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The Inventory Pollution-Routing Problem
Under Uncertainty
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Abstract Carbon emissions from supply chain operations are extensively con-
tributing to the global warming. Sustainable supply chain management literature
has seen more emphasis on greening of production operations and designing of
greener supply networks, considering transportation emissions as “necessary evil”.
This chapter aims to investigate the economic and environmental consequences of
transport routing decisions in a supply chain with vertical collaboration, for instance
through Vendor Managed Inventory. An optimization model and solution method is
presented for an Inventory Pollution-Routing Problem (IPRP) in which inventory
and transportation costs and emissions as well as demand uncertainty concerns are
explicitly incorporated. The proposed model can be used to explore possible
tradeoffs between emissions costs and operational costs for green inventory routing
decision making. A set of computational tests are designed for performance
benchmark of the proposed model and solution method.

Keywords Inventory routing � Fuel consumption � Emissions pollution �
Uncertainty � Optimization model

6.1 Introduction

Reducing and mitigating carbon emissions, the culprit of global warming and cli-
mate change, is an increasingly important concern for both industry practitioners
and governments (IPCC 2007). In the UK, the government has targeted to reduce
carbon emissions by 60 % from 1990 levels by 2050 (Carbon Trust 2006). The UN,
the EU, and many countries have enacted legislations or designed/implemented
mechanisms, such as carbon tax, carbon offset, clean development, and cap and
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trade, to curb the total amount of carbon emissions. In response to such mandates
and to address the related stakeholder concerns, companies worldwide have
undertaken initiatives to reduce their carbon footprints.

However, these initiatives have largely focused on investment in new technol-
ogy, developing energy-efficient equipment and facilities, and finding cleaner
energy sources. While such efforts are valuable, they tend to ignore a potentially
more significant sources of emissions derived. It is therefore necessary to address
the problem of carbon emissions reduction from a supply chain and logistics per-
spective. Carbon Trust (2006) in the UK suggests that companies use a supply
chain perspective to look for new ways of reducing carbon emissions. For example,
it is shown that supply chain emissions reduction program may be less costly to
achieve the same emissions reduction goals obtained by cleaner technologies
(Benjaafar et al. 2013).

Recent literature reviews have identified a growing need for developing quan-
titative models, empirical research, and decision support tools for green production,
operations, logistics and supply chain management (Fahimnia et al. 2015b). At
the forefront of this call for future research is greening of transportation and dis-
tribution sub-system, one of the major contributors to Greenhouse Gas (GHG)
emissions. According to the corporate GHG emissions report published by OECD,
transportation is responsible for almost 14 % of total CO2 emissions, since these
emissions are directly proportional to the amount of fuel consumed by vehicles
(OECD 2012). Only road-based transportation takes approximately 80 % of the
transportation-related emissions. Within the EU, about 28 % of emissions are due to
transportation with about 71 % of which is caused by road transport. This intro-
duces the transportation sector as second biggest polluter after energy industries and
the only sector that was not able to reduce its emissions compared to recent years
(EU 2012). Unlike these, transportation activities are not currently subject to strict
environmental regulations with respect to GHG emissions, although it is highly
advisable to consider environmental metrics in distribution decision makings
(Fahimnia et al. 2015a).

One possibility to reduce emissions from transportation activities is to improve
transport efficiency which can be measured through a vehicle’s average load factor
and the amount of empty trips. The improvement of these two measures is very
attractive for companies, since both economic and environmental performance can
be enhanced at the same time (Edwards and McKinnon 2010).

In this regard, vehicle emissions (CO, HC and NOx) directly relate to the rate of
fuel consumption (FC) (Barth et al. 2005). Routing vehicles for efficient distribution
of goods so as to minimize the total FC can be a green logistics initiative. The
selection of routes to be travelled by a vehicle is a tactical decision which can easily
be implemented for a given network. From a broader perspective, reducing the FC
serves the twin goals of improved emissions performance and reduced resource
depletion.

Sbihi and Eglese (2007) discussed the impact of logistics activities on the society
and presented a review of the combinatorial optimization problems in green
logistics (reverse logistics, waste management, and vehicle routing and scheduling).
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Dekker et al. (2012) described the role of operations research in integrating the
environmental aspects with logistical practices. They presented a review of the
available methods and possible developments in green logistics. Jensen (1995)
analyzed the relationship between travel speeds and emissions on different types of
roads. Models to estimate the energy and FC by a vehicle based on operating
parameters (such as speed, load and acceleration) and on vehicle parameters are
available (Akçelik and Besley 2003; Barth et al. 2005). A comparison of FC models
using real-time measurements under different conditions is available in the works of
Silva et al. (2006), Demir et al. (2011) and Koç et al. (2014).

There is a considerable amount of ongoing research on the methods to reduce
CO2 emissions. However, observations show that, in many situations, when one
factor is improved in a logistics system, the costs of other factors increase accord-
ingly (Savelsbergh and Song 2007). Having inventory management on one side,
where the routing aspects of the transportation is not properly treated, and routing on
the other, with a number of predefined orders to serve, a natural extension to both
problems is to study a combined problem where the key components of both
inventory management and routing problems are explicitly incorporated. The inte-
gration of the two well-studied problems of inventory management and the Vehicle
Routing Problem (VRP) arrives at the so-called Inventory Routing Problem (IRP).

In the inventory side of IRP, it is practical to combine groups of products in a
single replenishment order to yield substantial cost savings due to the sharing of
fixed replenishment costs. It therefore makes a great deal with resupplying policy of
customers over a short or long-term planning period. The literature is quite limited
on the ecological aspects of this important research topic with carbon emissions
used as the predominant environmental measure.

Benjaafar et al. (2013) incorporated carbon emissions constraints on single and
multi-stage lot-sizing models with a cost minimization objective. Four regulatory
policy settings are considered, based respectively on a strict carbon cap, a tax on the
amount of emissions, the cap-and-trade system and the possibility to invest in
carbon offsets to mitigate carbon caps. Insights are derived from an extensive
numerical study. In a paper proposing a research agenda for designing environ-
mentally responsible inventory systems, Bonney and Jaber (2011) briefly presented
an illustrative model that includes vehicle emissions cost into the economic order
quantity (EOQ) model. The authors referred to this model as an “environmental
EOQ”. Emissions associated with the storage of products are not taken into account.
The order quantity is thus larger than the classical EOQ. Hua et al. (2011) extended
the EOQ model to take carbon emissions into account under the cap-and-trade
system. Analytical and numerical results are presented and managerial insights are
derived. Except Venkat (2007) who did not consider the cost, these papers can be
classified as a regulation based integration of sustainable development (or its
restriction to carbon footprint) into inventory models.

To the best of our knowledge, the number of researches in “green IRP” area are
extremely virginal. In this chapter, we extend a new mathematical modeling
framework. A new IRP variant, called the Inventory Pollution-Routing Problem
(IPRP) that take emissions pollution from vehicle travels into account.
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The two more related works in this context are the studies of Treitl et al. (2012)
and Mirzapour Al-e-hashem and Rekik (2014). Treitl et al. (2012) focused on the
analysis of transport processes and showed the economic and environmental con-
cerns associated with routing decisions in a supply chain with vertical collaboration.
An IRP model was presented and further applied to a case study from the petro-
chemical industry. Another work is Mirzapour Al-e-hashem and Rekik (2014) who
addressed an environmental issue for an IRP model with a transshipment option.
This was done by considering the interrelationship between the transportation cost
and GHG emissions level. Given the significance of research in this area, our
modeling effort in this chapter focuses on presenting an integrated model that
incorporates the environmental aspects into a traditional economic-oriented IRP, an
early attempt for IPRP modeling and analysis. There are several solution approa-
ches to solving IRPs. We contribute by introducing an exact solution method and
exploiting a brand-new decomposition algorithm for the simultaneous inventory
management and vehicle routing. Computational results of the performance
benchmark exercise confirm the efficiency of the algorithm in terms of the quality of
solutions obtained.

6.2 Problem Description

The way of introducing the IRP model in this chapter is slightly different. It is
considered that there are k vehicles of the same capacity under an EOQ policy
delivering some goods from a central warehouse to a set of customer nodes N = {1,
2, …, n} in a complete directed graph with arc set Λ where Λ ¼ i; jð Þ: i; j 2 N;f
i 6¼ jg Euclidean distance is an arc set which assumed that the underlying distance
matrix is symmetric and satisfies the triangle inequalities. At the beginning of the
planning horizon, customer i supplied with a delivery quantity Qi and this process
lasts to the end of the period. Each customer i is characterized by a demand Di, and
may not be satisfied in an infinite time horizon which means shortage assumption is
permitted. Considering the differentiations in customers’ time periods, the delivery
process continues while total demands fulfilled. Similar planning will be projected
for the next periods; therefore, restarting each period, there is a routing policy with
known delivery quantities. Also it is considered that a limited amount of inventory
can be stored at the customer sites as well as the warehouse from which it is
delivered; however, transfers between sites are not allowed (Herer et al. 2006). The
vehicle working time is made of a set of heterogeneous routes K where each route
starts and ends at the warehouse. We assume, without loss of generality, that the
routes are served in the order 1, 2,…, k. The warehouse is denoted by 0; the symbol
Nþ is used for N [ 0 and Λ+ for Λ ¼ i; jð Þ: i; j 2 Nþ; i 6¼ jf g: The goal is to
determine an inventory policy and routing strategy such that the long-run costs are
minimized to serve all customers while satisfying the capacity constraints.
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6.3 Mathematical Model

Considering the importance of inventory insight, we first launch the problem for-
mulation by specifying the inventory policy, thereafter, continue with contributing
the routing, and finally assembling a variant presentation for the IRP. The pre-
vailing mathematical expression tries to capture economic of lot sizing in material
purchasing. To make more information available for cost, we model the cost issue
linked to logistics and warehousing activities as part of the design objectives rather
than as constraints, considering the single product replenishment problem based on
the traditional EOQ model and applying a direct accounting approach, and
assuming that the product demand is deterministic, the product price is exogenous
and the customers decide only the order size. The full average cost of replenish-
ment, we assumed, is expressed by the sum of four terms: holding cost (c1i),
shortage cost (c2i), setup cost (c3i), and purchasing cost (c4i) that appropriately
calculated for customer i.

More specifically, our policy taken, closely resembles to the class of Fixed
Partition policies introduced by Bramel and Simchi-Levi (1997) for an IRP in
which a single item is distributed among retailers. Although such policies are
generally not optimal, they are important from a practical standpoint, as they are
easy to implement. In particular, they allow for efficient integration of several
business functions. Chan et al. (1998) and Chan and Simchi-Levi (1998) have
shown that such policies can be highly effective, by deriving an asymptotic error
bound on the obtained solution under different assumptions on the transportation
cost structure.

A single vehicle of capacity j is available. This vehicle is able to perform one
route at the beginning of each time period to deliver products from the supplier to a
subset of customers. A routing cost cijdij is associated with arc (i, j). Whereas many
distribution systems make use of several vehicles, most research in the field of
inventory-routing still considers only one vehicle, and there are indeed practical
applications in which a single vehicle is used at a given echelon of the supply chain,
such as in the case study described by Mercer and Tao (1996).

6.3.1 Inventory Definition

Let the amount of stock for ith customer be Ri at time t = 0 (see Fig. 6.1). In the
interval ð0; Tið¼ t1i þ t2iÞÞ; the inventory level gradually decreases to meet
demands. By this process the inventory level reaches zero level at time t1i and then
shortages Si are allowed to occur in the interval (t1i, Ti). The cycle then repeats
itself.
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The differential equation for the instantaneous inventory qi(t) at time t in (0, Ti) is
given by

@qiðtÞ
@t

¼ �Di; 0� t� t1i
�Di; t1i � t� Ti

�

with the initial conditions qið0Þ ¼ Rið¼ Qi � SiÞ; qi Tið Þ ¼ �Si; qi t1ið Þ ¼ 0:
For each period a fixed amount of shortage is allowed and there is a penalty cost

c2i per items of unsatisfied demand per unit time. From the above differential
equation,

qiðtÞ ¼ Ri � Dit; 0� t� t1i
Diðt1i � tÞ; t1i � t� Ti

�

So, Ri = Di t1i, Si = Di t2i, Qi = Di t3i.
Consequently, the holding cost is c1i

R t1i
0 qiðtÞdt ¼ðc1iðQi � SiÞ2=2QiÞTi; short-

age cost is c2i
R Ti
t1i
ð�qiðtÞÞdt ¼ ðc2iS2i =2QiÞTi and purchasing cost is c4i Qi.

Therefore, the total cost is c4iQi þ c3i þ c1iððQi � SiÞ2=2QiÞTi þ c2iðS2i =2QiÞTi:
And the total average cost for ith customer will be c4iDi þ c3iðDi=QiÞþ
c1iððQi � SiÞ2=2QiÞ þ c2iðS2i =2QiÞ:

6.3.2 Model for IRP

In the IRP, the total cost to be minimized is mainly the sum of inventory cost at the
supplier and of routing cost for the supplier’s vehicle:

Min
X
i2N

c4iDi þ c3iDi=Qi
þ c1i

ðQi � SiÞ2
2Qi

þ c2i
S2i
2Qi

( )
þ
X

ði;jÞ2Kþ

X
r2K

cijdijxijr

ð6:1Þ

Fig. 6.1 Inventory level of ith customer
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where xijr is equal to 1 if and only if customer j immediately follows customer i on
the route r of supplier’s vehicle. The objective function (6.1) includes both
inventory costs of each customer and as is standard in vehicle routing, travel costs
are distance-dependent in which cijdij denotes the cost of travelling on arc (i, j).

The constraints are as follows.

6.3.2.1 Routing Constraints

These constraints guarantee that a feasible route is designed to visit all customers
served:

(a) A single vehicle is available: Constraints (6.2) require that only one vehicle
can leave from retailer i once. Constraints (6.3) denote that only one vehicle
can arrive at retailer j once:

X
j2Nþ

X
r2K

xijr ¼ 1; 8i ð6:2Þ

X
i2N

X
r2K

xijr ¼ 1; 8j ð6:3Þ

(b) Flow conservation constraints: these constraints impose that the number of
arcs entering and leaving a vertex should be the same, in other words, for each
retailer ‘, the entering vehicle must eventually leave this node:

X
i2N

xi‘r ¼
X
j2N

x‘jr; 8‘ 2 N; r ð6:4Þ

(c) Constraints (6.5) designate that each vehicle can leave the warehouse once at
most:

X
j2N

x0jr � 1; 8r ð6:5Þ

(d) Constraints (6.6) are the vehicle capacity constraints that links two terms of
inventory and distribution systems of the model:

X
i2N

X
j2N

Qjxijr � j; 8r ð6:6Þ
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(e) Sub-tour elimination constraints:

qj � qi � Qi þ Dið1� xijrÞ; 8i; j; r ð6:7Þ

in which it keeps track of the load qi on the vehicles and guarantees if customer i is
the immediate predecessor of customer j on a route, then the load on the vehicle
before visiting customer j must be less than or equal to the load just before visiting
customer i minus the amount delivered, which is represented by the variable Qi.
Because the load on each vehicle is monotonically decreasing as customers are
visited. Constraints (6.7) also provide the added benefit of eliminating sub-tours.
Note that it is considered that Di is large enough.

6.3.2.2 Integrality and Non-negativity Constraints

xijr 2 0; 1f g; 8ði; jÞ 2 Kþ; r ð6:8Þ

0� qi � j; 8i ð6:9Þ

0� Si � �S; 8i ð6:10Þ

Qi � 0: 8i ð6:11Þ

Constraints (6.8) designate xijr as a 0 − 1 integer variables. After all deliveries
are made, the fleet returns to the warehouse empty so q0 can be set to 0. To
conclude the formulation, variables are defined in Constraints (6.9)–(6.11).

6.4 Uncertain Modeling

In the real world, after designing a network of facilities, the respective costs,
demands, distances, times and other relevant data may change due to uncertain
circumstances happening when working in a dynamic and chaotic business envi-
ronment. For example, in IRPs, with variability in the demand may result in huge
and non-measureable costs, such as lost-opportunity and lost-sale costs due to
causing unsatisfied customers. Typically, there are two types of modeling tech-
niques for addressing uncertain data, namely, stochastic programming and fuzzy
programming.

Therefore, one important consideration is in line with combined inventory
management and routing so that there are technical uncertainties due to transpor-
tation conditions and equipment, as well as environmental, economical or market
uncertainties. In many businesses the market conditions have changed dramatically
over the last years with new market opportunities arising continuously. As a result,
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the demand for products becomes highly uncertain in some business areas.
Moreover, most companies are not aware of the possibilities of introducing
uncertain elements in the planning. Neither they are familiar nor confident with
uncertain planning systems. For recent reviews on the IRP, one can refer to Coelho
and Laporte (2013, 2014) and Coelho et al. (2014).

In this regard, demand is widely accepted to be dynamic and stochastic in real
life inventory routing problems. Studies on uncertain IRPs also assume full
knowledge of the demand data, which may be unavailable or difficult to obtain.
There is clearly a need to consider the IRP with demand data in a tractable way,
where no information for the probability distribution function (PDF) of demand is
required. Nevertheless, in many practical situations, due to lack of historical data
for some parameters such as demand, it is hard or even impossible to fit a PDF. In
these cases, it is more reasonable to adopt a suitable possibility distribution for each
demand based upon the available (but often insufficient) objective data as well as
subjective opinions of DMs, or a fully subjective (preference-based) fuzzy set for
each judgmental data based upon expert’s subjective knowledge, experience and
professional feelings. Though, in both cases, fuzzy programming approaches
should be used to cope with such vague uncertainties (Panda et al. 2014). Herein,
these variants of IRPs are called IRPs with “hybrid uncertainty” since we are
dealing with a mixture of uncertain data (i.e., fuzzy and random data) in our
problem. To the best of our knowledge, in IRPs no attempt have been formally
made where fuzziness and randomness coexist. Hence, the second objective of this
study is to, indeed, deliberating IPRP under uncertainty.

In the following the aim is to extend the formulation into an IRP under hybrid
uncertain demand which is also common problem in practice. Doing so, we first
refer the readers to Appendix to find the type of uncertainty scheme brought here
and its deterministic counterpart formulation.

Min
X
i2N

c4i ~Di þ c3i ~Di=Qi
� �þ c1i ðQi � SiÞ2=2Qi

� �
þ c2i S

2
i =2Qi

� �( )

þ
X

ði;jÞ2Kþ

X
r2K

cijdijxijr

st:

ð6:12Þ

qj � qi � Qi þ ~Dið1� xijrÞ; 8i; j; r ð6:13Þ

(6.2)–(6.6) and (6.8)–(6.11).
Considering the imperfect nature of the demands, the model is converted into its

deterministic version. Then by definition of ~Di ¼ D1i;D2i;D3ið Þ þð Þ0 li; r2i
� �

; 8i;
and following the mathematical theory of hybrid numbers described in Appendix
the objective function (6.12) and constraints (6.13) extend to:
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Min TC ¼ E~TCðþÞ0ð0;VTCÞ
st:

ð6:14Þ

E qj � qi þ Qi � ~Dið1� xijrÞ
� �� 0; 8i; j; r ð6:15Þ

V qj � qi þ Qi � ~Dið1� xijrÞ
� �� 0; 8i; j; r ð6:16Þ

(6.2)–(6.6) and (6.8)–(6.11),
where E(·) and V(·) are mean and variance operators, respectively. On the
other hand, E~TC ¼ ETC1;ETC2;ETC3ð Þ with ETCm ¼Pi2Nfc4iðDmi þ liÞþ
c3iððDmi þ liÞ=QiÞ þ c1iððQi � SiÞ2=2QiÞ þ c2iððSiÞ2=2QiÞg; 8m 2 f1; 2; 3g: So the
approximated value of E~TC is ET̂C ¼ 1=4ðETC1 þ 2ETC2 þ ETC3Þ ¼

P
i2N

fc4iðD̂i þ liÞ þ c3iððD̂i þ liÞ=QiÞ þ c1iððQi � SiÞ2=2QiÞ þ c2iððSiÞ2=2QiÞg if D̂i ¼
1=4ðD1i þ D2i þ D3i þ D4iÞ:

Hence, Constraints (6.12) and (6.13) is reduced to a “bi-objective mixed integer
nonlinear program” as follow:

Min AETC;VTCf g
st:

ð6:17Þ

qj � qi � Qi þ D̂ið1� xijrÞ; 8i; j; r ð6:18Þ

r2i ð1� xijrÞ2 � 0; 8i; j; r ð6:19Þ

(6.2)–(6.6) and (6.8)–(6.11),
where AETC ¼ ET̂C þPði;jÞ2Kþ

P
r2K cijdijxijr; and VTC ¼Pi2N c24ir

2
i

�
þc23iðr2i

�
Q2

i Þg: As seen, from (6.8), Constraints (6.19) is evident, so it will be
omitted from the rest of our computations.

6.5 Integrating Ecological Issues

The way of considering ecological issues in routing problem is rather interesting.
We present fundamental ideas to enrich VRPs by green aspects in the following.
Several ecologically oriented extensions of the VRP have been introduced which
aim at minimizing the fuel consumption or the amount of CO2 emission. In any of
these problems, the evaluation of transportation plans relies on an estimation of the
quantity of fuel consumed for request fulfillment. There exists a variety of methods
for estimating fuel consumption and emissions of road transportation in dependence
of a bunch of parameters. Most of the estimation methods are based on analytical
emissions models. The methods found in the literature differ in the assumed basic
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principles and with respect to the parameters they take into account for estimation.
A comparison of several vehicle emission models for road freight transportation can
be found in Demir et al. (2011). In addition to comparing different methods for
estimating fuel consumption and pollution, Demir et al. (2011) analyze the dis-
crepancies between the results yielded by the models on the one hand and the
results of measurements of on-road consumptions of real vehicles on the other
hand. For other relevant references and a state-of-the-art coverage on green road
freight transportation, the reader is referred to the survey of Lin et al. (2014) and
Demir et al. (2014). In this chapter, we follow the idea of chose by Bektaş and
Laporte (2011).

6.5.1 Model to Estimate Fuel Consumption

The comprehensive modal emission model developed by Barth et al. (2005), Barth
and Boriboonsomsin (2009) for diesel engines gives a good estimate of the
vehicular emissions (Bektaş and Laporte 2011; Demir et al. 2011); it considers the
speed, load carried and other vehicle parameters. They relate the tail-pipe emissions
e directly to the fuel use rate F as e = ϐ1F + ϐ2 (Bektaş and Laporte 2011) where ϐ1
and ϐ2 are GHG emissions index parameters.

The expression for the instantaneous fuel consumption or fuel use rate F mL/s
for a diesel engine with displacement φ L is given as follows Barth and
Boriboonsomsin (2009) and Barth et al. (2005):

F � w Esuþ P
g

	 

ð6:20Þ

where w ¼ 1=0:85ð Þ � 1=43:2ð Þ � ð1þ b1ðs� s0Þ2Þ;E ¼ E0ð1þ cðs� s0ÞÞ is the
engine friction factor, and s the engine speed (revolutions/s), P the total engine
power requirement (watt), η the efficiency of diesel engine, E0 the engine friction
factor when the vehicle is idle, s0 ≈ 30 (3/ϕ)½, c ≈ 0.00125 and b1 ≈ 10−4 are
constant coefficients, 43.2 kJ/g the lower heating value of diesel and 0.85 kg/L the
density of diesel. The engine power requirement P for a vehicle with drive-train
efficiency ϑ is expressed as

P ¼ Ptract

#
þ Pacc ð6:21Þ

Pacc accounts for the power required by the vehicle air conditioner and other
accessories.

The tractive power required Ptract (watt) by the vehicle to carry a weight
M (including the load to be carried) can be determined from the following
expression (Barth and Boriboonsomsin 2009; Bektaş and Laporte 2011):
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Ptract ¼ M aþ g sin hþ gCroll cos h
� �

vþ 0:5A qCd v
3 ð6:22Þ

where v m/s is the velocity of the vehicle, θ the road angle (degree), A (m2) the
frontal surface area of the vehicle, ρ (kg/m3) the air density, a (m/s2) the acceler-
ation of the vehicle, g (m/s2) the acceleration due to gravity, Croll the coefficient of
rolling resistance and Cd the coefficient of aerodynamic drag.

The expression for the fuel use rate (F) provides the estimate of the fuel con-
sumption (FC) by a vehicle on travelling a route.

6.5.2 Factors Affecting Fuel Consumption

If the velocity v and other parameters of a vehicle remain constant, the FC by a
vehicle travelling and distance d can be estimated from the fuel use rate F as
follows:

FC � F
d
v

	 

ð6:23Þ

The FC by a vehicle in a trip is proportional to the distance travelled and the load
carried. The FC on an arc depends on the load carried and varies according to the
sequence of nodes to be visited. The FC by an empty truck depends on its curb
weight (Barth and Boriboonsomsin 2009; Barth et al. 2005; Bektaş and Laporte
2011). For the sake of uniformity of scale, we also take the load to be carried in
units of weight (kg in this study).

The product of η and ϑ is inversely proportional to the FC. Thus, choosing a
vehicle with higher values of engine and drive-train efficiencies will result in better
fuel economy. The FC is fairly low for moderate speeds (35–45 km/h) and high for
very low and very high speeds. Variations in driving speeds contribute significantly
to the FC and emissions than driving at a steady speed (Tong et al. 2000). A driver
who maintains a constant speed and drives within a moderate speed range will help
to reduce the consumption of fuel. In general, the average speed of travel in an arc is
assumed (Bektaş and Laporte 2011; Suzuki 2011) for modeling purposes. The most
likely average speed with which a vehicle can travel can be predicted using his-
torical and real-time data (Rice and Van Zwet 2004).

The parameters θ and Croll, which are entirely dependent on the nature of the
road, are very sensitive and play a dominant role in the FC by the vehicle. Cd

depends on climatic conditions and is a measure of the drag force exerted on the
vehicle due to air resistance. Apart from these parameters, the velocity of travel also
depends on the nature of the road and other road conditions. Hence, alternative
routes have to be considered for distribution planning to determine the velocity and
the road to be travelled in order to reduce the fuel consumption. Table 6.1 offers a
description of all the parameters.
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6.5.3 Nature of Alternative Routes

A variety of alternative routes can exist between a pair of nodes and each route is
taken as a distinct arc connecting the two nodes. If each lane of a highway is
considered as an alternative route, the length is the same but the velocity is dif-
ferent. Another possibility is the existence of multiple routes with different lengths
and different average velocities. The availability of multiple routes between two
nodes can be observed in countries which rely heavily on road transport for freight
movement. The average velocity along each route can be determined based on the
condition of the road, past data etc. The nature of the routes is illustrated in Fig. 6.2.

Table 6.1 Parameters used in the computational experiments

Notation Description Typical values

E Engine friction factor (kg/revolution/L) 0.2

s Engine speed (revolution/s) 33

φ Engine displacement (L) 5

g Gravitational constant (m/s2) 9.81

Cd Coefficient of aerodynamic drag 0.7

ρ Air density (kg/m3) 1.2041

A Frontal surface area (m2) 3.912

Croll Coefficient of rolling resistance 0.01

ϑ Vehicle drive-train efficiency 0.4

η Efficiency of diesel engines 0.9

b1 Heating value of a typical diesel fuel (kJ/g) 44

ψ Conversion factor (g/s to L/s) 737

v Lower speed limit (km/h) 20

�v Upper speed limit (km/h) 85

Fig. 6.2 Fuel consumption as
a function of speed, as
estimated by function (6.23)
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It shows a U-shape curve between FC and speed, which is consistent with the
behavior of functions suggested by other authors (e.g., Demir et al. 2011), con-
firming that low speeds (as in the case of traffic congestion) lead to very high fuel
use rate.

6.5.4 Fuel Emissions Factors

Let

aij ¼ aþ g sin hij þ gCroll
ij cos hij ð6:24Þ

b ¼ 0:5A qCd ð6:25Þ

Using (6.26), the fuel use rate given in (6.27) can be written as follows:

Ptract ¼ aij w vijr þ aij qi vijr þ b v3ijr ð6:26Þ

Fijr � wij Eijsij/þ 1
#g

ðaij w vijr þ aij qi vijr þ b v3ijrÞ þ
Pacc

g

	 

ð6:27Þ

Assuming that the velocity and other parameters of a vehicle remain constant on
a route, the fuel consumed FCijr mL by a vehicle travelling from node i to node
j along route r can be estimated from the fuel use rate Fijr as follow:

FCijr � Fijr
dij
vijr

	 

ð6:28Þ

where dij/vijr is the time taken to travel the route.
As perceived from above, the ecologically speaking purpose concerns with

consumption of fuel, is based on parameters relating to vehicles, load, speed, dis-
tances and road conditions. Substituting (6.27) in (6.28) and rearranging the terms
and considering that economic benefits strongly influence decision-making in most
businesses. However, unlike same-topic-papers, the “speed” is considered as a
decision variable and establish its relevant necessary constraint. Given this, we refer
to this problem as “Pollution-Routing Problem” (PRP).

6.5.5 Model Formulation for IPRP

The proposed “mixed integer nonlinear program” is very difficult to solve. Thus we
decompose the decision variables {Qi, Si, xijr, qi, vijr} into two groups: {Qi, Si} and
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{xijr, qi, vijr}. The first group is associated with the inventory problem and the
second group is subject to the routing problem.

With the concept of decomposition, Constraints (6.12) and (6.13) schematically,
rearranged with the following bi-level structure:

Upper level:

Min
Qi;Sif g2X1

Z1 ¼ ET̂C þ ZPRP

Min
Qi;Sif g2X1

Z2 ¼
P
i2N

c24ir
2
i þ c23i

r2i
Q2

i

� �
8><
>: ð6:29Þ

where Ω1 is the feasible region represented by non-negative Constraints (6.19) and
(6.20) in which ZPRP is the VRP’s objective function including green issue.
Accordingly, the ZPRP is calculated as follows:

Lower level:

Min
fxijr ;qi;vijrg2X2

ZPRP ¼

X
ði;jÞ2Kþ

X
r2K

wijdij Eijsij/þ aij w
#g

	 

Cfuelxijr

þ
X

ði;jÞ2Kþ

X
r2K

wijdij aijr
�
#g

� �
Cfuel qi

þ
X

ði;jÞ2Kþ

X
r2K

wijdij b=#gð Þ Cfuel v
2
ijr xijr

0
BBBBBBBB@

1
CCCCCCCCA

st.
vijrxijr � vijr ��vijrxijr; 8i; j; r

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6:30Þ

where Ω2 represents Constraints (6.2)–(6.6), (6.8) and (6.18) with {Qi, Si} given.
As seen, Constraints (6.6) incurs a nonlinear solution set for problem (6.30). By the
decomposition technique that has been carried out here, Z1 and Z2 solve Qi and
perform Ω2 to transform into a linear feasible region for problem (6.30).

In the lower level, the objective function is derived from (6.28) and contains
three components. The first two, measure the cost comprised by the load carried on
the vehicle (including curb weight). Finally, the last component measures the cost
implied by variations in speed. All of these three components translate directly into
total cost of FC and GHG emissions calculated by the unit cost Cfuel multiplied by
the total amount of fuel consumed over each link (i, j) ∈ Λ+.

Constraint vijrxijr � vijr ��vijrxijr; 8i; j; r links the green strategy and routing plan,
aiming at Greening the Routes. In other words, the adjunct constraint guarantee that
if arc (i, j) is traversed on route r, service at node j will be started under limit of
lower and upper bounds of vehicle speed; otherwise no value kept for constraint
satisfaction if arc (i, j) is not traversed.
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If a given {Qi, Si} causes problem (6.30) to be in feasible, simply let ZPRP equal
infinity. Note that, since by definition, xijr could be either 0 or 1, once it takes 0,
then automatically vijr becomes 0, and when it takes 1, then vijr will be permitted to
designate a value among vijr and �vijr; thus xijr could be easily dropped from the last
term of the objective function (6.30), and relaxed to

P
ði;jÞ2Kþ

P
r2K wijdijð�ÞCfulev2ijr:

The Constraints (6.12) and (6.13) is now converted into a “bi-level bi-objective
mixed integer nonlinear program” problems (6.29) and (6.30) with convex solution
region.

6.6 Solution Approach

Problem (6.29) itself can be solved using either a sensitivity-analysis based or a
direct search algorithm. The former uses sensitivity analysis to obtain the derivative
information of the reaction function (either explicitly or implicitly) while the latter
employs only functional evaluations. Since the interdependence between delivery
quantity and shortage variables {Qi, Si} and vehicle routes {xijr, qi, vijr} are too
complicated and the derivative information is not available in this problem, we
adopted a direct search algorithm to solve the problem. One of the most widely used
direct search methods for solving nonlinear unconstrained optimization problems is
the Nelder–Mead simplex algorithm (see Nelder and Mead 1965).

In the next two subsections, the Nelder–Mead method with boundary constraints
is adopted to solve the upper level inventory problem (6.29) and a plenary exact
heuristic algorithm is proposed to solve the lower level the PRP (6.30).

6.6.1 Solving the Multiobjective Inventory Problem

A “simplex” is a geometrical figure consisting, in n-dimensions, of (n + 1) points
y0; …; yn (Nelder and Mead 1965)1. If any point of a simplex is taken as the origin,
the n other points define vector directions that span the n-dimension vector space.

If we randomly draw as initial starting point y0, then we generate the other
n points yi according to the relation yi = y0 + λy0Ii, where the Ii are n unit vectors,
and λ is a turbulence factor which is which is typically equal to one (but may be
adapted to the problem characteristics).

Through a sequence of elementary geometric transformations (reflection, con-
traction, expansion and multi-contraction; internal/external), the initial simplex y0

moves, expands or contracts. To select the appropriate transformation, the method
only uses the values of the function to be optimized at the vertices of the simplex
considered. After each transformation, the current worst vertex is replaced by a

1Since this section we exploit “y” as an axillary variable.
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better one. Trial moves shown on Fig. 6.3 are generated according to the following
basic operations (where ŷ called center of gravity and defined by ŷ ¼ Riyið Þ=n; and
α, β, γ are constants):

reflection: yr ¼ ŷþ a ŷ� ynð Þ
expansion: ye ¼ ŷþ b yr � ŷð Þ
internal contraction: yc ¼ ŷþ c yn � ŷð Þ
external contraction: y

0
c ¼ ŷþ c yr � ŷð Þ

At the beginning of the algorithm, one moves only the point of the simplex,
where the objective function is worst (this point is called “high”), and one generates
another point image of the worst point. This operation is the reflection. If the
reflected point is better than all other points, the method expands the simplex in this
direction; otherwise, if it is at least better than the worst one, the algorithm performs
again the reflection with the new worst point. The contraction step is performed
when the worst point is at least as good as the reflected point, in such a way that the
simplex adapts itself to the function landscape and finally surrounds the optimum. If
the worst point is better than the contracted point, the multi-contraction is per-
formed. For each rejected contraction step, we replace all yi of the simplex by
½(yi + y1) (yl is the vertex of the simplex where the objective function is “low”);
thus we obtain the multi-contraction (internal/external) of the simplex, and the
process restarts.

The stopping criterion is a measure of how far the simplex was moved from one
iteration h to the following one (h + 1). The algorithm stops when:

Fig. 6.3 Available moves in
the Nelder–Mead simplex
method, in the case of 3
variables
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1
n

Xn
i¼1

yhi � yhþ1
i

�� ��2\e; ð6:31Þ

where yh+1 is the vertex replacing yh at the iteration (h + 1), and ε is a given “small”
positive real number.

Because the Nelder–Mead method (NM) is originally applied to an uncon-
strained problem, an adjustment is necessary that projects its coordinates on the
bounds if the new point is out of the domain. However, since the inventory part of
the problem is of multiobjective form, it also needs a preparation step before the
adjustment.

We start the preparation with a topic of normalized normal constraint method
(NNCM; Messac et al. 2003). This method normalizes the design space and
introduces new constraints. Considering the new constraints, optimization of only
one of the objectives returns a non-dominated solution. When several of these
single-objective optimization problems are solved, several non-dominated solutions
are obtained. The difference between this method and varying user preferences in a
non-generating method is that here the set of constraints are introduced to spread
the final solutions uniformly in the criterion space. NNCM is an algorithm for
generating a set of evenly spaced solutions on a pareto-frontier (Messac et al. 2003).
This method yields pareto-optimal solutions, and its performance is independent of
the scale of the objective functions. NNCM method and some related definitions are
presented in this section.

Definition 1 (utopia point) Considering a multiobjective optimization problem, a
point ₣o ∈ ω in the criterion space (ω) is called a utopia point if and only if:

f oi ¼ min fiðyÞ y 2 fjf g; 8i ð6:32Þ

where ζ ⊂ Rn is the feasible region in the design space. Because of contradicting
objectives, the utopia point is unattainable.

Definition 2 (anchor point) A non-dominated point ₣o ∈ ω is an anchor point if and
only if it is pareto-optimal and at least for one i; f ��i ¼ minyffiðyÞjy 2 fg:

The first step in NNCM is to normalize the design space. For this purpose, the
utopia and the anchor points are required. These points are found by optimizing
only one of the objectives at a time. After finding these points, the criterion space is
normalized using the following transformation.

�fi ¼ fi � f oi
fmax
i � f oi

ð6:33Þ

fmax
i ¼ max fiðyÞ; y 62 Y�f g ð6:34Þ

where Y* is All pareto-optimal points in the design space.
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The normalization process locates the utopia point at the origin and the anchor
points at the unit coordinates. Figure 6.4a shows the original criterion space and the
pareto-frontier of a generic bi-objective problem. Figure 6.4b represents the pareto-
frontier of the same problem after normalization. The next step is to form the utopia
hyperplane, which is a hyperplane with vertices located at the anchor points. For a
bi-objective problem, the utopia hyperplane is a line as shown in Fig. 6.4c. Next, a
grid of evenly distributed points on the utopia hyperplane is generated. The number
of points in this grid is defined by the user. Figure 6.4c shows, for example, a grid
of six points on the utopia line. If these points are projected onto the pareto-frontier,
several pareto-optimum solutions are obtained. To find the pareto-optimum solution
corresponding to each point in this grid, a single-objective optimization problem
must be solved. This problem entails minimizing one of the normalized objectives
with an additional inequality constraint. For example, the pareto-optimum solution
corresponding to point P in Fig. 6.4c can be found by minimizing �f2 while the
feasible region is cut by the line passing through this point and perpendicular to the
utopia line. The feasible region of this single-objective optimization problem is
shown in Fig. 6.4c. The solution of this problem, �f �; is a pareto-optimum solution
for the original multiobjective problem. Other pareto-optimal points can be found
by repeating the same procedure for other points on the utopia line.

If the objective functions have local optima, it is possible to have some domi-
nated solutions among the final solutions. Model (6.29) has local optima; therefore,
dominated solutions are expected.

In order to find each pareto-optimum solution, NNCM requires solving a single-
objective optimization problem. Since this algorithm is proposed for solving model
(6.29), in which the gradients of the objectives are not available; a direct optimi-
zation method is required. On the other hand, considering the time consuming
analysis of the model, an evolutionary algorithm may not be a good choice due to
the low rate of convergence. Hence, integrating with Nelder–Mead simplex algo-
rithm would be an appropriate choice we implement here. We now proceed to
formally state the Algorithm 1, as follows:

Fig. 6.4 a A typical bi-criterion space, b normalized criterion space, c a normal constraint
introduced by NNCM and the feasible region of the resulted single-objective problem (min �f2)

6 The Inventory Pollution-Routing Problem Under Uncertainty 101



Algorithm 1 NM

1 Initialization

1:1 Find an initial solution {Qi, Si} (designated as y0) of (6.29) as fol-
lows, and solve corresponding VRP (6.30) considering NNCM. The
initial delivery quantity Qi is usually set as the mean value of the
demand quantity with the initial shortage value (Si) of zero. Calculate
the value of objective function (6.29).

1:2 Determine other vertices y1, …, yn of the initial simplex by dis-
turbing y0 as follows: yi = y0 + λy0Ii, ∀i where λ is a turbulence factor
and Ii is a unit base vector. Project its coordinates on the bounds, if yi

is out of the domain. Solve the corresponding VRP (6.30) and cal-
culate the value of objective function (6.29), respectively.

2 Identify the vertices with the highest function value as yu, the vertices with
the lowest function value as yl, the vertices with the second lowest
function value as ŷ; the center of gravity of the simplex (without yl), and
the corresponding objective function values as Z(yu), Z(yl), Z(ŷ); where
Z is the combined objective functions Z1, Z2 calculated by NNCM.

3 Apply a reflection with respect to yl: yr = ŷ + α(ŷ� yl) and project its
coordinates on the bounds, if yr is out of the domain.

4 Update the simplex. We distinguish between three cases:

(a) If Z(yr) > Z(yu), it means that the reflection created a better solution.
We attempt to get an even better point through expansion of yr:
ye = ŷ + β(yr � ŷ). Project its coordinates on the bounds, if necessary.
Replace yl with ye if Z(ye) > Z(yr); otherwise, replace yl with yr.

(b) If Z(yr) ≥ Z(ŷ), replace yl with yr.
(c) If Z(yr) ≤ Z(yl), it was probably wrong to do the reflection along that

direction. An internal contraction from yl in direction ŷ� yl will be
applied:

yc = ŷþ c yl � ŷ
� �

; project its coordinates on the bounds, if necessary.
Else, if Z(yl) < Z(yr) < Z(ŷ), the selected direction may be right. However,
since all vertices except yl are better than yr, it can be concluded to go
closer to the simplex again. An external contraction from yr will be
applied:

y
0
c ¼ ŷþ c yr � ŷð Þ; project its coordinates on the bounds, if necessary.

After the internal or external contraction, if Z(yc) > Z(yl) (or if Z(y
0
c) > Z

(yl)), replace yl with yc (or y
0
c). Otherwise, a total contraction is performed

since all attempts to get improvement failed; yi = yu + γ (yi − yu) ∀i ≠ u
5 Check convergence. If the distance between yu and any other vertices is

smaller than a certain tolerance, then stop; yu and its corresponding
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vehicle route is the best solution. Otherwise, go to 2. Another choice of
stopping criterion which is more applicable, according to (6.31), is the
difference of Z(yu) − Z(yl) less than a preset tolerance.

6.6.2 Solving the PRP

6.6.2.1 The Proposed Method

When addressing convex MINLPs, two of the classical methods available in the
literature are Generalized Benders Decomposition (GBD) (Geoffrion 1972) and the
Outer-Approximation (OA) algorithm (Duran and Grossmann 1986; Fletcher and
Leyfer 1994). Both methods are iterative coordination techniques that cycle
between the solutions of a relaxed master problem (RMP) and of a sub-problem
(SP). While the former, a mixed integer program (MIP), provides lower bounds for
the optimal solution, the latter, a linear problem (LP), allows the generation of
violated cuts that enrich the RMP at each iteration.

As proved by Duran and Grossman (1986), the lower bounds obtained by the
OA method are greater or equal to the ones attained by the GBD, implying, hence,
in less iterations for convergence. However, these bounds are provided at the cost of
an RMP with a number of variables and constraints larger than the RMP of the
GBD. Consequently, the largest instance size that the OA technique is able to
tackle, is smaller than the largest of the GBD.

Nevertheless, on MINLPs, whenever a model can be reformulated by separating
the nonlinear from the large-scale part via the addition of a family of variables, a
hybrid strategy can be efficiently used.

Moreover, the reformulation suggests two possibilities: on one hand, the solution
of the entire problem can be done by means of GBD, by projecting out all the non-
complicating variables—the large-scale system and the additional variables. On the
other hand, the solution can be achieved by means of an RMP that has the com-
plicating and the additional variables—similar to the OA’s RMP.

The latter separation represents a great advantage since it allows the parallel
solution of the SPs of the OA and BD methods, and hence the addition of both cuts
to the RMP. Further, assuming that the required number of additional variables is
much smaller than the number of variables of the large-scale system, using the RMP
having the complicating and the additional variables may reduce the computational
effort when compared to the standard application of OA or GBD. This enhancement
is due to the combined effect of having improved lower bounds and a reduced
solution overhead of the RMP.

Therefore, despite the chosen sequence of presentation of this article, it is
indifferent to think on solving the OA’s RMP by BD or on tackling the RMP of the
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BD by OA, when the MINLP can be reformulated by separating the nonlinear from
the large-scale part via the addition of a family of variables.

The OA method is a simple but effective technique based on a cutting plane
approach for solving MINLP (Duran and Grossmann 1986; Fletcher and Leyfer
1994). A general survey of the technique can be found at Grossmann and Kravanja
(1995). The method is a coordination technique between an MP and a SP, as
aforementioned.

In order to understand the development of the OA technique for the VRP, a
general overview of the method is required. Given an MINLP in its most basic
algebraic representation, where x and y are the sets of continuous and discrete
variables, respectively, f :Rn�q ! R and g:Rn�q ! Rm are two continuously dif-
ferentiable functions, and X and Y are polyhedral sets:

ðONPÞ

Min f ðx; yÞ
st:
gjðx; yÞ� 0; 8j
y 2 Y; y 2 Zq

x 2 X:

8>>>><
>>>>:

It is possible to reduce this problem to a pure nonlinear program (ONP) by
choosing a fixed vector y = yh, yh ∈ Y, for some iteration h, yielding the following
nonlinear NSP:

ðNSPÞ
Min f ðx; yhÞ
st:
gjðx; yhÞ� 0; 8j
x 2 X:

8>><
>>:

When solved, the above NSP permits to infer the gradient of the functions f (x, y)
and gj(x, y), ∀j at (xh, yh). If no further feasibility constraints are required, then a
straightforward manipulation enables the ONP to be equivalent to an MIP:

ðOLPÞ

Min n
st:

f ðxh; yhÞ þ rf ðxh; yhÞT x� xh

y� yh

 !
� n; 8h

gðxh; yhÞ þ rgðxh; yhÞT x� xh

y� yh

 !
� 0; 8h

y 2 Y; y 2 Zq

x 2 X
n� 0.

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
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Problem OLP is known as the OA’s MP. The two first constraints are responsible
for performing the OA of the objective function and the feasible region, respec-
tively. When functions g(x, y) are proper convex and a constraint qualification holds
for every solution of NSP, then the second constraints are necessary and sufficient
to outer approximate the feasible region.

In the case of model (6.30), the objective function is separable on the linear and
nonlinear terms. Then, before applying OA, we should prove that the continuous
relaxation of the objective function is convex in order to assure optimality and
applicability of the OA approach. Lemma establishes this property.

Lemma The objective function of model (6.30) is convex.

Proof By linearity, it suffices to show that the nonlinear term is convex. Let us first
expand the function then for all vijr we have:

fijrðvijrÞ ¼ wijdijðb=#gÞCfuel v
2
ijr

If f(v) has a second derivative in [v;�v], then a necessary and sufficient condition
for it to be convex on is that the second derivative @2f ðvÞ�@v2 � 0 for all v in [v;�v].

@fijrðvijrÞ
@vijr

¼ 2wijdij b=#gð ÞCfuelvijr

) @2fijrðvijrÞ
@v2ijr

¼ 2wijdij b=#gð ÞCfuel � 0:

This establishes the convexity of this function, completing the proof. h

Given values for the integer decision variables, the OA’s SP finds the optimal
value for the continuous variables, providing a feasible point in order to approxi-
mate the nonlinear objective function (6.30). In OA algorithm, the SP is typically
the algorithmic bottleneck because it requires solving an NLP at each iteration.

We can build the OA’s MP provided that the optimal values for variables x̂h; q̂i
and v̂h at every iteration h is available. The following proposition shows how the
linear approximations of the objective function (6.30) is calculated.

Proposition If v̂h is an optimal solution for the nonlinear of the OA’s SP algorithm
at iteration h, there exists a valid linear OA cut for the objective function (6.30).

Proof From Lemma, f(v) is convex. Given a feasible assignment point of v̂h at
iteration h for ONP, by convexity of f(v) we again set

fijrðvijrÞ ¼ wijdij b=#gð Þ Cfuel v2ijr;

then, the linear approximation provides
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wijdijðb=#gÞ Cfuel ðv̂hijrÞ2 þ 2 v̂ijrðvijr � v̂hijrÞ
� �

� nijr; 8h; i; j; r: ð6:35Þ

and the proof is complete. h

Hence applying the OA algorithm only requires the replacement of nijr; 8i; j; r
on the objective function and the addition of the first constraints of OLP in the form
(6.36). The equivalent formulation of the OA’s MP can then be given as2:

Min
fxijr ;qi;vijrg2X2

P
ði;jÞ2Kþ

P
r2K

wijdij Eijsij/þ aijr w
#g

� �
Cfuelxijr

þ P
ði;jÞ2Kþ

P
r2K

wijdij aij
�
#g

� �
Cfuelqi

þ P
ði;jÞ2Kþ

P
r2K

nijr

st:

ð6:36Þ

constraints of (6.30), (6.35)

nijr � 0; 8i; j; r ð6:37Þ

The OLP’s second constraints are not present in formulation (6.36)–(6.37),
because all of the constraints are linear, thus making unnecessary to perform an OA
of the feasible region.

A sketch of the implemented algorithm is detailed in Algorithm 2, where ε′, UB*

and LB* are the stopping criteria, the objective function value of the current
solution, and the objective function optimal value of the OA’s MP, respectively.

Algorithm 2 NM-OA

0 Initialize with the given values from Algorithm 1
1 Set UB ← +∞, LB ← −∞, h = 1, h = 1
2 If (UB − LB) < ε´, then stop. Terminate a near-optimal solution has been

obtained
3 Solve the OA’s MP (6.36)–(6.37), obtaining LB* and the optimal values

for the variables xh

4 Add an OA cut to the OA’s MP using (6.35)
5 Increase h
6 If h > C then go to 3

2For practical reasons it is assumed that in a vehicle trip, some of parameters remain constant on a
given arc. For instance, we consider that vehicle travel at invariant lower and upper speeds of
v ¼ vij or �v ¼ �vij (km/h) on arc (i, j) with road angle θ = θij carrying a total load, or considering
a = aij and subsequently α to be fixed, among others.
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7 Solve the OA’s MP (6.36)–(6.37), obtaining LB* and the optimal values
for the variables xh

8 Add an OA cut to the OA’s MP using (6.35)
9 UB� ¼Pði;jÞ2Kþ

P
r2K wijdij 	ð Þ Cfuelxhijr þ

P
ði;jÞ2Kþ

P
r2K wijdij 	ð Þ CfuelqiþP

ði;jÞ2Kþ
P

r2K wijdij b=#gð Þ Cfuel ðv̂hijrÞ2
10 If UB* < UBh−1 then set UBh = UB*

11 Increase h and go to 2

At lines 3 and 7 of Algorithm 2, the OA’s MP is solved after relaxing and
imposing the integrality constraints (6.8), respectively. In lines 3 through 6, OA cut
is added to the OA’s MP while a given number of cycles C is not reached. The
solution time of the OA’s MP (line 7) is usually much higher than the SP because of
the integrality constraints. A common strategy to short it is to reduce the number of
MPs solved by embedding the generation of the OA cut in a standard B&C
framework.

6.7 Computational Results

The proposed models have been tested on a large set of instances. Since no
instances are available in the literature for our specific problem formulation, we
have combined two datasets of benchmark instances introduced by Aghezzaf et al.
(2006) and Bektaş and Laporte (2011) for the IPRP. Each instance set is of a
different nature, characterized by the average number of vehicles (minimum number
required based on load), and load. All instances are available for downloading from
www.apollo.management.soton.ac.uk/prplib.htm.

Hereby, we explain the design of these experiments. Experiments were run with
data generated as realistically as possible. Three classes of problems with cities
were generated, where each class includes 10 instances and nodes represent United
Kingdom cities. All experiments were performed with a single vehicle having a
curb weight of three tonnes (implying it could carry goods weighing approximately
the same amount). It is considered that the single-vehicle case in the analyses since
any savings obtained with one vehicle translate into similar savings for several
vehicles. Analyses were carried out for cases where customer demands are initially
generated randomly according to a discrete uniform distribution on the interval
[130, 150].

All experiments were conducted on a server with 2.13 GHz and 3 GB RAM. We
used CPLEX with its default settings as the optimizer to solve the lower level
integer linear programming model and the solver was allowed to run its B&C in a
parallel mode (up to four threads) to enhance the solution process. A common time-
limit of 2 h was imposed on the solution time of all instances.
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To assess the quality of NM-OA algorithm, we have compared our algorithm
with the LP-Metric standard B&B method. In Tables 6.2 and 6.3, we present the
computational results on the instances with 75 and 100 nodes, respectively. Ten
separate runs were performed for each instance as done by B&B, the best of which
is reported. For each instance, a boldface entry indicates a new best-known
solution.

As seen the first column displays the instances. The other columns show the total
cost (TC) in ₤, percentage deterioration in solution quality (Dev.) with respect to the
B&B method, and the optimal speed in km/h (Speed). The rows named Avg., Min
(%) and Max (%) show the average results, as well as minimum and maximum
percentage deviations across all benchmark instances, respectively.

Table 6.2 Computational
results on the 75-node PRP
instances

Instance B&B NM-OA

TC Speed TC Dev. Speed

UK75-1 1213 51.5 1225 −0.98 54.4

UK75-2 1180 51.6 1161 1.64 54.7

UK75-3 1105 53.5 1093 1.10 55.3

UK75-4 1118 52.5 1098 1.82 55.1

UK75-5 1055 52.7 1045 0.96 54.9

UK75-6 1226 52.2 1203 1.91 54.8

UK75-7 1072 51.7 1057 1.42 54.5

UK75-8 1119 53.5 1105 1.27 55.7

UK75-9 1027 52.6 1004 2.29 55.0

UK75-10 1089 53.3 1075 1.30 55.6

UK75-11 1222 51.8 1213 0.74 54.1

UK75-12 1065 53.4 1042 2.21 55.6

UK75-13 1167 51.5 1144 2.01 53.5

UK75-14 1277 51.5 1253 1.92 54.3

UK75-15 1328 51.9 1323 0.38 53.9

UK75-16 1017 54.3 999 1.80 56.0

UK75-17 1297 52.6 1269 2.21 54.2

UK75-18 1118 51.5 1101 1.54 54.2

UK75-19 1057 51.5 1036 2.03 54.2

UK75-20 1275 53.4 1262 1.03 55.2

Ave. 1151 52.4 1135 1.43 54.8

Min (%) −0.98

Max (%) 2.21
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The results clearly show that NM-OA outperforms B&B on all instances in
terms of solution quality. The average cost reduction is 1.43 % for 75-node
instances, for which the minimum and maximum improvements are 0.98 and
2.21 %, respectively. For 100-node instances, the corresponding values are 1.68 %
(average), 0.03 % (minimum) and 2.37 % (maximum). On average, the B&B is
faster on the 75-node instances, however, this difference is less substantial on the
100-node instances.

In order to quantify the added value of changing speeds, we have experimented
with three other versions of the model in which the speed on all arcs is fixed at 70,
85 or 100 km/h. Table 6.4 presents the results of these experiments. The results
suggest that while optimizing speeds with NM-OA yields the best results, using a
fixed speed of 100 km/h deteriorates the solution quality by only 1.12 % on
average. On the other hand, using a fixed speed of 70 km/h deteriorates the solution
value by an average value of 14.01 %.

Table 6.3 Computational
results on the 100-node PRP
instances

Instance B&B NM-OA

TC Speed TC Dev. Speed

UK100-1 2124 62.1 2079 2.10 64.2

UK100-2 2001 67.0 1965 1.76 65.8

UK100-3 2030 56.7 2008 1.06 60.4

UK100-4 1946 56.9 1918 1.45 59.5

UK100-5 2195 65.4 2164 1.41 66.8

UK100-6 1895 57.5 1871 1.26 61.5

UK100-7 2034 65.7 1986 2.34 67.9

UK100-8 2129 57.2 2100 1.35 59.2

UK100-9 1906 59.2 1836 3.71 61.7

UK100-10 2212 58.3 2179 1.51 59.8

UK100-11 1953 64.1 1921 1.66 66.3

UK100-12 2117 61.9 2116 0.03 62.8

UK100-13 2153 57.4 2106 2.17 59.4

UK100-14 2023 57.5 2006 0.83 60.3

UK100-15 2123 59.0 2079 2.04 61.4

UK100-16 2088 57.6 2036 2.50 59.7

UK100-17 2230 56.8 2177 2.37 59.0

UK100-18 2017 63.2 2016 0.05 64.0

UK100-19 1857 66.2 1816 2.23 67.5

UK100-20 2163 58.9 2126 1.68 61.3

Ave. 2060 60.4 2025 1.68 62.4

Min (%) 0.03

Max (%) 2.37
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6.8 Concluding Remarks

This chapter studied a variant IRP model, Inventory Pollution-Routing Problem
(IPRP), in an environment with uncertain demand characteristic. An optimization
model was presented in which a cost-minimization objective function was formu-
lated as a mixed-integer nonlinear programming problem. An appropriate solution
algorithm was developed. The algorithm can be utilized as a useful tool for opti-
mizing both linear and nonlinear Vehicle Routing Problem (VRP) functions. The
effectiveness of the algorithm was investigated through a set of computational tests
comparing its performance with that of the LP-Metric standard B&B approach in
terms of the solution quality.

We observed in this chapter that considering economic and environmental
performance measures in isolation can result in varying solutions. There are
however tradeoff solutions where environmental performance can be significantly
improved at a minimal logistics cost increase. The development and application of

Table 6.4 The effect of the speed

Instance 70 km/h 85 km/h 100 km/h NM-OA

TC Dev. TC Dev. TC Dev. TC

UK100-1 1230 15.52 1119 7.11 1044 0.48 1039

UK100-2 1167 13.00 1056 3.91 1031 1.56 1015

UK100-3 1079 13.59 994 6.27 949 1.75 932

UK100-4 1139 11.86 1040 3.46 1008 0.32 1004

UK100-5 1100 14.23 1019 7.44 952 0.88 944

UK100-6 1211 13.29 1112 5.52 1053 0.23 1050

UK100-7 1090 15.12 1006 7.98 947 2.27 925

UK100-8 1140 16.12 1034 7.47 1000 4.30 957

UK100-9 1072 15.72 975 7.43 912 0.95 903

UK100-10 1151 13.03 1068 6.22 1012 1.08 1001

UK100-11 1210 13.45 1103 5.07 1054 0.69 1047

UK100-12 1036 13.86 954 6.53 893 0.10 892

UK100-13 1167 13.19 1066 4.99 1029 1.59 1013

UK100-14 1236 13.85 1124 5.30 1081 1.54 1064

UK100-15 1264 13.26 1169 6.24 1105 0.80 1096

UK100-16 1079 13.20 992 5.58 939 0.28 936

UK100-17 1267 15.58 1145 6.62 1075 0.57 1069

UK100-18 1104 15.31 1004 6.89 955 2.12 935

UK100-19 1085 13.68 997 6.04 945 0.84 937

UK100-20 1235 13.40 1133 5.61 1071 0.07 1070

Ave. 1153 14.01 1056 6.08 1003 1.12 991

Min (%) 11.86 3.46 0.07

Max (%) 16.12 7.98 4.30
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IPRP models in which carbon emissions are implicitly or explicitly incorporated
will be of increasing importance in the future, especially as tighter environmental
regulations with respect to excessive transport emissions come into force. The
availability of decision tools and optimization models, like what we presented in
this chapter, can help companies and their supply chains more effectively tackle
current and future regulatory mandates, enhance their competitive positioning, and
take further steps towards the development of greener supply chains.
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Appendix

Fuzzy Number

The theory of fuzzy sets introduced by Zadeh (1965) was developed to describe
vagueness and ambiguity in the real world system. Zadeh defined a fuzzy set ~a in a
universe of discourse X as a class of objects with a continuum of grades of
memberships. Such a set is characterized by a membership function l~aðxÞ which
associates with each point x in X a real number in the interval [0,1]. l~aðxÞ represents
the grade of membership of x in ~a: A fuzzy set ~a in the universe of discourse R (set
of real numbers) is called a fuzzy number if it satisfies the following conditions:

(i) ~a is normal i.e. there exists at least one x 2 R such that l~aðxÞ ¼ 1:
(ii) ~a is convex.
(iii) the membership function l~aðxÞ; x 2 R is at least piecewise continuous.

Triangular Fuzzy Number

Triangular fuzzy number (TFN) ð~aÞ is the fuzzy number with the membership
function l~aðxÞ; a continuous mapping: l~aðxÞ : R ! ½0; 1
; where

l~aðxÞ ¼
0 f�1\x\a1g
x�a1
a2�a1

a1 � x\a2
a3�x
a3�a2

a2 � x� a3
0 a3\x\1:

8>><
>>: ð6:38Þ
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α-Cut of a Fuzzy Number

An α-cut of a fuzzy number ~a is defined as a crisp set

aa ¼ x: l~aðxÞ� a; x 2 Rf g where g 0; 1½ 
:

Approximate Value of Triangular Fuzzy Number (TFN)

According to Kaufmann and Gupta (1991), the approximated value of TFN ~a �
a1; a2; a3ð Þ is given by â ¼ 1=4 a1 þ 2a2 þ a3ð Þ:

Algebraic Operation of Fuzzy Numbers

Addition
Let ~a � a1; a2; a3ð Þ and ~b � b1; b2; b3ð Þ be two triangular fuzzy numbers. Using
max-min convolution on fuzzy numbers ~a and ~b the membership function of the
resulting fuzzy number ~a ðþÞ ~b can be obtained as _z¼xþy l~aðxÞ ^ l~bðyÞ

� �
; 8x;y;z 2

R where the symbols ‘^’ and ‘_’ are used for minimum and maximum, respec-
tively. In short we can write ~a ðþÞ ~b ¼ a1; a2; a3ð ÞðþÞ b1; b2; b3ð Þ:
Scalar multiplication For any real constant t,

t~a ¼ ðta1; ta2; ta3Þ t� 0

ðta3; ta2; ta1Þ t\0:

(

Fuzzy Possibility Techniques

Let ~a and ~b be two fuzzy quantities with membership functions l~aðxÞ and l~bðyÞ;
respectively. Then according to Dubois and Prade (1980), Liu and Iwamura
(1998a, b) pos ~a � ~b� � ¼ sup min l~aðxÞ; l~bðyÞ

� �
: x; y 2 R; x � y� �

; where the abbre-
viation ‘pos’ represents possibility and * is any of the relations <, >, =, ≤, ≥.

If ~a and ~b are two fuzzy numbers defined on R and ~u ¼ f ð~a; ~bÞ where f :R�
R ! R is a binary operation then the membership function l~u of ~u is defined as
l~uðuÞ ¼ supfminðl~aðxÞ; l~bðyÞÞ: x; y 2 R and u = f(x,y), ∀u ∈ R}.
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Random Variable

Let L ð¼ðm; r2ÞÞ be a continuous random variable with probability density function
(PDF) fL�

lð Þ whose mean and variance are m and σ2, respectively. Similarly, let

L0 ð¼ðm0; r02ÞÞ be another random variable with pdf fL0�
ðl0Þ: If L and L0 are two

independent random variables, then we have the following algebraic operations:

Addition:

L1½þ
L2 ¼ ðm1; r
2
1Þ½þ
 ðm2; r

2
2Þ ¼ ðm1 þ m2; r

2
1 þ r22Þ:

Here, according to sum-product convolution Lð¼ Lþ L0Þ is a random variable with
the same type of pdf f�L lð Þ ¼ ðRR f ðl� l0Þf 0ðl0Þdl0 with mean m02ð¼m2 þ m0Þ and

variance r02ð¼ r2 þ r02Þ:
Scalar multiplication:

tL ¼ ðtm; t2r2Þ: Here tL and L have the same type of PDF.

Hybrid Number (Kaufmann and Gupta 1991)

Assume ~Að¼ ð~A; LÞÞ is a hybrid number. Here the couple (~A; L) represents the
addition to a fuzzy number with a random variable without altering the charac-
teristic of each one and without decreasing the amount of available information
where Ã is a fuzzy number and L is the random variable with density function fL�

lð Þ:
Let ~Að¼ ð~A; LÞÞ and ~A

0ð¼ ð~A0; L0ÞÞ be two hybrid numbers in R where fL�
lð Þ and

fL�
0 ðl0Þ are the pdfs of L and L′, respectively. So a hybrid convolution for addition

will be defined as ð~A; LÞ � ð~A0; L0Þ ¼ ð~A þð Þ~A0; L½þ
L0Þ ¼ ð~A;LÞ; where (+) repre-
sents the max-min convolution for addition of fuzzy subsets and [+] represents the
sum-product convolution for addition of random variables. We denote the couple
ð~A;LÞ by the symbol ~AðþÞ0L:

So,l~A1ðþÞ~A2
ðzÞ ¼ _z¼xþyðl~A1

ðxÞ ^ l~A2
ðyÞÞ; 8x; y; z 2 R and f ðlÞ ¼ RR f1ðl� l2Þ

f2ðl2Þdl2 or
R
R f1ðl1Þf2ðl� l1Þdl1:

Note 1 A fuzzy number is a special case of a hybrid number if ~A ¼ ð~A; 0Þ; where 0
is the trivial random variable with the following probabilities:

PðlÞ ¼ 1; l ¼ 0

¼ 0 ; l 6¼ 0:
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Note 2 A random variable is also a special case of a hybrid number if ~L ¼ ~0; L
� �

;

where ~0 is the trivial fuzzy number with membership function

l~0ðxÞ ¼ 1; x ¼ 0

¼ 0 ; x 6¼ 0:

Note 3 ~0 ¼ ð0; 0Þ is the neutral for addition of hybrid numbers.
If ~u1 is a fuzzy cost, u2 is a random cost and u3 is a fixed cost then the total cost can
be expressed as

~u1½þ
u2½þ
u3 ¼ ð~u1; 0Þ ½þ
ð0; u2Þ ½þ
ð0; u3Þ ¼ ð~u1; u2ðþÞ0u3Þ ¼ ð~u1ðþÞu3; u2Þ :
ð6:39Þ

We can consider the fixed number like a sum of two parts u3 ¼ u03 þ u003 and
write for (6.39)

~u1½þ
u2½þ
u3 ¼ ð~u1½þ
u03; u2½þ
u003Þ: ð6:40Þ

The mathematical expectation of a hybrid number is defined as follows.
A function ϕ(x) in R that is nonnegative and monotonically increasing is:

8x1; x2 2 R :

ðx1 [ x2Þ ) ðuðx2Þ�uðx1ÞÞ :
ð6:41Þ

For a closed interval of R, ½a1a; a2a
 we have:

½/ða1aÞ;/ða2aÞ
  R ð6:42Þ

and for l ∈ R:

½/ða1a þ lÞ;/ða2a þ lÞ
  R: ð6:43Þ

If l is the value of the random variable L, the lower and upper bounds of (6.43)
depend only on l for a given level α. The mathematical expectation for each bound
is now computed:

E½/ða1a þ lÞ;/ða2a þ lÞ
 ¼
Zl2
l1

/ða1a þ lÞ � f ðlÞdl;
Zl2
l1

/ða2a þ lÞ � f ðlÞdl

2
64

3
75: ð6:44Þ

Theorem (Kaufmann and Gupta 1991). The membership function of the mathe-
matical expectation of a hybrid number ð~A; LÞ is the membership of ~A shifted by the
mathematical expectation of L
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Proof Using the intervals of confidence of level α:

Eað~A½þ
LÞ ¼
Zl2
l1

ða1a þ lÞ � f ðlÞdl;
Zl2
l1

ða2a þ lÞ � f ðlÞdl

2
64

3
75

¼ a1a �
Zl2
l1

f ðlÞdl þ
Zl2
l1

l � f ðlÞdl; a2a �
Zl2
l1

f ðlÞdl þ
Zl2
l1

l � f ðlÞdl

2
64

3
75

¼ a1a þ EðlÞ ; a2a þ EðlÞ �
ð6:45Þ

Hence, in a hybrid sum, if the random variables satisfy their random expectation,
they will have the same effect as ordinary numbers, shifting the sum of fuzzy
numbers. h

Using the notation ð~A; LÞ ¼ ~AðþÞ0L; where ~A is a triangular fuzzy number, the
following example is illustrated.

Example Let ~A1 ¼ ð3; 5; 9ÞðþÞ0ð6; 1:2Þ and ~A2 ¼ ð6; 7; 10ÞðþÞ0ð7; 1:8Þ be two
hybrid numbers, then

~A1 � ~A2 ¼ ½ð3; 5; 9ÞðþÞ0ð6; 1:2Þ
 � ½ð6; 7; 10ÞðþÞ0ð7; 1:8Þ

¼ ½ð9; 11; 15ÞðþÞ0ð0; 1:2Þ
 � ½ð13; 14; 17ÞðþÞ0ð0; 1:8Þ

¼ ð22; 25; 32ÞðþÞ0ð0; 3:0Þ:
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