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The Role of Heat Shock Protein 70 in Infection
and Immunity
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Abstract Heat shock protein 70 (HSP70) has been the subject of intense research
concerned with infectious diseases and the immune response. HSP70 is found
to be associated with both host and microbial cell surface membranes where it
appears to assist in the attachment and colonization of host cells by pathogens.
Following infection, HSP70 readily promotes microbial survival, although in certain
circumstances such as during some viral infections, it inhibits microbial growth.
Regarding immunity, HSP70 induces the activation of both innate and acquired
immune responses. These unique immune capabilities of HSP70 are broadly
employed for the design of novel vaccines against a variety of infectious diseases.
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Abbreviations

APCs Antigen presenting cells
BCG Bacillus Calmette–Guérin
CFA Complete Freund’s adjuvant
CMV Cytomegalovirus
DnaK Bacterial HSP70
DTH Delayed type hypersensitivity
GroEL Bacterial HSP60
H2O2 Hydrogen peroxide
HIV-1 and HIV-2 Human immunodeficiency virus 1 and 2
HIV-p24 Human immunodeficiency virus protein p24
HSP Heat shock protein
HSV1 Herpes simplex 1
HTNV Hantaan virus
KMP11 Kinetoplasmid membrane protein 11
LCMV Choriomeningitis virus
LPS Lipopolysaccharide
NO Nitric oxide
NP Nucleocapsid protein
Pf72 Plamodium falciparum HSP72
pfHop P. falciparum organizing protein complex
PfHSP 70-1 and PfHSP 70-2 P. falciparum HSP70-1 and 2
PPD Purified protein derivative
ROI Reactive oxygen intermediates
RSV Respiratory syncytial virus
SV40 Simian virus 40
TAP Transporter associated with antigen processing
TC1 T. cruzi antigen 1
TLR Toll-like receptor
VSV Vesicular stomatitis virus

6.1 Introduction

Heat shock protein 70 (HSP70) is a family of ubiquitous molecules expressed
by most organisms from microbes to mammals [1]. HSP70 is one of the most
conserved proteins known. Analysis of the amino acid sequence demonstrates
that human HSP70 is 72 % identical to Leishmania amazonensis, 73 % identical
with Drosophila HSP70 and 47 % identical to E. coli dnaK (bacterial HSP70).
Furthermore, L. amazonensis HSP70 is 95 % identical to L. donovani or L. major
HSP70, and it is 85 % identical to the more distant HSP70 from Trypanosoma cruzi
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[2, 3]. HSP70 proteins are expressed constitutively and further induced in response
to a variety of stress conditions, including heat shock, oxidative stress, ischemia-
reperfusion injury, radiation, chemicals,: nutrient deprivation and infections. The
main function of HSP70, as well as other heat shock proteins (HSP), is to protect
cells from injury by promoting the refolding of denatured proteins [4].

Studies of host pathogen interaction and expression of HSP at infection have led
to hypothesize that HSP are important for the survival of intracellular pathogens
such as Plamodium, Leishmania, Mycobacteria, and Toxoplasma. From the micro-
bial viewpoint, host cells such as phagocytes represent a hostile environment due to
the presence of toxic molecules including low pH, nutrient deprivation, proteases,
nitric oxide (NO), reactive oxygen intermediates (ROI) and high temperatures.
Experimental evidence indicates that HSP are important for microbes to survive
within these toxic environments of host cells. With regard to HSP70, it promotes
thermotolerance, a condition that allows microbes to withstand a secondary, more
severe, heat shock treatment [5]. Indeed, E. coli strains lacking HSP70 are highly
sensitive to heat shock, but become resistant to heat following transfection with
HSP70 from Plamodium falciparum [6]. In the context of infection, experimental
evidence also demonstrates that HSP70 contributes to intracellular survival of
pathogens. Disruption of P. falciparum HSP70, as well as inhibition of the ATPase
activity of HSP70, severely affects development of malarial parasites within ery-
throcytes [7, 8]. Of note, optimal function of HSP70 requires the presence of HSP70
partners including HSP40, HSP60 as well as HSP90 [9].

HSP in general are among the most immunogenic antigens found in nature, stim-
ulating both innate and antigen-specific immunity. With respect to innate immunity,
HSP70 is secreted from host cells into the extracellular milieu. Extracellular HSP70
triggers innate immunity via activation of antigen presenting cells (APCs) [10–12].
Regarding adaptive immunity, HSP70 is an abundant antigen of both B and T cells.
P. falciparum HSP70 is expressed by most parasites within their life cycle and it
is recognized by sera from malaria patients [13]. Sera from S. mansoni-infected
individuals contain antibodies recognizing S. mansoni or S. japonicum HSP70 [14,
15]. Both antibodies and T cells recognize M. tuberculosis HSP70 as determined in
patients with tuberculosis [16]. Interestingly, antibodies and T cells that recognize
HSP70 have been identified also in apparently healthy individuals, suggesting that
HSP70 may provoke autoimmunity due to molecular mimicry.

The immunogenicity of HSP70 and its capacity to activate antigen-specific
immunity have made this protein an ideal candidate for vaccine development.
Vaccines employing HSP70 have been tested against various infectious conditions.
Protective immunity and resistance to infection have been observed to develop
in Salmonella [17] and cytomegalovirus [18]. However, no protection has been
experienced with vaccines against various fungal infections [19]. This review will
examine current issues on the role that HSP70 plays in the infection process and its
importance in immunity against microbial infection. It will also examine existing
evidence suggesting that HSP70 can be a potential vaccine candidate adjuvant.
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6.2 The Role of HSP70 in Infection

6.2.1 HSP70 and Bacterial Infections

Salmonella typhimurium is a common bacterium causing diarrhea in humans in
many countries around the world. Evidence has shown that colonization of cells
by bacteria requires the assistance of stress proteins. Treatment of S. typhimurium
with the toxic H2O2 results in the induction of at least 30 proteins [20]. HSP70
(DnaK) is one of the 30 HSP proteins induced by H2O2, and is also induced by heat
shock [21]. A study shows that S. typhimurium overexpresses both HSP60 (GroEL)
and the HSP70 (DnaK) during infection of macrophages and the presence of these
HSP is essential for survival of the pathogen within the infected cell [22, 23].
Furthermore, DnaK/DnaJ mutants of S. typhimurium could not survive or proliferate
within macrophages, and the bacteria were unable to invade epithelial cells in vitro
and could not secrete any of the invading proteins encoded within a Salmonella
pathogenicity island 1 [24]. Interestingly, Monocytic cell line J774A.1 infected with
virulent S. choleraesuis died spontaneously due to TNF-’ production by the infected
cell. Induction of HSP70, however, resulted in significant survival of the infected
monocytes [25]. Thus S. typhimurium HSP70 (DnaK) and its co-chaperone DnaJ
play a significant role in Salmonella infection [24].

Mycobacterium tuberculosis infection of human THP-1 cells induced expression
of at least 16 proteins. Some of these proteins are also expressed by the bacteria
extracellularly in culture medium in the presence of heat shock, H2O2 or low pH
[26]. Furthermore, M. tuberculosis overexpressing HSP70 was shown to express
full virulence at the initial stage of infection. The bacterium, however, was
significantly impaired in its ability to persist during subsequent chronic phase of
infection [27].

Helicobacter pylori is a gram-negative bacterium causing gastric ulcers. The
microbial HSP70 as well as HSP60 is shown to associate with the microbial cell
membrane and their presence mediates attachment of the bacteria to gastric epithe-
lial cells. Interestingly, though, both HSP70 and HSP60 are increased following acid
shock of cells in vitro and their expression correlates with increased inflammation
of the gastric mucosa [28].

Chlamydia trachomatis is known for leading the burst of sexually transmit-
ted infections globally causing pelvic inflammatory disease and infertility [29].
Chlamydial HSP70 has been found expressed on the cell surface of elementary
bodies – the infectious forms of C. trachomatis. Expression of HSP70 on the cell
membrane of bacteria, however, does not seem to help attachment of bacteria to host
cells and it may be involved in host immune recognition [30, 31].

Yersinia enterocolitica is a facultative intracellular pathogen that invades epithe-
lial cells of the intestine causing acute diarrhea in humans. At least 16 pro-
teins, including Y. enterocolitica HSP70 (DnaK) were selectively induced in the
macrophage-like J774-1 cells infected with Y. enterocolitica. This HSP70 (DnaK)
was invariably induced by the bacteria in vitro in response to heat shock (HS) at
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42 ıC or following oxidative stresses. Thus, Y. enterocolitica HSP70 is expressed
as a global stress response of the bacteria to the hostile environment of the
macrophage [32].

Bordetella pertussis produces two toxins including adenylate cyclase-hemolysin
and pertussis toxin. Expression of either adenylate cyclase-hemolysin or puri-
fied bacterial toxins reduces the expression of HSP70 in B. pertussis infected
macrophages, suggesting that HSP70 may be involved in host protection against
B. pertussis [33].

Staphylococcus aureus HSP70 plays a dual role in infection of host cells. From
one side HSP70 is a receptor for S. aureus attachment and internalization by host
monocytes [34]. From other side, HSP70 inhibits apoptosis of host monocytes
induced by S. aureus. Indeed, human peripheral blood monocytes die by apoptosis
following phagocytosis of S. aureus. However, induction of HSP70 expression
renders monocytes resistant to S. aureus-induced apoptosis [35].

6.2.2 HSP70 and Parasitic Infections

HSP appear to play a major role in the survival of parasites following invasion of
mammalian cells at 37 ıC. In effect, parasites must adapt to the high temperatures of
host cells and to the presence of stressing conditions of oxygen radicals, nitric oxide,
lack of nutrients, toxic compounds, etc. In this regard, Trypanosoma, Leishmania,
Plasmodium and Schistosoma have all been found to express constitutive or induced
forms of HSP at high concentrations [36].

Trypanosoma is a unicellular parasite transmitted by the bite of an insect
vector causing Chagas disease in Central and South America. Trypanosoma Also
causes sleeping sickness in Africa. The epimastigote developmental stage of
Trypanosoma is transmitted by the insect vector upon feeding on host blood. Within
the mammalian host, epimastigotes differentiate into flagellated trypomastigotes.
A stress response may play a role during parasite transition from insect vector
to mammalian host and may trigger expression parasite HSP. Indeed, mRNAs of
T. brucei HSP70 and HSP83 are augmented 100-fold in trypomastigotes exposed
at 37 ıC as compared with forms found in the insect vector at approximately
24 ıC [37]. At least six hsp70 genes, which are transcribed as long polycistronic
molecules, have been described in T. brucei [36]. Furthermore, epimastigotes of T
cruzi express 10 major proteins ranging from 60 to 83 kDa upon heat shock at 41 ıC
[38]. Approximately 11 genes encoding HSP70 proteins have been identified in the
T. cruzi proteome. Some of these are highly expressed in epimastigotes whereas
some others are expressed in trypomastigotes [39].

Leishamnia is an intracellular protozoan parasite transmitted by the bite of
sandflies. Leishmania causes a wide spectrum of diseases including cutaneous,
mucocutaneous and visceral leishmaniasis. The parasite life cycle includes two
forms: a flagellated promastigote surviving within the alimentary tract of the insect
vector and the amastigote (without flagellum) living within the parasitophorous
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vacuole of infected macrophages. Leishmania contains multiple copies of hsp70
genes, with absolute copy number varying among strains with L. major containing
at least 14-associated hsp70 genes [40].

Leishmania has to survive within host macrophages and requires adaptation to
this new environment following infection. Both L. donovani HSP70 and HSP60
were found expressed in murine macrophages following infection [41]. Heat shock
(HS) treatment of L. chagasi promastigotes makes leismanial parasites resistant to
macrophage-induced oxidative stress [42]. Similarly, HS treatment of L. tarentolae
promastigotes causes the parasite to develop resistance to the leishmanicidal
effects of pentavalent antimonials [43]. Interestingly, Balb/c mice inoculated with
Leishmania infantum lacking hsp70 genes did not develop Leishmania-associated
pathology or disease. Instead, these mice develop a Th1 immunity and resistance
to L. infantum infection suggesting that L. infantum HSP70 may be associated with
leishmanial pathogenesis [44, 45].

Malarial disease is caused by intracellular parasites of the genus Plasmodium.
Within this genus, Plamodium falciparum is the most common species identified,
causing nearly 75 % of all malaria cases. P. falciparum is transmitted by a female
mosquito of the genus Anopheles. Most HSP70 studied in malaria are referred to
the intracellular erythrocytic stage of the parasite. At least six HSP70 (pfHSP70)
isoforms have been described in P. falciparum [46, 47]. The proteins encoded by
these genes are constitutively expressed at all blood stages of P. falciparum. A
member of the HSP70 family of 75 kDa is expressed on the surface of merozoites,
and it is recognized by the immune response [48]. Another P. falciparum HSP70-
1 (Pf72/HSP70-1) is a major immunogen expressed in infected erythrocytes and
found experimentally to protect Saimiri monkeys against malarial infection [49].

P. falciparum HSP70 functions to promote parasite survival within host cells.
Disruption of P. falciparum HSP70 and HSP90 complexes and inhibition of the
ATPase activity of HSP70 inhibits development of parasites in infected erythrocytes.
Exposure of parasites at 41 ıC, the equivalent to malaria-induced febrile disease in
the host, promotes parasite development in human erythrocytes [7, 8]. Furthermore,
transfection of E coli lacking HSP70 (DnaK) with P. falciparum HSP70 causes
thermosensitive E coli to become thermoresistant [6]. Together these observations
suggest that HSP70 promote parasite survival possibly by inducing thermotolerance.

It is becoming clear that, P. falciparum HSP70 works together with other
molecular chaperones during malarial infection. Within erythrocytes P. falciparum
HSP70 associates with HSP90 and form the HSP70-HSP90 organizing protein
(pfHop) complex. This protein conglomerate promotes parasite survival via chaper-
oning signal transduction pathways [50]. Furthermore, gene analysis demonstrated
that within erythrocytes, HSP70 and HSP90 associate with co-chaperone HSP40
[51]. In addition, HSP70 was found exported from the parasite to the erythrocyte
cytosol where it associates with HSP40 [52], and both HSP70 and HSP40 form the
P. falciparum virulence factor (pfEMP1) complex. The pfEMP1 complex provides
adherence to the infected erythrocyte [52, 53]. Thus, P. falciparum HSP70 and its
associated molecular chaperones work in concert to promote parasite survival and
transmission.
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Toxoplasmosis gondii is a protozoan parasitic that invades mammalian cells
causing neurologic diseases. It can cross the placenta and infect the fetus, causing
abortion [54]. At least five HSP70 isoforms have been identified in T. gondii
[40]. The role played by T. gondii HSP70 in parasite survival has not been
completely defined. One study shows that T. gondii HSP70 assists the conversion
of parasite from the bradyzoite to the tachyzoite stage, and that this effect occurs
primarily during reactivation of chronic toxoplasmosis [55]. Another study shows
that T. gondii HSP70 induce maturation of dendritic cells, and that maturation
involves Toll-like receptor 4 (TLR4)-mediated signalling pathway. These mature
DCs are able to prime Th1 T cell responses and promote resistance against T. gondii
infection [56]. Interestingly, T gondii-infected mice develop antibodies against
T. gondii HSP70, which cross-react with human HSP70 suggesting autoimmune
recognition [57].

Schistosomiasis is a human disease caused by helminths of the genus Platy-
helminths and highly prevalent in Africa, the Middle East and Asia. Children
with schistosomiasis develop anemia, malnutrition and learning difficulties [58].
Four genes corresponding to HSP70 have been cloned from schistosomes. The
HSP70 proteins are expressed in larvae and in adult organisms. At least one of
these hsp70 genes is inducible in S. mansoni [59]. Interestingly, fully-differentiated
schistosomula – the stage found in humans – can induce expression of the hsp70
gene. Furthermore, the S. mansoni hsp70 gene is expressed constitutively in
miracidia, the parasite stage in snails but not in cercaria (the developmental form
that infects humans). In cercaria, however, the gene is induced at 42 ıC [36, 59].
These observations suggest that the expression of Schistosoma HSP70 may help
parasite transmission from low temperatures to high host temperature (37 ıC).

6.2.3 HSP70 and Fungal Infections

Histoplasma capsulatum is a dimorphic fungus that survives as a multicellular
filamentous stage (mycelia) at temperatures close to 25 ıC, and as unicellular (yeast)
at 37 ıC. The transition between mycelia and yeast can be reversibly induced in
the laboratory by shifting these temperatures. Interestingly, mRNA studies have
shown that H. capsulatum maintains mRNA processing at high temperatures when
phase transition from mycelia to yeast is induced in a culture at 42 ıC. Since HSP
are abundant in mycelial cells at normal temperatures and during phase transition
[36], it is suggested that HSP, particularly HSP70, may promote normal mRNA
processing and normal cell function at 37 ıC by protecting the splicesome [60,
61]. In the yeast Candida albicans optimal expression of HSP appears to vary
between strains with different degree of virulence. Non-virulent strains express
maximum transmission of hsp70 and hsp82 genes at 34 ıC. On the contrary, virulent
organisms expressed maximal transcription of hsp genes at 37 ıC [62]. Of note, in
Cryptococcus neoformans HSP70 is associated with the fungal cell surface, where
it may have a role in interaction of the yeast and host cells [63].
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6.2.4 HSP70 and Viral Infections

HSP70 is one of the most studied HSP with respect to the role of chaperones in the
biology of viruses. HSP70 induces replication of various DNA viruses including
herpes virus (HSV1) [64, 65], vaccinia virus [66], adenovirus [67, 68], simian
virus 40 (SV40) and others. HSP70 also assist positive- and negative-stranded RNA
viruses in infection of host cells. In measles (negative-strand RNA virus), HSP70
interacts with virus nucleocapsid N protein and assists viral capsid formation and
optimal viral replication [69]. Furthermore, transgenic mice overexpressing hsp72
gene in neurons showed augmented measles viral burden in the brain of mice
following viral infection [70].

HSP70 assists virus replication at various levels. In human cytomegalovirus
(CMV)-infected cells, HSP70 localizes to the nucleus early in infection and then
translocate to the cytoplasm late after infection [71]. In the Hantaan virus (HTNV)
infection of Vero E6 cells, HSP70 is also shuttled to the cell nucleus and then to
the cytoplasm. Within the cytoplasm HSP70 associates with HTNV nucleocapsid
protein (NP) resulting in control of expression levels of viral structural proteins and
virus assembly [72].

Virus infection, replication and assembly may require the assistance of various
molecular chaperones. In polyomavirus, HSP70 interacts with capsid proteins VP1,
VP2 and VP3 in an ATP-sensitive manner within the cytoplasm of various host cells.
When bound to VP1, HSP70 inhibits the assembly of viral capsids. However, in the
presence of ATP and DnaJ and GrpE chaperones, VP1 assembles into complete
uniform capsids [73].

In simian virus 40 (SV40), infection of mouse cells by SV40 results in the
induced expression of HSP70 and HSP90 [74]. In mouse keratinocytes, HSP70,
HSP60, as well as HSP90 were found induced following SV40 infection. However,
induction of these chaperones was accompanied by down-regulation of small
HSP27 [9]. Thus, diverse chaperone families take part in virus replication but their
activation and/or inhibitory activity on viruses may depend on the infected host cell
and the conditions of infection.

Remarkably, HSP70 has been identified as a virion component in various RNA
viruses, including influenza A virus, vesicular stomatitis virus, rabies virions, and
HIV-1 particles [9]. RNA viruses have developed a unique adaptation pathway for
multiplication, and HSP70 may be directly involved in this replication pathway.

Rotavirus causes gastroenteritis and watery diarrhea and children around the
world are most susceptible. Rotavirus infection of epithelial cells lining the gas-
trointestinal tract is assisted by host HSP70. HSP70 is part of a receptor complex that
binds rotaviruses [75]. Attachment of viral particles to HSP70 occurs via rotaviral
structural protein VP5 [9]. Following rotavirus infection, levels of intracellular
HSP70 are subsequently induced, resulting in augmented production of rotavirus
structural proteins VP2, VP4, and VP6. Interestingly, inhibition of intracellular
HSP70 in rotavirus-infected cells results in significant reduction of viral particles
produced [76]. Thus, HSP70 has a double role in rotavirus infection, a viral receptor
component, and as a promoter of viral replication.
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Human immunodeficiency virus 1 and 2 (HIV-1 and HIV-2) target and kill
CD4C T helper cells. Evidence shows that HSP70 plays a role in HIV infection
and replication. Increased levels of HSP70 are observed in human lymphoma cells
chronically infected with HIV-1 as well as in lymphocytes from HIV-1 infected
patients [77, 78]. Within infected cells, HSP70 facilitates the import of HIV-1
pre-integration complexes into the cell nucleus, leading to virus integration in
host chromosomes [79]. Interestingly enough, in macrophages, the presence of
recombinant HSP70 significantly diminished replication of HIV-1 [80]. However,
the presence of co-chaperone HSP40 induces viral gene replication, suggesting that
coordination between HSP70 and its co-chaperone HSP40 decides either inhibition
or activation of HIV-1 replication [81].

Regarding replication inhibition, various studies showed that in some circum-
stances HSP70 is involved reduction of viral infections. For example, increased
expression of HSP70 by heat treatment significantly reduced virus replication
in neurons infected with vesicular stomatitis virus (VSV) [82]. Furthermore,
constitutive expression of hsp70 genes in neurons led to the clearance of VSV
particles from mice brain, resulting in reduced mice mortality. Interestingly, this
effect correlated with the secretion of HSP70 by VSV-infected neurons and with
the enhanced expression of type I interferons [82]. Another study showed that
expression of HSP70 correlated with protection against influenza virus. This mech-
anism of protection involves the polymerase activity, which negatively regulates
viral transcription [83, 84]. Negative effects of HSP70 in viral replication have
also been reported in rotaviruses [76] as well as in respiratory syncytial viruses
[85]. The mechanisms associated with HSP70 down-regulation of viral replication
are not well understood. They may be explained, in part, in the context of a
global heat shock response. Heat treatment of cells down-regulates the NF-kB
signalling pathway, leading to replication inhibition of some viruses such as HIV-1
[9, 65].

6.3 HSP70 and the Host Immune Response to Infection

6.3.1 HSP70 as Antigen

HSP in general are among the most immunogenic antigens found. It is suggested that
the immunogenicity of these proteins is a direct consequence of their abundance,
which by virtue of mass action leads to the processing and presentation by antigen-
presenting cells [13]. It is also suggested that the immunogenicity of at least some
HSP may be related to functional association with the MHC-processing machinery
[86]. Furthermore, invading microbes undergo stress due to primary host defence
mechanisms, which causes up-regulation of microbial HSP, making them targets of
immunity [87].

In any case, HSP appear to be highly immunogenic in their own right. Antibodies
and T cells that recognize HSP have been identified in a variety of infections, and
also in apparently healthy individuals. The later findings have led to the suggestion
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that HSP may play an important role in immune surveillance. Thus, anti-HSP
immune responses appear to be regularly induced as a result of frequent contact with
low virulence organisms. Repeated contact with low virulence pathogens impels the
immune system to focus on regions of HSP conserved in the microbial world. This
may provide a mechanism for rapid and specific responses to eventual encounters
with more highly virulent microbes [86].

With respect to HSP as immunogens of infection, evidence indicates that HSP70
and in some cases HSP90 are major targets of the immune response in parasitic
infections. For example, P. falciparum HSP70-1 and 2 (PfHSP 70-1 and PfHSP
70-2) are two abundant antigens of P. falciparum HSP70 that are expressed at all
stages of the parasite life cycle. Although they share 64 % of amino acid identity,
antibodies raised against either of them do not show cross-reactivity indicating that
the common sequences are non-immunogenic [13]. The PfHSP 70-1 antigen is
expressed on the surface of infected hepatocytes, where it is the target of antibody-
dependent cell-mediated cytotoxicity.

As mentioned, a major HSP70-related immunogen Pf72/HSP70-1, which is
present in blood stages of P. falciparum, has been found to protect Saimiri monkeys
against infection. Fifty-two percent of individuals living in an endemic zone in West
Africa have antibodies to this antigen. Furthermore, T cells specific for epitopes
within the C-terminus of this protein are found in individuals continuously exposed
to the parasite. The same epitopes are not recognized by T cells of non-exposed
Europeans. However, since some of these T cell epitopes are also present in the
homologous human HSP70, the use of this antigen in vaccine development against
malaria remains controversial [49]. An antigen of P. falciparum which shares 55 %
of amino acid identity with PfHSP 70–1 and 72 % identity with grp78 is also
recognized by sera from infected patients [88].

In T. cruzi, the antigen TC1 that belongs to the HSP70 family has been cloned
from the œ gt11 expression library. Antibodies against this antigen do not cross react
with human HSP70, despite 73 % of amino acid homology between the proteins [89]

A HSP70 molecule from S. mansoni is recognized by sera from S. manosni-
infected individuals. The same molecule is not recognized by sera from patients
infected with S. japonicum, indicating that the two groups of sera recognize
different epitopes within the two HSP70s [14, 15]. HSP70 is also a major B cell
antigen in patients infected with either Brugia mamayi or Onchocerca volvulus. The
immunogenic domain in both these cases has been localized to the HSP70 carboxy-
terminus [90].

HSP have been also been found to be major targets of the immune response
in bacterial infections. Mice immunized with either M. tuberculosis or M. leprae
produce antibody responses to a limited set of proteins. Amongst these are
represented at least four stress protein groups: HSP70, HSP60, HSP18 and HSP12
[13]. HSP70 was initially identified by a mAb raised against an extract of M. leprae.
HSP70 was then found to be recognized by both T cells and antibodies in patients
with leprosy [91]. Similarly, HSP70 from M. tuberculosis was also identified with
a mAb raised against M. tuberculosis. This HSP70 was recognized by antibodies
and T cells from patients with tuberculosis [16]. Furthermore, CD8C T-cell clones
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isolated from patients with tuberculosis proliferate in response to HSP70 from
mycobacteria, E. coli, and human. Interestingly, mice infected with M. tuberculosis
develop a strong antibody response to mycobacterial HSP70 and little or no response
to murine HSP70. However, immunization of mice with the mycobacterial HSP70
induces antibodies that cross-react with self HSP70 [92].

6.3.2 The HSP70 as Chaperone of Antigenic Peptides
and Proteins

A method for immunization against cancer exploiting the peptide-binding capa-
bilities of HSP was explored in the 1990s. Mice immunized with HSP70 purified
from Balb/c Meth A sarcoma cells were found to be protected against an otherwise
lethal challenge with tumor cells. Protection was specific since it was not protective
when mice were immunized with either (i) HSP70 from normal tissue, or (ii)
HSP70 treated with ATP which removed HSP70-bound immunogenic peptides.
Thus, protection appeared to require a combination of HSP70 and co-purifying
bound peptides. Further analysis indicated that HSP70 bound peptides were in
the range of 1,000–5,000 Da [93]. It was suggested that HSP-chaperoned peptides
were efficiently processed endogenously by antigen-presenting cells (APCs) and
presented in the context of MHC class I molecules.

Further evidence indicated that the chaperoning capacity of HSP is not limited to
immunopeptides, but also to entire immunogenic proteins attached to HSP. HSP70
from M. tuberculosis fused to the human immunodeficiency virus protein p24 (HIV
p24) elicited both humoral and cellular immune responses against p24 following
immunization of mice with the HSP70-p24 complex in the absence of adjuvant
[94]. Another experiment showed that mice immunized with HSP70 fused to the
Hantaan virus nucleocapsid protein (NP) elicited significantly higher levels of NP-
specific antibodies, IFN-gamma-producing cells and cytotoxic T lymphocytes than
mice immunized with NP protein alone [95]. In a series of experiments with various
chaperones involved in chaperoning antigens including gp96, HSP90, and HSP70, it
was proposed that the complex of chaperone-peptides are internalized via the CD91
receptor into endosomal compartments, where they are targeted for presentation.
Furthermore, some peptides HSP-peptide complexes were found to enter an acidic
compartment and loaded onto MHC class II where peptides are presented to CD4C
T cells [96].

6.3.3 HSP70 and Cross-Presentation of Antigens

More recent evidence demonstrated that HSP preferentially enter the MHC class
I processing pathway via cross-presentation [97–99]. In this pathway, antigens are
taken up by dendritic cells (DCs), and following internalization, they are processed
and loaded onto MHC class I molecules and presented to CD8C T cells, which
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destroyed pathogen-infected cells [100]. The mechanisms of cross-presentation by
HSP70 or by HSP in general have not been completely defined. Interaction of
the HSP-peptide complex with CD91 results in the internalization of the complex
into a non-acidic compartment. Transfer of the complex to the cytosol allows
peptides to be processed by the proteosome and transported into the ER by the
transporter associated with antigen processing (TAP), which assist peptide loading
onto MHC I molecules [101, 102]. This cross-presentation model has been tested
in M. tuberculosis HSP70 and OVA peptide (OVA257-264). Cross-presentation of
OVA peptide occurred via MHC-I in B cells. Processing was dependent on linkage
of OVA peptide to HSP70 and was a CD91-dependent process [98].

6.3.4 HSP70 and Activation of Innate Immunity

In addition to chaperoning peptides and proteins for antigen presentation, HSP in
general and HSP70 in particular possess intrinsic mechanisms that trigger innate
immunity. When conjugated to poorly immunogenic peptides or oligosaccharides,
HSP enhance the immune response to these relatively weak antigens. For example,
immunization of mice with the polypeptide (NANP 40) [P. falciparum circum-
sporozoite protein] conjugated to the mycobacterial HSP70 or HSP60, resulted in a
strong antipeptide IgG antibody response. This response was similar to the response
observed when a purified protein derivative (PPD) is used as a carrier, in spite of
the fact that no conventional adjuvant is used in the case of the HSP70-conjugated
peptides [103]. Furthermore, priming with Bacillus Calmette–Guérin (BCG) prior
to immunization was required in cases when HSP60 was used as carrier. However,
priming with BCG was not required when HSP70 was employed [103].

The mechanism by which HSP70 provides adjuvant effects has been the focus of
intense research. Recent studies showed that HSP70 possesses intrinsic adjuvant
capabilities and that this protein can trigger activation of innate immunity. The
following findings support the idea that HSP70 activates innate immunity: (i) HSP70
has been found localized on the cell surface membrane; (ii) HSP70 is secreted
from the cell into the surrounding environment of cells [104–107]; (iii) secretion
of HSP70 occurs in response to cytokines IFN-” and IL-10 treatment [108]; (iv)
HSP70 activates APCs following TLR4 and TLR2 engagement. Activation of APCs
by HSP70 is NF-kB-dependent leading to proinflammatory cytokine production
[12]; (v) extracellular HSP70 is internalized by APCs via cell surface receptors
including CD40, CD91, LOX-1 and CD94 [109]. Together, these and previous
observations demonstrate that HSP70 is not only a chaperone but also an inducer
of cytokine production by APCs. HSP70 is a chaperokine [10, 11].

The induction of innate immunity by HSP70 has been observed in various models
of host microbial interaction. For example, purified HSP70 from T. gondii or T. cruzi
induced maturation of DCs. These DCs increased the expression of costimulatory
molecules CD40, CD80, CD86, and activated DCs produced increased amounts of
proinflammatory cytokines IL-12 and TNF-’ two key cytokines involved in Th1
priming [56, 110].
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Of note, it has been argued that the inflammatory properties of HSP70 are
not due to HSP70 itself, but to lipopolysaccharide (LPS) contamination, which
remains bound to the protein following purification from E. coli. In fact, experiments
have shown that LPS-free HSP70 is immunosuppressive and that rather than
inducing stimulation, HSP70 inhibits T cells and reduces the capacity of DCs to
produce inflammatory cytokines [111]. Furthermore, a recent observation shows
that Francisella tularensis HSP70 inhibits alkaline phosphatase in mice lungs
infected with Francisella, suggesting that Francisella HSP70 could down-regulate
host immunity by interfering with host cell signalling pathways [112].

Challenging the argument of inhibitory effect of HSP70, a recent observation
shows that LPS-free HSP70, expressed in baculovirus expression vector system con-
taining no LPS, invariably induced activation of mouse splenocytes and enhanced
production of proinflammatory cytokines [113]. The apparent contradiction of
HSP70 as an immunostimulatory or as an immunosuppressive molecule is still
a matter of controversy. However, it is clear that LPS-contamination alone does
not explain the multiple observations associated with the activation of the immune
response by HSP70.

In addition to activating APCs, HSP70 also activates natural killer cells (NK
cells) as shown in various cancer models. Little is known, however, on the role
of HSP70-mediated activation of NK cells during infection. In malaria, HSP70 is
recruited to the surface of P. falciparum-infected erythrocytes [114]. The infected
erythrocytes become targets of NK cell-mediated cytotoxicity via granzyme B
[115]. It should be noted that NK cells, which produce IFN-” are important in
the control of intracellular infections. IFN-” is a primary cytokines involved in
development of Th1 type immunity.

6.4 The Potential of HSP70 in Vaccine Development

The ability of HSP70 to chaperone antigenic peptides and proteins as well as
its unique adjuvant capabilities are attractive features for vaccine development.
In addition, HSP70 non-conserved amino acid sequences are potential vaccine
candidate antigens. In this context, both host and pathogen HSP70 has been tested
in various vaccine infection models.

6.4.1 HSP70 as Antigen

Bacterial HSP70 as a Vaccine Antigen HSP70 has been employed in vaccine
preparations tested in vaccines against various bacterial infections. Mice immunized
with Salmonella typhi HSP70 and complete Freund’s adjuvant (CFA) developed
significant increased levels of antibodies and a mixed Th1/Th2 response against
S. typhi. Immunized mice displayed 70–90 % protection against S. typhi [17]. In
leprosy, immunization with the C-terminal fragment of M. leprae HSP70 resulted
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in increased delayed type hypersensitivity (DTH) against both C-terminus and the
whole HSP70 molecule. In vitro, lymph node cells from the immunized mice
recognized and proliferated in response to both C-terminus and whole the HSP70,
suggesting protective immunity [116]. In Helicobacter pylori, immunization with
DNA from H. pylori HSP70 triggered Th1 immunity against H. pylori. Immunized
mice showed less microbial load and less gastric mucosal inflammation than non-
immunized control mice [117].

Protozoal HSP70 as a Vaccine Antigen Antigenic capabilities of HSP70 has also
been tested in vaccines against various protozoal infections. In toxoplasmosis,
mice immunized with DNA containing T. gondii hsp70 gene developed Th1 type
immunity as determined by cytokine responses in vitro. As compared to controls,
immunized mice showed a significant reduction of parasite loads in the brain
following infection challenge with T gondii infecting doses [118].

In the L. donovani infection model, Balb/c mice immunized with L. donovani
HSP70 and HSP83 proteins in the presence of adjuvant monophosphoryl lipid
A (MPLA) developed significant levels of Th1 type immunity. Vaccinated mice
were resistant to L. donovani infection [119]. Similar Th1 protective results were
observed in mice immunized with L. donovani HSP70 and the major leishmanial
surface glycoprotein gp63 as antigen [120]. However, immunization of BALB/c or
C57BL/6 mice with L. major HSP70 resulted in a mixed Th1/Th2 development
and no protection against L. major infection was observed [121]. In Chagas
disease, however, mice immunized with T cruzi HSP70 developed HSP70-specific
CD4C T cells producing IFN-”, IL-2 and TNF-’ suggesting Th1 type protective
immunity [122]. Interestingly, CD8C cytotoxic T cells recognizing T cruzi HSP70
epitopes were identified in Chagas disease patients indicating presence of protective
immunity [123].

Fungi HSP70 as a Vaccine Antigen In fungi models of infection, immunization
with fungal HSP70 was not found to induce resistance against these infection types.
Mice immunized with C. albicans HSP70 showed high levels of IgG antibodies and
cell-mediated immune responses against HSP70. However, no protection against C.
albicans infection was detected [19]. Similar results were observed following immu-
nizations with Histoplasma capsulatum HSP70 [124]. Interestingly, immunization
of mice with H. capsulatum HSP60 did confer significant immune protection and
resistance to infection against H. capsulatum [125]. These results demonstrate that
different HSP may be recognized differently by the immune response and this results
in particular immune protection capabilities to fungal infections.

6.4.2 HSP70 as Adjuvant

HSP70 as Adjuvant in Vaccines Against Bacteria The ability of HSP70 to chap-
erone antigenic molecules and its capacity to trigger activation of the immune
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response has been employed in various experimental vaccines. Mice immunized
with L. monocytogenes HSP70 loaded with Listeria antigenic peptides were found
to develop CD8C T cells producing IFN-” requiring the help of CD4C T cells for
expansion [126]. In tuberculosis HSP70 as well as HSP60, in combination with
Bacillus Calmette–Guérin (BCG) as an antigen, induced more robust immunity
and conferred greater protection to immunized mice than BCG alone [127].
Furthermore, M. tuberculosis HSP70 specifically stimulates antigen-primed cells
to produce proinflammatory cytokines in vitro [128]. However, this effect was
not observed with human HSP70, suggesting that adjuvanticity of HSP70 may be
selective to some, but not to all HSP70s [129]. An expression system based on
HSP70 fused to diverse antigen-encoding sequences, were developed recently. Mice
immunized with the HSP70/antigen complexes efficiently elicited antigen-specific
CD8C T cell responses without the need of adjuvant [130].

HSP70 as Adjuvant in Vaccines Against Protozoal Parasites A parasitic DNA
vaccine containing L. amazonensis HSP70 and L. amazonensis gene encoding P4
nuclease were tested in a vaccine in BALB/c mice. Mice immunized with P4
and HSP70 vaccine developed modest protective immunity and little resistance
to infection against L. amazonensis [131]. In Chagas disease, mice immunized
with T. cruzi HSP70 fused to the kinetoplastid membrane protein 11 (KMP11)
antigen from T cruzi developed CD8C T cell cytotoxic responses against cells
expressing KMP11 antigen [132]. Another experiment showed that C57BL/6 mice
immunized with P. falciparum EB200 antigen and both Cholera toxin (CT) and T.
cruzi HSP70 as adjuvants develop high antibody levels against EB200 and enhanced
secretion of IFN-” by splenocytes in vitro, suggesting that CT and HSP70 can work
synergistically to improve immunogenicity [133, 134].

HSP70 as an Adjuvant in Vaccines Against Viruses M. tuberculosis HSP70 and
the HIV-1 p24 protein antigen were tested in a vaccine against HIV-1. Immunized
mice develop antibodies against P24 protein and their immune cells responded
to P24 antigen in vitro [94]. Another study showed that mice immunized with
M. tuberculosis HSP70 non-covalently bound to MHC class II influenza A peptide
responded by increasing T cell responses against influenza A peptide [135]. In
choriomeningitis virus (LCMV), mice were immunized with an epitope from
LCMV and recombinant HSP70 as adjuvant. Immunized mice developed high levels
of memory CD8C T cells. Infection challenge with LCMV resulted in Virus titres
reduced by 10–100 fold as compared to control non-immunized mice groups [18].
Regarding respiratory syncytial virus (RSV), RSV antigen G1F/M2 was chemically
linked to HSP70. Mice immunized with G1F/M2-HSP70 conjugate developed
significantly higher levels of antibodies against G1F/M2 and CD8C cytotoxic T cells
than mice immunized without HSP70 [85]. Together, these results demonstrate that
HSP70 is an adjuvant that significantly enhances both humoral and CD8C T cells
against chaperoned peptides derived from virus.
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6.5 Conclusion

Studies concerned with the role of HSP70 in microbial infections revised here
demonstrate that: (i) microbial HSP70 can associate with microbial cell surface
where it may assist pathogen invasion of host cells; (ii) HSP70 can play dual
roles, as a host receptor of microbes and as a chaperone for microbial survival
within host cells; (iii) HSP70 promotes microbial survival by helping microbes
cope with the toxic environment of host cells; (iv) HSP70 assists in microbial
invasion and survival, and HSP70 works in concert with other associated molecular
chaperones, including HSP90 and HSP40; (v) HSP70 is immunogenic, and is
recognized by both antibodies and T cells in infected as well as in apparently
healthy individuals; (vi) HSP70 induces the activation of acquired immunity and
(vii) HSP70 is an efficient adjuvant that enhances both humoral and cell-mediated
responses against various intracellular infections. Nevertheless, in certain conditions
HSP70 cannot trigger the immune response, but on the contrary, down regulates
immunity. Furthermore, HSP70 has the potential to provoke autoimmune reactions
due to molecular mimicry between host and microbial HSP70s. Future research will
be required to unquestionably clarify the potential of HSP70 as a vaccine adjuvant
and as an antigen.
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