
Chapter 9
A New Distribution Mapping Technique for
Climate Model Bias Correction

Seth McGinnis, Doug Nychka, and Linda O. Mearns

Abstract We evaluate the performance of different distribution mapping tech-
niques for bias correction of climate model output by operating on synthetic data
and comparing the results to an “oracle” correction based on perfect knowledge of
the generating distributions. We find results consistent across six different metrics of
performance. Techniques based on fitting a distribution perform best on data from
normal and gamma distributions, but are at a significant disadvantage when the data
does not come from a known parametric distribution. The technique with the best
overall performance is a novel nonparametric technique, kernel density distribution
mapping (KDDM).

Keywords KDDM • Nonparametric distribution • Oracle evaluation • Quantile
mapping • Transfer function

9.1 Introduction

Climate modeling is a valuable tool for exploring the potential future impacts
of climate change whose use is often hindered by bias in the model output.
Correcting this bias dramatically increases its usability, especially for impacts users.
Teutschbein and Seibert (2012) tested a variety of bias-correction methods and
found that the best overall performer was distribution mapping.

Distribution mapping adjusts the individual values of the model output such that
their statistical distribution matches that of the observed data. This is accomplished
by the method of Panofsky and Brier (1968), which constructs a transfer function
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Fig. 9.1 Bias correction via distribution mapping. (a) Q-Q plot of observed versus modeled data
for minimum daily temperatures with transfer function overlaid. (b) Plot of the transfer function
showing its use in bias correction of modeled future data. Dashed lines illustrate how example
values are bias-corrected by mapping via the transfer function. Probability density curves and rug
plots of individual data values for each dataset are plotted along the edges of each figure

that transforms modeled values into probabilities via the CDF (cumulative distri-
bution function) of the model distribution and then transforms them back into data
values using the inverse CDF (or quantile function) of the observational distribution:

xcorrected D transfer .xraw/ D CDF�1
observed .CDFmodel .xraw// : (9.1)

The transfer function is constructed using observed data and model output from
the same current period and then applied to model output from a future period. This
approach assumes that model bias is stationary and does not change significantly
over time. This process is illustrated in Fig. 9.1: the first panel shows a transfer
function overlaid on a quantile-quantile (Q-Q) plot of the data from which it is
constructed, and the second panel shows how the future-period data is bias-corrected
by mapping through the transfer function. This figure is discussed in further detail
at the end of Sect. 9.2.

There are a number of different bias-correction techniques that use this distri-
bution mapping approach; they differ primarily in how they construct the transfer
function. They are referred to in the literature, often inconsistently, by a variety
of different names, including among others “quantile mapping,” “probability map-
ping,” and “CDF matching.” In this paper, we test six such techniques, which are
described in the section following, and include a novel technique based on kernel
density estimates of the underlying probability distribution function (PDF). We
evaluate the techniques using an “oracle” methodology of bias-correcting synthetic
data for which a known correct answer exists for comparison.
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9.2 Distribution Mapping Techniques

The following techniques encompass the different approaches to distribution map-
ping that we found in our survey of the literature. In an effort to clear up the problem
of inconsistent nomenclature, we name them here according to their distinctive
methodology, rather than by the names used in the referenced papers.

Probability Mapping (PMAP) Probability mapping fits parametric distributions
to the current and observed datasets and forms a transfer function by composing the
corresponding fitted analytic CDF and quantile functions (Ines and Hansen 2006;
Piani et al. 2010; Haerter et al. 2011). For example, using the normal distribution:

xbc D Qnorm .Pnorm .xfut; �cur; �cur/ ; �obs; �obs/ ; (9.2)

where Qnorm and Pnorm are the quantile and CDF functions of the normal distribution,
� and � are its parameters, and x is a data value, each belonging to the current,
future, observed, or bias-corrected dataset, as indicated by the subscript.

The family of the distribution must be specified a priori. In this paper, we
use a gamma distribution to fit data bounded at zero and a normal distribution
to fit unbounded data, as would be typical practice in bias-correcting climate
model output en masse. We tested several methods of fitting distributions and
found no noteworthy differences in performance, so in this analysis we use the
computationally simple method of moments for fitting.

Empirical CDF Mapping (ECDF) ECDF mapping creates a Q-Q map by sorting
the observed and current datasets and mapping them against one another. It then
forms a transfer function by linearly interpolating between the points of the mapping
(Wood et al. 2004; Boé et al. 2007). Note that because it relies upon the Q-Q map,
this technique requires the current and observed datasets to have equal numbers of
points.

Order Statistic Difference Correction (OSDC) This method is uncommon, but
is used in a few studies, and may be confused with ECDF mapping. OSDC sorts the
observed and current datasets and differences them to produce a set of corrections
to be applied to the future dataset (Iizumi et al. 2011). Mathematically, the bias
correction is described thus:

x.i/
bc D x.i/

fut �
�

x.i/
cur � x.i/

obs

�
; (9.3)

where x(i)
bc denotes the ith largest value of the bias-corrected dataset. Note that this

technique requires all datasets to have equal numbers of points.

Quantile Mapping (QMAP) Quantile mapping estimates a set of quantiles for the
observed and current datasets and then forms a transfer function by interpolation
between corresponding quantile values (Ashfaq et al. 2010; Johnson and Sharma
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2011; Gudmundsson et al. 2012). In this study, we employ the qmap package (Gud-
mundsson 2014) for the statistical programming language R (R Core Team 2014)
to perform quantile mapping, using empirical quantiles and spline interpolation,
which a separate analysis showed to be the most effective options. The number of
quantiles is a free parameter that must be specified; we test three cases, using “few”
(5), “some” (N½ D 30), and “many” (N/5 D 180) quantiles.

Asynchronous Regional Regression Modeling (ARRM) ARRM constructs a
transfer function based on a segmented linear regression of the Q-Q map (Stoner et
al. 2012). As in ECDF mapping, it begins by sorting both datasets and mapping them
against one another (which requires that they have equal number of points). It then
finds six breakpoints between segments by applying linear regression over a moving
window of fixed width to find points where the slope of the Q-Q map changes
abruptly. Finally, it constructs the transfer function as a piecewise linear statistical
model using these breakpoints as knots. The implementation of ARRM used here
is based on the description in Stoner et al. (2012) and has some simplifications of
various checks and corner cases that are needed for dealing with real-world data but
do not apply to synthetic data. We use the R function lm() for the linear regressions
and lm() with ns() to construct the transfer function.

Kernel Density Distribution Mapping (KDDM) is a novel technique described
here for the first time. Conceptually, it is very similar to probability mapping, but
instead of using fitted parametric distributions, it uses nonparametric estimates of
the underlying probability density function (PDF). These estimates are created using
kernel density estimation, a well-developed statistical technique that can be thought
of as the smooth, non-discrete analog of a histogram. A kernel density estimate
is constructed by summing copies of the kernel function (any symmetric, usually
unimodal function that integrates to one) centered on each point in the dataset.
Mathematically, the kernel density estimatorbf .x/ is

bf .x/ D 1

n

nX
iD1

Kh .x � xi/; (9.4)

where Kh is the kernel function scaled to bandwidth h. In this analysis, we use the
default kernel (Gaussian) and bandwidth selection rule (Silverman’s rule of thumb)
for R’s density() function (R Core Team 2014).

KDDM begins by estimating the PDFs for the current and observed datasets
using kernel density estimation. The resulting nonparametric PDF estimates are then
numerically integrated to approximate CDFs by evaluating them on a suitably fine
grid, applying the trapezoidal rule, and linearly interpolating the results to produce a
function. KDDM then forms a transfer function by composing the forward CDF for
the current dataset and the inverse CDF for the observed dataset. Mathematically,
defining QP.x/ as the approximate CDF,

QP.x/ D
Z

bf .x/dx; (9.5)
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and the KDDM bias correction is

xbc D QP�1
obs

� QPcur .xfut/
�

: (9.6)

This algorithm can be implemented very compactly in R, requiring only a dozen
lines of code. It is also quite fast, requiring only twice as much computation time as
the fastest methods and running 100 times faster than the slowest method.

Figure 9.1 demonstrates the application of the KDDM technique to bias-correct
output from the North American Regional Climate Change Assessment Program
(Mearns et al. 2007, 2009) using observations from the Maurer et al. (2002) dataset
for a 2-week window in mid-October near Pineville, Missouri. The first panel shows
a Q-Q plot, where the observations and current-period model output have been
sorted and plotted against one another (small circles). The KDDM transfer function
is overlaid, as are rug plots and PDF curves for each dataset. The second panel shows
the bias correction of future-period model data by mapping through the transfer
function. In both panels, the model PDF curve is mirrored in light gray on the y-
axis to show the resulting change in the distribution. Before bias correction, we
aggregated all three datasets across three decades (1970–2000 for the current and
observed, 2040–2070 for the future) and removed the means.

9.3 Oracle Evaluation Methodology

To evaluate the techniques, we compare them to an ideal correction called the
“oracle.” To create the oracle, we generate three sets of synthetic data to represent
observed, modeled current, and modeled future data, using different parameters
for each case. The differences between the synthetic current and future datasets
correspond to climate change, and the differences between the synthetic observed
and current datasets to model bias. Because we know the generating distribution and
the exact parameter values used to generate these datasets, we can then construct a
perfect transfer function using probability mapping. Applying this transfer function
to the current dataset makes it statistically indistinguishable from the observed
dataset; applying it to the future dataset generates the “oracle” dataset.

We then evaluate each technique by applying it to the future dataset and
measuring the technique’s performance in terms of how far the bias-corrected result
deviates from the perfect correction of the oracle. We perform this procedure using
three different distributions, iterating over 1,000 realizations of the datasets each
time. Each dataset contains 900 data points, which is the size of the dataset we
would use when bias-correcting daily data month-by-month across a 30-year period,
a common use case for working with regional climate model output.

The three distributions we use are the normal distribution, the gamma distri-
bution, and a bimodal mixture of two normal distributions. We use the normal
distribution to establish a baseline; its ideal transfer function is a straight line. We
use the gamma distribution because precipitation has a gamma-like distribution. We
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use a mixture distribution because similar distributions can be observed in real-
world datasets that are often corrected under an assumption of normality, even
though the actual distribution is more complex and may be impossible to fit. The
observed data in Fig. 9.1 exhibits this kind of non-normal distribution.

For variables with an unbounded distribution, like temperature, it is necessary to
remove the mean before bias correction, adjust it independently for climate change,
and add it back in afterward, or else the transfer function will mix the climate
change signal into the bias, producing an error component. For variables that are
bounded at zero, like precipitation, the mean should not be removed, but it may be
necessary to stabilize the variance by applying a power transform. We use a fourth-
root transformation for the gamma dataset, following Wilby et al. (2014).

9.4 Evaluation Results

We evaluate each technique using six metrics. Mean absolute error (MAE) and
root-mean-square error (RMSE) measure the average difference from the oracle,
weighted toward larger errors in the case of RMSE. Maximum error measures the
absolute value of the single largest difference from the oracle. Left and right tail
errors are the difference from the oracle of the upper and lower 1 % of values in each
dataset. Finally, the Kolmogorov-Smirnov (K-S) statistic measures the maximum
distance between the CDFs of the two datasets.

Boxplots of the six metrics show similar patterns for both the normal (Fig. 9.2)
and gamma distributions (not shown): OSDC generally performs worst, followed
in order of improving performance by QMAP, ECDF, ARRM, KDDM, and PMAP.
For the mixture distribution (Fig. 9.3), the same overall pattern holds among the
nonparametric techniques, but PMAP’s performance is now worse than most of the
other techniques on the MAE, RMSE, and K-S metrics. This illustrates a particular
hazard of distribution-fitting techniques: when real-world data doesn’t follow a
fittable distribution, performance may be much worse than expected.

We conclude that although probability mapping is the best performer if the data
comes from a known parametric distribution, because that assumption does not hold
generally (even though it is common practice to pretend otherwise), the technique
is not the best choice for general purpose or automated bias correction of large
datasets.

For general use, KDDM emerges at the best overall performer. In addition to
scoring best out of all the nonparametric methods, it does not require that the
data be easily fittable, performs nearly as well as PMAP when the data is fittable,
can accommodate differently sized input and output datasets, and is nearly as fast
as the fastest methods. KDDM is also very simple to implement and therefore
less vulnerable to coding errors than more complicated methods. Finally, because
kernel density estimation is a well-developed topic in statistical analysis, there is an
established body of knowledge that can be leveraged to generalize KDDM to new
applications and optimize its performance in special cases.
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Fig. 9.2 Comparative performance of different distribution mapping techniques on normal data.
(a) Mean absolute error (b) Root mean square error (c) Maximum error (d) Left tail error (e) Right
tail error (f) K–S Statistic
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Fig. 9.3 Comparative performance of different distribution mapping techniques on data coming
from a mixture distribution. (a) Mean absolute error (b) Root mean square error (c) Maximum
error (d) Left tail error (e) Right tail error (f) K–S Statistic
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To further expand the usefulness of this technique, we plan to write a paper eval-
uating distribution mapping techniques applied to reanalysis-driven RCM output.
We also plan to develop an R package for bias correction and a multivariate bias-
correction technique based on KDDM.
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