
Computer Aided Assessment
of Mathematics Using STACK

Christopher Sangwin

Abstract Assessment is a key component of all teaching and learning, and for
many students is a key driver of their activity. This paper considers automatic
computer aided assessment (CAA) of mathematics. With the rise of communica-
tions technology this is a rapidly expanding field. Publishers are increasingly
providing online support for textbooks with automated versions of exercises linked
to the work in the book. There are an expanding range of purely online resources
for students to use independently of formal instruction. There are a range of
commercial and open source systems with varying levels of mathematical and
pedagogic sophistication.

History and Background

Assessment is a key component of all teaching and learning, and for many students
is a key driver of their activity. Computer aided assessment (CAA) has a history
going back over half a century, for example (Hollingsworth 1960) reports a “gra-
der” programme which automatically checked some aspects of students’ computer
programmes. “We are still doing considerable hand filing of punched cards at this
stage. This large deck of cards which includes the grader program is then run on
the computer. Our largest single run has been 106 student programs covering 9
different exercises.” By the mid-1960s computers were being used to teach arith-
metic, e.g. (Suppes 1967), and by the 1980s there were a number of separate strands
of research in this area including the artificial intelligence (AI) community, e.g.
(Sleeman and Brown 1982). The ambitious goals of such artificial intelligence-led
systems have only been achieved in confined and specialized subject areas. These
difficulties were acknowledged early, for example in their preface to (Sleeman and
Brown 1982).

C. Sangwin (&)
University of Birmingham, Birmingham, UK
e-mail: C.J.Sangwin@bham.ac.uk

© Springer International Publishing Switzerland 2015
S.J. Cho (ed.), Selected Regular Lectures from the 12th International Congress
on Mathematical Education, DOI 10.1007/978-3-319-17187-6_39

695

Early CAI (Computer Aided Instruction) workers set themselves the task of producing
teaching systems which could adapt to the needs of individual students. It is now generally
agreed that this is a very difficult task, and one that will only be accomplished as a result of
extensive research in both AI and Cognitive Science.

For example, in the case of multi-digit subtraction, sixty separate skills were
identified by Burton (1982), including “27. Borrow once in a problem”, and “46.
Subtract numbers of the same length”. The majority of these skills involve bor-
rowing, and they are linked in a hierarchy. Assuming a student gives incorrect final
answers, their goal was to identify which parts of the algorithm are not being
performed correctly. Clearly this is necessary to provide specific feedback to the
student. They defined a “bug” as a “discrete modification to the correct skills which
effectively duplicate the student’s behaviour”, such as 0 − n = n when subtracting
individual digits.

[…] we were able to design a test capable of distinguishing among 1200 compound bugs
with only 12 problems! A second important property of a test is that it cause each bug to be
involved often enough to determine that it is consistent. The current tests that we are using
are designed to cause each primitive bug to generate at least three errors. To accomplish this
it was necessary to have 20 problems on the test (Burton 1982, p. 172).

The validity of such tests can be confirmed, they are reliable and (subject to the
availability of computing resources) practical. A student’s consistency in making
particular errors can be checked in an online adaptive system by choosing the next
question based on the responses received so far.

The skills were organized into a hierarchy in order that an expert system could make
inferences on student knowledge from the answers previously given and select the most
appropriate question to ask next. This reduces the number of questions asked for a variable
ability group (Appleby et al. 1997, p. 115).

The central difficulty is designing a good network of questions.
Alternative approaches have focused more on formative assessment. Rather than

generating reliable diagnoses of a student’s difficulties, they provide feedback
which is designed to help students learn particular skills. For example, the group at
Heriot-Watt University in the United Kingdom have more than a quarter of a
century of experience in this area (see Beevers et al. 1991; Ashton et al. 2006).
From the outset, one goal of this project was to assess students’ steps in working.

By giving the correct answer at each stage the student is encouraged to carry on but still has
to work at each part before the answer is revealed. In a traditional text book example either
the only answer given will be the final one or, if the question is answered in stages, it is
difficult to avoid seeing all the answers at once (Beevers et al. 1991, p. 112).

In the CALM system of (Beevers et al. 1991), as in some contemporary systems,
the extent to which the mathematical properties of students’ individual mathe-
matical expressions can be established was limited. We shall expand on this issue
below. The problem of assessing a complete mathematical argument, without
providing a template of teacher-designed answer boxes, remains an elusive goal.

696 C. Sangwin

However, by the early 1980s there was a backlash from some about the use, indeed
as they saw it abuse, of computers for testing in this way. E.g.

In most contemporary educational situations where children come into contact with com-
puters the computer is used to put children through their paces, to provide exercises of an
appropriate level of difficulty, to provide feedback, and to dispense information. The
computer is programming the child (Papert 1980).

One result of this dissatisfaction was LOGO. Other exploratory computer
environments, sometimes called microworlds, were another, see for example Noss
and Hoyles (1996).

The difference between a focus on skills and their acquisition and conceptual
understanding is a classic dichotomy in mathematics education. The classical
algorithms of elementary mathematics, including place-value addition, subtraction,
multiplication and division of numbers, together with algebra are sophisticated. The
lattice of skills in basic subtraction of (Burton 1982) provides graphic evidence of
this complexity. To achieve basic competence requires focus of attention and dil-
igent practice. Methods in calculus, linear algebra and progressively more advanced
topics rely on these foundations. Practice of such material has provided, and
remains, a significant and important use of computer aided assessment systems. The
popularity of freely available resources such as the Khan Academy (see http://www.
khanacademy.org) is testament to this assertion. Publishers are increasingly pro-
viding online support for textbooks with automated versions of exercises linked to
the work in the book. There are a range of commercial and open source systems
with varying levels of mathematical and pedagogic sophistication. Therefore
teachers are likely to increasingly mix CAA with traditional assessments.
Furthermore, CAA is increasingly being used to automate high stakes final
examinations. Currently, this is not widespread for school or university exams, but
CAA forms a component of professional exams and in other areas such as the UK
hazard perception test, an automated component of the UK driving test. This use is
likely to increase significantly over the next decade. A survey of existing CAA can
be found in Chaps. 8 and 9 of Sangwin (2013).

The focus in this paper is on CAA where the teacher may, at least in principle,
author their own questions. However, this requires a new level of sophistication in
using technical software packages, in particular of using CAS. In this regard,
(Sangwin and Grove 2006) commented that “teachers are often neglected learners”
themselves. It is necessary to have a detailed understanding in order to automate
both the mathematics itself and details of the assessment process. Therefore CAA
provides us with an opportunity to reconsider assessment, both its purposes and
practices. All forms of assessment, from multiple choice questions, written answers
under exam conditions, project work and oral examinations provide opportunities
within certain constraints. CAA is no exception and while CAA does not claim to
enable us to “assess everything” current CAA systems have a mathematical
sophistication which enable valid assessment of significantly more than shallow
procedural skills. Charles Babbage is reputed to have said the following:

Computer Aided Assessment of Mathematics Using STACK 697

http://www.khanacademy.org
http://www.khanacademy.org

Propose to an Englishman any principle, or any instrument, however admirable, and you
will observe that the whole effort of the English mind is directed to find a difficulty, a
defect, or an impossibility in it. If you speak to him of a machine for peeling a potato, he
will pronounce it impossible: if you peel a potato with it before his eyes, he will declare it
useless, because it will not slice a pineapple.

CAA is just a tool, and it has some uses while not claiming to achieve
everything.

It is interesting to recall how few tools were available to help the CAA system
designer during the mid-1980s, and the power and sophistication of machines
available to students. Even code to evaluate an expression at a point, crucial to
establishing algebraic equivalence, had to be written from scratch by Beevers et al.
(1991). In the last ten years software development increasingly takes advantage of
code libraries for specific purposes, for example MathJax (http://www.mathjax.org)
enables most web browsers to display mathematical expressions. Furthermore,
teams of like-minded individuals collaborate on software projects and freely share
the results. These include content management systems, such as Moodle (http://
moodle.org/). For many students, at least in the more economically developed
counties, the last ten years have enabled wide access to wireless networks through
laptop computers and hand-held mobile devices.

STACK

In this section we describe STACK, an advanced general CAA system for math-
ematics, with an emphasis on formative assessment. The primary design goal was to
enable a student to enter a mathematical answer in the form of an algebraic
expression. While multiple choice questions (MCQ) have a place, the student
selects an option from a list provided by the teacher. The purpose of many questions
is grotesquely distorted by using a MCQ for mathematics, and hence the assessment
is invalid. For example, solving an equation from scratch is significantly different
than checking whether each potential response is indeed a solution. We preferred a
system which evaluates student provided answers.

An example question, with student’s response and feedback, is shown in Fig. 1,
(see Sangwin 2010). The student’s answer is a mathematical expression which they
must enter into a form through a web browser. STACK then establishes the
mathematical properties of the answer. For many questions the teacher will seek to
establish that (i) the answer is algebraically equivalent to the correct answer and
(ii) the student’s answer is in the appropriate form, (e.g. factored). However, the
answer need not be unique and STACK establishes properties of expressions, but
remains an objective testing system. In the case of Fig. 1 the teacher does not
simply establish that the student’s answer is “the same” as their answer. A list of
separate properties is needed, and many different answers may satisfy these. Notice
that the feedback in Fig. 1 is specific to the answer and directly related to possible
improvement on the task. STACK may include and display results of computer

698 C. Sangwin

http://www.mathjax.org
http://moodle.org/
http://moodle.org/

algebra calculations within such feedback which can be as detailed as appropriate to
the question. This is a particular distinguishing feature of STACK.

In particular STACK uses the computer algebra system Maxima to

• randomly generate problems in a structured mathematical way;
• establish the mathematical properties of expressions entered by the student;
• generate feedback, as necessary, which may include mathematical computations

of the student’s answer;
• help the teacher analyse the attempts at one question, or by one student.

Version 1 of STACK was a stand-alone quiz system. Version 2 was partially
integrated into the Moodle content management system while version 3 provides a
question type for the Moodle quiz. STACK was designed and developed by the
author, with substantial code for version 3 being written by Tim Hunt of the Open
University in the UK. Numerous other colleagues have contributed to the design,
code, testing and documentation. Version 2 of STACK has been translated into
Finnish, Portuguese, German, Dutch and Japanese and is in regular use by large
groups of students for formative and summative assessments. See (Sangwin 2010).

Establishing Properties

The key issue for teachers is to articulate the properties sought in an expression, and
then encode an algorithm which establishes each of these. Where only some of the
properties are satisfied the system may provide feedback to the student. The most
common property a teacher will wish to establish is that two expressions are
equivalent, for example the student’s and teacher’s respective answers. In many
systems, e.g. (Beevers et al. 1991), the algebraic equivalence of two expressions is
established by choosing random numbers and evaluating each expression at these
points as floating point approximations. Numerical analysis assures us that a rea-
sonable match between the values for each expression gives a reasonable

Fig. 1 An example STACK question

Computer Aided Assessment of Mathematics Using STACK 699

probability of the two expressions being identical. Since students’ expressions are
usually relatively simple the probability of a false result is very low indeed. This
approach was also used by Appleby et al. (1997) and many others. An alternative
approach is to assign the variable SA to represent the student’s answer and TA to be
the teacher’s and use the computer algebra command simplify and evaluate the
following pseudocode.

if simplify(SA − TA) = 0 then true else false.
If this test returns true then we have established the two expressions are

equivalent. However, if the test returns false are we really sure they are not
equivalent? What matters in this approach is the strength of the “simplify” com-
mand, and the ability to know with certainty that the zero expression really means
zero, and a non-zero expression is really non-zero. Different CAS implement
functions such as “simplify” in a surprising variety of ways, and (Wester 1999)
provides an interesting, but dated, comparison of CAS capabilities. From a theo-
retical perspective implementing this test is not possible in all cases! (Richardson
1966) showed that there is no algorithm which can establish that a given expression
is zero in a finite number of steps for a reasonable class of elementary expressions.
These results have been refined, e.g. by Matiyasevich (1993) and sharpened, e.g. by
Caviness (1970) who showed that for the sub-class of polynomials over the com-
plex rational expressions together with unnested exponential functions then zero
really means zero, i.e. we do have a canonical form. Moses (1971) comments

In fact, the unsolvability problem may lie in Richardson’s use of the absolute value
function. When one adds the absolute value function to a class of functions which forms a
field (e.g. the rational functions), then one introduced zero divisors. For example, (x + |x|)
(x − |x|) = 0, although neither factor is 0.

While Richardson’s result is a theoretical restriction on the effectiveness of our
test for algebraic equivalence, in practice for learning and teaching such tests work
very well indeed on the limited range of expressions which arise as answers to
typical assessments. As (Fenichel 1966) comments “recursive undecidability can be
a remote and unthreatening form of hopelessness”.

Many systems, including STACK, make use of computer algebra in this way.
What then, does “simplify” mean? This is a phrase which is in common currency
throughout elementary teaching we now argue that this is ambiguous and is often
used for the opposite mathematical operations. For example, 1 is simpler than 70 but
77^(10) is probably simpler than writing the integer it represents. There are many
algebraic examples, e.g. compare the expanded and factored forms of x12 − 1 and
(x − 1)12. Similar examples can be found for many other pairs of forms, e.g. single
fractions and partial fractions, or various trigonometrical forms. It is not difficult to
find examples in textbooks. The word “simplify” may mean little more than
transform an expression into an equivalent, but perhaps unspecified form.

Fitch (1973) gave three reasons for simplifying expressions, the last of which
was deciding if an expression is identically zero. The first is what he calls com-
pactness of expressions, to make the expression smaller and this idea can be found
in older writers, for example (Babbage 1827, p. 339) comments

700 C. Sangwin

whenever in the course of any reasoning the actual execution of operations would add to the
length of the formula, it is preferable to merely indicate them.

Or further back (Euler 1990, x50), “[…] the simplicity of the equation expressing
the curve, in the sense of the number of terms.” Designers of contemporary CAA
have also reached this conclusion, e.g. (Beevers et al. 1991, p. 113)

It has long been accepted in science that “the simplest answer is the right one”. We have
translated this premise into “the shortest answer is the right one”.

For these CAA designers the length of the representation was a key property of
an expression. Of course, compactness is strongly related to the way in which
information is represented, so this measure only makes sense in a particular context.
Simplicity can also be interpreted as the ease with which calculations can be carried
out. This view was developed by (Moses 1971):

Of course the prevalence in algebraic manipulation systems of simplification transforma-
tions which produce smaller expressions is due mostly to the fact that small expressions are
generally easier to manipulate than larger ones.

The second reason (Fitch 1973) gives for simplifying expressions, also discussed
by Fenichel (1966), is intelligibility. That is making it easier for users to understand.
It is not immediately clear that compactness and intelligibility are different. As one
example, consider replacing trigonometric functions by complex exponentials.
Using these we remove the need for any trigonometric identities. The formal rules
exey = ex+y, (ex)y = exy and e0 = 1 suffice. In this process we also remove the
redundancy in using tan, cosec etc. and a plethora of separate rules. Hence, these
transformations render expressions much easier for the machine to manipulate, with
fewer rules and fewer operations. A user, on the other hand, may expect their
answer in terms of these traditional trigonometric forms rather than as complex
exponentials. Ease of computation and intelligibility are different issues.

Notice here the first issue we have to address, i.e. whether the teacher’s
expression is equivalent to the student’s, immediately raises very interesting the-
oretical issues in computer science, and implicitly raises pedagogic issues. What is a
student to make of the instruction to “simplify”? Is it any wonder some of our
students remain perpetually confused? Appreciation of this potential ambiguity of
‘simplify’ suggests we develop a much more sophisticated vocabulary with which
to talk about algebraic operations and the senses in which two expressions can be
compared. Others, e.g. (Kirshner 1989) agree with this need.

This analysis, we believe, points the way to a new pedagogical approach for elementary
algebra, an approach that requires syntactic and transformational processes to be articulated
declaratively, enabling more, rather than fewer, students to escape from the notational
seductions of nonreflective visual pattern matching (Kirshner 1989, p. 248).

The approach in STACK is to enable the teacher to specify many senses in
which two expressions might be the same or different, and separately to enable the
teacher to test whether an expression is written a number of forms. To do this,
STACK provides the user with a number of answer tests. Testing for properties is

Computer Aided Assessment of Mathematics Using STACK 701

significantly different than performing calculations, and so requires specific com-
puter algebra functionality to enable this. Inequalities, equations, and particularly
systems of polynomial equations (see e.g. Badger and Sangwin 2011) all have
interesting elementary mathematical issues of this type which teachers, and students
would benefit from appreciating more deeply.

Question Models

In many situations the teacher will seek to establish more than one property and so
need a mechanism by which a number of tests can be applied, perhaps in a specific
order, and outcomes assembled on the basis of the results. An example STACK
question is shown in Fig. 2 which was originally written by Vesa Vuojamo at Aalto
University, Finland [see (Rasila et al. 2010) for details of their use of STACK] This
question asks students to find the polynomial p(x) which makes the function f(x)
continuously differentiable.

In this case the correct answer is the cubic spline which is unique up to algebraic
equivalence. However, in practice STACK actually establishes five separate prop-
erties and provides separate feedback in each case. These properties establish that the
student’s answer is a cubic in x; that the polynomial passes through the points

Fig. 2 Testing for individual properties in STACK

702 C. Sangwin

p(−1) = 1 and p(1) = 0, and the derivative of the student’s answer matches f(x) at
x = −1 and x = 1. For brevity we have omitted a screen shot of this automatically
generated feedback. Notice the significant shift here between “comparing the
student’s answer with the right answer” and articulating the properties needed
separately. This is the central issue for the teacher.

An important goal of the STACK project was to enable teachers to write their
own questions. Previous systems, in particular the AiM system of (Strickland
2002), forced the question author to become a computer programmer, in effect
writing substantial pieces of computer algebra code to generate the required
response processing commands for each question. While AiM does have an
authoring system, many other CAA implementations do not: each question is
essentially a bespoke computer programme making it impossible for anyone other
than an expert developer to write questions. By providing answer tests which enable
specific properties to be established we both reduce the amount of code and
articulate what is intended in a way which is much clearer than expressions such as
simplify (SA – TA). There is also an important conceptual shift needed here by the
teacher, who must specify properties explicitly, and not use proxies for those
properties. Experience has demonstrated, however, that writing reliable, valid
questions remains a difficult task, requiring expertise.

While early CAA pioneers had to write everything from scratch, this did provide
great freedom with respect to the underlying interaction model which the students
are forced to use. Essentially the “model” is the flow-chart through which user’s
interactions change the internal state of the system until an end point is reached. For
example, how many “attempts” can a user make? What form do these attempts
take? What response does the system make and to what extent can a particular
teacher make choices? How are questions sequenced, e.g. does the student see a
fixed quiz at the outset, or are questions sequenced in an adaptive way as in the
DIAGNOSYS system of Appleby et al. (1997)?

As we said before, the attempt to encode something forces you to be very
specific about the details of what you are trying to do. We have discussed one
example, “simplify”, at the level of computer algebra. Next we consider one
example at the level of the question model.

In moving the development of STACK from version 1 to version 2 we (some-
what naively) assumed that there would be a clean separation of the “question”
from the “quiz”. That is, it would be possible to “insert questions” into a more
general quiz structure in a flexible way. This turns out to be exceedingly difficult to
do, which was a significant and unexpected surprise. For example, many teachers
using CAA for formative assessments will ask a group of students to complete a
“quiz” of a predetermined number of questions each week. Formative feedback is
available, and where necessary multiple attempts are encouraged to help students
ultimately succeed in these tasks. However, there is a strict time limit, after which
further attempts are prevented and the teacher’s model solutions become available.
This model of interaction essentially replicates traditional teaching in an online
manner, which may or may not be efficacious. Notice that the concept of “due date”

Computer Aided Assessment of Mathematics Using STACK 703

is a property of the “quiz”, but availability of the “worked solution” is a property of
the “question”. It is simply impossible to divorce the two cleanly.

In STACK version 3, we have opted to provide a question type for the quiz
system in Moodle. In these recent developments the designers of Moodle have
provided much greater flexibility in the separation of “question” and “quiz” by the
use of “behaviours”, which enable the better integration of the model used by
STACK which we have designed for use with a wide variety of types of mathe-
matical questions.

When CAA “question types” are relatively simple, e.g. multiple response or
numeric input and even when they are confined to single answers, a variety of
models for interactions are available which are also relatively straightforward to
understand. However, in mathematics, especially when we aim to accept (i) math-
ematical expressions as answers, or (ii) multi-part questions, then the situation
becomes much more complex. Any model must provide interactions which the
student clearly understands at each stage. There should be no doubt as to the
consequences of each action with the system. In this way it should not raise con-
cerns which distract from the actual mathematics. Teachers must also be able to
author questions confident that forms of use are available which are sensible.

STACK implements multi-part mathematical questions. Figure 3 shows an
example of a relatively elementary calculus question. Notice that all three parts refer
to a single randomly generated mathematical object. Hence, we cannot really claim
this is three separate questions. Furthermore, recall that unlike early CAA systems
which were application software, students interact with STACK through a web
browser. There is already an implicit interaction model here, which requires the
student to submit a whole page at once. I.e. asking for individual parts to be marked
separately is difficult. Indeed, if a student changes all parts, but only asks for one to
be marked, then the model becomes quite intricate. What should the system do with
data which has changed or input fields which are empty? Notice that we have used
the word “part” without a definition. To the student, there are three inputs and so
they might perceive this as having three parts. To the teacher, the first and second
parts are linked, so are they separate parts or one?

In STACK a key design feature is a total separation of the inputs, into which
students enter their answers, and potential response trees, which are the algorithms
through which the mathematical properties are established. Response trees may rely
on inputs in an arbitrary fashion, e.g. one-one or many-one.

Tied to the inputs is a concept of validity. The prototype input is an algebraic
expression, and we expect the student to enter their answer using a traditional linear
syntax into a web form box. Clearly the student needs to match brackets, indeed
they need to enter a syntactically valid expression. STACK also enables teachers to
permit a less strict syntax, e.g. omitting explicit * symbols for multiplication, where
this is unambiguous. However, it is not clear in the twenty first century that this is
helpful to students. As (Beevers et al. 1991) commented:

704 C. Sangwin

We would like to make input simpler but have also recognised that restrictions can be
advantageous. Most students will be using computers in other areas of their work and will
need to learn to adapt to the rigours of computer input. The student is also forced to think
much more carefully about the format of their answer since any ambiguity is punished
mercilessly. This may be frustrating at first but can lead to a better understanding whereas a
written answer may contain an ambiguity which is not recognised by the student and can
lead to a misunderstanding later (Beevers et al. 1991).

The design issues associated with syntax were addressed in detail by (Sangwin
and Ramsden 2007) with further discussion in (Sangwin 2013). Essentially, an
unambiguous informal syntax is impossible, and when combined with international
differences in notational conventions the situation becomes hopeless. Some con-
ventions, particularly those for inverse trigonometric functions, are particularly
problematic. Hence STACK provides a number of options for the input, which
enables a teacher to tailor the meaning to the question and their group of students.
Furthermore, the concept of syntactic correctness is only one part of the validation
process. In some situations the teacher may wish to reject any floating point
numbers, or rational coefficients not in lowest terms, as “invalid” and not “wrong”.
Not only is there a subtle pedagogic difference (e.g. “Since you have floats I’m not
going to think about your answer!”) but the way scores are calculated may depend
on the number of valid attempts. Hence rejecting answers as invalid avoids pen-
alising students on technicalities while reinforcing issues important to that teacher
in a particular situation. All these decisions are at the control of the teacher of
course. There are other reasons for invalidating an expression. If a student types an
expression in place of an equation then the system can reject this as invalid, with
explicit feedback of course. In practice students do need educating on how to enter
their answer, and they take some time to become used to the interface. However,
ultimately the majority of our students cease to find the interface especially prob-
lematic for the majority of questions. Entering a particularly complex expression is
always going to be difficult. Notice however, that validity is significantly more
involved that a syntactic check, and that validity is a concept tied to the input. It is
separate from the notion of an answer being correct.

The algebraic expression is the prototype input, but the separation of inputs
enables a variety of other interactions to be implemented. For example, HTML
elements such as drop-down lists, “radio buttons” and checkboxes for MCQs have
been implemented in a relatively straightforward way. MCQs do have a place, and
often these can be combined as multi-part questions with algebraic inputs. Even
when used alone, the support of CAS in randomly generating questions enables
STACK to provide mathematical MCQs. The HTML text area enables multiple
lines to be submitted by a student, although the primary use so far has been to
provide more space when entering systems of equations. Systems of equations arise
naturally when answering algebra story problems, see for example (Badger and
Sangwin 2011). Asking a student to transform an algebra story into a system of
equations, and then solve these, is a basic and classical mathematical task.

Normally, the student sees some validation feedback tied to the input, as shown
in Fig. 2. The first time they submit their answer it is validated, and displayed in a

Computer Aided Assessment of Mathematics Using STACK 705

two dimensional format. This double submission is actually an artefact of the
interaction model imposed by web page forms—there are other interaction models.
For example, a student might see their expression build up in a two dimensional
format as they type it, with brackets automatically closed, or mismatched brackets
highlighted. In Fig. 3 feedback from the inputs showing expressions in
two-dimensional traditional notation is separated out from feedback from the
potential response trees which have established properties of the answers.

For some inputs, such as drop-down lists or multiple choice interactions, this
double submission is irritating to users and the teacher can over-ride it. Another
option is to make use of an equation editor to build up the expression in a two
dimensional traditional way. Such equations editors are relatively standard in many
CAA systems. STACK version 2 makes use of the DragMath editor, written by
Alex Billingsly at the University of Birmingham.

The computer environment also enables other kinds of interactions which are not
possible in a paper and pencil environment. Dynamic mathematics environments,
such as GeoGebra, enable exploration and mathematical experiments to be
undertaken. As exploration tools for learning, these are rather well established.
These kinds of interactions can also be incorporated into assessments. The geo-
metrical configuration of the diagram constitutes the mathematical answer.

One example of a STACK question with this type of interaction is shown in
Fig. 4. Here, the student must move the point P by dragging on screen. As this is
done, the values of the angles shown update dynamically as the dragging takes

Fig. 3 Follow through marking in STACK

706 C. Sangwin

place giving a particular form of immediate feedback. Once the student is satisfied
they have the correct answer they can submit the page, and the value of the angle at
a is returned as part of the answer. Such inputs potentially accompany other
interactions in a multi-part question. Extensions to STACK to accommodate
interactions such as this were first made at the University of Aalto in Finland, see
(Rasila et al. 2010).

Now we turn to establishing the properties of an answer. Each potential response
tree is an algorithm which relies on some (at least one) of the inputs. The funda-
mental requirement is that each input should provide a valid CAS expression. Once
all the inputs upon which a potential response tree relies are valid, then the tree can
be evaluated.

The potential response tree, technically an acyclic directed graph, consists of
nodes with branches. Each node takes two expressions, e.g. the student’s input and
the teacher’s answer, and compares them using a specified answer test. As dis-
cussed above the answer test might establish algebraic equivalence or one of a
range of other properties. On the basis of this test, either the true or false branch is
executed. The branches update numerical scores, generate feedback for students,
create a “note” for later statistical analysis and then link to the next node or halt.
Notice the first three of these actions generate outcomes which correspond broadly
to the summative, formative and evaluative functions of assessment. Which out-
comes are available to the student is an option which the teacher must choose. In
Fig. 2 we have included only textual feedback and numerical scores have not been
shown.

This separation between inputs and the algorithms which establish the properties
of answers is not an obvious design advantage, however it actually enables many
useful situations to be immediately implemented without having to have separate
models for each “type” of interaction. The possibility of arbitrary mappings
between inputs and outputs, together with an ability to place feedback in any
position, enables a richer set of questions to be implemented.

The student in Fig. 3 has chosen to answer the first two parts. Notice that
follow-through marking has been implemented, i.e. the student’s expression in the
first part has been used when marking the second. The student has correctly

Fig. 4 GeoGebra input
interactions in a STACK
question

Computer Aided Assessment of Mathematics Using STACK 707

evaluated their expression, but actually they need to correct their original error and
re-evaluate to correctly answer the whole question.

Immediately, a whole host of questions arise about how the student will interact
with this system. Currently in STACK, all the “parts” of the question are visible to
the student immediately. The question as phrased in Fig. 3 presupposes a particular
method. Of course, other methods for finding tangent lines are perfectly valid. Does
the teacher expect a particular method to be used, or are they simply interested in
whether the student can find a correct answer using a valid method? Unless steps
are laid out, to what extent can CAA assess which method is used?

From the outset, CALM system of Beevers et al. (1991) made a serious attempt
to automate the assessment of steps in students’ working. The interaction model
they developed still had pre-defined templates through which students answered a
question. However, in their system steps were revealed in a number of possible
ways. For example, a student could ask for steps (possibly sacrificing some implied
method marks as a result), or this could be triggered automatically if a student was
unable to complete the whole question unaided. This kind of interaction model has
been successful, and is widely used, e.g. see (Ashton et al. 2006). The STACK
system has been modified and extended at Aalto University, Finland and is in
regular use by large groups of engineering students. Their extensions include
“question blocks” which can be revealed by correct or incorrect responses, pro-
viding very similar mechanisms to CALM. It is likely that a combination of the
interaction model used by CALM, the mathematical sophistication underlying
STACK, and the depth of adaptive design of DIAGNOSYS (see Appleby et al.
1997) will ultimately combine into a single CAA system.

Students’ Reactions to STACK

The most important issue is students’ reactions to tools such as STACK. Their
reaction includes a number of aspects, such as their level of engagement, their
reported affective reaction and ultimately their achievement. CAA tools do not
operate in isolation: they are part of the whole experience. Clearly tools could be
used in inappropriate, or even harmful ways, or they could simply replicate tradi-
tional teaching with little or no examination of the strengths and weaknesses rel-
ative to traditional methods. The difficulty in evaluating the effectiveness of such
tools is isolating a specific effect from the general teaching. We also need to take
account of the potential for innovator/novelty effects which might exaggerate the
actual long term benefits. Of course, if a genuine benefit exists, even temporarily,
some students will have taken advantage of this.

A common use of CAA at the university level is to automate routine practice
exercises alongside traditional paper based tasks. This enables students to receive
immediate feedback on tasks which assess competencies with manipulative skills.
Teachers no longer have to undertake repetitive marking of such work by hand.
This was our motivation for introducing CAA to the University of Birmingham

708 C. Sangwin

mathematics degree programme in 2001. In the majority of situations where this
kind of activity takes place, colleagues report a strong correlation between
engagement with, and success on, STACK-based formative exercise questions and
final marks in traditional exams. For typical data, see (Rasila et al. 2010). This is not
surprising, and corresponds with the author’s experience at the University of
Birmingham. However, evidence and appreciation of this reinforces the ongoing
need for regular monitoring of student activity to identify and support students who
are not engaging with the online activities. These students have a high probability
of ultimately failing the course. Many university courses have very large student
groups, and with inevitable delays in marking paper-based formative work and
collating such marks it is otherwise difficult to monitor such students individually.

To try to evaluate STACK we have undertaken focus groups with students to ask
specifically about their experiences and reactions. The author has undertaken such
focus groups, both at the University of Birmingham and with students at other
institutions using STACK. A semi-structured interview provides a freedom to
follow up themes or concerns in a way a paper-based questionnaire does not. From
these interviews, some consistent themes emerge. Capital letters refer to individ-
uals, although the quotations below are representatives from more than one focus
group session.

Syntax is initially a problem

A: I agree, but when you get used to STACK all that goes away [B: “yes”] but when you
start that is a problem. It is very annoying when you try to type something… well you have
the “check syntax”, but if the check syntax is always incorrect you are like !!!

This is particularly problematic if a diagnostic test is the student’s first experi-
ence of a university course. It is relatively common for students to sit such a test at
the start of their course, Lawson (2003). However, the novelty of the university
setting and unfamiliarity with the syntax combine to make this an unhappy
experience.

C: in the beginning, September or something like that, […] I think it was really annoying to
use it then because you didn’t know how to write it down, the syntax, […] You had a time
to do the problems and it was very annoying that it said “wrong, wrong” all the time when it
was the syntax. […] I didn’t know how to write it down, so I got the wrong answer.

It was clear that it was syntax which was a barrier here. For one student prior
knowledge removed this problem.

B: Yes, I took this test but because I have a little bit of background of computer pro-
gramming so I […] knew the syntax a bit. I was more frustrated because I didn’t know the
answers myself! [C: laughs] So I guess I have time to deal with the real mathematical
problems, so I guess my frustration is based on my own lack of mathematical knowledge.
So, I think the test worked quite well for me. But there you have it, I had some background
with things like this.

Ultimately the syntax is learned in a relatively short space of time by the
majority of our students. While there are differences between mathematical input
notations, many systems share a common core of notational conventions. This in

Computer Aided Assessment of Mathematics Using STACK 709

itself constitutes a valuable skill, as identified by Beevers et al. (1991), quoted
above. However, it needs to be addressed specifically. I.e. we need to teach students
how to express themselves unambiguously using this syntax. The feature most
appreciated by students is the immediate feedback.

C: Yes, I think it is good. Because of the feedback. […] with the paper you have to wait and
then when you see the right answers you can look through those with the teacher probably
too quickly, and you can’t take your time to understand, but with STACK you can take
your own time with those exercises. So that is the good thing with them.

Of course, a student could simply use a textbook for this. When specifically
asked about this students responded

A: yeah, yes but then you look at the answer before you have solved the problem. STACK
won’t tell you!
B: it is a bit of cheating.
A:You don’t learn if you just go ahead and look at the back. And usually when we have
homework during the course from the book they are usually problems you don’t have the
answers to so you can’t find out if you are wrong or right.

When combined with the random questions, particularly when the teacher
encourages repeated practice, this gives an interesting environment for
self-motivated repeated practice. Students can try questions, respond to the feed-
back, perhaps look at complete worked solutions and then work on new problems
from the same template. The use of random problems for each student provides a
behaviour which does not occur when using fixed and static books.

D: The questions are of the same style and want the same things but they are subtly different
which means you can talk to a friend about a certain question but they cannot do it for you.
You have to work it all out for yourself which is good.

This view was appreciated by other students on another occasion.

B: I think one of the best things about STACK was the way it created the values, or the
problems, for, like, meant for you. But they are still the same as your friend has so you can,
like, collaborate on them and do some team work, and work on the difficulty with your
friends, but you still have to do the exercise for yourself [A: yeah!] you have values and
A: so you can’t just copy!
B: it won’t help if you just copy the answer from your friend.

Notice here the appreciation of the surface variation in the context of an
underling structure. In many situations, particularly in mastery of technique, the
purpose of routine exercises is precisely to enable students to reach a point where
they can recognise and successfully complete any problem from a particular class.
Students who use STACK exercises at universities for mathematics are often
amongst the highest achieving in their generation. It is not surprising to find rec-
ognition and appreciation of the mathematical sophistication.

E: Recognising the turning points of the functions produced in question 2 was impressive,
as there are a lot of functions with stationary points at x = 1 and it would be difficult to
simply input all possibilities to be recognised as answers.

710 C. Sangwin

This was in response to a question such as show in Fig. 1 where the student is
asked to find examples. In many situations the properties required by a correct
answer can be established automatically, although it would be time consuming and
somewhat tedious for a teacher to do so by hand. These kinds of questions have
been widely discussed, e.g. (Watson and Mason 2002), but they reinforce the
fundamental issue for CAA: the teacher must articulate the specific mathematical
properties which an answer should satisfy.

Conclusions

Notice, however, the fundamental challenge remains here. We, as yet, have very
few effective tools to encode a complete elementary mathematical argument on a
machine. This document was originally prepared in LaTeX, which despite the steep
learning curve still sets the standard for quality of mathematical typesetting. It was
then converted to MSWord, which has very poor support for mathematics. What we
cannot do is easily encode the meaning of an expression, and combine this with
simple logic and automatic CAS calculations. Until we can achieve this simple
interface, marking student’s extended work automatically will be impossible. Given
the theoretical difficulties of establishing equivalence of two expressions, estab-
lishing the validity of whole arguments automatically appears totally hopeless. For
example, in finding the tangent line to answer the question posed in Fig. 3, the
student could simply find the remainder when the polynomial is divided by (x − 2)2.
The remainder after polynomial long division of p(x) by (x-a)2 always yields the
tangent line at x = a (see (Sangwin 2011) for details and other methods) without
using calculus. Did the teacher want the answer using a valid method or using the
method as taught? If we seek to automatically assess the working without providing
a template this issue must be addressed.

Despite the fact that it is impossible to assess extended working, CAA is rou-
tinely used by thousands of students in many settings. These students and their
teachers find many aspects of CAA very helpful. The ability to generate random
questions, the immediacy of feedback and the detailed reporting are all cited as
benefits. In particular, the use of randomly generated questions to enable discus-
sion, and the ability to assess example generation tasks where the answers are
difficult for a teacher to mark, are affordances which are unique to CAA. It is clear,
at least to the author, that uptake of CAA will increase, in informal and self-directed
situations and in formative settings. It is highly likely that CAA will become used in
high-stakes examinations. In mathematics we do have objective notions of cor-
rectness and the progressive automation of mathematical knowledge provides our
subject with an opportunity to implement valid assessment which are not apparent
in essay or more subjective artistic disciplines. Hence, we have a responsibility to
ensure the tools we use move beyond multiple choice questions or primitive string
match to check expressions.

Computer Aided Assessment of Mathematics Using STACK 711

I end this paper with two comments. Firstly, for the arguments we encounter in
many areas of elementary mathematics the theoretical difficulties do not arise: we
can automatically decide if they are correct, or not (Beeson 2003). Secondly,
automatic tools can be combined to establish the correctness, or otherwise, of parts
of an argument. For example, a routine calculation within a longer proof can be
checked automatically. It would be potentially very helpful to a student and teacher
to have this confirmed automatically before the whole piece of work is submitted to
an intelligent human marker. This semi-automatic approach, a pragmatic combi-
nation of human and automatic marking, seems to offer the most promising
direction for future effort in computer aided assessment.

References

Appleby, J., Samuels, P. C., & Jones, T. T. (1997). DIAGNOSYS—a knowledge-based diagnostic
test of basic mathematical skills. Computers in Education, 28, 113–131.

Ashton, H. S., Beevers, C. E., Korabinski, A. A., & Youngson, M. A. (2006). Incorporating partial
credit in computer-aided assessment of mathematics in secondary education. British Journal of
Educational Technology, 27(1), 93–119.

Babbage, C. (1827). On the influence of signs in mathematical reasoning. Transactions of the
Cambridge Philosophical Society, II, 325–377.

Badger, M., & Sangwin, C. (2011). My equations are the same as yours!: Computer aided
assessment using a Gröbner basis approach. In A. A. Juan, M. A. Huertas, & C. Steegmann
(Eds.), Teaching mathematics online: Emergent technologies and methodologies. IGI Global.

Beeson, M. (2003). The Mechanization of mathematics. In Alan Turing: Life and legacy of a great
thinker. (pp. 77–134). Berlin: Springer.

Beevers, C. E., Cherry, B. S. G., Foster, M. G., & McGuire, G. R. M. (1991). Software tools for
computer aided learning in mathematics. Avebury Technical.

Burton, R. R. (1982). Diagnosing bugs in a simple procedural skill. In D. Sleeman & J. S. Brown
(Eds.), Intelligent tutoring systems (pp. 157–183). Academic Press.

Caviness, B. F. (1970). On canonical forms and simplification. Journal of the ACM, 17(2),
385–396.

Euler, L. (1990). Introduction to analysis of the infinite (Vol. II). Springer. (Translated by Blanton,
J. from the Latin Introductio in Analysin Infinitorum, 1748).

Fenichel, R. R. (1966). An on-line system for algebraic manipulation. Ph. D thesis, Harvard
Graduate School of Arts and Sciences.

Fitch, J. (1973). On algebraic simplification. Computer Journal, 16(1), 23–27.
Hollingsworth, J. (1960). Automatic graders for programming classes. Communications of the

ACM, 3(10), 528–529.
Kirshner, D. (1989). The visual syntax of algebra. Journal for Research in Mathematics

Education, 20(3), 274–287.
Lawson, D. (2003). Diagnostic testing for mathematics. LTSN MathsTEAM Project.
Matiyasevich, Y. (1993). Hilbert’s tenth problem. Cambridge: MIT.
Moses, J. (1971). Algebraic simplification a guide for the perplexed. Communications of the ACM,

14(8), 527–537.
Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and

computers. Berlin: Springer.
Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. Harper Collins.

712 C. Sangwin

Rasila, A., Havola, L., Majander, H., & Malinen, J. (2010). Automatic assessment in engineering
mathematics: Evaluation of the impact. In Reflektori 2010: Symposium of engineering
education, Aalto University, Finland.

Richardson, D. (1966). Solvable and unsolvable problems involving elementary functions of a real
variable. Unpublished doctoral dissertation, University of Bristol.

Sangwin, C. J. (2010). Who uses STACK? A report on the use of the STACK CAA system (Tech.
Rep.). The Maths, Stats and OR Network, School of Mathematics, The University of
Birmingham.

Sangwin, C. J. (2011). Limit-free derivatives. The Mathematical Gazette, 534, 469–482.
Sangwin, C. J. (2013). Computer aided assessment of mathematics, Oxford: Oxford University

Press.
Sangwin, C. J., & Grove, M. J. (2006). STACK: addressing the needs of the “neglected learners”.

In Proceedings of the First WebALT Conference and Exhibition January 5–6, Technical
University of Eindhoven, Netherlands (pp. 81–95). Oy WebALT Inc, University of Helsinki,
ISBN 952-99666-0-1.

Sangwin, C. J., & Ramsden, P. (2007). Linear syntax for communicating elementary mathematics.
Journal of Symbolic Computation, 42(9), 902–934.

Sleeman, D., & Brown, J. S. (Eds.). (1982). Intelligent tutoring systems. Academic Press.
Strickland, N. (2002). Alice interactive mathematics. . MSOR Connections, 2(1), 27–30.
Suppes, P. (1967). Some theoretical models for mathematics teaching. Journal of Research and

Development in Education, 1, 5–22.
Watson, A., & Mason, J. (2002). Student-generated examples in the learning of mathematics.

Canadian Journal for Science, Mathematics and Technology Education, 2(2), 237–249.
Wester, M. (1999). Computer algebra systems: A practical guide. Wiley. Chapman, O. (2003).

Facilitating peer interactions in learning mathematics: Teachers’ practical knowledge. In
M. J. Hψines & A. B. Fuglestad (Eds.), Proceedings 28th Conference of the International
Group for the Psychology of Mathematics Education (Vol. 2, pp. 191–198). Bergen, Norway:
PME.

Computer Aided Assessment of Mathematics Using STACK 713

	39 Computer Aided Assessment of Mathematics Using STACK
	Abstract
	History and Background
	STACK
	Establishing Properties
	Question Models
	Students' Reactions to STACK
	Conclusions
	References

