
Chapter 17
Change Detection in Climate Time Series Based
on Bounded-Variation Clustering
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Abdollah Homaifar, and Stefan Liess

Abstract Climate time series are generally nonstationary which means that their
statistical properties change with time. Analysis of nonstationary time series
requires detecting of change points between a set of clusters, where model of
time series in each cluster has different statistical parameters. Common change
detection methods are based on assumptions that may not be valid generally.
Bounded-variation clustering can solve the change detection problem with mini-
mum restrictive assumptions. In this paper, this method is employed to detect the
pattern of changes in the Pacific Decadal Oscillation and the piecewise linear trend
of US temperature. An optimal number of the change points are found with the
Bayesian information criterion.

Keywords Time series • Non-stationary • Change detection • Abrupt climate
change • Autocorrelation

17.1 Introduction

Studying climate time series such as temperature and precipitation requires model-
ing with statistical techniques. Although the earth’s climate has changed gradually
in response to both natural and human-induced processes, it is known that climate
may have abrupt change, i.e., a large shift may happen in climate that persists for
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years or longer. Example of these changes includes the changes in average tem-
perature, patterns of storms, floods, or droughts over a widespread area (Lohmann
2009). Climatic records show that large and widespread abrupt changes have
occurred repeatedly throughout the geological records (Alley et al. 2003). Many
studies have analyzed climate time series in the stationary framework; i.e., the
statistical parameters are assumed to be constant over time. However, stationary
assumption of climate time series is invalid considering various internal dynamics
and external forcings (Milly et al. 2008). Thus, statistical techniques based on
stationary assumption should be modified to reveal the characteristics of the abrupt
climate change. Nonstationary time series have a set of clusters (regime, phase, or
segment), while the model of each cluster is stationary. These clusters are separated
in time by some change points (breaks). The analysis of nonstationary time series,
including finding the change points between the clusters, is an ongoing research area
in the climate data analysis.

Several approaches were proposed in the literature for the change detection in
climate time series. Brute-force search was performed over all candidate points to
find the best change points (Liu et al. 2010). However, this method is not applicable
for longer time series with high number of change points due to huge volume of
computations. The change points were estimated by Bayesian inference, where
the change points and other model parameters were assumed as random variables
(Ruggieri 2013). Kehagias and Fortin (2006) used a method based on hidden
Markov models, assuming that the time series was generated by a Markov process.
Then, the unknown parameters were determined by the maximum likelihood.
However, statistical assumptions on the data and the change points in Bayesian
and Markov methods may not be true in general. Several statistical tests were used
in atmospheric studies such as sequential Mann–Kendall, Bai–Perron, and Pettitt–
Mann–Whitney to find the change points. However, the results of these tests are
valid only if the data are not serially correlated (Lyubchich et al. 2013). For the
correlated time series with only one change point, proper hypothesis tests were
introduced (Robbins et al. 2011).

The bounded-variation (BV) clustering (Metzner et al. 2012) is another technique
which finds the change points in nonstationary time series. In this method, instead
of statistical assumptions on the data or the change points, a reasonable assumption
is made such that the total number of the change points between the clusters is
bounded. The BV clustering is computationally efficient and is also applicable
for the serially correlated time series. Assuming a different linear trend (Horenko
2010a) and a vector autoregressive (Horenko 2010b) in each cluster, the BV
clustering was used to analyze the climate dynamics in the ERA-40 reanalysis data.
The BV clustering was used in Gorji Sefidmazgi et al. (2014c) for analyzing the
climate variability of North Carolina. The effect of covariates on nonstationary time
series was analyzed by the BV clustering (Gorji Sefidmazgi et al. 2014a; Horenko
2010b; Kaiser and Horenko 2014).

In this paper, we have shown the applicability of the BV clustering by two
numerical examples: the pattern of changes in the Pacific Decadal Oscillation (PDO)



17 Change Detection in Climate Time Series Based on Bounded-Variation Clustering 187

and the US land surface temperature. Moreover, the Bayesian information criterion
(BIC) is applied to find the optimal number of the change points and the number of
clusters.

17.2 Dataset

The bias-adjusted monthly average temperature of the US continental stations is
derived from the US Historical Climatology Network database (http://cdiac.ornl.
gov/epubs/ndp/ushcn/ushcn.html). The period 1900 until 2013 is selected, and the
stations with continuous missing data for more than 4 months are eliminated. Then,
the missing data in the remaining 1,189 stations are filled by interpolation, and also
the mean cycle of time series is removed to eliminate the effect of seasonality.

Annual time series of the PDO for 1900–2013 is from NOAA database (http://
www.esrl.noaa.gov/psd/data/climateindices/list).

17.3 Method

The BV clustering might be applied in two cases, where the model of the time
series in each cluster is in the form of a mathematical function (such as polynomial
or differential equation) or a statistical distribution (such as Gaussian, Gamma, etc.).
The change points and the parameters of each cluster are determined by solving a
least square/maximum likelihood (LS/ML) and a constrained optimization.

Let x(t) be a nonstationary time series with M clusters. The first case is when
the model in each cluster is a function of time (and other covariates u(t) if exist),
i.e., x.t/ D f .x .t � 1/ ; : : : ; x .t � p/ ; u .t � 1/ ; : : : ; u .t � n/ ; t; ˛m/. Here, f is the
model of the time series, ˛m is the set of parameters in the mth cluster where
m 2 f1; : : : ; Mg. Also, p and n are the order of the lagged outputs and the
covariates, respectively. In the second case, f is a probability density function,

i.e., P .X D x.t// D f
�

x.t/
ˇ̌
ˇu.t/; t; ˛m

�
. For these cases, model distance function

dm(x(t)) is the distance between the time series at time t 2 f1; : : : ; Tg and the model
of the mth cluster, which can be defined by the Euclidean distance or the likelihood
function:

dm .x.t// D kx.t/ � f .x .t � 1/ ; : : : ; x .t � p/ ; u .t � 1/ ; : : : ; u .t � n/ ; t; ˛m/k2

(17.1)

dm .x.t// D `
�

f
�

x.t/
ˇ̌
ˇu.t/; t; ˛m

��
(17.2)

where k.k and `(.) are the L2-norm and the negative log-likelihood operators,
respectively. Now, the change detection problem can be defined as a minimization:

http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html
http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html
http://www.esrl.noaa.gov/psd/data/climateindices/list
http://www.esrl.noaa.gov/psd/data/climateindices/list
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min
�;˛

TX
tD1

MX
mD1

�m.t/:dm .x.t// (17.3)

In (17.3), �m.t/ 2 f0; 1g is the cluster membership function indicating whether the
datum at time t belongs to the mth cluster or not. The change points are the times
when the values of �m(t) are changed. For example, if �2.50/ D 0 and �2.51/ D 1,
then the cluster 2 is started at the change point t D 51. Clearly, the datum at each
time belongs to only one of the clusters, and hence,

MX
mD1

�m.t/ D 1 t D f1; : : : ; Tg (17.4)

Now, we augmented the model distance functions in Dm D Œdm .x.1// ; dm .x.2// ;

: : : ; dm .x.T//�, and also the cluster membership functions in Um D Œ�m.1/; �m.2/;

: : : ; �m.T/� for m D f1; : : : ; Mg. The optimization in (17.3) is rewritten as below
(Metzner et al. 2012):

min
Um; Dm

MX
mD1

Dm:Um
T (17.5)

The BV clustering solves the optimization (17.5) in two iterative steps using the
coordinate-descent algorithm. In the first step, it assumes that cluster membership
function �m(t) is known and the cluster parameters ˛m are found. In the second step,
˛m are fixed and �m(t) is determined.

In the first step, assume that �m(t) and the change points are known. The data
belong to each cluster are separated, and the parameters ˛m are found by LS/ML.
Using the estimated parameters ˛m, the model distance function dm(x(t)) is deter-
mined using (17.1) or (17.2). In the next step, the cluster membership function �m(t)
should be found. The assumption that the number of the change points is bounded
should be added to the problem formulation with imposing constraints on �m(t).
First, a counter qm.t/ 2 f0; 1g is defined which is increased by one unit when �m(t)
changes from 0 to 1 or vice versa (i.e., on the change points) (Metzner et al. 2012):

j�m .tC1/��m.t/j�qm.t/ !
�

�m .tC1/��m.t/ � qm.t/ � 0 m D 1; : : : ; M
��m .tC1/C�m.t/�qm.t/ � 0 t D 1; : : : ; T � 1

(17.6)

In order to limit the total number of the change points to a constant Q, a constraint
on qm(t) is added in the following form:

T�1X
tD1

MX
mD1

qm.t/ D 2Q (17.7)
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Now, qm D Œqm.1/; qm.2/; : : : ; qm .T � 1/� is defined to record qm(t) over time
and is added to the set of unknown parameters. By defining (17.8) and (17.9), (17.5)
is rewritten in (17.10) to find �m(t) (Metzner et al. 2012):

QD D

2
64D1 D2 : : : DM„ ƒ‚ …

T�M

0 : : : 0„ ƒ‚ …
.T�1/�M

3
75 (17.8)

QU D

2
64U1 U2 : : : UM„ ƒ‚ …

T�M

q1 q2 : : : qM„ ƒ‚ …
.T�1/�M

3
75 (17.9)

min
QU

QU: QDT (17.10)

All the elements of unknown vector Ũ in (17.10) are either 0 or 1. Thus,
this optimization is a constrained optimization in the form of a binary integer
programming. The set of linear constraints are (17.4), (17.6), and (17.7) which
include 2M � .T � 1/ inequality and T C 1 equality constraints. There are standard
methods for solving constrained optimization using some toolboxes in Matlab or R
(Gurobi 2014). Once Ũ is found, �m(t) for all of the clusters and the change points
can be determined.

In conclusion, the BV-clustering algorithm includes the following steps: first, a
random initial �m(t) is selected such that it satisfies (17.4). Then, the parameters of
each cluster are calculated by the LS/ML, and the model distance function dm(x(t))
is determined by (17.1) or (17.2). Then, the optimization problem in (17.10) is
constructed and solved with the constraints of (17.4), (17.6), and (17.7). The LS/ML
and the constrained optimization steps are repeated for some predefined number of
iterations (usually five). This procedure converges to at least a local solution of
the optimization in (17.3). For finding the global solution, the algorithm should be
started with different initial random �m(t).

17.4 Model Selection

The number of clusters M and the change points Q should be set in the BV
clustering. In the time series literature, the number of change points is usually found
by information theory methods such as the BIC (Jandhyala et al. 2013). The BIC is
a well-known approach to perform a trade-off between the goodness of fit and the
complexity of models and to prevent over-fitting/under-fitting.

The index for the detected cluster at time t is determined by m�.t/ D
arg max

m
.�m.t// for t D f1; : : : ; Tg. By obtaining the cluster parameters using

the maximum likelihood, the minimized value of the negative log-likelihood V and
the BIC are determined by
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V D
TX

tD1

`
�

x.t/
ˇ̌
ˇu.t/; t; ˛m�.t/

�
(17.11)

BIC .M; Q/ D 2V C ln.T/ � .number of estimated parameters / (17.12)

Otherwise, by obtaining the clusters parameters by the least square method, the
residual w(t) is determined by

w.t/ D x.t/ � f
�
x .t � 1/ ; : : : ; x .t � p/ ; u .t � 1/ ; : : : ; u .t � n/ ; t; ˛m�.t/

�
(17.13)

Adding the assumption that the residual follows a normal distribution with a
constant variance, the loss function V and the BIC are found (Hastie et al. 2009):

V D ln

0
BBB@

�X
t

w2.t/

�

T

1
CCCA (17.14)

BIC .M; Q/ D T � V C ln.T/ � .number of estimated parameters / (17.15)

Assume that the number of parameters for each cluster is !. For example, the set
of parameters for a time series with Gaussian distribution in each cluster includes
the mean and the variance, and thus ! D 2. Hence, in addition to Q change points,
we need to estimate ! parameters for each of the M clusters:

number of estimated parameters D M � ! C Q (17.16)

The BV clustering should be applied to the data with various possible values of M
and Q. Finally, the model with the smallest BIC is chosen.

17.5 Results and Conclusion

In this section, we applied the BV-clustering method on two time series, the PDO
and the US surface temperature. It is well known that the PDO has some regimes
with different mean values (Rodionov 2006). Assume that the model of each cluster
is a normal distribution N(�m, �m

2). The distance function is defined as dm .x.t// D
�1=2

	
ln .2�/ C ln

�
�m

2
�C .x.t/ � �m/ =�m

2



which is equivalent to the negative
log-likelihood of the normal distribution. Using the maximum likelihood, the mean
and the variance of each cluster are found similar to the parameters of the mixture
models (Hastie et al. 2009):
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Fig. 17.1 Pattern of change in the PDO time series. The red lines show the averages of time series
in each cluster and green lines are average ˙ standard deviation
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The result of the change detection is shown in Fig. 17.1, where three change points
in 1948, 1976, and 2007 are found among the three clusters. The models of the time
series in [1948–1976] and [2007–2013] are the same. These results are similar to
the change points found in (Rodionov 2006), while no prior knowledge about the
minimum length of the clusters is necessary in the proposed approach.

The second example is the analysis of the US average temperature where the
data are serially correlated. It is known that piecewise linear trend with the first
order autoregressive (AR(1)) residuals is better than the single linear trend for the
surface temperature in the sense of the BIC. Moreover, the trend is not necessarily
continuous at the break points (Seidel and Lanzante 2004). Assume that the model
of each cluster is a linear trend plus AR(1) noise. Thus, x.t/ D ˇ0m C ˇ1m:t C ".t/
and ".t/ D �m:" .t � 1/ C w.t/, where w(t) is the white noise. The model distance
function is defined as

dm .x.t// D kŒx.t/ � .ˇ0m C ˇ1mt/� � �m Œx .t � 1/ � .ˇ0m C ˇ1m .t � 1//�k2

(17.18)

If �m D 0, then the linear model parameters ˇ0 and ˇ1 can be found in a closed
form using ordinary linear square (Gorji Sefidmazgi et al. 2014b). However, in the
case of �m ¤ 0, no closed form solution exists and these parameters should be
determined by the feasible generalized least square. Results of the BV clustering
for average temperature show that there are M D 2 clusters with one change point in
1958. Figure 17.2 shows the spatiotemporal pattern of the linear trends in each of the
clusters. Figure 17.3 shows the piecewise linear trend in one of the stations. It can
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Fig. 17.2 (a) Linear trend of temperature in 1,189 stations in cluster 1 during 1900–1958. (b)
Linear trend of temperature in cluster 2 during 1958–2013
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Fig. 17.3 Anomaly of average temperature in Boulder, CO, and its piecewise linear trend. The
linear trend increased after the change point of 1958
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be seen that the linear trends increased after 1958 in most of the areas, especially
over the eastern and central sections of the USA. Finding relations between this
change point and existing physical phenomena is difficult, since there are many
anthropogenic and natural factors contributing to the climate variability. However,
common breaks in the trend of the global temperature and the anthropogenic
forcings are reported in the early 1960s (Estrada et al. 2013). This fact can establish
a direct relationship between the human effects on altering the long-term trend of
the temperature.
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