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Abstract. Growing network complexity necessitates tools and method-
ologies to automate network troubleshooting. In this paper, we follow
a crowd-sourcing trend, and argue for the need to deploy measurement
probes at end-user devices and gateways, which can be under the control
of the users or the ISP.

Depending on the amount of information available to the probes (e.g.,
ISP topology), we formalize the network troubleshooting task as either
a clustering or a classification problem, that we solve with an algorithm
that (i) achieves perfect classification under the assumption of a strate-
gic selection of probes (e.g., assisted by an ISP) and (ii) operates blindly
with respect to the network performance metrics, of which we consider
delay and bandwidth in this paper.

While previous work on network troubleshooting privileges a more
theoretical vs practical approaches, our workflow balances both aspects
as (i) we conduct a set of controlled experiments with a rigorous and
reproducible methodology, (ii) on an emulator that we thoroughly cali-
brate, (iii) contrasting experimental results affected by real-world noise
with expected results from a probabilistic model.

1 Introduction

Nowadays, broadband Internet access is vital. Many people rely on online appli-
cations in their homes to watch TV, make VoIP calls, and interact with each
other through social media and emails. Unfortunately, dynamic network condi-
tions such as device failures and congested links can affect the network perfor-
mance and cause disruptions (e.g. frozen video, poor VoIP quality).

Currently, troubleshooting performance disruptions is complex and ad hoc
due to the presence of different applications, network protocols, and administra-
tive domains. Typically, troubleshooting starts with a user call to the ISP help
desk. However, the intervention of the ISP technician is useless if the root cause
lies outside of the ISP network, which possibly includes the home network of the
very same user – hence, for the ISP, it would be valuable to extend its reach
beyond the home gateway by instrumenting experiments directly from end-user
devices. While (tech savvy) users can be assisted in their troubleshooting efforts
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by software tools such as [4,6,17,19] which automate a number of useful mea-
surements, these tools do not incorporate network tomography techniques [9,21]
to identify the root causes of network disruptions (e.g., faulty links). Addition-
ally, these tools are generally ISP network-agnostic, hence, they would benefit
from cooperation with the ISP.

In this paper, we propose a practical methodology to automate the identifi-
cation of faulty links in the access network based on end-to-end measurements.
Since the devices participating in the troubleshooting task can be either under
the control of the end-user or the ISP, the knowledge of the ISP topology is not
always available for the measurement probes. Consequently, we formalize the
troubleshooting task as either a clustering or a classification problem – where
respectively end-users are able to assess the severity of the fault, or ISPs are
able to identify the faulty link.

This paper makes several contributions. While our troubleshooting model
(Sec. 3), algorithm (Sec. 4) and software implementation (Sec. 5) are interesting
per se, we believe our major contribution is the rigour of the evaluation method-
ology (Sec. 6), which overcomes state of the art limits (Sec. 2). Indeed, on one
hand, previous practical troubleshooting efforts [4,6,16,17,19] are valuable in
terms of domain knowledge and engineering, but lack theoretical foundations
and rigorous verification. On the other hand, prior analytical efforts are cast
on solid theoretic ground [9,21], but their validation is either simplistic (e.g.
simulations) or lacks ground truth (e.g. PlanetLab).

In this work, we take the best of both worlds, as we (i) propose a practical
methodology for network troubleshooting with an open source implementation;
(ii) provide a model of the expected fault detection probability that we contrast
with experimental results; (iii) use an experimental approach where we emulate
controlled network conditions with Mininet [13]; (iv) perform a calibration of
the emulation setup, an often neglected albeit mandatory task; (v) in spirit with
Mininet and the TMA community, we further make all our source code available
for the scientific community at [1,2].

2 Related Work

Our work complements prior network troubleshooting efforts [3,4,6–8,16–19,23]
that we overview in this section. Without attempting at a full-blown taxon-
omy, we may divide the above work as having a more practical [3,4,6,16,17,19]
or theoretic[7,8,18,23] approach. While most work, including ours, uses active
measurements [4,6–8,17–19,23], there are exceptions that use passive measure-
ments [16] or logs[3]. In terms of network segment, previous work focuses on
home networks [17], enterprise networks [3], and backbone networks [5,9,18].
Some studies do not target a network segment in particular[7,8,23] and remain
at a more abstract level. In this paper, we focus on home and access networks.

Our methodology is based solely on end-to-end measurements to localize the
set of links that are the most likely root cause of performance degradations.
Closest to our work is the large body of work in network tomography which
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exploits the similarity of end-to-end network performance from a source to mul-
tiple receivers due to common paths to infer properties of internal network links
such as network outages[18], delays[23], and packet losses [8]. However, these
studies make simplifying assumptions that do not hold in real deployments [9,15]
such as the use of multicast [23]. In addition, the proposed algorithms are com-
putationally expensive for networks of reasonable scale and their accuracy is
affected by the scale and the topology of the network [9].

In this work, we instead present a practical, general framework to identify
faulty links that we instantiate on two specific metrics: delays as in [23] and
bottleneck bandwidth, which is notoriously more difficult to measure. When full
topological information is not available, our algorithm performs a clustering of
measurement probes as in binary network tomography [21], where the inference
problem is simplified by separating links (in our case probes) into good vs failed,
instead of estimating the values of the link performance metrics.

Additionally, one major problem of the related literature is the realism of
ground truth data to evaluate the accuracy of the algorithms. Even in practical
approaches, ground truth in the form of user tickets [3] or user feedback[16] is
extremely rare, so that the absence of ground truth is commonplace [4,6,17,19].
Theoretic work builds ground truth with simulations [8], or using syslogs and
SNMP data in operational networks [18]. On the one hand, although simula-
tions simplify the control over failure location and duration, they do not provide
realistic settings. On the other hand, the ground truth is either completely miss-
ing in real operational networks (such as PlanetLab [21]) or partially missing in
testbeds [15,18], where network events outside of the control of researchers can
happen. Our setup employs controlled emulation through Mininet [13] which is
(relatively) fast to implement, uses real code (including kernel stack and our
software), and allows testing on fairly large scale topologies. This setup allows
full control on the number, duration, and location of network problems. Addi-
tionally, by running the full network stack, Mininet keeps the real world noise
in the underlying measurements, thus providing a more challenging validation
environment with respect to simulation. As a side effect of this choice, the Net-
Probes software that we release as open source [2] has also undergone a signifi-
cant amount of experimental validation. Most importantly, any peer researcher
is capable of repeating our experiments in order to validate our results, compare
their approach to ours, and extend this work.

3 Problem Statement and Model

Considering an ISP network, and focusing for the sake of simplicity on its access
tree, faults can occur at multiple levels in the access network hierarchy. The
ability to launch measurements between arbitrary pairs of devices in the same
access network would significantly enhance the diagnosis of network performance
disruptions. In this work we consider two use-cases: User-managed probes and
ISP-managed probes. User-managed probes run only on end-user devices and
lack topology information. In contrast, ISP-managed probes can reside in home
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Fig. 1. Synoptic of the network scenario and model notation

gateways, in special locations inside the ISP network, and can also be available
as “apps” on user devices (e.g., smartphones and laptops). We address both use-
cases with the same algorithm: clustering in the user-scenario separates measure-
ment probes into two sets (i.e., un/affected sets), whereas an additional mapping
in the ISP-scenario allows to pinpoint the root cause link.

We formalize the problem and introduce the notation used in this paper with
the help of Fig. 1, which depicts a binary access network tree. The troubleshoot-
ing probe software runs in the leaf nodes of the tree. However, the ISP can strate-
gically place probes inside the network (e.g. probe 0 in the picture attached to
the root). Our algorithm runs continuously in the background to gather a base-
line of network performance, and troubleshooting is triggered by the user (e.g.,
upon experiencing a degradation of network performance) or automatically by
a change point detection procedure on some relevant metrics (outside the scope
of this work).

For the sake of clarity, let us assume that probe 1 launches a troubleshooting
task. In this context, we can safely assume that the root cause is located some-
where in the path from the user device or gateway towards the Internet (links
�4, �3, �2, �1 in bold in Fig. 1). In order to identify which among �4, .., �1 is the
root cause of the fault, probe 1 requires sending probing traffic to a number M of
the overall available probes N . Let us denote, for convenience, by D+ = logk(N)
the maximum depth (i.e., height) of a k-ary tree and by Di the set of probes
Di =

(
kD+−i, kD+−i+1

]
. The set Di includes probes whose shortest path from

probe 1 passes through �i, but does not pass through �i−1. In the access tree,
whenever a link �f (located at depth f in the tree) is faulty, all probes whose
shortest path from the diagnostic probe (probe 1 in our example) passes through
�f will also experience the problem, unlike probes that are reachable through
�f+1: it follows that the troubleshooting algorithm requires probes from both
sets Df and Df+1 to infer with certainty that the fault is located at �f . For a
k-ary tree, the minimum number of probes that allows to identify the faulty link
irrespectively of the depth f of the fault is M = O(logk(N)) – i.e., one probe in
each of the {Di}logk(N)

i=1 strata suffices to accurately pinpoint the root cause.
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Such a strategic probe selection requires either topology knowledge or the
assistance of a cooperating server managed by the ISP (e.g., an IETF ALTO[24]
server). However, this strategy is not feasible with user-managed probes, in which
probe selection is either uniformly random or based on publicly available infor-
mation such as IP addresses. It is thus important to assess the detection proba-
bility of a naive random selection.

Let us denote by p−(f, α) the probability that a random selection includes a
probe that is useful to locate a fault at depth f ∈ [1,D+], with a probe budget
α = M/N . The deeper is the fault location, the smaller is the number of probes
available to identify the faulty link. As the size of Df exponentially decreases
as f increases (card(Df ) = kD+−f ), we expect the random selection strategy to
easily locate faults at small depths (close to the root) and fail at large depths
(close to the leaves) where a stratified selection is necessary to sample probes
in the smaller set Df . The probability that none of the M vantage points falls
into Df decreases exponentially fast with the size of Df , i.e., (1 − α)card(Df ).
Consequently, the probability to sample at least1 one probe in Df is:

p−(f, α) = 1 − (1 − α)k(D+−f)
(1)

Expression (1) is a lower bound on the expected detection probability with ran-
dom selection. When a random subset of probes does not contain any probe in
Df , it is still possible to correctly guess the root cause link. Here, there will be
ambiguity because multiple links are equally likely to be root cause candidates.
At any depth d, ambiguity will be limited to the links located between the fault
and the root of the tree (i.e., �d, .., �1): since, at depth d, ambiguity involves d
links, the probability of a correct guess is 1/d. To compute the average proba-
bility of a correct guess E[pguess], we have to account for the relative frequency
of the different ambiguity cases, which for depth d happen proportionally to
kd/klogk(N) = kd/N ,

E[pguess] =
logk(N)∑

d=1

1
d

kd

N
=

1
N

logk(N)∑

d=1

kd

d
(2)

We can then compute the expected discriminative power of a random selection,
expressed in terms of the probability to correctly identify a fault at depth f as:

E[p] = p−(f, α) +
(
1 − p−(f, α)

)
E[pguess] (3)

where the first term accounts for the proportion of random selection that is
structurally equivalent to a stratified selection (so that the root cause link can
be found with probability 1), and the second term accounts for the proportion of
1 Note that this probability would be better expressed with the hypergeometric distri-

bution, that models sampling without replacement; however the formulation reported
here differ by less than 1% from the hypergeometric results, and further allows to
express the loss of discriminative power due to random selection in a more intuitive
way.
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random selection able to pinpoint the faulty link by luck (thus with probability
E[pguess]). By plugging (1) and (2) into (3) we get:

E[p] = 1 − (1 − α)k(D+−f)
+

[
1 − (1 − (1 − α)k(D+−f)

)
]( 1

N

logk(N)∑

d=1

kd

d

)
(4)

= 1 − (1 − α)k(D+−f)
(
1 − 1

N

logk(N)∑

d=1

kd

d

)
(5)

Notice that (5) has structurally the form 1 − ploss. The term ploss can be inter-
preted as the loss of discriminative power with respect to a perfect strategic
selection that always achieves correct detection. Clearly, this model is simplistic
as it does not consider all combinatorial aspects which could be used to obtain
finer-grained expectations at each depth of the tree. Yet, the main purpose of
the model is to serve as a reality check for our experimental results.

4 Troubleshooting Algorithm

We treat both clustering and classification problems with a single algorithm,
whose pseudocode is reported in Algorithm 1. Assuming the algorithm runs at a
source node s, for any performance metric Q (e.g., delay, bandwidth), s collects
baseline statistics Q0(p) with low-rate active measurements towards other peers
p. When the troubleshooting is triggered, s iteratively selects up to R batches
of B of probes, so that R · B represents a tuneable probing budget. Selection is
made according to a selection policy Sp, based on a probe score S(p). The probe
selection is iterative because S(p) can vary, and thus the next batch is selected
based on the results of the previous batch.

At each step, upon doing B measurements, we compute, for each probe p,
Q(p) − Q0(p) and add it to the set P : K-means clustering partitions P into P+

and P−. Two points are worth stressing: first, the algorithm does not associate
any semantic to clusters: e.g., a node in P+ can be affected by large delay,
whereas a node in P− can be affected by a bottleneck bandwidth. Second, in
case of a single failure, it can be expected that probes in one of the two clusters
exhibit Q(p) − Q0(p) ≈ 0, so P+ and P− should be interpreted as a syntactical
difference. Once the probe budget is exhausted (or once other stop criteria, that
we don’t mention for the sake of simplicity, are met), the algorithm either returns
P+ and P− (user-managed case, line 12), or continues with the mapping. When
no clear partition can be established, only one set is returned.

To map probes in P+ and P− to links, the algorithm requires the knowledge
of the links � in the shortest path SP (s, p). The score S(�) of � ∈ SP (s, p)
is incremented by +1 for p ∈ P+ and decremented by -1 for p ∈ P−. As a
consequence of metric-agnosis, the algorithm needs to know if links with the
largest (smallest) S(�) scores are to be pinpointed, which is done according to a
link selection policy S�.
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We experiment with Sp ∈ {random, |IP (s) − IP (p)|,balance} and combi-
nations of the above. Random selection is useful as a baseline and to com-
pare with the model. We additionally consider probe selection policies that
are more complex to model such as the absolute distance in the IP space, as
well as a policy that attempts at equating the size of P+ and P−, by select-
ing an IP that is close to IPs in the small cluster, and far from IPs in the
large cluster (exact definition omitted due to lack of space). Moreover, we con-
sider S� ∈ {random,proportional, argmax}. The näıve random method makes an
informed guess by selecting one of the D+ links in the path �D+, . . . , �1 to the
root (success probability 1/D+ , much larger than the 1/2(kD+ −1) = 1/2(N−1)
in case of a random guess over all links). We also select links proportionally to
their score (proportional policy), or only the link with the largest (smallest)
score (argmax policy).

Algorithm 1. Detection algorithm at s

1: Get a baseline Q0(p) for metric Q(p), ∀p � Initialization, over long timescale
2: for round ∈ [1..R] do � When triggered upon user/ISP demand
3: select a batch of B probes according to a probe selection policy Sp, based on

score S(p)
4: for p ∈ B do
5: perform active measurements with p to get Q(p) − Q0(p)
6: add probe p to probed set P
7: partition P into P+ and P−, by K-means clustering on Q(p) − Q0(p)
8: end for
9: update probe scores S(p), ∀p

10: end for
11: if topology is not available then � Clustering results
12: return P+ and P−

13: else � Classification results
14: for probe p ∈ P do
15: for link � ∈ shortest path SP (s, p) do
16: S(�) ← S(�) + (p ∈ P+) − (p ∈ P−)
17: end for
18: end for
19: return link � according to a link selection strategy S� based on scores S(�)
20: end if

5 Calibration of the Emulation Environment

Before running a full-fledged measurement campaign, it is mandatory to perform
a rigorous calibration phase, yet this phase is often neglected [22]. In this work,
we follow an experimental approach using emulation in Mininet, to control the
duration and the location of the faults. However, it is unclear how well state-
of-the-art delay and bandwidth measurement techniques perform in Mininet. In
order to disambiguate inconsistencies due to Mininet from measurement errors
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intrinsic to measurements techniques, we perform calibration experiments for a
set of delay (expectedly easy) and bandwidth (notoriously difficult) measure-
ment tools and assess their accuracy in Mininet. In this section, we first briefly
describe Mininet and NetProbes, the diagnosis software we develop for this work
(Sec. 5.1), then present the calibration results (Sec. 5.2).

5.1 Software Tools

Mininet [13]. Mininet is an open source emulator which creates a virtual net-
work of end-hosts, links, and OpenFlow virtual switches in a single Linux kernel
and supports experiments with almost arbitrary network topologies. Mininet
hosts execute code in real-time, exchange real network traffic, and behave simi-
larly to deployed hardware. All the software developed for a virtual Mininet net-
work can run in hardware networks and be shared with others to reproduce the
experiments. Mininet provides the functional and timing realism of testbeds in
addition to the flexibility and full control of simulators. Experimenters configure
packet forwarding at the switches with OpenFlow and link network characteris-
tics (e.g., delay and bandwidth) with the Linux Traffic Control (tc). Reproducing
experiments from tier-1 conference papers 2 indicates that results from Mininet
and from testbeds are in agreement.

NetProbes [2]. We design NetProbes, a distributed software written in Python
3.x that runs on end-hosts and executes a set of user-defined active measurement
tests. NetProbes agents deployed at end-user devices and gateways form an over-
lay. They perform a set of periodic measurements to monitor the paths in the
overlay and collect a baseline network performance. When the user experiences
network performance issues, the NetProbes agent running at the user device
launches a troubleshooting task to assess the severity of the performance issue
and the location of the faulty link. It is worth pointing out that the set of mea-
surement tasks that can be performed by NetProbes agents (e.g., HTTP or DNS
requests, multicast UDP tests, etc.) is far larger than what we consider within
the scope of this paper, and that the software is available at[2].

5.2 Delay and Bandwidth Calibration

Setup. We build a Mininet virtual network with the topology depicted in Fig. 1
on a server with four cores and 24 GB of RAM. We run the selected tools on
probes 1 and 2. In our delay experiments, we impose five different delay values
(0 ms, 20 ms, 100 ms, 200 ms, 1000 ms) on �3 located at depth d = 3 in the
tree. At each delay level, probes 1 and 2 perform 50 measurements of round trip
delays to probes 7 and 6 respectively (250 measurements in total for each pair of
probes). We use Mininet processes through the Python API to issue ping and
traceroute to measure RTTs (we test traceroute with UDP, UDP Lite, TCP,
and ICMP).
2 Stanford’s CS224 blog: http://reproducingnetworkresearch.wordpress.com

http://reproducingnetworkresearch.wordpress.com
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Similarly, in the bandwidth experiments, we vary the link capacity of �3
(100 Mbps, 10 Mbps, 1 Mbps) under three different traffic shapers, namely the
hierarchical token bucket (HTB), the token bucket filter (TBF), and the hierar-
chical fair service curve (HFSC) and we make 20 measurements of the available
bandwidth between probes 1 and 7 and probes 2 and 6 (120 in total for each
value of the link capacity). There is a plethora of measurement tools designed by
the research community to estimate the available bandwidth[11]. In this work we
limitedly report the calibration of three popular tools (Abing [20], ASSOLO [10],
and IGI [14]) which are characterised by low intrusiveness: Abing and IGI infer
the available bandwidth based on the dispersion of packet pairs measured at the
receiver. ASSOLO sends a variable bit-rate stream with exponentially spaced
packets and calculates the available bandwidth from the delays at the receiver
side. We compare the performance of the three bandwidth estimation tools in
the absence of cross traffic and under the three traffic shapers mentioned earlier.

Delay. We expect delay measurements to be flawless. Yet we observe that the
first packet sent between any two hosts exhibits a large delay variance: this
is due to the fact that the corresponding entry for the flow is missing in the
virtual switch and thus requires data exchange between the OpenFlow controller
and the virtual switch, whereas the forwarding entry is ready for subsequent
packets. We thus do the baseline Q0(p) over multiple packets (50 for delay) to
mitigate this phenomenon, so that the impact of the first packet delay is factored
out in the warmup phase. Doing a baseline and subtracting it from each delay
measurement enables an accurate study of the effect of the imposed delay value
on the accuracy of the measurement technique. Further results are shown in
Fig. 2. All techniques exhibit a time evolution similar to ICMP ping whose
experiment is depicted in Fig. 2(a). We report the PDF of the measurement error
(i.e., the difference between the measured and the enforced RTT) in Fig. 2(b).
Results for traceroute with various protocols are similar: we observe that, for
all the delay measurement techniques, the bulk of the error distribution is less
than 1 ms (with outliers not shown up to 10ms). Moreover, we note that using
ICMP brings the absolute error to less than 0.1 ms for both traceroute and
ping. From this calibration phase, we select ICMP ping to measure delay: as the
measurement noise is insignificant, errors in the classification outcome should be
solely attributed to our troubleshooting algorithm.

Capacity. Fig. 3 reports the evolution of the estimated available bandwidth as a
function of three link capacity values for the cross product of {Abing, ASSOLO,
IGI}×{HTB, TBF, HFSC}. We stress that while comparison of bandwidth esti-
mation tools under the same experimental conditions has already been studied,
we are not aware of any study jointly considering bandwidth estimation and
bandwidth shaping, especially since many bandwidth measurement tools rely
on effects of cross-trafic to estimate available bandwidth. As before, we use a
warmup phase to factor out the extra delay incurred by the first packet. We can
see that Abing systematically fails in estimating the available bandwidth under
HTB and TBF shaping, while the estimation is correct with HFSC. Similarly,
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ASSOLO fails in estimating 1 Mbps available bandwidth under all shapers, and
additionally fails the estimation of 10Mbps under TBF. In contrast, IGI succeeds
in accurately tracking changes of available bandwidth at �3, although outliers are
still possible (see IGI+TBF). A downside of IGI is that the measurements last
longer than measurements with Abing or ASSOLO. These results and tradeoffs
are interesting and require future attention. However, this is beyond the scope
of this work. The most important takeaway is that measurement errors of such
magnitude would invalidate all experiments, showing once more the importance
of this calibration phase. We additionally gather that the IGI+HFSC combina-
tion offers the most accurate estimates of available bandwidth. As accurate input
is a necessary condition for trobuleshooting success, we use this combination in
the remainder of this paper.

6 Experimental Results

We now evaluate the quality of our clustering and classification for various probe
budgets (namely 10, 20 and 50 probes) for faults (e.g., doubling delay or halving
bandwidth) at controlled depths of the tree. All the scripts to reproduce the
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experiments are available at [1]. We first compare experimental results in a cali-
brated Mininet environment (including real-world noise), with those expected by
a probabilistic model (neglecting noise) (Sec. 6.1). We next perform a sensitivity
analysis by varying topological properties, probe selection policies Sp, and link
selection policies S� (Sec. 6.2).

6.1 Performance at a Glance

We perform experiments over a binary tree scenario (k = 2) with depth D+ = 9
and N = 512 leaf nodes. In this case, a strategic probe selection would need
M/N = 9/512 probes (α = 1.75%) to ensure perfect classification, but we con-
sider larger budget M = {10, 20, 50} in our experiments. Unless otherwise stated,
we use a random probe selection Sp and an argmax link selection S� policies. We
first evaluate the clustering methodology by comparing the two sets of affected
and unaffected probes obtained from the algorithm with our ground truth, using
the well-known rand index[12], which takes value in [0, 1] ⊂ , with 1 indicating
that the data clusters are exactly the same. Since we have full control over the
location of the fault, we build our ground truth by assigning the label “affected”
to all the available probes (under a given budget constraint) for which the path
to the diagnostic probe passes through the faulty link. The remaining probes
constitute the unaffected set. Fig. 4-(a) shows that, provided measurements are
accurate, the clustering methodology successfully identifies the set of probes
whose paths from the diagnostic software experience significant network per-
formance disruptions (and as a consequence accurately identifies nodes in the
complementary set of unaffected probes). For budgets of 10, 20 and 50 probes,
the rand index shows perfect match between the ground truth and the clustering
output in the case of delay measurement. Results degrade significantly instead
for bandwidth measurement: we point out that the loss of accuracy is not tied
to our algorithm, but rather to measurements that are input to it, which was
partly expected and confirms that calibration is a necessary, but unfortunately
not sufficient, step.

Abstracting from limits in the measurement techniques, these result indicates
that in practice our clustering methodology works well in assessing the impact
of a faulty link without requiring knowledge of the network topology. Yet, root
cause link identification is a clearly more challenging and important objective,
which we analyze in the following by restricting our attention to delay exper-
iments: as the classification step is a deterministic mapping from the clusters,
as long as the measurement error remains small, the results of the classification
task are not affected by the specific metric under investigation. We expect classi-
fication results to apply at large, as opposite to merely illustrating the algorithm
performance under delay measurement (although they are not representative of
bottleneck localization as per Fig. 4-(a)).

We next show that the experimental and modelling results are in agreement,
with a random probe selection policy and a budget of M = 50 probes, which cor-
responds to α = 9.75%. For each fault depth f , we perform 10 experiments by ran-
domizing the set of destination probes. Results, as reported in Fig. 4-(b), depict
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Fig. 5. Sensitivity analysis: Impact of network topology properties

the correct classification probability of the model vs the experiments. Recall that
equation (1) gives a lower bound p−(f, α) to the experimental results, while (3)
models the average expected detection probability E[p]. We consider α = 9.75%,
to directly compare with experimental results, as well as α = 1.75%, to assess the
loss of discriminative power from a strategic selection, that could achieve perfect
classification in this setting, to a randomselection (denotedwithploss in the figure).

6.2 Sensitivity Analysis

Impact of Topology. We study the impact of the network topology on the
classification performance. We use two trees with 512 probes (i.e. leaves) each.
The first tree has a depth d = 3 and a fanout k = 8 while the second tree
has a depth d = 9 and a fanout k = 2. Fig. 5 reports the correct detection
probability of the faulty link as a function of the depth of the injected fault
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Fig. 6. Sensitivity analysis: Impact of selection policies

in the tree, using variance bars. As expected, results indicate that the correct
detection probability decreases as the fault depth increases3. Thus, when the
root cause link is located close to the leaves of the tree, it is harder to randomly
sample another probe which is also affected by the fault: we thus need a smarter
probe selection strategy to improve the link classification performance.

Impact of the Probe Selection Policy Sp. We consider policies based on
IP-distance (IP), cluster-size (balance), and a linear combination of both. We
average the results over all the depths of the binary tree and contrast them with
a random selection policy. Unfortunately, our attempts are so far unsuccessful as
shown in Fig. 6(a), where the discriminative power is roughly the same over all
probe selection policies. This is due to the fact that the current set of metrics we
consider to select probes do not encode useful information to bias the selection.
The absence of a notion of net masks and hierarchy with IP-distance for example
makes it hard to extract information about how topologically close/far probes
are from each other. An obvious improvement would be to consider the IP-TTL
field. However, since Mininet uses virtual switches to construct the network,
the IP-TTL field remains unchanged. As a consequence, we could not conduct
experiments with this field and we leave it as future work.

Impact of the Link Selection Policy S�. Finally, we use three different
policies to select the faulty links: S� ∈ {random,proportional, argmax}. Results,
averaged over all depths of the binary tree, are reported in Fig. 6. The plot is
futher annotated with the gain factor over the random selection: while propor-
tional selection brings a constant improvement of about 40%, the argmax policy
brings considerable gains (in excess of a factor 4) which grow with the probe
budget.
3 We use variance, instead of stdev, to reduce visual noise: thus the increase for k=8

at depth d = 3 is only apparent, as the corresponding standard deviation bars are
large.
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7 Conclusions and future work

In this work, we present a troubleshooting algorithm to diagnose network per-
formance disruptions in the home and access networks. We apply a clustering
methodology to evaluate the severity of the performance issue and leverage the
knowledge of the access network topology to identify the root cause link with
a correct classification probability of 70% using 10% of the available probes.
We follow an experimental approach and use an emulated environment based
on Mininet to validate our algorithm. Our choice of Mininet is guided by our
requirements to have flexibility in designing the experiments, full control over
the injected faults, and realistic network settings. We contrast the experimental
results with an analytical model that computes the expected correct classifica-
tion probability under a random probe selection policy. We also evaluate the
impact of topology, probe and link selection policies on the algorithm.

Our proposed solution is a first step towards the goal of having reproducible
network troubleshooting algorithms – for which we make all our code publicly
available. Our future work will focus on extending the algorithm to different
network topologies and to diversify the set of network performance metrics, to
verify its generality. Also, while simplicity was one of the goals of this paper,
and allowed to compare analytical vs experimental results, our future work will
address more practical issues, such as how our design can be integrated and
complement troubleshooting systems already deployed by ISPs.
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