
benchmark solves a differential equation boundary-value problem on a 2D struc-
tured grid by using a finite difference method. Each output cell in the computa-
tional grid represents the average temperature value of the corresponding area
of the chip.
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125.lud [5] implements the well-known LU decomposition for a non-singular
matrix. The block-wise operation provides enough parallelism for a GPU-like
SIMD device. The degree of block-level parallelism reduces as execution pro-
ceeds. 125.lud utilizes the local memory improve data reuse and coalesced mem-
ory access. This benchmark stresses floating point computation units and the
compute units’ local memory.

126.ge solves linear equations using a row-by-row Gaussian elimination. The
algorithm requires synchronization between row-wise iterations, but the values
calculated in each iteration can be computed in parallel. This benchmark stre-
sses fine-grained global communication and synchronization with many kernel
launches.

127.srad [3,28] implements the speckle reducing anisotropic diffusion
(SRAD) method, which is a diffusion method for ultrasonic and radar imaging
applications based on partial differential equations (PDEs). It is used to remove
locally correlated noise, known as speckles, without destroying important image
features. SRAD consists of several pieces of work: image extraction, continuous
iterations over the image (preparation, reduction, statistics, computation, and
image compression). Each stage requires global synchronization across all the
workgroups (kernel calls) before proceeding to the next stage. This benchmark
also presents a lot of global memory accesses. This benchmark stresses floating
point units, global memory access, and global synchronization.

128.heartwall [28] tracks the movement of a mouse heart over a sequence of
ultrasound images to record response to the stimulus. In order to reconstruct
approximated full shapes of heart walls, the program generates ellipses that are
superimposed over the image and sampled to mark points on the heart walls
(Hough search). In its final stage (heart wall tracking presented in Ref. [5]), the
program tracks movement of surfaces by detecting the movement of image areas
under sample points as the shapes of the heart walls change throughout the
sequence of images. The tracking kernel continues dealing with consecutive image
frames. This benchmark stress floating point units and memory bandwidth.

140.bplustree [9] traverses B+ trees in parallel, avoiding the overhead of
selecting the entire table to transform into row-column format and leveraging
the logarithmic nature of tree searches. This benchmark utilizes braided paral-
lelism, running independent queries in each work group concurrently, to avoid the
need of global synchronization. It involves irregular memory access and therefore
stresses memory bandwidth and latency.

4.2 SPEC ACCEL ACC Suite

The OpenACC suite consists of 15 applications. Some applications are direct
ports from the OpenCL suite, others have been ported from the SPEC OMP2012
suite. A number of numerical aerodynamic simulation (NAS) parallel bench-
marks as well as a few novel applications are included as well.

Similar to the OpenCL suite, the OpenACC suite of the SPEC ACCEL
benchmarks also tries to stress the hardware accelerator ecosystem in various
ways. The applications vary between few (314.omriq) or lots of accelerator
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Table 2. OpenACC application key facts. Profiling data taken from PGI OpenACC
runtime using an NVIDIA Tesla K40 and the CUDA 5.5 backend

regions (353.clvrleaf ), as well as one (most of the applications) or multiple kernel
invocation per accelerator region (363.swim). In the same manner, the amount
and number of data transfers between the host and device differ. At the moment
a large amount of data transfers also results in a poorer accelerator utilization.
This can, however, change for future OpenACC implementations that better
overlap computation and transfer.
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The included applications cover a wide area of scientific domains and com-
putational schemes:

303.ostencil is an iterative Jacobi solver of the heat equation on a 3-D struc-
tured grid, which can also be used as a building block for more advanced multi-
grid PDE solvers. This code it ported from the serial version of 103.stencil from
Parboil. While the accelerated loop is a fairly simple stencil operation, the code
shares the same workload as 103.stencil and offers a way to directly compare an
OpenCL and OpenACC implementation of the same code.

304.olbm, like 104.lbm, is ported from the SPEC CPU2006 benchmark and
uses the Lattice Boltzmann Method (LBM) to simulate incompressible fluids in
3D. The accelerated portion of the code is a more complex 19-point stencil which
stresses the accelerator’s global memory and potential cache infrastructure.

314.omriq simulates magnetic resonance imaging (MRI) image reconstruc-
tion by converting sampled radio responses into magnetic field gradients. This is
a port of the serial version of 114.mriq also from Parboil and uses the same work-
load. The accelerated loop is fairly small but includes an inner loop reduction,
use of cos and sin functions, and due to the use of an array of structs, some
memory accesses are not coalesced. Non-coalesced memory accesses are generally
not well suited for accelerators, but are often found in complex applications.

350.md was written at Indiana University to perform molecular dynamics
simulations of dense nuclear matter such as those occurring in Type II super-
novas, the outer layers of neutron stars, and white dwarf stars [12]. While an
earlier version of this code appears in the SPEC OMP2012 benchmark suite, this
version has been updated to better utilize the massive parallelization available
with accelerators.

351.palm is a large-eddy simulation (LES) model for atmospheric and oceanic
flows from Leibniz University of Hannover [25]. It solves prognostic equations for
velocity (Navier-Stokes equation), temperature (first law of thermodynamics),
and humidity (transport equation for scalar). 351.palm is the largest and most
complex of the codes in SPEC ACCEL and best represents how large scale appli-
cations can utilize accelerators. The source code includes a host implementation
of the Temperton fast Fourier transform (FFT) routines which dominates the
compute time spent on the host. However, for the peak metric, an optimized
host or accelerated Fastest Fourier Transform in the West (FFTW) library may
be used.

352.ep is from the University of Houston and is a port of the embarrassing
parallel (EP) benchmark from the NAS Parallel Benchmark (NPB) suite [2]. The
port required the use of a blocking algorithm since the entire problem size could
not fit within the 2 GB memory limit set in SPEC ACCEL. The benchmark also
tests the use of reductions. [17–19]

353.clvleaf is the CloverLeaf [11] mini-application which is used to solve the
compressible Euler equations on a Cartesian grid, using an explicit, second-order
method.

354.cg is NPB’s conjugate gradient (CG) OpenMP benchmark ported to
OpenACC by the University of Houston. This benchmark uses the inverse power
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method to find an estimate of the largest eigenvalue of a symmetric positive
definite sparse matrix with a random pattern of nonzeros. The code required
few changes from the OpenMP version. [17,18].

355.seismic is ported from University of Pau’s SEISMIC CPML perfectly
matched layer (PML) Collino 3D isotropic solver [8], a 3D classical split PML
program for an isotropic medium using a second-order, finite-difference spatial
operator, for comparison. The code was originally ported to OpenACC for use in
tutorials, but due to the minimal number of OpenACC directives used, highlights
a compiler’s ability to schedule loops and perform reduction operations.

356.sp and 357.csp are both derived from NPB’s singal processing (SP)
benchmark, using different languages. Although they do both solve the same
problem using the same data set, the SPEC HPG committee thought having
both would give a good comparison of using OpenACC with Fortran versus C.
The SP benchmark solves a synthetic system of partial differential equations
using a penta-diagonal matrix.

359.miniGhost is a finite difference mini-application from Sandia National
Laboratory [24] used to test a broad range of stencil algorithms on accelerators.
The code also performs inter-process boundary (halo, ghost) exchange and global
summation of grid values.

360.ilbdc is an OpenACC port from SPEC OMP2012 [21] and is geared to the
collision-propagation routine of an advanced 3-D lattice Boltzmann flow solver
using a two-relaxation-time (TRT-type) collision operator for the D3Q19 model.
The code uses a similar algorithm to 304.lbm although written in Fortran and
uses a minimal number of OpenACC directives.

363.swim is also ported from SPEC OMP2012 and is a finite-difference
approximation of the shallow-water equations. Because the data is printed after
each time step, the benchmark highlights the cost of moving data between the
accelerator and the host which also includes the data movement between the
hosts application user memory space and the accelerator driver memory space.

370.bt is NPB’s BT benchmark ported to OpenACC. Like SP, it solves a
synthetic system of partial differential equations, but instead uses a block tridi-
agonal matrix.

5 Energy Awareness

Computer systems using hardware accelerators are seen as one method for more
energy efficient data processing. The SPEC ACCEL benchmark suites take that
into account by providing the same power measurement capabilities as the pre-
viously released SPEComp2012 suite. As a result, the energy consumption can
be recorded during a measurement run as well. Recording energy consumption
is not mandatory but encouraged.

Energy measurement is enabled by changing the power setting in the configu-
ration file for the measurement run to yes and setting up power and temperature
measurement daemons (PTDaemon). The SPEC runtime system then connects
to these daemons and continuously samples the energy consumption of the whole
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system under test every second and the air intake temperature every five sec-
onds. The SPEC ACCEL run rules define how the energy measurement needs
to be set up. The power analyzers need to be calibrated in the last 12 months
to ensure the energy measurement accuracy. The temperature is measured to
prevent reducing the energy consumption by running the system under test at
unusually low temperatures – a valid run needs to be carried out with at least
20 ◦C air intake temperature. The PTDaemon can connect to a variety of power
meters and temperature probes and offers range checking, uncertainty calcula-
tion, and multi-channel measurements. The SPEC runtime system ensures that
at least 99 % of all power samples are reported as valid samples by the PTDae-
mon. Otherwise, it will abort the run or mark it as invalid.

When the SPEC ACCEL benchmark is run with energy measurement enabled,
it will generate two additional metrics per suite:

SPECaccel {acc|ocl} energy {base|peak}.
Similar to the standard metrics, the energy metrics compare the energy con-
sumption of the system under test to the energy consumption of the reference
system. A higher number indicates a lower energy consumption or better energy
efficiency. Energy for this metric means power consumption integrated over time,
hence an energy metric of 2 indicates that the system under test consumed half
the energy (measured in Joules) than the reference system on the benchmark. As
a result, the SPEC ACCEL energy metrics can be used for an energy-to-solution
comparison. While the standard SPEC ACCEL metrics provide a measurement
for time-to-solution, they may be used in combination to determine the reason
why a system under test consumes more or less energy than the reference sys-
tem. A SPEC ocl base rating of 2 and a SPEC ocl energy base rating of 2 indi-
cate that the system under test ran the benchmarks twice as fast as the reference
system, but on average consumed the same amount of power. A SPEC ocl base
rating of 1 and a SPEC ocl energy base rating of 2 indicate that the system
under test ran the benchmark in the same time as the reference system, but
used on average half the power. In total, both systems consumed half the energy
than the reference system, thus, running the benchmark induces only half the
energy costs.

The report for a benchmark run lists the consumed energy, the maximum
power usage, the average power usage, and the energy ratio for each individual
benchmark. The idle power consumption can be taken from the log-file of the
benchmark run. Figure 1 shows that the maximum and average power consump-
tion varies quite a lot between benchmarks. The power measurement can be used
to indirectly deduce the behavior of the various benchmarks:

– A benchmark with low maximum and average power consumption is mainly
data transfer bound since both the host and the device are idle during the
transfers.

– A benchmark with a high maximum and average power is largely device
bound. There can be both compute or memory access activity on the device.
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Fig. 1. Maximum and average power consumption for all benchmarks as well as idle
power consumption when running both SPEC ACCEL suites on the reference system

– A benchmark with a significantly higher maximum than average power con-
sumption has both: phases with lots of data transfers, but also device bound
phases resulting in a high variation in power consumption.



SPEC ACCEL: A Standard Application Suite 61

6 Discussion of First Results

A run of SPEC ACCEL produces a number of output files in the result sub-
directory. It writes a logfile of the benchmark run – in case of any errors also
a more detailed debug log – as well as text and raw output for each data set
(test, train, or ref) it was run on. The runtime and energy consumption of the
benchmarks, when executed on the reference machine serve as the basis for nor-
malization. If your SPEC rate is larger than 1, this indicates that your system
performs better at running the workload of the selected benchmark suite than
the reference system. As a result, the single metric enables a first method of
comparing hardware platforms and software environments. The text output for
the ref data set also allows a benchmark-by-benchmark comparison with the
published results, as shown in Table 3. In this result, it can be seen that not
all benchmarks benefit equally from the more modern accelerator. 120.kmeans,
for example, only shows an 11 % performance increase while 114.mriq runs over
three times as fast. In a similar manner, one can see that this hardware platform
is more energy efficient than the reference system and requires less than half the
energy to run the suite (as indicated by the SPECaccel ocl energy base value).

The SPEC tool rawformat can produce reports from a measurement run that
are comparable to the results officially published on the SPEC website. It shows
the results from all runs of the ref data set, so that run-to-run variation can
be examined as well. The SPEC tools also run tests to determine the hardware
and software configuration to aid the gathering of all performance relevant data
about the setup of the system under test.

In order to share your results with others on the SPEC website, a reportable
run must be done. This will invoke the benchmark suite with the test and train
data set once, and the ref data set at least three times. The rawformat tool checks
for missing system setup information in the result file. One very common issue is
a lack of compiler flag description. SPEC requires an xml-based description of all
used compiler commands and compiler flags. A result that has been submitted
for publication is peer reviewed by HPG members in order to ensure compliance
of the benchmark result with the run rules. The review process also ensures that
the result contains all information necessary to reproduce the measurement. All
published results have passed multiple stages of checking, verification, and cross-
checking, thus, serving as a sustainable source for performance data.

A published result is split into multiple sections2:

– The header lists the hardware vendor, the used accelerator, and the system
name, along with results in all four metrics of the benchmark. It also lists who
ran the benchmark, when it was carried out, and when the used hardware and
software components are available.

– It is followed by a diagram that shows the distribution of the individual bench-
marks. The distribution provides insight into which applications perform well

2 The reference result for the OpenCL suite is available at http://spec.org/accel/
results/res2014q1/accel-20140228-00006.html and for the OpenACC suite at http://
spec.org/accel/results/res2014q1/accel-20140228-00005.html.

http://spec.org/accel/results/res2014q1/accel-20140228-00006.html
http://spec.org/accel/results/res2014q1/accel-20140228-00006.html
http://spec.org/accel/results/res2014q1/accel-20140228-00005.html
http://spec.org/accel/results/res2014q1/accel-20140228-00005.html
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Table 3. SPEC ACCEL OpenCL results for an ASUS P9X79 Motherboard with an
Intel Core i7-3930K and an NVIDIA Tesla K40c (ECC enabled) using base optimiza-
tions.

Benchmarks Ref. Run Ratio Energy Max Average Energy

time time power power ratio

101.tpacf 107 67.7 1.58 15.3 241 225 2.14

103.stencil 125 61.6 2.03 17.5 296 284 2.59

104.lbm 112 43.4 2.58 12.2 289 280 3.16

110.fft 111 76.0 1.46 22.9 316 302 1.79

112.spmv 147 79.0 1.86 21.8 293 276 2.41

114.mriq 109 33.2 3.28 8.49 271 256 4.25

116.histo 114 80.8 1.41 16.0 216 198 1.95

117.bfs 117 59.2 1.98 14.7 266 248 2.59

118.cutcp 99 34.4 2.88 9.01 273 262 3.68

120.kmeans 100 90.1 1.11 18.0 211 199 1.50

121.lavamd 109 60.2 1.81 17.3 307 288 2.28

122.cfd 126 73.3 1.72 19.1 273 260 2.26

123.nw 115 69.8 1.65 16.0 237 229 2.26

124.hotspot 114 38.7 2.95 10.9 303 281 3.48

125.lud 119 80.9 1.47 22.8 295 282 1.93

126.ge 155 54.1 2.86 14.3 280 265 3.74

127.srad 114 60.7 1.88 16.9 292 278 2.36

128.heartwall 106 88.0 1.20 21.7 255 247 1.66

140.bplustree 108 70.0 1.54 17.3 257 247 2.05

SPECaccel ocl energy base 2.43

SPECaccel ocl base 1.87

or not so well on the system under test. The bars also have ticks for all runs
of the ref data set so that run-to-run variation is also easily visible.

– The system description section lists the host and accelerator’s hardware prop-
erties along with the software set up.

– With energy measurement enabled, the next section shows the properties of
its setup including power supply, power analyzer used, and the temperature
probe.

– The result table(s) lists the execution time and the ratio for each iteration
of every benchmark, as well as the energy measurement results (if energy
measurement is enabled).

– The notes section shows the output from the SPEC sysinfo tool and any
custom notes by the submitter of the result.
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Table 4. SPEC ACCEL OpenACC results for an ASUS P9X79 Motherboard with an
Intel Core i7-3930K and an NVIDIA Tesla K40c (ECC enabled) running at various
GPU clock frequencies using base optimizations

– The compiler section lists the compiler(s) and compiler flags used for every
individual application in the suite. It also provides a link to the previously
mentioned flags file explaining the compiler settings in more detail.

Among the initially submitted results from the SPEC ACCEL OpenACC suite
is an experiment on how different GPU clock frequency affects application per-
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Table 5. SPEC ACCEL OpenACC results for an ASUS P9X79 Motherboard with an
Intel Core i7-3930K and an NVIDIA Tesla K40c using base optimizations with ECC
enabled and disabled

Benchmarks ECC enabled ECC disabled

Ratio ERatio Ratio Speedup ERatio ESaving

303.ostencil 2.60 3.09 2.67 2.7 % 3.19 3.2 %

304.olbm 1.99 2.61 4.37 120 % 5.62 115 %

314.omriq 2.37 2.96 2.86 20.7 % 3.45 16.6 %

350.md 2.31 2.97 2.35 1.7 % 3.00 1.0 %

351.palm 1.88 2.50 1.96 4.3 % 2.62 4.8 %

352.ep 1.36 1.80 1.37 0.7 % 1.81 0.6 %

353.clvrleaf 2.65 3.37 2.98 12.5 % 3.72 10.4 %

354.cg 2.50 3.24 2.60 4.0 % 3.43 5.9 %

355.seismic 2.38 3.20 2.55 7.1 % 3.43 7.2 %

356.sp 2.04 2.65 2.45 20.1 % 3.19 20.4 %

357.csp 1.65 2.16 1.91 15.8 % 2.51 16.2 %

359.miniGhost 2.17 2.82 2.84 30.9 % 3.62 28.4 %

360.ilbdc 3.11 4.10 4.09 31.5 % 5.21 27.1 %

363.swim 2.31 3.14 2.46 6.5 % 3.35 6.7 %

370.bt 2.50 3.35 2.80 12.0 % 3.79 13.1 %

Overall 2.21 2.88 2.59 22.7% 3.35 16.3%

formance. The experiment uses the GPU Boost capabilities of the NVIDIA
K40c GPU where the clock speed can be increased from the default 745 MHz
to 810 and 875 MHz. The results are shown in Table 4. All benchmarks benefit
from the increased GPU clock rate and none consume more energy to run the
applications. Since the energy savings are less than the performance gain, the
system actually draws more power, but over a shorter period of time. Increasing
the GPU’s clock speed also helps with memory bandwidth efficiency, hence, some
benchmarks see improvements greater than the clock boost. Other benchmarks
see less performance since they either have a high percentage of time spent on
the host (351.palm, 354.cg) or have higher memory transfer rate between the
host and device (363.swim). As a result of this study, a site such as Oak Ridge
or or National Center for Supercomputing Applications (NCSA) could decide
to increase the GPU clock rate by default since a broad range of applications
benefit from it (reduced runtime) without extra costs (same or less energy con-
sumption).

Another widely discussed question that can be answered with the currently
published results is the impact of ECC on accelerator performance. Table 5 shows
the results for the SPEC ACCEL OpenACC benchmarks with ECC turned on
and off. As expected, performance improvements, due to the increased memory
bandwidth when ECC is disabled, actually vary by a very large amount for the
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applications used. On average, disabling ECC yields a performance increase of
22.7 %, and the energy consumption also slightly improves due to the reduced
computing times. Whether this nominal performance increase is worth the risk
of wrong results is a different discussion. Within the SPEC harness, the result
verification routine ensures that the applications generate the expected results.

7 Summary and Future Work

SPEC HPG set out to develop a performance measurement environment based
on the SPEC principles for hardware accelerators. As a result, two application
suites – one with OpenCL and one with OpenACC applications – have been rel-
eased with SPEC ACCEL. They deliver performance and energy consumption
metrics that enable comparing hardware devices and software environments.
The goals set by HPG for the development of these application suites are met.
The metrics reflect the impact of different hardware and hardware settings, but
also show how different software environments (e.g., compilers, runtimes) affect
application performance. The mix of selected applications also demonstrates that
not all applications react in a similar manner to such a change. The suites can
also serve as a yardstick for determining the best hardware and software for
solving particular scientific problems. Furthermore, the suites have already been
used by compiler and runtime vendors as a mean for verification of the developed
software stacks.

SPEC ACCEL is set apart from other accelerator benchmarks for hardware
accelerators since it is simple to run, yet has a performance evaluation process
that uses real world applications under a strict measurement environment and a
peer review process for published results. Furthermore, the energy consumption
metric enables comparison between results not only by runtime of the applica-
tions, but also energy consumed.

HPG plans to extend SPEC ACCEL with a third suite covering OpenMP 4.0
target directives in the near future. The OpenACC applications will be ported to
support OpenMP 4.0 target directive so that devices that are currently not sup-
ported by OpenACC may be compared to devices that are. Beyond that effort,
SPEC HPG is investigating future updates to the various suites to support more
current versions of OpenCL and OpenACC.
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Abstract. The High Performance Conjugate Gradient (HPCG) bench-
mark has been recently proposed as a complement to the High Perfor-
mance Linpack (HPL) benchmark currently used to rank supercomputers
in the Top500 list. This new benchmark solves a large sparse linear system
using a multigrid preconditioned conjugate gradient (PCG) algorithm.
The PCG algorithm contains the computational and communication pat-
terns prevalent in the numerical solution of partial differential equations
and is designed to better represent modern application workloads which
rely more heavily on memory system and network performance than HPL.
GPU accelerated supercomputers have proved to be very effective, espe-
cially with regard to power efficiency, for accelerating compute intensive
applications like HPL. This paper will present the details of a CUDA
implementation of HPCG, and the results obtained at full scale on the
largest GPU supercomputers available: the Cray XK7 at ORNL and the
Cray XC30 at CSCS. The results indicate that GPU accelerated super-
computers are also very effective for this type of workload.

1 Introduction

After twenty years of the High Performance Linpack (HPL) benchmark, it is
now time to complement this benchmark with a new one that can stress dif-
ferent components in a supercomputer. HPL solves a dense linear system using
Gaussian Elimination with partial pivoting, and its performance is directly cor-
related with dense matrix-matrix multiplication. While there are applications
with similar workload (material science codes like DCA++ or WL-LSMS, both
winners of the Gordon Bell awards), the vast majority of applications cannot be
recast in terms of dense linear algebra and their performance poorly correlates
with the performance of HPL.

In 2013, Dongarra and Heroux [1] proposed a new benchmark designed to
better represent modern application workloads that rely more heavily on memory
system and network performance than HPL. The new benchmark, HPCG, solves
a large sparse linear system using an iterative method. It is an evolution of one
of the Mantevo Project applications from Sandia [12]. The Mantevo Project was
an effort to provide open-source software packages for the analysis, prediction
and improvement of high performance computing applications. This is not the
first time that a new benchmark has been proposed to replace or augment the
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 68–84, 2015.
DOI: 10.1007/978-3-319-17248-4 4
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Top 500 list. The HPCC benchmark suite [2] and the Graph 500 benchmark [4]
are two well known proposals, but up to now the uptake has been limited. Graph
500 after 4 years is still listing only 160 systems.

This paper presents a CUDA implementation of HPCG and the results on
large supercomputers. Although we use CUDA, the algorithms and methods are
applicable in general on highly parallel processors. The paper is organized as
follows: after a short introduction to CUDA, we describe the algorithmic details
of HPCG. A description of the CUDA implementation and optimization is then
given, followed by a section on results and comparison with available data.

2 GPU Computing and CUDA

The use of GPUs in high performance computing, sometimes referred to as GPU
computing, is becoming very popular due to the high computational power and
high memory bandwidth of these devices coupled with the availability of high
level programming languages.

CUDA is an entire computing platform for C/C++/Fortran on the GPU.
Using high-level languages, GPU-accelerated applications run the sequential
part of their workload on the CPU - which is optimized for single-threaded
performance - while accelerating parallel processing on the GPU.

CUDA follows the data-parallel model of computation. Typically each thread
executes the same operation on different elements of the data in parallel. Threads
are organized into a 1D, 2D or 3D grid of thread-blocks. Each block can be 1D,
2D or 3D in shape, and can consist of up to 1024 threads on current hardware.
Threads within a thread block can cooperate via lightweight synchronization
primitives and a high-speed on-chip shared memory cache.

Kernel invocations in CUDA are asynchronous, so it is possible to run CPU
and GPU in parallel. Data movement can also be overlapped with computations
and GPU can DMA directly from page-locked host memory. There are also a
large number of libraries, from linear algebra to random number generation. Two
libraries that are particularly relevant to this benchmark are CUBLAS [8] and
CUSPARSE [9], that implement linear algebra operations on dense or sparse
matrices. In the benchmark, we also used Thrust [10], a C++ template library
for CUDA based on the Standard Template Library (STL), to sort and find
unique values.

3 HPCG

The new HPCG benchmark is based on an additive Schwarz Preconditioned
Conjugate Gradient (PCG) algorithm [3].

The benchmark has 8 distinct phases:

1. Problem and Preconditioner setups
2. Optimization phase
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3. Validation testing
4. Reference sparse Matrix-vector multiply and Gauss-Seidel kernel timings
5. Reference PCG timing and residual reduction
6. Optimized PCG setup
7. Optimized PCG timing and analysis
8. Report results

During the initial setup, data structures are allocated and the sparse matrix is
generated. The sparse linear system used in HPCG is based on a simple elliptic
partial differential equation discretized with a 27-point stencil on a regular 3D
grid. Each processor is responsible for a subset of matrix rows corresponding to a
local domain of size Nx ×Ny ×Nz, chosen by the user in the hpcg.dat input file.
The number of processors is automatically detected at runtime, and decomposed
into Px × Py × Pz, where P = PxPyPz is the total number of processors. This
creates a global domain Gx × Gy × Gz, where Gx = PxNx, Gy = PyNy, and
Gz = PzNz. Although the matrix has a simple structure, it is only intended to
facilitate the problem setup and validation of the solution, and may not be taken
advantage of to optimize the solver.

Between the initial setup and validation, the benchmark calls a user-defined
optimization routine, which allows for analysis of the matrix, reordering of the
matrix rows, and transformation of data structures, in order to expose paral-
lelism and improve performance of the SYMGS smoother. This generally requires
reordering matrix rows using graph coloring for performance on highly parallel
processors such as GPUs. However, this introduces a slowdown in the rate of
convergence, which in turn increases the number of iterations required to reach
the solution. The time for these additional iterations, as well as the time for the
optimization routine, is counted against the final performance result.

Next, the benchmark calls the reference PCG solver for 50 iterations and
stores the final residual. The optimized PCG is then executed for one cycle to
find out how many iterations are needed to match the reference residual. Once
the number of iterations is known, the code computes the number of PCG sets
required to fill the entire execution time. The benchmark can complete in a
matter of minutes, but official results submitted to Top500 require a minimum
of one hour duration.

3.1 The PCG Algorithm

The PCG algorithm solves a linear system Ax = b given an initial guess x0 with
the following iterations:

We can identify these basic operations:

A. Vector inner products α := yT z. Each MPI process computes its local inner
product and then calls a collective reduction to get the final value.

B. Vector updates w = αy + βz. These are local updates, where performance is
limited by the memory system.
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Algorithm 1. Preconditioned Conjugate Gradient [1]
1: k = 0
2: Compute the residual r0 = b − Ax0

3: while (||rk|| < ε) do
4: zk = M−1rk
5: k = k + 1
6: if k = 1 then
7: p1 = z0

8: else
9: βk = rTk−1zk−1/rTk−2zk−2

10: pk = zk−1 + βkpk−1

11: end if
12: αk = rTk−1zk−1/pT

k Apk

13: xk = xk−1 + αkpk

14: rk = rk−1 − αkApk

15: end while
16: x = xk

C. Application of the preconditioner w := M−1y, where M−1 is an approxima-
tion to A−1. The preconditioner is an iterative multigrid solver using a sym-
metric Gauss-Seidel smoother (SYMGS). Application of SYMGS at each grid
level involves neighborhood communication, followed by local computation
of a forward sweep (update local elements in row order) and backward sweep
(update local elements in reverse row order) of Gauss-Seidel. The ordering
constraint makes the SYMGS routine difficult to parallelize, and is the main
challenge of the benchmark.

D. Matrix-vector products Ay. This operation requires neighborhood communi-
cation to collect the remote values of y owned by neighbor processors, followed
by multiplication of the local matrix rows with the input vector. The pattern
of data access is similar to a sweep of SYMGS, however the rows may be
trivially processed in parallel since there are no data dependencies between
rows (the output vector is distinct from the input vector).

All of these are BLAS1 (vector-vector) or BLAS2 (sparse matrix-vector) opera-
tions. We are not able to use BLAS3 operations, such as DGEMM, as we were
able to do for HPL. An important point is that the benchmark is not about
computing a highly accurate solution to this problem, but is only intended to
measure performance of the algorithm.

3.2 Preconditioner

The problem is solved using a domain decomposition where each subdomain is
locally preconditioned. The preconditioner in initial version (v1.x) was based
on a symmetric Gauss-Seidel sweep. The latest version (v2.x) is based on a
multigrid preconditioner where the pre and post smoothers are also a symmetric
Gauss-Seidel sweep.
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Gauss-Seidel Preconditioner. Since the PCG method could be used only on
a symmetric positive definite matrix, the preconditioner must also be symmetric
and positive definite. The matrix M is computed from lower triangular (L),
diagonal (D) and upper triangular (U) parts of A:

MSGS = (D + L)D−1(D + U)

It is easy to verify that this matrix is symmetric and positive definite using the
identity (D +U)T = (D +L). The application of the preconditioner requires the
solution of upper and lower triangular systems.

Multigrid Preconditioner. The latest version of the benchmark is using a
multigrid preconditioner instead of the simple iterative Gauss-Seidel. An iter-
ative solver like Gauss-Seidel is very effective in damping the high frequency
components of the error, but is not very effective on the low frequency ones. The
idea of the multigrid is to represent the error from the initial grid on a coarser
grid where the low frequency components of the original grid become high fre-
quency components on the coarser one [14]. The multigrid V-cycle includes the
following steps:

A. Perform a number of Gauss-Seidel iterations to smooth the high frequencies
and compute the residual rH = AxH − b, where the superscript H denotes
the grid spacing.

B. Transfer the residual rH on a coarser grid of space 2H. This operation is
often called restriction, and R the restriction matrix.

r2H = RrH

C. Perform a number of Gauss-Seidel iterations to smooth the error on the
coarser grid residual equation

Ae2H = r2H

D. Transfer the correction e2H back on the fine grid of space H. This operation
is often called prolongation, and P the prolongation matrix.

eH = Pe2H

The process can be extended to multiple levels. The HPCG benchmark is
using a V-cycle strategy with 3 coarser levels and performs a single pre- and
post- smoother Gauss-Seidel at each level.

3.3 Selecting Node Count

HPCG detects the number of MPI tasks at runtime and tries to build a 3D
decomposition. Clearly if the number of tasks, N, is a prime, the only possible
3D decomposition is N × 1× 1 (or a permutation). While this is a valid configu-
ration, it is highly unlikely that a real code would run with such a configuration.
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We always try to select a 3D configuration that is as balanced as possible. Since
the jobs on large supercomputers go through a batching system and the number
of available nodes may vary due to down nodes, it is useful to know the best
node count in a certain range. We have extracted the routine internally used
by HPCG and made a standalone program that we use to analyze the possible
decompositions. A simple criterion is to sort N1, N2, N3 and compute the prod-
uct of the ratios N max/N min and N mid/N min. The closer to the unity this
product is, the more balanced the decomposition is.

4 CUDA Implementation

The GPU porting strategy is primarily focused on the parallelization of the
Symmetric Gauss-Seidel smoother (SYMGS), which accounts for approximately
two thirds of the benchmark Flops. This function is difficult to parallelize due to
the data dependencies imposed by the ordering of the matrix rows. Although it
is possible to use analysis of the matrix structure to build a dependency graph
which exposes parallelism, we find it is more effective to reorder the rows using
graph coloring.

Our implementation begins with a baseline using CUDA libraries, and pro-
gresses into our final version in the following steps:

A. CUSPARSE (CSR)
B. CUSPARSE + color ordering (CSR)
C. Custom Kernels + color ordering (CSR)
D. Custom Kernels + color ordering (ELL)

4.1 Baseline CUSPARSE

Starting with CUSPARSE has the benefit of keeping the coding effort low, and
hiding the complexity of parallelizing the Symmetric-Gauss-Siedel smoother. It
also allows us to easily validate the results against the reference solution, and
perform experiments with matrix reordering.

With CUSPARSE, we are required to use a compatible matrix data format,
which is based on compressed sparse row (CSR). The matrix elements and col-
umn index arrays must be stored in contiguous memory in row major order.
An additional requirement is a row start index array which gives the position of
the starting element of each row. By contrast, the matrix format in HPCG uses
arrays of row pointers, with a separate memory allocation for the elements and
column indices for each row. There is also an array which gives the number of
nonzero elements per row.

Additionally, the CUSPARSE triangular solver routine requires elements
within each row to be sorted such that elements with column index smaller
than the diagonal appear before the diagonal, and elements with column index
larger than the diagonal appear after the diagonal. The default matrix format
in HPCG violates this assumption in rows that are on the boundary of the
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local domain. In these rows the halo elements (those received from a neighbor
processor) have column indices larger than the number of rows, but may appear
before the diagonal because the order is inherited from the natural ordering of
the global matrix.

Next, we describe the implementation of the SYMGS smoother, using the
CUSPARSE and CUBLAS library routines. The main computational kernel, the
sparse triangular solve, requires information about the structure of the matrix
in order to expose parallelism. Thus, a pre-processing step is required to ana-
lyze the matrix structure using cusparseDcsrsv analysis before any calls to
cusparseDcsrsv solve can be made. The analysis function essentially builds a
task dependency graph that is later used when the solver is called. We must per-
form the analysis for both the upper and lower triangular portions of the matrix.
This analysis phase maps nicely to the optimization phase of the benchmark,
and the time spent here is recorded in the optimization timing.

The following lists the library calls that are made to perform SYMGS:

r <-- rhs cublasDcopy

r <-- r - A*x cusparseDcsrmv (SPMV)

y <-- L*y=r cusparseDcsrsv_solve

y <-- y*D cublasDaxpy

dx <-- U*dx=y cusparseDcsrsv_solve

x <-- x+dx cublasDaxpy

This sequence is not as efficient as the reference algorithm which combines
the SPMV, vector updates, and triangular solves, reducing the number of steps
and the number of times data must be accessed from memory. The WAXPBY
is another example of a function which looses efficiency when implemented with
library calls, in general it requires three calls: cublasDcopy, cublasDscale, and
cublasDaxpy. Other routines are more straightforward using the libraries, Dot-
Product is simply a call to cublasDdot, SPMV is a single call to cusparseDcsrmv.

The only CUDA kernels we wrote for this version, are for the routines which
have irregular access patterns to gather or scatter values based on an index array.
This occurs when gathering elements from the local domain that must be sent
to neighbor processors, and also when performing restriction and prolongation
operators (the coarse grid elements each read or write to a fine grid element
given by the f2c index array).

4.2 Reordering with Graph Coloring

The matrix can be re-ordered based on a multi-coloring where every row is
assigned a color that is not shared with any rows to which it has a connection.
Parallel algorithms have been developed to solve this problem [19,20]. The basic
idea is to assign a random value to each row, and then designate a color to rows
whose values are local maxima when comparing their random values with con-
nected uncolored rows. The process is repeated, adding a new color in each step.
Although this can be done completely in parallel, several iterations are required
before all rows are assigned a color, and the number of colors is typically sub
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optimal (larger than the minimum number of colors which would be computed
using a serial greedy algorithm).

We adopt several improvements proposed by Cohen et al. [21]. Namely, we
replace the random number generation with an on-the-fly hash of the row index,
and each row redundantly computes the hash of all neighbors. This trades off
additional computation in order to avoid storing the hash values and reduces
memory bandwidth requirements. We also compute two independent sets of
colors in each step, one for local maxima, and another for local minima. The
following code illustrates the basic coloring algorithm where minmax hash step
assigns two colors in each iteration, where A col is the matrix column index
array, and colors is a vector of integers representing the color of each row:

while( colored < rows ){

minmax_hash_step<<<>>>(A_col, colors...);

colored += thrust::count(colors, ...);

}

We improve the coloring quality in cases where the number of colors is too large,
by performing a re-coloring. We loop over each original color, from greatest to
smallest, and every row of that color attempts to reassign itself a lower color
not shared with any neighbors. Since all rows of the same color are independent,
we can safely update their colors in parallel. The process could be repeated to
further reduce the color count, but the benefits are reduced with each pass. The
following code snippet shows a single re-coloring pass:

if( max_color > target ){

for( color=max_color; color>0; color-- )

recolor_step<<<>>>(A_col, colors...);

}

After the coloring is completed, we use the color information to create a
permutation vector, which is used to reorder the rows in the matrix according
to their colors. The permutation vector is initialized with the natural order, and
then sorted by key, using colors as the key. The following code snippet shows the
creation of the perm vector using the THRUST sort by key routine:

thrust::sort_by_key(colors, colors+rows, perm);

4.3 Custom Kernels CSR Version

Next, we replace the CUSPARSE calls with our own routines. This allows us to
adopt a more flexible matrix format which simplifies the reordering of the matrix,
and removes the need for sorting of the row elements with respect to the diagonal.
Using the reordered matrix, we can perform the SYMGS sweeps using the same
algorithm as the reference. The following code shows the SYMGS kernel:

__global__ void smooth(double* A_vals, ...

{

int row_index = threadIdx.x ...
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if( row_index < last_row ){

double sum = rhs[row_index];

for( i=start_index; i<end_index; i+=stride ){

if(A_col[i] != -1 )

if(A_col[i] != row_index ){

sum += -A_vals[i] * x[A_col[i]];

}else{

diag = A_vals[i];

}

}

x[row_index] = sum/diag;

}

}

The smoother is applied to one color at a time for both the forward and backward
sweeps. The following is the CPU code which calls the smoother kernels:

for( color=0; color<num_colors; color++ )

smooth<<<>>>(A_vals, A_col, rhs, x,...);

for( color=num_colors; color>=0; color-- )

smooth<<<>>>(A_vals, A_col, rhs, x,...);

4.4 Optimized Version

From our experience in the CUDA porting of the Himeno benchmark on clus-
ters with GPUs [17], optimizing memory bandwidth utilization is a key design
element to achieve good performance on codes with low compute intensity (the
ratio between floating point operations and memory accesses). In this case most
of the data access is to the matrix, so we are able to improve the performance
by storing the matrix in the ELLPACK format. This allows matrix elements to
be accessed in a coalesced access pattern.

In addition to the optimized matrix storage format, we also performed several
other optimizations, listed here:

A. SYMGS: removing redundant communications and work
B. SPMV: overlapping communications with computations
C. CG: overlapping MPI Allreduce with vector update
D. SYMGS + SPMV: using LDG load instructions

SYMGS: Removing Redundant Work. The SYMGS routine is called for
the pre-smoother and post-smoother of the multi-grid V-cycle. The initial value
of the solution at each level is set to zero, which allows us to avoid some of
the communications and computations that occur during the first application
of the smoother at each level. The SYMGS smoother routine begins by calling
exchange halo, which communicates boundary elements of the local matrix with
neighbor processors. Since we know the values are all zeros, we can skip this
communication step. We may also avoid processing the zero elements of the
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initial solution vector by restricting the forward sweep to matrix elements below
the diagonal. We use a special smoother kernel for this case that checks if the
column index is lower than the row index by adding if(A col[i] < row index)
in the kernel code. We also note that in the CUSPARSE implementation, the
zero values could allow one to skip the SPMV used to construct the residual
(since the right hand side will be equal to the residual in this case), and the
vector update in the last step of SYMGS where the computed delta is added to
the initial solution.

SPMV: Overlapping Communications with Computations. The SPMV
routine also begins with a call to exchange halo, which updates the portion of
the solution that is owned by other processors. However, these points, referred
to as the halo points, are only required for the computation of the rows that
are along the boundary of the local domain. Thus, we can safely split the com-
putation into two phases, first computing the points which do not require the
boundary, called interior, and next computing those which do require the bound-
ary, called exterior. In this way we can overlap the computation of the interior
with the halo communications.

The communications involve copying of the boundary data from GPU to
CPU, MPI send/recv with neighbor processes, and copy results back to the
GPU. We overlap the CPU to GPU communication by using cuda streams, with
the copies placed into a different stream than the computation kernels.

While it is possible to use the same matrix structure for both interior and exte-
rior computations, the efficiency of the exterior is greatly reduced because there
is little locality in the access of the boundary matrix entries. It is more efficient
to use a separate data structure, which only contains the boundary rows of the
matrix, to process the boundary elements. For this purpose we also construct a
boundary row index array which gives the row index of all boundary rows.

The fastest way to compute the boundary index array is to start with a
copy of the already existing elementsToSend index array, and simply apply
thrust::sort and thrust::unique functions. Then the boundary index array
can be used to copy rows from the original matrix into the much smaller bound-
ary matrix. The overhead of these operations are included in the optimization
phase timing, and represent only a small fraction of the total optimization time.

CG: Overlapping MPI Allreduce with Vector Update. In the CG algo-
rithm, the solution vector x is never required as an input to any of the steps. So
we may delay the vector update of the solution in order to overlap the update
time with the next dot product MPI Allreduce() time. This scheme allows one
of the three dot products in the CG solver to overlap with computations.

LDG: Read-Only Cache Load Instructions. The Kepler class of GPUs have
a read-only data cache, which is well suited for reading data with spatial locality
or with irregular access patterns. In previous GPU generations, a programmer
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would have to bind memory to texture objects and load data with special texture
instructions to achieve this. However, on Kepler, the GPU cores can access any
data with a new compute instruction called LDG. These special load instructions
may be generated by the compiler provided it can detect that the data is read-
only and no aliasing is occurring. This can be achieved by marking all the pointer
arguments to a kernel with restrict keywords. Unfortunately, this method
will not always produce the best use of the memory system. For example, in
the SYMGS kernels, the matrix is read-only, but the X vector is both read
and written. Thus, when using restrict, the compiler will use LDG for the
matrix data, and regular loads for the solution vector. Ironically, the Matrix
data is better suited to regular loads, since there is no data reuse and the access
pattern is coalesced, while the irregular access of the solution vector is better
suited to the read-only cache. By omiting the restrict keywords, and using
the ldg( ) intrinsic for the load of X, we are able to increase performance by
an additional 4 %.

5 Results

In this section, we present results for single node and for clusters. The single
node experiments allow us to have a better understanding of the relationship
between HPCG performance and processor floating point and memory band-
width capabilities.

5.1 Comparison of Different Versions

Before looking at the single node results on different hardware, we compare the
effects of the optimizations applied in the four implementations discussed in the
previous section. Figure 1 shows the timing of the four versions of the code on
a K20X GPU with ECC enabled. As we can see the matrix reordering has the
most relevant effect, since it exposes more parallelism in the SYMGS routine.

Fig. 1. Time comparison between the initial CUSPARSE implementation and the other
custom versions, with 1283 domain, on K20X with ECC enabled
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Fig. 2. Time distribution for optimized version with 1283 domain, on K20X with ECC
enabled

Table 1. Specs of the GPUs and CPU used in the benchmark, with clocks in MHz.

Processor CC # # Cores Core GFLOPS Memory Memory Memory DP flops

SM SP/DP clock DP/SP clock bus width bandwidth per byte

Tegra K1 3.2 1 192/8 852 13.6/327 924 64 bit 14.7GB/s 0.93

Tesla K10 3.0 8 1536/64 745 95/2289 2500 256 bit 160GB/s 0.59

Tesla K20X 3.5 14 2688/896 732 1312/3935 2600 384 bit 250GB/s 5.28

Tesla K40 3.5 15 2880/960 745 1430/4291 3000 384 bit 288GB/s 4.96

Xeon E5-2697 N/A N/A 12 2700 259/518 1866 256 bit 60GB/s 4.32

Figure 2 shows a detailed timing breakdown for the optimized version on a
single GPU. The SYMGS kernel on all the multigrid levels takes up 55 % of the
time, followed by the SPMV kernel with 26 %.

5.2 Single Node Results

Next, we compare the performance on different classes of Kepler GPUs rang-
ing from the smallest CUDA-capable GK20A found in the Tegra K1 mobile
processor, to the highest performing Tesla K40. The Tesla K20X and K40 are
both Kepler based, but they differ in the number of Symmetric Multiprocessors
(SM), the amount of memory (6 GB for the K20X vs 12 GB for the K40) and
the core/memory clocks (detailed specs are in Table 1). The K40 can also boost
the core clock to 875 MHz, which also results in a better memory throughput.

The Compute intensity, or flops/bytes ratio, is a useful metric for deter-
mining whether an application will be bandwidth or floating point limited.
In this case, the workload is dominated by Matrix-Vector operations, where
the compute intensity may be estimated as 2 ∗ nonzerosperrowF lops/(16 +
12 ∗ nonzerosperrow)Bytes = 54/340 = 0.158. This is much lower than the
flop/byte ratios for the hardware given in Table 1. Therefore, we can expect
performance to be limited much more by memory bandwidth than floating point
throughput capabilities.

Fig. 3 shows the scaling of HPCG performance across the GPUs used in our
study. Figure 4 demonstrates the efficiency of our implementation by compar-
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Fig. 3. Comparison of HPCG flop rate on single GPUs and Xeon E5-2697-v2 12-core
CPU

Fig. 4. Comparison of HPCG flop rate and bandwidth on single GPUs and Xeon E5-
2697-v2 12-core CPU

ing the performance of the SYMGS and SPMV routines with the STREAM
banchmark [16]. We also include the same metrics for an optimized CPU imple-
mentation developed by Park and Smelyanskiy [18]. As we can see in Fig. 5,
there is an excellent correlation between the HPCG score and the STREAM
benchmark result.
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Fig. 5. Correlation between STREAM and HPCG benchmark results on single GPUs
and E5-2697-v2 12-core CPU

5.3 Multi Node Results

The cluster runs were performed on the Titan system at the Oak Ridge National
Laboratory (ORNL) and on the Piz Daint system at the Swiss National Super-
computing Centre (CSCS). They are both Cray systems, but while Titan is a
Cray XK7 based on AMD Opteron and a Gemini network, Piz Daint is a new
Cray XC30 with Intel Xeon and the new Aries network. Titan has 18,688 nodes,
each with a 16-core AMD Opteron processor, 32 GB of system memory and a
6 GB NVIDIA K20X GPU. The network uses the Gemini routing and communi-
cations ASICs and a 3D torus network topology. Piz Daint has 5,272 nodes, each
with an Intel Xeon E5 processor, 32 GB of system memory and a 6 GB NVIDIA
K20X GPU. The network uses the new Aries routing and communications ASICs
and a dragonfly network topology.

Table 2 shows the performance of the optimized version on a wide range of
nodes, up to the full size machine on Titan and Piz-Daint. The raw number is the
total performance number, before the reduction due to the increased iteration
count caused by the multi-coloring.

Table 2. HPCG supercomputer results in GFlops: local grid size 256 × 256 × 128

Nodes Titan raw Titan final Titan Eff. Piz-Daint raw Piz-Daint final Piz-Daint Eff.

1 21.23 20.77 100.0 21.25 20.79 100.0

8 168.3 161.4 99.1 168.8 161.9 99.3

64 1321 1221 97.2 1341 1239 98.6

512 10414 9448 95.8 10719 9904 98.5

2048 42777 38806 98.3

3200 62239 56473 91.6

5265 109089 98972 97.5

8192 158779 144071 91.3

18648 355189 322299 89.7
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Fig. 6. Scaling overhead on Titan.

Table 3. HPCG supercomputer results comparison

HPCG System HPCG Iterations #Procs Processor HPCG Bandwidth Efficiency

rank GFLOPS type Per Proc Per Proc FLOP/BYTE

1 Tianhe-2 580,109 57 46,080 Xeon-Phi-31S1P 12.59GF 320GB/s 0.039

2 K 426,972 51 82,944 Sparc64-viiifx 5.15GF 64GB/s 0.080

3 Titan 322,321 55 18,648 Tesla-K20X+ECC 17.28GF 250GB/s 0.069

5 Piz-Daint 98,979 55 5,208 Tesla-K20X+ECC 19.01GF 250GB/s 0.076

8 HPC2 49,145 54 2,610 Tesla-K20X+ECC 18.83GF 250GB/s 0.075

HPC2 60,642 54 2,600 Tesla-K20X 23.32GF 250GB/s 0.093

At full scale, Piz-Daint is reaching 0.098 PF, compared to the 6.2 PF during
HPL. Since we are running very close to peak bandwidth and the code has no
problem scaling up to the full machine, there is not much space left for large
improvements. Even with no coloring overhead, the full machine will deliver
only 0.1 PF. Same conclusion holds for Titan, the achieved HPCG performance
of 0.322 PF is far away from the sustained 17.59 PF during HPL.

In Fig. 6, we analyize the communication time on the Titan runs. The dot
products require all reduce communications, that scale as the logarithm of the
node count. The other communications are instead with neighbors and remain
constant with the number of nodes. The ones in the SPMV phase are completely
overlapped with computations, in the current version the ones in the multigrid
phase are not but the overlapping will be implemented in an upcoming version.

5.4 Comparisons

The first official HPCG ranking was published at the International Supercom-
puting Conference in June 2014 and included 15 supercomputers. All the GPU
supercomputers on the list ran the optimized version described in this paper.
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Table 3 summarizes the results of several of the top systems: Thiane-2 is based
on Xeon Phi processors (currently number one in the Top500 list), K is a CPU-
only system based on Sparc64 Processors. Instead of looking at the peak flops
of these machines, we evaluate the efficiency based on the ratio of the HPCG
result to the memory bandwidth of the processors.

The efficiency of the GPU implementation is comparable to the one of K and
the performance per processor is noticeably higher.

6 Conclusion and Future Plans

The results in the paper show that GPU accelerated clusters perform very well
in the new HPCG benchmark. Our results are the fastest per processor ever
reported. GPUs, with their excellent floating point performance and high mem-
ory bandwidth, are very well-suited to tackle workloads dominated by floating
point, like HPL, as well as those dominated by memory bandwidth, like HPCG.

The current implementation is all on the GPUs, but since the CPUs could
give a significant contribution, we are investigating a hybrid scheme where both
CPU and GPU are used together.
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Abstract. In this paper we present research on applying a domain spe-
cific high-level abstractions (HLA) development strategy with the aim
to “future-proof” a key class of high performance computing (HPC)
applications that simulate hydrodynamics computations at AWE plc. We
build on an existing high-level abstraction framework, OPS, that is being
developed for the solution of multi-block structured mesh-based applica-
tions at the University of Oxford. OPS uses an “active library” approach
where a single application code written using the OPS API can be trans-
formed into different highly optimized parallel implementations which
can then be linked against the appropriate parallel library enabling exe-
cution on different back-end hardware platforms. The target application
in this work is the CloverLeaf mini-app from Sandia National Labora-
tory’s Mantevo suite of codes that consists of algorithms of interest from
hydrodynamics workloads. Specifically, we present (1) the lessons learnt
in re-engineering an industrial representative hydro-dynamics application
to utilize the OPS high-level framework and subsequent code generation
to obtain a range of parallel implementations, and (2) the performance
of the auto-generated OPS versions of CloverLeaf compared to that of
the performance of the hand-coded original CloverLeaf implementations
on a range of platforms. Benchmarked systems include Intel multi-core
CPUs and NVIDIA GPUs, the Archer (Cray XC30) CPU cluster and the
Titan (Cray XK7) GPU cluster with different parallelizations (OpenMP,
OpenACC, CUDA, OpenCL and MPI). Our results show that the devel-
opment of parallel HPC applications using a high-level framework such as
OPS is no more time consuming nor difficult than writing a one-off par-
allel program targeting only a single parallel implementation. However
the OPS strategy pays off with a highly maintainable single application
source, through which multiple parallelizations can be realized, without
compromising performance portability on a range of parallel systems.
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1 Introduction

High performance computing (HPC) is currently in a period of enormous change.
For many years, increased performance was achieved through higher clock fre-
quencies, but that trend was brought to an abrupt halt by the corresponding
increase in energy consumption. The clear direction now is towards improved
performance through increasing parallelism, even reducing the clock frequency
a little to improve the energy efficiency, which is becoming a key concern. How-
ever, there is no clear consensus yet on the best architecture for HPC. On the
one hand there are many-core accelerators such as GPUs and the new Intel
Xeon Phi, usually with 16–64 functional units, each of which can be viewed as a
vector processor with many elements (cores) performing the same operation at
the same time but with different data. On the other hand, we have mainstream
Intel/AMD CPUs with very large caches and a more modest number of func-
tional units (cores) each with their own vector components (e.g. AVX units), or
the IBM BlueGene systems which are based on a large network of relatively small
but energy-efficient CPUs. In the future, we may also have interesting energy-
efficient designs from ARM [9] and other companies [19] which have achieved
great energy efficiency for mobile and embedded applications, and are now tar-
geting HPC which increasingly shares similar goals.

In the light of these developments, an application developer faces a tough
problem. Optimizing their application for execution on a particular platform
requires an increasing amount of platform-specific knowledge, and possibly a
major re-write to reduce data communications. At the same time, there is con-
siderable uncertainty about which platform to target; it is not clear which archi-
tectural approach is likely to “win” in the long-term, and it is not even clear in
the short-term which platform is best for any given application.

Currently the common approach for utilizing novel hardware, or different
many-core accelerators is to manually port the legacy application, in many cases
by converting key compute kernels to utilize the accelerators. In some cases
a major ground-up rewrite is required, for example if you need to reduce data
communications to efficiently utilize the new hardware. The conversion process is
highly error-prone and takes significant amounts of developer effort to program,
validate and optimize. It is unreasonable for domain scientists to be engaged in
such optimization work that will require them to port the application for each
new generation of systems. Thus “future proofing” HPC applications for their
continued performance and portability on a diverse range of hardware and future
emerging systems is of critical importance.

One suchapproach, is theuse of domain specifichigh-level abstractions (HLAs),
such as domain specific languages (DSLs) and active libraries [13,31]. The key idea
is to provide the application developer with a set of domain specific constructs to
declare the problem to be computed, without specifying its implementation [18].
It is then the task of a lower implementation level to apply automated techniques
for translating the specification into different implementations for different hard-
ware and software platforms. The use of such a development strategy has previ-
ously been shown to have significant benefits both for developer productivity and
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gaining near-optimal performance [14,28]. However, currently these still remain
as experimental research projects and have not yet been adopted by a wider HPC
community. Partly the reason is a lack of DSLs or high-level frameworks that are
actively used for creating production level applications. On the other hand, previ-
ous work has only developed such frameworks for a few application domains.

The research in this paper is thus motivated by the need to explore fur-
ther the utility of high-level abstraction frameworks for future proofing parallel
scientific simulation applications from a range of application domains. Here we
focus on a hydro-dynamics application, belonging to an important class of codes
which form a key part of the HPC workload at many organizations such as the
AWE. We make use of a previously developed mini-application called Clover-
Leaf [8], which implements algorithms of interest related to this workload. This
research explores the performance of CloverLeaf after re-engineering the appli-
cation based on a domain specific HLA framework. CloverLeaf is open source
software and forms part of Sandia National Laboratory’s Mantevo project [5].
With the use of an unrestricted application as a proxy, our aim is to demon-
strate to a wider HPC audience the performance portability resulting from an
HLA based development and how this strategy might help in addressing various
scientific simulation challenges on future emerging systems.

The CloverLeaf mini-application has been previously manually ported
[16,17,20] to execute on many parallel platforms. These include parallelizations
based on single-instruction-multiple-data (SIMD, e.g. SSE and AVX) and shared
memory multi-threading for multi-core CPUs (e.g. OpenMP), single instruction
multiple thread (SIMT, e.g. CUDA, OpenCL and OpenACC) for GPUs and the
Intel’s Xeon Phi and distributed memory parallelization (e.g. MPI) for clusters
of CPUs/GPUs. Recently the code was re-written [10] with a domain specific
high-level abstraction framework, called OPS which resulted in a single high-
level application source. Automated code generation techniques of OPS were
then used to generate a range of parallel implementations. In this paper we
compare the performance of the resulting parallelizations to that of the origi-
nal hand-tuned CloverLeaf applications. Unlike previous work, the availability
of highly optimized, manually hand-tuned parallel versions gives us a unique
opportunity to compare and contrast the high-level development process both
in terms of developer productivity and performance portability. Our research
demonstrates, through performance analysis and benchmarking on a range of
hardware and software systems, the benefits of the HLA approach giving signif-
icant insights into high-level methods for “future proofing” HPC applications.
The main contributions of this paper are twofold:

1. We present lessons learnt in re-engineering an industrially representative
hydro-dynamics application to utilize the OPS high-level framework and
subsequent code generation to obtain a range of parallel implementations.
Through OPS we generate code targeting OpenMP thread level multi-core
parallelism, single-instruction multiple-thread (SIMT) many-core parallelism
using CUDA, OpenCL and OpenACC and distributed memory parallelism
with MPI.
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2. The performance of the OPS versions of CloverLeaf is compared to that of
the performance of the original CloverLeaf implementations on a range of
platforms. These include the latest Intel multi-core CPUs (Sandy Bridge),
NVIDIA GPUs (Kepler K20c), a Cray XC30 distributed memory cluster
(Archer [7]) and a large Cray XK7 GPU cluster (Titan [11]). Key perfor-
mance bottlenecks are analyzed and further optimizations are discussed.

The rest of this paper is organized as follows: in Sect. 2 we briefly present the OPS
abstraction, its API, design and code generation process; in Sect. 3, a benchmark-
ing and performance analysis of the of the application is carried out comparing
the OPS based CloverLeaf with the original hand-tuned version; Sect. 4 will
briefly detail related work in this area and compare them to our contributions
in this paper. Finally Sect. 5 notes future work and conclusions.

2 OPS

Previous work at the University of Oxford developed a high-level abstraction
framework called OP2 [6] targeting the domain of unstructured mesh based appli-
cations. With OP2 we demonstrated that both developer productivity as well as
near-optimal performance could be achieved on a wide range of parallel hard-
ware. Research published as a result of this work includes a number of perfor-
mance analysis studies on standard CFD benchmark applications [23] as well as
a full industrial-scale application from the production work-load at Rolls-Royce
plc. [28].

OPS (Oxford Parallel Library for Structured-mesh solvers) follows much of
the design of OP2, but targets the domain of multi-block structured applications.
Multi-block structured mesh applications can be viewed as an unstructured col-
lection of structured mesh blocks. As CloverLeaf is a single block-structured
mesh code, it only required OPS’s single block API to re-engineer the appli-
cation. The structured mesh domain is distinct from the unstructured mesh
applications domain due to the implicit connectivity between neighboring mesh
elements (such as vertices, cells) in structured meshes/grids. The key idea is
that operations involve looping over a “rectangular” multi-dimensional set of
grid points using one or more “stencils” to access data.

OPS is designed to appear as a classical software library with a domain
specific API. It then uses source-to-source translation techniques to parse the
API calls and generate different parallel implementations. These can then be
linked against the appropriate parallel library enabling execution on different
back-end hardware platforms. The aim is to generate highly optimized platform
specific code and link with equally efficient back-end libraries utilizing the best
low-level features of a target architecture. The next section briefly illustrates the
OPS API using examples from CloverLeaf.

2.1 The OPS API

The CloverLeaf mini-app involves the solution of the compressible Euler equa-
tions, which form a system of four partial differential equations. The equations are
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statements of the conservation of energy, density and momentum and are solved
using a finite volume method on a structured staggered grid. The cell centers hold
internal energy and density while nodes hold velocities. The solution involves an
explicit Lagrangian step using a predictor/corrector method to update the hydro-
dynamics, followed by an advective remap that uses a second order Van Leer up-
winding scheme. The advective remap step returns the grid to its original position.
The original application [8] is written in Fortran and operates on a 2D structured
mesh. It is of fixed size in both x and y dimensions.

OPS separates the specification of such a problem into four distinct parts:
(1) structured blocks, (2) data defined on blocks, (3) stencils defining how data
is accessed and (4) operations over blocks. Thus the first aspect of declaring such
a single-block structured mesh application with OPS is to define the size of the
regular mesh over which the computations will be carried out. In OPS vernacular
this is called an ops block. OPS declares a block with the ops decl block API
call by indicating the dimension of the block (2D in this case) and assigning it
a name for identification and runtime checks (see Fig. 1).

Fig. 1. OPS API example for declaring blocks, data and stencils

CloverLeaf works on a number of data arrays (or fields) which are defined on
the 2D structured mesh (e.g. density, energy, x and y velocity of particles). OPS
allows users to declare these using the ops decl dat API call; the density0,
energy0, ... pressure and volume are ops dats that are declared through this
API. A key idea is that once a field’s data is declared via ops decl dat the owner-
ship of the data is transfered from the user to OPS, where it is free to rearrange
the memory layout as is optimal for the final parallelization and execution hard-
ware. In contrast, each of the original CloverLeaf implementations explicitly
involve the allocation and management of memory specific to each parallel imple-
mentation at the application source level. In this example a NULL pointer of
type double is passed as an argument. CloverLeaf initializes these values later,
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as part of the application itself. When a NULL array is supplied, OPS will inter-
nally allocate the required amount of memory based on the type of the data
array and its size. On the other hand an array containing the relevant initial
data can be used in declaring an ops dat. In the future we will provide the
ability to read in data from HDF5 files directly using a ops decl dat hdf5 API
call. Note above in an ops decl dat call, a single double precision value per grid
element is declared. A vector of a number of values per grid element could also
be declared (e.g. a vector with three doubles per grid point to store x,y and z
velocities).

All the numerically intensive computations in the structured mesh applica-
tion can be described as operations over the block. Within an application code,
this corresponds to loops over a given block, accessing data through a stencil,
performing some calculations, then writing back (again through the stencils)
to the data arrays. A loop from the advec cell routine in CloverLeaf’s refer-
ence implementation [8] is detailed in Fig. 2, operating over each grid point in
the structured mesh. Note that here the data arrays are all declared as Fortran
allocatable 2D arrays. The loop operates in column major order.

Fig. 2. Original loop from advec cell kernel

An application developer declares this loop using the OPS API as illustrated
in Fig. 3 (lines 31–37), together with the “elemental” kernel function (lines 2–14).
The elemental function is called a “user kernel” in OPS to indicate that it repre-
sents a computation specified by the user (i.e. the domain scientist) to apply to
each element (i.e. grid point). User kernels are usually placed in a separate header
file, which gets included in the file declaring the ops par loop. By “outlining”
the user kernel in this fashion, OPS can factor out the declaration of the problem
from its parallel implementation. The macros OPS ACC0, OPS ACC1, OPS ACC2 etc.
will be resolved to the relevant array index to access the data stored in density0,
energy0, pressure etc.1 The explicit declaration of the stencil (lines 19–28) addi-
tionally will allow for error checking of the user code. In this case we use three
1 A similar approach is used in the C kernel implementations of the original CloverLeaf

application.
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Fig. 3. Loop from advec cell converted to use the OPS API

stencils, one consisting of a single point referring to the current element, the sec-
ond accessing the (1, 0) stencil and the third accessing the (0, 1) stencil. More
complicated stencils can be declared giving the relative position from the current
(0,0) element. The ops par loop declares the structured block to be iterated
over, its dimension, the iteration range and the ops dats involved in the compu-
tation. OPS READ indicates that density0 will be read only. The actual parallel
implementation of the loop is specific to the parallelization strategy involved. OPS
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is free to implement this with any optimizations necessary to obtain maximum
performance. The ops arg dat(..) in Fig. 3 indicates an argument to the paral-
lel loop that refers to an ops dat. A similar function ops arg gbl() enables users
to indicate global reductions.

2.2 Porting CloverLeaf to OPS

The original CloverLeaf 2D application written in Fortran 90 was converted to
the OPS API by manually extracting the user kernels, outlining them in header
files and converting the application to the OPS’s C/C++ API. All effort was
taken to keep the naming conventions of routines and files as similar to the
original as possible. After conversion, the OPS CloverLeaf version consists of
80 ops par loops spread across 16 files with about 7000 lines of code. This
application can be code generated to obtain a range of parallel implementations.
In comparison each of the original CloverLeaf implementations are self contained
separate parallel implementations, one for each of MPI+CUDA, MPI+OpenMP
etc. The original CloverLeaf reference implementation (i.e. the MPI+OpenMP
parallelization) consists of about 7000 lines of source code. The OPS back-end
library (implemented in C and C++) which currently supports parallelizing
with OpenMP, CUDA, OpenACC, OpenCL and MPI including common support
functions for all these parallelizations and other utility functions, plus the code
generation tools, in total consists of about 15000 lines of source code. However,
the important fact to note here is that the back-end libraries and code generation
tools are generic to be applicable to any application developed with the OPS
API, not just CloverLeaf.

Once converted to the OPS API, an application can be validated as a single
threaded implementation, simply by including the header file ops seq.h and
linking with OPS’s sequential back-end library. The header file and the library
implement API calls for a single threaded CPU and can be compiled and linked
using conventional (platform specific) compilers (e.g. gcc, icc) and executed as
a serial application.

The serial developer version allows for the application’s scientific results to
be inspected before code generation takes place. It also validates the OPS API
calls and provides feedback on any errors, such as differences between declared
stencils and the corresponding user kernels or differences between data types.
All such feedback is intended to reduce the complexity of programming and ease
debugging. There is opportunity at this stage to add further checks and tests
to increase developer productivity, for example report cases where the iteration
range of a loop written by a developer attempts to access elements beyond the
number of grid points in any dimension of an ops dat. Including the developer
header file and linking with OPS’s distributed memory (MPI) back-end libraries
can also be used to obtain a low performance MPI parallelization of the appli-
cation for testing purposes. The full CloverLeaf developer version can be found
under the OPS git-hub repository [10].

The manual conversion of the original application to the OPS API required
no more effort than what is typically required by a developer proficient in a given
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Fig. 4. OPS code generation and build process

parallel computing model (OpenMP, CUDA etc.) for directly porting to a differ-
ent parallel implementation. However once converted, the use of OPS to generate
different parallelizations of the application was trivial. Therefore we believe that
the conversion is an acceptable one-off cost for legacy applications attempting to
utilize the benefits of high level frameworks such as DSLs or Active Libraries. As
we will show in this paper, the advantages of such frameworks far outweigh the
costs, by significantly improving the maintainability of the application source,
while making it possible to also gain near optimal performance and performance
portability across a wide range of hardware.

Once the application developer is satisfied with the validity of the results pro-
duced by the sequential application, parallel code can be generated. The build
process to obtain a parallel executable as illustrated in Fig. 4 follows that of OP2’s
code generation process [23]. The API calls in the application are parsed by the
OPS source-to-source translator which will produce a modified main program and
back-end specific code. These are then compiled using a conventional compiler
(e.g. gcc, icc, nvcc) and linked against platform specific OPS back-end libraries
to generate the final executable. As mentioned before, there is the option to read
in the mesh data at runtime. The source-to-source code translator is written in
Python and only needs to recognize OPS API calls; it does not need to parse the
rest of the code. We have deliberately chosen to use Python and a simple source-
to-source translation strategy to significantly simplify the complexity of the code
generation tools and to ensure that the software technologies on which it is based
have long-term support. The use of Python makes the code generator easily mod-
ifiable allowing for it to even be maintained internally within an organization.
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Furthermore, the code generated through OPS is itself human readable which
helps with maintenance and development of new optimizations.

OPS currently supports parallel code generation for execution on (1) single
threaded vectorized CPUs, (2) multi-threaded CPUs/SMPs using OpenMP, (3)
NVIDIA GPUs using CUDA and OpenACC, (4) OpenCL devices such as AMD
GPUs, the Intel XeonPhi, etc. (5) distributed memory clusters of single threaded
CPUs using MPI (6) a cluster of multi-threaded CPUs using MPI and OpenMP
and (7) a cluster of GPUs using MPI and CUDA. A more complete discussion
of the code generation and optimizations for the multi-core CPU, NVIDIA GPU
and MPI parallelizations is given in [10]. In the next section we delve directly
into the performance of each of these generated versions.

3 Performance

In this section, we present quantitative results exploring the performance porta-
bility and scaling of CloverLeaf developed with OPS and compare it to the perfor-
mance of the various original implementations. Tables 1 and 2 provide details of
the hardware and software specifications of the benchmark systems. The first two
systems, Broomway and K20 are single node systems which we use to benchmark
the multi-threaded CPU and GPU performance respectively. The third system is
the UK national supercomputing resource – Archer [7] which we use to benchmark
OPS’s distributed memory performance. The final system is Titan [11], the large
scale K20x GPU based Cray XK7 system at ORNL. To be consistent with the

Table 1. Single node benchmark systems

System Broomway K20

Node architecture 2 × 8-core Intel NVIDIA Tesla

Xeon E5-2680 2.70 GHz K20c

(Sandy bridge)

Memory per node 64GB 5 GB/GPU (ECC off)

OS Red Hat Red Hat

Enterprise Enterprise

Linux 6 Linux 6.4

Compilers and flags Intel CC 14.0.0 CUDA 6.0 IEEE FLAGSa

Intel MPI 4.1.3 -gencode arch=compute 35,

-O3 IEEE FLAGSa code=sm 35 -O3

NVIDIA OpenCL

PGI compiler

14.2 (for OpenACC)
aOn Intel compilers, IEEE FLAGS=-ipo -fp-model strict -fp-model source -prec-
div -prec-sqrt
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Table 2. Distributed memory benchmark systems

System Archer Titan

Node architecture 2 × 12-core Intel 16-core AMD

Xeon E5-2697 2.70 GHz Opteron 6274

(Ivy Bridge) + NVIDIA K20X

Memory per node 64 GB 32GB +

6GB/GPU (ECC on)

Interconnect Cray Aries Cray Gemini

OS CLE CLE

Compilers and Cray C Compilers 8.2.1 Cray C Compilers 8.2.2

flags cray-mpich/6.1.1 -cray-mpich/6.3.0

-O3 -Kieee -O3 -hgnu -O3 -arch=sm 35

PGI Compiler 13.10-0

compiler flags recommended for gaining accurate results from the original Clover-
Leaf application, we enforce IEEE floating-point mathematics compliance on each
compiler and benchmark2

On the single node systems we present the total runtime of the hydro loop
of CloverLeaf for the 960× 960 (clover bm.in) and 3840× 3840 (clover bm16
short.in) mesh input decks. Figures 5 and 6 present times taken by the main
hydro iteration loop to solve these problems. The MPI and OpenMP results are
from the dual socket Intel CPUs on Broomway while the CUDA and OpenACC
results are from the NVIDIA K20c GPU. We also ran the OpenCL version of
the application on both the CPU and GPU. To reduce the NUMA effects on
performance, both the original and OPS OpenMP versions were executed with
the KMP AFINITY environmental variable set to compact. We found that this
gave the best performance on this two socket CPU node. Additionally, the MPI
processes were bound to a specific core using the numactl command at runtime,
again to reduce NUMA issues on the two socket CPU node.

We see that on the Intel CPU node for both problems with the exception of the
OpenMP only parallelization, the OPS version executes within 10 % of the original
implementation’s runtime. The OPS’s OpenMP parallelization gives better per-
formance. We believe that this is due to OPS explicitly partitioning the iteration
space and allocating them to be computed by the availableOpenMPthreads. In the
original version allocating work to threads is handled automatically by OpenMP.
The best runtime for the 960×960 mesh is achieved using OPS’s pure MPI version,
which is about 3 % faster than the best runtime achieved with the original MPI ver-
sion. The OpenCL runtime on the CPUs are about 30 % worse than the OpenMP
versions, however OPS matches the runtime of the original CloverLeaf OpenCL
version. The poor OpenCL performance on the CPU may be due to NUMA effects
2 On Intel compilers, IEEE FLAGS=-ipo -fp-model strict -fp-model source -prec-div

-prec-sqrt.
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Fig. 5. CloverLeaf performance - 960 × 960 mesh (≈2955 iterations)

as the OpenCL runtime does not yet have facilities for explicitly placing and bind-
ing threads to cores. A further reason could be poorer vectorization from OpenCL
compared to vectorization achieved with SIMD pragmas using the Intel compiler.
On the NVIDIA K20c GPU with CUDA, OpenCL and OpenACC all application
versions perform approximately the same. The CUDA version gives a speedup of
3× over the best runtime on the two socket Intel CPU node.

The code generated with OPS additionally consists of profiling instrumen-
tation for capturing ops par loop execution times and achieved bandwidths.
This information, together with details of approximate number of double preci-
sion floating-point operations executed per ops par loop (gathered through a
profiler) enables us to compute the achieved floating-point operation rates and
memory bandwidths. Table 3 details this achieved performance per single node
on the CPU and GPU systems for each of the related parallelizations. Only the
results for the most time consuming routines are given in the table. As a com-
parison we note the achieved DGEMM (double precision generic matrix-matrix
multiply [15]) floating point operation rate on both the CPU and GPU, the
STREAM [22] memory bandwidth achieved on the CPU node, and the resulting
bandwidth from NVIDIA’s bandwidthTest [2] benchmark. The peak achievable
performance (Number of Cores×Average frequency ×Operations per cycle for
Intel CPUs and for NVIDIA K20c GPU [3]), for each platform is also presented.
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Fig. 6. CloverLeaf performance - 3840 × 3840 mesh (≈87 iterations)

On the two socket Intel CPU node, Broomway, we see that some loops achieve
over 80 % of the STREAM memory bandwidth (with MPI). However, only a
small fraction out of the 304 GFlops/s DGEMM floating-point operation rate is
achieved. On the K20c GPU, the achieved fraction of peak bandwidth is even
higher, with loops in flux calc obtaining 155.27 GB/s (with CUDA), which is
over 90 % of the bandwidth achieved with the bandwidthTest benchmark. Again,
the achieved floating-point rate is significantly smaller compared to the GPU’s
theoretical and practical peak rates. Thus we can say that the CloverLeaf appli-
cation is much more bandwidth limited, than compute limited. OpenCL paral-
lelization on the CPU performs considerably less well than MPI and OpenMP.
However on the K20c GPU, OpenCL was as good as the CUDA implementation.

Next, we benchmark the scaling performance of the distributed memory par-
allelization, on two large-scale clusters. The first is on Archer, a Cray XC30, on
which we benchmark CloverLeaf’s pure MPI performance. Figure 7 details the
results from this system for both strong scaling and weak scaling on up to 1024
nodes (12,288 cores). The strong scaling mesh consists of 153602 (≈230 million)
grid points, while for weak scaling a mesh size of 38402 is assigned per socket
of a node (i.e. for the 2 socket Archer node a mesh of 2 × 38402 is assigned per
node). We see that again, OPS CloverLeaf version’s runtime at increasing scale
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Table 3. Single node performance - 960 × 960 mesh (≈2955 iterations)

matches that of the original MPI version to within less than 10 %. This is true
for both configurations. A closer look at the compute time vs communications
time reveals that for both strong and weak scaling the time spent in communica-
tions, including message set up costs and time to communicate messages is less
than 10 % of the total run time for any execution on Archer. Profiling the num-
ber of MPI messages sent/received in both OPS and original Cloverleaf versions
reveals that OPS performs 4× more MPI messages than the original version.
This is due to the finer granularity of each ops par loop, each of which only
sends MPI messages for data sets belonging to it. In contrast the original version
only does halo exchanges in the update halo routine, aggregating all the MPI
messages that need to be sent/received for all subsequent loops. In other words,
OPS communicates messages as and when required (i.e. on demand) which only
enables a much smaller number of halos to be aggregated.

Figure 8 presents the benchmarking results from Titan. One node in Titan
contains one NVIDIA K20x GPU, thus we have allocated one MPI process per
node when executing the MPI+CUDA parallelizations. The figure also plots the
run times gained on this system with the MPI only parallelization. In this case,
we have allocated 8 MPI processes per node, the reason being that on Titan,
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Fig. 7. CloverLeaf scaling performance on Archer (≈87 iterations)

there is only one AMD Interlagos CPU consisting of 16 cores, where two cores
share one floating point operation unit (FPU). For the weak scaling runs the
mesh size allocated per Titan node is 3840 × 3840 as there is only one CPU
socket per node on Titan.

The OPS MPI+CUDA results again match the original CloverLeaf applica-
tion’s hand tuned MPI+CUDA version and demonstrates that the HLA app-
roach to OPS’s development has not resulted in any performance degradation.
However, comparing OPS’s MPI only version to that of the original, OPS loses
about 30 % performance at 8 K nodes. We believe that the reason is due to OPS’s
on-demand MPI messaging strategy which at the very large scale results in sig-
nificantly larger number of messages. The latency of these messages dominates
the runtime due to the very low amount of compute performed on each MPI
process. Currently we are exploring further message aggregation strategies for
improving performance of OPS to resolve this issue.
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Fig. 8. CloverLeaf scaling performance on Titan (≈87 iterations) - 1 MPI process per
node for MPI+CUDA, 8 MPI processes per node for pure MPI

The MPI only version strong-scales better than the MPI+CUDA version,
where beyond 2 K nodes on Titan, MPI+CUDA does not give any additional
speedups. We believe that this is almost certainly due to the cost of the PCIe
latencies dominating the computation of the small problems at the higher node
sizes. Even using NVIDIA’s GPU direct, which can be utilized with OPS for
MPI+CUDA applications did not give any notable benefits. The MPI-only ver-
sions do not suffer from this issue. However MPI+CUDA achieves a higher
speedup (up to 8×) at very low node counts, which then subsequently diminishes
at scale. With weak scaling this 8× speedup is maintained at increasing scale.
Additionally, at the higher node scales, the same performance loss experienced
with OPS when strong-scaling does not occur with weak-scaling. We believe
that in this case, the amount of computation carried out per MPI process is
large enough to hide the MPI message latencies.
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4 Related Work

Several similar research projects have shown the significant benefits of utilizing
high-level frameworks such as domain specific languages (DSLs) or active libraries.
These include Firedrake [1], FENiCS [25] and Liszt [14], OP2 [6] for unstructured
mesh applications and Paraiso [24], Ypnos [26], Pochoir [30] and SBLOCK [12] for
explicit stencil based applications (structured mesh applications).

Ypnos [26] is a functional, declarative domain specific language, embedded
in Haskell and extends it for parallel structured grid programming. The lan-
guage introduces a number of domain specific abstract structures, such as grids
(representing the discrete space over which computations are carried out), grid
patterns (stencils) etc. in to Haskell, allowing different back-end implementa-
tions, such as C with MPI or CUDA. Similarly, Paraiso [24] is a domain-specific
language embedded in Haskell, for the automated tuning of explicit solvers of
partial differential equations (PDEs) on GPUs, and multi-core CPUs. It uses
algebraic concepts such as tensors, hydrodynamic properties, interpolation meth-
ods and other building blocks in describing the PDE solving algorithms. In con-
trast SBLOCK [12] uses extensive automatic source code generation very much
similar to the approach taken by OP2 and OPS, and expresses computations as
kernels applied to elements of a set.

Pochoir [30] is a compiler and runtime system for implementing stencil com-
putations on multi-core processors. The main aim of the project is to generate
cache efficient multi-threaded CPU code for structured mesh (i.e. stencil) com-
putations. The OPS project also aims to implement cache efficient, “tiling” algo-
rithms through lazy-execution techniques in the future. The work presented in this
paper is created from static source-to-source translation techniques to investigate
the performance of the resulting code that we believe will be improved via tiling.

Liszt [14] from Stanford University implements a domain specific language
(embedded in Scala [4]) for the solution of unstructured mesh based partial dif-
ferential equations (PDEs). A Liszt application is translated to an intermediate
representation which is then compiled by the Liszt compiler to generate native
code for multiple platforms. The aim, as with OP2, is to exploit information about
the structure of data and the nature of the algorithms in the code and to apply
aggressive and platform specific optimizations. Performance results from a range
of systems (a single GPU, a multi-core CPU, and an MPI based cluster) executing
a number of applications written using Liszt have been presented in [14].

The FEniCS [25] project defines a high-level language, UFL, for the specifi-
cation of finite element algorithms. The FEniCS abstraction allows the user to
express the problem in terms of differential equations, leaving the details of the
implementation to a lower level library. Although well established finite element
methods could be supported by such a declarative abstraction, it lacks the flexibil-
ity offered by frameworks such as OP2 for developing new applications/algorithms.
Currently, a runtime code generation, compilation and execution framework that
is based on Python, called PyOP2 [27], and a larger framework that supports
finite element application development called Firedrake [1,21] is being developed
at Imperial College London.
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Another related project of note is Delite [29] a compiler framework and run-
time for developing parallel embedded domain-specific languages (DSLs) where
the aim is to enable the rapid construction DSLs for a given domain.

5 Conclusions

In this paper, we explored the performance of a Hydrodynamics mini-app called
CloverLeaf, after re-engineering it to use the OPS domain specific high-level
abstractions framework. OPS provides an API for developing multi-block struc-
tured mesh applications and uses code generation techniques to translate an
application to a range of parallel implementations.

The OPS based CloverLeaf’s performance was compared to that of the various
original hand-tuned versions on a number of single-node multi-core/many-core
platforms and distributed memory cluster systems. OPS based CloverLeaf’s per-
formance on single node systems matched the original versions to within 10 % for
most parallelizations and sometimes out-performed it by up to about 20 %. The
achieved memory bandwidth on single node systems showed that the OPS imple-
mentations achieve over 80 % of the practical peak bandwidth of each system for
some parallel loops. However only a small fraction of the peak floating-point rates
are reached on all single node systems. This points to the fact that CloverLeaf is
much more constrained by bandwidth than the compute capability of a system.
Distributed memory parallelizations on both the Archer (Cray XC30) and Titan
(Cray XK7) systems showed excellent scalability, matching that of the original
application on both strong- and weak-scaling configurations. However we found
that OPS’s MPI implementation exchanges about 4× more shorter messages than
that of the original. Further MPI message aggregation strategies for OPS are cur-
rently being explored to improve strong-scaling performance.

Nevertheless, our experience clearly shows that the development of parallel
HPC applications through the careful factorization of a parallel program’s func-
tionality and implementation, using a high-level framework such as OPS, is no
more time consuming nor difficult than writing a one-off parallel program tar-
geting only a single parallel implementation. However the OPS strategy pays off
with a highly maintainable single application source without compromising per-
formance portability on parallel systems on which it will be executed. It also lays
the groundwork for providing support for execution on future parallel systems.
We believe such an approach will be an essential paradigm shift for utilizing the
ever-increasing complexity of novel hardware and software technologies.
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Abstract. Carefully crafted performance characterization can provide
significant insight into application performance and can be beneficial to
computer designers, compiler and application developers, and end users.
To achieve all the benefits of performance characterization, the charac-
terization must incorporate a comprehensive set of characteristics that
affect performance and can be measured with minimal perturbation from
the underlying micro-architecture. To this end, we advocate the use of
application-dependent characteristics that allow general conclusions to
be drawn about the application itself rather than its observed perfor-
mance on a specific architecture. In our prior work [7], we introduced
a set of application-dependent characteristics and showed that they are
consistent across architectures. In this work, we present an efficient char-
acterization methodology that incorporates a more comprehensive set
of application-dependent characteristics. We also explain in detail how
these characteristics can be used to reason about and gain insight into
application performance. Finally, we report characterization results on
SPEC MPI2007 and Mantevo benchmarks. To our knowledge, this is the
first work to present application-dependent characterization results for
SPEC MPI2007 and some of the new Mantevo benchmarks.

1 Introduction

If carefully crafted, application performance characterization can provide valu-
able insight into performance and significant benefits to a wide range of users
from hardware designers to application developers and end users. Architecture
designers can use application performance characterization to quickly define
an optimal initial baseline architecture for a given application or workload.
Performance characterization also helps reveal code optimization opportunities
for application developers and aids end-users in selecting the platform(s) that
result in optimal performance. Furthermore, application benchmark developers
use characterization to choose benchmarks that are representative of a particu-
lar domain and/or to compare benchmarks and determine their (dis)similarity.
Finally, performance characterization can be used to provide insight into why
an application performs the way it does on a particular architecture.
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 107–128, 2015.
DOI: 10.1007/978-3-319-17248-4 6
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To achieve these and other benefits of performance characterization, the
characterization must incorporate a comprehensive set of characteristics that
affect performance and the measurements must be done in a micro-architecture-
independent fashion. By using a comprehensive set of important performance
characteristics, a more complete picture of application performance can be drawn.
Therefore, in this work, we present and advocate the use of application-dependent
(i.e., micro-architecture-independent) characteristics that allow general conclu-
sions to be drawn about the application itself rather than its observed performa-
nce on a specific architecture. In other words, because they are the characteristics
of the application that realize the observed performance, application-dependent
characteristics help us understand the fundamental cause of the observed per-
formance on a specific architecture.

In our prior work [7], we introduced a set of application-dependent charac-
teristics and showed that they are consistent across architectures. In this work,
we present an efficient characterization methodology that incorporates a more
comprehensive set of application-dependent characteristics including spatial and
temporal locality, memory usage and memory footprint, branch predictability,
instruction mix, as well as characteristics related to ILP (instruction-level par-
allelism). To allow these characteristics to be measured quickly and in a micro-
architecture independent manner, we define all characteristics such that they are
easily obtainable using dynamic binary instrumentation (DBI). By using only
DBI, our methodology does not depend on slow (possibly inaccurate) simulators
and is, therefore, faster.

Although the idea of micro-architecture-independent characteristics has been
explored in prior studies, the methodology and metrics presented in this paper
are defined and used differently as illustrated below and in Sect. 5. Further, the
set of measured characteristics (metrics) defined is more comprehensive than
prior studies [12–14,20] and includes new metrics.

Workload characterization has been primarily used to understand the behav-
ior of applications on specific platforms and to understand the similarity of
benchmarks within or across benchmark suites. In this work, we define a char-
acterization method that can be applied in a wider context. In particular, we
show how to use the results of application-dependent characterization to

– reason about and gain insight into application performance
– intuitively understand how performance characteristics map to machine char-

acteristics
– aid in benchmark comparison and/or selection.

Additional contributions of this work include (1) a comprehensive set of
application-dependent metrics that includes new performance metrics, and
(2) detailed performance characterization data for benchmarks that have not
been characterized before as well as others that have only been lightly studied.

2 Methodology and Characteristics

In this section, we present our application-dependent performance characteristics
and metrics and show how they can be used to gain insight into application perfor-
mance. Our aim is to define a minimum number of characteristics that maximally
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capture an application’s unique and diverse behavior. We also briefly describe how
to use characterization results to compare applications or to select benchmarks for
a particular study. The application-dependent characteristics are classified into
general and memory characteristics as described below.

2.1 General Characteristics

Dynamic Instruction Mix
The dynamic instruction mix provides information about the types and ratios
of instructions executed by an application and can be used to gain a high-level
understanding of what the application needs in terms of the type of execution
units. To support CISC (e.g., x86) instructions that perform multiple operations,
we decompose each instruction into its single operations (ops) such as add, load,
or store ops. All the operations performed by a program are then grouped into
the following five categories: (1) Loads, (2) Stores, (3) FP Ops, (4) Int Ops,
and (5) Branches. These categories are chosen to correspond to the different
execution units that may be implemented in a micro-architecture. Additionally,
for each category, we capture a frequency distribution of the distance separating
two same-type ops measured in number of instructions. Such a distribution helps
us understand how particular execution units are stressed. For example, having
multiple FP execution units can improve performance if FP ops occur in bursts
(i.e., one after another). The distance distributions contain 513 distances or
bins that start from zero to a maximum distance of 511, with the last entry
representing distances larger than or equal to 512. Figure 1a shows an example
distribution of the distances between load ops for the 104.milc benchmark. The
figure shows that load op pairs that follow each other (i.e., distance of 1) represent
approximately 18 % of the total loads in the benchmark.

Instruction Dependence
We characterize the dependence between instructions using the register depen-
dence distance, which is the distance measured in number of dynamic instruc-
tions between the instruction writing or producing a specific register and the
instruction reading or consuming it. For each application, we capture a frequency
distribution of register dependence distances. This characteristic is indicative
of the amount of ILP (Instruction-Level Parallelism) inherently present in the
application and indicates whether the application can utilize increased proces-
sor issue width, more in-flight instructions (i.e., larger window), or more exe-
cution units. For example, if an application exhibits tight register dependence
distances, the opportunities to execute multiple instructions in parallel become
limited, which in turn leads to decreased performance. In contrast, an applica-
tion with long dependence distances will perform better on wide-issue processors.
Figure 1b shows the register dependence distance distribution for the CloverLeaf
benchmark. The figure shows that CloverLeaf has tight dependence distances;
a register is written and then read by the same instruction (i.e., distance of 0)
32 % of the time while a register is written and read by the next instruction (i.e.,
distance of 1) about 20 % of the time.
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Conditional Branch Predictability
Conditional branch predictability is measured for a given application using a met-
ric called branch transition rate [11]. Branch transition rate measures how often a
branch switches direction between taken and not taken during execution. Branches
are easily predictable if they do not change direction often or if they switch direc-
tion most of the time. Branches that have a transition rate of around 50 % are the
most difficult to predict. We classify branches into 11 groups (0–10) based on their
transition rates: 0–5 %, 5–10 %, 10–15 %, 15–20 %, 20–30 %, 30–70 %, 70–80 %,
80–85 %, 85–90 %, 90–95 %, and 95–100 %. Class 0 corresponds to the percentage
of branches that transition 0–5 % of the time; class 1 corresponds to the percentage
of branches that transition 5–10 % of the time and so on.

An application that has mostly class 0 or class 10 branches requires only a
simple branch predictor and will likely experience a low misprediction rate. In
contrast, an application characterized by primarily class 5 branches requires a
more sophisticated predictor and will more likely have a higher misprediction
rate. Figure 1c shows the percentage of branches in each branch transition rate
class for the miniMD and 104.milc benchmarks. MiniMD has a high percentage
of hard-to-predict branches (Classes 4 and 5) while 104.milc has mostly easy-to-
predict branches (Class 0). Therefore, miniMD is likely to have a higher branch
misprediction rate than 104.milc (see Sect. 4).

Fig. 1. Example general characteristics

Computational Intensity
Computational intensity is the ratio of floating-point operations to memory
accesses and is a commonly used characteristic for floating-point scientific appli-
cations. Computational intensity is an indirect measure of data movement.
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Because moving a piece of data is typically much slower than doing an operation
on it, application and algorithm developers strive to achieve higher computa-
tional intensities. Reducing data movement also reduces energy.

Average Instruction Size
The average size (in bytes) of instructions executed by an application can aid in
understanding how an application utilizes a given fetch width and whether a wider
fetch width is needed. This is particularly useful for CISC (e.g., x86) instructions
that vary in size, affecting both the fetch and decode stages of a processor pipeline.
To achieve optimal performance, the block of bytes (code) fetched on every cycle
must at a minimum contain a number of instructions equal to the processor width
(i.e., dispatch and commit width). We measure a distribution of instruction sizes
from which we calculate the average size.

Average Basic Block Size
A basic block is a single-entry, single-exit sequence of code. Measured in number
of instructions, basic block sizes are indicative of the amount of ILP available to
exploit which, in turn, informs fetch width and is correlated to branch frequency.
Since taken branches typically cause what is called a fetch bubble in a processor
pipeline, an application with small basic blocks (i.e., high rate of branches) may
experience frequent fetch bubbles and thus experience a decreased fetch rate. We
measure a frequency distribution of the dynamic basic block sizes and calculate
the average.

2.2 Memory Characteristics

Due to the dominance of the memory system in affecting performance, under-
standing the inherent memory characteristics of an application is key to under-
standing its performance. To this end, we define a comprehensive set of memory
characteristics and metrics as described below.

Data Working Set Size
The working set size determines the memory size required for an application
and it is defined as the total number of unique memory bytes touched by the
application during its execution. The working set size (or data intensiveness)
helps us understand the memory demands of an application and has been found
to be the biggest differentiator between real applications and benchmarks [18].

Timeline of Memory Usage
This performance metric captures the size of new memory used by an application
as its execution progresses in time. Starting from the beginning of execution and
for every interval of one billion instructions, we track and record the total number
of new and unique memory bytes touched by the application. Besides knowing the
periods of execution at which the application accesses new memory, the memory
usage timeline may be used to identify phases of execution. It has been shown
in [15] that the working set captured for execution intervals can be an effective
phase detection method.
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Figure 2 shows an example timeline for the HPCCG benchmark. The y-axis
shows the size of new memory used as a percentage of the benchmark’s total
working set size, and the x-axis represents execution progress. As illustrated in
the figure, the entire working set size of the HPCCG benchmark is accessed
within the first 4 % of execution; 58 %, 36 %, and 6 % of the working set size is
accessed in the first, second, and forth percent of execution, respectively. This
also suggests that after 4 % of execution elapses, HPCCG goes into a single
execution phase for the remainder of execution. Note that it may well be that
an application initializes all of its data structures (i.e. accesses all its memory)
at the beginning of execution. In such a case, the memory usage timeline can
not provide useful information about execution phases (see Sect. 6).

Fig. 2. Memory usage timeline for HPCCG

Average Requested Memory Size
This metric measures the average number of bytes read/written per memory
operation, indicating the average data size used by the application. This can
be useful when used with computational intensity to determine, on average, the
amount of data being moved per floating-point operation. Note that depending
on their types, memory instructions can read/write a widely varying number of
memory bytes. Therefore, knowing the number of memory operations must be
complemented by knowing the number of bytes those operations read or write.

Temporal and Spatial Locality
To mitigate the high latency of accessing memory, modern micro-architectures
feature small and fast cache memories that hold frequently-accessed data closer
to the processor. All caches work by exploiting the locality of reference exhibited
(to varying extents) by all applications. There are two types of locality: temporal
locality which is the reuse over time of a data item from memory, and spatial
locality which is the use of data items in memory near other recently used items.
By carefully analyzing an application’s temporal and spatial locality, not only
can we understand how effectively the application utilizes a given cache orga-
nization, but we can also reason about the optimal cache configuration for the
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application. Our approach to achieving this goal starts by capturing a frequency
distribution of the application’s memory-reuse distances.

A memory-reuse distance (MRD) is defined as the distance measured in num-
ber of unique memory blocks accessed between two accesses to the same block.
In all of our experiments, the maximum tracked MRD is 32 MB, which corre-
sponds to a cache size of 32 MB. Using 16-byte, 32-byte, 64-byte, and 128-byte
memory block sizes, we capture one MRD distribution for each block size. Note
that these block sizes correspond to four potential cache line sizes. Since higher
levels of cache typically store either data or instructions while lower levels of
cache store both, we capture separate MRD distributions for data references,
instruction references, and unified (both data and instruction) references.

We now illustrate how MRD distributions are used to characterize an appli-
cation’s spatial and temporal locality. Note that the conclusions drawn from the
examples below are only a small sample of the conclusions that can be drawn
from the data. Figure 3a shows a portion of the unified MRD distribution for
the HPCCG benchmark. The x-axis represents the distance in number of unique
64-byte block accesses between two accesses to the same 64-byte block, and the
y-axis represents the percentage of the total memory references.

The goal of characterizing an application’s spatial locality is to help us under-
stand how effectively and quickly the application consumes the data available to it
in a cache block. To achieve this and at the same time visualize spatial locality, we
plot the points from the MRD distribution that correspond to short memory-reuse
distances; zero through 64 (Fig. 3b). In other words, we determine the percentage
of memory references that reuse data from the same block (line) after n accesses to
other blocks, where n = {0, 1, 2, 4, 8, 16, 32, 64}. Other studies [12–14,20] capture
spatial locality only for a distance of zero by considering only successive references.
We believe that using a window of n references intuitively provides more accurate
spatial locality information but is computationally more complex.

As shown in Fig. 3b, about 42 % of the references in HPCCG immediately
reuse the same line (i.e., distance of 0), and around 34 % of references reuse the
same line after one access to a different line (i.e., distance of 1). Figure 3d illus-
trates how HPCCG ’s spatial locality changes over different block sizes. Within
the maximum distance of 64 line accesses, 91 %, 96 %, 98 %, and 99 % of refer-
ences are spatially local using 16-, 32-, 64-, and 128-byte blocks, respectively.
Note that in an n-way set-associative cache, there is a possibility that the inter-
mediate block accesses are to the same set (see discussion below), which may
cause a block to be evicted by the time it is referenced again. Thus, it may be
more accurate to look at spatial locality for short distances (e.g., 2, 4, and 8)
that correspond to the cache associativity of interest. For example, Fig. 3d shows
that the percentage of references spatially local within a distance of 2 is 70 %,
89 %, and 93 % for block sizes of 16, 32, and 64 bytes, respectively. As also seen in
Fig. 3d, HPCCG ’s spatial locality improves only slightly by increasing the block
size from 64 to 128 bytes. From this, we can conclude that the optimal cache line
size for exploiting HPCCG ’s spatial locality is 64 bytes.

To visualize temporal locality, the distances on the x-axis of the MRD distri-
bution are grouped into bins that correspond to potential cache sizes. The first



114 W. Alkohlani et al.

Fig. 3. Temporal and spatial locality examples

four distance bins are set to 0, 4, 8, and 64 times the line size. The rest of the bins
go from 32 KB up to 32 MB, doubling each time. Figure 3c shows the temporal
locality plot for HPCCG based on 64-byte blocks and unified references.

The figure shows that 95 %, 97 %, and 98 % of references are temporal within
the distances of 256 B, 512 B, and 1 KB, respectively. This implies that a 1 KB
cache is large enough to keep 98 % of references temporally local within the cache.
Figure 3d shows how HPCCG ’s temporal locality changes over different cache line
sizes. For example, the percentage of references that are temporal within 1 KB is
91 %, 96 %, 98 %, and 99 % for 16-, 32-, 64-, and 128-byte blocks, respectively.

The above temporal and spatial locality analysis assumes that the target cache
is fully associative. However, in an n-way set associative cache, the block accesses
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that occur between two accesses to the same block can be to the same set, which
may cause a block to be evicted by the time it is re-accessed. For caches with a high
degree of associativity, which are typical of lower-level caches and closely approx-
imate fully-associative caches, our above analysis is valid and is confirmed using
actual measurements (see Sect. 4). However, for low associative caches, it is impor-
tant to look at the access patterns of cache sets. To this end, we capture a fre-
quency distribution of the set-reuse distances, where a set-reuse distance (SRD)
is the number of sets accessed between two accesses to the same set. To capture
the SRD distribution, assumptions must be made about the size of the cache, the
size of a cache line, and the number of ways in a cache set. In all our experiments,
the cache size is assumed to be 32 MB. We use four cache line sizes (16, 32, 64, and
128 bytes) and four associativities (2, 4, 8, and 16 ways). One SRD distribution is
captured for every unique combination of line sizes and number of ways.

Fig. 4. Set-reuse distances for HPCCG

Figure 4a shows a portion of the SRD distribution for HPCCG. In capturing
this distribution, the 32 MB cache is assumed to be 8-way set associative with
64-byte lines. As shown in Fig. 4a, about 40 % of references re-access the same
set after accessing eight other sets (i.e., distance of 8). It can also be seen that
around 67 % of references have a set-reuse distance of less than or equal to 10.
This suggests that a set is frequently re-accessed within a short period of time.
This may lead to more conflict misses provided that a low-associative cache is
used and that the MRD distribution shows a high ratio of references with long
MRDs compared to SRDs. That is, different blocks within a set are frequently
accessed within a short period of time, which increases the likelihood of conflict
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misses. In Fig. 4b, we group the set-reuse distances into bins that represent
distances as a percentage of the total sets in the 32 MB cache. As illustrated in
the figure, around 85 %, 90 %, and 99 % of total references re-access the same
set after 1 %, 5 %, and 20 %, respectively, of sets are accessed.

2.3 Selection and Comparison of Benchmarks

In addition to gaining insight into performance and reasoning about hardware
resources optimal for performance, the application-dependent characteristics des-
cribed above can also be used to select an appropriate set of benchmarks for a par-
ticular study or to determine the (dis)similarity among benchmarks. For example,
if one is interested in studying branch behavior or evaluating branch predictors,
they need to choose benchmarks with diverse branch predictability characteris-
tics. On the other hand, if evaluating memory system configurations or studying
memory behavior is of interest, the benchmarks with the most diverse memory
characteristics should be considered.

To compare benchmarks, the metrics used to measure the application-
dependent characteristics for each benchmark can be grouped into a vector that
can be called the performance vector. For example, the percentage of each of the
five categories in the instruction mix and the percentage of references in each bin
of the memory-reuse distance distribution can be included in the performance vec-
tor. The performance vectors of different benchmarks can then be normalized and
compared using a simple distance measure.

3 Experimental Setup

In this section, we briefly describe the platforms and tools used to capture the
application-dependent characteristics described in Sect. 2 as well as the bench-
marks used in this study.

Platforms
All of our experiments are conducted on a Dell cluster that includes eight nodes,
each of which runs the Scientific Linux (version 6.3) operating system [4] and
has 48 GB of available RAM. Each node contains two six-core Intel Xeon X5670
processors that are clocked at 2.93 GHz. While all the cores share a 12 MB 16-
way L3 cache, each core has a 32 KB 4-way L1 instruction cache, a 32 KB 8-way
L1 data cache, and 256 KB 8-way L2 unified cache. A cache line is 64 bytes in all
the levels of cache. Each of the Intel Xeon X5670 processor cores implements the
Westmere-EP micro-architecture which features: (1) a 4-way superscalar out-of-
order execution pipeline, (2) a 128-entry re-order buffer, and (3) three integer,
three floating-point, and four address generation units.

Tools
We capture the application-dependent characteristics described in Sect. 2 using
dynamic binary instrumentation (DBI) tools that we developed in-house using
Pin [17]. The slowdown caused by DBI depends on the type of analysis performed
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and the number of dynamic instructions instrumented. However, DBI is still
orders of magnitude faster than simulation and there exist techniques such as
sampling to effectively speed up the execution of instrumented binaries.

Capturing the memory-reuse and set-reuse distance distributions (see Sect. 2)
is nontrivial and can cause extreme slowdowns. To capture these reuse distances,
a FIFO(First-In-First-Out) queue is typically used to hold memory references
and for every new reference encountered during execution, the queue is searched
for a prior occurrence of the reference to determine a reuse distance. We imple-
ment three optimization methods to speed up our DBI tool. First, we limit the
size of the FIFO queue by restricting the maximum reuse distance to 32 MB
which is sufficient to study the behavior of most modern caches. Second, we
implement the FIFO queue using a balanced binary tree to achieve much faster
search and update times. Finally, rather than instrumenting the entire bench-
mark binary, we use representative sampling [9,10] to select a limited number of
representative samples. Then, the instrumentation is applied only to the selected
samples. For each benchmark, up to ten 100-million-instruction samples are iden-
tified using the PinPoints methodology [19] which is based on the well-known
SimPoint tool [24]. In [7], we show that the reuse distributions measured with
and without sampling are statistically similar at 95 % confidence.

Using our optimized tools and for all the benchmarks listed in Table 1, it
took approximately two weeks to capture all the characterization data on the
8-node platform described above. Finally, the PapiEx [3] tool is used to obtain
counts from the on-chip hardware performance counters

Table 1. List of benchmarks used

Suite Benchmark Lang. Application domain

SPEC MPI2007 104.milc C Quantum chromodynamics

107.leslie3d Fortran Computational fluid dynamics

113.GemsFDTD Fortran Computational electromagnetics

132.zeusmp2 C/Fortran Computational fluid dynamics

137.lu Fortran Computational fluid dynamics

Mantevo MiniApps miniFE C++ Unstructured Implicit Finite Element

HPCCG C++ Unstructured implicit finite element

miniMD C++ Molecular dynamics

miniXyce C + + Circuit simulation

CloverLeaf C/Fortran Hydrodynamics

Benchmarks
Table 1 shows a list of all the benchmarks used in this study. Although all are
parallel benchmarks, we execute them serially for the purposes of this work. All
benchmarks are built using compilers from the Gnu Compiler Collection(GCC) [1]
and are drawn from the following benchmark suites:

1. SPEC MPI2007 (version 1.1) is a benchmark suite from System Perfor-
mance Evaluation Corporation (SPEC) containing thirteen MPI-parallel,
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floating point, compute intensive benchmarks [5]. We select five benchmarks
(Table 1) that are the only benchmarks that can be executed serially.

2. Mantevo MiniApps, developed at Sandia National Laboratories, are small
self-contained proxies of real scientific applications used in the lab [2]. At the
time of doing this study, version 1.0 of the Mantevo suite contained seven
MiniApps. Of these seven MiniApps, we use five (Table 1) and exclude two
(miniGhost and CoMD) that we could not successfully run with our tools.
The problem sizes of the selected MiniApps are manually configured such
that the number of instructions they execute is similar to that of the SPEC
MPI2007 benchmarks (i.e., few trillion instructions per benchmark).

4 Results

In this section, we present measured application-dependent characteristics for all
the studied benchmarks. We also show performance data from on-chip counters
on the platform described in Sect. 3. We select and show only the counts that
help in interpreting the application-dependent characterization data.

Instruction Mix and ILP Characteristics
Figure 5a shows the instruction mix for each of the studied benchmarks. On
average, SPEC benchmarks execute more floating-point instructions (55 % vs
32 %), more loads (28 % vs 24 %), and slightly more stores (7 % vs 5 %) than
Mantevo benchmarks. On the other hand, Mantevo benchmarks execute more
integer operations (30 % vs 8 %) and more branch instructions (9 % vs 2 %).
However, unlike SPEC benchmarks, Mantevo benchmarks exhibit more diversity
in their instruction mixes. For example, CloverLeaf and miniMD have high
ratios of floating-point operations, miniXyce has the highest ratio of integer
operations, and both HPCCG and miniFE have a more even distribution of
integer and floating-point operations. In general, all the SPEC benchmarks will
likely benefit from more floating-point execution resources while the Mantevo
benchmarks will benefit from a mix of more floating-point, integer, and branch
execution resources. Although both benchmark suites have relatively similar
ratios of memory instructions, understanding their optimal memory resources
requires the understanding of their memory access patterns and other memory
characteristics that are presented later in this section.

Figure 5c shows the average register dependence distance as well as the average
distance between a load or a floating-point instruction to their consumer instruc-
tion. On average, Mantevo benchmarks have shorter register dependence distances
(4.1 vs 5.6), shorter FP-to-use distances (4.5 vs 5.4), and much shorter load-to-
use distances (4.4 vs 11.1). Also, on average, Mantevo benchmarks have smaller
basic blocks than SPEC benchmarks (11 vs 33 instructions). From the above,
we can conclude that SPEC benchmarks, on average, exhibit more inherent ILP
(instruction-level parallelism) than Mantevo benchmarks. The long distances bet-
ween load operations and their consumers in SPEC benchmarks suggests that
small memory latencies may be effectively hidden through out-of-order execution.
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Fig. 5. Select general characteristics of SPEC MPI2007 & Mantevo Mini Apps
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On the other hand, depending on their memory access patterns and the likelihood
of experiencing cache misses, benchmarks with short load-to-use distances may
require code optimization to hide memory access latencies.

Branch Predictability
Figure 5d shows the benchmarks’ branch predictability using their branch tran-
sition rates (Sect. 2). For each benchmark, the figure shows the percentage of
branches in each transition rate class. As described in Sect. 2, branches with high
or low transition rates are more easily predictable than branches with around
50 % transition rates. Almost all benchmarks have predominantly easy-to-predict
branches and thus their measured branch misprediction rates are less than 1 %
as seen in Fig. 9b. However, miniMD has the most diverse branch predictability
and the highest ratio of hard-to-predict branches. Therefore, it experiences the
highest branch misprediction rate (11.4 %), which can be a serious performance
bottleneck given that 5.5 % of all instructions in miniMD are branches.

Computational Intensity
Figure 5b shows the computational intensity of all the studied benchmarks. As
can be concluded from their instruction mix, SPEC benchmarks, on average,
have higher computational intensities than Mantevo benchmarks. However, the
Mantevo benchmarks show more diversity in computational intensity with min-
iMD being the most computationally intensive of all benchmarks and miniXyce
the least. Note that with the exception of milc, memory instructions in all bench-
marks read or write 8 bytes of data on average (Fig. 6b).

Data Working Set Size and Usage
Figure 6a shows the data working set size (data intensiveness) for all studied
benchmarks. On average, Mantevo benchmarks have much larger working set
sizes than SPEC benchmarks (4.5 GB vs 0.7 GB). As noted in Sect. 3, all bench-
marks are configured such that they execute a similar number of instructions.
With a working set size of 2 GB, GemsFDTD is the only SPEC benchmark
that accesses more than 1 GB of data. The benchmark HPCCG has the largest
working set size (11 GB) and miniXyce has the smallest (73 MB). Since cache
performance is largely dependent on temporal and spatial locality characteristics
as well as the cache configuration, having larger working sets does not necessar-
ily lead to worse cache performance. This is supported by the actual cache miss
measurements shown in Fig. 9c. These measurements show that some bench-
marks (e.g., miniXyce) with small working sets experience more cache misses
than benchmarks with much larger working sets.

Figure 6c shows the amount of new memory accessed with respect to execu-
tion progress. With the exception of milc and miniFE, all benchmarks access
their entire working sets within the first 1 to 5 percent of execution. miniFE
accesses around 93 % of its working set within the first 3 % of execution while
milc’s memory usage is more distributed between 1 % and 60 % of execution. This
suggests that milc has more diverse execution phases than the other benchmarks.
However, as discussed in Sect. 2, our memory usage timeline may not accurately
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Fig. 6. Select memory characteristics of SPEC MPI2007 & Mantevo mini apps
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reflect execution phase behavior since benchmarks may start their execution by
initializing their entire used memory. This issue will be addressed in future work.

Spatial and Temporal Locality
Spatial and temporal locality plots are presented in Figs. 7 and 8, respectively.
For four different block (cache line) sizes, these plots show only the locality
of data references. We describe below the locality characteristics of individual
benchmarks and relate our conclusions to the actual cache miss measurements
shown in Fig. 9c; cache details are in Sect. 3. To help relate conclusions to actual
measurements, we capture and show in Fig. 6d the percentage of 64-byte ref-
erences that have short set-reuse distances on two cache configurations that
correspond to the actual 8-way 32 KB L1 and the 8-way 256 KB L2 caches imple-
mented in the Westmere architecture (see Sect. 3 and Sect. 2).

Shown in Fig. 7, the spatial locality (i.e., the percentage of accesses reusing
the same block within a small number of other accesses) of milc as well as of
most of the other benchmarks, increases with increasing block sizes. For 16-, 32-,
64-, and 128-byte blocks, the percentage of references reusing the same block
within a distance of 8 is 73 %, 83 %, 90 %, and 91 %, respectively. However,
milc’s spatial locality increases only slightly by going from 64-byte to 128-byte
blocks. As illustrated in Fig. 8, milc also exhibits a high degree of temporal
locality with over 95 % of its 64-byte memory accesses being temporal within
4KB (64 × 64). Similar to its spatial locality, milc’s temporal locality does not
significantly improve by using blocks larger than 64 bytes.

Figure 9c shows that milc experiences fewer L1 and L2 misses compared to
the other SPEC benchmarks. This is due to its better temporal locality and
better spatial locality within a distance of 8 (i.e., the L1/L2 cache associativ-
ity). However, milc encounters L1 and L2 misses despite its excellent temporal
locality. This can be attributed to conflict misses caused by a high percentage
of references re-accessing the same cache set within short distances (Fig. 6d).

Compared to milc, leslie3d, GemsFDTD, and zeusmp2 exhibit less spatial loc-
ality with only 60 %, 50 %, and 50 %, respectively, of their 64-byte references being
spatially local within a distance of 8 (Fig. 7). Also, of GemsFDTD ’s, zeusmp2 ’s,
and leslie3d ’s 64-byte accesses, only 60 %, 50 %, and 50 %, respectively, are tem-
poral within 4 KB (Fig. 8). This explains why these benchmarks experience more
L1 and more L2 (except zeusmp2 ) cache misses than milc (Fig. 9c). The fewer L2
cache misses of zeusmp2 can be attributed to fewer conflict misses since a lower
ratio of its memory accesses reuse a recently-accessed set (Fig. 6d).

With 64-byte blocks, only about 70 % of CloverLeaf ’s references exhibit spa-
tial locality within a distance of 8 (Fig. 7). On the other hand, around 80 % of
the memory references in HPCCG, miniFE, miniMD, and miniXyce are spatially
local within a distance of 8. With the exception of miniXyce’s temporal local-
ity, the spatial and temporal locality of all Mantevo benchmarks improves only
slightly by increasing the block size from 64 to 128 bytes. Figure 8 shows Mantevo
benchmarks have varying temporal locality for long MRDs but also high ratios
of references that are temporal within short MRDs(i.e., small caches).
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Fig. 7. Spatial locality

Because it exhibits less spatial and temporal locality compared to the other
Mantevo benchmarks, CloverLeaf experiences more L1 cache misses (Fig. 9c).
It also encounters more L2 cache misses than the other Mantevo benchmarks
except miniXyce. As seen in Fig. 6d, both CloverLeaf and miniXyce have lower
ratios of references with short set-reuse distances, which further indicates lower
locality. MiniXyce has more L2 and L3 cache misses than all the other Mantevo
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Fig. 8. Temporal locality

benchmarks because around 10 % of its references are not temporal within 256 KB
or 12MB (i.e., L2 and L3 cache sizes). This also explains why most of its L2 cache
misses are not satisfied in the L3 cache. On the other hand, miniMD has the
lowest number of L1 and L2 cache misses because it exhibits the best temporal
locality within 32 KB (99 % of references) and the highest ratio of references
immediately reusing the same cache line.
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Fig. 9. Performance measurements from the intel platform (Sect. 3)

Discussion of Performance Measurements
Figure 9 presents the CPI, branch misprediction rates, and cache misses measured
on the Intel platform described in Sect. 3. On average, Mantevo benchmarks per-
form better than SPEC benchmarks (0.71 vs 0.87 CPI). The relatively low perfor-
mance of SPEC benchmarks could largely be attributed to their higher cache miss
rates and higher ratio of floating-point operations. However, there is substantially
more variance in the CPI’s of the Mantevo benchmarks. This is consistent with the
fact that Mantevo benchmarks exhibit more varying application-dependent char-
acteristics as shown earlier in this section.

Of the SPEC benchmarks, leslie3d shows the worst performance (highest
CPI). We believe this is due to its relatively larger number of L1 and L2 cache
misses. On the other hand, although milc has a low L1 cache miss rate, it exhibits
a relatively high CPI. This may be attributed to its short load-to-use distances
(Fig. 5c) with which cache access latencies can not be effectively hidden.

Of the Mantevo benchmarks, CloverLeaf has the highest CPI which can be
attributed to its relatively high L1, L2, and L3 cache miss rates. Also, with
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CloverLeaf ’s tight register dependence distances, cache miss penalties can not
be hidden. In contrast, miniMD shows a relatively high CPI although it has
the lowest number of cache misses. This may be largely attributed to its high
branch misprediction rate. MiniXyce’s CPI is also high and can be attributed
to its relatively high L1, L2, and L3 miss rates. It also has the smallest basic
blocks (5 instructions on average) and large instruction sizes (4 bytes on average)
which can limit the number of instructions fetched by the processor per cycle
(see Sect. 2). Finally, both HPCCG and miniFE encounter the lowest number of
L2 and L3 cache misses. Because these two benchmarks exhibit relatively good
ILP (long register dependence and load-to-use distances), their L1 cache miss
penalties can be effectively hidden, which may explain their low measured CPI.

5 Related Work

Most prior characterization approaches use hardware-dependent performance
metrics such as CPI or cache miss rates obtained from hardware performance
counters or simulation [6,8,16,23]. The goal is to measure and understand applica-
tion performance on a specific platform. Other approaches use similar hardware-
dependent metrics to study benchmark similarities to find representative subsets
of benchmark suites [21,22]. Besides the pitfalls of hardware-dependent character-
ization mentioned in [12,13], conclusions drawn from these studies only apply to
the specific micro-architecture used. However, using micro-architecture-
independent metrics as presented in this work, allows us to reason about appli-
cation behavior on different machines, even those that do not exist yet.

Other studies use microarchitecture-independent characteristics such as instr-
uction mix and memory footprint to study program similarities [12–14,20]. The
primary objective of these studies is to reduce the number of benchmarks used
in design space exploration and to discover programs with similar or unique
program behavior within a benchmark suite. Besides being applied in a wider
context, our methodology includes a more diverse set of characteristics and met-
rics. Also, the metrics we use are either new or different in that similar metrics
are defined differently and, therefore, capture different behavior. For example,
we capture branch predictability and consider larger windows for capturing ILP
characteristics. Furthermore, we track a much larger number of memory refer-
ences and provide a more precise definition of temporal and spatial locality to
help in correlating with actual cache measurements.

6 Conclusions and Future Work

This work presents an architecture-independent methodology for characterizing
application performance that is based on binary instrumentation and incorpo-
rates a diverse set of application-dependent characteristics. We report results
on SPEC MPI2007 and Mantevo benchmarks. We show that SPEC benchmarks
are more computationally intensive while Mantevo benchmarks have much larger
memory demands. Also, Mantevo benchmarks exhibit more diverse behavior in
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all dimensions than SPEC benchmarks. To our knowledge, this work is the first
to present architecture-independent characterization results for SPEC MPI2007
and some Mantevo benchmarks.

In future work, we plan to enhance our approach to capture the working set
size such that it can accurately be used for detecting execution phases. We also
plan to extend the methodology to characterize more aspects of performance
that are important in multi-threaded and parallel applications such as synchro-
nization and data movement.
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Abstract. We present preliminary results of the Roofline Toolkit for mul-
ticore, manycore, and accelerated architectures. This paper focuses on the
processor architecture characterization engine, a collection of portable
instrumentedmicro benchmarks implementedwithMessagePassing Inter-
face (MPI), and OpenMP used to express thread-level parallelism. These
benchmarks are specialized to quantify the behavior of different archi-
tectural features. Compared to previous work on performance character-
ization, these microbenchmarks focus on capturing the performance of
each level of the memory hierarchy, along with thread-level parallelism,
instruction-level parallelism and explicit SIMD parallelism, measured in
the context of the compilers and run-time environments. We also mea-
sure sustained PCIe throughput with four GPU memory managed mech-
anisms. By combining results from the architecture characterization with
the Roofline model based solely on architectural specifications, this work
offers insights for performance prediction of current and future archi-
tectures and their software systems. To that end, we instrument three
applications and plot their resultant performance on the corresponding
Roofline model when run on a Blue Gene/Q architecture.

Keywords: Roofline · Memory bandwidth · CUDA unified memory

1 Introduction

Thegrowing complexity of high-performance computing architecturesmakes it dif-
ficult for users to achieve sustained application performance across different archi-
tectures. Worse, quantifying the theoretical performance and the resultant gap
between theoretical and observed performance is becoming increasingly difficult.
As such, performance models and tools that facilitate this process are crucial. Such
performance models need not be complicated, but should be practical and intu-
itive. A model should provide upper and lower bounds on performance for a given
computation on a particular target architecture and be suggestive of where opti-
mization would be profitable. Additionally, the model should provide an indication
of the fundamental bottlenecks and inherent challenges associated with improving
a specific kernel’s performance on the target architecture.
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 129–148, 2015.
DOI: 10.1007/978-3-319-17248-4 7
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An exemplar of such modeling capability is Roofline Model [2,19,20]. The
Roofline model combines arithmetic intensity, memory performance, and floating-
point performance together into a two-dimensional graph using bound and bot-
tleneck analysis. In the conventional use, the x-axis is arithmetic intensity (flops
per byte) and y-axis is performance in GFlop/s. The model thus defines an enve-
lope in which one may attain performance. To date, this “textbook” Roofline
model requires a human to manually analyze an architecture and any application
kernels in order to populate the roofline. We wish to automate that process.

This paper will present our initial approach that constructs the Roofline
model using an automated characterization engine. Moreover, we extend the
Roofline formalism to address the emerging challenges associated with accel-
erated architectures. To that end, we constructed three benchmarks designed
to drive empirical Roofline-based analysis. The first two represent the conven-
tional memory hierarchy bandwidth and floating-point computation aspects of
the Roofline. The third benchmark is a novel and visually intuitive approach to
analyzing the importance of locality on accelerated architectures like GPUs. It
quantifies the performance relationship between explicitly and implicitly man-
aged spatial and temporal locality on a GPU. We evaluate these benchmarks on
four platforms — Edison (Intel Xeon CPU), Mira (IBM Blue Gene/Q), Babbage
(coprocessor only, Intel MIC Knights Corner), and Titan (GPU only, Nvidia
Tesla K20x), and use the resultant empirical Rooflines to analyze three HPC
benchmarks — HPGMG-FV, GTC, and miniDFT.

2 Related Work

Today, data movement often dominates computation. Typically, this data move-
ment is between DRAM and the cache hierarchy and is often structured stream-
ing (array) accesses. As such, the STREAM benchmark has become the de-facto
solution for benchmarking the ultimate DRAM bandwidth of a multicore proces-
sor [18]. STREAM is OpenMP threaded and will perform a series of benchmarks
designed to quantify the memory subsystem’s performance as a function of com-
mon array operations. Unfortunately, all these operations write to the destina-
tion array without reading it. As such, the hidden data movement necessitated
by a write-allocate operation effectively impedes the bandwidth. Today’s instruc-
tion set architectures (ISA) often provide a means of bypassing this write allocate
operation. Unfortunately, it is rare for a compiler to generate this operation appro-
priately on real applications. As such, we are motivated to augment stream with
read-only (sum or dot product) or read-modify-write (increment) benchmarks in
order to cleanly quantify this hidden data movement.

Modern microprocessors use hardware stream prefetchers to hide memory
latency by speculatively loading cache lines. Unfortunately, the performance of
these prefetchers is highly dependent on architecture and it has been observed
that bandwidth is highly correlated with the number of elements accessed con-
tiguously [15]. Short “stanzas” of memory access see substantially degraded
performance. Stanza Triad was created to quantify this effect [9]. Unfortunately,
it is not threaded and as such cannot identify when one has transitioned from
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a concurrency-limited regime to a throughput-limited regime when running on
multicore processors.

When DRAM bandwidth is not the bottleneck to on-node application per-
formance, then cache bandwidth often is. CacheBench (part of LLCbench) can
be used to understand the capacities and bandwidths of the cache hierarchy [16].
Unfortunately, CacheBench is not threaded with OpenMP or parallelized with
MPI. As such, it cannot measure contention at any level of the cache hierar-
chy (including DRAM like STREAM). Rather than taking this purely empirical
approach, one can, with sufficient documentation, create an analytical model of
the cache hierarchy using the Execution Cache Memory model [13].

Perhaps the most similar work to ours is encapsulated in the benchmarks
used to drive the Energy Roofline Model [3]. In that work a series of experi-
ments were constructed that varies arithmetic intensity in order to understand
the architectural response in terms of both performance and power. When com-
bined with a cache benchmark, one can infer the energy requirements for various
computational and data movement operations. Whereas their goal was focused
heavily on power and energy, we are focused on performance.

3 Experimental Setup

The diversity of existing and emerging hardware and programming models makes
construction of generalized benchmarks particularly difficult. To demonstrate the
utility of our automation strategy, we evaluate performance on four fundamen-
tally different architectures — a conventional superscalar out-of-order Intel Xeon
multicore processor (Edison), a low-power dual-issue in-order IBM Blue Gene/Q
multicore processor (Mira), a high-performance in-order Intel Xeon Phi many-
core processor (Babbage), and a high-performance NVIDIA Kepler K20x GPU
accelerated system (Titan). These systems represent a basis of system architec-
tures within the HPC community today. The next three sections provide some
background on their processor architectures, programming model and compila-
tion options, and execution on our selected platforms.

3.1 Architectural Platforms

Table 1 summarizes the key architectural characteristics of these platforms. Please
note that the peak GFlop/s and bandwidths shown are theoretical.

Edison: is a MPP at NERSC [11]. Each node includes two 12-core Xeon E5
2695-V2 processors nominally clocked at 2.4 GHz (TurboBoost can increase this
substantially). Each core is a superscalar, out-of-order, 2-way HyperThreaded
core capable of performing two 4-way AVX SIMD instructions (add and multiply)
per cycle in addition to loads and stores. Each core has a private 32 KB L1 data
cache and a private 256 KB L2 cache. The 12 cores on a chip share a 30 MB L3
cache and a memory controller connected to four DDR3-1600 DIMMs. Extensive
stream prefetchers are designed to saturate bandwidth at each level of the cache
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Table 1. Architectural characteristics of four evaluation platforms. aOne GPU per
node. bCUDA cores. c without TurboBoost.

Platform Edison Mira Babbage Titan

MPU Intel Xeon IBM Xeon Phi Nvidia

E5-2695v2 BGQ KNC K20x

Clock rate (GHz) 2.4 1.6 1.053 0.732

Processors per node 2 1 1 1a

Cores per processor 12 16 60 2688b

Total threads 48 64 240 28672

Peak GFlops 460.8c 204.8 1011 1310

L1 bandwidth (GB/s) 1843 819.2 4043 1310

DRAM pin bandwidth (GB/s) 102.6 42.66 352 232.46

hierarchy. Theoretically, the superscalar and out-of-order nature of this processor
should reduce the need for optimized software and compiler optimization.

Mira: is an IBM Blue Gene/Q system installed at the Argonne National Lab [5].
Each node includes one 16-core BGQ SOC. Each of the 16 A2 cores is a 4-
way SMT dual-issue in-order core capable of performing one ALU/Load/Store
instruction and one four-way FMA per cycle. However, in order to attain this
throughput rate, one must run at least two threads per core. Each core has a
private 16 KB data cache and the 16 cores share a 32 MB L2 cache connected
by a crossbar. Ideally, the SMT nature of this architecture should hide much
of the effects of large instruction and cache latencies. However, the dual-issue
nature of the processor can impede performance when integer instructions are a
significant fraction of the dynamic instruction mix.

Babbage: is a Knights Corner (KNC) Manycore Integrated Core (MIC) test-
bed at NERSC [1,6]. The KNC processor includes 60 dual-issue in-order 4-way
HyperThreaded cores. Each core includes a 32 KB L1 data cache, a 512 KB L2
cache, and a 8-way vector unit. Although the L2 cache’s are coherent, the ring
NoC topology coupled with the coherency mechanism may impede performance.
Unlike the aforementioned multicore processors, this manycore processor uses
very high-speed GDDR memory which provides a theoretical pin bandwidth of
over 350 GB/s. In order to proxy the future Knights Landing (KNL) MIC proces-
sor that will form the heart of the NERSC8 Supercomputer Cori [4], we conduct
all experiments in “native” mode. As such, the host processor, the host memory,
and the PCIe connection are not exercised.

Titan: is a Cray accelerated MPP system at the Oak Ridge National Lab.
Each node includes a 16-core AMD Interlagos CPU processor and one NVIDIA
K20x GPU [7]. Each GPU includes 14 streaming multiprocessors (SMX) each of
which can schedule 256 32-thread warps and issue them four at a time to their
192 CUDA cores. Each SMX a 256 KB register file, a 64 KB SRAM that can
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be partitioned into L1 cache, and shared memory (scratchpad) segments. Each
chip includes a 1.5 MB L2 cache shared among the SMX and is connected to
high-speed GDDR5 memory with a pin bandwidth of 232 GB/s. Unfortunately,
software on the production system Titan tends to lag behind NVIDIA releases.
As such, we used a similar K20xm within the Dirac testbed at NERSC [10]
in order to evaluate the CUDA unified virtual address and Unified (managed)
Memory. For our purposes, the K20x and K20xm GPUs are identical.

3.2 Programming Model and Compilation

In this section, we provide the compiler flags that were on different platforms
(Table 2). Nominally, all our codes are (MPI+)OpenMP or (MPI+)CUDA.
Although for the most part compilation is straightforward, there are some vari-
ations across the three compilers.

First, Edison and Babbage both use the Intel C compiler. However, as MIC is
run in native mode, it requires the “-mmic” option while Edison is compiled with
“-xAVX”. The Intel and IBM compilers enable OpenMP differently. On the Intel
platforms, one uses “-openmp” while on XL/C, one uses “-qsmp=omp:noauto”.
To instruct the compilers there is no aliasing, we use the “-fno-fnalias” and
“-qalias=ansi:allptrs” flags on the Intel and IBM compilers respectively. Finally,
it should be noted that depending on the benchmark and platform, we either
use CUDA 5 (Titan) or CUDA 6 (Dirac). The NVIDIA compiler requires one
specify the “-arch=sm 35” flag to build the benchmark for the K20x series.

3.3 Benchmark Execution

Unlike simple desktop systems, the MPP supercomputers at NERSC, ALCF, and
OLCF might launch jobs from one node and run them on another set of nodes.
As such, the benchmark application launch routines vary somewhat from one
platform to the next. Table 3 shows the relevant options used in our experiments.

On Edison, the Cray system at NERSC, one uses the aprun command to
run programs on the compute nodes. To that end, we run the benchmark using
two MPI tasks and bind each to one NUMA node with strict memory contain-
ment via the “-S 1 -ss -cc numa node” options. On Mira, we evaluate both a
fully threaded and a hybrid mode of 4 processes of 16 threads. We recommend
“BG THREADLAYOUT=1” to balance these threads within cores if the total

Table 2. Compilation flags for each platform

Platform Compiler Flags

Edison Intel C -O3 -xAVX -openmp -fno-alias -fno-fnalias

Mira IBM XL/C -O5 -qsimd=auto -qalias=ansi:allptrs -qsmp=omp:noauto

Babbage Intel C -O3 -mmic -fno-alias -fno-fnalias -liomp5

Titan Nvidia CC -O3 -arch=sm 35 -lcudart
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Table 3. Execution mode for each platform

Platform Application Execution command

Edison aprun -n 2 -d 12 -N 2 -S 1 -ss -cc numa node [benchmark]

Mira qsub -n 1 –proccount 1 –mode c1 –env BG SMP FAST WAKEUP=YES:
BG THREADLAYOUT=1: OMP PROC BIND=TRUE:
OMP NUM THREADS=64: OMP WAIT POLICY=active
[benchmark]

Babbage mpirun.mic -n 1 -ppn 1 [benchmark]

Titan aprun -n 1 [benchmark]

MPI process * OpenMP threads is smaller than 64. On Babbage, which uses
the Intel MPI implementation, one uses the “-ppn” option to control the num-
ber of MPI tasks per card and the “-n” option to control the total number
of MPI tasks. Unlike Edison where aprun controls affinity, one must use the
“KMP AFFINITY” environment variable on Babbage. We set it to “scatter”
to distribute threads across the chip. On Titan, we once again use the aprun
options. However, as we don’t use the CPU cores, there was no need to control
CPU thread affinity or NUMA bindings.

4 Memory and Cache Bandwidth

Today, bandwidth and data movement are perhaps the paramount aspect of
performance on scientific applications. Unfortunately, as discussed in the related
work, most existing benchmarks fail to proxy the contention, locality, or exe-
cution environment associated with real applications. To rectify this, we have
created a Roofline bandwidth benchmark that uses a hybrid MPI+OpenMP
model. Thus, programmers wishing to proxy a flat MPI code and run the Roofline
benchmark in a flat MPI model. Those wishing to understand the performance
on NUMA architectures can run in the hybrid mode.

4.1 Bandwidth Code

Like CacheBench, our Roofline bandwidth benchmark is designed to quantify
the available bandwidth at each level of the memory hierarchy using a simple
unit-stride streaming memory access pattern. However, unlike CacheBench, it
includes the effects of contention arising form thread parallelism and finite NoC
bandwidth. In that regime, it is similar to STREAM code [18] which uses the
OpenMP work-share constructs to split loop iterations across multiple threads
(Fig. 1). Rather than using the work-share construct, our Roofline bandwidth
code creates a single parallel region and statically assigns threads to ranges of
array indices. All initialization, synchronization, and computation takes place
within this parallel region. The computation is expressed as the sum of a finite
geometric series as it was hoped that no compiler could automatically eliminate
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void STREAM(TYPE scalar){
ssize_t j;
#pragma omp parallel for
for (j = 0; j <SIZE; j++)

B[j] = scalar * A[j];
}

int main(){
scalar = 3.0;
for (k = 0; k < TIMES; k++)
{

// start timer here
STREAM(scalar);
// stop timer here

}
}

void KERNEL(uint64_t size, uint64_t trials,
double * __restrict__ A){

double alpha = 0.5;
uint64_t i, j;
for (j = 0; j < trials; ++j) {

for (i = 0; i < size; ++i) {
A[i] = A[i] + alpha;

}
alpha = alpha * 0.5;

}}

int main(){
...
#pragma omp parallel private(id)
{
uint64_t n, t;
for (n = 16; n < SIZE; n *= 1.1) {

for (t = 1; t < TRIALS; t *= 2) {
// start timer here
KERNEL(n, t, &A[nid]);
// stop timer here
#pragma omp barrier
#pragma omp master
{

MPI_Barrier(MPI_COMM_WORLD);
}

}}}}

Fig. 1. (left) STREAM facsimile. (right) Roofline bandwidth benchmark.

this nested loop. Essentially each term in the geometric series is a trial in the
STREAM benchmark.

The benchmark may thus be used to quantify the capacity of each level of
the memory hierarchy as well as the bandwidths between levels. Moreover, by
adjusting the parameters, one can estimate the overhead for an MPI or OpenMP
barrier. As the benchmark is MPI+OpenMP, one can explore these bandwidths
and overheads across all scales.

4.2 Bandwidth Result

Figure 2 presents the results of our Roofline bandwidth benchmark running on
our four platforms. On Edison, we run two processes per node, while all other
machines run with a single process. Note, the x-axis represents the total working
set summed across all threads. The blue line marks the theoretical bandwidth
and capacities for each level of the memory hierarchy. On the CPU architectures,
the red line presents resultant Roofline bandwidth.

We observe that on Edison, the hardware comes very close to the theoretical
performance and transitions at the expected cache capacities. The smooth tran-
sitions in bandwidth at the cache capacities suggest the cache replacement policy
may not be a true LRU or FIFO but a pseudo-variant. The notable exception is
that Edison fails to come close to the DRAM pin bandwidth. This is not neces-
sarily surprising as few machines have such high bandwidth and few machines
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Fig. 2. Roofline bandwidth benchmark results on our four platforms. Please note the
log-log scale. On the GPU, the syntax is Kernel(# threads per thread block, # of
thread blocks per kernel).

ever attain the pin bandwidth. Moreover, the simple read-modify-write memory
access pattern may be suboptimal for this architecture. Future work will explore
alternate kernels that change the balance between reads and writes.

On Mira, performance was consistently below the theoretical bandwidth lim-
its and the transitions seemed to indicate reduced effective cache capacities. The
low L1 bandwidth was particularly surprising and may indicate the presence of a
write-through or store-through L1 architecture. Further investigation is required.

On the highly-multithreaded MIC (Babbage), we found it was necessary to
operate on working sets exceeding 1 MB (well over 4 KB per thread) in order
to obtain good performance. As the architecture can load 64 bytes per cycle,
it is not unreasonable to think 64 loads were necessary to amortize any loop
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overheads within the benchmark. For smaller working sets, performance was
degraded indicating an underutilization of resources. Generally speaking, the
benchmark correctly identified the L1 and L2 cache capacities, but the attained
bandwidths were far less than the theoretical number. Low L2 bandwidth can
be attributed to the lack of an L2 stream prefetcher like on Edison and Mira. If
the compiler fails to insert software prefetches perfectly, memory latency will be
exposed. Conversely, low DRAM bandwidth is a known issue on this machine
and requires hardware solutions to rectify.

On Titan, using the GPU, we found it illustrative to run three slightly differ-
ent kernels designed to quantify the effects of explicit and implicit reuse within
the GPU’s memory hierarchy. Both Kernel A (“global tInside” legend on the
Fig. 2(d)) and Kernel B (“global tOnside”) use global memory, but with the tri-
als loop inside and outside, respectively. Kernel C (“sharemem’) copies global
memory data to shared memory, does trials loop inside the kernel, and copies
back to global memory.

“Kernel B” is perhaps the most similar to the CPU implementations. The
entire working set is parallelized across thread blocks and the summation (reuse)
occurs at the CUDA kernel level. That is, there is one kernel call per iteration of
the geometric sum. We explore performance as a function of the thread block size
(32 or 64) with a constant 224 thread blocks. As on Babbage, we see substantial
underutilization coupled with large CUDA kernel overheads at small working set
sizes but performance eventually saturates at the DRAM limit, although this is
well below the theoretical pin bandwidth. “Kernel A” restructures the summa-
tion loop to increase locality within a thread block and as such, exercises the L1
cache for the per thread-block working set (note, there are 7168 or 14336 threads
in all). We see much better performance at the small scale (fewer CUDA kernel
calls) and performance can hit the L1 and L2 limits before settling at the DRAM
limit. Finally, “Kernel C” restructures the loop once again and exploits shared
memory in a blocked manner. As such, it can reach the theoretical performance
limit of about 1.3 TB/s for shared memory.

Overall, the trends in bandwidth performance on manycore and accelerators
are a little disturbing. That is, the only way to get high performance is with
massive parallelism on large working sets. For real applications, this observation
will make it difficult to use accelerators or manycore processors to solve existing
problems faster. Rather, one will be able to run larger problems in comparable
time. Nevertheless, this benchmark can be used to help guide programmers as
to when it will be viable to migrate to a manycore or accelerated architecture.

5 Floating-Point Compute Capability

Although many applications are limited by memory bandwidth, there are some
that are still limited by on-chip computation and ultimately the in-core perfor-
mance. When performance is on the cusp, proper exploitation of instruction-,
data- , and thread-level parallelism can ensure the code is not artificially flop-
limited. Unfortunately, there are relatively few benchmarks that accurately mea-
sure the importance of these facets of parallelism on modern manycore and
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accelerated architectures. To address this deficiency, we constructed a Roofline
floating-point benchmark.

5.1 Reference Roofline Floating-Point Benchmark

We modified the Roofline bandwidth benchmark to implement a polynomial for
each element. By varying the degree of the polynomial (a preprocessor macro),
one can vary the number of flops per element. Doing so allows one to change the
balance between loads/stores and floating-point operations from L1-limited to
flop-limited. Figure 3 presents an example of this benchmark.

As one can see, the degree of parallelism per thread in this routine is O(nsize).
An in-order processor would deliver performance limited by the floating-point
latency rather than peak performance. A compiler could unroll this loop (at least
by the floating-point latency) and express instruction-level parallelism and/or
SIMDize the unrolled code to exploit data-level parallelism. Alternately, an out-
of-order processor, with a sufficiently deep reorder buffer, could find the inherent
instruction-level parallelism and attain high performance. Although, an out-of-
order parallelism could reorder the instruction stream, it can never automatically
SIMDize the instruction stream. As such, without compiler support for SIMD,
it can never attain peak performance.

void KERNEL(uint64_t size, uint64_t trials, double * __restrict__ A){
double alpha = 0.5;
uint64_t i, j;
for (j = 0; j < trials; ++j) {

for ( i = 0; i < nsize; ++i) {
double beta = 0.8;
#if FLOPPERITER == 2
beta = beta * A[i] + alpha;
#elif FLOPPERITER == 4
...
#endif
A[i] = beta;

}
alpha = alpha * (1 - 1e-8);

}

Fig. 3. Roofline floating-point benchmark

5.2 Performance as a Function of Implicit and Explicit Parallelism

On today’s processors, thread- and data-level parallelism must be explicit in the
code generated by a compiler. As auto-parallelizing and auto-vectorizing compil-
ers are rarely infallible, these forms of parallelism must often be explicit in the
source code as well. In order to quantify the disparity between the performance
that can be obtained by the architecture on compiled code and the true perfor-
mance capability of the architecture, we implemented three explicitly unrolled
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and SIMDized (via intrinsics) implementations of the Roofline floating-point
benchmark — AVX, QPX, and AVX-512 versions. Figure 4 presents the perfor-
mance of these implementations on Edison, Mira, and Babbage as a function
of thread-level parallelism and unrolling (explicit instruction-level parallelism).
Note, each implementation used a different number of flops per element (FPE).

We observe that Edison attains a little less than half the advertised peak
with compiled C code. However, when using an optimized implementation, per-
formance improves significantly and can actually exceed the nominal peak per-
formance of 460 GFlop/s. The faster-than-light effect is due to the fact that
TurboBoost is enabled on this machine. With a maximum frequency of 2.8 GHz
with 12 cores, the true peak performance is about 537 GFlop/s — quite close to
the observed performance. To verify this, we use the aprun --p-state option
to peg the frequency at the advertised 2.4 GHz and performance is as expected.
Although the machine is sensitive to instruction-level parallelism (unrolling), it
generally does not require HyperThreading to attain good performance.
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Fig. 4. Performance disparity between compiled code and optimized code in which
thread-, instruction-, and data-level parallelism have been made explicit.
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Running a similar set of experiments on Mira (BGQ), we see a very different
outcome. First, compiled code delivers very good performance. This indicates
that the XL/C compiler was able to effectively SIMDize and unroll the code
sufficiently to hide the floating-point latency. Using explicitly unrolled code we
observe that significant unrolling (2–4 SIMD instructions per thread) is required
to reach peak performance. Unlike Edison, Mira clearly requires two threads to
attain peak performance.

Finally, Babbage presents a mix of characteristics similar to both Edison
and Mira. The compiler clearly fails to make full use of the architecture on even
this simple kernel. With sufficient unrolling (4 SIMD instructions per thread),
performance begins to saturate after two threads. Only with extremely high
intensity (256 flops per element) does performance approach peak.

5.3 Performance as a Function of L1 Arithmetic Intensity

Evenwhenone canmaintain aworking set in theL1, performancewill be dependent
on the dynamic instruction mix and the issue capability of the core. In this section,
we leverage the Roofline Floating-Point benchmark to quantify performance as
a function of L1 Arithmetic Intensity expressed as Flops per Element (FPE) —
essentially the degree of the polynomial. For each architecture, we run both the
reference C code quantifying the ability of the architecture as well as the best per-
forming SIMDized and unrolled implementation. Figure 5 presents the resultant
performance on each architecture. For reference, we include (in blue) a microarchi-
tecture performance model that takes into account the issue rate of loads/stores
compared to floating-point instructions given the mix demanded by the kernel.

Figure 5 demonstrates that Edison can quickly reach its peak performance
and that performance tracks well with the theoretical model. Generally, speaking,
at low FPE, performance is diminished due to the fact that the core can perform
8 flops per cycle, but can only sustain loading and storing 2 elements per cycle.
Interestingly, the performance of the reference C code falls at high FPE. This
is presumably a limit of the reorder buffer and the desire to continually find 5
independent floating-point instructions.

Mira’s performance on both compiled and optimized code is shifted to the
right. Generally, this suggests that additional instructions are consuming the
same issue slots as loads or stores. On the dual issue A2 architecture, this could
very well be integer or branch instructions. This effect was not present on Edison
as it is a superscalar processor and can issue integer or branch instructions from
ports other than those used for floating-point or load/store. With sufficient FPE,
performance is pegged to peak.

Babbage shows a third behavior — asymptotically approaching peak per-
formance. This behavior suggests that additional instructions (e.g. integer or
branch) are consuming the same issue slot as floating-point instructions. As
such, performance behaves like FPE/(FPE+k) where k is the number of extra
instructions impeding performance.

Finally, we constructed a similar CUDA C benchmark to run on the GPU.
The theoretical bound is based on the assumption that each load/store unit
can sustain loading 4 bytes per cycle (128 per SMX) from memory. We observe
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Fig. 5. Basic GFlops code and optimized SIMDized unrolling GFlops code compared
to theoretical GFlops on four platforms.

that the GPU’s performance seems to embody characteristics of both BGQ and
MIC. That is, one lacks the issue bandwidth to fully drive the core and the SMX
cannot sustain loading/storing 128 bytes per cycle from memory.

6 Beyond the Roofline — CUDA’s Unified Memory

To date, accelerated architectures have been typically used as an accelerator with
dedicated memory attached to a conventional system with a PCIe or similar bus.
Not only does this dedicated memory have its own unique address space, but
programmers were forced to explicitly copy data to and from device via a library
interface. Doing so is not only unproductive, but also exposes the performance
disparity between PCIe bandwidth and device bandwidth.
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Recently, CUDA introduced two memory concepts — the Unified Virtual
Address (UVA) space, and Unified Memory (i.e. managed memory) [8]. As the
name suggests, UVA unifies the CPU and GPU address spaces and ensures (at
the program level) that programs may transparently load and store memory
without worrying about the locality of data (for correctness). As data remains
pinned to host or device, there are strong NUMA effects. Unified (managed)
memory extends this process by migrating data between the host and the device.
As such, device memory can be viewed as a cache on the CPU memory. Ideally,
this would address many of the productivity and performance challenges. In this
section, we evaluate the performance of these approaches as a function of spatial
and temporal locality.

6.1 CUDA Managed Memory Benchmark

Our initial approach to this benchmark was to create a benchmark that thrashes
data back and forth between host and device. To that end, we reuse the Roofline
bandwidth benchmark by having the GPU perform k − 1 iterations of the sum-
mation and the CPU perform 1. As the net reuse k increases, we expect the cost
of moving the data between host and device to be amortized.

Please note, this benchmark is not an unreasonable scenario in practice as
many applications may package some data for the GPU, copy it to the device,
operate on it a few times, then return it to the host. If written using Unified
Memory, the data would thrash back and forth between host and device.

In this paper, we evaluate performance using four different approaches to
controlling the locality of data on the device. First, we evaluate the conventional
explicit copy (cudaMemCpy) approach using either a paged array or a page-locked
array allocated on the host. Next, we evaluate the performance of zero copy
memory. In this scenario, data is allocated and pinned on the host and it is
the responsibility of the CUDA run time to map load and store requests to
PCIe transfers. Finally, we evaluate the performance of the Unified (managed)
Memory construct in which the CUDA run time may migrate data.

Figure 6 presents these implementations. As one can see, increased locality
is affected via multiple CUDA kernel invocations. The macros “ CUDA ZERO-
COPY” and “ CUDA UM” select the use of page-locked host with zero copy
and unified memory management respectively. Page-locked host memory uses a
normal malloc() function to allocate memory on host, and then uses cudaHost-
Register() to register a device pointer on host memory address space. For
unified memory, one uses cudaMallocManaged to allocate both host and device
memory.

6.2 Results

As Titan does not support CUDA 6 yet, all of our experiments were run on a
similar K20xm in the Dirac cluster1.
1 GPU driver version: 331.89; CUDA toolkit version: 6.0beta.
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int main()
{

// start timer here...
for (uint64_t j = 0; j < trials; ++j) {

#if defined(_CUDA_ZEROCPY) || defined(_CUDA_UM)
cudaDeviceSynchronize();

#else
cudaMemcpy(d_buf, h_buf, SIZE, cudaMemcpyDefault);

#endif
for (uint64_t k = 0; k < reuse; ++k) {

GPUKERNEL <<<blocks, threads>>> (n, d_buf, alpha);
alpha = alpha * (1e-8);

}
#if defined(_CUDA_ZEROCPY) || defined(_CUDA_UM)

cudaDeviceSynchronize();
#else

cudaMemcpy(h_buf, d_buf, SIZE, cudaMemcpyDefault);
#endif
CPUKERNEL(n, h_buf, alpha);

}
// stop timer here...
double bytes = 2 * sizeof(double) * (double)n *(double)trials * (double)(reuse + 1);

}

Fig. 6. CUDA unified memory benchmark quantifies the ability of the run time to
mange locality on the device

Figure 7 presents the resultant “effective bandwidth” for the four technolo-
gies as a function of working set size and temporal reuse. For small working set
sizes, CUDA kernel launch time dominates and effective bandwidth is abysmal.
This simply reinforces the conventional wisdom not to use the GPU for small
operations. Comparing Fig. 7(a) and (b), we see that it is possible to approach
the device bandwidth limit, but only for large working sets that are reused 50-
100 times. Thus, offloading iterative solvers to the GPU is a viable option if
one expects it to take hundreds of iterations to converge. Conversely, for large
working sets with minimal reuse, we see that page-locked memory provides sub-
stantially better PCIe bandwidth.

As Zero Copy memory provides no caching benefit, we see no performance
benefit in Fig. 7(c) from increased locality. Conversely, Fig. 7(d) presents the
performance benefit from using Unified Memory to automate the management
of data locality on the device. Broadly speaking, performance is qualitatively
similar to the performance with explicitly managed locality. Unfortunately, the
raw performance is substantially lower. For applications which could guarantee
1000-way reuse on the device, Unified memory would provide a productive and
high performance solution. One can only hope that advances in hardware and
runtime can bridge the performance gap at lower temporal locality.

Future work will extend this technology to track the development of any
software cache coherency protocol NVIDIA implements. That is, there is no
reason why both the CPU and GPU must both read-modify-write the array.
Either could perform a read-only operation.
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(a) Pageable host with explicit copy be-
tween CPU and GPU

(b) Page-locked host with explicit copy
between CPU and GPU

(c) Page-locked host with zero copy (d) Unified (managed) memory
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Fig. 7. Effective bandwidth as a function of GPU temporal locality (reuse) and working
set size for four different GPU device memory management mechanisms.

7 Empirical Roofline Models and Their Use

Now that we have benchmarked the bandwidth and compute characteristics
on each of our four platforms, we may construct empirical Roofline Models for
each. Figure 8 shows the resultant models using both DRAM and L1 bandwidths
as well as the theoretical or “textbook” Roofline for each platform. An ideal
architecture is one that can fully exploit the technology on which it is built. We
see that in general, Edison’s empirical performance is very close to its theoretical
limits. Conversely, on Mira and Babbage, we see substantial differences between
theory and reality. The extreme multithreading paradigm allows the GPU to
deliver a high fraction of its theoretical bandwidth when running on the device.
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Fig. 8. Roofline model for four platforms.

7.1 Program Analysis

We use the resultant empirical Rooflines to analyze observed performance on
three HPC benchmarks — the finite-volume High-Performance Geometric Multi-
grid (HPGMG-FV) benchmark [14], the Gyrokinetic Toroidal Code (GTC) [12],
and miniDFT [17]. All benchmarks were run on Mira where the performance
counters have been verified.

HPGMG-FV is a highly optimized multigrid benchmark that solves a variable
coefficient Poisson’s equation on a structured grid. Figure 9(a) shows that it has
low compute intensity, but it delivers performance, whether flat MPI or OpenMP
is DRAM, very close to its bandwidth limit.

GTC is a turbulent transport fusion simulation that uses the particle-in-
cell (PIC) method. Its two dominant kernels are particle-to-grid interpolation
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(chargei) and grid-to-particle interpolation (pushi). Theoretically, these kernels
are moderately compute intensive (pushi slightly more) but involve random
access to a structured grid. Clearly, the performance of both routines is well
below the roofline suggesting optimization could significantly improve it.

MiniDFT code uses plane-wave density functional theory (DFT) to compute
the Kohn-Sham equations, part of the general-purpose Quantum Espresso (QE)
code. This is a compute-intensive code, dominated by dense linear algebra and
3D FFT’s (Fig. 9(b)). Although miniDFT uses matrix-matrix multiplications, the
application performance is far less than peak DGEMM or ZGEMM performance.
This is likely an artifact of the inherent performance differences between square
multiplications and the block vector multiplications used in miniDFT. While flat
MPI performance generally tracked the Roofline, the performance of the threaded
code was orders of magnitude less than ideal perhaps due to limited parallelism
in any one dimension. Further investigation is warranted.
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Fig. 9. GTC, HPGMG-FV, and MiniDFT results on Mira collected from BGQ per-
formance counters. Legeneds denote “benchmark: number of MPI tasks x number of
OpenMP threads.”

8 Summary

In this paper, we have described a prototype architecture characterization engine
for the Roofline Toolkit that quantifies the bandwidth and compute character-
istics of multicore, manycore, and accelerated systems. We use the Toolkit to
benchmark four leading HPC systems: Edison, Mira, Babbage, and Titan. The
measurements demonstrate the ability of each architecture to attain peak band-
width or performance and quantify its sensitivity to changes in parallelism or
arithmetic intensity.

In order to quantify the benefits of the emerging software managed cache
technologies in CUDA, we developed a benchmark that measures the perfor-
mance of CUDA’s Unified memory as a function of spatial and temporal local-
ity. Although performance never reaches parity with explicitly managed locality,
performance was far superior to the productive Zero Copy alternative.
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Finally, we evaluated three complex HPC compputing benchmarks: HPGMG-
FV, GTC, and miniDFT running on Mira (BGQ). Using the HPM performance
counters, we plotted benchmark performance on an empirical Roofline model in
order to quantitatively note which applications deliver and which underperform.

Future work will continue to generalize the Roofline toolkit as well as contin-
ued instrumentation, benchmarking, and analysis of HPC applications in order
to explore performance and parallelism issues on emerging HPC platforms.
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Abstract. Stencil computations are widely used for solving Partial Dif-
ferential Equations (PDEs) explicitly by Finite Difference schemes. The
stencil solver alone -depending on the governing equation- can represent
up to 90% of the overall elapsed time, of which moving data back and
forth from memory to CPU is a major concern. Therefore, the develop-
ment and analysis of source code modifications that can effectively use
the memory hierarchy of modern architectures is crucial. Performance
models help expose bottlenecks and predict suitable tuning parameters
in order to boost stencil performance on any given platform. To achieve
that, the following two considerations need to be accurately modeled:
first, modern architectures, such as Intel Xeon Phi, sport multi- or many-
core processors with shared multi-level caches featuring one or several
prefetching engines. Second, algorithmic optimizations, such as spatial
blocking or Semi-stencil, have complex behaviors that follow the intri-
cacy of the above described modern architectures. In this work, a pre-
viously published performance model is extended to effectively capture
these architectural and algorithmic characteristics. The extended model
results show an accuracy error ranging from 5–15 %.

Keywords: Stencil computation · FD · Modeling · HPC · Prefetching ·
Spatial blocking · Semi-stencil · Multi-core · Intel Xeon Phi

1 Introduction

Stencil computations are the core of many Scientific Computing applications.
Geophysics [1], astrophysics [2], nuclear physics [20] or oceanography [8,13] are
scientific fields where large computer simulations are frequently carried out.
Their governing PDEs are usually solved by the Finite-Difference (FD) method,
using stencil computations to explicitly calculate the differential operators which
represent a large fraction of the total execution time.

In a stencil computation, each point of the computational domain accumu-
lates the weighted contribution of certain neighboring points through every axis,
thus solving the spatial differential operator. The more neighboring points are

c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 149–171, 2015.
DOI: 10.1007/978-3-319-17248-4 8
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used for this operation, the higher accuracy is obtained. Two inherent prob-
lems can be identified from the structure of the stencil computation [6]. First
is the noncontiguous memory access pattern while accessing neighbors in the
least-stride dimensions. Second is the low Operational Intensity (OI) of stencil
computations, which leads to a poor data reuse of the values fetched to the CPU
through the memory hierarchy. Therefore, optimizing stencil computations is
crucial in order to reduce the application execution time.

The manual trial-and-error approach turns the process of optimizing codes
lengthy and tedious. The large number of stencil optimization combinations,
which might consume days of computing time, makes the process lengthy. Fur-
thermore, the process is tedious due to the slightly different versions of code that
must be implemented and assessed. To alleviate the cumbersome optimization
process from user supervision, several auto-tuning frameworks [3,10] have been
developed to automatize the search by using heuristics to guide the parameter
subspace. As an alternative, models that predict performance can be built with-
out the requirement of any actual stencil computation execution. These models
can be used in auto-tuning frameworks for compile- and run-time optimizations;
making guided decisions about the best algorithmic parameters, thread execu-
tion configuration or even suggesting code modifications.

We propose a model that is highly time-cost effective compared to other
approaches based on regression analysis. In regression-based analysis, users are
required to conduct extensive and costly experiments in order to obtain the input
data for regression. A wide range of hardware performance counters are gath-
ered and machine learning algorithms used to determine correlations between
architectural events and compiler optimizations. The more complex the model
is, the more data is required to estimate the correlation coefficients. Further-
more, regression models lack of cache miss predictors and neither provide hints
about algorithmic parameter candidates (e.g. spatial blocking). Albeit, regression
analysis can be partially useful whether it is intended to give indications of pos-
sible performance bottlenecks and is combined with knowledge-based systems.

The performance characterization of a kernel code is not trivial and relies
heavily on the ability to capture the algorithm’s behavior in an accurate fashion,
independently of the platform and the execution environment. In order to do so,
the estimation of memory latencies is critical in memory-bound kernels. This is
why predicting 3C (compulsory, conflict and capacity) misses accurately play an
important role to effectively characterize the kernel performance.

In this paper, we extend our multi-level cache model for 3D stencil computa-
tions [5] by consolidating HPC support. Previous works have already proposed
cache misses and execution time models for specific stencil optimizations. How-
ever, most of them have been designed for simplified architectures or low order
stencil sizes (7-point), leaving aside many considerations of modern HPC archi-
tectures. Nowadays, multi- and many-core architectures with multi-level cache
hierarchies, prefetching engines and SMT capabilities are common on HPC plat-
forms but also disregarded or barely covered by previous works. The challenge is
to cover all these features to effectively model stencil computation performance.
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We have used a leading hardware architecture in our experiments, the popular
Intel Xeon Phi 5100 series (SE10X model), also known as MIC. This architecture
shows outstanding appeal for this work due to its support for all of the new
features that our extended model intend to cover.

The remaining paper is organized as follows. Section 2 overviews briefly the
related work. In Sect. 3, we elaborate on the basic fundamentals of our perfor-
mance model, including some phenomena such as cache interference. Section 4
details the considerations to extrapolate the model to multi- and many-core
architectures. Section 5 explains how the prefetching effect can be modeled. In
Sect. 6, two stencil optimizations are discussed and added to the model. Section 7
presents the experimental results and evaluates their accuracy. Finally, Sect. 8
summarizes the findings of this work and concludes the paper.

2 Related Work

The modeling topic on stencil computations has been fairly studied in the recent
years. A straightforward model was initially published by Kamil et al. [12], where
they proposed cost models to capture the performance of 7-point stencils by tak-
ing into account three types of memory accesses (first, intermediate and stream)
in a flat memory hierarchy. Then, a simple approach was devised by setting
a lower bound (2Cstencil) with only compulsory misses and an upper bound
(4Cstencil) with no cache reuse at all. Spatial blocking support was also added
by modifying the number of cache-lines fetched using the three types of memory
accesses due to the disruption of the prefetching effect. Regression analysis has
also shown some appeal for modeling stencil computations [19]. They developed
a set of formulas via regression analysis to model the overall performance on
7 and 27-point Jacobi and Gauss-Seidel computations. Their intent was not to
predict absolute execution time but to extract meaningful insights that might
help developers to effectively improve their codes. The time-skewing technique
has been also modelized by Strzodka et al. [22]. They proposed a performance
model for their cache accurate time skewing (CATS) algorithm, where the sys-
tem and the cache bandwidths were estimated using regression analysis. The
CATS performance model considered only two levels of memory hierarchy, and
therefore it could be inaccurate on HPC architectures. Their aim was to find
out which hardware improvements were required in single-core architectures to
match the performance of future multi-core systems.

Likewise, performance modeling has been successfully deployed on numerical
areas such as sparse matrix vector multiplications [18] and generic performance
models for bandwidth-limited loop kernels [9,24].

3 Stencil Model

In this work, we use the model initially published at [5] as starting point. This
performance model considers stencil computations as memory-bound, where the
cost of computing the floating-point operations is assumed negligible due to the
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overlap with considerable memory transfers. This assumption is especially true
for large domain problems where, apart from compulsory misses, capacity and
conflict misses arise commonly leading to a low OI [6]. Some concepts of the
initial model are improved and extended to fulfill the coverage of the current
work. For a better understanding of the remaining sections, the main concepts
and assumptions of the base model are briefly reviewed in the next section.

Algorithm 1. The classical stencil algorithm pseudo-code. II, JJ , KK are the
dimensions of the data set including ghost points. � denotes the neighbors used
for the central point contribution. CZ1...Z�, CX1...X�, CY 1...Y � are the spatial
discretization coefficients for each direction and C0 for the self-contribution.
Notice that the coefficients are considered symmetric and constant for each axis.

1: for t = 0 to timesteps do � Iterate in time
2: for k = � to KK − � do � Y axis
3: for j = � to JJ − � do � X axis
4: for i = � to II − � do � Z axis
5: X t

i,j,k = C0 ∗ X t−1
i,j,k

+ CZ1 ∗ (X t−1
i−1,j,k + X t−1

i+1,j,k) + . . .+ CZ� ∗ (X t−1
i−�,j,k + X t−1

i+�,j,k)

+ CX1 ∗ (X t−1
i,j−1,k + X t−1

i,j+1,k) + . . .+ CX� ∗ (X t−1
i,j−�,k + X t−1

i,j+�,k)

+ CY 1 ∗ (X t−1
i,j,k−1 + X t−1

i,j,k+1) + . . .+ CY � ∗ (X t−1
i,j,k−� + X t−1

i,j,k+�)

3.1 Base Model

Considering a problem size of I × J × K points of order �, where I is the unit-
stride (Z axis) and J and K the least-stride dimensions (X and Y axes), an
amount of Pread (2 × � + 1) and Pwrite (1) Z-X planes of X t−1 is required to
compute a single X t plane (see Algorithm 1). Thus, the total data to be held is
Stotal = Pread×Sread+Pwrite×Swrite, being Sread = II×JJ and Swrite = I×J
their size in words. Note that II and JJ include ghost points.

Likewise, the whole execution time (Ttotal) on an architecture with n lev-
els of cache is estimated based on the aggregated cost of transferring data on
three memory hierarchy groups: first (TL1), intermediate (TL2 to TLn) and last
(TMemory). Each transferring cost depends on their hits and misses and is com-
puted differently. In general, the transferring cost (TLi = Hitsdata

Li × T data
Li ) is

based on the latency of bringing as much data (word or cacheline) as required
(Hitsdata

Li = Missesdata
Li−1−Missesdata

Li ) from the cache level to the CPU (T data
Li =

data/Bwread
Li ) in order to compute the stencil. Finally, the amount of misses

issued at each cache level is estimated as

MissesLi = �II/W � × JJ × KK × nplanesLi , (1)

where W = cacheline/word is the number of words per cacheline and nplanesLi

is the number of II × JJ planes read from the next cache level (Li + 1) for each
k iteration due to possible compulsory, conflict or capacity misses. The cache
miss calculations are described in the following section.
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3.2 Cache Miss Cases and Rules

The correct estimation of nplanesLi is crucial for the model accuracy. To do
so, four miss cases (C1, C2, C3 and C4, ordered from lower to higher penalty)
and four rules (R1, R2, R3 and R4) are devised. Each of these rules triggers the
transition from one miss case scenario to the next one. In this model, the rules
are linked and therefore triggered in sequential order, thus exposing different
levels of miss penalty.

Rule 1 (R1): The best possible scenario (lower bound) is likely to happen when
all the required Z-X planes (Stotal) to compute one k iteration fit loosely (Rcol

factor) into the cache level (sizeLi). This yields to only compulsory misses and
to the following rule, R1 : ((sizeLi/w) × Rcol ≥ Stotal).

Rule 2 (R2): Conversely to R1, when all the required planes do not fit loosely
in cache except the k-central plane with a higher temporal reuse (less chance to
be evicted from cache), conflict misses are produced among planes. This scenario
is likely to happen when the following rule is true, R2 : ((sizeLi/w) > Stotal).

Rule 3 (R3): On a third possible scenario, it is assumed that despite the whole
data set does not fit in cache (Stotal), the k-central plane does not overwhelm a
significant part of the cache (Rcol factor). Therefore, the possibility of temporal
reuse is reduced compared to R2 but not canceled completely. This scenario can
occur when, R3 : ((sizeLi/w) × Rcol > Sread).

Rule 4 (R4): The worst scenario (upper bound) appears when neither the
planes nor the columns of the k-central plane fit loosely in the cache level. Then,
capacity and conflict misses arise frequently, resulting as well in fetching the
k-central plane at each j iteration of the loop. This scenario gives the following
rule, R4 : ((sizeLi/w) × Rcol < Pread × II).

w is the word size (in single or double precision), and Rcol is a factor pro-
portional to the required data by the k-central plane with respect to the whole
dataset (Pread/2Pread−1). Putting all the ingredients together, the computation
of nplanesLi is yielded by the following conditional equations:

nplanesLi(II, JJ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C1 : 1, if R1

C1 � C2 : (1, Pread − 1], if ¬R1 ∧ R2

C2 � C3 : (Pread − 1, Pread], if ¬R2 ∧ R3

C3 � C4 : (Pread, 2Pread − 1], if ¬R3 ∧ ¬R4

C4 : 2Pread − 1, if R4 ,

(2)

which only depends on II and JJ parameters for a given architecture and a sten-
cil order (�). Figure 1 shows an example of how nplanesLi evolves with respect
to II × JJ parameter.

Large discontinuities can appear in Eq. 2 when transitioning from one case
to the next case (C1 � C2, C2 � C3 and C3 � C4). This effect can be partially
smoothed by using interpolation methods. Apart from the discrete transition-
ing, three types of interpolations have been added in our model: linear, expo-
nential and logarithmic. An interpolation function (f(x, x0, x1, y0, y1)) requires
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Fig. 1. The different rules (R1, R2, R3 and R4) bound the size of the problem (abscissa:
II × JJ) with the miss case penalties (ordinate: 1, Pread − 1, Pread and 2Pread − 1).

five input parameters, the X-axis bounds (x0 and x1), the Y -axis bounds (y0
and y1) and the point in the X-axis (x) to be mapped into the Y -axis (y). In
our problem domain, the X-axis represents the II ×JJ parameters whereas the
Y -axis is the unknown nplanesLi. For instance, for C1 � C2 transition, isolating
II from R1 and R2 rules, IImin (x0) and IImax (x1) are respectively obtained,
bounding the interpolation. By using their respective rules and isolating the
required variable for X-axis, the same procedure is also applied to the remain-
ing transitions of Eq. 2. In this way, an easy methodology is presented to avoid
unrealistic discontinuities for the model.

3.3 Cache Interference Phenomena: II × JJ Effect

As stated before, three types of cache misses (3C) can be distinguished: com-
pulsory (cold-start), capacity and conflict (interference) misses. Compulsory and
capacity misses are relatively easily predicted and estimated [23]. Contrarily,
conflict misses are hard to evaluate because it must be known where data are
mapped in cache and when it will be referenced. In addition, conflict misses
disrupt data reuse, spatial or temporal. For instance, a high frequency of cache
interferences can lead to the rare ping-pong phenomena, where two or more
memory references fall into the same cache location, therefore competing for
cache-lines. Cache associativity can alleviate this issue to a certain extent by
increasing the cache locations for the same address.

The cache miss model presented in Subsect. 3.2 sets the upper bound for
each of the four cases in terms of number of planes read for each plane writ-
ten (nplanesLi), thus establishing a discrete model. Nevertheless, this discrete
scenario is unlikely to happen for cases C2, C3 and mainly C4, due to their
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dependency on capacity and especially on conflict misses. There are two fac-
tors that clearly affect conflict misses: the reuse distance for a given datum [23]
and the intersection of two data sets [9], giving consequently a continuum sce-
nario. The former depends on temporal locality; the more data is loaded, the
higher the probability that a given datum may be flushed from cache before its
reuse. On the other hand, the latter depends on two parameters: the array base
address and its leading dimensions.

In stencil computations the Z-X plane (II × JJ size) and the order of the
stencil (Pread = 2 × � + 1) are the critical parameters that exacerbate conflict
misses. The conflict misses to estimate are related with the probability of inter-
ference, P (i), and the column reuse of the central k-plane. P (i) is proportional
to the size in words of the columns to be reused (II × (Pread − 1)) after reading
the first central column with respect to the whole size of the central k-plane to
be held in cache (II × JJ),

P (i) =
II × JJ − II × (Pread − 1)

II × JJ
= 1 − Pread − 1

JJ
∈ [0, 1] , (3)

which yields to a logarithmic function depending on Pread, II and JJ parame-
ters. A zero value means no conflict misses at all, whereas a probability of one
means disruption of temporal reuse (high ratio of interferences) for columns of
the central k-plane. Therefore, the P (i) probability can be added as

nplanesLi′ = nplanesLi × P (i) , (4)

tailoring the read misses case boundary to their right value depending on the
conflict misses issued. Thus, the larger the data to be used to compute one output
plane (I × J), the higher the probability of having capacity and conflict misses.
Figure 2 shows the accuracy difference between the model with and without
cache interference effect.

3.4 Additional Time Overheads

During the execution of HPC stencil codes, some additional overheads may arise.
In this subsection, we explain how these overheads are weighed when modeling
the stencil computation performance. The overheads are categorized into three
groups: parallelism, memory interferences and computational bottlenecks.

– Intra-node parallelism (OpenMP and Posix threads): small overheads may
appear due to the thread initialization and synchronization tasks whether
data is disjoint among threads. This overhead usually has a clear impact only
on small dataset problems. In order to characterize its effect on the stencil
model, a small (order of milliseconds) and constant ε (TOMP ) is included.

– Memory contention: TLB misses, ECC memories (error checking & corrup-
tion) and cache coherence policies between cores (e.g. MESI protocol) affect
noticeably the memory performance. Nevertheless, all these effects are already
taken into account in the memory characterization through our STREAM2
tool (see Sect. 4 for further details).
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Fig. 2. Cache interference effect as a function of problem size. Whilst Eq. 4 is not
applied, a discrete model is obtained (straight lines with squares and diamonds). Con-
versely, its use leads to a continuum model (inverted and non-inverted triangles).

– Computational bottlenecks: stencil computations are mainly considered mem-
ory bound instead of compute bound (the OI is low) [6,25]. Therefore, for the
sake of simplicity, the tampering effect of floating-point operations is expected
to be negligible, and thus not considered.

4 From Single-core to Multi-core and Many-core

Current HPC platforms are suboptimal for scientific codes unless they take fully
advantage of simultaneous threads running on multi- and many-cores chips. Some
clear examples of such architectures are Intel Xeon family, IBM POWER7 or
GPGPUs. All of them with tens of cores and their ability to run in SMT mode.
So, the parallel nature of the current stencil computation deployments leads us
to extend our model accordingly. To that end, the parallel memory management
is a main concern, and this section is fully devoted to sort it out.

In order to characterize the memory management of multi-core architectures,
the bandwidth measurement is critical. The bandwidth metrics are captured for
different configurations using a bandwidth profiler such as STREAM2 bench-
mark [15]. Our STREAM2 version [5] has been significantly extended by adding
new features such as vectorization (SSE, AVX and Xeon Phi ISAs), aligned
and unaligned memory access, non-temporal writes (through Intel pragmas),
prefetching and non-prefetching bandwidths, thread-level execution (OpenMP)
and hardware counters instrumentation (PAPI) in order to validate results.

The process to obtain bandwidth measurements is straightforward. First, the
thread number is set through the OMP NUM THREADS environment variable.
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Fig. 3. STREAM2 results for Intel Xeon Phi architecture (4 threads, 2 per core). Each
plateaux represents the sustainable bandwidth of a cache level.

Then, each thread is pinned to a specific core of the platform (e.g. using numactl
or KMP AFFINITY variable in Xeon Phi architecture). Finally, the results
obtained for DOT (16 bytes/read) and FILL (8 bytes/write) kernels are respec-
tively used as read and write bandwidths for the different cache hierarchies of the
model. Figure 3 shows an example of the bandwidths used for a particular case in
the Intel Xeon Phi platform. The importance of mimicking the environment con-
ditions is crucial, in particular the execution time accuracy of the model is very
sensitive to the real execution conditions. This means that the characterization
of the memory bandwidth must be similarly performed in terms of: number of
threads, threads per core, memory access alignment, temporal or non-temporal
writes and SISD or SIMD instruction set.

Additionally, there are some memory resources that might be shared among
different threads running in the same core or die. In order to model the behaviour
in such cases, the memory resources are equally split among all threads. This is,
if we have a cache size (sizeLi in rules R1,2,3,4) of N KBytes, then each thread
would turn out to have a cache size of sizeLi = N/nthreadscore.

5 Modeling Prefetching

5.1 Hardware Prefetching

Modern computer architectures incorporate prefetching engines in their cache
hierarchy. Its aim is to reduce the memory latency by eagerly fetching data that
is expected to be required in the near future.

The prefetching mechanism modeled in our previous work [5] lacked accu-
racy when several threads were triggering the prefetching engine concurrently.
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As stated in [5], the modeling of the prefetching mechanism is not straight-
forward. In that work, a simple approach was devised. The miss model was
divided into two groups, prefetched and non-prefetched misses, depending on
the concurrent streams that the prefetching engine supported. Next, two differ-
ent bandwidths were used for each cache miss group in order to compute their
time penalty.

Recent works [14,16] have characterized the impact of prefetching mecha-
nism on scientific application performance. They establish a new metric called
prefetching effectiveness, which computes the fraction of data accesses to the
next memory level that are initiated by the hardware prefetcher. Therefore, for
a given data cache level (DC), its prefetching effectiveness is computed as

DCeffectiveness = DC Req PF/DC Req All ∈ [0, 1] , (5)

where DC Req PF refers to the number of cache-lines requests initiated by the
prefetching engine, and DC Req All represents the total number of cache-lines
requests initiated at the DC level (including demanding and non-demanding
loads). This approach has been adopted in our model as the way to accurately
capture the prefetching behaviour.

In order to be able to characterize the prefetching effectiveness in our test-
bed platform, a new micro-benchmark was developed from scratch. This bench-
mark traverses a chunk of memory simultaneously by different threads and
changes the number of stream accesses in a round-robin fashion. Then, to com-
pute their effectiveness, a set of hardware performance counters were gathered
through PAPI. For instance, on Intel Xeon Phi architecture, two native events
were instrumented to compute the prefetching effectiveness: HWP L2MISS and
L2 DATA READ MISS MEM FILL. Figure 4 shows the results obtained for this
platform over the L2 hardware prefetcher.

The prefetching effectiveness (DCeffectiveness) is then used to compute the
total number of cache-line misses that are fetched using streaming bandwidths
(nplanesS

Li) and those that are fetched using a regular bandwidth (nplanesNS
Li ):
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nplanesS
Li = nplanesLi × DCeffectiveness,

nplanesNS
Li = nplanesLi × (1 − DCeffectiveness) .

(6)

Similarly to the memory resources, prefetching engines might be shared
among threads running on the same core. In such scenarios, the prefetching effec-
tiveness is computed with our prefetching tool varying the number of threads
per core (for instance, 2 and 4 threads results can be observed in Fig. 4). In
fact, these results are insightful and help to understand when the core perfor-
mance might be degraded due to excessive simultaneous streams, thus adversely
affecting the parallel scaling of stencil computations.

5.2 Software Prefetching

Software prefetching is a technique where compilers, and also programmers,
explicitly insert prefetching operations similar to load instructions into the code.
Predicting the performance of software prefetching is challenging. Compilers
use proprietary heuristics in order to decide where (code location), which (data
array) and how much in advance (look-ahead in bytes) start prefetching data.
Furthermore, programmers can even harden this task by adding special hints
in the code to help the compiler make some of these decisions [17]. As software
prefetching produces regular loads on the cache hierarchy, it also prevents hard-
ware prefetcher to be triggered when it performs properly [7]. Thus, the failure
or success of software prefetching affects collaterally the hardware prefetching
behaviour.

Due to all above commented issues, software prefetching has not been taken
into account in the present work. The software prefetching can be disabled in
Intel compilers by using the -opt-prefetch=0 flag during the compilation.

6 Stencil Optimizations

The state-of-the-art in stencil computation is constantly being extended with
the publication of several optimization techniques in recent years. Under specific
circumstances, some of those techniques improve the execution performance.
For instance, space blocking is a tiling strategy widely used in multi-level cache
hierarchy architectures. It promotes data reuse by traversing the entire domain
into small blocks of size TI×TJ which must fit into the cache [12,21]. Therefore,
space blocking is especially useful when the dataset structure does not fit into
the memory hierarchy. This traversal order reduces capacity and conflict misses
in least-stride dimensions increasing data locality and overall performance. Note
that a search of the best block size parameter (TI × TJ) must be performed for
each problem size and architecture.

A second example of stencil optimization is the Semi-stencil algorithm [6].
This algorithm changes the way in which the spatial operator is calculated and
how data is accessed in the most inner loop. Actually, the inner loop involves
two phases called forward and backward where several grid points are updated
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simultaneously. By doing so, the dataset requirements of the internal loop is
reduced, while keeping the same number of floating-point operations. Thereby,
increasing data reuse and thus the OI. Conversely to read operations, the number
of writes are slightly increased because the additional point updates. Due to
this issue, this algorithm only improves performance on medium-large stencil
orders (� > 2).

These two stencil optimizations have been included into our model. The moti-
vation of modeling them is two-fold. First, to reveal insights of where and why
an algorithm may perform inadequately for a given architecture and environ-
ment. Second, to analytically guide the search for good algorithmic parameter
candidates without the necessity of obtaining them empirically (brute force).

6.1 Spatial Blocking

Space blocking is implemented in our model by including similar general ideas
as [4], but adapting them in order to suit the advantages of our cost model.
Basically, the problem domain is traversed in TI × TJ × TK blocks. Then, first
the blocks on each direction are computed as NBI = I/TI, NBJ = J/TJ ,
and NBK = K/TK. Therefore, the total number of tiling iterations to perform
are NB = NBI × NBJ × NBK. Blocking may be performed in the unit-stride
dimension as well. Given that data is brought to cache in multiples of the cache-
line, additional transfer overhead may arise when TI size is not multiple of
cache-line. This is considered into the model by reassigning I, J , K and their
extended dimensions as follows:

I = �TI/W � × W, J = TJ, K = TK,

II = �(TI + 2 × �)/W � × W, JJ = TJ + 2 × �, KK = TK + 2 × � .
(7)

The new II and JJ parameters are then used for rules R1,2,3,4 to estimate
nplanesLi based on the blocking size. Finally, Eq. 1 shall be rewritten as

Misses
[S,NS]
Li = �II/W � × JJ × KK × nplanes

[S,NS]
Li × NB , (8)

where NB factor is considered to adjust streamed (S
Li) and non-streamed (NS

Li )
misses depending on the total number of blocking iterations.

Architectures with prefetching features may present performance degradation
when TI �= I [11]. Blocking on the unit-stride dimension may tamper streaming
performance due to the interference caused to the memory access pattern detec-
tion of the prefetching engine. The triggering of the prefetching engine involves
a warm-up phase, where a number of cache-lines must be previously read (TP ).
Additionally, prefetching engines keep a look-ahead distance (LAP ) of how many
cache-lines in advance to prefetch. Disrupting a regular memory access will pro-
duce LAP additional fetches to the next cache level if the prefetching engine was
triggered. Considering all these penalties, the cache misses are updated with:

MissesNS
Li

+
= TP × JJ × KK × nplanesNS

Li × NB, if II/W ≥ TP,

MissesS
Li

+
= LAP × JJ × KK × nplanesS

Li × NB, if II/W ≥ TP .
(9)



Modeling Stencil Computations on Modern HPC Architectures 161

TP and LAP parameters can be obtained from processor manufacturer’s
manuals or empirically through our prefetching benchmark. To deduce such
parameters, the prefetching benchmark was modified to traverse arrays in a
blocked fashion whilst TI parameter was slowly increased along different execu-
tions. Then, the prefetching hardware counter was monitored in order to flag at
what precise point (TP = �TI/W �) the prefetching metric soared significantly.
Likewise, LAP parameter was estimated by counting the extra prefetching loads
(apart from the TP ) that were issued.

6.2 Semi-stencil Algorithm

Adapt the model for the Semi-stencil algorithm is equally straightforward. Indeed,
this can be achieved by setting Pread and Pwrite parameters correctly. By default,
in a partial Semi-stencil implementation (forward and backward phases on X and
Y axes), �+1 Z-X planes from X t and one X t+1 plane (k-central plane update)
are read for each k iteration. As output, two planes are written back as partial
(X t+1

i,j,k+�) and final (X t+1
i,j,k) results. However, these values can slightly increase

when no room is left for the k-central columns; thus yielding

Pread = � + 2, Pwrite = 2, if ¬R4

Pread = � + 3, Pwrite = 3, if R4

(10)

as the new data requirements to compute one output plane. This adaptability
reveals the model resilience, where an absolutely different stencil algorithm can
be modeled by simply tuning a couple of parameters.

7 Experimental Results

This sectionestimates throughexperimental resultshowaccurate themodel iswhen
exposed to: prefetching, thread parallelism and code optimizations techniques. All
experimental results in this section were validated using the StencilProbe [12], a
synthetic benchmark that we have extended. The new StencilProbe features [6]
include: different stencil orders (�), thread support (OpenMP), SIMD code,
instrumentation and new optimization techniques (e.g. spatial blocking and
Semi-stencil). This benchmark implements the stencil scheme shown in Algo-
rithm1, where star-like stencils with symetric and constant coefficients are com-
puted using 1st order in time and different orders in space (see Table 1).

A large number of different problem sizes were explored in order to validate
the model accuracy for a wide parametrical space. Recall that the two first
dimensions (on Z and X axes) are the critical parameters that increase the cache
miss ratio (nplanesLi) for a given stencil order (�) and architecture. Therefore,
the last dimension K was set to a fixed number, and the I and J dimensions
were widely varied covering a large spectrum of grid sizes. All the experiments
were conducted using double-precision, and the domain decomposition across
threads was conducted by cutting in the least-stride dimension (Y axis) with
static scheduling. Table 1 summarizes the different parameters used.
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Table 1. List of parameters used for the model and the StencilProbe benchmark.

Parameters Range of values

Naive sizes (I × J × K) 8 × 8 × 128 . . . 2048 × 1024 × 128

Rivera sizes (I × J × K) 512 × 2048 × 128

Stencil sizes (�) 1, 2, 4 and 7 (7, 13, 25 and 43-point respectively)

Algorithms {Naive, Rivera} × {Classical, Semi-stencil}
Block sizes (TI and TJ) {8, 16, 24, 32, 64, 128, 256, 512, 1024, 1536, 2048}

The testbed platform for all experiments is based on Intel Xeon Phi. The
22 nm Xeon Phi processor include 61 cores with 4-way SMT capabilities running
at 1.1 GHz. Each core is in-order and contains a 512-bit vector unit (VPU).
Additionally, each core has a 32 KB L1D cache, a 32 KB L1I cache and a private
512 KB L2 cache. This cache includes a hardware prefetcher able to prefetch
16 forward or backward sequential streams into 4 KB page-size boundaries. All
cores are connected together via a bi-directional ring with the standard MESI
coherency protocol for maintaining the shared state among cores.

Hardware counters were gathered for all experiments in order to validate
the model results against actual executions. Table 2 shows the hardware per-
formance counters instrumented. The stencil code generated by StencilProbe is
vectorized, and therefore only vector reads were fetched (VPU DATA READ)
during executions. Additionally, the L2 prefetcher in Xeon Phi can also prefetch
reads for a miss in a write-back operation (L2 WRITE HIT) when it has the
opportunity. Then, in order to fairly compare the prefetched read misses of
the model with actual metrics, the L2 prefetches (HWP L2MISS) were nor-
malized. This normalization was performed by subtracting reads due to a miss
in a write operation scaled by the prefetching efficiency. Likewise, some writes
were considered prefetched (L2 WRITE HIT ×DCeffectiveness) and others not
(L2 WRITE HIT ×(1 − DCeffectiveness)) due to contention of the L2 prefetch-
ing engine. Finally, the remaining miss counters (VPU DATA READ MISS and
L2 DATA READ MISS MEM FILL) only consider demanding reads, initiated
by explicit reads, and therefore were directly used as non-prefetched read misses.
It is important to mention that, in our previous model [5], several complex for-
mulas were derived to estimate the number of reads issued to the first level
cache (Hitsword

L1 ). This estimation was not straightforward and lacked accuracy.
However, we realized that this parameter kept constant per loop iteration and
could be precisely estimated by performing static analysis of the inner stencil
loop only once (counting the numbers of reads in the object file).

An aim of this research is to prove that stencil computations can be accurately
modeled on SMT architectures. Therefore, all possible SMT combinations for a
single core were sampled. Our tests were conducted using 4 threads varying their
pinning to cores. KMP AFFINITY environment variable was accordingly set to
bind threads to the desired cores. The SMT configurations tried for each test



Modeling Stencil Computations on Modern HPC Architectures 163

Table 2. Hardware counters and the formulas used to compute the projected time.

were: 1 core in full usage (4 threads per core), 2 cores in half usage (2 threads
per core) and 4 cores in fourth usage (1 thread per core).

Due to the sheer number of combinations sampled, only the most repre-
sentative and interesting results are shown. Results have been categorized as a
function of core occupancy (1, 2 and 4 threads per core) in order to explicitly
visualize the effect of resource contention on the actual metrics and test the
predicted results.

Figure 5 shows the actual and the predicted misses with our model (prefetched
and non-prefetched for L2) on all three SMT configurations using a Naive sten-
cil order of � = 4. In this case 680 different problem sizes (X axis in figures)
were tested per configuration. Recall that software prefetching was disabled and
therefore L1 or L2 cache levels do not exhibit collateral effects due to compiler-
assisted prefetch. This figure is very insightful because the empirical results
clearly corroborate our thoughts regarding the different bounds applied in the
stencil model. Indeed, in a � = 4 stencil the read miss bounds for the model
are: 1, 8 (Pread − 1), 9 (Pread) and 17 (2Pread − 1) per each I × J plane com-
puted. Actual L1 and L2 misses tend to these bounds when a specific problem
size is reached, never reaching beyond the upper bound (2Pread − 1) which is
showed as a solid coarse horizontal line in all plots. Cache levels with prefetched
and non-prefetched misses are a special case due to their direct relation with
DCeffectiveness ratio, and therefore they might be under the lower bound (1).
Additionally, as the threads per core are increased, the inflection points (tran-
sitions) between bounds (C1 � C2, C2 � C3 and C3 � C4) are triggered earlier in
terms of plane size (I × J). The larger the number of threads running concur-
rently on the same core, the more contention and struggle for shared resources
occurs. Likewise, some spikes appear on account of ping-pong effect, where dif-
ferent planes and columns addresses fall in the same cache set. This effect is also
exacerbated as more threads are pinned to the same core. However, this effect is
not captured by our model because it would require a multi-level set-associative
cache model, which is not covered yet in our model.

Comparing the empirical (hardware counters) versus the analytical results
(model), it can be observed that the model accurately predicts the number
of misses on both levels of cache hierarchies, including those reads that are
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Fig. 5. Actual and predicted prefetched (inverted triangles) and non-prefetched
(squares and diamonds) cache-lines for the three SMT configurations. These results
are for the Naive implementation of a medium-high order (� = 4) stencil.
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prefetched. However, some slight mispredictions appear on specific sizes when
the transition between miss cases is triggered. Deciding a discrete point (I × J)
for transitions is difficult, and it might depend on other parameters apart from
those considered in this work. Nevertheless, we think that our rules (R1,2,3,4)
have approximated these transitions fairly well. It is also important to mention
the prediction of the L2 prefetching engine, especially in the late executions for 2
threads and in the early ones for 4 threads per core configurations. As hardware
metrics show, on these cases the prefetching effect starts disrupting the results
due to contention. Nonetheless, the predicted results follow the trend of both
type of misses properly as a result of the DCeffectiveness parameter.

The model accuracy is verified in Fig. 6, which shows a summary of three
types of execution times: actual, projected and predicted. The actual times
were obtained using the CPU clock cycles metric (CPU CLK UNHALTED). On
the other hand, the projected times were computed with the aggregated time of
TL1, TL2, TMem and TWrite by using actual hardware counters of reads, writes
and misses with their respective bandwidth parameters (STREAM2 character-
ization). Finally, the predicted times follow the same idea than the projected
but using the estimations of our model instead of the instrumented ones. The
purpose of the projected time is that it verifies the aggregated equation and
calibrates the bandwidth parameters at each cache level. Therefore, it plays an
important role ensuring that predicted times are a faithful representation of an
actual execution.

Comparing the execution times shown in Fig. 6, we observe that the predicted
relative error (right axis) is very low on most of the cases. However, as the
results reveal, some predictions have a high error (2 threads per core). Reviewing
the cache miss predictions (not shown here), this is due to a late deactivation
of the L2 prefetching engine, misleading the aggregated predicted time. Once
the prefetching efficiency is again correctly predicted, the relative error drops
considerably under 10 %. Equally, some actual executions also present peaks due
to the ping-pong effect. Projected times clearly follow this instabilities because
their mirroring on cache misses. On the contrary, our model can not mimic such
situations, and therefore the relative error increases considerably on those cases.

Results considering stencil optimizations such as Semi-stencil and spatial
blocking are shown in Fig. 7. In this test, 88 different tiling sizes were compared.
The TP and LAP parameters used for the model were set to 3 and 5 cache-
lines respectively. These values were obtained empirically using the prefetching
benchmark as explained in Sect. 6. As shown in Fig. 7, the model clearly estimates
the different valleys (local minima) that appear when searching for the best tiling
parameters due to the disruption of prefetched data and the increase of cache-
line misses. The model is even able to suggest some good parameter candidates.
For instance, taking a look to the Naive+Blocking results, the model successfully
predicts the best tiling parameter for 1 and 2 threads per core configurations
(512× 16 and 512× 8 respectively). This is not the case when running 4 threads
per core. However, in this latter case, the actual best parameter is given as third
candidate (512 × 8). On the other hand, reviewing the Semi+Blocking results,



166 R. de la Cruz and M. Araya-Polo

Fig. 6. Left axis: actual (solid line), projected (circles) and predicted (squares) execu-
tion times for the three SMT configurations. Right axis: relative errors compared with
actual times. These results are for a high order (� = 7) Naive stencil.
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Fig. 7. Left axis: projected (solid line) and predicted (squares and circles) execution
times for spatial blocking results. Right axis: relative errors compared with projected
times. Results shown are for Naive (� = 1) and for Semi-stencil (� = 4).

despite of some mispredictions especially for 4 threads per core, most of the local
minima areas are well predicted.

Additionally, the model can reveal other insightful hints regarding the effi-
ciency in SMT executions. It can help to decide the best SMT configuration to
be conducted in terms of core efficiency. Let τSMTi be the execution time for a
SMTi configuration of n different combinations, we define the core efficiency as

CoreSMTi
efficiency =

min(τSMT1 , . . . , τSMTn)

τSMTi
∈ [0, 1] , (11)
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Fig. 8. Core efficiency for all three SMT combinations using a Naive stencil (� = 4).

where a core efficiency of 1 represents the best performance-wise SMT configura-
tion for a set of specific stencil parameters (�, I × J plane size, spatial blocking,
Semi-stencil, etc.) and a given architecture. Therefore, the desirable decision
would be to run the stencil code using the SMTi configuration that maximizes
the core efficiency. Normalizing our experiments for all three SMT combinations
on a Naive stencil (� = 4) the Fig. 8 is obtained. Note that depending on the
problem size, the best SMT configuration ranges from 4 threads for small sizes
to 2 threads for medium sizes and just only 1 thread per core for very large prob-
lems. The factor leading to this behavior is the contention of shared resources,
especially the prefetching engine.

8 Conclusions and Analysis

This paper presents a thorough methodology to evaluate and predict stencil
codes performance on complex HPC architectures. We have included several
new features in our model such as: multi- many-core support, better hardware
prefetching modeling, cache interference due to conflict and capacity misses and
other optimization techniques such as spatial blocking and Semi-stencil. The
aim of this work was to develop a performance model with minimal architectural
parameter dependency (flexible) and at the same time reporting accurate results
(reliable). In this regard, we have obtained fairly good prediction results, where
the average error for most relevant cases floats between 5–15 %. All these results
factored in cache’s associativities, TLB page size or complex prefetching engine
specifications, but are not explicitly modeled.

Our proposed methodology also helps to unveil insights about how stencil
codes might be built or executed in order to leverage prefetching efficiency. The
prefetching modeling is not straightforward, especially when too many arrays
are accessed concurrently, which overwhelm the hardware prefetching system
and hamper the bandwidth performance. Furthermore, an aggressive prefetch-
ing intervention may also cause eviction of data that could have been reused
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later (temporal reuse), polluting the cache and affecting adversely the band-
width performance. Loop fission and data layout transformations can occasion-
ally improve the performance in these cases. Nevertheless, they must be applied
carefully because some side effects may appear. In order to effectively capture
the stream engine behavior in all above mentioned cases, the prefetching effec-
tiveness approach has been adopted. As shown in the experiments, this approach
can be successfully used in SMT context, where the prefetching efficiency is sub-
stantially reduced due to contention of the shared resources.

The proposed model could be included as static analysis in auto-tuning
frameworks to guide making decisions about algorithmic parameters for sten-
cil codes. Likewise, our model might be useful in expert systems, not only for
compilers or auto-tuning tools, but also in run-time optimizations for dynamic
analysis. For instance, the model might decide the SMT configuration and the
number of threads to spawn per processor that outperforms the remaining com-
binations based on the prefetching engines, the problem size (I × J) and the
stencil order (�).

To our knowledge, this is the first stencil model that takes into account two
important phenomena: the cache interference (due to II × JJ and Pread para-
meters) and the prefetching effectiveness when concurrent threads are running
in the same core. Despite the current work has been only conducted for 1st order
in time and constant coefficient stencils, the model could be adapted to higher
orders in time and variable coefficients (anisotropic medium) by adjusting the
cost of cache miss cases (C1,2,3,4) and their rules (R1,2,3,4) through Pread,write

and Sread,write variables.
Future work will include temporal blocking as optimization method, and

different thread domain decomposition strategies apart from the static schedul-
ing. Nonetheless, addition of software prefetching behavior into the model is
unattainable since it depends on the internal compiler heuristics and the prag-
mas inserted by the user.
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Abstract. The TOP 500 list is the most widely regarded ranking of
modern supercomputers, based on Gflop/s measured for High Perfor-
mance LINPACK (HPL). Ranking the most powerful supercomputers is
important: Hardware producers hone their products towards maximum
benchmark performance, while nations fund huge installations, aiming
at a place on the pedestal. However, the relevance of HPL for real-
world applications is declining rapidly, as the available compute cycles
are heavily overrated. While relevant comparisons foster healthy compe-
tition, skewed comparisons foster developments aimed at distorted goals.
Thus, in recent years, discussions on introducing a new benchmark, bet-
ter aligned with real-world applications and therefore the needs of real
users, have increased, culminating in a highly regarded candidate: High
Performance Conjugate Gradients (HPCG).

In this paper we present an in-depth analysis of this new benchmark.
Furthermore, we present a model, capable of predicting the performance
of HPCG on a given architecture, based solely on two inputs: the effec-
tive bandwidth between the main memory and the CPU and the highest
occuring network latency between two compute units.

Finally, we argue that within the scope of modern supercomputers
with a decent network, only the first input is required for a highly accu-
rate prediction, effectively reducing the information content of HPCG
results to that of a stream benchmark executed on one single node.

We conclude with a series of suggestions to move HPCG closer to its
intended goal: a new benchmark for modern supercomputers, capable of
capturing a well-balanced mixture of relevant hardware properties.

1 Introduction

High Performance Computing (HPC) has emerged as a powerful tool in research
and industry. Thus, comparing the power of supercomputers has become a
central topic. The HPC community selected the High Performance LINPACK
benchmark (HPL) as the central metric, reporting the corresponding Gflop/s for
the TOP500 ranking. HPL is an example of a highly scalable MPI program, heav-
ily optimized to squeeze the utmost performance out of parallel machines. Com-
bined with a compute heavy kernel, HPL almost reaches the theoretical Gflop/s
peak performance of machines. However, the majority of real-world applications
feature kernels which are memory-bound on modern hardware and usually reach
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 172–192, 2015.
DOI: 10.1007/978-3-319-17248-4 9
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less than 20 % of the theoretical peak performance [19]. Thus, the current rank-
ing relies purely on a heavily optimized, compute-bound application, arguably
very untypical for real-world HPC applications.

The discrepancy in performance between HPL and real-world applications
has grown larger over the years, mainly due to a developing trend in computer
architectures: the available computing power increases a lot faster than memory
speed. The latter therefore limits the data throughput of an increasing number of
computational kernels. In HPL this is irrelevant, as the amount of data required
per computation (Byte/Flop) is very small. Discussions on HPL’s lack of rep-
resentativity have become more frequent in recent years and a new benchmark
was proposed to address the above mentioned issues: High Performance Conju-
gate Gradients (HPCG). The most expensive kernel of HPCG is dominated by
a matrix-vector multiplication. With a Byte/Flop ratio bigger than 4 [10], this
kernel shows memory-bound behavior for all current hardware.

In this paper, we present a model capable of predicting the performance
of HPCG for a given architecture within 3 % of the real value, based on two
simple hardware metrics: effective memory bandwidth from main memory and
IC latency. The good predictive power of the model indicates, that only these two
hardware metrics are relevant for HPCG performance. Furthermore, the model
allows us to extrapolate HPCG’s performance to future systems.

The paper is organized as follows: In Sect. 2 on overview of related work
is presented. Section 3 describes hardware platforms and software enviroments
used in this work. Section 4 explains the transition from the HPL to the HPCG
benchmark and analyzes the implementation of HPCG. In Sect. 5 we introduce
the performance model. Section 6 evaluates the performance model and predicts
the performance of HPCG on future systems. Finally, in Sect. 7 we draw conclu-
sions and discuss future work.

2 Related Work

In this section we give a short overview on related work, in particular alterna-
tive benchmarks to quantify the performance of HPC systems and performance
models for these benchmarks where available.

While HPCG and HPL both consist of a single application which is dom-
inated by a single kernel, the NAS parallel benchmark [4,5] is a collection of
small applications or kernels from the fields of computational fluid dynamics,
linear algebra, etc. A MPI + OpenMP version has been presented and analyzed
in [9]. Similarly, the SPEC MPI2007 benchmark suite [17] is a collection of MPI-
parallel compute-intensive applications which has been analyzed in [21]. While
the type of applications used in both of these benchmark suites make up a signif-
icant part of the workload in most supercomputing centers, the resulting number
is in both cases a somewhat arbitrarily weighted total execution time. Further,
these benchmarks do not explicitly target scalability of very large machines.

The HPC Challenge benchmark [16] in contrast consists of very low-level
kernels (including HPL, Stream, FFT, Random Access, etc.), but does not try
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to produce a single aggregated metric out of these. Instead the individual bench-
marks can be used to measure specific characteristics of a systems. For instance,
this paper uses a Stream benchmark to quantify the effective memory band-
width. Similarly, Random Access can be used to measure the latency of remote
memory accesses, and FFT to quantify the quality of all-to-all communication
capabilities.

The most widely used benchmark to characterize the performance of super-
computers is still HPL [18]. Discussions on shortcomings of HPL can be found
in [11,13].

The proposed new benchmark HPCG investigated here is based on a itera-
tive sparse-matrix Conjugate Gradient kernel. The initial version of HPCG, i.e.
v1.0, used a simple additive Schwarz pre-conditioner and symmetric Gauss-Seidel
sweep for each sub-domain [11]. The pre-conditioner was replaced in version 2.0
with a multi-grid approach using 3 levels of coarsening. Effectively, this is a kind
of tiling of the algorithm and allows to use the caches more effectively. Perfor-
mance analysis of pre-conditioners is a vast field of research. Here we mention
only [3], discussing a multi-grid approach similar to the one used in HPCG, and
[6] for a survey of various other techniques. Most pre-conditioners use sparse-
matrix vector multiplication which was modelled and optimized for instance in
[7,8]. An other important part of the benchmark is network communication,
were related work includes [20] on simulators for network interconnects, [14,15]
on modeling of collective MPI operations and [22] on MPI communication over-
head analysis.

3 Platform

In this section we describe the hardware and explain the software stack used in
this work. Real performance data on HPCG (version 2.4) was collected on three
different platforms, which shall be referred to as A, B and C. Furthermore, as
will be described in Sect. 6, large validation runs were performed on a further
platform not included in the process of modelling.

– The platform A is based on the XC30 architecture. It contains 64 nodes with
2 chips of the Intel SandyBridge 2,6 GHz E5-2670 per node. Each chip has 8
cores (16 HT) with 20 MB of shared L3 cache per chip and 4 memory chan-
nels connected with DDR3 1600 MHz, which makes the maximum memory
bandwidth 51.2 GB/s. The cores use “Turbo Boost” technology that allows
to increase the frequency to 3.3 GHz as long as the thermal budget is not
exceeded. All of the cores can execute 8 Flop per cycle. Peak performance per
socket is 166.4 Gflop/s. The interconnection network is an Aries [1] with a
Dragonfly topology, a bandwidth of up to 117 GB/s per node and a latency
between the closest nodes of less than 2µs.

– The platform B is based on AMD Opteron Interlagos 6276 processors (2 chips
per node). Each chip has 16 cores and 16 MB of shared L3 cache. The Interla-
gos with DDR3 PC3-12800 gives a memory bandwidth of 51.2 GB/s. Each core
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runs at 2.3 GHz (up to 3.2 GHz with TurboCore) and can execute 4 Flop per
cycle. Peak performance per socket is 147.2 Gflop/s. The interconnect is of the
type Gemini [2] with a 3D torus topology, 160 GB/s bandwidth per node and
the lowest latency of 2µs.
On platforms A and B, we use the GNU Programming Environment: C/C++
GNU Compiler 4.8, MPICH-6.2 Cray MPI library that uses the MPICH2
distribution from Argonne.

– The platform C is based on Intel Xeon X5560 chips (Nehalem), it contains
2 chips per node. The chip contains 4 cores (8 HT) and works at 2.80 GHz
(3.20 GHz maximum for Turbo Boost). The L3 cache size is 8 MB, 3 channels
with 1333 MHz memory interface which delivers 32 GB/s. Peak performance
per socket is 44.8 Gflop/s.
The Infiniband interconnect of platform C uses Voltaire Grid Director 4036
switches with 36 QDR (40Gbps) ports (6 backbone switches). We use C/C++
GNU Compiler 4.8 and the OpenMPI library 1.6.5.

4 From the HPL to the HPCG Benchmark

In this section, we review the HPCG benchmark. First we comment on the
importance and relevance of a new benchmark for comparing the most powerful
supercomputers in the world, then we describe the structure and routines of the
implementation.

4.1 Transition

Two times per year, the TOP500 project publishes a ranking of the worlds most
powerful supercomputers. The ranking is based on performance achieved for
HPL, measured in Gflop/s. HPL implements a LU decomposition with partial
pivoting.

The TOP500 measurement rules allows modifying the internal functions and
tuning input parameters for an optimal result. This modification freedom has
lead to significant restructuring of the code and redesigns of the input. Mean-
while, HPL is a highly optimized software package. Furthermore, the arbitrary
problem size, combined with the compute complexity O(N3) of the matrix multi-
plication, implies selecting the largest problem size that fits to the main memory.
This straight forward choice leads to such enormous costs of the main kernel, that
everything else becomes effectively irrelevant. Furthermore, due to the nature of
the kernel, the Byte/Flop ratio is small and it is therefore purely compute-bound.
HPL is a non-trivial code with complex communication patterns. However, for
the reasons explained above the performance-optimized HPL runs display an
almost identical behaviour to a pure matrix multiplication and reach around
90 % of the theoretical peak performance.

Real-world applications usually do not have such an increadibly expensive
compute-bound kernel, but a more diverse set of kernels, which do not dwarf
communication costs. Furthermore, many kernels have large Byte/Flop ratios,
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rendering them memory-bound. Thus, with real applications 20 % of theoretical
peak is considered very good. Finally, the trend in hardware development points
towards decreasing ratios of available Bytes per Flop, which will decrease the
achievable percentage of theoretical peak even further.

The lacking representativity of HPL is increasingly a matter of general dis-
cussion. HPCG has been developed with these discussions in mind, aiming at a
far superior representativity. HPCG is not intended to replace HPL, but rather
to complement it.

HPCG features the same freedom regarding modification of routines and
problem size as HPL and retains Gflop/s as the unique evaluation metric. The
crucial difference between HPL and HPCG is the respective main computational
kernel. While in HPL it is a matrix multiplication, in HPCG it is a matrix vector
multiplication. As we will show, the higher Byte/Flop of the matrix vector mul-
tiplication renders it memory-bound on current and most likely future hardware,
leading to a better representativity for real-world applications.

4.2 HPCG Structure and Routines

In this paper, we used the HPCG version 2.4 without any further modification.
The code is written in C/C++ and for parallelization the user can select MPI
and/or OpenMP at compile time. The problem size and minimum execution time
is specified in the input file. In order to produce official results, the execution time
has to be at least 1 h. The authors of HPCG suggested to increase the minimal
problem size to achieve a memory footprint beyond L3 cache sizes [12], but this
is currently not contained in the requirements for the benchmark (currently the
minimal size is 16,16,16).

Comparing MPI with hybrid MPI/OpenMP on homogeneous clusters, we
decide to model only pure MPI execution, as the performance is much higher
than for hybrid execution. There are two main reasons for it: First, the HPCG
algorithm is well balanced on MPI level, and the OpenMP dynamic balanc-
ing feature cannot deliver any performance improvement, and second, OpenMP
threads are idle during communication operation due to the fork/join model
which lead to performance drop.

The HPCG benchmark (version 2.4) is based on a conjugate gradient solver,
where thepre-conditioner is a three-levelhierarchicalmulti-gridmethod(MG)with
Gauss-Seidel relaxation. The number of iterations is fixed at 50 per set, which is
sufficient for the residual to dropbelow1−6. The structure of themain loop is shown
in Fig. 1.

The algorithm startswithMGthat contains symmetricGauss-Seidel (SYMGS)
and sparse matrix-vector multiplication(SpMV) for each depth level. Data is dis-
tributed across nodes, thus SYMGS and SpMV require data from their neigh-
bors. Their predecessor, an exchange halos(ExchangeHalos) routine, provides
data for SYMGS and SpMV, therefore performing communication with neigh-
bors. An iteration within the main loop also calls the SpMV/ExchangeHalos
pair. Dot product (DDOT) locally computes the residual, while MPI Allreduce
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Fig. 1. Pseudocode of the HPCG main loop and the Multi-Grid routine. Modeled
routines are basic blocks for the HPCG pseudocode.

follows DDOT and completes a global dot product operation. WAXPBY updates
a vector with the sum of two scaled vectors.

The routines SYMGS, SpMV, WAXPBY, DDOT are the basic computational
blocks of HPCG, while the routines MPI Allreduce and ExchangeHalos are the
basic communication blocks. In the next section we discuss internals of these
routines and how they are modelled.

5 Model

In this section, we describe basic considerations for modelling the performance
of HPCG. From these considerations, the executing time of every routine is
derived. In combination with an estimation of the number of Flop, this results
in a model for predicting the Gflop/s which can be achieved with HPCG on a
given hardware (Fig. 2).

5.1 Basic Considerations

Estimating execution time of a routine requires the following information: type
and number of operations of the routine, the size of memory used by the routine
and technical information on the machine (system description).

Large HPC machines in essence consist of two parts: shared memory nodes
for computation and the interconnection network responsible for communication
between nodes.

We discuss and model two distinct classes of routines: computational and
communication. Communication depends on the interconnection characteristics,
while computation depends on the characteristics of the compute nodes.
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Fig. 2. Required memory per MPI process for different problem sizes of HPCG.

Memory vs. Compute Bound. The execution of a computational kernel
contains two phases:

– Memory operations, i.e. fetching data from memory and writing results back
– Execution of arithmetic and logic operations

The memory speed and the amount of data determine the execution time of
memory operations, while the CPU clock speed, Flop per cycle, amount and type
of operations define the execution time of computation. The more expensive of
the two, memory operations vs. computation, limits the performance and thus
renders the overall kernel memory- or compute-bound.

The metric Byte/Flop quantifies the amount of data a kernel requires to
perform one Flop. When used for hardware, it quantifies the maximum amount
of data which can be delivered per available Flop.

HPCG mainly performs a matrix-vector operation on sparse matrices. The
number of Flop to be performed is 2 ∗ nnz, where nnz is the total number of
non-zero elements. The size of one float (double) is 8 Bytes and the required
memory is (nnz+2 ∗ n) * 8 Bytes, where n is the matrix dimension. For large
problem sizes nnz ≈ 27 ∗ n. The Byte/Flop requirement of HPCG is therefore
≈ (28/27 ∗ nnz ∗ 8Bytes)/(2 ∗ nnzF lop) > 4 Byte/Flop.

In order to check the limitation of HPCG we compare the Byte/Flop demand
of HPCG with the respective values for the used hardware, as shown in Table 1.

Clearly, HPCG is memory-bound, as the amount of Flop that can be exe-
cuted is limited by the maximum data throughput of the respective platform.
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Table 1. Performance for platforms A-C in terms of Byte/Flop and the Byte/Flop
requirement for HPCG.

HPCG Platform A Platform B Platform C

Byte/Flop > 4 0.3077 0.3478 0.7142

Furthermore, none of the TOP500 machines offers anywhere near 4 Byte/Flop.
A vector processor delivers up to 1 Byte/Flop, while a scalar processor usually
delivers less than 0.5 Byte/Flop.

Thus, knowing the effective bandwidth and the required data for a given
routine directly allows us to model the execution time. The theoretical peak
of memory bandwidth is not reachable due to the internal implementation of
the processor architecture and its resources. Further, there is no reliable way to
estimate the effective memory bandwidth from the theoretical one. Therefore,
measuring the effective bandwidth is an unavoidable step and in this work we use
the Triad stream benchmark kernel. Usually one core cannot exploit the whole
memory bandwidth of a socket, so we occupy all cores with a stream kernel,
measuring the total effective memory bandwidth of the socket. From this, we
compute the average effective memory bandwidth per core and use it for the
performance model.

Communication. In HPCG there is collective communication (MPI Allreduce)
and the routine HaloExchange, performing a set of point-to-point communication.

The amount of data in the MPI Allreduce is independent of the problem
size. However, the cost of the collective routine increases with number of MPI
processes (N) and therefore becomes relevant for very large supercomputers.

The amount of data communicated in HaloExchange depends on the problem
size. However, the cost is independent of N .

Problem Size. We evaluated HPCG on the node level for different problem
sizes. Figure 3 shows performance results in terms of Gflop/s for different problem
sizes, running on three different platforms. Minimum problem size corresponds
to the minimal size allowed for the benchmark, 16x16x16 3D sparse matrix
per MPI process. We distinguish three different phases: problem size that fits
to the L3 cache, a transition phase and a constant performance regime. The
smallest possible problem size requires 2.1 MB per core and only fits to the L3
cache of the platform A (2.5 MB/core). In the transition phase the problem is
only slightly larger than L3 cache and the performance depends strongly on
the cache properties. For larger problem sizes the performance asymptotically
approaches a constant value and depends on the effective memory bandwidth to
main memory only.

If the memory footprint fits to the L3 cache, the kernels still are memory
bound, however, the effective bandwidth of interest is to L3 cache instead of to
main memory. The difference in these bandwidths is large. We argue that, while
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Fig. 3. Gflop/s of computational routines for different problem sizes.

the bandwidth to main memory is a relevant metric regarding the suitability
of a given hardware for real-world applications, the size of the L3 cache is less
relevant. It therefore makes little sense that the size of the L3 cache has a
large impact on the measured performance. We suggest therefore to increase the
minimal problem size, in order to avoid this scenario, which is in line with the
opinion of the authors [12]. In the following we will assume this limitation is
in place.

5.2 Modelling Computational Routines

The execution time of all computational kernels depend on the size of the 3D
sparse matrix and the number of non-zero elements per local row. The number
of local rows is equal to nx ∗ ny ∗ nz, while the number of non-zero elements in
a row is 27 or fewer. The number 27 is hardcoded within the benchmark. The
limit is shown below:

lim
nx∗ny∗nz→∞numberOfNonzerosPerRow = 27

For a large problem size we consider the number of non-zeros as equal to 27.
Instances of computational routines called directly from the main loop work on
the whole domain, while the MG routine calls recursively a set of computational
routines, reducing the resolution per depth. We will discuss the MG routine
further down.
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The number of outer iterations (LNI) appears in all computational kernels
and sub-kernels:

LNI =
nx ∗ ny ∗ nz

23∗d

SYMGS. The Symmetric Gauss-Seidel Method is the most expensive routine in
the benchmark (except for MG, which is a combination of routines). It performs
two steps: forward and backward sweeps. Regarding the memory footprint and
number and type of operations, the two steps are identical. Each step performs
a two dimensional loop, the outer number of iterations being LNI and the inner
number 27. Pseudo code is shown below:

Loop j=1..LNI(depth)

Loop i=1..27

c[i]+=a[j]*b[index[j]

endloop

c[i]+=d[i]*b[i]

b[i]=c[i]/d[i]

endloop

The kernel is based on a Flop with double precision, where one factor has
indirect addressing. The two dimensional loop fetches two doubles and one inte-
ger in each iteration which makes 20 Bytes in total (arrays a and b in pseudo
code). The process unit also fetches arrays c and d in the outer loop and a number
of non-zero elements, which increases the total size of data in memory. We model
the execution time by dividing the required data by the effective bandwidth from
main memory(BWeff):

executionSYMGS(sec) = 2 ∗ LNI ∗ (20 + 20 ∗ 27)(Bytes)
BWeff(Bytes/sec)

SpMV. The SpMV routine is very similar to SYMGS, but performs only one
step. The pseudo code is:

Loop j=1..LNI(depth)

Loop i=1..27

c[i]+=a[j]*b[index[j]

endloop

d[i]=c[i]

endloop

The number of iterations, memory accesses and main computational opera-
tions are the same for both routines. The model is therefore analoguous to above
(Fig. 4):

executionSpMV (sec) =
LNI ∗ (20 + 20 ∗ 27)(Bytes)

BWeff(Bytes/sec)
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Fig. 4. Modeled and measured execution time of the two most expensive computational
routines.

WAXPB. The WAXPB routine behaves like a triad vector kernel, which is the
most complex scenario of all stream vector kernels. The update of two scaled
vectors is shown below.

Loop i=1..LNI(depth=0)

c[i]=alfa*a[i]+beta*b[i]

endloop

Vectors a, b and c contain elements of size double. So, 24 Bytes from memory
are required for every iteration. The number of iterations is always the same for
a given input set as only the main loop calls the WAXPB routine directly. The
execution time is modelled as:

executionWAXPB(sec) =
LNI ∗ 24(Bytes)

BWeff(Bytes/sec)

DDOT. First the DDOT routine computes locally a dot product before per-
forming a global sum operation across the system. The multiplication of vector
elements and accumulation of the results into a single variable in pseudo code:

Loop i=1..LNI(depth=0)

c+=a[i]*b[i]

endloop

While computationally WAXPB and DDOT are different, their memory foot-
print is very similar. However, the DDOT routine only requires 16 Bytes per



Performance Modeling of the HPCG Benchmark 183

iteration. The execution time without communication is modelled as:

executionDDOT (sec) =
LNI ∗ 16(Bytes)

BWeff(Bytes/sec)

5.3 Modelling Communication

We execute HPCG in parallel using MPI, which requires static data distribution
across processes with separated address spaces. Naturally, the data decompo-
sition is 3-dimensional due to the 3D sparse matrix. Each process receives the
same input size and the algorithm is almost perfectly load balanced. Communica-
tion between processes uses the MPI interface and there are two communication
routines: MPI Allreduce that finalizes the DDOT routine and a halo exchange
between neighbouring MPI processes.

Both routines use the MPI COMM WORLD communicator. There is no inter-
leaving of communication between different communicators, which makes routing
in the IC network easy. Both routines use blocking MPI calls and the nature of the
algorithm holds no potential for overlapping communication and computation.
The communication behaves as synchronization points for all processes.

Collective. The MPI Allreduce is the only collective communication used in
the algorithm. The operation reduces a single variable of size double over all
processes. As with all collective operations, the MPI Allreduce implementation
relies on point-to-point communication and the optimal implementation depends
on the topology of the IC network itself. The hypercube algorithm performs
reduce among N processes in log(N) steps. The algorithm reduces the informa-
tion in the least number of steps necessary and shows the highest efficiency for
regular topologies. The amount of data per communication step is 8 Bytes, thus
we consider the latency between processes as the only relevant IC parameter and
disregard the bandwidth in the model (Fig. 5).

For N MPI processes and a given latency l between processes, we predict the
execution time of a MPI Allreduce operation as

executionAllreduce(sec) =
M∑

i=1

li(log(Mi) − log(Mi−1))

Each index refers to a group of processes with the same latency. E.g. l0 refers
to the latency between MPIs within a socket, l1 refers to the latency between
MPIs within a node that are located on different sockets, l2 refers to the latency
between MPIs within a blade that are located on different nodes etc. Mi is the
maximum number of MPI processes in a group with the same latency time.

Point to Point. The halo exchange is a nearest-neighbor data exchange. It is
a common communication pattern for MPI-HPC applications. The number of
neighbors of a given MPI process depends on the location in the decomposition
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Fig. 5. Modeled and measured execution time of the MPI Allreduce operation (8 Byte)

grid, the maximum being 26 neighbors. If HPCG is run on 27 or more MPI
processes at least one process has 26 neighbors in the halo exchange phase.
The maximum data size that one process receives or sends during a single halo
exchange instance is:

maxHaloSize(Bytes) = (2(nx ∗ ny + nx ∗ nz + ny ∗ nz) +
4(nx + ny + nz) + 8) ∗ 8Bytes

The MG routine calls the halo exchange from different depths, reducing
the halo size by a factor of 22∗depth. Figure 6 shows the execution time of the
ExchangeHalos routine for different problem sizes. Rendezvous protocol intro-
duces a significant performance drop which should be part of the model.

We assume the minimal effective bandwidth for data movement across the
IC in the halo exchange (IC BWeff ). As even for large workloads maxHaloSize
is relatively small for modern IC networks, the overhead of the MPI call plays
an important role. Halo exchange is achieved through a sequence of MPI Irecv,
MPI Send and MPI Wait. The overall model is:

executionHaloEx(sec) =
maxHaloSize

IC BWeff
+ 26(overhead(Irecv, Send,Wait)) +

overhead(Rendezvousprotocol)
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Fig. 6. Measured execution time of halo exchange for platform B with increasing mes-
sage size. The impact of the rendezvous protocol is clearly visible as a jump in execution
time.

The overheads for Irecv, Send and Wait can be directly determined from the
latency, the overhead of the rendezvous protocol is determined from the MPI
pingpong benchmark. The latter can be easily avoided by adjusting the corre-
sponding parameter, however, as it barely impacts the model, we did not do so.

5.4 Modelling the Whole Benchmark

MG – A Combination of Routines. The MG routine combines multiple
routines and calls them from different depths. The multi-grid level decreases the
problem size by 23∗depth.

Thus, larger depth indicates smaller problem size and shorter execution time.
In the forward recursion phase, the MG calls the sequence HaloEx-SYMGS-
HaloEx-SpMV up to depth 2, while depth 3 performs only HaloEx-SYMGS.
The backward recursion phase calls HaloEx-SYMGS. The following sum gives
the execution time of the MG routine.

executionMG = HaloEx(depth = 3) + SYMGS(depth = 3) +
2∑

depth=0

(2 ∗ SYMGS(depth) + SpMV (depth) + 3 ∗ HaloEx(depth))
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Fig. 7. Percentage of HPCG total execution time per routine. Measured on platform B.

Table 2. Effective memory bandwidth measured by using the Triad stream kernel and
minimal/maximal IC latency measured by the osu mpi benchmark.

Platform A Platform B Platform C

BWeff(MB/s) per core 4705 1700 3430

IC latency(µs) (min, max) 2 4 2 90 4 240

Total Execution Time. The main loop does 50 iterations, calling the sequence
MG-DDOT-WAXPB-SpMV-DDOT-WAXPB-WAXPB-DDOT. The first itera-
tion calls one instance of WAXPB less, we forgo considering this in the model.
Thus, the execution time of one iteration is modelled as:

totalT ime = MG + SpMV (depth = 0) + 3(DDOT + WAXPB)

Predicting Gflop/s. In order to calculate the Gflop/s, HPCG predicts the
number of floating point operations necessary per routine and measures the
execution time. Input data set and the total number of non-zeros define the total
number of floating point operations. If we assume 27 non-zero elements per row
for a large problem size, the total number of non-zero elements is:

nnz = N ∗ nx ∗ ny ∗ nz ∗ 27

The resulting total number of floating point operation is:

MGflop = 10 ∗ (nnz + nnz/8 + nnz/64) + 4 ∗ (nnz/128)
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Fig. 8. Predicted vs. measured execution time per computational routine for platforms
A-C.

SMPVflop = 2 ∗ nnz

DDOTflop = 6 ∗ N ∗ nx ∗ ny ∗ nz

WAXPBflop = 6 ∗ N ∗ nx ∗ ny ∗ nz

Combined with the prediction of the execution time, this allows us to predict
the achieved Gflop/s and thus completes the performance model of HPCG. The
model is suitable for large problem sizes (per MPI process) and is viable even
for very large systems, which matches the HPCG target as a new benchmark for
the TOP500 list.

6 Results

We have validated the proposed performance model by comparing predicted
performance values to measured results. The model shows excellent predictability
of HPCG performance. Based on the model we then predicted the performance
on envisioned future systems.

6.1 Validating the Model

The essential part of the HPCG model is a prediction of computational routines
which have almost constant execution time for different numbers of cores.



188 V. Marjanović et al.

Fig. 9. Measured performance results vs. the prediction for HPCG on platforms A-C.

We analyze the HPCG routines for a large problem size and different number
of cores. For all data shown, large refers to the size (96x96x96) per core. Figure 7
compares percentages of execution time per routine, measured on platform B.
The MG pre-conditioner clearly is the most expensive routine, taking more than
80 % of the total execution time and very slowly become less important for larger
numbers of cores, while the MPI Allreduce slowly becomes more important. The
computational routines take more than 98 % of the total execution time.

In order to determine the effective bandwidth to main memory and the
latency of the IC, we obtained results by using the Triad stream benchmark
kernel and a MPI pingpong benchmark respectively. Table 2 shows results for
the different platforms.

Figure 8 compares the measured and modeled HPCG computational routines
per node for platforms A-C.

Figure 9 shows the measured performance results vs. the predicted perfor-
mance for the whole benchmark. As can be seen, HPCG scales approximately
linearly with N and the performance predictions from our model are very accu-
rate (deviations of less than 2 %).

Finally, we tested our model by predicting the performance for a full HPC
system, of which we had no performance data during model creation, and subse-
quently comparing to the real performance results. This supercomputer is based
on XC40 nodes and an Aries interconnection network. Each node contains two
Intel Haswell E5-2680v3 2,5 GHz, 12 cores per socket with 128 GB of DDR4-
2133 RAM memory. Each socket has 30 MB of L3 cache. Having determined the
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Fig. 10. Extrapolating the relative importance of communication cost in HPCG to huge
HPC systems. Original properties reflect the platform B, the other lines are predictions
for systems differing in IC latency or effective memory bandwidth, respectively, by one
order of magnitude.

effective memory bandwidth (3740 MB/s per core) and the maximum IC latency
(3µs), we predicted the performance and then ran HPCG across all 3900 nodes
(93600 cores) with a problem size of (nx,ny,nz)=(144,144,144) per MPI process.
Our model predicts the overall performance to within 1 % of the real value.

6.2 Extrapolating HPCG Performance to Future Systems

High requirements for Byte/Flops renders the computational kernels of HPCG
memory-bound for all modern machines. In order to predict HPCG benchmark-
ing potential for future exascale systems, we consider that all computational
kernels will remain memory-bound, which is to be expected.

Further, communicationobviouslycosts timewithoutproducingFlop/s.There-
fore, it is tobe expected that thebenchmarkwill be runwith the largestproblemsize
which fits to the main memory in order to increase the computation to communi-
cation ratio. This is analoguous to what can be observed for the HPL benchmark.
Machines featured in the TOP500 currently have 2 GB of main memory or more
per physical core. According to the memory usage formula from Sect. 4 the largest
problem size which fits to main memory is (128,128,128) per MPI process and we
assume future systems will have similar amounts of main memory per core.
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Communication cost grows with N due to the MPI Allreduce. In Fig. 10 we
show an extrapolation to very large numbers of cores for platform B, the prob-
lem size is taken as (128,128,128). We have evaluated for the current hardware
properties, and furthermore changed one property at a time by one order of
magnitude. For the current setting, the communication cost stays below 1,2 %
of the entire execution time for machines with up to one million cores. Further-
more, for one billion cores, the communication still costs below 3 %. As can be
seen in Fig. 10, unless the available Byte/Flop ratio or the IC latency increase
significantly for future systems, the communication cost will remain irrelevant
even at the exascale.

7 Conclusion

The TOP500 list relies on HPL, a benchmark increasingly unrepresentative for
the performance issues real-world applications face today. Thus, as hardware ven-
dour try to boost HPL results, hardware development is subtly steered towards
increasing overall compute cycles and frequencies, which cannot be exploited
and even introduce overheads in energy consumption. HPCG, a prominent can-
didate for the next step in supercomputer benchmarks, moves into the right
direction: by featuring memory-bound kernels, it reflects the bottlenecks of real-
world applications more realistically.

As we have demonstrated in this paper, it is possible to predict the perfor-
mance of HPCG with accuracy, relying only on two numbers: effective memory
bandwidth from main memory and highest occurring IC latency. Obviously, the
logical conclusion is, that the performance of HPCG only depends on these two
numbers. The effective memory bandwidth determines the necessary time to exe-
cute the computational kernels, as the limiting factor is the availability of data
to perform computations on. The IC latency determines the time to perform the
MPI Allreduce, as the amount of data (per process) being communicated is only
8 bytes and therefore IC bandwidth is irrelevant. The MPI Allreduce is the only
relevant communication, as it’s time requirement increases with log(N), while
the point-to-point communication is constant in N .

Furthermore, as shown in the paper, the problem size is extremely relevant.
Especially, the smallest hitherto allowed problem size can fit into the L3 cache
on certain hardware. In this case, the effective bandwidth of interest of course
is to the L3 cache, which is a lot higher then to the main memory, speeding
up the benchmark accordingly. We argue that this is a problem: Hardware with
sufficiently large L3 cache get a huge competitive edge, which is not sensible.
We argue the problem size should have a much more restrictive lower limit, to
ensure it does not fit to L3 cache, as discussed in [12]. Given that small prob-
lem sizes will be restricted, the obvious choice will be to increase the problem
size to the limit of main memory, thereby diminishing the relative cost of com-
munication. We have shown that for a representative current supercomputer
architecture, this strategy effectively dwarves communication cost. Keeping the
hardware specifications and extrapolating to a system with one billion cores, the
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communication cost is less than 3 %. Thus, even the IC latency can be effec-
tively ignored, rendering the overall performance approximately proportional to
the effective memory bandwidth of one single node.

Thus, HPCG is in danger of encountering the same problems as HPL: by
allowing arbitrary problem sizes only one system property is relevant for the
final result, while the performance of real-world applications depends on a much
more diverse set of properties. We suggest this approach be reconsidered. Even
simple changes to the execution protocol could drastically improve on this. For
example, running a suite of short simulations with varying, predefined system
sizes and reporting the (weighted) average performance.

Our model targets performance prediction for the official, unmodified HPCG
benchmark (version 2.4) run on homogeneous clusters. In the future, we plan
to extend our model to heterogeneous architectures, e.g. featuring GPGPU and
Xeon Phi accelerators.
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In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010.
LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011)

20. Smith, J.E., Taylor, W.R.: Accurate modelling of interconnection networks in vec-
tor supercomputers. In: Proceedings of the 5th International Conference on Super-
computing, pp. 264–273. ACM, New York (1991)

21. Szebenyi, Z., Wylie, B.J.N., Wolf, F.: SCALASCA parallel performance analyses of
SPEC MPI2007 applications. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW
2008. LNCS, vol. 5119, pp. 99–123. Springer, Heidelberg (2008)

22. Xu, Z., Hwang, K.: Modeling communication overhead: MPI and MPL performance
on the IBM SP2. IEEE Parallel Distrib. Technol.: Syst. Appl. 4(1), 9–24 (1996)

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/


On the Performance Prediction of BLAS-based
Tensor Contractions

Elmar Peise(B), Diego Fabregat-Traver, and Paolo Bientinesi

AICES, RWTH Aachen, Aachen, Germany
{peise,fabregat,pauldj}@aices.rwth-aachen.de

Abstract. Tensor operations are surging as the computational building
blocks for a variety of scientific simulations and the development of high-
performance kernels for such operations is known to be a challenging task.
While for operations on one- and two-dimensional tensors there exist
standardized interfaces and highly-optimized libraries (BLAS), for higher
dimensional tensors neither standards nor highly-tuned implementations
exist yet. In this paper, we consider contractions between two tensors of
arbitrary dimensionality and take on the challenge of generating high-
performance implementations by resorting to sequences of BLAS kernels.
The approach consists in breaking the contraction down into operations
that only involve matrices or vectors. Since in general there are many
alternative ways of decomposing a contraction, we are able to methodi-
cally derive a large family of algorithms. The main contribution of this
paper is a systematic methodology to accurately identify the fastest algo-
rithms in the bunch, without executing them. The goal is instead accom-
plished with the help of a set of cache-aware micro-benchmarks for the
underlying BLAS kernels. The predictions we construct from such bench-
marks allow us to reliably single out the best-performing algorithms in a
tiny fraction of the time taken by the direct execution of the algorithms.

1 Introduction

Tensor contractions play an increasingly important role in various scientific
computations such as general relativity [1,2] and electronic structure calcula-
tions in quantum chemistry [3–5]. Computationally, contractions are general-
izations of matrix-vector and matrix-matrix products that involve operands of
higher dimensionality. While there are several highly-tuned implementations of
the Basic Linear Algebra Subprograms (BLAS) [6–8] for operands with up to
2 dimensions, there are no equivalently standardized high-performance libraries
for general tensor contractions. Fortunately, just as matrix-matrix products can
computationally be decomposed into a sequence of matrix-vector products, most
higher dimensional tensor contractions can be cast in terms of matrix-matrix or
matrix-vector BLAS kernels. However, each tensor contraction can be computed
via BLAS kernels in many, even hundreds, of different ways, each with its own
performance signature. This work addresses the problem of accurately predicting
the performance of BLAS-based algorithms for tensor contractions.
c© Springer International Publishing Switzerland 2015
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One could argue that only algorithms that use the gemm kernel1 are real can-
didates to achieve the best performance; while for the most part this observation
is true, due to the fact that in practical contractions it is often the case that one
or more dimensions are very small (while BLAS is mostly optimized for large
dimensions), the difference in performance between two gemm-based algorithms
can be dramatic. At any rate, with this work we aim at the accurate predic-
tion of any BLAS-based contraction, irrespective of which kernel is used. Our
approach, which never resorts to timing a full algorithm, makes use of what we
call micro-benchmarks. These benchmarks execute only one BLAS operation in
a prescribed memory environment. The idea is to analyze the structure of the
code, and determine the state of the cache (precondition) prior to the execution
of the kernel; we carefully recreate this state within the micro-benchmark so
that the specific kernel can be timed in conditions analogous to those experi-
enced in the actual algorithm. Based on these timings, we extrapolate the total
algorithm execution times with sufficient accuracy to single out the fastest algo-
rithms. This micro-benchmark-based prediction proves to be several orders of
magnitude faster than executions of the actual algorithms.

Tensor Notation. In the following, we denote tensor contractions by means of
the Einstein notation;2 let us briefly explain said notation by means of an exam-
ple. In the contraction Cabc := AaiBibc, the entries C[a,b,c] of the resulting
three-dimensional tensor C ∈ R

a×b×c are computed as

∀a∀b∀c.C[a,b,c] :=
∑

i

A[a,i]B[i,b,c].

(In this notation, a matrix-matrix product is denoted by Cab := AaiBib.) The
indices that appear in both tensors A and B — the summation indices i, j, . . .
— are called contracted, while those that only appear in either A or B (and thus
in C) — a, b, c, . . . — are called free or uncontracted. W.l.o.g., we assume that
tensors are stored as Fortran-style contiguous multidimensional double precision
arrays: vectors (1D tensors) are stored contiguously, matrices (2D tensors) are
stored as sequence of column vectors, 3D tensors (visualized as cubes) are stored
as a sequence of matrices (planes of the cube), and so on.

Related Work. The most prominent project targeting the efficient computa-
tion of tensor contractions is probably the Tensor Contraction Engine, a com-
piler built specifically for multi-tensor multi-index contractions to be executed
within memory constraints [9]; in light of the wide diffusion and nearly optimal
efficiency of the BLAS library, an extension to TCE was proposed to compute

1 gemm is the BLAS-3 routine for matrix-matrix multiplication, which on many systems
is optimized within a few percent of peak performance.

2 For the sake of simplicity and without any loss of generality, we ignore any distinction
between covariant and contravariant vectors; this means we treat any index as a
subscript.
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contractions via BLAS operations [10]. In the same spirit, we provided simple
rules to build a taxonomy for all contractions between two tensors, identifying
which BLAS routines are usable and how to best exploit them [11].

There also exists a variety of work in the field of performance prediction in the
context of dense linear algebra. A notable example is Iakymchuk et al. [12,13],
where the authors model the performance of dense linear algebra algorithms
analytically based on very detailed models of the occurring cache-misses. Also,
in [14], we use measurement-based performance models to predict the behavior
of blocked algorithms. However, none of these works target or address high-
performance tensor contractions and their peculiarities, i.e., very regular patterns
in routine invocation and memory access, but highly skewed dimensionality (tiny
sizes for at least one of the dimensions).

Structure of the Paper. The rest of this paper is structured as follows. The
systematic generation of BLAS-based algorithms for tensor contractions is dis-
cussed in Sect. 2. Our performance prediction framework is introduced in Sect. 3,
and experimental results for a range of contractions are presented Sect. 4.

2 Algorithm Generation

In this section, we briefly explain how we systematically generate a family of
BLAS-based algorithms for a tensor contraction. For a detailed discussion of the
topic, we refer the reader to [11].

Aware of the extreme level of efficiency inherent to the best BLAS imple-
mentations, our approach for computing a contraction consists in reducing it to
a sequence of calls to one of the BLAS kernels. Since BLAS operates on scalars,
vectors and matrices (zero-, one- and two-dimensional objects), tensors must
be expressed in terms of a collection of such objects. To this end, we intro-
duce the concept of slicing: With the help of Matlab’s “:” notation,3 slicing a
d-dimensional operand Op ∈ R

n1×n2×···×nd along the i-th index (or dimension)
means creating the ni (d−1)-dimensional slices Op[:, . . . ,:︸ ︷︷ ︸

i−1

,k, :, . . . ,:︸ ︷︷ ︸
d−i

], where

k = 1, . . . , ni.

Example 1. Consider the matrix-matrix product Cab := AaiBib. Slicing the
matrix B along dimension b reduces the matrix to a collection of column vectors;
accordingly, the matrix-matrix product is reduced to a sequence of matrix-vector
operations:4

3 In the Matlab-like notation used in this paper, 1:b are the numbers from 1 to b,
while an index : in a tensor refers to all elements along that dimension, e.g., C[:,b]

is the b-th column of C.
4 The pictogram next to the algorithm visualizes the slicing of the tensors that origi-

nates the algorithm’s sequence of gemvs. The red objects represent the operands of
the BLAS kernel.
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Similarly, a multi-dimensional tensor contraction can be reduced to opera-
tions involving solely matrices and vectors.

Depending on the slicing choices, a contraction is reduced to a number of
nested loops with one of the following kernels at the innermost loop’s body:

– BLAS-1:
• dot (vector-vector inner product: α := xT y),
• axpy (vector scaling and addition: y := αx + y),

– BLAS-2:
• gemv (matrix-vector product: y := Ax + y),
• ger (vector-vector outer product: A := xyT + A), and

– BLAS-3:
• gemm (matrix-matrix product: C := AB + C).

Notice that to comply with the BLAS interface, the elements in one of the
two dimensions of a matrix must be contiguous. Therefore, algorithms that rely
on gemv, ger, or gemm as their computational kernel may require a temporary
copy of slices before and/or after the invocation of the corresponding BLAS
routine.

As a case study, let us consider the contraction

Cabc := AaiBibc, (1)

which is visualized as follows:

Instead of a blind search for appropriate slicings, we generate algorithms by
following a goal-oriented approach: For each of the five kernels of interest, we
know the dimensionality required for each operand; accordingly, we deduce how
many slices are needed and which combination of free/contracted indices to slice.
Table 1 (left) exhibits, for each kernel, the conditions necessary for a contraction
to be computed in terms of that kernel. In particular, the second and the third
columns indicate how many contracted and free indices, respectively, appear in
each kernel. A and B refer to the first and the second input operand of the kernel;
in a contraction between tensors of arbitrary dimension, all indices beyond those
indicated in these columns must be sliced.

Example 2. Since gemm involves one free index in each of its operands A and
B, and one contracted index (common to both A and B), in order to reduce
a contraction to a sequence of gemm calls, one must slice all free indices of A
but one, all free indices of B but one, and all contracted indices but one. With
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reference to (1), this is achieved by slicing either dimension b or c, resulting
in the two algorithms (b-gemm and c-gemm)5 shown in the last two examples
of Algorithm 16.

As already mentioned, given a contraction, there is no obvious a-priori choice
of kernel and slicings to attain the highest performance. We therefore generate
all possible combinations. Moreover, due to their impact on performance and to
further stress our modeling tool, we generate all possible permutations of the
loops.

We developed a small algorithm and code generator that produces all such
algorithms, constructs for each of them a C-implementation, as well as an abstract
5 The algorithm names are composed of two parts: The first part is the list of sliced

tensor indices iterated over by the algorithm’s loops including an apostrophe ′ for
each copy-kernel; the second part is the BLAS-kernel at the algorithm’s core.

6 For algorithms with more than 1 for-loop, all slicings are visualized in blue and only
the kernel operands (the slicings’ intersections) are in red.
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Table 1. Rules for tensor slicing to obtain a given BLAS kernel. Left: how many
contracted and free indices appear in a kernel. Right: different slicings make it possible
to express one contraction in terms of different kernels. The names in the rightmost
column refer to Algorithm 1.

Kernel Number of indices Examples from Cabc := AaiBibc

Contracted Free Kernel indices Sliced indices Resulting

algorithm

dot 1 0 i c, a, b cab-dot

axpy 0 (1 inA ∧ 0 inB) ∨ a b, c, i bci-axpy

(0 inA ∧ 1 inB) c a, i, b aib-axpy

gemv 1 (1 inA ∧ 0 inB) ∨ i, a b, c bc-gemv

(0 inA ∧ 1 inB) i, b c, a ca-gemv

ger 0 1 in A ∧ 1 in B a, c i, b ib-ger

gemm 1 1 in A ∧ 1 in B i, a, b c c-gemm

syntax tree (AST) representing its loop-based structure. The ASTs are then
passed to the prediction tool introduced in the following section.

3 Performance Prediction

In this section, we present how to accurately model the performance of algo-
rithms that compute tensor contractions through BLAS kernels. These algo-
rithms consist of one or more nested loops and cast all computation in terms of
one single BLAS kernel. Taking advantage of this structure, we aim at estimat-
ing the execution time of a target algorithm with the help of only few micro-
benchmarks of the kernels, i.e., with no direct execution of the algorithm itself. In
order to obtain reliable estimates, the micro-benchmarks need to be executed in
a setup that mirrors as closely as possible the computing environment (most
importantly the cache) within the contraction algorithm. In the following, we
incrementally go through the steps required to build a meaningful “replica” of
the computing environment.

Throughout this section, we track the changes in the performance prediction
by considering the exemplary contraction Cabc := AaiBibc. We chose the tensors
A ∈ R

a×i and B ∈ R
i×b×c of size i = 8 and a = b = c = 8, . . . , 1,000 — a

deliberately challenging scenario due to the thin tensor dimension i, for which
BLAS kernels are generally not optimized. Our generator produces 36 algorithms
for the considered contraction, some of which are shown in Algs. 1:

– 6 dot-based,
– 18 axpy-based,
– 6 gemv-based: bc-gemv , cb-gemv , ac-gemv , ca-gemv ,

ab-gemv , ba-gemv ,
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– 4 ger-based: ci-ger , ic-ger , bi-ger , ib-ger , and
– 2 gemm-based: c-gemm , b-gemm .

In this section, to focus our attention, we will only consider the BLAS-2 and
BLAS-3 based algorithms (i.e., with kernels gemv, ger, and gemm).

We execute these algorithms on 1 core of an Intel Penryn E5450 (Harpertown)
CPU7 linking with the OpenBLAS library [15]. Figure 1a displays the perfor-
mance, in terms of computed floating point operations per clock cycle (flops/cycle),
measured for each algorithm; our goal is to accurately reproduce, without execut-
ing the algorithms, such performance profiles. While it is evident that only two of
the algorithms — the gemm-based c-gemm and b-gemm — are compet-
itive, we aim at predicting the behavior of all algorithms to develop and demon-
strate the broad applicability of our methodology.

3.1 Repeated Execution

The first, most intuitive, attempt to predict the performance of an algorithm relies
on the isolated and repeated measurement of its BLAS kernel’s performance. We
implemented this approach by executing each kernel ten times and extracting the
median execution time; the corresponding estimate is then obtained by multiply-
ing the median by the number of kernel invocations within the algorithm. In our
example, this boils down to multiplying the kernel execution time with the prod-
uct of all loop lengths.

The performance profiles predicted by this first, rough approach are shown
in Fig. 1b. By comparing this figure with the reference Fig. 1a, it becomes appar-
ent that while the two top algorithms are already correctly identified, the per-
formance of almost all algorithms is consistently overestimated — the average
absolute error with respect to the measured performance is 154%. In other words,
when executed as part of the algorithms, the BLAS kernels take longer to com-
plete than in the isolated micro-benchmarks. The reason for this discrepancy is
that the micro-benchmarks invoke the kernels repeatedly with the same memory
regions as operands, i.e., they operate on warm data (the operands remain in the
CPU’s cache). Within the algorithm, by contrast, at least one, and potentially
even all of the operands, vary from one invocation to the next, i.e., the kernels
operate at least partially on cold data.

3.2 Operand Access Distance

In order to improve the accuracy of the predictions, the idea is to first identify
the state of the cache in the algorithm prior to the invocation of the BLAS kernel
(“precondition”), and to then replicate this status in the micro-benchmark. For
this purpose, each algorithm is symbolically analyzed to reconstruct the order of
memory accesses involving the kernel’s operands. For each operand, we determine
the set of memory regions M that were loaded into cache since its last access,
and define the access distance as the sum of the size of these regions M .
7 2 GHz, 4 cores, 4 double precision flops/cycle/core, 6 MB L2 cache/2 cores.
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Fig. 1. Cabc := AaiBibc: Performance measurements and various stages of performance
predictions (BLAS-2 and BLAS-3). The presented errors for the predictions (b) – (f)
are the average absolute difference with respect to the measurements (a).
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Once the access distances for all operands of a kernel are determined, we
can create an artificial sequence of memory accesses to reconstruct the cache
precondition. Based on this cache setup, the BLAS kernels are timed in a micro-
benchmark that closely resembles the actual execution of the algorithm. As
before, these micro-benchmarks are repeated and timed ten times to yield a
stable median. From the median, the performance of the algorithm is again
obtained based on the number of kernel invocations per algorithm execution.

To predict which memory regions are in cache, we assume a fully associative
Least Recently Used (LRU) cache replacement policy8 and sum up the size of
all memory regions accessed since an operand’s last use, yielding the access
distance. In first instance, we also assume that all loops surrounding the kernel
are somewhere in the middle of their traversal (i.e., not in their first iteration);
this assumption will be lifted later.

We now describe how to obtain the access distance for each operand. The
presented method is general and allows for any combinations of loops and multi-
ple kernels within the abstract syntax tree (AST), however for the sake of clarity,
we limit the discussion to ASTs that only consist of a series of loops with a single
call to a BLAS kernel at their core.

For each operand Op, we examine the algorithm’s AST (see Sect. 2) with the
kernel of interest as a starting point. The AST is traversed backwards until the
previous access to Op (or the AST’s root) is found, thereby collecting all other
operands involved in kernels in the initially empty set M . Going up the AST,
three different cases can be encountered.

1. Op does not vary across the surrounding loop.
Example 3. In algorithm ca-gemv , repeated below, the operand b[:,:,c]
does not depend on the surrounding loop’s iterator a. Hence, M = ∅ and
b[:,:,c]’s access distance is 0.

Op refers to the same memory region as in the previous iteration of the
surrounding loop. The back-traversal therefore terminates and the memory
regions collected in M so far determine the access distance.

2. Op varies across the surrounding loop.
Example 4. In algorithm ca-gemv , the operand A[a,:] depends on the
surrounding loop’s iterator a.
Op referred to a different memory region in the previous iteration of the loop.
As a result, it is safe to assume that at least all memory regions covered by all
kernel operands throughout this loop’s iterations were accessed since the last
access to Op. Hence, all operands are added to M and the memory regions
are symbolically joined along the dimensions the loop iterates over.

8 Due to the regular storage format and memory access strides of dense linear algebra
operations such as the considered tensor contractions, this simplifying assumption
does not affect the reliability of the results.
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Example 4 (continued). The algorithm’s kernel operates on A[a,:],
B[:,:,c], and C[a,:,c]. Joining these operands across the index a yields
the memory regions M = {A[:,:], B[:,:,c], C[:,:,c]}.
Since a previous access to Op was not yet detected, the traversal proceeds
by going up one level in the AST, and applying the method recursively: the
surrounding loop now takes the role of the starting node and we look for a
previous access to Op joined across this loop.
Example 4 (continued). The back-traversal now looks for a previous access
to A[:,:] (A[a,:] joint across a) on the second-innermost loop. This time,
the region is independent of the surrounding loop’s iterator c; therefore, in
this second step, case 1. above applies and the access distance is computed
from the previously collected set M = {A[:,:], B[:,:,c], C[:,:,c]}.

3. The parent node is the AST’s root.
Example 5. In algorithm ca-gemv , the operand C[a,:,c] depends on
both of the surrounding loops’ iterators a and c. Therefore, the back-traversal
encounters case 2. above in both its first and second step, joining the ker-
nel’s operands A[a,:], B[:,:,c], and C[a,:,c] across first a and then c,
yielding M = {A[:,:], B[:,:,:], C[:,:,:]}. In the third step of the back-
traversal, the outermost loop is already the starting point — the algorithm’s
root is reached.
In this case, the considered region is accessed only once (and for the first time).
Since we do not know how the contraction is used (within a surrounding pro-
gram), we can generally not make any assertions on the access distance. For
the purpose of this paper, in which we execute the contraction repeatedly to
measure its performance, however, we assume that no further memory regions
were loaded since the last invocation of the contraction — i.e., we compute the
access distance from the previously collected memory regions in M .

Based on the such obtained access distance for each operand of an algorithm’s
kernel, we now construct a list of memory accesses that emulates the accesses
within the algorithm prior to the kernel’s execution. This list consists of accesses
to the kernel’s operands, interleaved with accesses to remote memory regions, in
order to flush portions of the cache corresponding to the access distances: First,
we access the operand with the largest access distance, then a remote region
that accounts for the difference to the next smaller access distance, followed
by the next operand, and so on until the operands with the smallest access
distance followed by a remote access of this size. If the access distances to the
first operands in this list are larger than 5

4 times the cache size, the list is
truncated down to this limit at the front.

Example 6. For algorithm ca-gemv , the following table summarizes the
operands Op, their sizes s, the corresponding collections M and the implicated
access distances d for contraction sizes a = b = c = 400 and i = 8 (all sizes in
doubles = 8 bytes):
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Op s M d

B[:,:,c] 3,200 ∅ 0

A[a,:] 8 {A[:,:], B[:,:,c], C[:,:,c]} 166,400

C[a,:,c] 400 {A[:,:], B[:,:,:], C[:,:,:]} 65,283,200

From these distances, we get the following list of memory accesses as a setup
for the gemv-kernel, where [s] correspond to remote memory accesses of size s:

C[a, :, c], [65,116,792], A[a, :], [163,200], B[:, :, c].

Note, that the remote accesses do not directly correspond to the access distances;
instead, this size is reached for each operand as the sum of the sizes of all
accesses to its right in this list. (e.g., the access distances of A[a,:] is reached
as 163,200 + sizeof(B[:,:,c]) = 166,400).

Now, the largest access distance is at 65,283,200 considerably larger than
983,040 (54 times the cache size of 6MB

8 = 786,432 doubles). Hence, the list is
cut at this size, yielding the final setup for this algorithm’s micro-benchmark:

[816,632], A[a, :], [163,200], B[:, :, c].

The thus obtained benchmark, consisting of the setup followed by the kernel
invocation, is once more executed ten times. The median of the kernel run-times
of these ten benchmarks is then used to compute our second execution time
estimate.

In Fig. 1c, we present the flops/cycle performance of our new estimates. These
predictions are much closer to the measured performance (Fig. 1a) than the first
rough estimates (Fig. 1b): the average error is reduced to 26.3%. For several
algorithms (such as ic-ger , Algs. 1), the error is already within a few
percent; for many others instead, the predictions are still off. In particular, the
performance of some algorithms — for instance, bi-ger (see Algs. 1) — is
now underestimated; this is due to the fact that based on the access distance,
certain operands are placed out of cache, while in practice they are (partially)
brought into cache through either prefetching or because they share cache-lines
across the innermost loop’s iterations. We address this discrepancy by further
refining our micro-benchmarks.

3.3 Cache Prefetching

In the considered type of tensor contraction algorithms, prefetching of operands
or sharing of cache lines across loop iterations occur frequently.

Example 7. In algorithm bi-ger , the operand A[:,i] points to a different
memory location in each iteration of the inner loop across i. However, these
vectors-operands are consecutive in memory; thus, when reaching the end of
A[:,i], the prefetcher will likely already load the next memory elements, which
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constitute A[:,i] in the next iteration. Likewise, operand B[i,b,:] varies
across inner loop iterations; however, since this loop iterates over the region’s
first dimension i, 8 consecutive operands9 B[i,b,:] will occupy the same cache-
line.

Such prefetching situations occur when a certain set of conditions are met,
namely:

1. the operand varies across the directly surrounding loop, and
2. the iterator of this loop indexes

– either the first dimension of the operand,
– or its second dimension, while the first is accessed entirely, or fits in a

single cache-line.

As part of our AST-based algorithm analysis, these conditions are tested; when
both of them are met, we can use a slight modification of the previously intro-
duced method to compute the prefetch distance, i.e., how long ago the prefetching
occurred. These prefetch distances are then integrated into the micro-bench-
mark’s setup list just like the access distances, only that for prefetch accesses
the access is limited to one cache-line along an operand’s first dimension.

Example 8. In algorithm ca-gemv , for which we explicitly constructed the
setup list in the previous section, both operands A[a,:] and C[a,:,b]meet both
prefetching conditions: 1. they vary across the surrounding loop iterator a and 2.
a indexes their first dimensions (sharing of cache-lines). As a result, their prefetch
distances are 0 and the prefetching access will load the entire operands since their
extension along the first, contiguously stored dimension is 1. Since the remain-
ing operand B[:,:,c] has an access distance of 0, all operands are now accessed
immediately before the kernel invocation; the setup list is reduced to

C[a, :, c], A[a, :], B[:, :, c].

(Since this setup consists only of accesses to the operands, it becomes redundant
in our micro-benchmarks, because each of the ten repetitions will already touch
all operands for the next repetition; hence, in such a case, we omit the setup
altogether.)

Now accounting for prefetching, we obtain the performance estimates shown
in Fig. 1d. Here, several algorithms, such as ba-gemv , are estimated closer
to their measured performance, leading to an improved average error of 19.1%.
However, several other algorithms, including ca-gemv , are overestimated
in performance (i.e., underestimated in execution time). There are two separate
causes for this discrepancy.

– In several algorithms, such as ca-gemv , where prefetching implicitly
happens due to sharing of cache-lines, the prefetcher fails once a new cache-
line is reached.

9 The cache-line size is 64B = 8 doubles.
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– In other algorithms, such as bi-ger , the innermost loop is so short
(here: 8 iterations) that each first iteration of the loop significantly impacts
performance.

These two causes are treated separately in the following sections.

3.4 Prefetching Failures

For those algorithms in which certain operands are identified as prefetched
because they share cache lines across iterations (i.e., the surrounding loop indexes
their first dimension), the CPU would need to prefetch the next cache-line every
8 iterations (1 cache-line = 8 doubles). However, as a detailed analysis of hand-
instrumented algorithms has shown, it fails to do so. As a result, in every 8th
iteration of the innermost loop, the operand is not available and the kernel may
take significantly longer.

We account for this prefetching-artifact by performing two separate micro-
benchmarks: one simulating the 7 iterations in which the operand is available
in cache as before, and one for the 8th iteration, where we account for the
failure to prefetch and eliminate the emulated prefetching from our setup-list.
The prediction for the total execution time is now obtained from weighting
these two benchmark timings according to their number of occurrences in the
algorithm and summing them up.

Example 9. In algorithm ca-gemv , the memory regions of both A[a,:] and
C[a,:,c], respectively, share cache-lines across iterations of the innermost loops
over a. Hence, affecting not one but two of the kernel’s operands, in every 8th
iteration the kernel execution time increases drastically by a factor of about 4.5.
To account for these “prefetching failures”, we introduce a second set of micro-
benchmarks, where the prefetching emulating accesses are removed from the setup
list, resulting for a = b = c = 400 and i = 8, as without prefetching, in:

[816,632], A[a, :], [163,200], B[:, :, c].

Fig. 1e shows the predictions obtained after this improvement: the error is
further reduced to 14.7%. Most apparent in ca-gemv , the overestimation
of algorithms where iterations share cache-lines are now corrected.

3.5 First Loop Iterations

The predictions for several algorithms, such as ci-ger , are still severely off,
because the innermost loop of these algorithms is very short (in our example 8
iterations long). In such a case, the predictions are very accurate for all but the
first iteration. Due to vastly different cache preconditions for this first iteration,
however, its performance can be significantly different (in our case, up to 10×
slower). Combined with the low total iteration count, this results in predictions
that are off by a factor of up to 2.
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To treat such situations, we introduce separate benchmarks to predict the
performance of the first iteration of the innermost loop (and further loops if their
first iterations account for more than 1 % of the total kernel invocations). For
this purpose, the access distance evaluation method is slightly modified: instead
of the kernel itself, the starting point is now the loop whose first iteration is
considered, and the set M already contains all of the kernel’s memory regions
joined across this loop.

Example 10. In algorithm ci-ger , the innermost loop over i is in our exam-
ple only 8 iterations long. For all but the first iteration, the operand C[:,:,c]
stays the same, while A[:,i] and B[i,:,c] are prefetched, leading to optimal
conditions for performance. In the first iteration (i.e., the next c iteration) how-
ever, C[:,:,c] refers to a different memory location and prefetching fails for
both A[:,i] and B[i,:,c], leading to severely lower performance.

From these improved access distances, the cache setup and micro-benchmark
are performed just as before. As for the “prefetching failures”, the prediction for
the total execution time is now obtained from weighting of all relevant benchmark
timings with the corresponding number of occurrences within the algorithm.

In Fig. 1f, we present the improved performance predictions obtained from
this modification. The performance of all algorithms is now predicted with sat-
isfying accuracy — the average absolute error is 9.47%.

4 Results

In order to showcase its applicability and effectiveness, in this section we apply
our technique for performance prediction to a range of contractions. We consider
three test cases: In Sect. 4.1, we use different hard- and software, as well as
changing the problem sizes. In Sect. 4.2, we consider a contraction that only
allows the use of BLAS-1 and BLAS-2. Finally, in Sect. 4.3, we consider a more
complex contraction with numerous alternative algorithms and multithreading.

4.1 Test 1: Cabc := AaiBibc, Different Setup

We commence with the same contraction used as a case study in the previous
section, yet with an entirely different setup: the sizes a, b, and c are now fixed to
128, while i ranges from 8 to 1,000. As experimental environment, we use a 10-
core Intel Ivy Bridge-EP E5-2680 v2 processor running at 3.6 GHz (Turbo Boost)
and 25 MB of L3 cache. Each core can execute 8 double precision flops/cycle.
The routines for both the actual measurements and the micro-benchmarks were
linked to the BLAS implementation of Intel’s Math Kernel Library (MKL, ver-
sion 11.0). Figure 2 contains the performance measurements and corresponding
predictions for all 36 algorithms (see Algs. 1). Although everything, ranging
from the problem size to the machine and BLAS library was changed in this
setup, the predictions are of equivalent quality and our tool correclty determines
that the gemm-based algorithms (c-gemm and b-gemm ) perform best
and equally well.
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Fig. 2. Cabc := AaiBibc, different setup: Performance measurements and predictions.

Fig. 3. Ca := AiajBji: Performance measurements and predictions.

4.2 Test 2: Ca := AiajBji, only BLAS-1 and BLAS-2

For certain contractions (e.g., those involving 1D tensors), gemm cannot be used
as a compute kernel, and only algorithms based on BLAS-2 or BLAS-1 are
possible. One such scenario is encontered in the contraction Ca := AiajBji, for
which our generator yields 8 algorithms:

– 4 dot-based: aj-dot , ja-dot , ai-dot , ia-dot ,
– 2 axpy-based: ij-axpy , ji-axpy , and
– 2 gemv-based (see Algs. 2): j-gemv , i′-gemv .



208 E. Peise et al.

The measured and predicted performance for these algorithms is shown in
Fig. 3. Our predictions clearly discriminate the fastest algorithm j-gemv
across the board. Furthermore, the next group of four algorithms is also cor-
rectly identified and the low performance of the second gemv-based algorithm
i′-gemv (due to the overhead of the involved matrix-copy operation) is
predicted too.

4.3 Test 3: Cabc := AijaBjbic, Challenging Contraction

We now turn to a more complex example inspired by space-time continuum
computations in the field general relativity [1]: Cabc := AijaBjbic. For this con-
traction, we generated a total of 176 different algorithms:

– 48 dot-based ,
– 72 axpy-based ,
– 36 gemv-based ,
– 12 ger-based , and
– 8 gemm-based:

cj′-gemm , jc′-gemm , ci′-gemm , i′c-gemm , bj′-gemm ,
jb′-gemm , bi′-gemm , i′b-gemm .

Fig. 4. Cabc := AijaBjbic: Performance prediction and measurements.
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All gemm-based (see Algs. 3) and several of the gemv-based algorithms involve
copy operations to ensure that each matrix has a contiguously stored dimension,
as required by the BLAS interface. Once again, we consider a very challenging
scenario where both contracted indices are of size i = j = 8 and the free indices
a = b = c vary together.

Starting with the predictions, in Fig. 4a, we present the expected performance
in flops/cycle of the 176 algorithms, where BLAS-1 and BLAS-2 algorithms
are grouped by kernel. Even with the copy operations, the gemm-based algorithms
are the fastest. However, within these 8 algorithms, the performance differs by
more than 20 %. Focusing on the gemm-algorithms, we compare with corresponding
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Fig. 5. Cabc := AijaBjbic: Performance prediction and measurements with 10 threads.

performance measurements10 in Fig. 4b. The comparison shows that our predic-
tions clearly separate the bulk of fast algorithms from the slightly less efficient ones.

Multithreading. The algorithms considered here can make use of shared mem-
ory parallelism by employing multithreaded BLAS kernels. To focus on the
impact of parallelism, we increase the contracted tensor dimension sizes to
i = j = 32 and use all 10 cores of the Ivy Bridge-EP CPU with OpenBLAS.

Performance predictions and measurements for this setup are presented in
Fig. 5. Our predictions correctly separate the three groups of gemm-based imple-
mentations; moreover, algorithms i′c-gemm and i′b-gemm (see Algs.
3), which reach 60 flops/cycle,11 are identified as the fastest. The slowest algo-
rithm (jb′-gemm ) on the other hand merely reaches 20 flops/per cycle.
This 3× difference in performance among gemm-based algorithms emphasizes
the importance of selecting the right algorithm.

4.4 Efficiency Study

The ultimate goal of this work is to automatically and quickly select the fastest
algorithm for a given tensor contraction. The experiments presented so far pro-
vide evidence that our automated approach successfully identifies the fastest
algorithm(s). In this last study, we investigate the efficiency of our micro-bench-
mark-based approach. For this purpose, we once more consider the contraction
Cabc := AaiBibc, with i = 8 and varying a = b = c. Figure 6 displays the ratio
of how much faster our micro-benchmark is compared to executing the corre-
sponding algorithm. In general, our prediction proves to be several orders of
magnitude faster than the algorithm itself. At a = b = c = 1,000, this rela-
tive improvement is smallest for the gemm-based algorithms at 103×, since
10 Slow tensor contraction algorithms were stopped before reaching the largest test-cases

by limiting the total measurement time per algorithm to 15 minutes.
11 Using 10 cores, the theoretical peak performance is 80 flops/cycle.
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Fig. 6. Cabc := AaiBibc: Prediction efficiency.

each gemm performs a significant portion of the computation; for the ger-based
algorithms , it lies between 6 · 103 and 104× and for the gemv-based algo-
rithms the gain is 5 · 105 to 106×; finally, the gain for both BLAS-1-based
algorithms , where each BLAS-call only performs a tiny fraction of
the contraction, our prediction is between 6 and 9 orders of magnitude faster
than the execution.

5 Conclusion

In this paper, we focused on the performance prediction of BLAS-based algo-
rithms for tensors contractions. First, based on previous work, we developed an
algorithm and code generator that given the mathematical description of a ten-
sor contraction, casts the computation in terms of five different BLAS kernels;
since, in general, a tensor contraction may be decomposed in terms of matrix
and vector products in many different ways, the generator often returns dozens
of alternative algorithms.

Then, we tackled the problem of selecting the fastest algorithms without
ever executing them. Instead of executing the full algorithms, our approach is
based on timing the BLAS kernels in a small set of micro-benchmarks. These
micro-benchmarks are run in a context that emulates that of the actual compu-
tation; thanks to careful treatment of cache-locality and a model of the cache
prefetcher’s behavior, our performance prediction tool is capable of identifying
the best-performing algorithms in a tiny fraction of the time required to actually
run and time all of them.

The quality of the predictions was showcased for a number of challenging sce-
narios, including contractions among tensors with small dimensions, contractions
that can only be cast in terms of BLAS 1 and BLAS 2 kernels, and multi-threaded
computations.
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Anne Benoit1, Aurélien Cavelan1(B), Yves Robert1,2, and Hongyang Sun1
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Abstract. In this paper, we combine the traditional checkpointing and
rollback recovery strategies with verification mechanisms to address both
fail-stop and silent errors. The objective is to minimize either makespan
or energy consumption. While DVFS is a popular approach for reduc-
ing the energy consumption, using lower speeds/voltages can increase
the number of errors, thereby complicating the problem. We consider
an application workflow whose dependence graph is a chain of tasks,
and we study three execution scenarios: (i) a single speed is used during
the whole execution; (ii) a second, possibly higher speed is used for any
potential re-execution; (iii) different pairs of speeds can be used through-
out the execution. For each scenario, we determine the optimal check-
pointing and verification locations (and the optimal speeds for the third
scenario) to minimize either objective. The different execution scenarios
are then assessed and compared through an extensive set of experiments.

1 Introduction

For HPC applications, scale is a major opportunity. Massive parallelism with
100,000+ nodes is the most viable path to achieving sustained petascale per-
formance. Future platforms will enrol even more computing resources to enter
the exascale era. Unfortunately, scale is also a major threat. Resilience is the
first challenge. Even if each node provides an individual MTBF (Mean Time
Between Failures) of, say, one century, a machine with 100,000 such nodes will
encounter a failure every 9 h in average, which is larger than the execution time
of many HPC applications. Furthermore, a one-century MTBF per node is an
optimistic figure, given that each node is composed of several hundreds of cores.
Worse, several types of errors need to be considered when computing at scale.
In addition to classical fail-stop errors (such as hardware failures), silent errors
(a.k.a silent data corruptions) cannot be ignored any longer.

Another challenge is energy consumption. The power requirement of current
petascale platforms is that of a small town, hence measures must be taken to
reduce the energy consumption of future platforms. A widely-used strategy is
to use DVFS techniques: modern processors can run at different speeds, and
lower speeds induce big savings in energy consumption. In a nutshell, this is
because the dynamic power consumed when computing at speed s is proportional
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 215–236, 2015.
DOI: 10.1007/978-3-319-17248-4 11
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to s3, while execution time is proportional to 1/s. As a result, computing energy
(which is time times power) is proportional to s2, and using lower speeds reduces
global energy consumption in most practical settings, where static power is not
too high. To further complicate the picture, energy savings have an impact on
resilience. Obviously, the longer the execution, the higher the expected number of
errors, hence using a lower speed to save energy may well induce extra time and
overhead to cope with more errors throughout execution. Even worse (again!),
lower speeds are usually obtained via lower voltages, which themselves induce
higher error rates and further increase the latter overhead.

In this paper, we introduce a model that addresses both challenges: resilience
and energy consumption. In addition, we address both fail-stop and silent errors,
which, to the best of our knowledge, has never been achieved before. While
checkpoint and rollback recovery is the de-facto standard for dealing with fail-
stop errors, there is no widely adopted general-purpose technique to cope with
silent errors. The problem with silent errors is detection latency : contrarily to a
fail-stop error whose detection is immediate, a silent error is identified only when
the corrupted data is activated and/or leads to an unusual application behavior.
However, checkpoint and rollback recovery assumes instantaneous error detec-
tion, and this raises a new difficulty: if the error stroke before the last checkpoint,
and is detected after that checkpoint, then the checkpoint is corrupted and can-
not be used to restore the application. To solve this problem, one may envision
to keep several checkpoints in memory, and to restore the application from the
last valid checkpoint [23]. This multiple-checkpoint approach has three major
drawbacks. First, it is very demanding in terms of stable storage. The second
drawback is the possibility of fatal failures. Indeed, if we keep k checkpoints in
memory, the approach assumes that the error that is currently detected did not
strike before all the checkpoints still kept in memory, which would be fatal: in
that latter case, all live checkpoints are corrupted, and one would have to re-
execute the entire application from scratch. The third drawback of the approach
is the most serious, and applies even without memory constraints, i.e., if we
could store an infinite number of checkpoints in storage. The critical question is
to determine which checkpoint is the last valid one. We need this information to
safely recover from that point on. However, because of the detection latency, we
do not know when the silent error has indeed occurred, hence we cannot identify
the last valid checkpoint, unless some verification system is enforced.

We introduce such a verification system in this paper. This approach is agnos-
tic of the nature of this verification mechanism (checksum, error correcting code,
coherence tests, etc.). It is also fully general-purpose, although application-
specific information, if available, can always be used to decrease the cost of
verification: see the overview of related work in Sect. 2 for examples. In this
context, the simplest protocol is to take only verified checkpoint (VC). This cor-
responds to performing a verification just before taking each checkpoint. If the
verification succeeds, then one can safely store the checkpoint. If the verification
fails, then a silent error has struck since the last checkpoint, which was duly ver-
ified, and one can safely recover from that checkpoint to resume the execution
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of the application. Of course, if a fail-stop error strikes, we also safely recover
from the last checkpoint, just as in the classical checkpoint and rollback recovery
method. This VC-only protocol basically amounts to replacing the cost C of a
checkpoint by the cost V +C of a verification followed by a checkpoint. However,
because we deal with two sources of errors, one detected immediately and the
other only when we reach the verification, the analysis of the optimal strategy is
more involved. We extend both the classical bound by Young [33] or Daly [11],
and the dynamic programming algorithm of Toueg and Babaoglu [31], to deal
with these error sources.

While taking checkpoints without verifications seems a bad idea (because of
the memory cost, and of the risk of saving corrupted data), taking a verification
without checkpointing may be interesting. Indeed, if silent errors are frequent
enough, it is worth verifying the data in between two (verified) checkpoints, so as
to detect a possible silent error earlier in the execution, and thereby re-executing
less work. We refer to VC+V as the protocol that allows for both verified check-
points and isolated verifications. One major objective of this paper is to study
VC+V algorithms coupling verification and checkpointing, and to analytically
determine the best balance of verifications between checkpoints so as to minimize
either makespan (total execution time) or energy consumption. To achieve this
ambitious goal, we restrict to a simplified, yet realistic, application framework.
We consider application workflows that consist of a number of parallel tasks that
execute on the platform, and that exchange data at the end of their executions.
In other words, the task graph is a linear chain, and each task (except maybe
the first one and the last one) reads data from its predecessor and produces data
for its successor. This scenario corresponds to a high-performance computing
application whose workflow is partitioned into a succession of (typically large)
tightly-coupled computational kernels, each of them being identified as a task
by the model. At the end of each task, we can either perform a verification on
the task’s output, or perform a verification followed by a checkpoint.

In addition, we have to select a speed for each execution of each task. We
envision three different execution scenarios. In the simple SingleSpeed sce-
nario, a unique speed s is available throughout execution. In the intermediate
ReExecSpeed scenario, the same speed s is used for the first execution of each
task, but another speed σ is available for re-execution after a fail-stop or silent
error. Here the first speed s can be seen as the regular speed, while the second
speed σ corresponds to an adjusted speed to either speed up or to slow down
the re-execution after an error strikes, depending on the optimization objective.
Finally, in the advanced MultiSpeed scenario, two different speeds si and σi

can be used to execute the tasks in between two consecutive checkpoints (which
we call a task segment). Each speed si or σi can be freely chosen from a set of
K discrete speeds. Note that these speeds may well vary from one segment to
another. For each execution scenario, we provide a dynamic programming algo-
rithm to determine the optimal locations of checkpoints and verifications (and
for the MultiSpeed scenario we also provide the corresponding optimal pair of
speeds for each segment).
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The main contributions of this paper are the following:

– We introduce a general-purpose model to deal with both fail-stop and silent
errors, combining checkpoints with a verification mechanism.

– We consider several execution scenarios, first with a single speed, then in case
of re-execution, and finally with several discrete speeds that can freely change
after each checkpoint.

– For all scenarios and for both makespan and energy objectives, we consider two
approaches, one using verified checkpoints only, and the other using additional
isolated verifications. We provide a dynamic programming algorithm that
determines the best locations of checkpoints and verifications across appli-
cation tasks for each scenario/approach/objective combination.

– We provide an extensive set of simulations to support the theory and which
enables us to assess the usefulness of each algorithm.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work. Section 3 is devoted to formally defining the framework and all
model parameters. Section 4 deals with the main algorithmic contributions: for
all three execution scenarios, we design optimal algorithms for the VC-only

approach, and then for the VC+V approach, targeting either time or energy
minimization. Then in Sect. 5, we report on a comprehensive set of experiments
to assess the impact of each scenario and approach. Finally, we outline main
conclusions and directions for future work in Sect. 6.

2 Related Work

2.1 Fail-Stop Errors

The de-facto general-purpose error recovery technique in high performance com-
puting is checkpoint and rollback recovery [9,16]. Such protocols employ check-
points to periodically save the state of a parallel application, so that when an
error strikes some process, the application can be restored back to one of its for-
mer states. There are several families of checkpointing protocols, but they share
a common feature: each checkpoint forms a consistent recovery line, i.e., when an
error is detected, one can rollback to the last checkpoint and resume execution,
after a downtime and a recovery time.

Many models are available to understand the behavior of checkpoint and
restart [7,11,25,33]. For a divisible load application where checkpoints can be
inserted at any point in execution for a nominal cost C, there exist well-known
formulas due to Young [33] and Daly [11] to determine the optimal checkpointing
period. For an application composed of a chain of tasks, which is also the sub-
ject of this paper, the problem of finding the optimal checkpoint strategy, i.e., of
determining which tasks to checkpoint, in order to minimize the expected exe-
cution time, has been solved by Toueg and Babaoglu [31], using a dynamic pro-
gramming algorithm. One major contribution of this paper is to extend both the
Young/Daly formulas and the result of Toueg and Babaoglu to deal with silent
errors in addition to fail-stop errors, and with several discrete speeds instead of
a single one.
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2.2 Silent Errors

Most traditional approaches maintain a single checkpoint. If the checkpoint file
includes errors, the application faces an irrecoverable failure and must restart
from scratch. This is because error detection latency is ignored in traditional roll-
back and recovery schemes, which assume instantaneous error detection (there-
fore mainly targeting fail-stop failures) and are unable to accommodate silent
errors. We focus in this section on related work about silent errors. A compre-
hensive list of techniques and references is provided by Lu, Zheng and Chien [23].

Considerable efforts have been directed at error-checking to reveal silent
errors. Error detection is usually very costly. Hardware mechanisms, such as
ECC memory, can detect and even correct a fraction of errors, but in practice
they are complemented with software techniques. The simplest technique is triple
modular redundancy and voting [24], which induces a highly costly verification.
For high-performance scientific applications, process replication (each process is
equipped with a replica, and messages are quadruplicated) is proposed in the
RedMPI library [18]. Elliot et al. [15] combine partial redundancy and check-
pointing, and confirm the benefit of dual and triple redundancy. The drawback is
that twice the number of processing resources is required (for dual redundancy).

Application-specific information can be very useful to enable ad-hoc solu-
tions, which dramatically decrease the cost of detection. Many techniques have
been advocated. They include memory scrubbing [22] and ABFT techniques
[6,21,30], such as coding for sparse-matrix vector multiplication kernels [30] and
coupling a higher-order with a lower-order scheme for PDEs [5]. These methods
can only detect an error but do not correct it. Self-stabilizing corrections after
error detection in the conjugate gradient method are investigated by Sao and
Vuduc [28]. Heroux and Hoemmen [19] design a fault-tolerant GMRES capable
of converging despite silent errors. Bronevetsky and de Supinski [8] provide a
comparative study of detection costs for iterative methods.

A nice instantiation of the checkpoint and verification mechanism that we
study in this paper is provided by Chen [10], who deals with sparse iterative
solvers. Consider a simple method such as the PCG, the Preconditioned Conju-
gate Gradient method: Chen’s approach performs a periodic verification every d
iterations, and a periodic checkpoint every d × c iterations, which is a particu-
lar case of the VC+V approach with equi-distance verifications. For PCG, the
verification amounts to checking the orthogonality of two vectors and to recom-
puting and checking the residual. The cost of the verification is small in front of
the cost of an iteration, especially when the preconditioner requires much more
flops than a sparse matrix-vector product.

As already mentioned, our work is agnostic of the underlying error-detection
technique and takes the cost of verification as an input parameter to the model.

2.3 Energy Model and Error Rate

Modern processors are equipped with dynamic voltage and frequency scaling
(DVFS) capability. The total power consumption is the sum of the static/idle
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power and the dynamic power, which is proportional to the cube of the processing
speed s [3,32], i.e., P (s) = Pidle + β · s3, where β > 0. A widely used reliabil-
ity model assumes that radiation-induced transient faults (soft errors) follow a
Poisson process with an average arrival rate λ. The impact of DVFS on the error
rate is, however, not completely clear.

On the one hand, lowering the voltage/frequency is believed to have an
adverse effect on the system reliability [13,35]. In particular, many papers
(e.g., [2,12,34,35]) have assumed the following exponential error rate model:

λ(s) = λ0 · 10
d(smax−s)
smax−smin , where λ0 denotes the average error rate at the max-

imum speed smax, d > 0 is a constant indicating the sensitivity of error rate
to voltage/frequency scaling, and smin is the minimum speed. This model sug-
gests that the error rate increases exponentially with decreased processing speed,
which is a result of decreasing the voltage/frequency and hence lowering the cir-
cuit’s critical charge (i.e., the minimum charge required to cause an error in the
circuit).

On the other hand, the failure rates of computing nodes have also been
observed to increase with temperature [17,20,26,29], which generally increases
together with the processing speed (voltage/frequency). As a rule of thumb,
Arrenhius’ equation when applied to microelectronic devices suggests that the
error rate doubles for every 10◦C increase in the temperature [17]. In general,
the mean time between failure (MTBF) of a processor, which is the reciprocal
of failure rate, can be expressed as [29]: MTBF = 1

λ = A · e−b·T , where A
and b are thermal constants, and T denotes the temperature of the processor.
Under the reasonable assumption that higher operating voltage/frequency leads
to higher temperature, this model suggests that the error rate increases with
increased processing speed. Clearly, the two models above draw contradictory
conclusions on the impact of DVFS on error rates. In practice, the impact of the
first model may be more evident, as the temperature dependency in some systems
has been observed to be linear (or even not exist) instead of being exponential
[14]. Generally speaking, the processing speed should have a composite effect on
the average error rate by taking both voltage level and temperature into account.
In the experimental section of this paper (Sect. 5), we adopt a tradeoff model to
include the impact of temperature.

3 Framework

In this section we introduce all model parameters. We start with a description
of the application workflows. Then we present parameters related to energy
consumption. Next we detail the resilient model to deal with fail-stop and silent
errors. We conclude by presenting the various execution scenarios.

Application Workflows. We consider application workflows whose task graph
is a linear chain T1 → T2 · · · → Tn. Here n is the number of tasks, and each task
Ti is weighted by its computational cost wi. We target a platform with p identical
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processors. Each task is a parallel task that is executed on the whole platform.
A fundamental characteristic of the application model is that it allows to view the
platform as a single (albeit very powerful) macro-processor, thereby providing a
tractable abstraction of the problem.

EnergyConsumption. When computing (including verification), we use DVFS
to change the speed of the processors, and assume a set S = {s1, s2, . . . , sK} of
K discrete computing speeds. During checkpointing and recovery, we assume a
dedicated (constant) power consumption. Altogether, the total power consump-
tion of the macro-processor is p times the power consumption of each individual
resource. It is decomposed into three different components:

– Pidle, the static power dissipated when the platform is on (even idle);
– Pcpu(s), the dynamic power spent by operating the CPU at speed s;
– Pio, the dynamic power spent by I/O transfers (checkpoints and recoveries).

Assume w.l.o.g. that there is no overlap between CPU operations and I/O
transfers. Then the total energy consumed during the execution of the applica-
tion can be expressed as: Energy = Pidle(Tcpu + Tio) +

∑K
i=1 Pcpu(si)Tcpu(si) +

PioTio, where Tcpu(si) is the time spent on computing at speed si, Tcpu =∑K
i=1 Tcpu(si) is the total time spent on computing, and Tio is the total time

spent on I/O transfers. The time to compute tasks Ti to Tj at speed s is Ti,j(s) =
1
s

∑j
k=i wi and the corresponding energy is Ei,j(s) = Ti,j(s)(Pidle + Pcpu(s)).

Resilience. We assume that errors only strike during computations, and not
during I/O transfers (checkpoints and recoveries) nor verifications. We consider
two types of errors: fail-stop and silent.

To cope with fail-stop errors, we use checkpointing, and to cope with silent
errors, an additional verification mechanism is used. The time to checkpoint (the
output of) task Ti is Ci, the time to recover from (the checkpoint of) task Ti

is Ri, and the time to verify (the output of) task Ti at speed s is Vi(s). We
assume that both fail-stop errors and silent errors follow an exponential distri-
bution with average rates λF (s) and λS(s), respectively, where s denotes the
current computing speed. Given an error rate λ, let p(λ,L) = 1 − e−λL denote
the probability that a error strikes during an execution of length L. For conve-
nience, we define pF

i,j(s) = p(λF (s), Ti,j(s)) to be the probability that a fail-stop
error strikes when executing from Ti to Tj , and define pS

i,j(s) = p(λS(s), Ti,j(s))
similarly for silent errors.

Resilience also has a cost in terms of energy consumption. Specifically, the
energy to checkpoint task Ti is EC

i = Ci(Pidle + Pio), to recover from task Ti is
ER

i = Ri (Pidle +Pio), and to verify task Ti at speed s is EV
i (s) = Vi(s)(Pidle +

Pcpu(s)).

Execution Scenarios. We consider three different execution scenarios: (i)
SingleSpeed: a single speed s is used during the whole execution (K = 1);
(ii) ReExecSpeed: there are two speeds, s for the first execution of each task,
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and σ for any potential re-execution (K = 2); (iii) MultiSpeed: we are given K
discrete speeds, where K is arbitrary. The workflow chain is cut into subchains
called segments, which are delimited by checkpoints. For each segment, we can
freely choose a speed for the first execution, and a (possibly different) speed for
any ulterior execution, among the K speeds.

Optimization Problems. For each execution scenario, we deal with four prob-
lems: (i) Time-VC: minimize the makespan using the VC-only approach; (ii)
Time-VC+V: minimize the makespan using the VC+V approach; (iii) Energy-
VC: minimize the total energy consumption using the VC-only approach; (iv)
Energy-VC+V: minimize the total energy consumption using the VC+V app-
roach. For the SingleSpeed and ReExecSpeed scenarios, we have to decide
for the optimal locations of the checkpoints (VC-only) and of the verifications
(VC+V). For the MultiSpeed scenario, we further have to select a pair of
speeds (first execution and re-execution) for each segment.

4 Optimal Algorithms

In this section, we present optimal algorithms for the three execution scenarios.
For each scenario, we have four combinations: two approaches—VC-only and
VC+V, and two objectives—makespan and energy. Due to the lack of space,
we include only two (representative) proofs here, namely those of the Time-VC

and Time-VC+V algorithms for the SingleSpeed scenario. The other proofs
can be found in the companion research report [4] of this paper.

4.1 SingleSpeed Scenario

In this scenario, we are given a single processing speed, and we investigate the
VC-only and VC+V approaches. For each approach, we present an optimal
polynomial-time dynamic programming algorithm. As only one speed is present,
the speed parameter s is omitted in all expressions for notational convenience.

VC-Only: Using Verified Checkpoints Only. In this approach, we aim at
finding the best checkpointing positions in order to minimize the total execution
time (Time-VC) or the total energy consumption (Energy-VC).

Theorem 1. For the SingleSpeed scenario, the Time-VC and Energy-VC

problems can be solved by a dynamic programming algorithm in O(n2) time.

Proof. Due to the lack of space, we only present the optimal algorithm to com-
pute the expected makespan for the Time-VC problem. The optimal solution
for the Energy-VC problem can be similarly derived.

We define TimeC(j) to be the optimal expected time to successfully execute
tasks T1, . . . , Tj , where Tj has a verified checkpoint, and there are possibly other
verified checkpoints from T1 to Tj−1. We always verify and checkpoint the last
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task Tn to save the final result. Therefore, the goal is to find TimeC(n). To
compute TimeC(j), we formulate the following dynamic program by trying all
possible locations for the last checkpoint before Tj :

TimeC(j) = min
0≤i<j

{TimeC(i) + TC(i + 1, j)} + Cj ,

where TC(i, j) denotes the expected time to successfully execute tasks Ti to Tj ,
provided that Ti−1 and Tj are both verified and checkpointed while no other
task in between is verified nor checkpointed. Note that we also account for the
checkpointing cost Cj for task Tj , which is not included in the definition of TC .
To initialize the dynamic program, we define TimeC(0) = 0.

In the following, we show how to compute TC(i, j) for each (i, j) pair with
i ≤ j. We start by considering only silent errors and use the notation TS

C (i, j)
for that purpose. Silent errors can occur at any time during the computation
but we can only detect them after all tasks have been executed. Thus, we always
have to pay Ti,j + Vj , the time to execute from task Ti to Tj and then to verify
Tj . If the verification fails, which happens with probability pS

i,j , a silent error has
occurred and we have to recover from Ti−1 and start anew. For convenience, we
assume that there is a virtual task T0 that is always verified and checkpointed,
with a recovery cost R0 = 0. Mathematically, we can express TS

C (i, j) as

TS
C (i, j) = Ti,j + Vj + pS

i,j

(
Ri−1 + TS

C (i, j)
)
,

⇒ TS
C (i, j) = eλSTi,j (Ti,j + Vj) + (eλSTi,j − 1)Ri−1.

Things are different when accounting for fail-stop errors, because the appli-
cation will stop immediately when a fail-stop error occurs, even in the middle of
the computation. Let Tlosti,j denote the expected time lost during the execution
from Ti to Tj if a fail-stop error strikes, and it can be expressed as

Tlosti,j =
∫ ∞

0

xP(X = x|X < Ti,j)dx =
1

P(X < Ti,j)

∫ Ti,j

0

xλF e−λF xdx,

where P(X = x) denotes the probability that a fail-stop error strikes at time x.
By definition, we have P(X < Ti,j) = 1 − e−λF Ti,j . Integrating by parts, we get

Tlosti,j =
1

λF
− Ti,j

eλF Ti,j − 1
.

Therefore, the expected execution time TF
C (i, j) when considering only fail-

stop errors is given by

TF
C (i, j) = pF

i,j

(
Tlosti,j + Ri−1 + TF

C (i, j)
)

+
(
1 − pF

i,j

)
Ti,j ,

⇒ TF
C (i, j) = (eλF Ti,j − 1)

(
1

λF
+ Ri−1

)
.

We now account for both fail-stop and silent errors, and use the notation
TSF

C (i, j) for that purpose. To this end, we consider fail-stop errors first. If the
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application stops, then we do not need to perform verification since we must do
a recovery anyway. If no fail-stop error stroke during the execution, we can then
proceed with the verification and check for silent errors. Therefore,

TSF
C (i, j) = pF

i,j

(
Tlosti,j + Ri−1 + TSF

C (i, j)
)

+
(
1 − pF

i,j

) (
Ti,j + Vj + pS

i,j

(
Ri−1 + TSF

C (i, j)
))

.

When plugging pF
i,j , pS

i,j and Tlosti,j into the above equation, we get

TSF
C (i, j) = eλSTi,j

(
eλF Ti,j − 1

λF
+ Vj

)
+

(
e(λ

F+λS)Ti,j − 1
)

Ri−1.

By setting TC(i, j) = TSF
C (i, j), we can now compute TimeC(j) for all j =

1, · · · , n. For the complexity, the computation of TSF
C (i, j) for all (i, j) pairs with

i ≤ j takes O(n2) time. The computation of the dynamic programming table
for TimeC(j) also takes O(n2) time, as TimeC(j) depends on at most j other
entries in the same table, which are already computed. Therefore, the overall
complexity is O(n2), and this concludes the proof. ��
Theorem 1 nicely extends the result of Toueg and Babaoglu [31] to a linear chain
of tasks subject to both fail-stop and silent errors. For the sake of comparing
with the case of a divisible load application, we can extend Young/Daly’s formula
[11,33] in the following. Again, the proof can be found in [4].

Proposition 1. For a divisible load application subject to both fail-stop and
silent errors, a first-order approximation of the optimal checkpointing period is

Topt(s) =

√
2(V + C)
λF + 2λS

,

where C is the checkpointing cost, V is the verification cost, λF is the rate of
fail-stop errors and λS is the rate of silent errors.

VC+V: Using Verified Checkpoints and Single Verifications. In this
approach, we can place additional verifications between two checkpoints, which
allows to detect (silent) errors before reaching the next checkpoint, and hence to
avoid wasted execution by performing early recoveries. We aim at finding the
best positions for checkpoints and verifications in order to minimize the total exe-
cution time (Time-VC+V) or the total energy consumption (Energy-VC+V).
For both objectives, adding extra verifications between two checkpoints adds an
extra step in the algorithm, which results in a higher complexity.

Theorem 2. For the SingleSpeed scenario, the Time-VC+V and Energy-

VC+V problems can be solved by a dynamic programming algorithm in O(n3)
time.
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Proof. Due to the lack of space, we only deal with the Time-VC+V problem,
while the solution for Energy-VC+V can be similarly derived.

The main idea is to replace TC in the dynamic program of Theorem1 by
another expression TimeV (i, j), which denotes the optimal expected time to
successfully execute from task Ti to task Tj (and to verify it), provided that
Ti−1 has a verified checkpoint and only single verifications are allowed from task
Ti to task Tj−1. Furthermore, we use TimeV C(j) to denote the optimal expected
time to successfully execute the first j tasks, where Tj has a verified checkpoint,
and there are possibly other verified checkpoints and single verifications before
Tj . The goal is to find TimeV C(n). The dynamic program can then be formu-
lated as:

TimeV C(j) = min
0≤i<j

{TimeV C(i) + TimeV (i + 1, j)} + Cj .

In particular, we try all possible locations for the last checkpoint before Tj , and
for each location Ti, we compute the optimal expected time TimeV (i + 1, j) to
executed tasks Ti+1 to Tj−1 with only single verifications in between. We also
account for the checkpointing time Cj , which is not included in the definition of
TimeV . By initializing the dynamic program with TimeV C(0) = 0, we can then
compute the optimal solution as in the Time-VC problem.

It remains to compute TimeV (i, j) for each (i, j) pair with i ≤ j. To this
end, we formulate another dynamic program by trying all possible locations for
the last single verification before Tj :

TimeV (i, j) = min
i−1≤l<j

{TimeV (i, l) + TV (l + 1, j, i − 1)} ,

where TV (i, j, lc) is the expected time to successfully execute all the tasks from
Ti to Tj (and to verify Tj), knowing that if an error strikes, we can recover from
Tlc , the last task before Ti to have a verified checkpoint.

First, we show how to compute TV (i, j, lc). When accounting for only silent
errors (with notation TS

V ), we always execute from task Ti to task Tj and then
verify Tj . In case of failure, we recover from Tlc and redo the entire computation
from Tlc+1 to Tj , which contains a single verification after Ti−1 and possibly
other single verifications between Tlc+1 and Ti−2. Hence, we have

TS
V (i, j, lc) = Ti,j + Vj + pS

i,j

(
Rlc + TimeV (lc + 1, i − 1) + TS

V (i, j, lc)
)
,

⇒ TS
V (i, j, lc) = eλSTi,j (Ti,j + Vj) + (eλSTi,j − 1) (Rlc + TimeV (lc + 1, i − 1)) .

When there are only fail-stop errors, we do not need to perform any single ver-
ification, and hence the problem becomes simply the Time-VC problem. When
accounting for both silent and fail-stop errors (with notation TSF

V ), we apply
the same method as in the previous proof. Specifically, if a fail-stop error strikes
between two verifications, we directly perform a recovery; otherwise we check
for silent errors:
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TSF
V (i, j, lc) = pF

i,j

(
Tlosti,j + Rlc + TimeV (lc + 1, i − 1) + TSF

V (i, j, lc)
)

+ (1 − pF
i,j)

(
Ti,j + Vj + pS

i,j

(
Rlc + TimeV (lc + 1, i − 1) + TSF

V (i, j, lc)
))

,

⇒ TSF
V (i, j, lc) = eλSTi,j

(
eλF Ti,j − 1

λF
+ Vj

)

+ (e(λ
F+λS)Ti,j − 1) (Rlc + TimeV (lc + 1, i − 1)) .

Notice that TV (i, j, lc) depends on the value of TimeV (lc + 1, i − 1), except
when lc + 1 = i, in which case we initialize TimeV (i, i − 1) = 0. Hence, in the
dynamic program, TimeV (i, j) can be expressed as a function of TimeV (i, l) for
all l = i − 1, · · · , j − 1.

Finally, the complexity is dominated by the computation of the second dyna-
mic programming table for TimeV (i, j), which contains O(n2) entries and each
entry depends on at most n other entries that are already computed. Hence, the
overall complexity of the algorithm is O(n3), and this concludes the proof.

4.2 ReExecSpeed Scenario

Despite the additional speed, the ReExecSpeed scenario turns out to have the
same complexity as the SingleSpeed scenario.

Theorem 3. For the ReExecSpeed scenario:

• The Time-VC and Energy-VC problems can be solved by a dynamic pro-
gramming algorithm in O(n2) time.

• The Time-VC+V and Energy-VC+V problems can be solved by a dynamic
programming algorithm in O(n3) time.

4.3 MultiSpeed Scenario

Optimal algorithms for the MultiSpeed scenario are more intricate and have
higher complexity than the other scenarios.

Theorem 4. For the MultiSpeed scenario:

• The Time-VC and Energy-VC problems can be solved by a dynamic pro-
gramming algorithm in O(n2K2) time.

• The Time-VC+V and Energy-VC+V problems can be solved by a dynamic
programming algorithm in O(n3K2) time.

5 Experiments

We conduct simulations to evaluate the performance of the dynamic program-
ming algorithms under different execution scenarios and parameter settings. We
instantiate the model parameters with realistic values taken from the literature,
and we point out that the code for all algorithms and simulations is publicly
available at http://graal.ens-lyon.fr/∼yrobert/failstop-silent, so that interested
readers can build relevant scenarios of their choice.

http://graal.ens-lyon.fr/~yrobert/failstop-silent


Assessing General-Purpose Algorithms to Cope with Fail-Stop 227

5.1 Simulation Settings

We generate linear chains with different number n of tasks while keeping the total
computational cost at W = 5 × 104 s ≈ 14 h. The total amount of computation
is distributed among the tasks in three different patterns: (1) Uniform, all tasks
share the same cost W/n, as in matrix multiplication or in some iterative stencil
kernels; (2) Decrease, task Ti has cost α · (n + 1 − i)2, where α ≈ 3W/n3.
This quadratically decreasing function resembles some dense matrix solvers,
e.g., using LU or QR factorization. (3) HighLow, a set of identical tasks with
large cost is followed by tasks with small cost. This distribution is created to
distinguish the performance of different execution scenarios. In this case, we fix
the number of large tasks to be 10 % of the total number n of tasks while varying
the computational cost dedicated to them.

We adopt the set of speeds from the Intel Xscale processor. Following [27],
the normalized speeds are {0.15, 0.4, 0.6, 0.8, 1} and the fitted power function
is given by P (s) = 1550s3 + 60. From the discussion in Sect. 2.3, we assume the
following model for the average error rate of fail-stop errors:

λF (s) = λF
ref · 10

d·|sref−s|
smax−smin , (1)

where sref ∈ [smin, smax] denotes the reference speed with the lowest error rate
λF
ref among all possible speeds in the range. The above equation allows us to

account for higher fail-stop error rates when the CPU speed is either too low
or too high. In the simulations, the reference speed is set to be sref = 0.6 with
an error rate of λF

ref = 10−5 for fail-stop errors, and the sensitivity parameter
is set to be d = 3. These parameters represent realistic settings reported in the
literature [1,2,34], and they correspond to 0.83 ∼ 129 errors over the entire chain
of computation depending on the processing speed chosen.

For silent errors, we assume that its error rate is related to that of the fail-
stop errors by λS(s) = η · λF (s), where η > 0 is constant parameter. To achieve
realistic scenarios, we try to vary η to assess the impact of both error sources
on the performance. However, we point out that our approach is completely
independent of the evolution of the error rates as a function of the speed. In a
practical setting, we are given a set of discrete speeds and two error rates for
each speed, one for fail-stop errors and one for silent errors. This is enough to
instantiate our model.

In addition, we define cr to be the ratio between the checkpointing/recovery
cost and the computational cost for the tasks, and define vr to be the ratio
between the verification cost and the computational cost. By default, we execute
the tasks using the reference speed sref, and set η = 1, cr = 1 and vr = 0.01.
This initial setting corresponds to tasks with costly checkpoints (same order of
magnitude as the costs of the tasks) and lightweight verifications (average cost
1 % of task cost); examples of such tasks are data-oriented kernels processing
large files and checksumming for verification. We will vary these parameters to
study their impacts on the performance.



228 A. Benoit et al.

5.2 Results

SingleSpeed Scenario for Makespan. The first set of experiments is devoted
to the evaluation of the time-optimal algorithms in the SingleSpeed scenario.

Impact of n and cost distribution. Figure 1(a) shows the expected makespan
(normalized by the ideal execution time at the default speed, i.e., W/0.6) with
different n and cost distributions. For the HighLow distribution, the large tasks
are configured to contain 60 % of the total computational cost. The results show
that having more tasks reduces the expected makespan, since it enables the algo-
rithms to place more checkpoints and verifications, as can be seen in Fig. 1(b).
The distribution that renders a larger variation in task sizes create more difficulty
in the placement of checkpoints/verfications, thus resulting in worse makespan.
The figure also compares the performance of the Time-VC algorithm with that
of Time-VC+V. The latter algorithm, being more flexible, naturally leads to
improved makespan under all cost distributions. Because of the additionally
placed verifications, it also reduces the number of verified checkpoints in the
optimal solution.

Comparison with a divisible load application. Figure 2(a) compares the makespan
of the Time-VC algorithm under Uniform cost distribution with the makespan
of a divisible load application, whose total load is W and whose checkpointing
cost is the same as the corresponding discrete tasks. For the divisible load appli-
cation, we use Proposition 1 to compute the optimal period, the waste and then
derive the makespan. In addition, Fig. 2(b) compares the number of verified
checkpoints in the two cases. We see that the makespan for divisible load is worse
for large cr and becomes better as cr decreases. Furthermore, the makespans in
both cases get closer when the number of tasks increases. This is because the
checkpointing cost decreases with cr and as n increases, which makes the first
order approximation used in Proposition 1 more accurate. Moreover, as divisible
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Fig. 1. Impact of n and cost distribution on the performance of the Time-VC and
Time-VC+V algorithms. In (b), the thick bars represent the verified checkpoints and
the yellow thin bars represent the total number of verifications.
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Fig. 2. Performance comparison of the Time-VC algorithm for tasks with Uniform cost
distribution and the optimal checkpointing algorithm for divisible load application.
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Fig. 3. Impact of η and speed s on the performance. F denotes fail-stop error only and
S denotes silent error only. Speed s = 0.15 leads to extremely large makespan, which
is omitted in the figure.

load does not impose restrictions in the checkpointing positions, it tends to place
more checkpoints than the case with discrete tasks.

We could think of the following greedy algorithm as an alternative to theTime-

VC algorithm for a linear chain of tasks: position the next checkpoint as soon as
the time spent on computing since the last checkpoint plus the checkpointing cost
of the current task exceeds the optimal period given by Proposition 1. Figure 2 sug-
gests that this linear-time algorithm (with cost O(n)) would give a good approx-
imation of the optimal solution (returned by the Time-VC algorithm with cost
O(n2)), at least for uniform distribution of task costs.

In the rest of this section, we will focus on the Time-VC+V algorithm and
n = 100 tasks with Uniform cost distribution.

Impact of η and error mode. Figure 3(a) compares the performance under dif-
ferent error modes, namely, fail-stop (F) only, silent (S) only, and fail-stop plus
silent with different values of η. As silent errors are harder to detect and hence
to deal with, the S-only case leads to larger makespan than the F-only case.
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In the presence of both types of errors, the makespan becomes worse with larger
η, i.e., with increased rate for silent errors, despite the algorithm’s effort to place
more checkpoints as shown in Fig. 3(b). Moreover, the performance degrades sig-
nificantly as the CPU speed is set below the reference speed sref for the error rate
increases exponentially. A higher CPU speed, on the other hand, first improves
the makespan by executing the tasks faster and then causes degradation due to
a larger increase in the error rate.

Impact of cr and vr. Figure 4(a) presents the impact of checkpointing/recovery
ratio (cr) and verification ratio (vr) on the performance. Clearly, a smaller cr
(or vr) enables the algorithm to place more checkpoints (or verifications), which
leads to better makespan. Having more checkpoints also allows the algorithm
to use faster speeds to complete the tasks. Finally, if checkpointing cost is on
par with verification cost (e.g., cr = 0.1), reducing the verification cost can
additionally increase the number of checkpoints (e.g., at s = 0.6), since each
checkpoint also has a verification cost associated with it. For high checkpoint-
ing cost, however, reducing the verification cost could no longer influence the
algorithm’s checkpointing decisions.

SingleSpeed Scenario for Energy. This set of experiments focuses on the
evaluation of the Energy-VC+V algorithm in the SingleSpeed scenario. The
default power parameters are set to be Pidle = 60 and Pcpu(s) = 1550s3 accord-
ing to [27]. The dynamic power consumption due to I/O is equal to the dynamic
power of the CPU at the lowest discrete speed 0.15. We will also vary these
parameters to study their impacts.

Impact of CPU speed s. Figure 5 compares the performance of the Energy-

VC+V algorithm in comparison with its makespan counterpart Time-VC+V

for n = 100 tasks. At speed 0.15, the power consumed by the CPU is identical
to that of I/O. This yields the same number of checkpoints placed by the two
algorithms, which in turn leads to the same performance for both makespan and
energy. As the CPU speed increases, the I/O power consumption becomes much
smaller, so the energy algorithm tends to place more checkpoints to improve
the energy consumption at the expense of makespan. From Fig. 3, we know that
the makespan of Time-VC+V degrades at speed s = 1. This diminishes its
makespan advantage at the highest discrete speed. Figure 5 also suggests that
the Time-VC+V algorithm running at speed s = 0.8 offers a good energy-
makespan tradeoff. Compared to the Energy-VC+V algorithm, it provides
more than 25 % improvement in makespan with only 10 % degradation in energy
under the default parameter settings.

Impact of Pidle and Pio. Figure 6 shows the relative performance of the two
algorithms by varying Pidle and Pio separately according to the dynamic power
function 1550s3, while keeping the other one at the smallest CPU power, i.e.,
1550 · 0.153. The CPU speed is fixed at s = 0.6. Figure 6 further shows the
number of checkpoints in the Energy-VC+V algorithm at different Pidle and
Pio values. (The Time-VC+V algorithm is apparently not affected by these
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Fig. 4. Impact of cr and vr on the performance with different CPU speeds.
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Fig. 6. (a) and (b): Impact of Pidle and Pio on the relative performance of the Energy-

VC+V and Time-VC+V algorithms at s = 0.6. (c): Number of checkpoints placed by
the Energy-VC+V algorithm with different Pio, Pidle values (= 1550s3) at s = 0.6.
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two parameters and always places 11 checkpoints in this experiment.) First,
setting the smallest value for both parameters creates a big gap between the
CPU and I/O power consumptions. This leads to a large number of checkpoints
placed by the Energy-VC+V algorithm. Increasing Pidle closes this gap and
hence reduces the number of checkpoints, which leads to the performance con-
vergence of the two algorithms. While increasing Pio has the same effect, a larger
value than Pcpu = 1550 · 0.63 further reduces the number of checkpoints below
11, since checkpointing is now less power-efficient. This again gives the Energy-

VC+V algorithm advantage in terms of energy.

ReExecSpeed and MultiSpeed Scenarios. This set of experiments eval-
uates the ReExecSpeed and MultiSpeed scenarios for both makespan and
energy. To distinguish them from the SingleSpeed model, we consider the
HighLow distribution, which yields a larger variance among the computational
costs of the tasks. In the simulation, we again focus on the VC+V algorithms for
n = 100 tasks, and vary the cost ratio, which is the percentage of computational
cost in the large tasks compared to the total computational cost.

Figure 7(a) compares the makespan of the Time-VC+V algorithms under
the three scenarios. For the SingleSpeed and ReExecSpeed scenarios, only
s = 0.6 and s = 0.8 are drawn, since the other speeds lead to much larger
makespans. For a small cost ratio, no task has a very large computational cost,
so the faster speed s = 0.8, despite its higher error rate, appears to give the
best performance as we have already seen in Fig. 3(a). When the cost ratio
increases, tasks with large cost start to emerge. With the high error rate of
s = 0.8, these tasks will experience many re-executions, thus degrading the
makespan. Here, s = 0.6 becomes the best speed due to its smaller error rate.
In the ReExecSpeed scenario, regardless of the initial speed s, the best re-
execution speed σ is always 0.6 or 0.8 depending on the cost ratio, and it improves
upon the respective SingleSpeed scenario with the same initial speed, as we
can see in Fig. 7(b) for cost ratio of 0.6. However, the improvement is marginal
compared to the best performance achievable in the SingleSpeed scenario. The
MultiSpeed scenario, with its flexibility to choose different speeds depending
on the costs of the tasks, always provides the best performance. The advantage
is especially evident at medium cost ratios with up to 6 % improvement, as
this situation contains a good mix of large and small tasks, which is hard to
deal with by using fixed speed(s). Figure 8 shows similar results for the energy
consumption of the Energy-VC+V algorithms under the three scenarios, with
more than 7 % improvement in the MultiSpeed scenario. In this case, speed
s = 0.4 consumes less energy at small cost ratio due to its better power efficiency.

Finally, Fig. 9 shows the relative performance of the Energy-VC+V and
Time-VC+V algorithms under the MultiSpeed scenario. As small cost ratio
favors speed 0.4 for the energy algorithm and 0.8 for the time algorithm, it distin-
guishes the two algorithms in terms of their respective optimization objectives,
by up to 100 % in makespan and even more in energy consumption. Increasing
the cost ratio creates more computationally demanding tasks, which need to be
executed at speed 0.6 for both makespan and energy efficiency as it incurs fewer
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Fig. 7. Performance comparison of the Time-VC+V algorithms in MultiSpeed,
ReExecSpeed and SingleSpeed scenarios for n = 100 tasks with HighLow cost dis-
tribution. In (b), the cost ratio is 0.6.
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Fig. 8. Performance comparison of the Energy-VC+V algorithms in MultiSpeed,
ReExecSpeed and SingleSpeed scenarios for n = 100 tasks with HighLow cost
distribution. In (b), the cost ratio is 0.6.
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errors. This closes the performance gap of the two algorithms as well as the num-
ber of checkpoints placed by them. In either case, the number of checkpoints also
reduces with the cost ratio, because the total computational cost in the small
tasks shrinks, thus fewer checkpoints are needed among them.

Summary. To summarize, we have evaluated and compared various algorithms
under different execution scenarios. The algorithms under the most flexible
VC+V and MultiSpeed scenario generally provide better performance, which
in practice would translate to shorter makespan or lower energy consumption.

For tasks with similar computational costs as in the Uniform distribution, we
observe that the SingleSpeed algorithm, or the greedy approximation in the con-
text of divisible load application, could in fact provide comparable solutions with
lower computational complexity. The ReExecSpeed algorithms show only mar-
ginal benefit compared to SingleSpeed, but clear performance improvements are
observed from the MultiSpeed algorithms, especially for tasks with very differ-
ent costs. The results also show that the optimal solutions are often achieved by
processing around the reference speed that yields the least number of failures.

In terms of computation time, the most advanced VC+V algorithms in the
MultiSpeed scenario take less than a second to find the optimal solution for
n = 100 tasks. As application workflows rarely exceed a few tens of tasks, these
algorithms could be efficiently applied in many practical contexts to determine
the optimal checkpointing and verification locations.

6 Conclusion

In this paper, we have presented a general-purpose solution that combines check-
pointing and verification mechanisms to cope with both fail-stop errors and silent
data corruptions. By using dynamic programming, we have devised polynomial-
time algorithms that decide the optimal checkpointing and verification positions
on a linear chain of tasks. The algorithms can be applied to several execution
scenarios to minimize the expected execution time (makespan) or energy con-
sumption. In addition, we have extended the classical bound of Young/Daly for
divisible load applications to handle both fail-stop and silent errors. The results
are supported by a set of extensive simulations, which demonstrate the quality
and tradeoff of our optimal algorithms under a wide range of parameter set-
tings. One useful future direction is to extend our study from linear chains to
other application workflows, such as tree graphs, fork-join graphs, series-parallel
graphs, or even general DAGs.
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Abstract. Fault response strategies are crucial to maintaining perfor-
mance and availability in HPC storage systems, and the first responsibil-
ity of a successful fault response strategy is to detect failures and maintain
an accurate view of group membership. This is a nontrivial problem given
the unreliable nature of communication networks and other system com-
ponents. As with many engineering problems, trade-offs must be made to
account for the competing goals of fault detection efficiency and accuracy.

Today’s production HPC services typically rely on distributed con-
sensus algorithms and heartbeat monitoring for group membership. In
this work, we investigate epidemic protocols to determine whether they
would be a viable alternative. Epidemic protocols have been proposed in
previous work for use in peer-to-peer systems, but they have the poten-
tial to increase scalability and decrease fault response time for HPC sys-
tems as well. We focus our analysis on the Scalable Weakly-consistent
Infection-style Process Group Membership (SWIM) protocol.

We begin by exploring how the semantics of this protocol differ from
those of typical HPC group membership protocols, and we discuss how
storage systems might need to adapt as a result. We use existing analyti-
cal models to choose appropriate SWIM parameters for an HPC use case.
We then develop a new, high-resolution parallel discrete event simulation
of the protocol to confirm existing analytical models and explore proto-
col behavior that cannot be readily observed with analytical models.
Our preliminary results indicate that the SWIM protocol is a promis-
ing alternative for group membership in HPC storage systems, offering
rapid convergence, tolerance to transient network failures, and minimal
network load.

1 Introduction

As the scale of modern distributed systems continues to grow, so too does the
frequency of system component failures. Ensuring efficient and correct behavior
in the presence of such failures requires both a reliable fault detection mech-
anism and a suitable strategy for fault recovery. Example distributed services
that rely on efficient and accurate fault detection include distributed storage
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 237–248, 2015.
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systems [16,21] and reliable multicast protocols [6,7]. Fault detection is one
component of broader group membership protocols [6,11,19] that are used to
maintain a global view of available participants as they enter or leave the sys-
tem. An HPC storage system might use this view to determine the set of available
servers for data placement, and changes to the group membership can be used
to trigger the re-replication of data in order to maintain resilience. An inefficient
failure detector (i.e., one that takes too long to disseminate failure notifications
to the group) could lead to data loss if data is not re-replicated before addi-
tional failures occur, while an inaccurate failure detector could lead to costly,
unnecessary rebuilds of the storage system.

Group membership protocols often use heartbeat mechanisms to detect faults
[1,8,15,20]: each participant sends out periodic “heartbeat” messages to inform
other participants that it is alive. If no new heartbeat messages are received for
some prescribed duration, the participant is declared faulty and removed from
the group. Unfortunately, the scalability of heartbeat protocols has proven unac-
ceptable for group sizes exceeding more than a few hundred participants [7]. This
limitation arises from the network load imposed by group membership protocols
in order to provide complete and efficient detection of failures [13]. In practice,
failure detector implementations usually divide systems into smaller groups with
independent failure domains (introducing artificial limitations on the range of
failures the system can tolerate) or delegate group membership maintenance to a
specialized subset of participants (increasing engineering complexity and failing
to leverage the full network capacity of the system).

In this work, we analyze the efficiency and scalability of the SWIM (Scalable
Weakly-consistent Infection-style Process Group Membership) protocol. Previ-
ous work [11] proposed the SWIM protocol and evaluated it using both analytical
models and a prototype implementation, but to the best of our knowledge it is
not used in production on any present-day system. SWIM achieves scalability
through the use of a randomized, probe-based failure detection mechanism cou-
pled with an epidemic-style (also known as infection-style or gossip-style) failure
dissemination component. As a result, neither the expected network load per
participant nor the expected time to first detect a failed participant will depend
directly on the size of the group. While much of the analysis given in [11] assumes
a distributed peer-to-peer environment, we instead explore how to adapt SWIM
to a horizontally scalable data center storage environment as would be used for
HPC or big data applications. This environment is characterized by lower net-
work latency and lower churn rate but also higher expectations of consistency
and responsiveness. Although failure modes such as silent data corruption are
important considerations in HPC storage system design, in this work we focus
on total server failures and assume that additional mechanisms will be used to
detect silent errors.

The rest of this paper is organized as follows. In Sect. 2, we summarize the
SWIM group membership protocol. Section 3 explores the implications of using
the SWIM protocol in an HPC storage system, while Sect. 4 analyzes how to
tune its parameters for that environment. In Sect. 5 we provide initial simulation
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results to confirm its performance and to explore its behavior in lossy network
environments. In Sect. 6 we summarize our findings and propose avenues for
future research.

2 Background: SWIM

As defined in [11], the SWIM group membership protocol can be functionally
decomposed into two primary components: a failure detector and a mechanism
for disseminating group membership updates. The failure detection mechanism
is based on the periodic probing of random group participants, while the failure
dissemination component is implemented by using an epidemic protocol.

To provide a high-level overview of the SWIM failure detector, we outline
its operation at an arbitrary participant Pi. The failure detection protocol is
governed by two key parameters: protocol period length T ′ and size of failure
detection subgroups k. At the beginning of each of its protocol periods, Pi will
select a random participant (which we refer to as Pj) from its local group mem-
bership view and probe it using a direct ping request. Pi then waits a prespecified
timeout duration to receive an ack from Pj . If no ack is received, the protocol
selects k more participants at random and sends an indirect ping request to each
of them. Each participant in this subgroup will then ping Pj on behalf of Pi,
forwarding any received acks back to Pi to inform that Pj is alive. The indirect
ping requests are used to circumvent potential congestion on the network path
between Pi and Pj and other phenomena that may have caused the loss of the
original direct ping request or response. At the end of the protocol period (of
duration T ′), if no ack has been received by Pi (whether from direct or indirect
probes), then a subprotocol is triggered that marks Pj as suspected, and this
update is passed to the SWIM dissemination component to be communicated to
the rest of the group.

After a participant is declared as suspected by the SWIM failure detector,
the protocol continues normal operation—the suspected participant may still be
selected as a probe target in future iterations of the protocol. However, if a
participant Pj remains suspected for more than s iterations (i.e., the suspicion
timeout) of the protocol on Pi, then Pi will mark Pj as failed and dissemi-
nate that information to other participants. If a suspected participant becomes
responsive again before the suspicion timeout expires, it will be marked as alive
with a corresponding update disseminated to rejuvenate it in other participants’
membership views.

While it seems natural to disseminate membership updates throughout the
group by using traditional multicast primitives (e.g., hardware, IP), this approach
is unlikely to work at larger scales because of the cost of implementing multicast
portably in unreliable networks. For this reason, SWIM disseminates membership
information using a gossip-style strategy [20], where information propagates sim-
ilarly to the way that gossip propagates through society. Compared with typical
multicast protocols, gossip-style protocols offer higher efficiency and robustness
to failures, although at the cost of a higher dissemination latency. In the SWIM
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protocol, group membership updates are disseminated by piggybacking this data
on the ping and ack messages already generated by the failure detection protocol.
This dissemination therefore introduces no extra packets and imposes minimal
additional network load. The information then spreads through the group as par-
ticipants randomly ping (and ack) each other, ultimately resulting in complete
dissemination of the update.

3 Implications of Using SWIM in HPC Storage Systems

Current production HPC storage systems typically use distributed consensus
algorithms on subsets of servers to maintain a coherent view of group member-
ship; examples include the Totem single-ring protocol [3] in Corosync [10] (used
by a variety of distributed services) and the PAXOS protocol [17] in Ceph [21].
The SWIM protocol semantics differ from such protocols in two notable ways
with respect to storage system design. First, SWIM does not provide a strongly
consistent view of membership among all participants. At any given time, two
participants may have different views of the system. Second, it does not guaran-
tee that updates are disseminated in a consistent order.

SWIM does guarantee, however, that all participants will converge to agree-
ment on the state of a failed participant. SWIM also guarantees time-bounded
strong completeness when using a randomized round-robin ping strategy [11].
We can therefore calculate both an upper bound and an expected amount of
time needed to disseminate a membership update.

Based on these properties, we propose the following design recommendations
for fault recovery in storage systems using SWIM for group membership. Note
that we leave fault detection and group membership entirely to storage system
servers; storage clients are excluded as participants in order to simplify the fault
recovery process.

– Avoid the use of fault response protocols that require strict ordering of group
updates across servers.

– Allow each server to initiate its own fault response (e.g., generating replicas
or recalculating parity) once it has confirmed a fault.

– Validate state agreement between pairs of servers that coordinate during
recovery by piggybacking state information on recovery messages. This app-
roach ensures consistency while limiting synchronization overhead.

In general, we observe that the SWIM protocol is not a drop-in replacement
for existing fault detection mechanisms in today’s storage systems. We will con-
trast with conventional approaches and explore their impact on storage system
design in future work based on the outcome of this preliminary study.

4 SWIM Parameter Selection

Before evaluating SWIM’s performance in the context of a large-scale HPC stor-
age system, we must select appropriate protocol parameters. As we vary the
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number of storage servers (n), we focus on two key input parameters: the proto-
col period length (T ′) and the suspicion timeout in periods (s). These parameters
can be used in conjunction with existing analytical models for SWIM to calcu-
late the expected time before a fault is detected by a single server (tdetect ) as
well as the expected time for a given status update to be disseminated to all
alive servers (tdissem). We define tdetect (derived entirely from analytical models
in [13]) as follows, where qf is the probability that a server is not faulty.

tdetect = T ′ × 1
1 − e−qf

We obtain tdissem using the following equation from [11], where x is the
number of infected servers (initially 1), n is the group size, and t is time (in
protocol periods): x = n

1+(n−1)e−(2− 1
n

)t
. Then, tdissem may be given as follows,

where pdissem is the number of complete protocol periods t from above that
results in total dissemination to all alive storage servers.

tdissem = T ′ × pdissem

We further define the total time elapsed from the occurrence of a fault to all
servers being aware of the confirmed failure as follows.

ttotal = tdetect + (T ′ × s) + tdissem

We observe the following constraints in order to select SWIM parameters
(particularly s and T ′) that are appropriate for HPC storage systems:

– Network RTT: According to the original SWIM protocol definition [11], a
participant must wait at least three round-trip times for a ping response from
a remote peer. This produces the constraint that T ′ > 3 × RTT .

– Network Load: The minimum value of T ′ is further bounded by the network
capacity of the system. If the period length is too short, then the SWIM net-
work traffic (defined by analytical models in [13] in terms of average number
of messages per time unit per participant) may perturb the I/O performance.
The acceptable network traffic load threshold depends on the available net-
work capacity.

– Fault Response Time: The ultimate value of ttotal should be complemen-
tary to the time needed by the storage system to assess a fault and plan
a fault response. Otherwise the fault detection may become a bottleneck to
system availability. In this study we propose a goal of ttotal ≤ 30 s. For com-
parison, popular moderate-scale group membership implementations such as
Pacemaker [5] are often deployed with a 30-s monitoring interval, which does
not include time to reach consensus.

– Transient Failure Sensitivity: If the suspicion time in seconds (T ′×s) is too
short, then the protocol may be susceptible to false positives due to congestion
or transient network card errors. We propose a goal of (T ′ × s) ≥ 10 s, which
is long enough to account for the default network driver transmission timeout
of 5 s as of Linux 3.15.
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Table 1. Effect of SWIM group size, period length, and suspect timeout on expected
performance. †

Table 1 shows the impact of protocol period length (T ′) for storage system
sizes (n) ranging from 1,024 to 4,096 servers, given a constant suspicion time
(T ′ × s). Smaller values of T ′ lead to faster failure detection and dissemination
times at the cost of a higher network load. For a given value of T ′, tolerance to
transient failures can be tuned by setting s such that T ′ × s is larger than the
expected transient failure duration. We can therefore use these parameters to
balance performance, network load, and transient failure tolerance.

We selected the example system size (2,048 servers) and parameters (T ′ =
200 ms, s = 75) highlighted in gray for in-depth analysis via parallel discrete
event simulation. The period length of 200 ms allows us to detect faults and
disseminate notifications rapidly in 318 ms and 1.6 s, respectively. Further, the
average network load imposed by this configuration is still negligible compared
with the bandwidth of typical network interconnects in high-performance data
centers. A suspicion timeout of 75 protocol period lengths allows the protocol
to be resilient to transient failures of up to 15 s, depending on how fast sub-
sequent alive updates are disseminated to the group. This greatly reduces the
probability of unnecessary recovery actions, such as rebuilding storage system
data. Note that Das et al. [11] recommend a shorter s value of (3�log(n + 1)�),
but we extend it in this context to account for shorter period intervals (T ′)
while still remaining tolerant of transient failures. The total time expected for
the protocol to reach global consensus on a failed server is approximately 17 s.
This combination of parameters readily meets the constraints described at the
beginning of this section. We believe these constraints to be a reasonable start-
ing point for configuring SWIM for use in a large-scale data center, although
in-depth characterization of data center failure scenarios could warrant further
parameter tuning.

One detail of the SWIM protocol that has been neglected thus far is the
number of membership updates to piggyback on each ping and ack message.
This piggyback buffer must be large enough to effectively disseminate (poten-
tially numerous) membership updates throughout the system. This requirement
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is particularly important in groups where membership is continually changing
or in systems with high message loss rates, since the dissemination component
may become overwhelmed by the volume of membership updates. However, it is
also important to bound the size of this piggyback buffer as part of minimizing
the network load imposed by the protocol. For our simulation model, we use a
piggyback buffer size of 12, which yields a total message size of 256 bytes if we
assume a 64-byte base message and 16 bytes per membership update. This mes-
sage size in conjunction with the selected configuration parameters in Table 1
produces an expected network consumption of roughly 2.5 KiB/s per server.

5 Simulation Analysis

We developed a parallel discrete event model of the protocol in order to perform
an in-depth analysis of an example configuration with the following goals: vali-
dation of the analytical model results from Sect. 4 and analysis of the protocol’s
performance in failure scenarios that are not captured by the analytical model.
This simulation will also enable integration with complete storage system mod-
els in future work. We constructed our model using the CODES [9,18] storage
simulation framework. CODES is built on top of ROSS [4], a high-performance
parallel discrete event simulator capable of processing billions of events per sec-
ond. To our knowledge this is the first discrete event simulation of the SWIM
protocol.

Our simulator uses a LogGP network model [2] to calculate network delays.
The model assumes full-duplex network cards with independent send and receive
queues and infinite buffering in the switch complex. The parameters for our
LogGP model were obtained by using the netgauge utility [14] on the Tukey
Linux cluster at the Argonne Leadership Computing Facility. Each Tukey node
uses a single-port Mellanox ConnectX 2 QDR InfiniBand NIC. The netgauge
utility assumes that the overhead parameter (o) (representing the CPU time
consumed during transmission) overlaps with network fabric transmission costs,
so we do not apply the o parameter to the communication time calculation.
We also take advantage of the fact that netgauge calculates LogGP parameters
independently for a range of message sizes, creating a lookup table to reflect
varying protocol characteristics.
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Fig. 1. Point-to-point empirical and simu-
lated bandwidth on QDR InfiniBand net-
work with MPI.

Figure 1 compares the empirically
measured point-to-point bandwidth on
the Linux cluster (measured by using
mpptest [12]) with a simulation of the
point-to-point performance using our
simulation framework. We see that the
simulated performance closely matches
the performance trends on the example
system, including protocol crossover
points.
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5.1 Sensitivity to Message Loss

We executed a collection of 30-min., 2,048-server simulations of the SWIM proto-
col in order to evaluate the protocol’s sensitivity to message loss. The simulation
was configured such that no server failed completely, but the probability of packet
loss was varied between 0.2 %, 1 %, and 5 %. A 5 % message loss rate would be
an extraordinary occurrence in a data center environment, but we include it as
a demonstration of SWIM behavior in extreme conditions. Figure 2 illustrates
several performance and accuracy metrics as the SWIM subgroup size k is var-
ied from 1 to 6. The first two figures are accuracy metrics: the number of false
positives (i.e., the number of servers falsely confirmed as failed) and the number
of servers falsely suspected as failed. The last two are performance metrics: the
message rate for each server and the average number of membership updates
piggybacked on each message. We gathered the performance metrics from the
beginning of the simulation (the first 15 to 30 s) before any false positives were
generated that would reduce the number of alive servers.

 0

 500

 1000

 1500

 2000

 2500

un
iq

ue
fa

ls
e 

po
si

tiv
es

5% msg loss
1% msg loss

0.2% msg loss

 0

 500

 1000

 1500

 2000

 2500

0 1 2 3 4 5 6 7

un
iq

ue
su

sp
ec

te
d

k (subgroup size)

 0

 5

 10

 15

 20

 25

m
sg

/s
er

ve
r/

s

 0
 2
 4
 6
 8

 10
 12

0 1 2 3 4 5 6 7

pi
gg

yb
ac

k 
pa

yl
oa

d
(u

pd
at

es
/m

sg
)

k (subgroup size)

Fig. 2. Accuracy and network load metrics over a 30 min interval with 2,048 servers,
a piggyback buffer size of 12, and varying message loss rates.

Protocol accuracy is particularly poor at k values of 1 or 2 for high message
loss rates. With a 5 % message loss rate almost all servers are falsely confirmed
as failed. In this configuration, the probability of failed direct and indirect pings
generates a large volume of failure suspicions that overwhelms the capacity of
the dissemination component to correct them. With a subgroup size of 3 there is
only a single false positive at a message loss rate of 5 %, although we still observe
that nearly all servers are suspected at some point. The piggyback buffer size is
near capacity (as evidenced by the piggyback/message metric) but the increased
subgroup size allows the dissemination component to more effectively propagate
membership updates. We further observe that the protocol can easily manage the
1 % message loss rate at this subgroup size. At a subgroup size of 4, the number
of suspect servers declines and the protocol no longer produces any false positives
at any message loss rate. With subgroup sizes of 5 or 6 the number of suspected
servers diminishes because of the decreased likelihood of all direct and indirect
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pings failing for a given target. We observe that the network load imposed by
the protocol (measured in the average number of messages per server per second)
scales linearly with k, while the accuracy of the protocol increases exponentially
with k.

5.2 Validation

Based on our findings from the previous section, we set k = 6 to make the proto-
col more robust against message loss. Using this configuration, in conjunction with
the parameters derived in Sect. 4, we performed a set of simulation experiments
to measure the response time to single server failures (with no message loss) as we
varied the storage system size. We configured our simulation to choose a random
server to fail at a random time. We also configured each server in the model to
begin its period at a random point within the first T ′ seconds of the simulation, in
order to prevent the SWIM algorithm from producing synchronized bursts of ping
traffic. Figure 3 compares the performance measured by simulation with expected
values based on the existing analytical models. To be concise, we consider only
the time taken to detect a fault (tdetect) and the time to disseminate updates to
all servers (tdissem). The overall time from fault occurrence to global convergence
(ttotal) is dominated by the suspicion time T ′×s, which is a fixed value. We observe
that, on average, tdetect remains roughly constant regardless of scale and tracks
closely with the expected detection time calculated by using the analytical mod-
els. In some instances, however, the measured time to detect a server failure is sig-
nificantly slower (multiple protocol period lengths) than expected. The analytical
model includes simplifying assumptions (e.g., it assumes immediate delivery of all
pings and acks) that we believe accounts for some of this deviation. The time taken
to first detect a failure also depends on when the failure occurs relative to the start
of the next protocol period. The tdissem shown in Fig. 3 exhibits O(log(n)) scaling
as expected but is consistently faster than predicted by the analytical model. One
factor contributing to this discrepancy is that we deliberately desynchronized the
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period start times for each server by a random amount, meaning that it typically
does not take a full T ′ = 200 ms for a given update to be relayed between two
servers. We are also using a more efficient round-robin probing strategy (as sug-
gested by Das et al. [11]) that is not accounted for in the analytical dissemination
time calculation. This round-robin probing causes wider dispersal on average than
does purely random selection of ping targets in each interval.

These results confirm that both tdetect and tdissem are relatively minor compo-
nents of performance and that they scale well with system size. The largest factor
influencing overall performance will be the suspicion timeout s. This SWIM con-
figuration with 4,096 servers would reliably propagate fault notifications to all
servers in roughly 17 s while still remaining resilient to transient faults of up to
15 s and imposing negligible network load (still about 2.5 KiB/s, since the load
does not scale with the group size). In addition, the constraints from Sect. 4
could readily be modified to accommodate other use cases.

6 Conclusion

In this work we explored the feasibility of adapting peer-to-peer style epidemic
fault detection and group membership protocols for use in large-scale HPC stor-
age systems. We identified a set of characteristics necessary for using eventually
consistent group membership protocols such as SWIM in HPC storage systems.
We used a combination of analytical models and simulation to select appropriate
SWIM parameters for an HPC environment while still being tolerant of extraor-
dinary message loss rates. We also studied the SWIM protocol response time as
we varied the number of storage servers from 128 to 4,096, and we confirmed that
the protocol scales well for basic failure cases. We found that the SWIM proto-
col could be configured to detect and fully disseminate failure notifications in an
exemplar 4,096-server storage system in roughly 17 s, while remaining resilient
to transient failures of up to 15 s and imposing a negligible network load. These
results suggest that the SWIM protocol is a promising solution for fault detection
and group membership in future HPC storage architectures.

We intend to analyze more complex, statistically generated failure scenarios
across extended time spans in future work. We also plan to develop models
for more traditional group membership protocols, such as those based on the
PAXOS family of distributed consensus protocols, in order to perform head-to-
head comparisons.
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Abstract. In high-performance computing, there is a perpetual hunt
for performance and scalability. Supercomputers grow larger offering
improved computational science throughput. Nevertheless, with an incre-
ase in the number of systems’ components and their interactions, the
number of failures and the power consumption will increase rapidly.
Energy and reliability are among the most challenging issues that need to
be addressed for extreme scale computing. We develop analytical models
for run time and energy usage for multilevel fault-tolerance schemes. We
use these models to study the tradeoff between run time and energy in
FTI, a recently developed multilevel checkpoint library, on an IBM Blue
Gene/Q. Our results show that energy consumed by FTI is low and the
tradeoff between the run time and energy is small. Using the analytical
models, we explore the impact of various system-level parameters on run
time and energy tradeoffs.

1 Introduction

Large-scale scientific simulations require larger supercomputers to produce more
accurate results. In high-performance computing (HPC) researchers and engi-
neers are pushing the envelops to increase scalability and performance. As sys-
tems scale, new challenges appear, in particular, two major challenges for next
generation supercomputers consists of minimizing power/energy consumption
and maximizing reliability. However, these two objectives are in conflict which
each other because increased reliability comes at the expense of power and energy
usage.

Researchers in the HPC community have developed various fault tolerance
techniques to improve the reliability of current and future machines. Neverthe-
less, all these techniques involve overheads in terms of storage space, computation
and their respective energy consumption, hinting at the existence of a tradeoff
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 249–263, 2015.
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between execution run time and energy efficiency. Multilevel checkpointing is a
promising approach to deal with reliability at extreme scale. The key idea of
this approach consists in using layers of checkpointing, each one of them offer-
ing different levels of resilience and overheads. Low-cost levels offer limited fault
tolerance while highly resilient levels involve large overheads. Consequently, the
correct usage of the multiple levels should lead to substantial gains in perfor-
mance, resilience, and energy consumption.

In this paper, we study the impact of optimal multilevel checkpointing inter-
vals on the tradeoffs between run time and energy consumption. Our experimen-
tal study with FTI, a multilevel checkpointing library on an IBM Blue Gene/Q
supercomputer shows that performance-energy tradeoffs are minimal, but may
be significantly larger under certain future exascale HPC scenarios. The contri-
butions of this paper are as follows:

– We derive analytical models for expected run time and energy consumption
for multilevel checkpointing.

– We characterize the Pareto-optimal solution set and investigate the tradeoffs
between time and energy consumption.

– We perform power consumption measurements of large-scale executions on an
IBM Blue Gene/Q with several applications.

– We present an experimental study to analyze several system-level parameters
for multilevel checkpointing that can potentially impact the tradeoffs.

The rest of the paper is organized as follows. Section 2 describes the main
concepts used by multilevel checkpointing. Section 3 introduces models for time
and energy for multilevel checkpointing strategies. We introduce the notion of
Pareto optimality in Sect. 4. Section 5 presents the results of our empirical eval-
uation and several future tradeoff projections. Section 6 reviews related work,
and Sect. 7 presents conclusions and a brief look at future work.

2 Multilevel Checkpointing

Long-running scientific simulations executed on large supercomputers are check-
pointed periodically to stable storage in order to avoid having to restart from
the beginning in case of failure. Traditionally, applications will stop, write all the
required data to the parallel file system (PFS), and then continue. Checkpoint
sizes have been constantly increasing with the exponential growth of supercom-
puters. Unfortunately, the speed at which one can write to the PFS has been
increasing only linearly, leading to long checkpointing times and causing large
overhead to the application.

To minimize the impact of checkpointing on run time, researchers have pro-
posed multilevel checkpointing [4,13] which leverages multiple storage layers and
limits the load on the PFS. This is achieved by using local storage in the com-
pute nodes. However, local storage is not resilient against node crashes, even for
persistent storage devices, as access to those devices might be lost after a fail-
ure. Therefore, local storage is usually coupled with data replication or erasure



Energy-Performance Tradeoffs in Multilevel Checkpoint Strategies 251

codes to guarantee that any unaccessible data can be reconstructed. We used
the multilevel checkpointing library FTI [4] that provides four checkpoint levels,
namely, Local checkpoint, Local checkpoint + Partner-copy, Local checkpoint +
Reed-Solomon coding, and PFS-based checkpoint. Note that the model devel-
oped proposed in this paper can be used to analyze other multilevel checkpoint
libraries.

Applications using FTI can perform checkpoints of different levels at different
frequencies. Those frequencies can be easily configured through a configuration
file. When a checkpoint of level i is done, FTI automatically removes all previous
checkpoints of level j for j ≤ i because i is more recent and offers more reliability.
Previous checkpoints of level k for k > i are kept however, so that if a failure
cannot be recovered by using level i, it can try to recover from a higher level.
In addition to these four checkpointing levels, FTI offers features such as having
dedicated processes that perform fault-tolerance tasks in the background, which
speeds the checkpoints and limits the overhead imposed on the application’s
run. Dedicated processes could, for instance, copy a local checkpoint to the PFS
in the background at the same time the application is running. In this way,
applications are blocked only to perform the local checkpoint; all the rest of the
work associated with addressing fault tolerance is hidden.

3 Energy and Checkpoint Models

A multilevel checkpoint strategy is defined by the intervals between checkpoints.
We denote these intervals by the vector τ ∈ R

L
+, where L is number of different

levels of checkpointing and the ith component, τi, of the vector τ denotes the
amount of time between checkpoints at level i. The checkpoint cost (in terms of
time) at level i is denoted by ci.

After a failure, the application uses the most recent checkpoint to restart
the application. Suppose we have a failure at level i, the restart time is ri and
the down time is di. For a failure model we consider μi as the rate of failures
affecting only level i. Hence, μ1 corresponds to the rate of transient failures; μ2

is the rate of permanent failures that affect many nodes but not two buddies at
the same time; μ3 represents the rate of failures affecting at least one partner
node at the same time; and μ4 is the rate of failures that occur at the same
time and affect at least one group at the same time. Several derivations of μi are
provided in [7,13]. Also, we note that 1/μi can be interpreted as the mean time
between failures at level i. The basic model notation is summarized in Table 1,
with all times and powers taken in expectation.

3.1 Model for Run Time

We express the expected overall completion time as the sum of two times: the
time for a failure-free execution of an application without checkpointing and
the expected time wasted because of failures and/or checkpointing, Toverall =
Ta+Twasted = Ta+WToverall. The amount of waste per unit of time, W, comprises
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Table 1. Summary of model notation.

Description

τi Time between level i checkpoints

ci Time for a level i checkpoint

ri Time for a restart from level i

Ta Time for a failure-free computation without checkpointing

di Downtime after a failure affecting level i

L Number of levels

μi Expected rate for failure affecting level i

Pc
i Power for a level i checkpoint

Pr
i Power for a restart from level i

Pa Power for a failure-free computation without checkpointing

the time to perform checkpointing, rework, and restart, as well as the downtime.
We now examine the contributors to the wasted time: the checkpoint overhead
per unit of time Wch, the rework overhead per unit of time Wrew, and the restart
per unit of time Wdown.

Checkpoint overhead. We have two sources of overhead because of checkpointing.
The first is based on the number of checkpoints performed in one unit of time.
The number of checkpoints can be approximated by 1

τi
. A tighter approximation

is given by 1
τi+ci

, but 1
τi

is a good upper bound. The second term, μiτi

∑i−1
j=1

cj
2τj

,
represents the expected lost time due to extra checkpoints at levels 1, . . . , i − 1
if a failure occurs at level i. The overall fraction of time spent in checkpointing
is thus given by

Wch =
L∑

i=1

⎛

⎝ci

τ i
+ μiτi

i−1∑

j=1

cj

2τj

⎞

⎠.

Rework time. We follow the classical first-order approximation and assume that
a failure occurs at the half of the interval. The expected lost time due to re-
execution (rework) is thus

Wrew =
L∑

i=1

μiτi

2
.

Downtime and restart. The expected wasted time because of downtime and
restart is

Wdown =
L∑

i=1

μi(ri + di).
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The total waste per unit time, W, is thus given by
L∑

i=1

(
ci

τi
+

μiτi

2

(

1 +

i−1∑

j=1

cj

2τj

)

+ μi (ri + di)

)

. (1)

3.2 Model for Energy

We now develop a model for the expected wasted energy per unit of time. We let
Pa, Pc

i , and Pr
i denote respectively the amount of power (e.g., in watts) used by

the user application to perform computation, checkpoint at level i, and restart
from level i. Note that Pa, Pc

i , and Pr
i include the idle power as well.

We have the three sources of wasted energy:

Ech =
L∑

i=1

⎛

⎝Pc
i

ci

τi
+ μiτi

i−1∑

j=1

Pc
j cj

2τj

⎞

⎠,

Erew =
L∑

i=1

Pa μiτi

2
,

Edown =
L∑

i=1

Pr
i μi(ri + di),

corresponding to the checkpoint energy, the energy for rework because of failures,
and the energy for restart, respectively.

3.3 Optimal Checkpoint Intervals

The optimal checkpoint intervals with respect to run time are obtained by mini-
mizing (1) as a function of τ ∈ R

L
+. Similarly, the optimal intervals with respect

to energy are obtained by minimizing the wasted energy during one unit of time,

E =
∑L

i=1

(Pc
i ci
τi

+ μiτi

(
Pa

2 +
∑i−1

j=1

Pc
j cj
2τj

))

+
∑L

i=1 Pr
i μi(ri + di), (2)

as a function of τ .
Under reasonable restrictions on the checkpoint intervals (based only on the

failure rates μ; see the Appendix), one can show that W and E are both convex
over this restricted domain. Thus each has a unique optimal solution, which we
can obtain, for example, using an iterative method such as Newton’s method.

The first derivatives of Eqs. (1) and (2) with respect to τi are given by

∂W

∂τi
=

μi

2

(

1 +

i−1∑

j=1

cj

τj

)

− ci

τ2
i

(

1 +

L∑

j=i+1

μjτj

2

)

(3)

∂E

∂τi
=

μi

2

(

Pa +

i−1∑

j=1

Pc
j cj

τj

)

− Pc
i ci

τ2
i

(

1 +

L∑

j=i+1

μjτj

2

)

. (4)
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Setting these derivatives to zero, we note that the solutions for time and energy
satisfy

τW

i =

√√√√ci(2 +
∑L

j=i+1 μjτW

j )

μi(1 +
∑i−1

j=1
cj
τW

j
)

τE

i =

√√√√ρici(2 +
∑L

j=i+1 μjτE

j )

μi(1 +
∑i−1

j=1
ρjcj
τE

j
)

,

respectively, with ρi = Pc
i /Pa.

When there is only a single level, the interval that minimizes run time is
τW =

√
2c/μ, while the interval that minimizes energy is τE = τW

√Pc/Pa.
Whenever Pc �= Pa, we have that τW �= τE, and hence the two objectives are
conflicting, a subject we formalize next.

4 Tradeoffs Between Time and Energy

We now turn to the checkpoint-scheduling problem of minimizing both time and
energy. Sometimes such bi-objective optimization problems have a single solution:
there is a single decision that minimizes both objectives simultaneously. In other
cases (such as seen at the end of Sect. 3), the objectives are conflicting, and many
solutions may be “optimal” in the bi-objective sense.

The concept of two conflicting objectives is best illustrated by an example.
Figure 1 shows the wasted time and energy per unit of time for a single-level

Fig. 1. Pareto front for single-level checkpointing for LAMMPS on BG/Q. The power
for computing and checkpointing are 2 kW and 1.8 kW, respectively; μ=1/36000Hz
and the cost of a checkpoint is 10 s. The thin line shows the strategies dominated by
the Pareto front (thick line).
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checkpointing scheme (see Sect. 5 for details). The thinner curve illustrates the
behavior of the objective pairs (W(τ),E(τ)). If the objective W [E] is mini-
mized in isolation, then we obtain the solution τW [τE] and the corresponding
point (W(τW),E(τW))

[
(W(τE),E(τE))

]
in Fig. 1. From a bi-objective perspec-

tive however, τW and τE provide only the boundary of the solution set: for any τ
between the values τW and τE, we obtain time and energy quantities that cannot
both be improved upon. Formally, a point τ j is dominated by a point τ i when
W(τ i) ≤ W(τ j) and E(τ i) ≤ E(τ j) (with at least one of these inequalities being
strict). A point τ i is said to be Pareto-optimal if it is not dominated by any
other τ j . The set of (W,E) values from all Pareto-optimal points is called the
Pareto front (illustrated by the bold portion of the curve in Fig. 1); see [3,8] for
further details.

In general, Pareto fronts can be nonconvex, and finding Pareto-optimal points
can be a task significantly more challenging than optimizing a single objective.
When the Pareto front is convex, any point on the front can be obtained by min-
imizing a linear combination of the objectives. This corresponds to minimizing
the single objective

fλ(τ) = λW(τ) + (1 − λ)E(τ), (5)

where λ ∈ [0, 1] represents the weight placed on W(τ). For convex Pareto fronts,
solving (5) for all λ ∈ [0, 1] yields the Pareto-optimal solutions, with the extreme
case λ = 1 (λ = 0) corresponding to minimizing time (energy) in isolation.

Because W and E are convex, it follows that the function fλ is convex for every
λ ∈ [0, 1] and thus has a unique minimizer τ∗(λ). Using the derivatives in (3) and
(4), one can easily show that the optimal τ∗

i (λ) satisfies

τ∗
i (λ) =

√
√
√
√
√
√
√
√
√

ci(λ + (1 − λ)Pc
i )

(

2 +
L∑

j=i+1

μjτ∗
j

)

μi

(

λ + (1 − λ)Pa +
i−1∑

j=1

(λ + (1 − λ)Pc
j )

cj
τ∗
j

) , (6)

where each τ∗
j = τ∗

j (λ) depends on λ. For example, in the single-level case, we
have that

τ∗(λ) = τW

√
λ + (1 − λ)Pc

λ + (1 − λ)Pa
. (7)

Equation (7) reiterates that tradeoffs are present in the single-level case when-
ever Pc �= Pa. When L > 1, the situation is more complex; in the next section
we investigate the behavior for specific values of the multilevel parameters.

5 Experiments

Our evaluation was performed on MIRA, a 10-petaflops IBM Blue Gene/Q
(BG/Q) system and Vesta, a developmental platform for Mira, at the Argonne
Leadership Computing Facility. Mira has 48 racks with a total of 49,152 nodes,
each one with 16 cores of 1.6 GHz PowerPC A2 and 16 GB of DDR3 memory.
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The compute nodes run on CNK, a proprietary, lightweight kernel that minimizes
OS noise. A proprietary 5-D torus network connects all the compute nodes and
the PFS. The machine is water-cooled for thermal efficiency. Vesta’s architec-
ture is the same as Mira’s but with 2,048 nodes. For measuring power on BG/Q,
we use MonEQ, a low overhead power-profiling library [16] that samples power
readings at a frequency of 560 ms. The power measurements include the overall
node consumption as well as core, DRAM and network. Further details on the
power profiling used can be found in [16]. Because of control system limitations,
MonEQ can collect power data only at the node-card level which includes 32
compute nodes. In addition, MonEQ only measures power consumption on the
compute nodes, and does not provide data for the I/O power consumption. We
revisit this issue in Sect. 5.2.

5.1 FTI on BG/Q

Our first set of experiments was done with LAMMPS, a production-level molecu-
lar dynamics application [14]. First, we measured the performance of LAMMPS on
Mira to confirm that our setup was correct. We next ported LAMMPS to perform
checkpoints with FTI and confirmed that the performance overhead imposed by
FTI was low. We then added the MonEQ library to our setup and ran several
tests to verify that the power measurements were being correctly logged. With
this configuration, we ran a Lennard-Jones simulation of 1.3 billion atoms using
512 nodes and launching 64 MPI processes per node (32,678 ranks in total). Mole-
cular dynamics applications such as LAMMPS are known to have a low memory
footprint. Each rank used 16.2 MB of memory and checkpointed 2.9 MB of data.
Thus, the checkpoint size per node is about 187 MB, and the total checkpoint
size for the whole execution is roughly 93 GB. The checkpoint intervals for levels
1, 2, 3, and 4 were set to 4, 8, 16, and 32 min, respectively, producing the check-
point order {1, 2, 1, 3, 1, 2, 1, 4}. This first experiment was done without using
dedicated processes for fault tolerance. Thus, every process participated in the
application, and the execution was blocked during the checkpoints.

Figure 2a shows the power consumption of LAMMPS checkpointing with FTI in
a synchronous fashion. During normal execution, LAMMPS consumes about 32 kW
on 512 nodes (32,678 processes). We introduce one minute idle phase (i.e. sleep)
before the application starts, to measure the idle power consumption of the nodes.
We observe that the idle phase consumes roughly 25 kW. The periodic drop (every
four minutes) in power consumption is due to checkpointing. We can identify the
checkpoint levels by measuring the time that nodes spend in different power con-
sumption regimes. Short drops in DRAM corresponds to the checkpoint level 1.
Checkpoints level 2 and 3 expose two parts of checkpoint: DRAM power drop when
the checkpoint data is being copied locally and core power drop where the check-
point is either being transferred to a partner copy or a encoded with Reed-Solomon
encoding, for level 2 and 3 respectively. Finally, PFS-based checkpoint is visible
as a long drop in power consumption due to the time that it takes to transfer the
checkpoint data to the PFS via I/O nodes and erase the previous local checkpoints.
Since MonEQ provides only the power consumption of the participating compute
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(a) Synchronous multilevel checkpointing

(b) Asynchronous multilevel checkpointing

Fig. 2. Power profile of LAMMPS running a 1.3 billion-atom Lennard-Jones simula-
tion and checkpointing with FTI on BG/Q. Execution on 512 nodes running 64 MPI
ranks per node (32,678 proc.). The power consumption of node is a sum of all power
consumptions of the components.

nodes, the experiments do not allow us to accurately quantify the energy usage
for level 4 PFS-based checkpointing. The power consumption of all other check-
point levels vary between 27 kW and 30 kW. We note that although they have
relatively similar power costs, their run times vary significantly. We verified that
all node cards (set of 32 nodes) consume the same power, roughly 1.6 kW, 1.8 kW,
and 2 kW during idle time, checkpointing, and execution, respectively.

The next experiment aims to test the asynchronous feature of FTI to speed the
checkpoints. LAMMPS is a good candidate for this type of optimization because it
does not require a particular number of MPI ranks. Therefore, one can easily dedi-
cate one MPI process per node (out of 64) for fault tolerance. The same checkpoint
frequencies are kept, producing the same checkpointing pattern as in the previous
configuration. The results in Fig. 2b illustrate that the drops in power consump-
tion are much shorter because the application is blocked only during the local
copy; the rest of the work is done in the background by the dedicated processes
(one per node), and does not involve a significant extra power cost. As a result
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of this optimization, the application runs about 20 % faster than in the previous
configuration.

We also study the power profile of four mini-applications from the CORAL
benchmark suite developed for the procurement of pre-exascale systems [1]. Qbox

is a first-principles molecular dynamics code used to compute the properties of
materials from the underlying physics equations. AMG is a parallel algebraic
multigrid solver for linear systems arising from problems on unstructured grids.
LULESH performs hydrodynamics stencil calculations, and miniFE is a finite-
element code.

We ran the four applications on a single-node board of 32 nodes of Vesta
with 512 MPI ranks (16 MPI ranks per node). Figure 3 shows the power profile
of the fault-free computations, Pa, on a node card. Except for Qbox, on average,
the observed Pa values are similar to those of LAMMPS; for Qbox, Pa reaches
up to 2.2 kW.

(a) LULESH (b) MiniFE

(c) AMG (d) Qbox

Fig. 3. Power profile of CORAL benchmark applications on a BG/Q node board of
32 nodes. Each application is run with a configuration of 16 MPI ranks per node (512
processes).
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5.2 Tradeoff Analysis

We now revisit the energy-performance models from Sect. 3 and use the power
consumption and checkpointing cost observed on BG/Q and presented in Sect. 5.1.
In particular, we examine several system-level parameters that can affect the
energy-performance tradeoffs.

For this analysis, we consider values at a node-board level and applications
with similar checkpoint sizes as the ones observed for LAMMPS. As a default,
we use the configuration c = [10, 30, 50, 150] s; μ = [1, 0.5, 0.25, 0.05]/36000 Hz;
Pa = 2 kW; Pc

1 = Pc
2 = Pc

3 = 1.8 kW; and, since there is no power monitoring
infrastructure to measure the I/O power involved in level 4 checkpointing, we
take Pc

4 = 2×Pc
3 . We note that the default failure rates are those commonly used

for petascale HPC systems [4,7,13]. Note that, given a fixed checkpoint size, the
wasted time and energy consumption per unit time during checkpointing will
be the same for different applications, because FTI performs the same amount
of work (e.g., transfer) independently of the content of the checkpoint data. In
what follows we report the expected waste in time and energy per minute.

With all other values held fixed, we first vary the number of levels considered
for checkpointing (and at which failures can occur). Table 2 illustrates that the
optimal checkpoint intervals depend on what is happening at all other levels.
Despite the overall time between any failure (the final column) decreasing, the
checkpoint intervals at a level actually increase because of the increases in the
number of levels. Furthermore, differences in wasted time and energy between
the two single-objective solutions τW and τE increase as the number of levels
grows. Nevertheless, for a given number of levels, these differences are small.

Table 2. Optimal multilevel checkpoint intervals (s) for schemes with 1, 2, 3, and 4 levels.

Level 1 2 3 4 W(τ),E(τ) (
L∑

j=1

μj)
−1

τW 848.5 n/a n/a n/a (1.41, 2.69) 36000 (s)

τE 805.0 n/a n/a n/a (1.42, 2.68)

τW 854.6 2066 n/a n/a (3.16, 6.00) 108000 (s)

τE 810.5 1961 n/a n/a (3.16, 5.99)

τW 860.1 2080 3746 n/a (4.76, 9.04) 252000 (s)

τE 815.4 1973 3556 n/a (4.76, 9.02)

τW 864.3 2090 3765 14417 (6.01, 12.53) 972000 (s)

τE 820.8 1986 3580 19362 (6.07, 12.37)

Since we cannot measure I/O-intensive level 4 power consumption, we ana-
lyze the tradeoffs under various Pc

4 scenarios. We consider Pc
4 = αPc

3 , where
α ∈ [1, 2, 4, 6, 8, 10] and the default Pc

3 . Figure 4a shows that increasing Pc
4 rel-

ative to other levels has a significant impact on the observed tradeoff between
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(a) Level 4 power consumption Pc
4 (b) Computation power Pa (c) Power ratio Pc

Pa

Fig. 4. Time-energy Pareto fronts for multilevel schemes as different parameters are
varied. The two end points represent only the boundary of the solution set: all values
between them correspond to non-dominated points.

W and E. In particular, richer tradeoff is observed for α = 10 (18 kW). We also
analyze the impact of different Pa values on time and energy. Figure 4b shows
that varying Pa increases energy, but the tradeoffs are insignificant.

The projected low power consumption and high failure rate for next-generation
systems can have a significant impact on energy-performance tradeoffs. Here,
we characterize power consumption by the ratio Pc

Pa . We set the Pa and Pc
1

values to obtain Pc

Pa ∈ {0.5, 1.0, 2.0, 4.0, 6.0, 8.0}, with all other default values
unchanged. Recall that Pc

1 = Pc
2 = Pc

3 and Pc
4 = 2Pc

3 . In Fig. 4c, we see that Pc

Pa

has a significant impact on the tradeoffs between W and E, with these tradeoffs
increasing as ρ increases. This suggests that power for computation should be
significantly less than that for checkpointing in order for richer tradeoffs to exist.
This situation could happen for several reasons. For instance, applications could
be significantly more aware of data locality than what multilevel checkpointing
techniques could achieve, because resilience can be achieved only through data
dispersion across space, which requires communication. We also analyzed the
tradeoffs by increasing μ values, but we did not observe significant tradeoffs.

6 Related Work

A rich body of literature exists for computing an optimal checkpoint period with
respect to run time for various checkpoint protocols [5–7]. However, energy mod-
els and analysis of tradeoffs in current and future HPC systems are still in their
infancy. Diouri et al. [9] modeled and evaluated the energy consumption of check-
pointing, task coordination, and message logging components of a fault tolerance
protocol. They showed that neither of these tasks significantly increases the power
draw of a node and that minimizing execution time will minimize energy con-
sumption. Later, they developed the ECOFIT framework [10] using component
power models, and studied energy consumption of an application using coordi-
nated, uncoordinated, and hierarchical protocols. Meneses et al. [12] developed
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models for expected run time and energy consumption for global recovery, message
logging, and parallel recovery protocols. They observed tradeoffs in message log-
ging due to significant run time overhead but faster recovery. They applied these
models in an exascale scenario and showed that parallel recovery is more effec-
tive than a checkpointing protocol since parallel recovery reduces the rework time.
A limitation of the model is that it considers failures at a single node level. More-
over, the RAPL API used to report the power consumption measures only the
energy consumption at a processor-level and does not cover the I/O, or the com-
munication [11]. Aupy et al. [2] developed performance and energy models and
applied them to analyze the minimizers of each objective in isolation. Under an
expensive I/O scenario with a low idle power of 10 mW/node, the authors showed
different tradeoffs. However, the proposed models do not take into account mul-
tilevel checkpointing and are not used to assess the tradeoffs more generally. The
authors considered the power consumption values from elsewhere [15]: the check-
pointing power consumption was set to 10 times the computer power, a primary
reason for the significant differences in time and energy.

7 Conclusions

We developed analytical models of performance and energy for multilevel check-
point schemes. We went beyond minimizing the two corresponding objectives in
isolation and examined them simultaneously. We proved that both models—and
hence their shared Pareto front—are convex and used this result to analyze the
performance-energy tradeoffs for the FTI multilevel checkpoint library on BG/Q.
We ran a well-known molecular dynamics application (LAMMPS) over 32,000
ranks as well as other CORAL applications and performed detailed power mea-
surements on them. The empirical results and analysis showed that the relative
energy overhead due to the adoption of FTI is small on the studied applications
and thus the tradeoffs between the run time and the energy consumption is not
significant. This is due to the fact that the difference between power consump-
tion during computation and multilevel checkpointing is minor. The exploratory
analysis showed the existence of richer tradeoffs where the power consumption of
checkpointing is significantly higher than that of the computation such a situa-
tion can be observed when using I/O-intensive and/or data-intensive checkpoint
strategies.

Our future work includes analyzing power profile of different fault tolerance
protocols such as full/partial replication and message logging. We plan to develop
performance and energy models for replication and checkpointing in order to
assess the viability of both protocols with respect to the power cap of future
exascale platforms.
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Appendix

We first formalize our assumption on the checkpoint intervals of interest.

Assumption (A1). We consider checkpoint intervals τ ∈ R
L
+ that satisfy (for

i = 1, . . . , L): (i) τi > 0; (ii) τj > τi/2 whenever j > i; and (iii) τi < 4/
∑i−1

j=1 μj.

The second condition says that the checkpoint at level j cannot be that
frequent relative to checkpoints at lower levels. The third condition says that
the time between checkpoints needs to be sufficiently smaller than the expected
time between any failure at a lower level.

Theorem 1. If (A1) holds, then the time W and energy E are convex functions
of τ ∈ R

L.

Proof. Following (3) and (4), the second-order derivatives of W are given by

∂2
W

∂τ2
i

=
ci

τ3
i

⎛

⎝2 +
L∑

j=i+1

μjτj

⎞

⎠

∂2
W

∂τi∂τj
= −ciμj

2τ2
i

, j �= i.

We then have
∂2

W

∂τ2
i
−∑j �=i

∣
∣
∣ ∂2

W

∂τi∂τj

∣
∣
∣

= ci
τ2
i

(
L∑

j=i+1

μj

(
τj
τi

− 1
2

)
+ 2

τi
−

i−1∑

j=1

μj

2

)

,
(8)

which is positive by (A1). Equation (8) being positive for all i means that the
Hessian ∇2

ττW(τ) is diagonally dominant, and thus W is a convex function of τ
over the domain prescribed by (A1).

The convexity of E follows by a similar argument, with the derivatives of E
given by

∂2
E

∂τ2
i

=
Pc

i ci

τ3
i

⎛

⎝2 +
L∑

j=i+1

μjτj

⎞

⎠

∂2
E

∂τi∂τj
= −Pc

i ciμj

2τ2
i

, j �= i.

As a result, there are unique minimizers τW and τE over the domain pre-
scribed by (A1).
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Abstract. The computing community is facing several big data chal-
lenges due to the unprecedented growth in the volume and variety of
data. Many large-scale Internet companies use distributed NoSQL data
stores to mitigate these challenges. These NoSQL data-store installa-
tions require massive computing infrastructure, which consume signifi-
cant amount of energy and contribute to operational costs. This cost is
further aggravated by the lack of energy proportionality in servers.

Therefore, in this paper, we study the energy proportionality of
servers in the context of a distributed NoSQL data store, namely Apache
Cassandra. Towards this goal, we measure the power consumption and
performance of a Cassandra cluster. We then use power and resource pro-
visioning techniques to improve the energy proportionality of the cluster
and study the feasibility of achieving an energy-proportional data store.
Our results show that a hybrid (i.e., power and resource) provisioning
technique provides the best power savings — as much as 55 %.

1 Introduction

The computing community is facing a data deluge. Software developers have
to deal with large volumes and variety of data (a.k.a. big data). NoSQL data
stores, such as Cassandra [11], Bigtable [5] and DynamoDB [17], have emerged
as a viable alternative to the traditional relational databases to handle big data.
They provide fast and scalable storage with unconventional storage schemas.
The entire set of data is partitioned and stored in many different servers, and
a key-value store is used to respond to queries from clients. In order to meet
service-level objectives (SLOs), these distributed data stores can span several
hundred servers (or a cluster) to provide efficient access to huge volumes of
data. For example, Netflix uses Cassandra installations that span 2500 servers
and stores 300 terabytes of data.

Such cluster installations consume a significant amount of energy, and in turn,
contribute to their operational costs. Moreover, the operational cost is exacer-
bated by the lack of energy proportionality in servers. To address these issues,
power provisioning techniques [7,9,18,19] have been shown to improve the energy
proportionality of such servers. These techniques take advantage of low utiliza-
tion periods or short idle periods to assign low-power states to subsystems, such
as the CPU and memory, using mechanisms such as dynamic voltage-frequency
c© Springer International Publishing Switzerland 2015
S.A. Jarvis et al. (Eds.): PMBS 2014, LNCS 8966, pp. 264–274, 2015.
DOI: 10.1007/978-3-319-17248-4 14
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scaling (DVFS) or Intel’s running average power limit (RAPL). Other researchers
have provided solutions to improve the energy proportionality by using resource
provisioning techniques. These techniques use workload consolidation to mini-
mize the number of servers required to sustain a desired throughput and reduce
energy consumption by turning off the servers not in use [22].

With the volume of data growing at a rapid pace and the variety of data
continuing to evolve and change, distributed NoSQL systems will need increas-
ingly larger cluster installations. Improvements in the energy proportionality of
such installations will need to come from both hardware- and software-controlled
power management. Thus, our aim in this paper is to study the energy propor-
tionality of clusters in the context of distributed NoSQL data stores. Specifically,
we analyze the effectiveness of different software-controlled power management
techniques, such as power and resource provisioning, to improve the energy pro-
portionality of NoSQL data store installations. Using Cassandra as our distrib-
uted NoSQL data store, we make the following contributions:

– A detailed study of the power consumption and energy proportionality of a
Cassandra cluster, including power measurements of individual components
within the cluster. In short, we find that the idle power consumption is very
high in such distributed NoSQL installations and that the CPU contributes
most to the dynamic power range of the cluster.

– An investigation into the effects of different power management techniques
on the energy proportionality of a Cassandra cluster. Our results show that
significant power savings (upto 55 %), and in turn, improvements in energy
proportionality can be achieved at low load-levels by taking advantage of the
difference between measured latency and SLO. We also find that a hybrid (i.e.,
power and resource) provisioning technique provides the best power savings,
closely followed by resource provisioning.

The rest of the paper is structured as follows. A brief overview of the workload
generator, Cassandra, the power management interface and the experimental
setup is described in Sect. 2. We present the baseline power and performance
measurements in Sect. 3. The trade-offs between latency, power savings and
energy proportionality using different power management techniques is described
in Sect. 4. A discussion of the related work is presented in Sect. 5. Section 6 con-
cludes the paper.

2 Background

In this section, we present the following background information to provide con-
text for our work: (1) the workload generator, (2) the distributed NoSQL data
store, (3) the power management interface and (4) the experimental set-up.

2.1 Workload Generator: YCSB

To generate the workload for our experiments, we use the Yahoo! Cloud Serving
Benchmark (YCSB) [3]. YCSB is a benchmarking framework to evaluate the
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performance of cloud data-serving systems. The framework consists of a load-
generating client and a set of standard workloads, such as read-heavy or write-
heavy workloads, which helps in stressing important performance aspects of
a data-serving system. YCSB also allows the user to configure benchmarking
parameters such as number of client threads and the number of record counts.

2.2 NoSQL Data Store: Apache Cassandra

We use Cassandra [1,11] as our distributed NoSQL data store. Cassandra aims
to manage large amounts of data distributed across many commodity servers.
It provides a reliable, high-availability service using a peer-to-peer architecture.
The data is split across each node in the cluster using consistent hashing. Specif-
ically, a random value within the range of the hash-function output is assigned
to each node in the system and represents its position in the ring. Each data
item identified by a key is assigned to a node by hashing the data item’s key
to yield its position on the ring and then walking the ring clockwise to find the
first node with a position larger than the item’s position.

To improve availability, each data item can be replicated at N different hosts,
where N is the replication factor. Cassandra uses a gossip protocol to locally
determine whether any other nodes in the cluster have failed. A Cassandra cluster
can be provisioned with extra resources easily by providing the newly added node
with information about the seed node (initial contact points) in the already
existing cluster. All of the above features make Cassandra not only tolerant
against single points of failure but also scalable. To evaluate Cassandra, we use
the aforementioned YCSB workload generator.

2.3 Power Management Interface

To study energy proportionality in the context of a distributed NoSQL data
store, namely Cassandra, we use Intel’s Running Average Power Limit (RAPL)
[2,6] interfaces for power management. RAPL, which debuted in Intel Sandy
Bridge processors, provides interfaces to mechanisms that can measure the energy
consumption of specific subsystems and enforce power consumption limits on
them. The RAPL interfaces can be programmed using the model-specific regis-
ters (MSRs).

2.4 Experimental Setup

With respect to hardware, we use a four-node cluster as our evaluation testbed.
Each node consists of an Intel Xeon E5-2620 processor, 16 GB of memory, and
a 256-GB hard disk. A separate server runs the YCSB client, which sends data
serving requests to the Cassandra cluster.

For configuration, we load 10-million records into the data store with a repli-
cation of three so that the Cassandra cluster can sustain multiple node failures.
For the workloads, we evaluate with a read-only workload and an update-only
workload. The requests follow a Zipfian distribution.
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For data collection, the YCSB client reports the performance achieved in
terms of throughput and latency, specifically average latency and latencies at the
95th and 99th percentile. To collect power numbers, a Watts Up power meter
recorded full-system power measurements while the RAPL interfaces collected
subsystem-level power measurements.

3 Baseline Measurements for Power and Latency

Here we measure the performance and corresponding power consumption of the
Cassandra cluster. The goals are two-fold: (1) to improve our understanding of
the relationship between power and performance for a distributed NoSQL data
store and (2) to identify any potential for power savings.

Figure 1 shows the power distribution for the read-only workload and the
update-only workload across the entire cluster. The values reported in Fig. 1 are
based on the sum of the power consumption from each node in the cluster and
averaged over multiple runs. System components other than the processor and
memory are represented as “Others”1 in legend of the figure.

Fig. 1. Component-level power distribution.

The other components of the system consumed a significant portion of the
power when idling (i.e., 61 % and 42 % of the total power for the read-only and
update-only workloads, respectively). However, they only add 2 % and 8 % more
to the power consumption when the system is under load for the two work-
load cases, respectively. In contrast, the processor package adds another 22 %
and 37 % to the power consumption distribution for the workloads under eval-
uation. This shows that the processor contributes significantly to the dynamic
1 The other components, denoted by “Others,” also include the power consumption

of the hard disk.
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Fig. 2. Energy proportionality

Fig. 3. Latency profile

power range of the cluster under test. The plot shows only the distribution of
power consumption at the highest load on the system (i.e., 100 % load-level).
However, we are also interested in analyzing the energy proportionality (i.e.,
the power consumption at different load-levels) of the system, which leads us to
Fig. 2.

Figure 2 shows the normalized power consumed by the system at different
load-levels. We normalize power relative to the power consumed at 100 % load-
level by that component. For example, each value in the CPU power trend is
normalized to the power consumed by the CPU at 100 % load-level. We also show
the ideal energy proportional case for comparison purposes. Several insights can
be gleaned from these figures. As evident from the figure, the system exhibits
poor energy proportionality for both the workloads as it varies between 80 % and
100 % of normalized power. The read-only workload, however, exhibits better
energy proportionality on the cluster than the update-only workload. For exam-
ple, the CPUs have a linear increase in power consumption and varies between
30 % and 100 % for the read-only workload. However, the power consumption of
the CPU varies only between 75 % and 100 % for the update-only workload even
though the CPUs consume a higher percentage of the overall power, as shown
in Fig. 1. Later in this paper, we analyze whether existing power-management
techniques can help to improve the energy proportionality of the cluster system.

Figure 3 shows the latency profile for the two workloads. We present the
average latency as well as the latencies at the 95th and 99th percentile at different
load-levels for each workload. The performance targets (or SLOs) are typically
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based on either the 95th or 99th percentile rather than by the average. These
SLOs are fixed at a particular value by the service provider and do not depend
on the load-level of the system. SLOs provide us with the opportunity to trade
latency for power under certain load-levels.

If the cluster achieves lower latencies at low load-levels, power-management
techniques can be used to improve the efficiency of the cluster by provisioning
power or provisioning server resources. For example, if the SLO is set as 160 ms on
the 99th-percentile latency for the update-only workload, there exists headroom
between the measured latency and the SLO for any load-level less than 90 %. We
can use this headroom to improve the power consumption of the cluster, thus
improving energy proportionality. In rest of the paper, we examine this power
versus latency trade-off using different power-management techniques.

4 Evaluation of Power-Management Techniques
for NoSQL Data Store

In this section, we evaluate the effect of different power-management techniques
on the power consumption and energy proportionality of the Cassandra cluster.
In this paper, we evaluate three different techniques: power, resource, and hybrid
(i.e., power and resource) provisioning. The power-management techniques are
applied while meeting the SLOs. Two different SLOs on latency, one on the
95th percentile and the other on the 99th percentile, are evaluated for each
of the workload. For the read-only workload, we fix the SLOs at 600 ms for
the 95th-percentile latency and 1000 ms for the 99th-percentile latency. For the
update-only workload, the SLOs are fixed at 2 ms for the 95th-percentile latency
and 160 ms for the 99th-percentile latency.

For power provisioning, we use the power-limiting interface of RAPL. RAPL
maintains an average power limit over a sliding window instead of enforcing
strict limits on the instantaneous power. The advantage of having an average
power limit is that if the average performance requirement is within the specified
power limits, the workload will not incur any performance degradation even if
the performance requirement surpasses the power limit over short bursts of time.
(The user has to provide a power bound and a time window in which the limit
has to be maintained.)

In this paper, we use only CPU power limiting as we have shown that it
contributes most to the dynamic power range of the system (see Fig. 1). We run
the workload at a particular load-level and manually change the CPU power
limit in order to find the best power limit for the CPU which satisfies the SLOs.
The evaluation of resource provisioning is done by manually hibernating nodes
in the cluster. Hibernating nodes saves approximately 40 watts per node. We
manually find the optimal number of nodes to run Cassandra to satisfy SLOs
at a given load-level. We also evaluate a hybrid version of power and resource
provisioning. First, we run the workload on the optimal number of nodes and
then find the best possible CPU power limit on those nodes that satisfy the
SLOs.
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Fig. 4. Read only workload - full system energy proportionality

Fig. 5. Update only workload - full system energy proportionality

4.1 Energy Proportionality

Our main goal in this section is to understand the effects of the different power-
management techniques on the energy proportionality of the system. Figures 4
and 5 show the effects of different power-management techniques on the energy
proportionality of the read-only and update-only workloads, respectively, under
different SLO targets. Energy proportionality is improved in every case.

Power provisioning is the least effective technique. However, it still saves
power even at low load-levels. Resource provisioning and hybrid provisioning
achieve better than energy-proportional operation at certain load-levels for both
the workloads. Resource provisioning in certain cases provides higher energy-
proportionality improvements when the SLO target is relaxed. For example at
80 % load-level in the read-only workload case, better energy proportionality is
achieved when the SLO is changed from the 99th percentile to the 95th. In this
case, we achieve better energy proportionality because the 95th-percentile SLO
can be maintained with only three nodes when compared to the four nodes used
for satisfying the SLO for the 99th percentile.

We quantify energy proportionality using the energy-proportionality (EP)
metric [15]. The EP metric is calculated, as shown in Eq. (1), where AreaSystem

and AreaIdeal represent the area under the system and ideal power curve, respec-
tively. A value of 1 for the metric represents an ideal energy-proportional system.
A value of 0 represents a system that consumes a constant amount of power
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irrespective of the load-level. A value greater than 1 represents a system which
is better than energy proportional.

EP = 1 − AreaSystem −AreaIdeal
AreaIdeal

(1)

Figure 6 shows the EP metric for the power-management techniques under
different SLOs. In general, the power management techniques under evaluation
improve the energy proportionality of the update-only workload better than the
read-only workload. In certain cases for the update-only workload, EP > 1 is
achieved.

Fig. 6. EP Metric (PP = Power Provisioning, RP = Resource Provisioning, HP =
Hybrid Provisoning)

4.2 Power Savings

Figure 7 shows the power savings resulting from the different power-management
techniques. The savings range from 5 % to 45 % for the read-only workload and
15 % to 55 % for the update-only workload. In each case, hybrid provisioning
provides the most power savings, but it is only marginal power savings over
resource provisioning. We also observe that if the same number of nodes are used,
relaxing the SLO target only provides marginal power savings. For example,
power savings in the case of power provisioning under both the SLOs for the
workloads provide similar power savings.

5 Related Work

Dimitris et al. [20] provide a comprehensive study of component-level power
consumption of relational databases on a single node. They analyze the energy
efficiency of database servers using different hardware and software knobs such
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Fig. 7. Power savings

as CPU frequency, scheduling policy and inter-query parallelism. They conclude
that the most energy-efficient operating point is also the highest performing
configuration. Willis et al. [12] study the trade-offs between performance scala-
bility and energy efficiency for relational databases. They identify hardware and
software bottlenecks that affect performance scalability and energy efficiency. In
addition, they provide guidelines for energy-efficient cluster design in the context
of parallel database software. Our research complements theirs by addressing
with the energy proportionality of non-relational (a.k.a. NoSQL) databases.

In our previous work [18,19], we studied the effects of RAPL power limiting
on the performance, energy proportionality and energy efficiency of enterprise
applications. We also designed a runtime system to decrease the energy propor-
tionality gap. To design this runtime system, we used a load-detection model
and optimization framework that uses statistical models for capturing the per-
formance of an application under power limit. Wong et al. [21,22] provide an
infrastructure for improving the energy proportionality using server-level het-
erogeneity. They combine a high-power compute node with a low-power proces-
sor essentially creating two different power-performance operation regions. They
save power by redirecting requests to the low-power processor at low request rates
thereby improving energy proportionality. In addition, they compare cluster-level
packing techniques (resource provisioning) and server-level low power modes to
identify if one of these technique is better with current generation of processors.
Fan et al. [10] study the improvements to peak power consumption of a group of
servers due to the improvements in non-peak power efficiency using their power
model. They provide analytical evidence that shows energy-proportional systems
will enable improved power capping at the data-center level. In this paper, we
complement the existing literature by studying the effects of power and resource
provisioning on the energy proportionality of a NoSQL cluster installation. Our
paper is also the first step towards a runtime system for power management of
such installations.

Deng et al. [7–9] propose the CoScale framework, which dynamically adapts
the frequency of the CPU and memory while respecting a certain application
performance degradation target. They also take per-core frequency settings into
account. Li et al. [13] study the CPU microarchitectural adaptation and mem-
ory low-power states to reduce energy consumption of applications bounding the
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performance loss by using a slack allocation algorithm. Sarood et al. [16] present
an interpolation scheme to optimally allocate power for CPU and memory sub-
systems in an over-provisioned high-performance computing cluster for scientific
workloads. This paper deals with improving energy efficiency of the compute
nodes across different levels of utilization (and not just at the peak utilization
levels) as data centers running even well-tuned applications spend a significant
fraction of their time below peak utilization levels [4,10,14].

6 Conclusion

In this paper, we analyze the power distribution and energy proportionality of a
distributed NoSQL data store. We find that the idle power in such an installation
is significant, and most of the power is consumed by the CPUs when the system
is under load. We apply different power-management techniques to the cluster
supporting the distributed NoSQL data store in order to investigate whether we
can trade latency for power at low utilization of the cluster by taking advantage
of the difference between the measured latency and SLO. Our results show that
our hybrid-provisioning technique delivers the most power savings (upto 55 %),
followed by resource provisioning.
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