
Chapter 3
Heat Shock Proteins and Cancer: Plant Based
Therapy

Evren Önay-Uçar

Abstract Cancer is one of the major causes of mortality in the world. Each year
approximately 13 million people suffer from cancer disease, and approximately
60 % of them die because of cancer. Besides most of the patients response harmful
side effects of chemo- and radiotherapies. Therefore the establishment of new
therapeutic strategies for the treatment of cancers will be required. A number
of studies have shown that some HSP are induced in specific tumor cells. For
example, increased levels of HSP105, HSP90, HSP70, HSP60, HSP27 have been
detected in colon cancer, lung cancer, hepatocellular carcinoma, colorectal cancer,
and gliomas, respectively. Elevated HSP levels in tumor cells are suggested to be
responsible for increased chemotherapy resistance and poor prognosis. Suppression
of HSP expressions in cancer cells is a new strategy for the treatment. It is well
known that some plant extracts and their flavonoids significantly decrease HSP
expression, and induce apoptosis of cancer cells. In addition, using of the HSP
inhibitors in association with classical chemotherapy increases the sensitivity of
cancer cells to the cytotoxic drugs. Therefore, some plants and their biologically
active natural compounds have been investigated for their possible contribution to
cancer therapy. The current chapter reviews the role of HSP in different cancer types
and suppressing HSP with some natural products.
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Dox Doxorubicin
EGCG Epigallocatechin-3-gallate
ERK Extracellular signal-regulated kinase
GA Geldanamycin
Grp Glucose-regulated protein
HBV-related HCC Hepatit B virus-related hepatocellular carcinoma
HSE Heat shock element
HSF Heat shock factor
HSP Heat shock protein
JNK/SAPK Jun-amino-terminal kinase/stress-activated protein kinase
PA Peptide aptamer
PDTC Pyrrolidine dithiocarbamate
PEITC Phenethyl isothiocyanate
PES 2-phenylethynesulfonamide
Phen 1,10-phenanthroline
PTMs Posttranslational modifications
RCC Renal cell carcinoma
RP101 Brivudine
siRNA Small interfering RNA
TF Theaflavins
TR Thearubigins
ZER Zerumbone

3.1 Introduction

One of the major causes of mortality in the world is cancer. According to known
statistical and epidemiological data, in 2008 approximately 7.6 million people have
died from cancer in all over the world and it is estimated that by 2030 there
will be 22 million new cancer cases every year (http://www.cancerresearchuk.org/
cancer-info/cancerstats/world/; [1]). Although the most common cancer treatments
such as surgery, radiotherapy, and chemotherapy are used for cancer therapy, these
treatments are not enough to cure all cancer types. When it is considered that
the cancer cases will increase in the future, the establishment of new therapeutic
strategies for the management of the cancers will be essential.

Heat shock proteins (HSP, also called stress proteins) are one of the largest
components of the cytoplasmic network. The evolutionary conserved HSP are
classified into different families by their molecular weight: HSP100, HSP90,
HSP70, HSP60, HSP40, and small HSP [2, 3]. These proteins are responsible for
maintaining protein homeostasis in the cell. They generate dynamic complexes
by forming non-covalent bonds with each other, other proteins and all of the
cytoplasmic network components, and play an important role in preventing damage
occurring in various proteins [4]. Heat shock proteins can be overexpressed in all
organisms to protect themselves from environmental stresses such as heat, oxidative
stress, and ischemia. They mediate the refolding or degradation of stress-damaged

http://www.cancerresearchuk.org/cancer-info/cancerstats/world/
http://www.cancerresearchuk.org/cancer-info/cancerstats/world/
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proteins, thus protect the cells from potential deleterious effects and promote the
cell recovery [5]. Besides, HSP have a lot of functions in the cell, they play some
roles in cell division, apoptosis inhibition, and metastasis of cancer cells [6, 7]. They
also play the regulatory roles in cell viability and death. Some stress-induced HSP,
especially HSP27 and HSP70, protect the cells against apoptosis and necrosis [8, 9].

HSP also play important roles in the development of various diseases, especially
in cancer and neurodegenerative diseases. A lot of studies indicated that the expres-
sions of some HSP are elevated in many cancer types. Therefore some researchers
have reported that these proteins are used as a biomarker in some cancer types [10–
15]. It is revealed that HSP105, HSP90, HSP70, HSP60 and HSP27 are increased
in colon cancer, lung cancer, hepatocellular carcinoma, colorectal carcinoma, and
gastric cancer, respectively [11–13, 16, 17]. It is also known that the elevated HSP
in tumor cells are suggested to be responsible for increased therapy resistance and
poor prognosis [16, 18, 19]. A lot of studies have indicated association between HSP
and chemotherapeutic drug resistance in cancer cells [10, 20–24].

As a result, a new strategy for the cancer treatment has been put forward
to reduce the HSP expressions, and to decrease the resistance of chemotherapy
and radiotherapy in cancer cells. Many studies have been performed to prove the
accuracy of this new strategy and “a new HSP target”. Recent studies showed
that HSP inhibition by using antisense oligonucleotides or inhibitors has revealed
successful results in clinical trials related to cancer treatment [25–30]. Besides,
several plant extracts and some natural compounds have been used to suppress HSP
expression in cancer cells for a long time [31–37]. In this chapter, HSP suppression
using plant extracts and natural compounds will be discussed in detailed.

3.2 The Role of HSP in Cancer

Recent studies indicated that different HSP have been altered in different cancer
types. The studies related to association between overexpressed HSP and cancer
behaviour are still going on. The list of elevated HSP levels in different cancer
types is shown in Table 3.1. Kai and his coworkers showed that HSP105 was
increased in colorectal cancer and pancreatic adenocarcinoma patients [11]. Similar
study on pancreatic adenocarcinoma patients revealed that HSP105 was remarkably
increased in carcinogenic tissue versus normal tissue [38]. In a clinical study of
prostate cancer patients, it has been found that HSP70 expression is increased in
cancer patients in comparison to normal individuals [47]. HSP27, which is found
abundantly in human serum, is suggested as a potential diagnostic marker in breast
cancer [14]. Overexpressed HSP27 has been found in metastatic hepatocarcinoma
tissues when compared to non-metastatic tissue [66]. Similar results were also
obtained in gastric cancer [57]. HSP27 was found to be upregulated in colorectal
carcinoma (CRC) versus normal cells [54]. A number of reports have been revealed
that HSP27 has been upregulated in primary nervous system tumors, human
astrocytoma, glioma and brain tumour [60, 62–64].
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Several studies in different tumour models exhibited that there is an asso-
ciation between HSP expression and multidrug resistance [75] and increased
tumorogenesis-related apoptosis [76]. Studies have revealed that the upregulated
HSP cause to increased resistant against anticancer drugs, such as Cisplatin
(CDDP), Doxorubicin (Dox), Vincristine, Paclitaxel etc. in cancer cells [10, 77–82].
Besides, some studies have demonstrated that overexpression of HSP eliminates the
lethal effect of gamma radiation in cancer cells [21, 82, 83].

Especially, HSP27 and HSP70 are found abundantly in malignant cancer cells,
and they cause chemotherapy resistance [84]. In human ovarian tumor cell line, it
has been shown that HSP27 and HSP70 are linked with the resistance to Cisplatin
(CDDP). CDDP is a compound containing platinum and a potential anti-cancer
agent. It has been widely used in the treatment of several malignant tumors such
as testicular, head and neck, esophageal, lung, ovaries, and bladder cancers etc.
The long-lasting CDDP treatment is limited, because of the risk of developing
the resistant cells. Then these resistant cells become malignant. According to the
western blot analysis increased expression levels of HSP27 and HSP70 are critical
for the resistance mechanism of CDDP [22]. Upregulated HSP70 and HSP90 are
also enhanced drug sensitivity in ovarian cancer [85].

In a study with 300 breast cancer patients, an association between tumour
aggressiveness and HSP27 localization has been found [86]. The increased levels of
HSP27 and HSP70 in breast cancer indicate that the cancer cells’ resistance against
to chemotherapy especially to Dox and apoptosis is increased [10, 23, 26, 78, 87,
88]. A recent report has indicated a relationship between HSP27 and Herceptin
sensitivity in breast cancer cells. Overexpressed HSP27 has reduced Herceptin
susceptibility in these cells [81]. Upregulated HSP70 is also essential for survival
of tumorogenic breast cancer cells, and the decreasing of HSP70 activates tumor-
specific cell death program (apoptosis) [20]. Especially, overexpressed HSP70 has
been revealed to connect with weak prognosis and treatment resistance of breast
cancer, servical cancer and hepatocellular carcinoma cells [6, 17, 45]. It has been
shown that the overexpression of this protein in breast cancer is an indicator of failed
treatment [43].

Additionally, it is known that HSP27 and HSP72 expressions are upregulated
in prostate cancer [49, 89]. Recent immunohistochemical studies have shown that
there is a correlation between HSP27 expression and prostate cancer aggressiveness,
progression, and the development of the phenotype that does not respond to the
hormone therapy [14]. HSP27 expression is induced to respond to the hormone
or chemotherapy, thus it suppresses therapy with induced-apoptosis [79, 90]. The
overexpressions of HSP27 and HSP70 in human prostate cancer have been shown
to provide resistance to apoptosis and chemotherapy [24, 91]. Garrido and Parcellier
have also found that increased HSP27 levels protect prostate cancer cells by
increasing tumor proliferation and decreasing apoptosis, thereby facilitating tumor
progression [71, 73]. Similar results were obtained for HSP72 in prostate cancer.
Prolonged downregulation of HSP72 in PC-3 cells enhanced the sensitivity of cells
to radiotherapy, and chemotherapy agents such as CDDP, vinblastin and taxol [89].
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HSP27 has also been determined in several brain tumors, and there is a
correlation between its expression and the degree of tumour malignancy [58, 92]. In
neuronal cells in vivo overexpression of HSP27 exhibits neuroprotective properties
by HSP27-mediated inhibition of apoptosis [93]. Induced HSP27 is also important
for ranking histologically, which is related with weak prognosis in hepatocellular
carcinoma [6]. The overexpressed HSP27 inhibits etoposide-induced apoptosis in
human leukemic cells [94].

Besides, some studies have proved that overexpressed HSP70 is prior condition
for the survival of various cancer types and suppressed HSP70 in tumour cells has
been caused to cell death [20]. It is known that some inducible HSP (especially
HSP27 and HSP70) protect the cells against apoptosis [84] and necrosis [19,
79, 95–99]. Recent studies have indicated that these proteins inhibit apoptosis
via preventing caspases in different stages [100, 101]. The antiapoptotic effects
of HSP27 and HSP70 have clarified by associating cytochrome C release from
mitochondria, formation of apoptosome, and caspase [76, 101–103].

Considering all these studies, decreasing the HSP level in cancer cells would
be beneficial for the treatment of cancers and the development of new therapeutic
approaches targeted to HSP.

3.3 Why Are HSP Induced?

There are a variety of physiological, pathological and environmental factors such
as growth factors, cell differentiation, tissue development, viral, bacterial, parasitic
infections, ischemia, heat shock, heavy metals, ethanol, antibiotics etc. that induce
HSP expression in the cells [104].

The transcription of hsp genes is provided through the interaction of heat shock
transcription factor (HSF) and heat shock element (HSE). It has been determined
four different HSFs up to now: HSF1, HSF2, HSF3 and HSF4 [3]. All HSFs are
induced during development and adaptation of the cells, but only HSF1 regulates
the HSP synthesis. HSF1 is activated when the cell exposed to stress, and regulates
the expression of hsp genes [3, 103, 105].

The mechanism of hsp gene activation is still remaining not fully understood,
but it is well known that the HSE and HSF1 carry impontant role in this mechanism.
Although under normal circumstances HSFs are found in the cytoplasm as inactive
monomers, which are linked to HSP70 and HSP90, they can only bind to DNA
under stress conditions [106]. Under stress conditions HSF is subjected to a number
of posttranslational modifications (PTMs), and converted to three phosphated form
(homotrimer), and then transferred from cytoplasma to nucleus for binding to the
DNA. After binding of HSF to promoter regions of hsp genes called as HSE, the
gene transcription is get started in nucleus [103, 107, 108].

Several factors can lead to HSF activation. The most important clue for HSF
activation is connection balance between the HSP molecules (like HSP70) and HSF
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and stress caused- unfolded proteins. Any increase in the unfolded proteins entity,
this balance changes the direction of the unfolded protein-HSP balance, so the HSF
monomers are released from this complex [3].

HSF1 is a constitutively expressed protein, which is located in the cell nucleus
and cytosol. Its molecular weight is 75 kDa, and which is found in a complex
of approximately 200 kDa as inactive monomers [109]. Both DNA-binding and
transcription activities of HSF1 monomers are suppressed with negative control,
these monomers bind normally to HSP70 and HSP90 in the cell [105]. In physio-
logical stress conditions such as high temperature and ischemia, HSF1 is separated
from HSP via activation of kinases. This HSF1 monomers are hyperphosphorilated
by ERK1, JNK/SAPK and p38 protein kinase [110] and they form a homotrimer
approximately 700 kDa [105]. This active trimer is transferred from cytosol to
the nucleus and binds to hsp genes [104]. The HSF1-DNA binding is closely
associated with HSE, which is found in upstream promoter region of hsp genes.
When the homotrimer is phosphorilated again by kinases, the hsp gene transcription
is triggered in the nucleus. Following the transcription, mRNA of HSP is moved to
cytosol and the synthesis is completed there. At the end of these events, HSF1 is
retransferred to the cytosol, and created a complex with newly synthesised HSP for
interrupting of HSP synthesis (Fig. 3.1).

In disease conditions, it is thought that the induction of HSF1 reduces protein
damages by increasing hsp gene expression. Cell culture studies have revealed that
the treatments of hypoxia, ethanol and sodium arsenite increase HSF1-DNA binding
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Fig. 3.1 The regulation mechanism of stress-induced hsp gene expression
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and HSP70 level within the cell. High temperature weakens the association between
HSF1 and HSP90, since the stress caused-denaturated proteins compete with HSFs
to bind HSP90 [111]. The increasing of inducible HSP in cell suppresses the HSF1
activation via a regulatory mechanism [112].

The studies showed that overexpressed hsp27 gene provides temporary resistance
against lethal heat shock and increases the stability of actin filaments in the cell
[113–115]. HSP27 also immobilizes the mitochondria [9]. Overexpressed HSP70
in pulmonary endothelial cells induced endotoxins and besides reduced apoptosis
[116]. This suppression is obtained with interrupting procaspase-3 transformation to
active caspase-3 [117]. Proapoptotic signals, such as Fas, decrease the HSF1-DNA
connection in heat shock conditions, because HSF1 is not hyperphosphorylated
[3]. It has been shown that HSP inhibit apoptosis via prohibiting to the different
phases caspases [9, 100]. HSP27 plays a role in cellular redox state [96] and in
preventing cellular damage as a result of declining of ATP [95]. The antiapoptotic
effects of HSP27 and HSP70 are associated with the release of cytochrome C from
mitochondria, caspase activation, and the formation of apoptosome [100, 101].

3.4 HSP Inhibition and Clinical Trials

Nowadays, many researchers focus on HSP inhibition as one of the important
pharmacological approaches in cancer therapy. For that purpose, different methods
such as antisense oligonucleotide, some natural agents, siRNA (small interfering
RNA) applications etc. are used to suppress HSP in the cancer therapy [30].
Basically, there are three different strategies for suppressing of HSP: (1) Direct
inhibitors, (2) Peptide aptamers binding to HSP, (3) Antisense oligonucleotides [30].

Because of the relationship between upregulated HSP and the treatment effec-
tiveness, the HSP suppression is among the strategic targets in cancer treatment. The
HSP inhibitors, which have been proposed for the cancer treatments, have been used
either alone or with chemotherapic agents. According to the US National Istitutes
of Health, today in all over the world, 168 studies are carried out with the title
of “HSP”, and 75 clinical trials of them are related with “HSP inhibitors” for the
treatment of different cancer types (http://clinicaltrials.gov/). These active clinical
trials are generally related with HSP90 suppression. The importance of HSP90 is
associated with the number of successful studies [7, 25, 26, 29, 118].

It is well known that HSP90 is responsible for maintaining the correct folding
and stability of over 100 client proteins in cancer survival [119]. The inhibition
of HSP90 causes to cell death (apoptosis). The natural products geldanamycin
(GA), and semi-synthetic derivatives tanespimycin (17-AAG) and retaspimycin
(17-DMAG) are known as HSP90 inhibitors and they evaluated alone or in
combination with other drugs for the treatment of breast cancer in Phase 1 and
Phase 2 clinical trials [25, 26, 29]. The other natural products such as radicicol

http://clinicaltrials.gov/
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analogues, cycloproparadicicol and radicicol oximes are also used in preclinical
trials to inhibit HSP90 [118, 119]. A recent study showed that the use of VER-
155008 and 17-DMAG inhibitors to suppress HSP70 and HSP90 significantly
increased antiproliferative and proapoptotic effects in acute myleoid leukemia [120].

The previously mentioned different strategies are also used to suppress the
HSP27 expression in several clinical studies. These experiments revealed that
quercetin and brivudine (also called RP101) directly inhibited HSP27 expression in
several cancer cells [27, 79], the use of antisense oligonucleotides reduced HSP27
expression in cancer cells [121]. Besides, when peptide aptamers PA11 and PA50
are used for inhibiting of HSP27, chemo/radio-therapy efficacy is increased in HeLa
cells [28].

Antisense oligonucleotides induce apoptosis of tumor cells by suppressing HSP
[34]. When HSP27 expression is reduced about 40 % in HeLa cells by using
antisense technology, these cells become more sensitive to apoptotic inducers [122].
Similarly, HSP27 supression decreases the potential of creating tumor from the
prostate cancer cells, and increases the sensitivity of cells to anticancer drugs such as
paclitaxel [79]. In a pancreatic cancer study, upregulated HSP27 caused to resistance
of gemcitabine. When HSP27 expression was suppressed with siRNA, the cells
became more sensitive to gemcitabine [123].

Recently, the silencing of HSP27 and HSP90 are one of the new targets to
sensitize prostate cancer cells to chemotherapy and radiotherapy [118, 124]. Some
experiments indicated that suppressed HSP70 by using quercetin, antisense oligonu-
cleotide or siRNA increased apoptosis in prostate cancer cells [14, 34]. HSP27
antisense oligodeoxynucleotides and siRNA that target the human translation
initiation site were reported to potentely inhibit HSP27 expression in human prostate
PC-3 cells with increased caspase-3 cleavage, apoptosis and 87 % suppression of
cell growth [79, 125]. Besides, targeting HSP27 by the second-generation antisense
oligodeoxynucleotides (OGX-427) inhibited HSP27 expression and enhanced drug
sensitivity in several xenograft models [79, 126].

Several studies emphasized that some synthetic antioxidants reduced increasing
of HSP expression in the cells. Gorman and his colleagues have shown that
certain antioxidant compounds (such as pyrrolidine dithiocarbamate (PDTC) and
1,10- phenanthroline (Phen)) prevented hsp gene induction and inhibited HSP27
and HSP70 in HL-60 cell line. The combination of antioxidant treatment led
to cell death, which were exposed to heat stress [31]. There are also some
evidences that several chemicals, such as benzylidene lactam, triptolide, emu-
nine etc., inhibit hsp gene expressions by interacting with HSFs [108]. It is
known that 2-phenylethynesulfonamide (PES, pifitrin-�) is a specific inhibitor of
stress-inducible HSP70, the usage of PES induces cell death in primary effusion
lymphoma [127].
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3.5 Plant-Based HSP Inhibitions

Nowadays in addition to synthetic drugs, a wide range of natural products are
used in the treatment of cancer as supportive (supplemental) products. The use
of medicinal plants in the treatment of cancer has a long history. They have been
used since ancient times for the treatment of several diseases. Currently, more than
60 % of the anticancer agents is obtained from natural sources, such as plants, water
organisms and microorganisms [128]. According to the clinical trials web page, at
least 106 studies related to plant-based cancer therapy are being conducted (http://
clinicaltrials.gov/).

In the literature, a lot of studies have been found related to HSP inhibitions by
using plant extracts or natural products in different cancer cells (see Table 3.2).
For example, Morino and his coworkers have pointed out that some flavonoids
reduced the expressions of HSP27, HSP40, HSP60 and HSP70 in different tumor
cell lines [144]. Similarly, in 2002, Rusak and his coworkers have revealed that
quercetin, kaempferol, taxifolin, and isorhamnetin flavonoids are significantly
decreased HSP27 and HSP70 gene expressions in heat-stressed leukemia cells
[132]. Proteomic-based results indicated that resveratrol caused suppression of
HSP27 and thus induced apoptosis in breast cancer (MCF-7) cells. Besides,
inhibition of HSP27 expression by specific siRNA transfection also enhanced the
chemotherapeutic effects of Dox in this cell [37].

It is well known that several natural compounds inhibit HSP expression in
cancer cells. Boesenbergin A is a natural compound isolated from Boesenbergia
rotunda and has apoptotic effect on the cancer cells. Boesenbergin A treatment
is caused significantly suppressing of HSP70 in human T4-lymphoblastoid cells
[36]. Phenethyl isothiocyanate (PEITC), a natural compound found in some plants,
significantly reduced HSP27, HSP70, HSP90 and HSF-1 expressions in MCF-
7 and MDA-MB-231 breast cancer cell lines [134]. Triptolide from Triptergium
wilfordii suppressed HSP70 expression via inhibiting heat shock response in HeLa
cells [141]. Zerumbone (ZER), an antioxidant isolated from Zingiber zerumbet
Smith inhibited HSP27 expression in lung adenocarcinoma cells and also increased
radiosensitization of this cell [143]. The plant polyphenols also show similar effects
on cancer cells. For example, epigallocatechin-3-gallate (EGCG), one of the major
polyphenols in green tea, specifically suppressed the expressions of HSP90 and
HSP70 in MCF-7 human breast cancer cells by inhibiting the promoter activity of
HSP90 [130]. EGCG has also been shown to induce apoptosis in human urinary
bladder carcinoma cell line (TSGH-8301) by suppressing of HSP27 [131]. In an
other study high-dose green tea polyphenols caused to downregulation of HSP27
and HSP90 mRNAs in mouse kidney and liver [145]. Black tea polyphenols,
theaflavins (TF) and thearubigins (TR), downregulated the HSP90 expression and
induced apoptosis in human leukemic U937 and K562 cells [140]. Lycopene and its
derivative apo-140-lycopenoic acid inhibited HSP70 and HSP90 expression in acute
monocytic leukemia cells [133]. Deguelin isolated from Mundulea sericea induced

http://clinicaltrials.gov/
http://clinicaltrials.gov/
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Table 3.2 Downregulated HSP by use of natural compound/plant extract in cancer

Plant
extract/natural
compound Cancer cell/type Findings References

Boesenbergin
A

T4 Lymphoblastoid cells HSP70 # Ng et al. [36]

Cimicifuga
foetida extract

Breast cancer cells
(MCF-7 cell line)

HSP27 # Soler et al. [129]

Deguelin Head and neck squamous
cell carcinoma

HSP90 #, apoptosis ",
autophagy "

Yang et al. [69]

EGCG Breast cancer cells
(MCF-7 cell line)

HSP70 #, HSP90 # Tran et al. [130]

Urinary bladder carcinoma HSP27#, apoptosis " Chen et al. [131]
Kaempferol Leukemia cell line (HL-60) HSP27 #, HSP70# Rusak et al.

[132]
Lycopene Acute monocytic leukemia

cell
HSP70 #, HSP90 # Catalano et al.

[133]
PEITC Breast cancer cell HSP27#, HSP70 #, HSP90

#, HSF-1 #
Sarkars et al.
[134]

Quercetin Breast cancer Dox efficacy" Staedler et al.
[135]

HeLa cell line HSP27 #, HSP70#,
CDDP-induced apoptosis "

Jakubowicz-Gil
et al. [136, 137]

Leukemia cell line (HL-60) HSP27 #, HSP70# Rusak et al.
[132]

Lung cancer cell line
(A549)

HSP27#, CDDP and
gemcitabine efficacy "

Neuroblastoma and
Ewing’s sarcoma

HSP27#, Dox efficacy " Zanini et al.
[138]

Prostate cancer HSP70# Kagaya et al.
[32], Asea et al.
[33], Jones et al.
[34]

Resveratrol Breast cancer cells
(MCF-7 cell line)

HSP27#, apoptosis ", Dox
efficacy"

Diaz-Chavez
et al. [37]

Taxifolin,
isorhamnetin

Leukemia cell line (HL-60) HSP70# Rusak et al.
[132]

Taxol Ovarian and uterine cancer
cells

HSP27#, etoposide,
colcemid and vincristine
efficacy"

Tanaka et al.
[139]

Theaflavin and
thearubigin

Leukemia cell lines (U937
and K562)

HSP90 #, apoptosis " Halder et al.
[140]

Triptolide HeLa cell line HSP70# Westerheide
et al. [141]

Viscum album
extract

Glioma cell line HSP27 #, 14-3-3 “ #, — #,
” #, apoptosis "

Önay-Uçar et al.
[35]

Withaferin A Pancreatic cancer HSP90 # Yu et al. [142]
Zerumbone Lung adenocarcinoma cells HSP27#, radiosensitization

"
Choi et al. [143]

": upregulation, #: downregulation
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apoptosis and autophagy in head and neck squamous cell carcinoma ans is proposed
as a potential HSP90 inhibitor [69]. Taxol has been suggested to overcome drug
resistance to etoposide, colcemid and vincristine in ovarian and uterine cancer cells
in vitro by inhibiting HSP27 expression [139]. These examples can be multiplied.

There are strong evidences related to suppressed HSP expression by using some
plant extracts [35, 129]. Various Viscum album (mistletoe) extracts are widely used
as complemantary cancer therapies in Europe [146, 147]. We checked antioxidant
activity of the methanolic extract of Viscum album [148]. Our further studies
revealed that Viscum album methanolic extract decreased the expression level of
HSP27 and some 14-3-3 isoforms in glioma cells, pretreated with the extract before
heat shock, and increased apoptosis via caspase-3 activation [35]. 14-3-3 proteins
are considered as HSP, because the expression of some isoforms are induce via
a process mediated by heat shock transcription factor [149]. In another study, it
was reported that Cimicifuga foetida extract reduced HSP27 expression in MCF-7
cells [129].

There are a lot of studies explained that how quercetin affects HSP induction
in the cells. Plant-derived flavonoid quercetin is an antioxidant molecule and
regarded as an HSP inhibitor [150]. It suppressed heat shock induced-HSP70
expression in prostate cancer cells [32–34]. Quercetin also repressed heat shock
induced-HSP27 and HSP70 expressions in HeLa cells [136]. This flavonoid reduced
hsp gene expression at trancription level via preventing between HSF and HSE
linkage [32, 33, 136, 151, 152] and inhibited heat shock response by preventing
the formation of HSF trimers [153]. Quercetin acts on early steps of HSP syn-
thesis, by blocking the additional modifications necessary for activation of HSFs,
like posttranslational phosphorylation or by causing conformational changes of
the factor, and by inhibiting its interaction with other DNA-binding proteins in
the promoter region [136, 154]. Quercetin reduced the intracellular HSF1 level,
especially constitutive phosphorylated forms [153], and thus connection to DNA
[155, 156]. Quercetin inhibits not only HSF1 activation, but also many protein
kinase activities [108].

Antioxidant compounds, such as quercetin and other bioflavonoids are useful
for not only establishing positive and negative regulatory mechanisms for HSP
expression but also for the clinical improvement of hyperthermic therapy of tumors
[152]. In addition, many studies have demonstrated that some flavonoids exhibited
a synergistic antitumour effect with chemotherapeutics [137, 157]. Quercetin
sensitises HeLa cells to cisplatin and increases the level of apotosis. The significant
decrease in HSP27 and HSP72 expression after the treatment correlates with the
highest sensitivity of HeLa cells to cisplatin-induced apoptosis [137]. Additionally,
it is well known that while the quercetin enhanced Dox efficacy in highly invasive
breast cancer, it helped to reduce the cytotoxic side effects of Dox in non-tumoral
cells [135]. The heat shock-induced stress proteins increased Dox resistance, but
quercetin treatment caused a decrease in HSP expression and as a result the cells
become more sensitive to drug in neuroblastoma and Ewing’s sarcoma cells [138].
Besides, the quercetin caused to the suppression of HSP27 in lung cancer cells
(A549). Using it combined with CDDP or gemcitabine, leaded to reduction of
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the survival rate of lung cancer stem cells [158]. These findings indicate that
other natural antioxidant compounds may also have potential for suppressing HSP
expression.

3.6 Conclusion

Today, the researchers working on cancer therapy focused on HSP suppression, as it
is well know that the HSP levels are elevated in many cancer types. Overexpressed
HSP causes inhibition of programmed cell death, and increases resistance to the
chemotherapeutic drugs [16, 19, 52]. Therefore, the inhibition of HSP has become
an interesting strategy in cancer therapy. A lot of studies have also emphasized that
HSP inhibition is gaining importance in cancer treatment [15, 25, 28, 82, 118, 119,
159]. Although some HSP inhibitors are used in several clinical trials, new agents
that target HSP inhibition should be investigated for the treatment of cancer.

As described in this chapter, the suppressive effect of some plant extract or
natural products on HSP expression may provide the development of new approach
in cancer therapy. Especially downregulation of HSP can enhance the impact of
chemotherapy or may reduce the side effects of applied drugs through medicating
with low doses of chemotherapy agents to the patients. Considering all these studies,
it is understood that the rate of success in the cancer treatment may have been
boosted via new drug development, which has targetted to inhibition of HSP expres-
sion. Thus, the cancer cells may have been sensitized against the chemotherapeutic
or radiotherapeutic agents. In summary, all data indicate that suppressing HSP
by natural products may be a promissing wat to enhance apoptosis, and improve
treatment efficacy, alongside with minimizing of toxic side effects in the cells.
Future studies targeting these proteins for development of chemosensitizers may
help to achieve more effective cancer treatment methods in combinational therapy.
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