
Moritz Steiner
Pere Barlet-Ros
Olivier Bonaventure (Eds.)

 123

LN
CS

 9
05

3

7th International Workshop, TMA 2015
Barcelona, Spain, April 21–24, 2015
Proceedings

Traffic Monitoring
and Analysis

Lecture Notes in Computer Science 9053

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Moritz Steiner · Pere Barlet-Ros
Olivier Bonaventure (Eds.)

Traffic Monitoring
and Analysis
7th International Workshop, TMA 2015
Barcelona, Spain, April 21–24, 2015
Proceedings

ABC

Editors
Moritz Steiner
Akamai Technologies
San Francisco
California
USA

Pere Barlet-Ros
Universitat Politècnica de Catalunya/Talaia

Networks
Barcelona
Spain

Olivier Bonaventure
Université catholique de Louvain
Louvain-la-Neuve
Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-17171-5 ISBN 978-3-319-17172-2 (eBook)
DOI 10.1007/978-3-319-17172-2

Library of Congress Control Number: 2015935613

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

Springer Cham Heidelberg New York Dordrecht London
c© IFIP International Federation for Information Processing 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The seventh Traffic Monitoring and Analysis (TMA) workshop took place in Barcelona,
Spain. TMA initially started as a workshop associated to conferences. Since 2014, TMA
is an independent event which is colocated with a PhD school that provides training to
PhD students working on Internet measurements. This coupling is important because it
allows the PhD students who participate in the PhD school to interact with researchers
who present recent results in the field of their PhD. This interaction will not only be
beneficial for the PhD students, but also for the researchers who will have to expose
their results to fresh minds.

Traditionally, TMA has been particularly focused on the validation (or invalidation)
of previous works in the field of network measurements. This year, TMA’s Call for
Papers broadened its scope to all the aspects related to network monitoring and Inter-
net measurements, covering the entire network stack up to the application layer, with
special emphasis on the measurement of cloud services, content distribution networks,
social networks, mobile applications, and data centers, but also including more tradi-
tional measurement topics, such as traffic classification, anomaly detection, network
performance evaluation, and traffic analysis.

As a result, this year’s technical program includes papers on various network mea-
surements topics, including measurement tools and methods, mobile and wireless, secu-
rity, web, and new protocols. This year 54 papers were submitted to the TMA workshop.

The final program, composed of 16 papers, is the result of a detailed review process
that has provided feedback to all authors of submitted papers. Each paper received at
least three reviews and almost all the reviews were written by members of the Tech-
nical Program Committee (TPC) that was composed of 34 researchers with expertise
in the workshop topics. The reviews were complemented by online discussions during
one week among all the reviewers for each paper and a teleconference was organized
to discuss the remaining papers. At the end of this process, authors received detailed
feedback and 16 papers covering a broad range of network measurement topics were
selected. The accepted papers were chosen based on their technical merits without any
logistical constraint on the total number of papers.

The final program contains papers from both academia and industry. While many
accepted papers were written by European researchers, there are also papers from Asia
and North America.

Thank you all for attending the workshop. We hope you enjoyed the scientific pro-
gram and had fruitful interactions with other researchers.

February 2015 Moritz Steiner
Pere Barlet-Ros

Olivier Bonaventure

Organization

Workshop Chairs

Pere Barlet-Ros Universitat Politècnica de Catalunya
BarcelonaTech/Talaia Networks, Spain

Olivier Bonaventure Université catholique de Louvain, Belgium
Moritz Steiner Akamai Technologies, USA

Steering Committee

Ernst Biersack Eurecom, France
Alberto Dainotti CAIDA, USA
Xenofontas Dimitropoulos University of Crete/FORTH, Greece
Jordi Domingo-Pascual Universitat Politècnica de Catalunya

BarcelonaTech, Spain
Christian Kreibich ICSI/ICIR, USA
Marco Mellia Politecnico di Torino, Italy
Philippe Owezarski CNRS, France
Maria Papadopouli University of Crete/FORTH, Greece
Antonio Pescape Università degli Studi di Napoli Federico II, Italy
Aiko Pras University of Twente, The Netherlands
Fabio Ricciato Austrian Institute of Technology, Austria
Yuval Shavitt Tel Aviv University, Israel
Steve Uhlig Queen Mary University of London, UK

PhD School Program

Renata Teixeira Inria, France

Local Organization

Pere Barlet-Ros Universitat Politècnica de Catalunya
BarcelonaTech/Talaia Networks, Spain

Josep Solé-Pareta Universitat Politècnica de Catalunya
BarcelonaTech, Spain

VIII Organization

Technical Program Committee

Bernhard Ager ETH Zurich, Switzerland
Chadi Barakat Inria Sophia Antipolis, France
Damiano Carra University of Verona, Italy
Kenjiro Cho IIJ, Japan
David Choffnes Northeastern University, USA
Italo Cunha Universidade Federal de Minas Gerais, Brazil
Alberto Dainotti CAIDA, USA
Jordi Domingo-Pascual Universitat Politècnica de Catalunya

BarcelonaTech, Spain
Benoit Donnet Université de Liège, Belgium
Constantine Dovrolis GeorgiaTech, USA
Nick Duffield Texas A&M University, USA
Jeff Erman AT&T, USA
Alessandro Finamore Politecnico di Torino, Italy
Hamed Haddadi Queen Mary University of London, UK/Qatar

Computing Research Institute, Qatar
Dali Kaafar NICTA, Australia
Ramana Kompella Google, USA
Pietro Michiardi Eurecom, France
Andrew Moore University of Cambridge, UK
Philippe Owezarski CNRS, France
Maria Papadopouli University of Crete/FORTH, Greece
Antonio Pescape Università degli Studi di Napoli Federico II, Italy
Fabio Ricciato Austrian Institute of Technology, Austria
Matthew Roughan University of Adelaide, Australia
Josep Sanjuas Talaia Networks, Spain
Fabian Schneider NEC Laboratories Europe, Germany
Georgios Smaragdakis MIT/Technische Universität Berlin/Akamai

Technologies, USA
Anna Sperotto University of Twente, The Netherlands
Gareth Tyson Queen Mary University of London, UK
Narseo Vallina-Rodriguez ICSI/ICIR, USA
Matteo Varvello Telefónica, Spain
Tanja Zseby Technische Universität Wien, Austria

TMA Sponsors

Organization IX

PhD School Supporters

Contents

Measurement Tools and Methods

Selective Capping of Packet Payloads for Network Analysis
and Management . 3

Víctor Uceda, Miguel Rodríguez, Javier Ramos, José Luis García-Dorado,
and Javier Aracil

Youtube Revisited: On the Importance of Correct Measurement Methodology . . . 17
Ossi Karkulahti and Jussi Kangasharju

Zen and the Art of Network Troubleshooting: A Hands
on Experimental Study . 31

François Espinet, Diana Joumblatt, and Dario Rossi

Mobile and Wireless

Vivisecting WhatsApp in Cellular Networks: Servers, Flows,
and Quality of Experience . 49

Pierdomenico Fiadino, Mirko Schiavone, and Pedro Casas

Device-Specific Traffic Characterization for Root Cause Analysis
in Cellular Networks . 64

Peter Romirer-Maierhofer, Mirko Schiavone, and Alessandro D’Alconzo

Tracking Middleboxes in the Mobile World with TraceboxAndroid 79
Valentin Thirion, Korian Edeline, and Benoit Donnet

Web

Assessing Affinity Between Users and CDN Sites 95
Xun Fan, Ethan Katz-Bassett, and John Heidemann

The Online Tracking Horde: A View from Passive Measurements 111
Hassan Metwalley, Stefano Traverso, Marco Mellia,
Stanislav Miskovic, and Mario Baldi

SFMap: Inferring Services over EncryptedWeb Flows Using Dynamical
Domain Name Graphs . 126

Tatsuya Mori, Takeru Inoue, Akihiro Shimoda, Kazumichi Sato,
Keisuke Ishibashi, and Shigeki Goto

Security

Monitoring Internet Censorship with UBICA . 143
Giuseppe Aceto, Alessio Botta, Antonio Pescapè, Nick Feamster,
M. Faheem Awan, Tahir Ahmad, and Saad Qaisar

How Dangerous Is Internet Scanning? A Measurement Study
of the Aftermath of an Internet-Wide Scan . 158

Elias Raftopoulos, Eduard Glatz, Xenofontas Dimitropoulos,
and Alberto Dainotti

Investigating the Nature of Routing Anomalies: Closing in on Subprefix
Hijacking Attacks . 173

Johann Schlamp, Ralph Holz, Oliver Gasser, Andreas Korsten,
Quentin Jacquemart, Georg Carle, and Ernst W. Biersack

The Abandoned Side of the Internet: Hijacking Internet Resources
When Domain Names Expire . 188

Johann Schlamp, Josef Gustafsson, Matthias Wählisch,
Thomas C. Schmidt, and Georg Carle

New Protocols

DoS Amplification Attacks – Protocol-Agnostic Detection of Service
Abuse in Amplifier Networks. 205

Timm Böttger, Lothar Braun, Oliver Gasser, Felix von Eye,
Helmut Reiser, and Georg Carle

Measuring DANE TLSA Deployment . 219
Liang Zhu, Duane Wessels, Allison Mankin, and John Heidemann

A First Look at Real Multipath TCP Traffic . 233
Benjamin Hesmans, Hoang Tran-Viet, Ramin Sadre,
and Olivier Bonaventure

Author Index . 247

XII Contents

Measurement Tools and Methods

Selective Capping of Packet Payloads
for Network Analysis and Management

Vı́ctor Uceda, Miguel Rodŕıguez, Javier Ramos, José Luis Garćıa-Dorado(B),
and Javier Aracil

High Performance Computing and Networking, Universidad Autónoma de Madrid,
Madrid, Spain

{vic.uceda,miguel.rodriguez01}@estudiante.uam.es,
{javier.ramos,jl.garcia,javier.aracil}@uam.es

Abstract. Both network managers and analysts appreciate the impor-
tance of network traces as a mechanism to understand traffic behavior,
detect anomalies and evaluate performance in a forensic manner, among
other applications. Unfortunately, the process of network capture and
storage has become a challenge given the ever-increasing network speeds.
In this scenario, we intend to make packets thinner to reduce both write
speed and storage requirements on hard-drives and further reduce com-
putational burden of packet analysis. To this end, we propose to remove
the payload on those packets that hardly could be interpreted afterwards.
Essentially, binary packets from unknown protocols fall into this cate-
gory. On the other hand, binary packets from well-known protocols and
protocols with some ASCII data are fully captured as potentially a net-
work analyst may desire to inspect them. We have named this approach
as selective capping, which has been implemented and integrated in a
high-speed network driver as an attempt to make its operation faster
and more transparent to upper layers. Its results are promising as it
achieves multi-Gb/s rates in different scenarios, which could be further
improved exploiting novel low-level hardware-software tunings to meet
the fastest networks’ rates.

1 Introduction

Traffic monitoring at multi-Gb/s rates poses significant challenges not only for
traffic capturing but also for traffic storage and processing. On the one hand, traf-
fic capture at high-speed requires either ad-hoc network drivers that incorporate
sophisticated prefetching, core affinity and memory mapping techniques [3] or
specifically tailored network interface cards based on network processor devices
or FPGA [1]. On the other hand, once the packets have been captured, they
must be swiftly transferred to hard disk at the same pace that they are received
from the network.

A most important issue in traffic dumping to hard disk is packet size, the
larger the packet the more prone the traffic losses and the higher the storage
investments. To circumvent this issue, the packet payload is capped to a prede-
fined snaplen size. The aim is to reduce the offered write throughput to the hard
c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 3–16, 2015.
DOI: 10.1007/978-3-319-17172-2 1

4 V. Uceda et al.

disk, which is the hard disk performance figure of merit and bottleneck. Needless
to say, a large share of packets contain a payload that is useless for subsequent
analysis, for example encrypted payload packets. Precisely, the motivation of this
research is to drop useless payload packets, by selectively capping their length to
the mere packet header. The benefit of this approach is threefold: first, the hard
disk bottleneck is alleviated, since the write speed requirements decrease. Sec-
ond, we reduce the storage space, which is very large for a high speed network,
even if the capture duration is small. Third, the computational burden required
to analyze capped packets is lower, for example the RAM memory requirements
of NIDS applications, such as Snort, are less stringent. We call our data thin-
ning technique selective capping. In more detail, we propose marking a packet
payload of interest according to two conditions.

First, if it is binary from a well-known protocol –i.e., if it can be interpreted by
a traffic dissector. To do so, one has to identify such network services beforehand
and only apply selective capping on such services, while leaving the rest untouched
–e.g., using flow director filters [5] on port numbers or IP address ranges.

A packet is also interesting if it contains human readable data (more formally,
ASCII, UTF-8, UTF-EBCDIC or equivalent) –which can be interpreted by a net-
work analyst or by the application designer. The human readable, ASCII in what
follows, case entails a harder work as it embraces not only all-ASCII protocols
–e.g, SIP–, but protocols with both binary and ASCII interleaved parts. This is
the case of HTTP for example, in which binary content (pictures, videos, etc.)
is interleaved with ASCII text. Such binary content is not useful for the most
performance analysis such as web profiling or HTTP server response times. Our
findings show that for typical HTTP traffic up to 60% of the traffic is made up by
binary content. Consequently, if the binary content could be removed on-the-fly
then the hard disk input rate would be largely reduced. Similarly to HTTP there
is a number of popular protocols that merge binary and ASCII which span all
Internet activities. Banking networks leverage protocols such as FIX. Further-
more, routing and login protocols such as Radius and IS-IS, monitoring-oriented
protocols like IPFIX and database management systems such as TNS are exam-
ples of this behavior. In the case of encrypted protocols such as HTTPS, all
packet payloads are useless which motivates even more to discard them. How-
ever, it is worth remarking that encryption is not strongly present in enterprise
scenarios, where monitoring is performed inside the local network and traffic is
unencrypted.

Detection of ASCII packets should be as simple as inspecting the whole
payload and checking if every single byte belongs to a given ASCII alphabet.
However such alphabets typically encompass close to half possible byte values.
As an example, ASCII encodes 128 specified characters into 7-bit binary integers
which makes a random byte to fall into the alphabet range one out of two times.
In this light, the following two mechanisms are proposed. The first one seeks
for a set of consecutive ASCII characters on the payload, namely a run, as an
approximation to the idea of a word in the natural language. The second one is
based on the percentage of bytes candidates to be classified as ASCII. We have

Selective Capping of Packet Payloads for Network Analysis and Management 5

elaborated on these two mechanisms and we present a formal description of the
false positive (FP) rate of both. Specifically, we show how to parameterize them
to achieve a given error/FP target.

The contributions of this paper go beyond the proposal and evaluation of the
selective capping algorithm. The novel algorithm is integrated in a high-speed
network driver and the results show multi-Gb/s network-to-hard disk sustain-
able throughput, whereas the state of the art analysis reveals that no selective
capping algorithms have been proposed to date but session-level or flow-record
approaches. Those approaches require constructing sessions or flows which is in
itself a challenging task on multi-Gb/s scenarios [1].

The rest of this section is devoted to the thorough definition of the problem
and the related work on data thinning techniques for traffic captures. Section 2
provides a description of the two proposed methods, while Section 3 presents
the architecture and implementation details of a traffic sniffer equipped with
selective capping. Section 4 presents the results and discussion, both in terms of
compression and speed. Finally, Section 5 outlines the conclusions that can be
drawn from this paper and the future work lines.

1.1 Problem Statement

We define a packet payload to be of interest if:

– It is entirely-binary from a well-known service.
– It contains ASCII data –note that we are using the term ASCII as a synonym

of human-readable data regardless its codification.

The rationale behind these two conditions is that the payload of a packet
(over transport layer) is of interest only if it can be interpreted afterwards. In
other words, network analysts may only found of interest those payloads that
can be interpreted and eventually turn out useful in their tasks of understand-
ing traffic behavior and its dynamics, detect anomalies or evaluate performance
issues among others. Going back to the banking network example, one may be
interested in reading error messages from certain transactions, which may be
written in plain ASCII in the application-level payload.

The first condition is met by applying network and transport layers filters
over traffic. The second one requires identifying ASCII traffic. After inspecting a
diverse set of traces that includes academic networks and private networks from
banks and large enterprises [10], we have found that the Internet carries ASCII
data in diverse ways as so are protocols, services and scenarios on the Internet.
Figure 1 shows the taxonomy of the findings. The figure depicts as black the
ASCII part of each packet of a given class of protocols while the white part
represents binary bytes. Let us elaborate in each of these classes:

– Class I: It represents purely binary protocols. RTP and encrypted protocols
such as SSL or SSH are examples.

6 V. Uceda et al.

ASCII

Packets

C
la

ss
es

 o
f

A
SC

II
 p

ro
to

co
ls

Binary

Class I

Class II

Class III

Class IV

Class V

Class VI

Fig. 1. Taxonomy of classes of protocols according to how ASCII data is carried

– Class II: Some protocols exchange ASCII data at the beginning of a connec-
tion, typically signaling, and after some sort of content is sent. This content
is usually binary such as pictures, documents, or any other object. Often pro-
tocols in this class are grouped into the term flow oriented. Non-persistent
HTTP is an example of this. Given its importance on Internet aggregates,
the amount of bytes that can be saved by cutting the binary part of the
connections is promising.

– Class III: As third class, we classify protocols where each packet carries an
ASCII header along with binary content. They are often referred as packet
oriented, Universal Plug-and-Play protocol (UPnP) is a significant example.

– Class IV: We define as the fourth class protocols that interleave ASCII and
binary content with short runs. In this way, typically most of the packets
have a binary and ASCII part and only a small fraction would be either
all-ASCII or all-binary. DNS and Skinny Call Control Protocol (SCCP) are
examples of this. Especially representative of this pattern are TLV-based
(Type-Length-Value) protocols. In these protocols, typically, a binary code
states the meaning of the subsequent values, often, ASCII values. Other
significant protocols such as Lightweight Directory Access Protocol (LDAP),
SNMP, Remote Authentication Dial-In User Service (RADIUS), IS-IS and
H.323 among others follow this functionality. In this case, the problem cannot
be addresses by keeping only the ASCII bytes of a given packet, but also it
is necessary to capture the surrounding binary values which give meaning to
the ASCII data. To do so we decided to mark the entire packet of interest as a
faster approach to rule out several parts of a packet. In addition, once a piece
of TLV behavior is found, it is likely that there will be more occurrences.

Selective Capping of Packet Payloads for Network Analysis and Management 7

– Class V: Similar to the previous class but more frequent, we have found
protocols that interleave both binary and ASCII data but with long runs
of each of them. The most significant example is HTTP-persistent given its
contribution on Internet aggregates volumes. According to the measurements
in [12] about 60% of all HTTP requests are persistent and they represent
more than 30% of the total transferred volume over HTTP. In addition, there
are a number of both management and banking protocols that follow this
pattern. Such protocols are of paramount importance for network analysts
on bank networks as some of them are close protocols and reverse engineer-
ing is required to carry any study on them. An important example of them
is Oracle’s TNS (Transparent Network Substrate) used by databases’ trans-
fers which encompass a request –which typically includes ASCII data– and a
bulk data transfer for requested objects –a file, a list of records, for example.
Other examples are proprietary bank transfers’ accounting protocols or com-
munication protocols such as Link Layer Discovery Protocol (LLDP) among
others.

– Class VI: Finally, this class states for all-ASCII protocols, for example SIP.

As conclusion, the problem we are facing is on the one hand to deploy hard-
ware filters to forward well-known service to hard-drive; and on the other hand,
in the rest of the traffic to detect those packets that include ASCII data bearing
in mind the diversity of ways ASCII data is carried.

1.2 State of the Art

How to reduce the amount of stored traffic while keeping its most significant
pieces of information has received notable attention by the research community
given the importance of traffic traces on monitoring tasks [6,7,11,13]. The com-
mon factor of these novel works is that they first capture traffic and construct
its respective flows. Then they decide what packets or fraction of payloads to
rule out or how to apply compressing mechanisms on the headers and payloads
of a given flow.

More specifically, the authors in [7] developed a system, named Time Machine,
that rules out the last packets of the flows –i.e., packets beyond a arbitrarily-fixed
threshold. The rationale behind this proposal is that such packets are often less dis-
criminant for monitoring purposes (e.g., the signaling tends to be at the beginning
of communications). This, together with the heavy-tail nature of the Internet flow
sizes whereby a small fraction of flows account for most of the traffic, makes that by
fixing a maximum flow size of 15 KB the required capacity translates into less than
10% of the original size, while keeping records for most of the flows. Afterwards,
the authors in [6] extended the set of possible thresholds to the maximum number
of bytes per packet and packets per flow with similar purposes and motivation.

An alternative approach to the problem is to compress packet headers or data.
In this sense, the authors in [2] exploited the particularities of network traffic
to overcome the compressing capacity of standard tools over traffic headers –
such as zip or rar. Specifically, traffic follows a very specific format where some

8 V. Uceda et al.

fields appear in the same position and with similarity (e.g., in a capture IP
addresses tend to share a prefix and appear in the same positions). Similarly,
the authors in [13] leveraged dictionary-based mechanism to reduce workload on
both HTTP and DNS traffic. Strings found in such protocols are hash-mapped
to numbers and replaced in the capture traces previously indexed in a database.
This makes that the trace cannot be accessed directly by typical packet-oriented
libraries such as libpcap nor libpcap-like flavors [3]. This is not necessarily an
inconvenient in terms of both accessibility and storage capacity, but becomes a
challenge in performance terms.

Precisely in this regard, the authors in [11] focused its work on high-speed
networks, that is, multi-Gb/s networks. They exploit the modern NICs’ capacity
to configure hardware filters on-the-fly. Their proposal, Scap, constructs flows
similarly to [7] but once the maximum flow size is exceeded, a NIC filter is
raised to rule out subsequent packets of the corresponding flow. This makes
packets that were going to be rule out at application layer be ruled out before
in the network stack thus saving resources. As a result, Scap is able to deal with
traffic at ranges between 2.2 and 5.5 Gb/s depending on traffic patterns and
configuration. On the downside, note that discarding packets at the lowest level is
often an inconvenient as such discarded packets (or at least their headers) may be
of interest for monitoring purposes. Additionally, real-time filter reconfiguration
becomes a challenge as setting a hardware filter takes 55 µs [5] while the inter-
arrival packet can be as small as 68 ns in 10 GbE networks.

We propose to make the decision if the payload of a given packet can be
potentially of interest and consequently, entirely captured, as a first step to
any other tasks, which are normally resource-intensive. In this way, instead of
capping the number of packets or its payload up to an arbitrarily threshold,
the byte number reduction is attained by storing only those bytes that have a
chance to be analyzed in the future. As mentioned before, we have termed such
processed as selective capping and its explained throughout this paper.

With the aim of applying selective capping as soon as possible in the network
stack and, importantly, in a transparent way to users, we have entrusted the
network driver layer with this task. This implies a carefully low-level hardware-
software interaction, but on the upside, a possible way to achieve multi-Gb/s
rates in real traffic traces. Additionally note that by modifying driver level, we
ensure that all the above-introduced stream-oriented mechanisms still remain
valid. That is, after our thinning process, upper-layer proposals can be further
applied for additional storage capacity cuts.

2 Detection of ASCII Traffic

Prior to ASCII traffic detection, we must realize ASCII standard and other
equivalent text representations span a large fraction of the total 256 possible
values for a byte. ASCII codification serves well as a generalization for human-
readable data, as UTF-8 is the most used encoding over the Internet, and it uses
ASCII representation for Latin characters. In particular, in ASCII alphabet such

Selective Capping of Packet Payloads for Network Analysis and Management 9

a fraction accounts for about 40%. Consequently, there are significant chances
a random byte falls into the ASCII range regardless it represents an ASCII
character or not.

In this scenario, we make two observations that we have translated into
two different methods. Essentially, ASCII characters tend to be consecutive one
another as they often represent words in natural language. We have named the
method based on this observation as ASCII-Runs threshold. On the other hand,
we note that is very unlikely that a large set of ASCII characters fall by chance
in a randomly-payload packet. In this way, we parameterize the possibility of
such a random packet containing more than a given fraction of ASCII bytes by
chance. We refer this method as to ASCII-Percentage threshold.

Let us detail these two methods, explain how to parameterize them and
provide a final proposal combination of both.

2.1 ASCII-Runs Threshold

In most of the text-based protocols the ASCII characters represent words –often
keywords in English such as GET or POST in HTTP case. In a genuine ASCII
packet, ASCII will not be randomly distributed, but there will be runs –i.e.,
ASCII characters located consecutively. Based on this observation, we propose a
first method to seek runs of ASCII bytes in packet payload. If at least one signif-
icant run is found, we mark such packet as ASCII and otherwise as binary. We
formally define a significant run as such a run whose length ensures a parameter-
ized maximum error with respect to a randomly payload distribution in a packet.
In other words, this error is the False Positive (FP) ratio, i.e., the probability of
a random payload packet to be marked as ASCII when it is binary.

Let us consider a binary packet formed by random bytes. If the byte values
are uniformly distributed through 0 to 255, the probability of a byte correspond-
ing to an ASCII character will be around 0.4 (p). Then, error can be modeled
using a Markov chain with L+1 states, each of it corresponding to have read an
ASCII run of L consecutive characters, being then the last state absorbent. The
stochastic matrix for this Markov chain is:

ML =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − p p 0 0 · · · 0
1 − p 0 p 0 · · · 0
1 − p 0 0 p · · · 0

...
...

...
...

. . .
...

1 − p 0 0 0 · · · p
0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The i-th row (being zero-row the top one) represents the state where i ASCII
characters have been read consecutively. The probability of finding such a run
of length L can be computed by observing this Markov chain evolution in n
steps, being n the length of the packet. The probability of finding an ASCII
run of at least length L is then located on the upper right corner of (ML)n.
By knowing this probability we can state the minimum ASCII run required to

10 V. Uceda et al.

0 500 1000 1500
2

4

6

8

10

12

14

16

Packet size

A
SC

II
 r

un
 le

ng
th

Error <0.1%
Error <1%
Error <5%
Error <10%

Fig. 2. Required run lengths for several error thresholds

have a pre-parameterized error probability –in the FP sense, likely a low error
probability.

Figure 2 shows the required run length for different error threshold and packet
sizes. As an example, a false positive ratio of one packet out of 1000, assuming
1000-byte packets entails that a run of 14 consecutive characters that fall into
ASCII alphabet range should be found.

2.2 ASCII-Percentage Threshold

The ASCII-Runs threshold method fits with most of the classes showed in the
taxonomy section. However, in TLV protocols chances are that the value of a
given field is below the required run length. Moreover, it is unlikely that a random
payload packet contains many characters falling into ASCII range. Thus, this
method works out ASCII characters percentages, and then decides to mark a
packet as ASCII contrasting such a percentage with a significant threshold. To
calculate this significant threshold, let us consider a packet of length n as a
sequence of bytes each with probability p of being 1 (which would correspond to
an ASCII character) and probability 1-p of being 0 (some binary value). With
this information we can compute the error rate according to the packet length.

Such an error follows a binomial distribution with parameters n and p. Its
CDF F (x) represents the probability of having less than x ASCII characters on
a packet of length n. By studying the quantiles of this distribution, we work
out the minimum ASCII percentage required to guarantee an error threshold
on classifying packets. Such percentages depend on the packet length. Figure 3
shows the required ASCII percentages for different packet sizes depending on
the chosen error threshold.

Selective Capping of Packet Payloads for Network Analysis and Management 11

0 500 1000 1500

40

50

60

70

80

90

100

Packet size

%
 o

f
A

SC
II

 r
eq

ui
re

d

Error <0.1%
Error <1%
Error <10%

Fig. 3. Required ASCII percentages for several error thresholds

2.3 Multiple Thresholds

Both proposed methods are complementary and they are tailored to different
ways ASCII data is distributed over packet payloads. Therefore, we propose to
apply both of them and mark a packet as ASCII if any of the methods mark the
packet as ASCII. The error threshold in this combination will be at least smaller
than the largest one –e.g., if the error thresholds are 0.1 and 1%, respectively,
the effective error will be strictly smaller than 1%. This motivates to apply them
with the same error threshold –e.g., a low figure of 0.1%. As both are simple and
based on similar principles –to seek bytes falling in a given range–, executing
both concurrently does not may cause extra overhead on the system, being the
slowest which sets the pace.

Note that in our approach, False Negative (FN) cases span those packets that
being semantically ASCII have not met our decision thresholds. Such a semantic
approach should be based on an in-depth and empirically characterization of
run lengths and percentage occurrence of ASCII data in each protocol of each
described class –Section 1.1.

3 Selective Capping Sniffer Architecture

The selective capping sniffer follows a two-step architecture. The first step con-
sists on splitting incoming traffic into two categories by means of hardware filters
such as Intel Flow Director [5]. Traffic is divided into well-known (in the pro-
tocol/port sense) binary traffic that network managers do want to keep, and
other traffic over which managers want to cap to transport header or keep in its
own if it is ASCII related. Each of these traffic sets is redirected to a different
RSS (Receive-Side Scaling) driver queue. The second step is to analyze at driver
level the capping candidate traffic and mark packets accordingly. Finally, both
capped and uncapped packets are delivered to user level to perform the traffic
storage. Figure 4 illustrates the architecture of the proposed system.

12 V. Uceda et al.

RX
ring

User LevelDriver Level

Selective
capping
Module

Storage

NIC

Flow
Director
Filter

Traffic

RX
ring

Fig. 4. Selective capping traffic sniffer architecture

Our implementation leverages HPCAP [8] as store engine. Over this base,
we have added as a driver level module our implementation of the two capping
methods explained previously. Note that neither flow analysis nor DPI can be
performed due to time restrictions at this stage, and only simple per-packet
operations can be carried out. On the upside, this would provide user level with
a transparent thinning process in addition to save the resources that capped
bytes do not use along network stack. Furthermore, this also allows for a higher
capture throughput.

Actually, this implementation must be extremely efficient in order to cope
with multi-Gb/s rates and beyond. Algorithm 1 presents it in pseudocode.

First, both ASCII runs threshold and ASCII percentage threshold are cal-
culated offline using the models described in the previous section to provide a
given error (e.g., 0.1%). After, the algorithm traverses all the payload of each
packet checking if each byte falls into the printable ASCII value range.

When a run of ASCII characters of length equal to the run threshold is found,
the packet is marked for full-content storage. Similarly, if the packet contains a
percentage of ASCII characters which is equal to or larger than the percentage
threshold, the packet is marked for full-content storage.

Finally, if none of the conditions are met the packet is capped to its transport
header length, and only such data is preserved for subsequent analysis. Impor-
tantly in terms of performance, to carry out the capping to header, our imple-
mentation exploits the advanced packet-descriptor features that modern Intel’s
NICs offer. Such descriptors provide the protocol stack and protocol header
lengths coded in NIC hardware.

After this processing, packets are delivered to user level. Then, an application
stores the captured traffic along with a PCAP-like header on a high-performance
store solution for subsequent access thereof (e.g., [8]). Alternatively, traffic can
be first forwarded to an on-the-fly analysis system [9] or a general-purpose com-
pression system –e.g., gzip, which is specially effective over ASCII content.

Selective Capping of Packet Payloads for Network Analysis and Management 13

Algorithm 1. Selective Capping Algorithm
runASCII=0
totalASCII=0
for all bytes in payload do

if MIN PRINTABLE ASCII<= byte value <=MAX PRINTABLE ASCII then
runASCII++
totalASCII+=100
if runASCII >= ASCII RUNS THRESHOLD then

Do not cap packet and process next one
end if

else
runASCII=0

end if
end for
if totalASCII >= ASCII PERCENTAGE THRESHOLD ∗ packet length then

Do not cap packet and process next one
end if
Cap packet and process next one

Table 1. Evaluation traces summary

Trace
Avg packet
size (bytes)

Number of
packets

Info.

1 164 1000000
DNS 34%, HTTP 21%, SSH 20%
Dropbox 15%, Others 10%

2 786 1000000 HTTP 100%

3 927 4718531
HTTP 43%, HTTPS 13%, SSH 25%
Banking protocol 17%, DNS 2%

4 Results and Discussions

We have evaluated both performance and compression ratio using three different
traces. To test the performance, the traces have been replayed at different speeds
above the original rate in order to explore the limits of our proposal. To test
the compression rate, the traces have been replayed at the original rate and the
number of capped bytes and packets have been counted. For evaluation purposes,
the used flow-director filter redirects all traffic to the selective capping module.

Table 1 shows the most relevant information for each used trace. Trace 1
has been captured in an academic link and contains HTTP, DNS, SSH and
Dropbox traffic. Trace 2 contains only HTTP traffic captured from the enterprise
network of an important insurance company. Trace 3 has been captured in a
large commercial bank network and contains HTTP, HTTPS, SSH, proprietary
banking protocols and DNS.

The reception evaluation has been performed on an server with 128 GB of
DDR4 memory and two 6-core Intel Xeon processors running at 2.30 GHz. The
server motherboard model is Supermicro X9DR3-F. Additionally, to perform the

14 V. Uceda et al.

Table 2. Compression ratio

Trace Compression ratio % of capped packets

1 4.28 45

2 3.33 74

3 3.24 81

packet reception, a 10 Gb/s NIC based on an Intel 82599 chip has been used.
This NIC is connected using a PCIe 3.0 slot. On the sender side, traffic has been
replayed using another Intel 82599 card and a custom software traffic generator
based on PacketShader [4] API. Such generator is able to replay PCAP traces
at variable rates.

4.1 Compression Ratio

First the compression level of our proposal is evaluated. To this end, the afore-
mentioned traces have been replayed at original rates while capturing and storing
into disk. After the replay is complete, the original and captured traces are com-
pared in order to obtain the compression ratio. Table 2 shows the compression
ratio values in terms of stored bytes and the amount of capped packets. As it can
be observed in Trace 1, almost every packet is capped providing a compression
ratio of 4.28. In the case of Trace 2, only 74% of the packets are capped obtaining
a compression ratio of 3.33. Finally, in Trace 3 81% of the packets have been
capped obtaining a compression ratio of 3.24.

It is worth remarking that although not all the traffic in Trace 3 is HTTP,
a large amount of packets have been capped including bank protocols which
provides a good idea of the applicability of the capping techniques in both com-
mercial and academic networks where heterogeneous traffic is found.

4.2 Performance Evaluation

Once the compression ratio has been assessed, the aforementioned traces have
been replayed at different rates until lossless packet capture and disk storage is
achieved, in order to test the performance of the proposed method. The duration
of each experiment is 30 minutes. Table 3 shows the average packet capture
throughput including our capping methodology for each 30-minute experiment.
For the sake of completeness also observed standard deviation is reported.

Table 3. Average capping throughput

Trace
Avg. throughput (Gb/s)

± Std. Dev.
Avg. packet rate (Kpps)

± Std. Dev.

1 3.1 ± 0.13 2221 ± 100

2 2.5 ± 0.08 856 ± 29

3 3.2 ± 0.15 428 ± 21

Selective Capping of Packet Payloads for Network Analysis and Management 15

As shown, our proposal achieves multi-gigabit capture rates. Depending on
the payload and packet-rate of each trace different capture rates are achieved.
For example, if a trace contains a large amount of binary packets, the workload
of the system is greater as each single byte of the binary packet has to be checked
before packet is capped.

On the other hand if a trace contains a large amount of text packets, only a
small byte-run must be checked before packet is fully captured. An example of
this case is Trace 1 where 45% of the packets are text packets. Trace 2 contains
a large amount of binary packets and presents a significant average packet rate
which results in a reduced performance. Despite the large amount of binary
packets present in Trace 3, the average packet rate is smaller than Trace 2 which
results in better performance as fewer packets per second must be checked.

Finally, regarding memory consumption, our solution makes use of a static
1GB kernel packet buffer to receive and analyze incoming traffic.

5 Conclusions and Future Work

We have presented a solution for selective packet capping –on-the-fly– to reduce
the amount of stored data in multi-Gb/s networks. Our proposal focuses on
keeping the payload of those packets that are worth interpreting by network
managers and analysts. As a consequence our proposal stores both well-known
(in the protocol/port sense) binary protocols and ASCII protocols. The latter
has received most of our attention given the difficulties to address it in light of
the protocol-diverse and high-speed nature of current business applications. To
this end, two methods for ASCII packet identification have been implemented at
driver level by modifying a novel high-performance capture engine. The imple-
mentation of selective capping allows us to provide a clean and transparent
mechanism to cap packets without user-level interaction/tuning. Performance
and compression ratio have been assessed using both academic and commer-
cial traffic obtaining compression ratios between 3 and 4. On the other hand,
the performance results achieve remarkable multi-Gb/s rates –ranging from 2.5
Gb/s to 3.2 Gb/s– which do not suffice for the fastest network interfaces rates
–10, 40 and even 100 Gb/s. Nonetheless, our solution has proven to cope with a
real-world OC-192 link such as the one described in [14].

Therefore, as future work we first plan to attack the capping problem in
full-loaded 10 GbE links. To this end, we are studying the use of parallelism
paradigms, likely at user level and hardware solutions such as NetFPGAs or
GPUs. Similarly, we are studying how to reduce the burden of looking for ASCII
data. For example, instead of inspecting full packet payload, we could limit the
inspection to one or several randomly-chosen windows.

Moreover, we have realized that packet payloads sometimes contain constant
values for long runs. Such runs do not provide network analysts with any inter-
esting piece of information and should be capped. As a result, we are measuring
the dispersion of the values of bytes in payloads as an attempt to find a formal
threshold below which packet payloads render useless. Similary, we are study-
ing if some legibility indicators –e.g., vowels, punctuation or entropy– could be

16 V. Uceda et al.

useful to separate semantically-worth ASCII from the total traffic classified as
ASCII.

Finally, throughout this paper we have focused on ASCII standard as an
illustrative example of codification scheme. We are currently extending our work
to other popular schemes such as Base64 and full UTF-8.

References

1. Forconesi, M., Sutter, G., López-Buedo, S., López de Vergara, J.E., Aracil, J.:
Bridging the gap between hardware and software open-source network develop-
ments. IEEE Network 28(5), 13–19 (2014)

2. Fusco, F., Vlachos, M., Dimitropoulos, X.: Rasterzip: compressing streaming net-
work monitoring data with support for partial decompression. In: ACM Internet
Measurement Conference, pp. 51–64 (2012)

3. Garćıa-Dorado, J.L., Mata, F., Ramos, J., Santiago del Ŕıo, P.M., Moreno, V.,
Aracil, J.: High-Performance network traffic processing systems using commod-
ity hardware. In: Biersack, E., Callegari, C., Matijasevic, M. (eds.) Data Traffic
Monitoring and Analysis. LNCS, vol. 7754, pp. 3–27. Springer, Heidelberg (2013)

4. Han, S., Jang, K., Park, K.S., Moon, S.: PacketShader: a GPU-accelerated software
router. In: ACM SIGCOMM, pp. 195–206 (2010)

5. Intel: 82599 10 Gbe controller datasheet (2012). http://www.intel.com/
content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.
html (December 1, 2014)

6. Lin, Y.D., Lin, P.C., Cheng, T.H., Chen, I.W., Lai, Y.C.: Low-storage capture and
loss recovery selective replay of real flows. IEEE Communications Magazine 50(4),
114–121 (2012)

7. Maier, G., Sommer, R., Dreger, H., Feldmann, A., Paxson, V., Schneider, F.:
Enriching network security analysis with time travel. In: ACM SIGCOMM,
pp. 183–194 (2008)

8. Moreno, V., Santiago del Ŕıo, P.M., Ramos, J., Garćıa-Dorado, J.L., Gonzalez,
I., Gómez-Arribas, F.J., Aracil, J.: Packet storage at multi-gigabit rates using off-
the-shelf systems. In: IEEE Conference on High Performance and Communications,
pp. 486–489 (2014)

9. Moreno, V., Santiago del Ŕıo, P.M., Ramos, J., Muelas, D., Garćıa-Dorado, J.L.,
Gómez-Arribas, F.J., Aracil, J.: Multi-granular, multi-purpose and multi-Gb/s
monitoring on off-the-shelf systems. International Journal of Network Management
24(4), 221–234 (2014)

10. naudit: Detect-pro (2013). http://www.naudit.es/ (December 1, 2014)
11. Papadogiannakis, A., Polychronakis, M., Markatos, E.P.: Scap: Stream-oriented

network traffic capture and analysis for high-speed networks. In: ACM Internet
Measurement Conference, pp. 113–124 (2012)

12. Schneider, F., Ager, B., Maier, G., Feldmann, A., Uhlig, S.: Pitfalls in HTTP traffic
measurements and analysis. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS,
vol. 7192, pp. 242–251. Springer, Heidelberg (2012)

13. Taylor, T., Coull, S.E., Monrose, F., McHugh, J.: Toward efficient querying
of compressed network payloads. In: USENIX Annual Technical Conference,
pp. 113–124 (2012)

14. Walsworth, C., Aben, E., Claffy, K., Andersen, D.: The CAIDA anonymized
2009 Internet traces. http://www.caida.org/data/passive/passive 2009 dataset.
xml (December 1, 2014)

http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gb e-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gb e-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gb e-controller-datasheet.html
http://www.naudit.es/
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.caida.org/data/passive/passive_2009_dataset.xml

Youtube Revisited: On the Importance
of Correct Measurement Methodology

Ossi Karkulahti(B) and Jussi Kangasharju

Department of Computer Science, University of Helsinki, Helsinki, Finland
{karkulah,jakangas}@cs.helsinki.fi

Abstract. Measurements of large systems typically rely on sampling
to keep the measurement effort practical. For example, Youtube’s video
popularity has been measured by crawling either related videos or videos
belonging to certain categories or by using a list of, e.g., the most recent
videos as the data-source. In this paper we demonstrate that all these
methods lead to a biased sample of data when compared to a random
sample. We demonstrate the bias by comparing the differently sampled
data sets in terms of different commonly used metrics, such as video pop-
ularity, age, length, or category. The results show that different sampling
methods lead to significantly different values in the metrics, thus poten-
tially leading to very different conclusions about the system under study.
The goal of the paper is not to provide yet-another-set-of-numbers for
YouTube; instead we seek to emphasize the importance of using correct
measurement methodologies and understanding the inherent weaknesses
of different methodologies.

1 Introduction

Measuring large systems or services is challenging and typically measurements
are performed via sampling since analyzing the complete system is either pro-
hibitively expensive or even impossible. Naturally, the way the sampling is per-
formed has a strong effect on the measurement results and the conclusions that
can be drawn from them. Ideally, the sampling should be done in a way as to
produce a random, representative sample of the total system, but in many cases
technological limitations on the sampling may skew the process away from get-
ting a representative sample. Using such a biased sample may yield incorrect
conclusions about the properties of the system and further affect any derivative
work which uses those results as its basis.

In this paper we show the effects of three different sampling methods on
YouTube. YouTube is the largest and most popular video service on the Internet
and has been an active focus in research for many years. Previously, YouTube’s
video popularity has been measured, for example, by crawling related videos [2],
selecting videos belonging to certain categories [1], or by using a list of, e.g., the
most recent videos [6] as the data-source. The problem with these methods is
that, while the corresponding results of the measurements are valid as such, the
methods lead to a biased sample, and thus, the results are not representative of
c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 17–30, 2015.
DOI: 10.1007/978-3-319-17172-2 2

18 O. Karkulahti and J.Kangasharju

YouTube in all respects. Since other works may base their assumptions on the
measured values, it is important that they indeed do represent the whole service
and not a subset of it.

To demonstrate our case, we have collected three datasets, two by using
methods from earlier research, and one by using a method that is based on
random video IDs that has previously been used to estimate the number of
videos on YouTube. We will show that, even though all data is obtained from
the same source, via the YouTube API, there are noticeable discrepancies in the
video popularity and other metrics depending on the method used.

Our main goal is to highlight the importance of using proper sampling tech-
niques and show how different sampling methods can lead to different conclu-
sions. The main contributions of the paper are the following:

– We review prior YouTube measurements and data collection methodologies
and show their differences.

– We compare three existing methods for collecting YouTube video metadata.
– We demonstrate the differences in various metrics between the different sam-

pling methods.

We also argue that, while out of the scope of this paper, the value of the
result and the implications drawn from results span multiple research areas such
as storage, replication, bandwidth and even wider disciplines such as marketing,
user experience and user behavior.

The rest of the paper is organized as follows. In Section 2 we discuss related
work and review previous measurement methods that have been used on You-
Tube. Section 3 presents our data collection process. The results are presented in
Section 4 where we compare several key metrics obtained by the different meth-
ods and demonstrate their differences. Finally, Section 5 concludes the paper.

2 Related Work

Cha et al. [1] analyzed the video popularity of YouTube in 2006-2007. Their
dataset consists of video metadata formed by crawling the indexed pages and
getting videos belonging to certain categories. They had 1.7 million videos from
Entertainment category and another 250,000 from Science category. Their results
showed that the video popularity ranking of both categories exhibited power-
law behavior “across more than two orders of magnitude” with “truncated tails”
but “the exact popularity distribution seems category-dependent.” The authors
called for further research on the subject. The traces collected by the study have
been a source for [7].

Cheng et al. [2] also measured and examined, among other things, the pop-
ularity of YouTube videos. They collected metadata for three million videos in
2007 and for further five million in 2008, using bread-first search (BFS) starting
with initial video and asking its related videos and then their related videos until
the fourth depth. Looking at video popularity they observed that: “though the
plot has a long tail on the linear scale, it does not follow the well-known Zipf

On the Importance of Correct Measurement Methodology 19

distribution.” and found ”that the Gamma and Weibull distributions both fit
better than the Zipf, due to the heavy tail that they have”.

Since the authors were concerned that the BFS method would be biased
towards more popular videos, they formed another dataset by collecting meta-
data of videos from the recently added list for four weeks. Comparing the two
datasets they concluded that also the videos from the recently added list exhibit
popularity where: “There is a clear heavy tail” and “verifying that our BFS
crawl does find non-popular videos just as well as it finds popular ones”.

Szabo and Huberman took a slightly different approach and wanted to see
whether it is possible to predict content popularity. In the case of YouTube they
measured the popularity and view counts of new videos for 30 days [6]. Their
data is from 2008 and consists of 7,146 videos selected daily from the recently
added list. They chose the list over other alternatives in order to get “an unbiased
sample”. They concluded that the popularity of a YouTube video on the 30th
day can be predicted with a 10 % relative error after 10 days.

In the research mentioned above, the data has been collected either by BFS
crawling, or by selecting videos of a certain category or by picking most recent
videos. We will show in the results section the problems that are associated with
the methods and popularity distributions they produce.

Another method is used e.g. by Gill et al. [3] who analyzed the traffic between
a university campus and Youtube servers. They concluded that ”video references
at our campus follow a Zipf-like distribution”. They reasoned it to be partly
because Youtube did not allow video downloading, meaning that a user had to
issue another request to see the same video again. They also found out that on a
longer time frame the most popular categories were Entertainment, Music, and
Comedy. Zink [9] et al. also measured the Youtube viewing and traffic patterns
on a campus level and studied the effects of proxy caches to reduce traffic.

On a more general level, the importance of a correct sampling method has
been noted e.g. by Krishnamurthy et al. [4] who used three different data collec-
tion methods and analyzed their strengths and weaknesses in order to examine
Twitter and improve the prior research, and by Stutzbach et al. [5] who intro-
duced a technique for a more accurate and unbiased sampling for unstructured
peer-to-peer networks.

3 Data Collection

We have collected data using three different approaches. In the first approach, we
started by periodically asking a list of the 50 most recently published videos using
the YouTube API version 2 and later version 3. The list included information of
the videos such as ID, view count, and publish date. Having obtained the IDs
of the videos, we later collected their view counts after 30 days. We had done
similar surveys in 2009 and 2011 and we wanted to compare the results by doing
the same procedure again in late 2013 and early 2014. We refer to this method
as MR (Most Recent). The inherent problems of the MR method are that it
is a slow way of collecting data and that videos for which data is collected are
limited to similar age. The method is similar to one used in [6] and [2].

20 O. Karkulahti and J.Kangasharju

However, as it is not known in which manner videos end up on the MR list
and thus it is not possible to know whether they constitute a representative
sample, we simultaneously started collecting data using a different method in
order to the verify our results. In this approach, we generated random char-
acter strings and requested through the API a list of video IDs which include
the string. Hence we call this method RS (Random Strings). In more detail,
the method can be described as follows. We formed four characters long strings
using random characters from ’a-Z’, ’0-9’, ’-’, and ’ ’. As the YouTube video IDs
are 11-character long strings generated with the same character set, we used
the strings as keywords to request video IDs containing the random strings (4
characters were the shortest strings that returned matches consistently via the
search). Resulting data also included video metadata such as duration, category,
etc., and on average a random string yielded 6.9 video IDs. Besides randomness,
the benefits of the method are that we were able to collect a very large number
of video IDs with corresponding metadata and it provided a way to get a com-
prehensive sample of different-aged videos. Given that different strings might
match to same ID, we further pruned out the duplicates.

Interestingly, for reasons unknown to us, with this method the YouTube API
only returns video IDs that have at least one ’-’ in them, even though, in general,
video IDs do not need to contain a ’-’. The ”-” was usually the fifth character of the
ID. However, we argue that as the search strings are randomly generated (and the
IDs are likely similarly generated, although this cannot be proven), statistically
the sample obtained in this manner is equivalent to a random sample over all the
videos; obviously this is a potential weakness of this method. Incidentally, Zhou
et al. [8] provide a detailed description and discussion of the same method, with
evidence to support that it indeed provides a random sample of the videos. How-
ever, their focus is on estimating the number of videos on YouTube and they do
not investigate different metrics for the videos. They also mention a potential bias
in other collection methodologies, such as BFS, but do not present any evidence of
that. While we strongly conjecture that the RS method provides a random sam-
ple, for the purposes of this paper, i.e., to demonstrate the differences between
different sampling methods, it is not strictly necessary for the method to actually
produce a random sample. A further limitation of this method is that it will not
return videos with 0 views or deleted videos.

Our third method to collect data was to randomly select a video ID and then
ask for its related videos and after that the related videos for all those videos
up until to the fourth level. We set a limit of 50 related videos per one video,
so theoretically one seed video could return up to 125,000 videos (50x50x50).
The actual number of unique videos is naturally lower, due to overlap in the
related videos. This can been seen as similar to breadth-first search and we shall
refer to the method as BFS. As mentioned in Section 2 this method has been
used earlier by [2]. This method is a fast way of obtain a large set of IDs, since
the API allows getting the information of 50 videos with just one API request
compared to the average of 6.9 obtained with the random strings. Because a
video can be, and usually is, related to multiple videos, the method also needs
pruning to remove duplicates.

On the Importance of Correct Measurement Methodology 21

Table 1. Description of datasets

Set name Method Time period N

MR-09 Most recent videos summer 2009 9,405

MR-11 Most recent videos summer 2011 8,766

MR-14 Most recent videos late 2013 - early 2014 10,000

RS Random id early 2014 5M

BFS BFS related videos early 2014 5M

Table 1 shows an overview of the different datasets that we collected using the
three methods described above. All of the data we have collected will be made
available. In the following, we refer to the different datasets by their names and
in some cases combine all three MR datasets into a single set, called MR.

4 Results

As described in the previous section, we have three datasets collected using three
different methods. Now we are going to show how the datasets differ according to
different typical metrics that have been used in previous research on YouTube.
We start with the video popularity ranking and then use number of views, age,
length, and categories to further compare the datasets. Obviously, as the MR
dataset is much smaller and the videos are by definition very recently uploaded
(to the time when the dataset is collected), thus it does not allow one-to-one
comparison with the other two methods in some metrics.

4.1 Popularity

Figure 1 plots the videos of RS and BFS datasets ranked based on the view
count in log-log scale. Both datasets have 5 million videos. As can be obviously
seen, there is a clear difference in the view count distributions provided by the
two methods. The data collected using BFS method has a clear two-part dis-
tribution, with a quick-dropping tail. The RS data follows more closely a Zipf
distribution, with a truncated tail. Across the board, the distribution of BFS
data exhibits much higher popularity (higher view counts), being in parts four
orders of magnitude higher (around the millionth most viewed video). Since RS
represents a random sample, it can be argued that the BFS method provides
videos which significantly over-estimate the actual view counts in YouTube. We
suspect that when determining which videos to show as related videos, YouTube
proposes videos that are more popular than average, and, thus, BFS datasets
are prone to have inflated number of videos with high view counts.

A simple analysis reveals that the 10 most viewed videos in RS dataset
account for 5 % of the total views, 100 most viewed for 17 %, 1000 for 43 %,
and 10,000 (0.2 % of the total sample) for 74 %.

22 O. Karkulahti and J.Kangasharju

Fig. 1. Video popularity

Popularity Per Category. Figure 2 plots the popularity distributions of dif-
ferent categories. We show view counts for categories Music and People & Blogs
as well as the view counts for a random selection; all other categories fall some-
where between Music and People. The data is taken from RS dataset and the
sample size is 100,000. While the shapes of the curves are qualitatively similar,
the actual numerical values (between the categories shown here) can differ by an
order of magnitude or more in terms of number of views. This illustrates that
while a category-based video selection may yield qualitatively correct results, it
cannot be relied to provide quantitatively correct results.

Fig. 2. Video popularity per category

On the Importance of Correct Measurement Methodology 23

Fig. 3. 30-day view count ranking comparison

These results highlight the pitfalls in sampling method selection. Different
methods may yield qualitatively, even quantitatively, similar results on some
metrics, but fail on other metrics as we demonstrate below.

Popularity After 30 Days. Figure 3 shows the view counts of videos 30 days
after their uploading, on a log-log scale, i.e., the plot captures the popularity of
one month old videos. We show all three MR datasets separately and the x-axis
is limited to 8766 which is the size of the MR-11 dataset (the smallest dataset
in our study) to make the curves comparable. As can be seen, the datasets
have noticeably different popularity distributions. In general, both MR and BFS
methods seem to overestimate the video popularity when compared to RS (Recall
Figure 1 which shows the same result between BFS and RS across a larger
dataset). Interestingly, the MR-09 shows a relatively straight line, close to that
of RS, with a truncated tail, resembling the observations of Cha et al. [1], whereas
the MR-11 would seem at least bipartite, pivoting around 12,000 views.

The view counts of MR-11, MR-14, and BFS are orders of magnitude higher
than those of RS. We suspect that this is because either a) new videos on the
most recent list are such that are more likely attract more views or b) being on
the list will make the videos gain more views. The same conjecture applies also
more or less to the related videos.

4.2 Views

Table 2 list the view count statistics for the datasets. It should be noted that the
numbers for the MR dataset are not directly comparable with the others, since
the dataset includes mostly new videos and thus they have had a shorter time
to accumulate views. As already stated, the BFS method favors more popular

24 O. Karkulahti and J.Kangasharju

Table 2. View count statistics of the datasets

N Mean Std. Dev Median Min Max

RS 5M 16,260 1,115,835 81 1 1,920,284,708

BFS 5M 260,019 2,595,870 19,217 1 1,950,573,461

MR 21K 68,553 1,205,992 461 1 111,762,034

Fig. 4. View count percentiles

Fig. 5. Median and 5th and 95th percentiles of RS and BFS

videos, which can be seen in the much higher mean and median values. In other
words, in general, the videos of the BFS dataset are more viewed than those
of RS. Figure 4 shows the different percentiles of the view counts. We can see
that e.g. the 5th percentile of BFS is higher than the median of RS and across
the board the BFS view counts are at least one order of magnitude higher than
the RS ones. Figure 5 further illustrated this point by showing the median and
the 5th and 95th percentiles of the RS and BFS datasets for eight years. For
example, in the RS dataset the median value of 730-day-old videos is approxi-
mately 100 views. Looking at the percentiles we can see that there is overlap in
the datasets, but the median of BFS is most of the time two orders of magnitude
higher than the median of RS.

On the Importance of Correct Measurement Methodology 25

Fig. 6. Video age distribution

4.3 Age

Figure 6 illustrates the age distribution of the videos gathered by the RS and
BFS methods. The MR data is left out as the age is already determined by the
way the method works, limiting the data to new videos only. The plot is made
by calculating the number of videos published on each day. The BFS set has
less videos that are newer than three years, when compared to the RS dataset.
However, for very recent videos, the BFS dataset shows a considerable increase,
reaching up to more than three times the number of videos with similar age in
the RS set. It therefore appears that the selection of related videos is biased
towards recent videos and implies that the BFS dataset has a disproportionate
number of recent videos, when compared to the RS set.

RS dataset shows a sharp decrease in the number of recent videos, but this is
an artifact of the sampling method. This is because the method can only match
existing videos and therefore videos that were uploaded after the data collection
began have had a smaller probability of being selected, thus artificially reducing
their number in the set. This effect can be eliminated simply by not counting
the videos published during the data collection period.

On a more general note, looking at the RS data, we can see that that number
of videos has grown rapidly, (even exponentially in some points), and continues
to do so. Videos that are less than six months old make up 14 % of all video, less
than one year 29 % and less than two years 53 %. In other words, majority of
the YouTube content is newer than two years and 80 % newer than four years.
Hence, the rate at which videos are uploaded to YouTube is still increasing and
majority of videos have been published in the past two years.

4.4 Categories

Figure 7a shows the fraction of videos in different categories in the different
datasets. The bars for MR combine all the three MR datasets MR-09, -11,
and -14. Interestingly, the category with most videos is different in each dataset
and the differences are significant. RS has most videos from the People & Blogs

26 O. Karkulahti and J.Kangasharju

(a) Percentage of videos

(b) Percentage of views

Fig. 7. Video categories

category, MR’s biggest category is News & Politics, and Music is the largest
category for BFS. When uploading a video, YouTube requires that the user sets
a category for the video. If user does not not explicitly define a category, You-
Tube sets the video’s category to the category of the last video that the user
uploaded. If no prior upload exists, YouTube sets the video’s category to People
& Blogs, which is a very likely explanation why the RS dataset has the most
videos in the People & Blogs category. Likewise, since MR takes the videos from
the (curated) most recent list, it is not surprising that topical events dominate
the list. For BFS, the high number of music videos is also not surprising since
suggesting another music video as a related video to another music video seems
intuitive.

On the Importance of Correct Measurement Methodology 27

However, even though the number of videos in different categories is very
different for the three datasets, Figure 7b shows that the distribution of number
of views across categories in the three datasets is very similar. Music is the most
watched category for all three datasets, followed by Entertainment and then
Comedy. Again, this highlights that the results from different methods may end
up looking similar on some metrics, but not on others.

4.5 Length

YouTube used to cap the video duration to 10 minutes, but now the default limit
has been extended to 15 minutes and a user can remove the limit completely
by verifying the account. Table 3 shows the length statistics. The lengths are in
seconds. We have checked that the maximum value for the BFS dataset is valid.
The median video length is the highest for the videos of the BFS dataset, followed
by MR and RS, whereas MR has the highest mean and standard deviation.

Figure 8a shows how the lengths of the videos in the different datasets vary;
the videos have been rounded to the next minute for plotting. Both RS and
MR show that the most common length of a YouTube video is 60 seconds or
less and that majority of video are less than three minutes long. The BFS in
turn indicates that most videos between three and five minutes. This can be
considered further evidence that BFS promotes certain type of videos forming
a biased sample; as we already saw that BFS contains more music videos which
are typically three to five minutes long. Interestingly, MR and RS differ only in
that MR has more videos over 15 minutes whereas RS has more videos of one
minute or less.

However, Figure 8b shows videos between three and five minutes have the
most views in all datasets. If this data were used to produce an estimate of how
much traffic YouTube sees, all three datasets would yield similar values, with MR
being likely slightly below the others as it contains proportionally more videos
of around 3 minutes.

Figure 9 show total duration of videos uploaded per day as a function of the
age of the videos. This could also be used to obtain a rough estimate of total
storage requirements of YouTube service. Again, BFS over-estimates the video
length. As the figure shows, the amount of data has risen almost exponentially
for years. 40 % of the amount consists of less than one year old videos and 80 %
of videos newer three years.

Table 3. Length statistics of the datasets

N Mean Std. Dev Median Min Max

RS 5M 296 614 157 1 131,516

BFS 5M 512 1,181 247 1 800,492

MR 21K 545 1,535 190 1 45,122

28 O. Karkulahti and J.Kangasharju

(a) Percentage of videos

(b) Percentage of views

Fig. 8. Video length

Fig. 9. Total video length per day

4.6 Summary of Results and Methods

When comparing the three methods among themselves, BFS tends to over-
estimate most of the metrics we used and cannot therefore be considered a
reliable method; however, it is the fastest of the three for collecting a large data-
set. MR, on the other hand, is a very slow method, limited to new videos only,
and it also tends towards over-estimation of the metrics. While we consider the

On the Importance of Correct Measurement Methodology 29

RS method to be the most reliable, its weakness is that it is not very fast (recall
that it returns on average 6.9 videos per query). Also, since all returned videos
contain ’-’, there is potential for a bias in the returned videos, in case video IDs
are not assigned randomly.

5 Conclusion

In this paper we have argued that data collection methodology can have a sig-
nificant impact on what kinds of results can be obtained from measurements.
We have used YouTube as an example and considered three different data collec-
tion methods, two from existing research and one adapted from previous work.
By comparing the datasets obtained with the three different methods, we have
shown that they differ, sometimes greatly, in many of the key metrics used in past
research on YouTube. Even a large sample is not immune to the bias introduced
by a particular measurement methodology, as the results of the BFS dataset
demonstrate.

The random sampling method behind the RS dataset has not been used to
measure different metrics on YouTube whereas MR and BFS have been used in
previous research to characterize YouTube. Given the large difference between
RS and the others on several key metrics, it is natural to raise questions about the
general applicability of previously obtained results on YouTube done via MR or
BFS methods. As we have shown in this paper, depending on the metric and the
collection methodology, results may differ either qualitatively, quantitatively, or
both, or they might not differ from the RS dataset. While we have strong reasons
to believe that the RS method produces a representative sample of YouTube,
we cannot exclude a potential bias in its selection methodology; further research
would be needed to ascertain that.

In essence, our results demonstrate that there is a need to understand the
strengths and weaknesses of the different measurement methodologies in order
to understand their impact on the measurement results. We believe that on
the whole, a more critical approach to measurement methodologies is required
in order to ensure that the measurements capture the essence of the measured
system, to the extent that it is feasible.

References

1. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., Moon. S.: I tube, you tube, every-
body tubes: analyzing the world’s largest user generated content video system. In:
Proceedings of the 7th ACM SIGCOMM Conference on Internet measurement, pp.
1–14. ACM (2007)

2. Cheng, X., Liu, J., Dale, C.: Understanding the characteristics of internet short video
sharing: A youtube-based measurement study. IEEE Transactions on Multimedia
15(5), 1184–1194 (2013)

3. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: Youtube traffic characterization: a view
from the edge. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, pp. 15–28. ACM (2007)

30 O. Karkulahti and J.Kangasharju

4. Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter. In: Proceedings
of the Tworkshop on Online Social Networks, pp. 19–24. ACM (2008)

5. Stutzbach, D., Rejaie, R., Duffield, N., Sen, S., Willinger, W.: On unbiased sampling
for unstructured peer-to-peer networks. IEEE/ACM Transactions on Networking
(TON) 17(2), 377–390 (2009)

6. Szabo, G., Huberman, B.A.: Predicting the popularity of online content. Commu-
nications of the ACM 53(8), 80–88 (2010)

7. Valancius, V., Laoutaris, N., Massoulié, L., Diot, C., Rodriguez, P.: Greening the
internet with nano data centers. In: Proceedings of the 5th International Conference
on Emerging Networking Experiments and Technologies, pp. 37–48. ACM (2009)

8. Zhou, J., Li, Y., Adhikari, V.K., Zhang, Z.-L.: Counting youtube videos via ran-
dom prefix sampling. In: Proceedings of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference, pp. 371–380. ACM (2011)

9. Zink, M., Suh, K., Gu, Y., Kurose, J.: Characteristics of youtube network traffic
at a campus network-measurements, models, and implications. Computer Networks
53(4), 501–514 (2009)

Zen and the Art of Network Troubleshooting:
A Hands on Experimental Study

François Espinet1, Diana Joumblatt2(B), and Dario Rossi1,2

1 Ecole Polytechnique, Paris, France
{François.Espinet,Dario.Rossi}@polytechnique.edu

2 Telecom ParisTech, Paris, France
Diana.Joumblatt@enst.fr

Abstract. Growing network complexity necessitates tools and method-
ologies to automate network troubleshooting. In this paper, we follow
a crowd-sourcing trend, and argue for the need to deploy measurement
probes at end-user devices and gateways, which can be under the control
of the users or the ISP.

Depending on the amount of information available to the probes (e.g.,
ISP topology), we formalize the network troubleshooting task as either
a clustering or a classification problem, that we solve with an algorithm
that (i) achieves perfect classification under the assumption of a strate-
gic selection of probes (e.g., assisted by an ISP) and (ii) operates blindly
with respect to the network performance metrics, of which we consider
delay and bandwidth in this paper.

While previous work on network troubleshooting privileges a more
theoretical vs practical approaches, our workflow balances both aspects
as (i) we conduct a set of controlled experiments with a rigorous and
reproducible methodology, (ii) on an emulator that we thoroughly cali-
brate, (iii) contrasting experimental results affected by real-world noise
with expected results from a probabilistic model.

1 Introduction

Nowadays, broadband Internet access is vital. Many people rely on online appli-
cations in their homes to watch TV, make VoIP calls, and interact with each
other through social media and emails. Unfortunately, dynamic network condi-
tions such as device failures and congested links can affect the network perfor-
mance and cause disruptions (e.g. frozen video, poor VoIP quality).

Currently, troubleshooting performance disruptions is complex and ad hoc
due to the presence of different applications, network protocols, and administra-
tive domains. Typically, troubleshooting starts with a user call to the ISP help
desk. However, the intervention of the ISP technician is useless if the root cause
lies outside of the ISP network, which possibly includes the home network of the
very same user – hence, for the ISP, it would be valuable to extend its reach
beyond the home gateway by instrumenting experiments directly from end-user
devices. While (tech savvy) users can be assisted in their troubleshooting efforts

c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 31–45, 2015.
DOI: 10.1007/978-3-319-17172-2 3

32 F. Espinet et al.

by software tools such as [4,6,17,19] which automate a number of useful mea-
surements, these tools do not incorporate network tomography techniques [9,21]
to identify the root causes of network disruptions (e.g., faulty links). Addition-
ally, these tools are generally ISP network-agnostic, hence, they would benefit
from cooperation with the ISP.

In this paper, we propose a practical methodology to automate the identifi-
cation of faulty links in the access network based on end-to-end measurements.
Since the devices participating in the troubleshooting task can be either under
the control of the end-user or the ISP, the knowledge of the ISP topology is not
always available for the measurement probes. Consequently, we formalize the
troubleshooting task as either a clustering or a classification problem – where
respectively end-users are able to assess the severity of the fault, or ISPs are
able to identify the faulty link.

This paper makes several contributions. While our troubleshooting model
(Sec. 3), algorithm (Sec. 4) and software implementation (Sec. 5) are interesting
per se, we believe our major contribution is the rigour of the evaluation method-
ology (Sec. 6), which overcomes state of the art limits (Sec. 2). Indeed, on one
hand, previous practical troubleshooting efforts [4,6,16,17,19] are valuable in
terms of domain knowledge and engineering, but lack theoretical foundations
and rigorous verification. On the other hand, prior analytical efforts are cast
on solid theoretic ground [9,21], but their validation is either simplistic (e.g.
simulations) or lacks ground truth (e.g. PlanetLab).

In this work, we take the best of both worlds, as we (i) propose a practical
methodology for network troubleshooting with an open source implementation;
(ii) provide a model of the expected fault detection probability that we contrast
with experimental results; (iii) use an experimental approach where we emulate
controlled network conditions with Mininet [13]; (iv) perform a calibration of
the emulation setup, an often neglected albeit mandatory task; (v) in spirit with
Mininet and the TMA community, we further make all our source code available
for the scientific community at [1,2].

2 Related Work

Our work complements prior network troubleshooting efforts [3,4,6–8,16–19,23]
that we overview in this section. Without attempting at a full-blown taxon-
omy, we may divide the above work as having a more practical [3,4,6,16,17,19]
or theoretic[7,8,18,23] approach. While most work, including ours, uses active
measurements [4,6–8,17–19,23], there are exceptions that use passive measure-
ments [16] or logs[3]. In terms of network segment, previous work focuses on
home networks [17], enterprise networks [3], and backbone networks [5,9,18].
Some studies do not target a network segment in particular[7,8,23] and remain
at a more abstract level. In this paper, we focus on home and access networks.

Our methodology is based solely on end-to-end measurements to localize the
set of links that are the most likely root cause of performance degradations.
Closest to our work is the large body of work in network tomography which

Zen and the Art of Network Troubleshooting 33

exploits the similarity of end-to-end network performance from a source to mul-
tiple receivers due to common paths to infer properties of internal network links
such as network outages[18], delays[23], and packet losses [8]. However, these
studies make simplifying assumptions that do not hold in real deployments [9,15]
such as the use of multicast [23]. In addition, the proposed algorithms are com-
putationally expensive for networks of reasonable scale and their accuracy is
affected by the scale and the topology of the network [9].

In this work, we instead present a practical, general framework to identify
faulty links that we instantiate on two specific metrics: delays as in [23] and
bottleneck bandwidth, which is notoriously more difficult to measure. When full
topological information is not available, our algorithm performs a clustering of
measurement probes as in binary network tomography [21], where the inference
problem is simplified by separating links (in our case probes) into good vs failed,
instead of estimating the values of the link performance metrics.

Additionally, one major problem of the related literature is the realism of
ground truth data to evaluate the accuracy of the algorithms. Even in practical
approaches, ground truth in the form of user tickets [3] or user feedback[16] is
extremely rare, so that the absence of ground truth is commonplace [4,6,17,19].
Theoretic work builds ground truth with simulations [8], or using syslogs and
SNMP data in operational networks [18]. On the one hand, although simula-
tions simplify the control over failure location and duration, they do not provide
realistic settings. On the other hand, the ground truth is either completely miss-
ing in real operational networks (such as PlanetLab [21]) or partially missing in
testbeds [15,18], where network events outside of the control of researchers can
happen. Our setup employs controlled emulation through Mininet [13] which is
(relatively) fast to implement, uses real code (including kernel stack and our
software), and allows testing on fairly large scale topologies. This setup allows
full control on the number, duration, and location of network problems. Addi-
tionally, by running the full network stack, Mininet keeps the real world noise
in the underlying measurements, thus providing a more challenging validation
environment with respect to simulation. As a side effect of this choice, the Net-
Probes software that we release as open source [2] has also undergone a signifi-
cant amount of experimental validation. Most importantly, any peer researcher
is capable of repeating our experiments in order to validate our results, compare
their approach to ours, and extend this work.

3 Problem Statement and Model

Considering an ISP network, and focusing for the sake of simplicity on its access
tree, faults can occur at multiple levels in the access network hierarchy. The
ability to launch measurements between arbitrary pairs of devices in the same
access network would significantly enhance the diagnosis of network performance
disruptions. In this work we consider two use-cases: User-managed probes and
ISP-managed probes. User-managed probes run only on end-user devices and
lack topology information. In contrast, ISP-managed probes can reside in home

34 F. Espinet et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ISP probe

Fig. 1. Synoptic of the network scenario and model notation

gateways, in special locations inside the ISP network, and can also be available
as “apps” on user devices (e.g., smartphones and laptops). We address both use-
cases with the same algorithm: clustering in the user-scenario separates measure-
ment probes into two sets (i.e., un/affected sets), whereas an additional mapping
in the ISP-scenario allows to pinpoint the root cause link.

We formalize the problem and introduce the notation used in this paper with
the help of Fig. 1, which depicts a binary access network tree. The troubleshoot-
ing probe software runs in the leaf nodes of the tree. However, the ISP can strate-
gically place probes inside the network (e.g. probe 0 in the picture attached to
the root). Our algorithm runs continuously in the background to gather a base-
line of network performance, and troubleshooting is triggered by the user (e.g.,
upon experiencing a degradation of network performance) or automatically by
a change point detection procedure on some relevant metrics (outside the scope
of this work).

For the sake of clarity, let us assume that probe 1 launches a troubleshooting
task. In this context, we can safely assume that the root cause is located some-
where in the path from the user device or gateway towards the Internet (links
�4, �3, �2, �1 in bold in Fig. 1). In order to identify which among �4, .., �1 is the
root cause of the fault, probe 1 requires sending probing traffic to a number M of
the overall available probes N . Let us denote, for convenience, by D+ = logk(N)
the maximum depth (i.e., height) of a k-ary tree and by Di the set of probes
Di =

(
kD+−i, kD+−i+1

]
. The set Di includes probes whose shortest path from

probe 1 passes through �i, but does not pass through �i−1. In the access tree,
whenever a link �f (located at depth f in the tree) is faulty, all probes whose
shortest path from the diagnostic probe (probe 1 in our example) passes through
�f will also experience the problem, unlike probes that are reachable through
�f+1: it follows that the troubleshooting algorithm requires probes from both
sets Df and Df+1 to infer with certainty that the fault is located at �f . For a
k-ary tree, the minimum number of probes that allows to identify the faulty link
irrespectively of the depth f of the fault is M = O(logk(N)) – i.e., one probe in
each of the {Di}logk(N)

i=1 strata suffices to accurately pinpoint the root cause.

Zen and the Art of Network Troubleshooting 35

Such a strategic probe selection requires either topology knowledge or the
assistance of a cooperating server managed by the ISP (e.g., an IETF ALTO[24]
server). However, this strategy is not feasible with user-managed probes, in which
probe selection is either uniformly random or based on publicly available infor-
mation such as IP addresses. It is thus important to assess the detection proba-
bility of a naive random selection.

Let us denote by p−(f, α) the probability that a random selection includes a
probe that is useful to locate a fault at depth f ∈ [1,D+], with a probe budget
α = M/N . The deeper is the fault location, the smaller is the number of probes
available to identify the faulty link. As the size of Df exponentially decreases
as f increases (card(Df) = kD+−f), we expect the random selection strategy to
easily locate faults at small depths (close to the root) and fail at large depths
(close to the leaves) where a stratified selection is necessary to sample probes
in the smaller set Df . The probability that none of the M vantage points falls
into Df decreases exponentially fast with the size of Df , i.e., (1 − α)card(Df).
Consequently, the probability to sample at least1 one probe in Df is:

p−(f, α) = 1 − (1 − α)k(D+−f)
(1)

Expression (1) is a lower bound on the expected detection probability with ran-
dom selection. When a random subset of probes does not contain any probe in
Df , it is still possible to correctly guess the root cause link. Here, there will be
ambiguity because multiple links are equally likely to be root cause candidates.
At any depth d, ambiguity will be limited to the links located between the fault
and the root of the tree (i.e., �d, .., �1): since, at depth d, ambiguity involves d
links, the probability of a correct guess is 1/d. To compute the average proba-
bility of a correct guess E[pguess], we have to account for the relative frequency
of the different ambiguity cases, which for depth d happen proportionally to
kd/klogk(N) = kd/N ,

E[pguess] =
logk(N)∑

d=1

1
d

kd

N
=

1
N

logk(N)∑
d=1

kd

d
(2)

We can then compute the expected discriminative power of a random selection,
expressed in terms of the probability to correctly identify a fault at depth f as:

E[p] = p−(f, α) +
(
1 − p−(f, α)

)
E[pguess] (3)

where the first term accounts for the proportion of random selection that is
structurally equivalent to a stratified selection (so that the root cause link can
be found with probability 1), and the second term accounts for the proportion of
1 Note that this probability would be better expressed with the hypergeometric distri-

bution, that models sampling without replacement; however the formulation reported
here differ by less than 1% from the hypergeometric results, and further allows to
express the loss of discriminative power due to random selection in a more intuitive
way.

36 F. Espinet et al.

random selection able to pinpoint the faulty link by luck (thus with probability
E[pguess]). By plugging (1) and (2) into (3) we get:

E[p] = 1 − (1 − α)k(D+−f)
+

[
1 − (1 − (1 − α)k(D+−f)

)
](1

N

logk(N)∑
d=1

kd

d

)
(4)

= 1 − (1 − α)k(D+−f)
(
1 − 1

N

logk(N)∑
d=1

kd

d

)
(5)

Notice that (5) has structurally the form 1 − ploss. The term ploss can be inter-
preted as the loss of discriminative power with respect to a perfect strategic
selection that always achieves correct detection. Clearly, this model is simplistic
as it does not consider all combinatorial aspects which could be used to obtain
finer-grained expectations at each depth of the tree. Yet, the main purpose of
the model is to serve as a reality check for our experimental results.

4 Troubleshooting Algorithm

We treat both clustering and classification problems with a single algorithm,
whose pseudocode is reported in Algorithm 1. Assuming the algorithm runs at a
source node s, for any performance metric Q (e.g., delay, bandwidth), s collects
baseline statistics Q0(p) with low-rate active measurements towards other peers
p. When the troubleshooting is triggered, s iteratively selects up to R batches
of B of probes, so that R · B represents a tuneable probing budget. Selection is
made according to a selection policy Sp, based on a probe score S(p). The probe
selection is iterative because S(p) can vary, and thus the next batch is selected
based on the results of the previous batch.

At each step, upon doing B measurements, we compute, for each probe p,
Q(p) − Q0(p) and add it to the set P : K-means clustering partitions P into P+

and P−. Two points are worth stressing: first, the algorithm does not associate
any semantic to clusters: e.g., a node in P+ can be affected by large delay,
whereas a node in P− can be affected by a bottleneck bandwidth. Second, in
case of a single failure, it can be expected that probes in one of the two clusters
exhibit Q(p) − Q0(p) ≈ 0, so P+ and P− should be interpreted as a syntactical
difference. Once the probe budget is exhausted (or once other stop criteria, that
we don’t mention for the sake of simplicity, are met), the algorithm either returns
P+ and P− (user-managed case, line 12), or continues with the mapping. When
no clear partition can be established, only one set is returned.

To map probes in P+ and P− to links, the algorithm requires the knowledge
of the links � in the shortest path SP (s, p). The score S(�) of � ∈ SP (s, p)
is incremented by +1 for p ∈ P+ and decremented by -1 for p ∈ P−. As a
consequence of metric-agnosis, the algorithm needs to know if links with the
largest (smallest) S(�) scores are to be pinpointed, which is done according to a
link selection policy S�.

Zen and the Art of Network Troubleshooting 37

We experiment with Sp ∈ {random, |IP (s) − IP (p)|,balance} and combi-
nations of the above. Random selection is useful as a baseline and to com-
pare with the model. We additionally consider probe selection policies that
are more complex to model such as the absolute distance in the IP space, as
well as a policy that attempts at equating the size of P+ and P−, by select-
ing an IP that is close to IPs in the small cluster, and far from IPs in the
large cluster (exact definition omitted due to lack of space). Moreover, we con-
sider S� ∈ {random,proportional, argmax}. The näıve random method makes an
informed guess by selecting one of the D+ links in the path �D+, . . . , �1 to the
root (success probability 1/D+ , much larger than the 1/2(kD+ −1) = 1/2(N−1)
in case of a random guess over all links). We also select links proportionally to
their score (proportional policy), or only the link with the largest (smallest)
score (argmax policy).

Algorithm 1. Detection algorithm at s

1: Get a baseline Q0(p) for metric Q(p), ∀p � Initialization, over long timescale
2: for round ∈ [1..R] do � When triggered upon user/ISP demand
3: select a batch of B probes according to a probe selection policy Sp, based on

score S(p)
4: for p ∈ B do
5: perform active measurements with p to get Q(p) − Q0(p)
6: add probe p to probed set P
7: partition P into P+ and P−, by K-means clustering on Q(p) − Q0(p)
8: end for
9: update probe scores S(p), ∀p

10: end for
11: if topology is not available then � Clustering results
12: return P+ and P−

13: else � Classification results
14: for probe p ∈ P do
15: for link � ∈ shortest path SP (s, p) do
16: S(�) ← S(�) + (p ∈ P+) − (p ∈ P−)
17: end for
18: end for
19: return link � according to a link selection strategy S� based on scores S(�)
20: end if

5 Calibration of the Emulation Environment

Before running a full-fledged measurement campaign, it is mandatory to perform
a rigorous calibration phase, yet this phase is often neglected [22]. In this work,
we follow an experimental approach using emulation in Mininet, to control the
duration and the location of the faults. However, it is unclear how well state-
of-the-art delay and bandwidth measurement techniques perform in Mininet. In
order to disambiguate inconsistencies due to Mininet from measurement errors

38 F. Espinet et al.

intrinsic to measurements techniques, we perform calibration experiments for a
set of delay (expectedly easy) and bandwidth (notoriously difficult) measure-
ment tools and assess their accuracy in Mininet. In this section, we first briefly
describe Mininet and NetProbes, the diagnosis software we develop for this work
(Sec. 5.1), then present the calibration results (Sec. 5.2).

5.1 Software Tools

Mininet [13]. Mininet is an open source emulator which creates a virtual net-
work of end-hosts, links, and OpenFlow virtual switches in a single Linux kernel
and supports experiments with almost arbitrary network topologies. Mininet
hosts execute code in real-time, exchange real network traffic, and behave simi-
larly to deployed hardware. All the software developed for a virtual Mininet net-
work can run in hardware networks and be shared with others to reproduce the
experiments. Mininet provides the functional and timing realism of testbeds in
addition to the flexibility and full control of simulators. Experimenters configure
packet forwarding at the switches with OpenFlow and link network characteris-
tics (e.g., delay and bandwidth) with the Linux Traffic Control (tc). Reproducing
experiments from tier-1 conference papers 2 indicates that results from Mininet
and from testbeds are in agreement.

NetProbes [2]. We design NetProbes, a distributed software written in Python
3.x that runs on end-hosts and executes a set of user-defined active measurement
tests. NetProbes agents deployed at end-user devices and gateways form an over-
lay. They perform a set of periodic measurements to monitor the paths in the
overlay and collect a baseline network performance. When the user experiences
network performance issues, the NetProbes agent running at the user device
launches a troubleshooting task to assess the severity of the performance issue
and the location of the faulty link. It is worth pointing out that the set of mea-
surement tasks that can be performed by NetProbes agents (e.g., HTTP or DNS
requests, multicast UDP tests, etc.) is far larger than what we consider within
the scope of this paper, and that the software is available at[2].

5.2 Delay and Bandwidth Calibration

Setup. We build a Mininet virtual network with the topology depicted in Fig. 1
on a server with four cores and 24 GB of RAM. We run the selected tools on
probes 1 and 2. In our delay experiments, we impose five different delay values
(0 ms, 20 ms, 100 ms, 200 ms, 1000 ms) on �3 located at depth d = 3 in the
tree. At each delay level, probes 1 and 2 perform 50 measurements of round trip
delays to probes 7 and 6 respectively (250 measurements in total for each pair of
probes). We use Mininet processes through the Python API to issue ping and
traceroute to measure RTTs (we test traceroute with UDP, UDP Lite, TCP,
and ICMP).
2 Stanford’s CS224 blog: http://reproducingnetworkresearch.wordpress.com

http://reproducingnetworkresearch.wordpress.com

Zen and the Art of Network Troubleshooting 39

Similarly, in the bandwidth experiments, we vary the link capacity of �3
(100 Mbps, 10 Mbps, 1 Mbps) under three different traffic shapers, namely the
hierarchical token bucket (HTB), the token bucket filter (TBF), and the hierar-
chical fair service curve (HFSC) and we make 20 measurements of the available
bandwidth between probes 1 and 7 and probes 2 and 6 (120 in total for each
value of the link capacity). There is a plethora of measurement tools designed by
the research community to estimate the available bandwidth[11]. In this work we
limitedly report the calibration of three popular tools (Abing [20], ASSOLO [10],
and IGI [14]) which are characterised by low intrusiveness: Abing and IGI infer
the available bandwidth based on the dispersion of packet pairs measured at the
receiver. ASSOLO sends a variable bit-rate stream with exponentially spaced
packets and calculates the available bandwidth from the delays at the receiver
side. We compare the performance of the three bandwidth estimation tools in
the absence of cross traffic and under the three traffic shapers mentioned earlier.

Delay. We expect delay measurements to be flawless. Yet we observe that the
first packet sent between any two hosts exhibits a large delay variance: this
is due to the fact that the corresponding entry for the flow is missing in the
virtual switch and thus requires data exchange between the OpenFlow controller
and the virtual switch, whereas the forwarding entry is ready for subsequent
packets. We thus do the baseline Q0(p) over multiple packets (50 for delay) to
mitigate this phenomenon, so that the impact of the first packet delay is factored
out in the warmup phase. Doing a baseline and subtracting it from each delay
measurement enables an accurate study of the effect of the imposed delay value
on the accuracy of the measurement technique. Further results are shown in
Fig. 2. All techniques exhibit a time evolution similar to ICMP ping whose
experiment is depicted in Fig. 2(a). We report the PDF of the measurement error
(i.e., the difference between the measured and the enforced RTT) in Fig. 2(b).
Results for traceroute with various protocols are similar: we observe that, for
all the delay measurement techniques, the bulk of the error distribution is less
than 1 ms (with outliers not shown up to 10ms). Moreover, we note that using
ICMP brings the absolute error to less than 0.1 ms for both traceroute and
ping. From this calibration phase, we select ICMP ping to measure delay: as the
measurement noise is insignificant, errors in the classification outcome should be
solely attributed to our troubleshooting algorithm.

Capacity. Fig. 3 reports the evolution of the estimated available bandwidth as a
function of three link capacity values for the cross product of {Abing, ASSOLO,
IGI}×{HTB, TBF, HFSC}. We stress that while comparison of bandwidth esti-
mation tools under the same experimental conditions has already been studied,
we are not aware of any study jointly considering bandwidth estimation and
bandwidth shaping, especially since many bandwidth measurement tools rely
on effects of cross-trafic to estimate available bandwidth. As before, we use a
warmup phase to factor out the extra delay incurred by the first packet. We can
see that Abing systematically fails in estimating the available bandwidth under
HTB and TBF shaping, while the estimation is correct with HFSC. Similarly,

40 F. Espinet et al.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

R
T

T
 [

m
s]

Time [s]

RTT profile
ICMP samples

(a) Time evolution of RTTs with
ICMP Ping

 0
 0.2
 0.4

PD
F

Delay measurement error [ms]

ICMP-ping

 0
 0.5

 1

PD
F

Delay measurement error [ms]

ICMP-trrt

 0
 0.1
 0.2

PD
F

Delay measurement error [ms]

TCP-trrt

 0

 0.2

PD
F

Delay measurement error [ms]

UDPlite-trrt

 0
 0.1
 0.2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

PD
F

Delay measurement error [ms]

UDP-trrt

(b) PDF of measurement errors

Fig. 2. Calibration of delay measurements

 0.1
 1

 10
 100

 1000

Probes 1→7
Probes 2→6

0.1
1

10
100

1000

0.1
1

10
100

1000

0 500 1000 15000 400 800 12000 2400 4800 7200

Time (s)

A
va

ila
bl

e
ba

nd
w

id
th

 [
M

bp
s]

Abing ASSOLO IGI

HTB

TBF

HFSC

Fig. 3. Calibration of bandwidth measurements: {Abing, ASSOLO, IGI} × {HTB,
TBF, HFSC}

ASSOLO fails in estimating 1 Mbps available bandwidth under all shapers, and
additionally fails the estimation of 10Mbps under TBF. In contrast, IGI succeeds
in accurately tracking changes of available bandwidth at �3, although outliers are
still possible (see IGI+TBF). A downside of IGI is that the measurements last
longer than measurements with Abing or ASSOLO. These results and tradeoffs
are interesting and require future attention. However, this is beyond the scope
of this work. The most important takeaway is that measurement errors of such
magnitude would invalidate all experiments, showing once more the importance
of this calibration phase. We additionally gather that the IGI+HFSC combina-
tion offers the most accurate estimates of available bandwidth. As accurate input
is a necessary condition for trobuleshooting success, we use this combination in
the remainder of this paper.

6 Experimental Results

We now evaluate the quality of our clustering and classification for various probe
budgets (namely 10, 20 and 50 probes) for faults (e.g., doubling delay or halving
bandwidth) at controlled depths of the tree. All the scripts to reproduce the

Zen and the Art of Network Troubleshooting 41

experiments are available at [1]. We first compare experimental results in a cali-
brated Mininet environment (including real-world noise), with those expected by
a probabilistic model (neglecting noise) (Sec. 6.1). We next perform a sensitivity
analysis by varying topological properties, probe selection policies Sp, and link
selection policies S� (Sec. 6.2).

6.1 Performance at a Glance

We perform experiments over a binary tree scenario (k = 2) with depth D+ = 9
and N = 512 leaf nodes. In this case, a strategic probe selection would need
M/N = 9/512 probes (α = 1.75%) to ensure perfect classification, but we con-
sider larger budget M = {10, 20, 50} in our experiments. Unless otherwise stated,
we use a random probe selection Sp and an argmax link selection S� policies. We
first evaluate the clustering methodology by comparing the two sets of affected
and unaffected probes obtained from the algorithm with our ground truth, using
the well-known rand index[12], which takes value in [0, 1] ⊂ , with 1 indicating
that the data clusters are exactly the same. Since we have full control over the
location of the fault, we build our ground truth by assigning the label “affected”
to all the available probes (under a given budget constraint) for which the path
to the diagnostic probe passes through the faulty link. The remaining probes
constitute the unaffected set. Fig. 4-(a) shows that, provided measurements are
accurate, the clustering methodology successfully identifies the set of probes
whose paths from the diagnostic software experience significant network per-
formance disruptions (and as a consequence accurately identifies nodes in the
complementary set of unaffected probes). For budgets of 10, 20 and 50 probes,
the rand index shows perfect match between the ground truth and the clustering
output in the case of delay measurement. Results degrade significantly instead
for bandwidth measurement: we point out that the loss of accuracy is not tied
to our algorithm, but rather to measurements that are input to it, which was
partly expected and confirms that calibration is a necessary, but unfortunately
not sufficient, step.

Abstracting from limits in the measurement techniques, these result indicates
that in practice our clustering methodology works well in assessing the impact
of a faulty link without requiring knowledge of the network topology. Yet, root
cause link identification is a clearly more challenging and important objective,
which we analyze in the following by restricting our attention to delay exper-
iments: as the classification step is a deterministic mapping from the clusters,
as long as the measurement error remains small, the results of the classification
task are not affected by the specific metric under investigation. We expect classi-
fication results to apply at large, as opposite to merely illustrating the algorithm
performance under delay measurement (although they are not representative of
bottleneck localization as per Fig. 4-(a)).

We next show that the experimental and modelling results are in agreement,
with a random probe selection policy and a budget of M = 50 probes, which cor-
responds to α = 9.75%. For each fault depth f , we perform 10 experiments by ran-
domizing the set of destination probes. Results, as reported in Fig. 4-(b), depict

42 F. Espinet et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 50

R
an

d
in

de
x

Probe budget

M
lo

ss

Delay Bandwidth

(a) Rand index of experimental output
of clustering algorithm vs ground truth
clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

R
oo

t c
au

se
 id

en
tif

ic
at

io
n

pr
ob

ab
ili

ty
Fault depth

E[p]

p-(f,α)

E[p]

p-(f,α)

Strategic selection

Loss

p l
os

s

Model α=9/512
Model α=50/512
Experiments

(b) Probability of correctly identifying
the faulty link (models (1) and (3) vs
experiments)

Fig. 4. Experimental results at a glance: (a) Clustering and (b) Classification

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

Depth of faulty link [w.r.t root]

k=2
k=8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
or

re
ct

 d
et

ec
tio

n
pr

ob
ab

ili
ty

Normalized depth of faulty link [w.r.t root]

k=2
k=8

Fig. 5. Sensitivity analysis: Impact of network topology properties

the correct classification probability of the model vs the experiments. Recall that
equation (1) gives a lower bound p−(f, α) to the experimental results, while (3)
models the average expected detection probability E[p]. We consider α = 9.75%,
to directly compare with experimental results, as well as α = 1.75%, to assess the
loss of discriminative power from a strategic selection, that could achieve perfect
classification in this setting, to a randomselection (denotedwithploss in the figure).

6.2 Sensitivity Analysis

Impact of Topology. We study the impact of the network topology on the
classification performance. We use two trees with 512 probes (i.e. leaves) each.
The first tree has a depth d = 3 and a fanout k = 8 while the second tree
has a depth d = 9 and a fanout k = 2. Fig. 5 reports the correct detection
probability of the faulty link as a function of the depth of the injected fault

Zen and the Art of Network Troubleshooting 43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 50

C
or

re
ct

 c
la

ss
if

ic
at

io
n

pr
ob

ab
ili

ty

Probe budget

Random
IP

Balanced
IP+Balanced

(a) Probe selection policy Sp

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 50

C
or

re
ct

 c
la

ss
if

ic
at

io
n

pr
ob

ab
ili

ty

Probe budget

Gain
over

Random
×1.4

×3.4

×1.3

×4.0

×1.3

×4.6

Random(1/D+)
Proportional

Argmax

(b) Link selection policy S�

Fig. 6. Sensitivity analysis: Impact of selection policies

in the tree, using variance bars. As expected, results indicate that the correct
detection probability decreases as the fault depth increases3. Thus, when the
root cause link is located close to the leaves of the tree, it is harder to randomly
sample another probe which is also affected by the fault: we thus need a smarter
probe selection strategy to improve the link classification performance.

Impact of the Probe Selection Policy Sp. We consider policies based on
IP-distance (IP), cluster-size (balance), and a linear combination of both. We
average the results over all the depths of the binary tree and contrast them with
a random selection policy. Unfortunately, our attempts are so far unsuccessful as
shown in Fig. 6(a), where the discriminative power is roughly the same over all
probe selection policies. This is due to the fact that the current set of metrics we
consider to select probes do not encode useful information to bias the selection.
The absence of a notion of net masks and hierarchy with IP-distance for example
makes it hard to extract information about how topologically close/far probes
are from each other. An obvious improvement would be to consider the IP-TTL
field. However, since Mininet uses virtual switches to construct the network,
the IP-TTL field remains unchanged. As a consequence, we could not conduct
experiments with this field and we leave it as future work.

Impact of the Link Selection Policy S�. Finally, we use three different
policies to select the faulty links: S� ∈ {random,proportional, argmax}. Results,
averaged over all depths of the binary tree, are reported in Fig. 6. The plot is
futher annotated with the gain factor over the random selection: while propor-
tional selection brings a constant improvement of about 40%, the argmax policy
brings considerable gains (in excess of a factor 4) which grow with the probe
budget.
3 We use variance, instead of stdev, to reduce visual noise: thus the increase for k=8

at depth d = 3 is only apparent, as the corresponding standard deviation bars are
large.

44 F. Espinet et al.

7 Conclusions and future work

In this work, we present a troubleshooting algorithm to diagnose network per-
formance disruptions in the home and access networks. We apply a clustering
methodology to evaluate the severity of the performance issue and leverage the
knowledge of the access network topology to identify the root cause link with
a correct classification probability of 70% using 10% of the available probes.
We follow an experimental approach and use an emulated environment based
on Mininet to validate our algorithm. Our choice of Mininet is guided by our
requirements to have flexibility in designing the experiments, full control over
the injected faults, and realistic network settings. We contrast the experimental
results with an analytical model that computes the expected correct classifica-
tion probability under a random probe selection policy. We also evaluate the
impact of topology, probe and link selection policies on the algorithm.

Our proposed solution is a first step towards the goal of having reproducible
network troubleshooting algorithms – for which we make all our code publicly
available. Our future work will focus on extending the algorithm to different
network topologies and to diversify the set of network performance metrics, to
verify its generality. Also, while simplicity was one of the goals of this paper,
and allowed to compare analytical vs experimental results, our future work will
address more practical issues, such as how our design can be integrated and
complement troubleshooting systems already deployed by ISPs.

Acknowledgments. This work has been carried out at LINCS http://www.lincs.fr
and funded by the FP7 mPlane project (grant agreement no. 318627).

References

1. Emulator scripts. https://github.com/netixx/mininet-NetProbes
2. NetProbes. https://github.com/netixx/NetProbes
3. Bahl, P., Chandra, R., Greenberg, A., Kandula, S., Maltz, D.A., Zhang, M.:

Towards highly reliable enterprise network services via inference of multi-level
dependencies. In: Proc. ACM SIGCOMM (2007)

4. Bischof, Z., Otto, J., Sánchez, M., Rula, J., Choffnes, D., Bustamante, F.: Crowd-
sourcing ISP characterization to the network edge. In: Proc. SIGCOMM WMUST
(2011)

5. Dhamdhere, A., Teixeira, R., Dovrolis, C., Diot, C.: Netdiagnoser: troubleshoot-
ing network unreachabilities using end-to-end probes and routing data. In: Proc.
CoNEXT (2007)

6. Dhawan, M., Samuel, J., Teixeira, R., Kreibich, C., Allman, M., Weaver, N., Pax-
son, V.: Fathom: A browser-based network measurement platform. In: Proc. ACM
IMC (2012)

7. Duffield, N.G., Horowitz, J., Lo Presti, F., Towsley, D.: Multicast topology infer-
ence from measured end-to-end loss. IEEE Transactions on Information Theory
(2002)

8. Duffield, N.G., Presti, F.L., Paxson, V., Towsley, D.F.: Network loss tomography
using striped unicast probes. IEEE/ACM Trans. Netw. (2006)

http://www.lincs.fr
https://github.com/netixx/mininet-NetProbes
https://github.com/netixx/NetProbes

Zen and the Art of Network Troubleshooting 45

9. Ghita, D., Karakus, C., Argyraki, K.J., Thiran, P.: Shifting network tomography
toward a practical goal. In: Proc. CoNEXT (2011)

10. Goldoni, E., Rossi, G., Torelli, A.: Assolo, a new method for available bandwidth
estimation. In: ICIMP (2009)

11. Goldoni, E., Schivi, M.: End-to-End available bandwidth estimation tools, an
experimental comparison. In: Ricciato, F., Mellia, M., Biersack, E. (eds.) TMA
2010. LNCS, vol. 6003, pp. 171–182. Springer, Heidelberg (2010)

12. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
Journal of Intelligent Information Systems 17(2–3), 107–145 (2001)

13. Handigol, N., Heller, B., Jeyakumar, V., Lantz, B., McKeown, N.: Reproducible
network experiments using container-based emulation. In: Proc. CoNEXT (2012)

14. Hu, N., Steenkiste, P.: Evaluation and characterization of available bandwidth
probing techniques. IEEE J. Selected Areas in Communications (2003)

15. Huang, Y., Feamster, N., Teixeira, R.: Practical issues with using network tomog-
raphy for fault diagnosis. ACM SIGCOMM Computer Communication Review
(2008)

16. Joumblatt, D., Teixeira, R., Chandrashekar, J., Taft, N.: HostView: annotating
end-host performance measurements with user feedback. In: ACM HotMetrics
Workshop (2010)

17. Kim, K., Nam, H., Singh, V.K., Song, D., Schulzrinne, H.: DYSWIS: crowdsourcing
a home network diagnosis. In: ICCCN (2014)

18. Kompella, R., Yates, J., Greenberg, A., Snoeren, A.: Detection and localization of
network black holes. In: Proc. IEEE INFOCOM (2007)

19. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: Illuminating the edge
network. In Proc. ACM IMC (2010)

20. Navratil, J., Cottrell, R.L.: Abwe: a practical approach to available bandwidth
estimation. In: Proc. of PAM (2003)

21. Nguyen, H.X., Thiran, P.: The boolean solution to the congested IP link location
problem: Theory and practice. In: Proc. IEEE INFOCOM (2007)

22. Paxson, V.: Keynote: reflections on measurement research: crooked lines, straight
lines, and moneyshots. In: Proc. ACM SIGCOMM (2011)

23. Presti, F.L., Duffield, N.G., Horowitz, J., Towsley, D.F.: Multicast-based inference
of network-internal delay distributions. IEEE/ACM Trans. Netw. (2002)

24. Seedorf, J., Burger, E.: Application-Layer Traffic Optimization (ALTO) Problem
Statement. IETF RFC 5693 (2009)

Mobile and Wireless

Vivisecting WhatsApp in Cellular Networks:
Servers, Flows, and Quality of Experience

Pierdomenico Fiadino(B), Mirko Schiavone, and Pedro Casas

Telecommunications Research Center Vienna - FTW, Vienna, Austria
{Fiadino,Schiavone,Casas}@ftw.at

Abstract. Instant Multimedia Messaging (IMM) applications are
increasing their popularity in cellular networks, rapidly taking over the
traditional SMS and MMS messaging service. This paper presents the
first large-scale characterization of WhatsApp, the new giant in IMM.
Understanding how it works is paramount for cellular operators and ser-
vice providers, both to assess its impact on the network as well as gaining
know how for tracking its growing usage. Through the combined analysis
of passive measurements at the core of a European national-wide cel-
lular network, geo-distributed active measurements using RIPE Atlas,
live traffic captures at end devices, and subjective Quality of Experi-
ence (QoE) lab tests, our study shows that: (i) the WhatsApp hosting
architecture is highly centralized and exclusively located in the US; (ii)
multimedia sharing covers about 75% of the total WhatsApp traffic vol-
ume, with 36% of it being video content; (iii) flow characteristics depend
on the OS of the end device; (iv) despite achieving download throughputs
as high as 1.5 Mbps, about 35% of the total file downloads are potentially
badly perceived by the users, showing the impacts of the long latencies
to WhatsApp servers. Our analysis additionally overviews the worldwide
WhatsApp outage occurred in February 2014.

Keywords: WhatsApp · Large-Scale measurements · Cellular networks ·
Traffic characterization · Quality of experience

1 Introduction

WhatsApp is doubtlessly the leading instant multimedia messaging service in
cellular networks. WhatsApp is a cross-platform mobile application which allows
users worldwide to instantly exchange text messages and multimedia contents
such as photos, audio and videos. It currently handles more than 64 billion
messages per day, including 700 million photos and 100 million videos [16]. With
half a billion of active users, it has become the fastest-growing company in history
in terms of users [15]. Such an astonishing popularity does not only have a major
impact on the traditional SMS/MMS business, but might also have a remarked
impact on the traffic, especially due to the sharing of multimedia messages.

The goal of this paper is to provide the first large-scale characterization of the
WhatsApp service. By analyzing a week of cellular traffic flows collected in Febru-
ary 2014 at the cellular network of a major European ISP, we shed light on the
c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 49–63, 2015.
DOI: 10.1007/978-3-319-17172-2 4

50 P. Fiadino et al.

WhatsApp hosting network architecture, the characteristics of the generated traf-
fic, and the performance of media transfers, specially as perceived by the end users.
As WhatsApp runs on top of encrypted connections, our measurements are com-
plemented with a dissection of the WhatsApp protocol through hybrid measure-
ments, enabling a subsequent passive monitoring at the large-scale. In addition,
due to its large worldwide popularity, the WhatsApp dataset is augmented with
geo-distributed DNS active measurements using more than 600 RIPE Atlas boxes
distributed around the globe [14].Aswe shall see next, this paper it is not just about
finding which flows belong to the WhatsApp service and analyze them. Indeed,
there are many measurement challenges associated to the characterization of such
a service: the data gathering, the processing and the interpretation are already very
complex per se, given the number of different measurement sources and datasets.

Recent papers have partially addressed the characterization of the What-
sApp traffic [2,3], but using very limited datasets (i.e., no more than 50 devices)
and considering an energy-consumption perspective. Our study follows previous
papers characterizing popular Internet services such as YouTube [6], Facebook
[5], Google+ [8], Skype [4], and Dropbox [7] among others. This paper represents
an extended version of a recently presented abstract on the topic [1].

Our main findings are the following: (i) Despite its worldwide popularity,
WhatsApp is a fully centralized service hosted by the cloud provider
SoftLayer at servers located in the US. (ii) While the application is mainly
used as a text-messaging service in terms of transmitted flows (more than 93%),
video-sharing accounts for about 36% of the exchanged volume in
uplink and downlink, and photo-sharing/audio-messaging for about 38%.
(iii) Despite achieving flow download throughputs of 1.5 Mbps on aver-
age, about 35% of the total file downloads are potentially badly per-
ceived by users. (iv) Flow duration characteristics depend on the device
OS. In particular, different platforms employ different app-level timeouts.

Besides these contributions, our study also provides an overview on the world-
wide WhatsApp outage reported on February the 22nd of 2014 [17], character-
izing the event as observed from the analyzed dataset. The measurements are
complemented with external Online Social Networks (OSNs) feeds (Twitter in
this case) to verify that the outage was negatively perceived by the users, imme-
diately at the time were the event occurred, additionally demonstrating the
feasibility of using OSNs data to provide near real-time evidence of user quality
impairments in large scale service outages. We believe that the information pro-
vided in this paper is highly useful for cellular operators to better understand
how WhatsApp works and performs, and specially to provide means for ana-
lyzing and tracking its evolution inside their networks, including a Quality of
Experience (QoE) perspective. To the best of our knowledge, we are the first to
provide a large-scale characterization of the complete WhatsApp service running
on its live environment.

The remainder of this paper is organized as follows: §2 briefly describes the
client application work-flow in terms of exchanged messages and server roles as
identified from hybrid end-device measurements. §3 explains the procedure used
to detect the WhatsApp flows in the large-scale cellular passive measurements, and

Vivisecting WhatsApp in Cellular Networks 51

characterizes the underlying hosting network. The analysis of the WhatsApp traf-
fic is presented in §4, including both the flow characteristics per communication
and end-device types and the performance in terms of transfer throughputs. §5
presents the results of subjective QoE tests performed with customers download-
ing multimedia files through WhatsApp, and applies them to the analyzed large-
scale traffic dataset. §6 provides an overview of the WhatsApp outage. Finally, §7
concludes this work.

2 An Overview on WhatsApp

WhatsApp uses encrypted communications, therefore the first step to analyze
its functioning in the wild is to better understand its inner working. To this end,
we rely on the manual inspection of hybrid measurements. We actively generate
WhatsApp text and media flows at end devices (both Android and iOS), and
passively observe them at two instrumented access gateways. We especially paid
attention to the DNS traffic generated by the devices.

WhatsApp uses a customized version of the open eXtensible Messaging and
Presence Protocol (XMPP) [20]. XMPP is a protocol for message oriented com-
munications based on XML. Not surprising, our measurements revealed that
WhatsApp servers are associated to the domain names whatsapp.net (for sup-
porting the service) and whatsapp.com (for the company website). As indicated
in table 1, different third level domain names are used to handle different types of
traffic (control, text messages, and multimedia messages). When the client appli-
cation starts, it contacts a messaging or chat server {e|c|d}X.whatsapp.net
listening on port 5222, where X is an integer changing for load balancing. This
port is assigned by IANA to clear-text XMPP sessions. Nevertheless, the con-
nection is SSL-encrypted. This connection is used for text messages as well as
control channel, and is kept up while the application is active or in background. If
the connection is dropped, a new one with the same or another messaging server
is immediately re-established. In case the application client is not running, the
message notification is delivered through the OS push APIs.

The application also offers the capability of multimedia contents transfer,
including photos, audio and video. Transfers are managed by HTTPS multi-
media (mm) servers listening on port 443. Those servers are associated to dif-
ferent domain names depending on their specific task: mmsXYZ.whatsapp.net
and mmiXYZ.whatsapp.net are both used for audio and photo transfers, while
mmvXYZ.whatsapp.net are exclusively reserved for videos. For each object, a ded-
icated TLS-encrypted connection towards a mm server is established. Uploads

Table 1. Third level domain names used by whatsapp.net and communication types

domain protocol (port) type

cX,eX,dX XMPP (5222, 443) chat & control

mmiXYZ,mmsXYZ HTTPS (443) media (photo/audio)

mmvXYZ HTTPS (443) media (video)

52 P. Fiadino et al.

are started immediately, while downloads of large objects need to be manually
triggered by the receiving user to avoid undesired traffic. These servers do not
perform any transcoding. As we shall see in §4, the two server classes have very
different network footprints. While connections to chat servers are character-
ized by low data-rate and long duration (specially due to the control messages),
media transfers are carried by short and heavy flows.

3 Hosting Infrastructure

The first part of the study focuses on discovering where the servers are located.
For doing so, we rely on the analysis of a complete week of WhatsApp traf-
fic traces, consisting of more than 150 million flows collected at the core of a
European national-wide cellular network, from 18.02 till 25.02. Flows are cap-
tured at the well-known Gn interface [22], using the METAWIN cellular net-
work monitoring system [12]. To preserve user privacy, any user related data are
anonymized, while packets’ payload is removed on the fly. Using the MaxMind
GeoIP databases [13], the ASes serving the corresponding flows are included
in the dataset. Traffic flows are continuously imported and analyzed through
DBStream [11], a data stream warehouse tailored for large-scale traffic monitor-
ing applications. In the following analysis, volume and flow counts are normalized
to preserve business privacy, and time-series are constructed with 10-min time
slots resolution.

3.1 Methodology

WhatsApp communications are encrypted, thus we firstly devised a classification
approach to identify WhatsApp flows. The approach is based on the HTTPTag
classification system [10] running on DBStream. HTTPTag classification consists
in applying pattern matching techniques to the hostname field of the HTTP
requests. Given the usage of encryption, and the need to also classify non-HTTP
traffic, the approach was extended to consider the analysis of DNS requests,
similar to [9]. Every time a user issues a DNS request for the Fully Qualified
Domain Name (FQDN) *.whatsapp.net, HTTPTag creates an entry mapping
this user to the server IPs provided in the DNS reply. Each entry is time stamped
and contains the TTL replied by the DNS server. Using these mappings, all the
subsequent flows between this user and the identified servers are assumed to
be WhatsApp flows. The approach also allows for a finer-grained classification,
using more specific patterns, i.e. (c|d|e)*.whatsapp.net for chat flows and
mm*.whatsapp.net for media flows. To avoid miss-classifications due to out-of-
date mappings, every entry expires after a TTL-based time-out. To increase the
robustness of the approach, the list of IPs is augmented by adding the list of
server IPs signing the TLS/SSL certificates with the string *.whatsapp.net.
Indeed, our hybrid measurements revealed that WhatsApp uses this string to
sign all its communications. Finally, we use reverse DNS queries to verify that
the list of filtered IPs actually corresponds to a WhatsApp domain.

Vivisecting WhatsApp in Cellular Networks 53

Table 2. Number of server IPs and prefixes used by WhatsApp

Service/AS # IPs #/24 #/16 #/8

WhatsApp 386 51 30 24

SoftLayer (AS 36351) 1,364,480 5330 106 42

3.2 Measurements Analysis

The complete one-week server IP mappings resulted in a total of 386 IPs iden-
tified as hosting the service, belonging to a single AS called SoftLayer (AS
number 36351) [19]. To avoid biased conclusions about the set of identified IPs
from a single vantage point, we performed an active measurements campaign
using the RIPE Atlas measurement network [14], where we analyzed which IPs
were obtained when resolving the same FQDNs from 600 different boxes around
the globe during multiple days. These active measurements confirmed that the
same set of IPs is always replied, regardless of the geographical location of the
requester. SoftLayer is a US-based cloud infrastructure provider consisting of
13 data centers and 17 Points of Presence (PoPs) distributed worldwide. Using
MaxMind geoloacalization capabilities, we observed that despite its geographical
distribution, WhatsApp traffic is handled mainly by the data centers in Dallas
and Houston. Given that the city-location accuracy of public GeoIP databases
such as MaxMind is questionable [21], we confirmed through traceroutes and
active RTT measurements that the servers are indeed located in the US.

Tab. 2 reports the different number of prefixes covered by the identified IPs
in SoftLayer. Note that we consider different netmasks (e.g., /24, /16, /8) for
simple counting and aggregation purposes, i.e., we do not claim that the prefixes
are fully covered/own by the ASes. The range of server IPs is highly distributed,
covering 51 different /24 prefixes and 24 /8 ones. The table additionally shows
the total number of SoftLayer IPv4 IPs. Fig. 1(a) shows the intersection of both
IP address ranges. As depicted in Fig. 1(b), when weighting the IP ranges by
volume, the majority of the traffic corresponds to IPs falling in 3 /16 ranges.
However, in terms of flows and activity (measured as 10-min active slots), the
range 50.22.225.0/24 captures a main share.

To complement the picture of the servers location, we investigate the distance
to the vantage point in terms of RTTs, analyzing the minimum RTT values. RTTs
are obtained from active ping measurements, performed during the span of the
dataset from a single location in Europe. Every unique IP hosting WhatsApp is
pinged with trains of 100 ICMP echo request packets every 10 minutes. Fig. 2 plots
the distribution of the minimum RTT to (a) all the server IPs hosting WhatsApp,
and (b) the same min RTT values, weighted by the previously considered 4 features
(i.e., flows, active slots, and traffic volumes) to get a better understanding of the
traffic sources. The distribution presents some clear steps indicating the existence
of different data centers or hosting locations. The min RTT is always bigger than
100ms, confirming that WhatsApp servers are located outside Europe, where our
vantage point is located. Fig. 2(b) shows that the service is evenly handled between

54 P. Fiadino et al.

0

10

20

30

40

50

60

70

80

90

100

IP address range

%
 I
P

s

32
.0

.0
.0

64
.0

.0
.0

96
.0

.0
.0

12
8.

0.
0.

0

16
0.

0.
0.

0

19
2.

0.
0.

0

22
4.

0.
0.

0

AS 36351 IPs

WhatsApp −− AS 36351

0

10

20

30

40

50

60

70

80

90

100

IP address range

%
 I
P

s

32
.0

.0
.0

64
.0

.0
.0

96
.0

.0
.0

12
8.

0.
0.

0

16
0.

0.
0.

0

19
2.

0.
0.

0

22
4.

0.
0.

0

num flows

bytes down

bytes up

active slots

(a) WhatsApp/SoftLayer IP ranges (b) Weighted IP ranges

Fig. 1. Ranges of IPs hosting WhatsApp

100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

min RTT (ms)

%
 I
P

s

100 105 110 115 120
0

10

20

30

40

50

60

70

80

90

100

min RTT (ms)

C
D

F

num flows

bytes down

bytes up

active slots

(a) min RTT per WhatsApp IP (b) Weighted min RTTs

Fig. 2. min RTT to WhatsApp server IPs

two different yet potentially very close locations at about 106 ms and 114 ms, which
is compatible with our previous findings.

To further understand how the hosting infrastructure of WhatsApp is struc-
tured, Fig. 3 depicts the distribution of server IPs over the same previous 4
features. The figures additionally depict chat and multimedia servers to discrim-
inate their roles. Regarding (a) number of flows and (b) active time slots, we
clearly observe how chat servers handle the biggest share of the flows, with a
highly active set of server IPs. On the contrary, multimedia servers are much
less active and handle a limited share of flows. In terms of volume, the picture
is completely the opposite when considering traffic volumes in (c) downlink and
(d) uplink directions.

Fig. 4 shows the dynamics of WhatsApp for 3 consecutive days, including
the number of active server IPs, the fraction of flows and traffic volume shares,
discriminating by chat and mm traffic. The mm category is further split into
photos/audio (mmi and mms) and video (mmv). The time-series present a clear
night/day pattern with two daily peaks at noon and 8pm. Fig. 4(a) indicates that
more than 350 IPs serve WhatsApp flows during peak hours. Note that no less

Vivisecting WhatsApp in Cellular Networks 55

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% num flows per IP

%
 I
P

s

all IPs

chat

mm

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% active slots

%
 I
P

s

all IPs

chat

mm

(a) Flows per srv. IP (b) Active slots per srv. IP

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

% bytes down per IP

%
 I
P

s

all IPs

chat

mm

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

% bytes up per IP

%
 I
P

s

all IPs

chat

mm

(c) Bytes down per srv. IP (d) Bytes up per srv. IP

Fig. 3. WhatsApp server IPs in terms of volume, flows, and activity shares

than 200 IPs are active even in the lowest load hours. When analyzing the active
IPs per traffic type, we see how chat servers are constantly active, as they keep
the state of active devices to achieve an efficient and fast push of the messages
to the device. Fig. 4(b) shows the flow count shares, revealing how chat flows
are clearly dominating. Once again we stop in the mmi and mms servers, which
seem to always handle the same share of flows, suggesting that both space names
are used as a mean to balance the load in terms of photos and audio messages.
Finally, Figs. 4(c) and 4(d) reveal that even if the mm volume is higher than
the chat volume, the latter is comparable to the photos and audio messaging
volume, specially in the uplink. Tab. 3 summarizes these shares of flows and
traffic volume. The reader should note that our dataset does not include flows
transmitted over WiFi, thus some of these results might be biased due to users
potentially using WiFi for large file transfers. We are currently analyzing this
potential bias as part of our ongoing work, and our first results confirm that our
observations are still valid.

As a conclusion, our measurements confirmed that WhatsApp is a centralized
and fully US-based service. This is likely to change in the near future after
Facebook’s WhatsApp acquisition. As for now, all messages among users outside
the US are routed through the core network. Being Brazil, India, Mexico and
Russia the fastest growing countries in terms of users [16], such a centralized
hosting infrastructure is likely to become a problematic bottleneck. Indeed, as

56 P. Fiadino et al.

00 12 00 12 00 12 00
0

50

100

150

200

250

300

350

time (10 min resolution)

#
 s

rv
 I
P

s

all IPs

mm

mmv

mmi

mms

chat

(a) Active IPs.

00 12 00 12 00 12 00
0

10

20

30

40

50

60

70

80

90

100

time (10 min resolution)

n
u
m

 f
lo

w
s
 (

n
o
rm

a
li
z
e
d
)

all IPs

mm

mmv

mmi

mms

chat

(b) Flows

00 12 00 12 00 12 00
0

10

20

30

40

50

60

70

80

90

100

time (10 min resolution)

b
y
te

s
 d

o
w

n
 (

n
o
rm

a
li
z
e
d
)

all IPs

mm

mmv

mmi

mms

chat

(c) Bytes down

00 12 00 12 00 12 00
0

10

20

30

40

50

60

70

80

90

100

time (10 min resolution)

b
y
te

s
 u

p
 (

n
o
rm

a
li
z
e
d
)

all IPs

mm

mmv

mmi

mms

chat

(d) Bytes up

Fig. 4. WhatsApp dynamics. More than 350 IPs serve WhatsApp during peak hours.

Table 3. Volume and flows per traffic category

features chat mm mmv mmi mms

bytesdown 16.6% 83.0% 38.8% 12.8% 29.8%

bytesup 29.5% 70.2% 35.2% 15.0% 17.9%

flows 93.4% 6.2% 0.3% 2.9% 2.9%

bytesdown
bytesdown+up

60.6% 76.3% 75.1% 70.0% 81.9%

we show in §5, the high latencies to US servers are a potential cause of bad QoE
for users downloading multimedia files, due to an increased download time and
a reduced TCP throughput.

4 Traffic Analysis

We study now the characteristics of the WhatsApp traffic in terms of size and
duration. Additionally, we evaluate the performance of the service, computing
the transfer throughputs as the Key Performance Indicator (KPI). Flow dura-
tions are measured with a coarse-grained resolution of one second (this is a

Vivisecting WhatsApp in Cellular Networks 57

(a) Flow duration vs. size

10
0

10
1

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100

flow size (KB)

%
 f
lo

w
s

all flows

chat

mm

(b) Flow size

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

flow duration (min)

%
 f
lo

w
s

all flows

chat

mm

(c) Flow duration

0 1 2 3 4
0

10

20

30

40

50

60

70

90

90

100

flow throughput (Mbps)

%
 f
lo

w
s

downlink

uplink

(d) MM flow throughput (flow size > 1MB)

Fig. 5. WhatsApp flow characteristics and performance

limitation of the monitoring system, given the large amount of processed traf-
fic), considering the time-stamps of the first and the last packet of a standard
5-tuple measured flow (note that flows are unidirectional) and adaptive flow
time-outs, see [12] for additional details. Flow throughput is estimated as the
ratio between the total transferred bytes and the flow duration. Note that given
the one second resolution, throughput values are somehow an underestimate of
the real throughput. Still, the results obtained in the paper about flow duration
allows us to claim that the absolute errors are marginal.

Fig. 5(a) shows a scatter plot reporting the flow duration vs. the flow size,
discriminating by chat and mm flows. Whereas mm messages are sent over ded-
icated connections, resulting in short-lived flows, text messages are sent over
the same connection used for control data, resulting in much longer flows. For
example, some chat flows are active for as much as 62 hours. The protrusion at
around 100KB is due to the fact that the client perform compression of images
and most of media flows are close to that size. Fig. 5(b) indicates that more than
50% of the mm flows are bigger than 70 KB, with an average flow size of 225
KB. More than 90% of the chat flows are smaller than 10 KB, with an average
size of 6.7 KB. In terms of duration, Fig. 5(c) shows that more than 90% of the
mm flows last less than 1 min (mean duration of 1.8 min), whereas chat flows
last on average as much as 17 minutes. The flow duration CDF additionally

58 P. Fiadino et al.

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

flow duration −− chat flows (min)

%
 f
lo

w
s

all chat flows

android

iOS

black berry

win phone

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

flow duration −− mm flows (min)

%
 f
lo

w
s

all mm flows

android

iOS

black berry

win phone

(a) chat flows (b) mm flows

Fig. 6. Flow duration per different OS

reveals some clear steps at exactly 10, 15 and 24 minutes, suggesting the usage
of an application time-out to terminate long idle connections. This behavior is
actually dictated by the operating system of the device. To better understand it,
we performed a device OS classification based on manual labeling of each device
based on its IMEI, covering more than 90% of the observed flows. Note that
the device IMEI is not contained in the WhatsApp messages, but comes from
other monitoring sources in METAWIN. Fig. 6(a) splits the analysis of the chat
flow duration per device OS. The figure clearly shows that the aforementioned
time-out is mainly OS-dependent, as different platforms show different values.
Three different time-outs are visible for Android devices at 10, 15 and 24 mins;
iOS uses a very short time-out of 3 mins, BlackBerry devices have 15 mins. long
time-outs, whereas Windows Mobile phones favor 10 mins. time-outs. On the
contrary, in the case of mm flows in Fig. 6(b), all the different OS show a sim-
ilar behavior, with the exception of BlackBerry and Windows Phone, using a
90 secs. time-out. These observations might have a major impact on the perfor-
mance of the Radio Access Network, due to different OS synchronization times
and uneven resources reservation requests. Indeed, it has been recently shown
that applications that provide continuous online presence such as WhatsApp can
generate a significant burden on the signaling plane in cellular networks [3].

Considering flow throughput, Fig. 5(d) depicts the uplink and downlink
throughputs for flows bigger than 1 MB. This filtering is performed as a means
to improve the throughput estimations. A-priori, one might expect that the long
RTTs involved in the communications to the US servers might heavily impact
the achieved performance. This is confirmed for about 30% of the transmit-
ted flows, which achieve a throughput smaller than 250 kbps. However, higher
throughputs are obtained for the largest shares of flows, achieving an average
per flow downlink/uplink throughput of 1.5 Mbps/800 kbps. Still, as we show
next, a big share of the file downloads can actually result in a very poor quality
of experience for the users.

Vivisecting WhatsApp in Cellular Networks 59

5 Quality of Experience in WhatsApp

In the previous section we considered the transfer throughput as the main
KPI reflecting service performance. However, in order to better understand the
impacts of transfer throughputs on the experience of the users, we performed
a QoE-based study of WhatsApp, relying on subjective QoE tests performed
in the lab, following well defined standards for realizing the tests and analyz-
ing the results [23,24]. In a nutshell, 50 participants (45%/55% male/female, 23
average age, 60%/40% students/employees) provided their feedback in terms of
Mean Opinion Scores (MOSs), reflecting their experienced quality while using
WhatsApp for transferring video and music files. The study consisted of users
receiving a multimedia file of 5MB to download on their smartphones as a What-
sApp shared file. Different network conditions were emulated by connecting the
phones to a network emulator, introducing different download throughput pro-
files via traffic shaping. At the end of each download, the user rates the overall
quality in a 1-to-5 MOS scale, where 5 means excellent experience and 1 means a
very bad one. Note that the file size of 5MB has a clear motivation behind: mp3
music files and short videos have a similar size. While it is clear that the 5MB
flow size reflects only a fraction of the total flows (as depicted in Fig. 5(b)), the
performed study permits to have some rough ideas of what the users perceive
of the service in terms of quality in this case. A deeper WhatsApp QoE-based
study is part of our current work.

Fig. 7(a) shows the QoE results for different download throughput values,
translated into waiting times. Download time is in fact the most relevant feature
as perceived by the user when analyzing file transfers [25], as this is directly
linked to anxiety and satisfaction. The figure shows that users tolerate transfers
of up to 20s long with a good overall experience, whereas transfers lasting more
than 80s are considered as very bad quality. A threshold of about 40s permits to
approximately discriminate between good and bad experience. Fig. 7(b) plots the
Flow Size vs. the Flow Download Time (FDT) for the large-scale dataset, con-
sidering only flows bigger than 1MB. If we focus on the range of flows with sizes
around 5MB, we see that while the majority of the flows have a FDT below 40s,
there are many downloads which highly exceed this threshold. Indeed, Fig. 7(c)
shows the distribution of the FDTs, both for all the flows with size between 4MB
and 6MB, as well as for all the flows bigger than 1MB. From these CDFs, one
can say that almost 40% of the WhatsApp downloads with size between 4MB

2.5 10 20 40 80
1

1.5

2

2.5

3

3.5

4

4.5

5

Flow download time (s)

M
O

S

0 10 20 30 40 50 60 70 80

2

4

6

8

10

12

14

16

18

20

Flow download time (s)

F
lo

w
 S

iz
e
 (

M
B

)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Flow download time (s)

%
 f
lo

w
s

flows > 1MB

4MB < flows < 6MB

(a) WhatsApp overall quality (b) Flow size vs. download time (c) Flow download time distribution

Fig. 7. QoE in WhatsApp, considering flows bigger than 1MB

60 P. Fiadino et al.

and 6MB have a FDT lower than 20s, resulting in good user experience. About
60% still result in an acceptable quality, and about 35% are potentially badly
or very badly perceived. Finally, if we now assume that users are generally non
experts and that file sizes are not taken into account into their quality expec-
tations when downloading a video or a song through WhatsApp, we could say
that similar results are observed for the complete dataset of downloaded flows
bigger than 1MB. Of course this last observation is rather controversial, but still
presents some notions on the experience of the end users. As a main conclusion,
we see that the architectural design of WhatsApp, with servers centralized in
the US, might actually have an impact on the experience of the users.

6 The WhatsApp Blackout

The last part of the study focuses on the analysis of the major WhatsApp world-
wide outage reported since its beginning as observed in our traces. The outage
occurred in February the 22nd of 2014, and had a strong attention in the medias
worldwide. The event is not only clearly visible in our passive traces, but can also
be correlated with the near real-time user reactions on social networks. Through
the online downdetector application [18] we accessed the counts of tweeter feeds
containing the keyword “whatsapp”, coupled with keywords reflecting service
impairments such as “outage”, “is down”, etc.. We refer to these tweets as error
tweets.

Fig. 8(a) depicts the time series of the share of bytes exchanged with the
servers, the share of flows, as well as the number of error tweets during two con-
secutive days encompassing the outage. The traffic drastically dropped on the
22nd at around 19:00 CEST (event B), and slowly started recovering after mid-
night, with some transient anomalous behaviors in the following hours (events C
and D). Traffic volumes in both directions did not drop completely to zero but
some non-negligible fraction of the traffic was still being exchanged, suggesting

50

100

b
y
te

s
 d

o
w

n
 (

%
)

50

100

b
y
te

s
 u

p
 (

%
)

0 6 12 18 0 6 12 18 0
0

500

1.000

time (hours)

#
 e

rr
o
r

tw
e
e
ts

0

50

100

#
 f
lo

w
s
 (

%
)

bytes down

bytes up

total flows

error tweets

CBA D

20

40

60

b
y
te

s
 d

o
w

n
 (

%
)

20

40

60

b
y
te

s
 u

p
 (

%
)

16 18 20 22 0 2 4
0

20

40

60

80

100

time (hours)

p
a

c
k
e

ts
 (

%
)

chat

mm

chat

mm

PSH

RST

SYN

SYN−ACK

(a) Aggregated traffic and OSN feedback (b) A zoom-in of the TCP flag counts

Fig. 8. The WhatsApp worldwide outage

Vivisecting WhatsApp in Cellular Networks 61

an overloading problem of the hosting infrastructure. In terms of number of flows,
there is a clear ramp-up on the flow counts. Very interestingly, there is a clear
correlation between the events B, C and D and the number of WhatsApp-related
error tweets. The users reacted on the social network immediately after the
beginning of the outage, with the viral effect reaching its highest point after one
hour. There is an additional outage event marked as A, which is clearly observ-
able in the error tweet counts and has exactly the same signature of events B, C
and D, i.e., a drop in the traffic volume and an increase in the flows count. As a
take away of this social data analysis, one can use such information as ground
truth for near real-time detection of QoE-relevant anomalies in popular services
such as WhatsApp.

To better drill-down the anomaly, Fig. 8(b) depicts a 12-hour zoom-in of
the traffic volume trends, split by chat and mm traffic, along with the counters
of TCP flags. The bytes down counters show that the residual downlink traffic
exchanged during the first part of the anomaly is due to previously queued mm
transfers. In fact, while chat servers stopped working, media servers are still up
and running at the beginning of the outage. We recall that connections to chat
servers are also used for application control, hence they provide links to media
contents. If such links have been delivered before the chat outage, the users might
still be able to retrieve media objects. The chat traffic in the uplink direction
does not drop to zero but slowly fades out, which actually corresponds to con-
trol flows trying to re-establish the lost connections. In particular, the TCP flags
counters reveal an steeped increase of SYN packets, indicating that devices were
repeatedly trying to reconnect after the servers abruptly flashed the connections
(RST flags). This suggests that the servers were still reachable, thus the failure
occurred at the application layer. The SYN and RST counters decrease gradu-
ally, revealing a back-off mechanism of the client application. These connection
attempts explain the high increase in the flow counts during events A-D, as well
as the persistence of uplink traffic to chat servers. This behaviour affected the
whole WhatsApp addressing space.

7 Concluding Remarks

WhatsApp is the fastest-growing company in history in terms of users, and this
paper presented the first large-scale characterization of the service from passive
measurements collected at a national-wide cellular network. Our study fully dis-
sected the well structured internal naming scheme used by WhatsApp to handle
the different types of connections, which shall enable an easy way to monitor its
traffic in the network. We discovered that WhatsApp is a centralized service, fully
hosted in the US. We showed that such a centralized hosting infrastructure might
negatively impact the experience of the end users. Even more, we believe that hav-
ing a poorly geo-distributed network of servers might be highly harmful in terms
of failures for such Internet-scale services, as revealed by the characterized world-
wide outage. Finally, we showed that WhatsApp uses two different approaches for
handling the messages exchanged among its users, keeping persistent connections
to handle text messages and short-lived flows to send multimedia contents.

62 P. Fiadino et al.

The datasets collected and analyzed in this paper correspond to a very inter-
esting point in time in the history of WhatsApp, in which Facebook acquired
the service. Given the highly distributed nature of the Facebook network [5], we
expect a significant change in the WhatsApp network architecture in the next
couple of years, and we are currently collecting a very large-scale WhatsApp
dataset to further investigate such changes in an upcoming study.

Acknowledgments. This work has been performed in the framework of the EU-IP
project mPlane, funded by the European Commission under the grant 318627.

References

1. Fiadino, P., et al.: Vivisecting WhatsApp through Large-Scale Measurements in
Mobile Networks. Extended Abstract in ACM SIGCOMM (2014)

2. Vergara, E., Andersson, S., Nadjm-Tehrani, S.: When mice consume like elephants:
instant messaging applications. In: ACM e-Energy (2014)

3. Aucinas, A., Vallina-Rodriguez, N., Grunenberger, Y., Erramilli, V.,
Papagiannaki, K., Crowcroft, J., Wetherall, D.: Staying online while mobile:
the hidden costs. In: ACM CoNEXT (2013)

4. Chen, K., Huang, C., Huang, P., Lei, C.: Quantifying skype user satisfaction. In:
ACM SIGCOMM (2006)

5. Fiadino, P., D’Alconzo, A., Casas, P.: Characterizing web services provisioning via
cdns: the case of facebook. In: TRAC (2014)

6. Finamore, A., Mellia, M., Munafo, M., Torres, R., Rao, S.G.: YouTube Everywhere:
Impact of Device and Infrastructure Synergies on User Experience. In: ACM IMC
(2011)

7. Drago, I., Mellia, M., Munafo, M., Sperotto, A., Sadre, R., Pras, A.: Inside Drop-
box: Understanding Personal Cloud Storage Services. In: ACM IMC (2012)

8. Magno, G., Comarela, G., Saez-Trumper, D., Cha, M., Almeida, V.: New kid on
the block: exploring the google+ social graph. In: ACM IMC (2012)

9. Bermudez, I., Mellia, M., Munafo, M., Keralapura, R., Nucci, A.: DNS to the
rescue: discerning content and services in a tangled web. In: ACM IMC (2012)

10. Fiadino, P., Bär, A., Casas, P.: HTTPTag: a flexible on-line http classification
system for operational 3G networks. In: IEEE INFOCOM (2013)

11. Bär, A., Casas, P., Golab, L., Finamore, A.: DBStream: an online aggregation,
filtering and processing system for network traffic monitoring. In: TRAC (2014)

12. Ricciato, F.: Traffic Monitoring and analysis for the optimization of a 3G network.
IEEE Wireless Communications 13(6) (2006)

13. MaxMIND GeoIP Databases. http://www.maxmind.com (accessed on August 20,
2014)

14. The RIPE Atlas measurement network. https://atlas.ripe.net/ (accessed on
September 02, 2014)

15. Blodget, H.: Everyone Who Thinks Facebook Is Stupid To Buy What-
sApp For $19 Billion Should Think Again. http://www.businessinsider.com/
why-facebook-buying-whatsapp-2014-2 (accessed on August 15, 2014)

16. WhatsApp Blog. http://blog.whatsapp.com/ (accessed on September 07, 2014)
17. WhatsApp Status in Twitter. https://twitter.com/wa status (Accessed on August

13, 2014)

http://www.maxmind.com
https://atlas.ripe.net/
http://www.businessinsider.com/why-facebook-buying-whatsapp-2014-2
http://www.businessinsider.com/why-facebook-buying-whatsapp-2014-2
http://blog.whatsapp.com/
https://twitter.com/wa_status

Vivisecting WhatsApp in Cellular Networks 63

18. Downdetector.com. http://downdetector.com/ (accessed on October 07, 2014)
19. SoftLayer: Cloud Servers. http://www.softlayer.com (accessed on October 01,

2014)
20. Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Instant

Messaging and Presence. RFC-6121, March 2011
21. Poese, I., Uhlig, S., Kaafar, M., Donnet, B., Gueye, B.: IP Geolocation Databases:

Unreliable? ACM SIGCOMM Computer Communication Review, 53–56 (2011)
22. Bannister, J., Mather, P., Coope, S.: Convergence Technologies for 3G Networks:

IP, UMTS, EGPRS and ATM. Wiley (2004)
23. International Telecommunication Union, Methods for Subjective Determination of

Transmission Quality, ITU-T Rec. P. 800 (1996)
24. International Telecommunication Union: Estimating End-to-End Performance in

IP Networks for Data Applications. ITU-T Rec. G. 1030 (2005)
25. Casas, P., et al.: A First Look at Quality of Experience in Personal Cloud Storage

Services. In: ICC Workshops (2013)

http://downdetector.com/
http://www.softlayer.com

Device-Specific Traffic Characterization for Root
Cause Analysis in Cellular Networks

Peter Romirer-Maierhofer(B), Mirko Schiavone, and Alessandro D’Alconzo

Forschungszentrum Telekommunikation Wien (FTW), Vienna, Austria
{romirer,schiavone,dalconzo}@ftw.at

Abstract. Nowadays mobile devices are highly heterogeneous both in
terms of terminal types (e.g., smartphones versus data modems) and
usage scenarios (e.g., mobile browsing versus machine-to-machine appli-
cations). Additionally, the complexity of mobile terminals is continuously
growing due to increases in computational power and advances in mobile
operating systems. In this scenario novel traffic patterns may arise in
mobile networks, and it is highly desirable for operators to understand
their impact on the network performance. We address this problem by
characterizing the traffic of different device types and Operating sys-
tems, analyzing real traces from a large scale mobile operator. We find
the presence of highly time synchronized spikes in both data and signal-
ing plane traffic generated by different types of devices. Additionally, by
investigating a real case, we show that a device-specific view on traffic can
efficiently support the root cause analysis of some type of network anoma-
lies. Our analysis confirms that large traffic peaks, potentially leading
to large-scale anomalies, can be induced by the misbehavior of a spe-
cific device type. Accordingly, we advocate the need for novel analysis
methodologies for automatic detection and possibly mitigation of such
device-triggered network anomalies.

1 Introduction

In the last decade operators of mobile networks have witnessed the spread of
heterogeneous mobile devices. Their heterogeneity stems from several respects:
Mobile devices include different terminal types, operating systems and support a
large variety of different applications. The level of device complexity is increased
by the permanent evolution of their computational power, the introduction of
novel mobile services and upgrades of the respective mobile APPs and Operating
Systems (OSs). In such a heterogeneous and complex network scenario it is very
appealing for mobile network operators i) to verify that device-specific traffic
patterns are conform with the assumptions taken during dimensioning of net-
work capacity, and ii) to identify device-specific traffic patterns that may induce
undesirable events (such as temporary overload due to large device populations
issuing synchronized downloads). This aspect is even more critical due to today’s
dynamics of mobile OSs making the assessment of device-specific traffic patterns
a moving target.
c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 64–78, 2015.
DOI: 10.1007/978-3-319-17172-2 5

Device-Specific Traffic Characterization for RCA 65

In this study we present a device-specific view on traffic behavior in an opera-
tional cellular network by first categorizing device types and mobile OSs present
in the network, and second by characterizing traffic patterns at different protocol
layers for the resulting device- and OS- categories. Additionally, we show how
device-specific traffic characterization can be exploited for the identification of
the root causes of detected network anomalies, a task which is typically resource-
intensive in operational networks [1]. Monitoring device-specific traffic behavior
enables the discrimination of anomalies caused by large populations of specific
devices from other, network-triggered anomalies, such as e.g., malfunctioning of
network equipment typically affecting all device types at the same time.

The remainder of this paper is organized as follows. We present our monitor-
ing setup and approach to device categorization in §3. In §4.1 we characterize
device-specific traffic behavior at the data plane. Additionally, we report on
observed similarities and differences compared to the previous work in [2]. We
investigate the device characteristics in Third Generation Partnership Project
(3GPP)-specific signaling at sub-minute granularity in §4.2. To the best of our
knowledge this is the first work investigating device-specific 3GPP signaling
at sub-minute granularity. In §4.3 we report about a device-specific network
anomaly detected from the analysis of Domain Name System (DNS) traffic for
different device categories and mobile OSs. Finally, we discuss lessons learned
and derive guidelines for future work in §5.

Our findings collectively suggest that the extraction and analysis of device-
specific traffic patterns becomes more and more important for dimensioning and
troubleshooting mobile networks. Accordingly, novel methodologies to detect and
mitigate undesirable device-specific traffic behavior are required in the near future.

2 Related Works

In order to enable a consistent taxonomy for describing heterogeneous mobile
devices Gansemer et al. presented a scalable database approach for classifying
devices, according to their features [3], into three categories: smartphones, mobile
phones and Personal Digital Assistents (PDAs). While the focus of that work
lies on enabling the selection of the optimal devices for development of specific
mobile applications, we use our device categorization for studying their network-
layer behavior. The authors in [4] presented the classification of mobile devices
by means of fingerprinting of their specific traffic behavior at the network and
transport layer. To this purpose the authors deploy supervised machine learning
techniques for processing passively monitored traffic features such as Time-To-
Live or TCP congestion-window size. However, the experimental measurements
presented in [4] cover only a limited number of devices, while we characterize the
traffic behavior of the entire population of mobile devices within an operational
mobile network. Kumar et al. report about large spatio-temporal differences
between smart-phones and laptops in [5]. Their study relies on MAC address-
based device classification and has been conducted by means of large-scale trace
analysis within a campus Wireless Local Area Network (WLAN). Our work
includes also additional device categories and is based on characterizing the

66 P. Romirer-Maierhofer et al.

Fig. 1. Monitoring infrastructure and measurement setup

traffic behavior of a device population that is several orders of magnitudes larger
than the one studied in [5].

The characterization of Machine-to-Machine (M2M) device-specific traffic
behavior in operational cellular networks has been presented earlier in [2,6,7].
The work presented in [6] includes the characterization of traffic volume behav-
ior and radio performance of M2M devices. The authors in [2] study volume
time series, session durations, mobility, applications and network performance
of M2M devices. While our approach to device categorization is similar to these
earlier studies, we do not limit ourselves to the characterization of M2M devices,
but rather we encompass additional device categories such as tablets and USB
modems. Additionally, we complement the studies presented in [2,6,7] by i) char-
acterizing the traffic behavior of two different types of mobile operating systems,
ii) studying the 3GPP-signaling protocol behavior and iii) investigating traffic
behavior at shorter time-scales enabling us to characterize device synchronization
at sub-minute granularity. Finally, we compare the traffic volume characteristics
in the network under study with the characteristics presented in [2] and discuss
observed similarities and differences.

3 Methodology

Traces were collected at the core network of a large scale European mobile oper-
ator. The results reported in the paper are based on several consecutive weeks of
observation in the fourth quarter of 2013. The measurement setup is depicted in
Fig. 1. Packet-level traces are captured at the Gn links between the GGSN and
SGSN — for details about 3G network structure please refer to [8]. We analyze
anonymized data captured by the METAWIN monitoring system developed in
a previous research project [9]. This monitoring system relies on Endace DAG
cards [10], and packets are recorded with Global Positioning System (GPS)-
synchronized timestamps offering an accuracy of ±100 ns.

Our measurement setup enables the investigation not only of data traffic,
but also of 3GPP-specific signaling traffic, e.g., mobile data sessions set-up and
tear-down , that is PDP contexts in the terminology of 3GPP (see [11] for more
details). Signaling information is exploited for associating an anonymized Mobile

Device-Specific Traffic Characterization for RCA 67

Device Identifier (MDID) and the observed device type to each monitored packet.
This latter is achieved by extracting the Type Allocation Code (TAC) digits
from the International Mobile Equipment Identity (IMEI), while the serial num-
ber digits of the IMEI are anonymized by means of an irreversible hash function.
Additionally, anonymized traffic data is transformed into high-level records of
e.g. aggregate IP flows or signaling events (ref. “Aggregation Process” in Fig. 1).
Finally, the recorded measurements are forwarded within an extraction process
(ref. Fig. 1) to DBStream [12], a PostgreSQL-based parallel data processing sys-
tem. In this paper, we use DBStream as our main analysis system. Note that all
results presented in this work report normalized values to protect confidentiality
of business-relevant information. Therefore, we cannot report the exact number
of devices in our dataset, nor the number of devices per category.

3.1 Device Categorization

Studying device-specific traffic behavior relies on a proper categorization of the
device types observed in the monitored traffic. To this purpose we follow the app-
roach presented in [2,6]. To determine the hardware model we started inspecting
the device TAC codes and matching them with the publicly available GSM Asso-
ciation database [13]. For categorizing M2M devices we adopt the base template
scheme defined in [14]. Then, similarly to [2] we used public information (e.g.,
production brochures, specification sheets) to manual supplement and verify this
template. Furthermore, we distinguish the categories tablet, feature phone and
smartphone. In particular, we label as feature phone all devices that are only
capable of transferring data via 2G, i.e., General Packet Radio System (GPRS)
or Enhanced General Packet Radio System (E-GPRS), while we consider smart-
phones all devices that are at least Third Generation (3G)-capable, i.e., sup-
port data transfer via Universal Mobile Telecommunications System (UMTS) or
High Speed Packet Access (HSPA). We also distinguish between USB modems
and modems. The first category includes devices connected via USB to PCs or
Laptops, the latter refers to PCs or Laptops built-in modems. Finally, devices
specifically designed for offering 3G-connectivity via local WLAN connections
are labeled as router.

By relying on this approach we managed to label up to 96% of the devices
observed within our study. As there is no standardized definition of M2M devices
some might have multiple uses (e.g., PC built-in card and M2M device modem),
thus the accuracy of our categorization is affected. In these cases, we adopted a
conservative approach and we labeled as M2M, devices which were exclusively
advertised as such by vendors.

3.2 Operating System Classification

In addition to previous works, our study includes the characterization of traffic
behavior for two different types of mobile OS in §4.3. The different OS types have
been derived from publicly available TAC information. For example, the TAC
codes assigned to Apple devices can be associated to the iOS operating system,
whereas TAC codes assigned to Nexus devices can be labeled as Android OS).

68 P. Romirer-Maierhofer et al.

While we are aware that such a manual labeling provides only moderate clas-
sification coverage, as shown in §4.3, it still enables us to study important OS
specific traffic characteristics. For obtaining larger classification coverage, infor-
mation from higher protocol layers would be required — refer to the earlier study
presented in [4] for an illustrative example.

4 Results

We start our study of device-specific traffic characteristics by analyzing aggregate
traffic volume behavior for different types of devices.

4.1 Device-specific Characteristics at the Data Plane

As reported in [2] the introduction of newdevice types, as e.g.,M2Mdevices, induce
novel traffic usage patterns that may question current assumptions for optimiza-
tion of network capacity. For instance, Shafiq et al. report that careful allocation
of network resources is required due to uplink-heavy M2M devices contradicting
optimization approaches relying on downlink asymmetry of network traffic [15].

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

Z

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

cat_#1

cat_#2

cat_#3

cat_#4

cat_#5

cat_#6

m2m

Fig. 2. CDF of ratio log(Uplink/Downlink), 7 day aggregate

For investigation of this aspect in the network under study, we plot the
ratio of uplink traffic volume to downlink traffic volume for different device
categories over a period of 7 days in Fig. 2. We plot the ratio for the device
category M2M and all other device categories separately. The latter categories
are named according to their ranked share of the overall traffic volume during the
observation period1. For enabling a comparison of our results with the findings
presented in [2, Fig. 2c] we also plot the ratios after taking their logarithm,
referred to as Z. Negative values of Z indicate larger volume in downlink than
in uplink, while positive values of Z refer to larger uplink volume than downlink
1 In order to obfuscate business-sensitive information the specific category labels have

been substituted by their rank.

Device-Specific Traffic Characterization for RCA 69

Mo
nd
ay

Tu
esd

ay

W
ed
ne
sda

y

Th
urs

da
y

Fri
da
y

Sa
tur
da
y

Su
nd
ay

Mo
nd
ay

0.0

0.2

0.4

0.6

0.8

1.0
N
o
rm

al
iz
ed
 T
ra
ff
ic
 V
o
lu
m
e

Downlink Uplink

(a) Smartphone

Mo
nd
ay

Tu
esd

ay

W
ed
ne
sda

y

Th
urs

da
y

Fri
da
y

Sa
tur
da
y

Su
nd
ay

Mo
nd
ay

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

al
iz
ed
 T
ra
ff
ic
 V
o
lu
m
e

Downlink Uplink

(b) M2M

Mo
nd
ay

Tu
esd

ay

W
ed
ne
sda

y

Th
urs

da
y

Fri
da
y

Sa
tur
da
y

Su
nd
ay

Mo
nd
ay

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

al
iz
ed
 T
ra
ff
ic
 V
o
lu
m
e

Downlink Uplink

(c) Tablet

Mo
nd
ay

Tu
esd

ay

W
ed
ne
sda

y

Th
urs

da
y

Fri
da
y

Sa
tur
da
y

Su
nd
ay

Mo
nd
ay

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

al
iz
ed
 T
ra
ff
ic
 V
o
lu
m
e

Downlink Uplink

(d) USB modem

Fig. 3. Downlink and uplink traffic volume time series, time bins of 5 minutes

volume. In Fig. 2 we observe a clear separation of the distribution of M2M devices
and all other devices. This is consistent with the finding presented in [2, Fig. 2c].
However, while Shafiq et al. report that ≈40% of smartphones have Z < −0.4
and ≈20% of smartphones have more uplink than downlink traffic (i.e. Z > 0),
in our study we cannot identify any device category exhibiting the reported
qualitative shape (compare Fig. 2 and [2, Fig. 2c]). Another dissimilarity to the
work in [2] is observed in the volume share of M2M devices. While we observe
Z ≤ 0 for almost 40% of M2M devices, Shafiq et al. report less than 10% of M2M
devices exhibiting larger downlink volume than uplink volume.

For further study of the device-specific data volume behavior, in Fig. 3 we
plot data volume time series for different device categories, in time bins of 5
minutes, over a period of one week in the fourth quarter of 2013. We observe
diurnal patterns for all time series of Fig. 3. In case of smartphones (ref. Fig. 3a)
the daily peak volume is reached in the evening hours of each day. This represents
a strong difference compared with the observation provided in [2, Fig. 3a] where
the authors report a decrease of overall traffic volume for the evening hours. This
might be explained by the different pricing models used in the two networks. In
the case of [2] users may be encouraged by higher tariff models to switch from
cellular connectivity to WLAN connections available in private homes.

The local volume peaks observed in Fig. 3a at noon during lunch time are a
further deviation from the results presented in [2]. This specific characteristic is
not visible for any other device type (ref. Fig. 3c and Fig. 3d). Our comparison
with the work in [2] suggests that even conceptually simple metrics such as e.g.,
volume time series may exhibit significant dissimilarities for different networks.

70 P. Romirer-Maierhofer et al.

An aspect which should be specifically regarded when establishing generic traffic
models based on observations derived from real networks.

From the time series of M2M devices (ref. Fig. 3b) we may establish following
findings which are consistent with the results presented in [2, Fig. 3b]: i) there
is a clear difference of the time series between working days and week days, ii)
M2M devices are the only device types that show higher aggregate uplink volume
than downlink volume, and iii) we observe distinct spikes in the traffic volume
indicating the presence of M2M devices sending data traffic in a synchronized
manner. The aspect of synchronized traffic patterns will be further addressed in
the next section.

Summarizing our investigation of traffic volume behavior, we may confirm
earlier works reporting the presence of uplink-heavy, synchronized M2M termi-
nals. However, we report distinct differences in the aggregate time series, specif-
ically for the smartphone device category.

4.2 Device-Specific Characteristics at the Signaling Plane

As reported in [16], 3G wireless networks are currently designed for traditional
human-type communication rather than for synchronized, machine-type com-
munication patterns as they may be triggered by M2M applications or mobile
APPs relying on periodic transfers of data. Accordingly, it is highly desirable for
mobile network operators to assess the effect of synchronized communication pat-
terns onto available network capacity. This is specifically important since large
increases of M2M-devices are expected until 2020. Such a perspective makes an
evolution from high data rate networks to M2M-optimized low cost networks
very appealing for network operators [16].

In this section we characterize the signaling behavior of different device
classes. In In this section we characterize the signaling behavior of different
device classes. In particular we focus on the PDP-context establishment pro-
cedure. Whenever a mobile client requires the establishment of a mobile data
session, it is required to send a PDP-context create request message (ref. to [8]
for more details).

Fig. 4 shows the Cumulative Distribution Function (CDF) of the number of
Packet Data Protocol (PDP)-context create requests for the device class M2M
and the two most popular device categories, computed over an aggregation
period of 7 consecutive days2. We observe similar characteristics for M2M devices
and the top category. While the second category converges quickly to 1, suggest-
ing that the devices of this category are operated by means of lower amounts
of PDP context create procedures. Moreover, we observe that the CDF of M2M
devices converges slower to 1 than in case of other device types. This suggests
that a small fraction of M2M devices relies on frequent session establishments,
an aspect which we address further below.
2 In order to obfuscate business-sensitive information the specific category labels have

been again substituted by their rank according to the overall volume during the
observation period.

Device-Specific Traffic Characterization for RCA 71

0.0 0.2 0.4 0.6 0.8 1.0
PDPcontext create (rescaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

cat_#1

cat_#2

m2m

Fig. 4. CDF of number of PDP-context create, different categories, 7 days (rescaled)

Fig. 5. Time series of PDP-context creates, 1 day, time bins of 10 sec

Fig. 5 depicts the overall time series of PDP-context create request messages
over a period of one day. We observe a time-of-day variation in the PDP-context
create request messages indicating more context establishments during day-time
and less connection establishments during night hours. However, in addition to
this daily cycle, we report distinct short-term spikes arising every full-hour and
also smaller spikes occurring at a periodicity of 15 minutes.

For further investigation of these spikes in the connection establishment pro-
cess, we plot the time series of PDP-context creates for different device classes
over a period of two days in Fig. 6. Comparing Fig. 5 and Fig. 6 we discover that
the reported peaks are triggered by different device classes. In particular M2M
devices are responsible for the higher peaks (e.g. refer to the largest spike in the
morning hours depicted in Fig. 6b). Additionally, we observe that M2M devices
exhibit their largest spikes during night hours indicating that a certain population
of M2M devices relies on periodic session establishments during off-peak hours.
It is interesting to note that also smartphones exhibit some sort of synchronized
behavior recognizable by the first three prominent spikes persistently re-occurring

72 P. Romirer-Maierhofer et al.

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00
0.0

0.2

0.4

0.6

0.8

1.0

#
 P
D
P
c
o
n
te
x
t
cr
ea

te
 (
re
sc
al
ed

)

(a) Smartphone

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00
0.0

0.2

0.4

0.6

0.8

1.0

#
 P
D
P
c
o
n
te
x
t
cr
ea

te
 (
re
sc
al
ed

)

(b) M2M

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00
0.0

0.2

0.4

0.6

0.8

1.0

#
 P
D
P
c
o
n
te
x
t
cr
ea

te
 (
re
sc
al
ed

)

(c) Tablet

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00
0.0

0.2

0.4

0.6

0.8

1.0

#
 P
D
P
c
o
n
te
x
t
cr
ea

te
 (
re
sc
al
ed

)

(d) USB modem

Fig. 6. Signaling: PDP-context create event time series, time bins of 10 seconds

in the morning hours (ref. Fig. 6a). By isolating these spikes for the different OS
types derived from the publicly available TAC identifier, we find that those are
caused by different types of mobile OSs. This suggests that specific types of OS
may in fact exhibit different behavior in the context establishment process. For
instance, the first two prominent spikes can be mapped to iOS-related TAC identi-
fiers while the third peak can be associated to Android OS-specific TAC identifiers.
The aspect of OS-specific signaling behavior will be further discussed in§4.3. Addi-
tionally, Fig. 6d shows distinct spikes every day at 04:00 for the device category of
USB modems. This behavior may be triggered by an M2M-like application rely-
ing on periodic data transfers once a day. For further investigation of the synchro-
nization level exhibited by the different device classes, we introduce the following
indicator functions and sets.

Be e and E the generic device and the set it belongs, respectively. We denote
by d = 1, 2, ..., 7 the days of the week, by m = 1, 2, ..., 1440 the minutes of the
day, and by w = 1, 2, ...52 the weeks of the year. For each device, let define the
function:

Θe(m, d,w) def=

⎧⎨
⎩

1 if e creates a PDP-context within
minute m of day d on week w

0 otherwise
(1)

For counting the number of days in the week the device e is creating a PDP-
context, at minute m, we introduce the function:

Σe(m,w) =
7∑

d=1

Θe(m, d,w) (2)

For filtering on the devices active in more than τ days per week, we define
the following indicator function:

Device-Specific Traffic Characterization for RCA 73

00
:00

:00

03
:00

:00

06
:00

:00

09
:00

:00

12
:00

:00

15
:00

:00

18
:00

:00

21
:00

:00

00
:00

:00

m

0.0

0.2

0.4

0.6

0.8

1.0

|P
(m

,4
2
)|

M2M Remaining Smart phone

(a) 24h

11
:30

:00

12
:00

:00

12
:30

:00

13
:00

:00

13
:30

:00

14
:00

:00

14
:30

:00

15
:00

:00

15
:30

:00

m

0.0

0.2

0.4

0.6

0.8

1.0

|P
(m

,4
2
)|

M2M Remaining Smart phone

(b) 4h zoom

Fig. 7. Cardinality of Pm,42, different zoom levels

Λe(m,w) def=
{

1 if Σe(m,w) > τ
0 otherwise (3)

The set of devices active at least τ days at the minute m of the week w, is
defined as follows:

Cm,w
def= {e ∈ E : Λe(m,w) = 1} (4)

In order to filter those devices that exhibit stable activity patterns across two
consecutive weeks, we consider the sets Pm,w obtained intersecting the Cm,w with
the conform set (i.e., the same minute) of the previous week:

Pm,w = Cm,w ∩ Cm,w−1 (5)

Fig. 7a depicts graphical representation of the cardinality of the sets Pm,42

for the different minutes at week 42. From this plot we notice that M2M and
smartphones exhibit similar behavior since both the classes tend to be synchro-
nized with the full hour, and partially synchronized also at a periodicity of 30
and 15 minutes. We found that more than 20% of M2M devices exhibit this
behavior while the share of smartphones is around 1%. In Fig 7b we report a
zoom on 4 hours of Fig. 7a. We observe that the variation around the spikes
is larger for smartphones compared to the case of M2M devices. This suggests
that smartphones are synchronized at a coarser level, while M2M devices are
tightly synchronized in time. This tight time-synchronization is highly undesir-
able for mobile operators, since it requires allocation of large network resources
when the network is dimensioned to keep up with capacity demands during
traffic peaks. Consequently, the expected future increase of M2M devices [16]
suggests that a continuous monitoring of M2M-triggered communication pat-
terns is needed, such that adequate countermeasures can be timely enforced
(e.g., de-synchronization of M2M devices).

4.3 Investigation of a Device-Specific Anomaly

In this section we report about a large-scale network anomaly detected while
studying the characteristics of the Domain Name System (DNS) traffic gener-
ated by each device category and for different OS.

74 P. Romirer-Maierhofer et al.

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

#
 D

N
S
 Q

u
er
y
 (
re
sc
al
ed

)

(a) Smartphone

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

#
 D

N
S
 Q

u
er
y
 (
re
sc
al
ed

)

(b) M2M

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

#
 D

N
S
 Q

u
er
y
 (
re
sc
al
ed

)

(c) Tablet

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

#
 D

N
S
 Q

u
er
y
 (
re
sc
al
ed

)

(d) USB modem

Fig. 8. Time series of DNS requests per device category, 2 days, time bins of 1 minute

Since the vast majority of Internet applications rely on the proper function-
ality of the DNS, ensuring the availability and performance of DNS servers is an
essential task for operators of mobile networks. Due to the emerging of synchro-
nized traffic behavior, as e.g., shown in §4.2, it is important to know whether a
large device population queries the operator’s DNS servers in a highly synchro-
nized manner, potentially impairing DNS servers performance. To this purpose,
in Fig. 8 we plot the time series of DNS queries for different device categories,
over a period of two days, aggregated in time bins of 1 minute. In Fig. 8b we
observe that M2M devices trigger several time-synchronized peaks in the DNS
query count across both days, showing the largest peaks around midnight. Fur-
ther manual investigation of the spikes depicted Fig. 8b showed that these spikes
are deterministic and re-occur every day at the same time of day. Since network
capacity is typically dimensioned in a peak-oriented manner, the presence of
short-term peaks results in higher capacity demands and wastage of resources in
non-peak intervals. Both aspects are highly undesirable at the network dimen-
sioning stage. Our observation suggests the need for deploying randomization
strategies for de-synchronization of network traffic in order to optimize network
dimensioning. The expected large increase of (synchronized) M2M devices by
2020 [16] urges for the adoption of such mitigation strategies in the near future.
However, in Fig. 8 we observe that not only M2M devices, but also smartphones
and tablets exhibit synchronized peaks in the DNS query counts. For instance,
we report smaller spikes throughout the whole day and larger, persistent spikes
in the night hours every day (ref. Fig. 8a and Fig. 8c).

Interestingly, Fig. 8 shows a sudden and large increase of DNS queries in
the morning hours of the second day. This clear anomaly only affects smart-
phones and tablets, but no other device types (ref. e.g., USB modem in Fig. 8).
For further investigation of the anomaly, we plot the time series of DNS query

Device-Specific Traffic Characterization for RCA 75

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
#
 D

N
S
 Q

u
er
y
 (
re
sc
al
ed

)

(a) Android

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00

04
:00

:00

08
:00

:00

12
:00

:00

16
:00

:00

20
:00

:00

00
:00

:00
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

#
 D

N
S
 Q

u
er
y
 (
re
sc
al
ed

)

iOS

(b) iOS

Fig. 9. Time series of DNS requests per operating system, 2 days, time bins of 1 minute

counts separately for TAC identifiers related to Android OS and iOS (recall §3)
in Fig. 9. From this figure we observe that only iOS-based devices are affected
by the anomaly. This confirms that the misbehavior of a large population of a
certain device type may in fact trigger macroscopic, network-wide anomalies.
As mobile devices nowadays rely on frequent updates of mobile apps and oper-
ating systems, it cannot be excluded that novel device-specific (mis-)behavior
are induced by such software updates over time. Accordingly, the assessment
whether software-updates result in new device-specific traffic characteristics or
even might induce novel network anomalies, requires continuous monitoring of
device-specific behavior across different types of devices and OSs. Hence, we
consider the the analysis of device-specific traffic behavior a moving target.

We further investigate the iOS-based anomaly depicted in Fig. 9 as follows.
Our monitoring system allows for the extraction of IP-level flow counters aggre-
gated in time bins of 1 minute. That is, in each time bin traffic volumes (i.e., IP
packets transferred in uplink and in downlink) are aggregated per flow, where a
flow is identified by the anonymized MDID, destination IP address, source port
and destination port. These flow aggregates enable the analysis of three differ-
ent flow types: flows where traffic has been transferred exclusively in uplink, i.e.,
data has been sent from the mobile devices towards the Internet. Such flows are
referred to as “uplink-only” flows. Conversely, “downlink-only” refers to flows
where traffic has been transferred only from servers in the Internet towards
mobile devices, and “two-way” flows refer to the case where traffic volume has
been transferred in both directions. As mentioned in [17] one-way traffic is caused
by different sources, such as scanning, peer-to-peer applications, back-scatter and
unreachable services. As noticed in [17] the latter type is particularly helpful for
large scale monitoring of network and service outages.

In Fig. 10 we plot the (rescaled) number of different flow types versus time
during the interval of the iOS-based anomaly. Fig. 10a depicts the flows involving
servers located in the anomalous IP range, while Fig. 10b shows flows involving
the residual server IP addresses. In order to enable direct comparison both figures
have been rescaled by the same undisclosed factor. In Fig 10b we observe that
all flow types are rather stable over time. The number of two-way flows shows
two slight bumps during the anomaly, which are likely caused by the anoma-
lous increase of DNS queries that has been presented in Fig. 9b. In contrast, we
observe two distinct bumps for all flows of the anomalous IP range in Fig. 10a.

76 P. Romirer-Maierhofer et al.

09
:00

:00

09
:10

:00

09
:20

:00

09
:30

:00

09
:40

:00

09
:50

:00

10
:00

:00

10
:10

:00

10
:20

:00

10
:30

:00

10
:40

:00

10
:50

:00

11
:00

:00
0.0

0.2

0.4

0.6

0.8

1.0

#
 F
lo
w
s

downlinkonly

twoway

uplinkonly

(a) Anomalous IP range

09
:00

:00

09
:10

:00

09
:20

:00

09
:30

:00

09
:40

:00

09
:50

:00

10
:00

:00

10
:10

:00

10
:20

:00

10
:30

:00

10
:40

:00

10
:50

:00

11
:00

:00
0.0

0.2

0.4

0.6

0.8

1.0

#
 F
lo
w
s

downlinkonly

twoway

uplinkonly

(b) Residual IP range

Fig. 10. Time series of flow types during observed anomaly, 1 min. time bins (rescaled)

The majority of these flows is unanswered by the destined servers within the
same time bin, resulting in two bumps of uplink-only flows (indicated by the
solid line). This finding and the fact that we observe a simultaneous increase
of uplink DNS queries, suggest that the anomaly is induced by a large set of
iOS-based devices issuing connection requests in uplink (e.g., by sending TCP
SYN packets). While we find that still some of the flows are answered by the
servers (see “two-way” flows in Fig. 10a), we also report two bumps for the class
of downlink-only flows. Such downlink-only flows may be present if connection
requests in uplink are answered late (e.g. by TCP reset packets) such that the
downlink packet is counted in one of the subsequent time bins after the corre-
sponding uplink flow. The pattern shown in Fig. 10a suggests that the servers
located in the anomalous IP range suffered from temporary faults leading to a
large number of unanswered and rejected client connection requests. In fact the
mobile devices reacted upon these unsuccessful connection requests by triggering
even more uplink-only flows (indicated by the persistently increasing height of
the bumps in Fig. 10a). Such a behavior is highly unwanted, since the schedul-
ing mechanisms in the Radio Access Network (RAN) typically rely on assigning
higher bandwidth to devices exceeding certain traffic rate thresholds [18]. As
a result of this scheduling strategy, anomalies like the reported one may lead
to large bandwidth demands for sending unsuccessful connection requests and,
hence, to a significant wastage of network resources in the RAN. Since RAN
resources are allocated in a shared manner, such incidents may even impair the
network performance of those devices not directly involved into an anomaly.

Our findings suggest that new methodologies are required for detecting and
mitigating device-specific anomalies. Current protection mechanisms, such as
e.g., IP firewalls or intrusion prevention systems, are mainly designed for mit-
igating anomalies and attacks originating from external sources located in the
Internet. Accordingly, such protection infrastructure is placed towards the edge
of the core network between the Gateway GPRS Support Node (GGSN) and the
Internet (ref. Fig 1). However, methodologies for efficiently mitigating device-
triggered anomalies should be enforced in the RAN section close to the mobile
devices, in order to avoid the propagation of anomalies and their negative effects
towards the core network. Furthermore, our study illustrates how root causes
of anomalies can be efficiently carried out by relying on device- and OS-specific
traffic characteristics. Further work along this direction has been documented

Device-Specific Traffic Characterization for RCA 77

in [19]. There, we provide guidelines for designing an automatic diagnosis system
for network anomalies, which relies on entropy metrics calculated from device-
specific traffic features.

5 Conclusions and Future Work

In this paper we present a device-specific view on the traffic within an opera-
tional cellular network, taking into account both, data plane and signaling plane
traffic. By discussing previous works on traffic characterization in mobile net-
works we show that comparing data sets collected from different networks is not
trivial, since even simple metrics such as, e.g., traffic volume time series, may
exhibit significantly different patterns across different networks. This is specif-
ically critical in case generic traffic models are derived from network-specific
traffic behavior.

Moreover, we report the presence of time-synchronized peaks at different pro-
tocol layers (e.g., DNS and PDP-context create) and at different time of the day.
In particular we find that such spikes are not only triggered by synchronized M2M
devices, but are also observed in other device categories (e.g., smartphones, tables
andUSBmodems).This finding suggests that de-synchronization ofmobile devices
for mitigating the negative effects of synchronized traffic peaks should not only be
carried out for M2M devices, but also for all the other device classes.

Finally, we also report about a device-specific network anomaly detected
from the analysis of DNS traffic. Analyzing this anomaly we show that device-
specific traffic characterization supports investigation of device-induced network
anomalies, and the identification of their root causes.

Acknowledgments. This work has been performed in the framework of the EU-IP
project mPlane, funded by the European Commission under the grant 318627.

References

1. D’Alconzo, A., Coluccia, A., Romirer-Maierhofer, P.: Distribution-Based Anomaly
Detection in 3G Mobile Networks: From Theory to Practice. International Journal
of Network Management, September 2010

2. Shafiq, M.Z., et al.: Large-Scale Measurement and Characterization of Cellular
Machine-to-Machine Traffic. IEEE/ACM Transactions on Networking (2013)

3. Gansemer, S., Groner, U., Maus, M.: Database classification of mobile devices. In:
Intelligent Data Acquisition and Advanced Computing Systems Technology and
Applications (IDAACS) (2007)

4. Granell, E., et al.: Smart devices fingerprint detection. In: IEEE Globecom Work-
shops (2012)

5. Kumar, U., Kim, J., Helmy, A.: Changing patterns of mobile network (WLAN)
usage: smart-phones vs. laptops. In: Wireless Communications and Mobile Com-
puting Conference, IWCMC 2013 (2013)

6. Marjamaa, J.: A measurement-based analysis of machine-to-machine communica-
tions over a cellular network. Master’s thesis, Aalto University, Helsinki, June 2012

78 P. Romirer-Maierhofer et al.

7. Baer, A., Svoboda, P., Casas, P.: MTRAC - discovering M2M devices in cellu-
lar networks from coarse-grained measurements. In: International Conference on
Communications, ICC (2015)

8. Bannister, J., Mather, P., Coope, S.: Convergence technologies for 3G networks:
IP, UMTS. John Wiley and Sons, EGPRS and ATM (2004)

9. Ricciato, F., et al.: Traffic monitoring and analysis in 3G networks: lessons learned
from the METAWIN project. Elektrotechnik und Informationstechnik (2006)

10. Endace measurememt systems. http://www.endace.com
11. ETSI. 3GPP TS 129.060, version 7.9.0 (2008)
12. Baer, A., et al.: Large-scale network traffic monitoring with DBStream, a system

for rolling big data analysis. In: International Conference on Big Data (2014)
13. GSMA IMEI Database. http://imeidb.gsm.org/imei/
14. AT&T, Florham Park, NJ, USA. AT&T specialty vertical devices. http://www.

rfwel.com/support/hw-support/ATT SpecialtyVerticalDevices.eps
15. Law, L.K., Krishnamurthy, S.V., Faloutsos, M.: Capacity of hybrid cellular-ad hoc

data networks. In: The 27th Conference on Computer Communications on IEEE
INFOCOM 2008 (2008)

16. Laner, M., et al.: Traffic models for machine type communications. In: International
Symposium on Wireless Communication Systems, ISWCS 2013 (2013)

17. Glatz, E., Dimitropoulos, X.: Classifying internet one-way traffic. In: Proceedings
of the 2012 ACM Conference on Internet Measurement Conference (2012)

18. Laner, M., et al.: A comparison between one-way delays in operating HSPA and
LTE networks. In: Symposium on Modeling and Optimization in Wireless Net-
works, WiOpt (2012)

19. Schiavone, M., et al.: Diagnosing device-specific anomalies in cellular networks. In:
ACM CoNEXT 2014 Workshop, Sydney, Australia (2014)

http://www.endace.com
http://imeidb.gsm.org/imei/
http://www.rfwel.com/support/hw-support/ATT_SpecialtyVerticalDevices.eps
http://www.rfwel.com/support/hw-support/ATT_SpecialtyVerticalDevices.eps

Tracking Middleboxes in the Mobile World
with TraceboxAndroid

Valentin Thirion, Korian Edeline, and Benoit Donnet(B)

Université de Liège, Liège, Belgium
{benoit.donnet,korian.edeline}@ulg.ac.be

Abstract. Middleboxes are largely deployed over cellular networks. It
is known that they might disrupt network performance, expose users to
security issues, and harm protocols deployability. Further, hardly any
network measurements tools for smartphones are able to infer middle-
box behaviors, specially if one cannot control both ends of a path. In
this paper, we present TraceboxAndroid a proof-of-concept measurement
application for Android mobile devices implementing the tracebox algo-
rithm. It aims at diagnosing middlebox-impaired paths by detecting and
locating rewriting middleboxes. We analyze a dataset sample to high-
light the range of opportunities offered by TraceboxAndroid. We show
that TraceboxAndroid can be useful for mobile users as well as for the
research community.

1 Introduction

It has been a while, now, the Research Community has tried to use computing
resources made available by end-users. One of the most famous tentative is prob-
ably SETI@home [1]. SETI@home provides a screensaver that users can freely
install, and that downloads and analyzes radio-telescope data for signs of intel-
ligent life. The project obtains a portion of the computing power of the users’
computers, and in turn the users are rewarded by the knowledge that they are
participating in a collective research effort, by attractive visualizations of the
data, and by having their contributions publicly acknowledged. This model has
been followed by others, in particular for performing large-scale Internet topol-
ogy data collection [2,3].

Meanwhile, we have seen the rise of mobile devices at the expense of a drop in
desk-based and notebook computers [4]. Mobile data usage is increasing rapidly
in part due to a growing release of mobile devices and the availability of a wide
variety of mobile phone applications. For instance, a large number of users nowa-
days use their mobile devices to watch video on demand (e.g., YouTube) while
on the move. Naturally, the idea of using crowdsourcing with mobile devices to
measure the Internet has emerged. However, the particularities of those devices
make network measurements a difficult task [5].

This work is funded by the European Commission funded mPlane ICT-318627
project.

c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 79–91, 2015.
DOI: 10.1007/978-3-319-17172-2 6

80 V. Thirion et al.

In addition, the Internet infrastructure has strongly evolved. In particular, we
have seen the growing importance of middleboxes (i.e., “an intermediary box per-
forming functions apart from normal, standard functions of an IP router on the
data path between a source host and destination host” [6]). For instance, Sherry et
al. [7] obtained configurations from 57 enterprise networks and revealed that they
can contain as many middleboxes as routers. Wang et al. [8] surveyed 107 cellular
networks and found that 82 of them used NATs. Those middleboxes has shown to
have a negative impact on the evolvability of the TCP/IP protocol suite [9].

Combining the rise of mobile devices and the importance of middleboxes leads
to a natural question: are the middleboxes a cause of degraded performance in
mobile networks and can we provide tools for monitoring and discovering prob-
lems with end-user Quality of Experience (QoE) due to their presence. The first
part of the question has already been answered. Wang et al. [8] have demon-
strated that middleboxes are, indeed, a brake to mobile network performance in
mobile networks.

In this paper, we tackle the second part of the question by proposing a proof-of-
concept tool called TraceboxAndroid. TraceboxAndroid is based on tracebox [10],
a traceroute extension that is able to reveal the presence of middleboxes along
a path. We have ported tracebox under the Android system, allowing so the user
to detect the presence of a middlebox that could be the cause of a degraded per-
formance on a path. We describe the architecture of TraceboxAndroid and deploy
it on several mobile devices across the world in order to demonstrate its potential-
ities. In addition, TraceboxAndroid is lightweight for mobile devices in terms of
battery and memory consumption. TraceboxAndroid is freely available (http://
androidtracebox.org).

The remainder of this paper is organized as follows: Sec. 2 explains how
tracebox works; Sec. 3 presents TraceboxAndroid, our tracebox port into
Android devices; Sec. 4 explains our TraceboxAndroid deployment, data col-
lection, and results we obtained; Sec. 5 positions this paper regarding the state
of the art; finally, Sec. 6 concludes this paper by summarizing its main achieve-
ments.

2 Tracebox

To reveal the presence of middleboxes along a path, we use tracebox [10], an
extension to the widely used traceroute.

tracebox mechanism is illustrated in Fig. 1. It relies on RFC1812 [11] and
RFC792 [12] stating that the returned ICMP time-exceeded message should
quote the IP header of the original packet and respectively the complete payload
or the first 64 bits. tracebox uses the same incremental approach as traceroute,
i.e., it sends packets with different IP, UDP, or TCP fields and options with
increasing TTL values. By comparing the quoted packet to the original, one can
highlight the modifications and the initial TTL value allows us to localize the
two or more hops between which the change took place. In Fig. 1, packet a is
the originally sent one. The first hop, that happens to be a middlebox, modifies

http://androidtracebox.org
http://androidtracebox.org

Tracking Middleboxes in the Mobile World with TraceboxAndroid 81

Fig. 1. Example of middlebox detection with tracebox

its TCP Initial Sequence Number (ISN) and sends the rewritten packet b to
the next hop. When the next hop receives the expired packet, it sends back to
the client an ICMP time-exceeded packet c containing packet b as a payload.
When the tracebox client receives it, it is able to compare packet a and the
payload of packet c to detect any changes and the initial TTL value, i.e., 2,
allows tracebox to bound the middlebox location.

It is worth to notice that in 80% of the cases [10], a path contains at least
one router which implement RFC1812 [11], that recommends to quote the entire
IP packet in the returned ICMP. This means that, in most cases, tracebox is
able to detect any modification performed by upstream middleboxes.

3 TraceboxAndroid

tracebox has been originally developed to work on desk-based computers, on a
UNIX-like system. We have ported tracebox on Android mobile devices. Our
application is called TraceboxAndroid.

Fig. 2 illustrates the general TraceboxAndroid architecture. As shown, it is
made of three main components: the system core where the tracebox intelligence
has been included (coded in C, under the front office), the front office (or the
application) corresponding to the Android application (coded in Java) and the
back office (or server – coded in PHP and HTML) that is used to store data
and make offline analysis.

The front office communicates with the server using an XML API that gives
the application the destinations to be probed and allows it to send back the data
collected by the system core. The core itself implements tracebox (as described
in Sec. 2) and sends probes to the destinations using sockets by system calls.

The front office and the system core are freely available1 since mid-2014. In
the subsequent sections, we deepen each component.

3.1 System Core

TraceboxAndroid is based on BusyBox [13], a software written in C that aims
at providing Unix tools for operating systems with limited resources. In par-
ticular, it contains a basic networking tool suite (e.g., ping, netstat, netcat,
1 http://www.androidtracebox.org

http:/ /www.androidtracebox.org

82 V. Thirion et al.

Fig. 2. General overview of the TraceboxAndroid architecture

traceroute, etc). We started from the latter source code to port tracebox into
Android systems.

The main challenge we had to address is that tracebox requires the use of
raw sockets to manually set IP fields, TCP fields, and TCP options, and retrieve
the received headers. As the use of raw sockets is restricted to users that can
grant the CAP_NET_RAW POSIX capability (i.e., super users), we chose to exclude
non-rooted devices and call the TraceboxAndroid BusyBox implementation from
the JAVA app as a super user. While this limitation is crippling for extended use,
as already stated by Faggiani et al. [5], it seems reasonable for a proof-of-concept
implementation.

TraceboxAndroid system core consists in a C applet which is called by a
lightweight BusyBox version. The underlying tracebox implementation is based
on the algorithm described in Sec. 2 and supports TCP/IPv4 and diverse TCP
options (e.g., SelectiveACK, Timestamp, MSS, WindowScale, MultipathTCP).

3.2 Front Office

The front office (or application) purpose is to send tracebox probes to pre-
determined or user-chosen destinations, compute the result, and send it back to
the back office. In some sense, it acts as a proxy between the system core and
the back office.

On the first execution or when a new version is released, three actions are
automatically performed: check if the phone is rooted, download and install our
custom lightweight BusyBox version containing the tracebox implementation,
and retrieve an XML file containing the destination set (detailed in Sec. 4.1).

Three probing mechanisms are available in the Front Office menu:

Tracking Middleboxes in the Mobile World with TraceboxAndroid 83

Fig. 3. Front Office organization

– Background Probing : background probes are sent by a scheduled task that
is executed several times a day while the phone is connected to a network,
even if the user shuts down the application.
The user is able to edit the configuration of the scheduled probing by setting
the number of destinations to be probed during one probing session and the
maximum duration of a session.

– Instant Probing : an Instant probe is a one-time single measurement sent to
a random destination within the destination set. The user can choose to run
an Instant probe at any time and retrieve the results.

– Custom Probing : the Custom probing mode is similar to the Instant Probing
but allows the user to set the destination.

Background Probing is mostly for research purposes. The two others are
much more dedicated to given network monitoring/analysis in case of a drop in
the QoE observed by the user.

The user is also able to check the results, consult the logs, and get information
about the application and all the tools that were used to create it.

The architecture of the front office is displayed in Fig. 3. It is divided in three
packages; (i) the Main package that is mainly composed of Activity classes that
are responsible for drawing the views, monitoring the state of the app, receiving
user commands, and launching AsyncTask to perform various operations (e.g.,
send an Instant Probe, parse an XML file, etc); (ii) the Core package contains
utility and long-lived action managing classes that executes Unix commands
and fetch the results, sends the result to the back office component and runs
the tracebox applet; (iii) finally, the Data package is composed of classes main-
taining information about processes and is responsible of managing an internal
SQLite database.

84 V. Thirion et al.

The database stores information about destinations, probes, routers, packet
modifications, and the logs. In addition to the probed routers inferred character-
istics, the GPS position of the device at the probing time, Internet connection
mode (i.e., WiFi, cellular, or Bluetooth), the cellular mode and carrier name (in
case of a cellular network connection), and the battery consumption are saved
into the local database before being sent to the back office.

3.3 Back Office

The back office is the server-side application that stores data collected by the
mobile devices. It also manages the destinations probed by the application.

The back office has no other purpose than research (i.e., conserving collected
data and off line analysis). The user cannot access the back office directly but
has the opportunity to analyze data if he selected Instant or Custom probing,
or to download the dataset on the website.

4 Evaluation

In this section, we explain our evaluation of TraceboxAndroid. In particular, we
discuss our measurement methodology, describe our dataset, and analyze our
results.

4.1 Methodology

We built an initial probe target set from the Alexa top-500 websites list, that we
pre-resolved using Google Public DNS into 406 unique addresses, avoiding so a
resolution on every mobile device that could consume undue resources and that
could lead to completely different probed paths, making statistics meaningless.
This address set is used by TraceboxAndroid Background Probing and Instant
Probing features. It is, however, obvious that in case of selecting the Custom
Probing feature, the DNS resolution will be done by the app.

Between May, 2014 and September, 2014 TraceboxAndroid has been down-
loaded by 23 users from Belgium, Italy, USA, China, and Nigeria. Measurements
performed by those users during this period reached a total of 1,756 probes sent.
Participating mobile devices were connected to the Internet via WiFI or cellu-
lar data networks via different carriers (Mobistar, O2, Mobile Vikings, E-Plus,
BASE, T-Mobile, Movistar, KPN) using different mobile technologies (HSPA,
HSPAP, HSDPA, LTE, UMTS, and EDGE).

On the whole set of probes sent, 1,372 (78.13%) were done through WiFi
connections. The remaining 384 probes (21.87%) were sent through cellular con-
nections.

This dataset is limited but sufficient to demonstrate the extent of Trace-
boxAndroid capabilities. Moreover, as the Android app was still under devel-
opment during most measurements, the following results and figures should be
considered as illustrations of the variety of the app capabilities rather than rig-
orous observations.

Tracking Middleboxes in the Mobile World with TraceboxAndroid 85

Fig. 4. Path lengths distribution Fig. 5. Location of first observed mid-
dlebox modification

4.2 Results

We first look at paths collected and, in particular, at their length distribution.
Path lengths are computed on a subset of the paths collected. From the whole set,
we select those that have unique <source;destination> address pairs to compute
their lengths. This subset contains 606 paths, 388 of them were obtained via
WiFi connections (64.9%) and 218 via cellular connections (35.97%).

The results are displayed in Fig. 4. We see that WiFi paths are 1.14 hops
longer on average than cellular networks paths, their respective path length
means being 15.8 and 14.67 hops.

The location of the first observed middlebox, in number of hops away from the
probing source, is shown in Fig. 5. We see that 272 among 361 (75.32%) WiFi paths
and 147 among 215 (68.37%) cellular paths that involves amiddleboxhad their first
probe modified close to the mobile device, respectively at hops 6 and 4.

WiFi probes have crossed 180 different different ASs (Autonomous Systems)
and cellular probes have crossed 139 different ASs. The AS overlap between the
two types of probes includes 111 ASs. The three autonomous systems that WiFi
probes have traversed the most are HIBERNIA TripartZ,NL, BELGACOM-SKYNET,
BE and TTNET,TR, for cellular probes these are BASE-AS,BE, KPN Interational,
NL and UUNET,US. The types of crossed ASs are somewhat equivalent, whatever
the type of network connection of the device (i.e., WiFi or cellular), consisting
mainly in Transit networks.

We next check IP and TCP modifications. They are inferred using the
tracebox algorithm described in Sec. 2. As probes have common subpaths, we
counted each answering device only once based on the source IP addresses. The
resulting set is composed of 3,109 routers, 175 (5.63%) of them exhibit mid-
dlebox behaviors. We have observed that 2,304 routers answered through WiFi
connections and 1,392 were probed through cellular connections, among them
tracebox respectively detected 103 (4.47%) and 87 (6.25%) middleboxes. Note
that 587 routers have been probed via WiFI and cellular data networks.

86 V. Thirion et al.

(a) Modification rates

Label Field

1 IP::ToS
2 IP::TotalLength
3 IP::ID
4 IP::Flags
5 IP::Protocol
6 IP::Checksum
7 TCP::SourcePort
8 TCP::DestPort
9 TCP::SeqNumber
10 TCP::Offset
11 TCP::WindowSize
12 TCP::Checksum

(b) Legend

Fig. 6. Observed middlebox modification in IP and TCP headers

The amount of detected middleboxes in this set has to be put in perspective
with their strategic positioning; from the unique paths set explained above, 576
among 606 (95.05%) paths are crossing at least one middlebox that modifies at
least one IP header, TCP header field, or TCP option. 361 among 389 (93.04%)
WiFi paths and 215 among 218 (98.62%) cellular network paths involves a rewrit-
ing middlebox.

Fig. 6 summarizes those modifications. The TCP checksum is recomputed
by many middleboxes, those that modifies IP pseudo-header fields, TCP fields,
and TCP options. It is natural to see that 3.5% of the total observed routers are
modifying it. Besides the TCP checksum, four fields are rewritten more often:
IP ToS, IP-ID, TCP source port and TCP sequence number. This modification
set exactly matches NATs rewriting behavior.

IP ToS rewriting can either come from routers using its DiffServCodePoints
(DSCP) sub-field to mark packets for differentiated services, or modifying the
last two Explicit Congestion Notification (ECN) bits. The latter modification
can either be the action of legacy routers trying to modify the legacy 8-bits ToS
field instead of the 6-bits DSCP field, unintentionally modifying ECN-related
bits, or a systematic clearance of ECN bits [14].

Inseveraloperatingsystems,IP-IDfieldsof self-forgedpacketsarefilledwiththe
value of a globally-incremented packet counter, which is known to be a side-channel
leaking information about other connections [15]. Security consequenceswhen end-
points use such a counter to write IP-ID have been discussed multiple times and
involves enabling attackers to perform idle scan attacks, NATted hosts counting,
facilitatingTCPinjectionsandmore [16–19],butconsequenceswhen it isperformed
by middleboxes for either self-forged or certain non self-forged packets have been
less discussed. One of the most harmful known exploitation of middleboxes using a
globally-incremented IP-ID is when it is combined with TCP window-checking, as
it enables attackers to gain feedback on in-window/out-of-window packets to infer
the TCP sequence number, and perform off-path TCP injections [18,20,21].

Tracking Middleboxes in the Mobile World with TraceboxAndroid 87

(a) Modification rates

Label TCP option

13 TCP::Option MSS
14 TCP::Option WS
15 TCP::Option Timestamp
16 TCP::Option SACK
17 TCP::Option MPTCP

(b) Legend

Fig. 7. Observed middlebox modification in TCP options

Source portmodification is a commonpractice ofCarrier-GradeNATs (CGNs),
which makes it difficult for traffic intended for machines located behind it to pass
through (e.g., active FTP). However, solutions to this problem have been
proposed [22]. TCP ports modification by middleboxes also makes it difficult to
achieve transport layer security (e.g., IPSEC) [23].

TCP sequence number modification is mostly due to initial sequence number
(ISN) re-shuffling middlebox policies, which aim at mitigating ISN prediction
attacks [10]. Such policies are known to create inconsistencies with TCP options
using absolute sequence numbers such as Selective ACKnowledgement (SACK),
and to reduce substantially the maximum achievable bandwidth [24,25].

TCP Options modifications are shown in Fig. 7. We witnessed multiple mid-
dleboxes rewriting the MSS in cellular networks to 1,392 bytes, which is probably
designed to obtain packets of 1,500 bytes taking into account the sizes of the
desired headers. Among the other options, MultiPathTCP have been cleared by
some middleboxes to forbid its use, and is also prone to be blocked by middle-
boxes that are not familiar with it [25]. WindowScale have been modified by a
few middleboxes to custom values, probably for network performance optimiza-
tion purposes. WindowScale is also known to cause connectivity problems with
certain firewalls that do not implement it as defined in RFC1323 [26,27].

Overall, we showed that TraceboxAndroid can be used efficiently for deducing
certain network disruption causes from inferred middlebox policies. This can be
useful to users for fast on-demand troubleshooting purposes, for researchers that
could analyze the collected dataset to get insights such as the permeability of a
TCP option, and for network managers to understand what is really happening
to packets crossing their networks.

88 V. Thirion et al.

Table 1. Observed Memory and CPU consumption

Case Samsung Galaxy SII Arnova 10d G3

Memory 10.8Mb 6.45Mb
CPU (app) < 1 % < 1 %
CPU (instant probe) 12.5 % 12.5%

4.3 Impact on Mobile Devices

To test the impact of the use of TraceboxAndroid on mobile phones, we used the
Android Monitoring tool [28]. In more than 99% of the cases, a Background Prob-
ing session with 10 destinations consumes less than one percent of battery. The
same probing session never sent more than 165Kb of data, including the XML
result file sent to the back office. We also did CPU and memory consumption
measurements whose results are shown in Table 1. The experiments were made
on a Samsung Galaxy SII (1,4Ghz, 1GB RAM, Android 4.3) and a Arnova 10d
G3 (1,2Ghz, 1GB RAM, Android 4.1.1). Clearly, TraceboxAndroid is lightweight
for mobile devices.

5 Related Work

Since the end of the nineties, the Internet topology discovery has been extensively
studied [29]. In particular, traceroute has been used for revealing IP interfaces
along the path between a source and a destination. Since then, traceroute
has been extended in order to mitigate its intrinsic limitations. From simple
extensions (i.e., the types of probes sent [30]) to much more developed modifica-
tions. For instance, traceroute has been improved to face load balancing [31]
or the reverse path [32]. Its probing speed and efficiency has also been investi-
gated [33,34].

Medina et al. [24] report one of the first detailed analysis of the interac-
tions between transport protocols and middleboxes. They rely on active probing
with tbit and contact various web servers to detect whether Explicit Conges-
tion Notification (ECN), IP options, and TCP options can be safely used. The
TCPExposure software developed by Honda et al. [9] is closest to tracebox. It
also uses specially crafted packets to test for middlebox interference. Wang et
al. [8] analyzed the impact of middleboxes in hundreds of cellular networks. This
study revealed various types of packet modifications. More recently, Craven et
al. [35] proposed TCP HICCUPS to reveal packet header manipulation to both
endpoints of a TCP connection. HICCUPS works by hashing a packet header
and by spreading the resulting hash into three fields (in case one is changed).
Finally, Xu et al. [36] analyzed the behavior of proxies deployed by four major
US cellular carriers. They looked at the HTTP traffic between their clients and
their own server. They exhibited mostly application-level proxy features such as

Tracking Middleboxes in the Mobile World with TraceboxAndroid 89

caching, HTTP redirection, image transcoding and connection persistence, and
quantified their effectiveness.

These tools provide great results, but they are limited to specific paths as
both ends of the path must be under control or must implement particular
techniques in the TCP/IP stack and, except for Wang et al. and Xu et al.,
are not dedicated to mobile devices. On the contrary, TraceboxAndroid does
not require any cooperation with the service and only the source must install
TraceboxAndroid. It allows one to detect middleboxes on any path, i.e., between
a source and any destination.

6 Conclusion

In this paper, we introduced TraceboxAndroid, a tracebox port under the
Android system, allowing so the user to detect the presence of a middlebox that
could be the cause of degraded performance on a path. We showed the extent of
TraceboxAndroid capabilities for detection and location of middleboxes rewrit-
ing IP and TCP headers fields and TCP options as well as for AS path analysis
and traceroute-like path displaying.

The main limitation of TraceboxAndroid is the impossibility to forge net-
work and transport headers and read ICMP control messages in non-rooted
environments. We need raw sockets to achieve this and their use is restricted to
users that can grant the CAP_NET_RAW POSIX capability (i.e., super users). As a
workaround, we chose to develop a proof-of-concept app for rooted devices only
and call the TraceboxAndroid BusyBox implementation from the JAVA app as
a super user, but this requirement is inappropriate for large-scale deployment
because it involves a loss of warranty and risks of system instabilities, among
others [37]. Note that this limit has already been discussed in the literature [5].

The dataset sample that we analyze in this paper is fairly limited and does
not provide particular insight of middleboxes in mobile networks. However, we
believe this dataset is enough to describe the potentialities of TraceboxAndroid.

In the near future, we would like to improve TraceboxAndroid. For instance,
we would like to extend the Custom Probing mechanism to allow the user to
select more IP fields, TCP fields, and TCP options to check and to choose the
probe transport layer between TCP and UDP. We also plan to support additional
TCP options, such as the TCP Authentication Option (TCP-AO) [38] or the
TCP Alternate Checksum Request [39]. Additionally, we would like to improve
the user experience by displaying more information and statistics (RTTs, values
of modified fields, crossed ASs, etc.) within the application itself.

Another interesting improvement would be to implement middlebox TCP
option blocking inference. Mobile devices could send multiple probes with differ-
ent TCP options combinations to infer middlebox blocking behavior and find if
in-path middleboxes are forbidding the use of certain option. This would allow
user to perform more complete on-demand connectivity tests and the research
community would benefit from the compiled results dataset.

90 V. Thirion et al.

References

1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
An experiment in public-resource computing. Communications of the ACM 45(11),
56–61 (2002). http://setiathome.berkeley.edu/

2. Shavitt, Y., Shir, E.: DIMES: Let the internet measure itself. ACM SIGCOMM
Computer Communication Review 35(5), 71–74 (2005). http://www.netdimes.org

3. Chen, K., Choffnes, D., Potharaju, R., Chen, Y., Bustamante, F., Pei, D.,
Zhao, Y.: Where the sidewalk ends: Extending the Internet AS graph using trace-
routes from P2P users. In: Proc. ACM SIGCOM CoNEXT, December 2009

4. Rivera, J., Van Der Meulen, R.: Forecast: Devices by operating system and user
type, worldwide, 2010–2017. Technical Report 1Q13 Update, Garnter Inc., April
2013. http://www.gartner.com/resId=2396815

5. Faggiani, A., Gregori, E., Lenzini, L., Mainardi, S., Vecchio, A.: On the feasibility
of measurement the Internet through smartphone-based crowdsourcing. In: Proc.
IEEE International Symposium on Modeling and Optimization in Mobile, Ad-Hoc
and Wireless Networks (WiOpt), May 2012

6. Carpenter, B., Brim, S.: Middleboxes: Taxonomy and issues. RFC 3234, Internet
Engineering Task Force, February 2002

7. Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., Sekar, V.:
Making middleboxes someone else’s problem: network processing as a cloud service.
In: Proc. ACM SIGCOMM, August 2012

8. Wang, Z., Qian, Z., Xu, Q., Mao, Z., Zhang, M.: An untold story of middleboxes
in cellular networks. In: Proc. ACM SIGCOMM, August 2011

9. Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., Tokuda, H.: Is
it still possible to extend TCP. In: Proc. ACM/USENIX Internet Measurement
Conference (IMC), November 2011

10. Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., Donnet, B.: Revealing
middlebox interference with tracebox. In: Proc. ACM/USENIX Internet Measure-
ment Conference (IMC), October 2013

11. Baker, F.: Requirements for IP version. RFC 1812, Internet Engineering Task
Force, June 1995

12. Postel, J.: Internet control message protocol. RFC 792, Internet Engineering Task
Force, September 1981

13. Vlasenko, D.: BusyBox: the swiss army knife of embedded Linux. http://www.
busybox.net

14. Kühlewind, M., Neuner, S., Trammell, B.: On the state of ECN and TCP options
on the internet. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799,
pp. 135–144. Springer, Heidelberg (2013)

15. Gilad, Y., Herzberg, A.: Spying in the dark: TCP and tor traffic analysis. In:
Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 100–119.
Springer, Heidelberg (2012)

16. Bellovin, S.M.: A technique for counting NATed hosts. In: Proc. ACM SIGCOMM
Internet Measurement Workshop (IMW), November 2002

17. Zalewski, M.: Silence on the Wire: a Field Guide to Passive Reconnaissance and
Indirect Attacks. No Starch Press (2005)

18. Gilad, Y., Herzberg, A.: Off-path attacking the web. In: Proc. 6th USENIX Work-
shop on Offensive Technologies (WOOT), August 2012

19. West, M., McCann, S.: TCP/IP field behavior. RFC 4413, Internet Engineering
Task Force, March 2006

http://setiathome.berkeley.edu/
http://www.netdimes.org
http://www.gartner.com/resId=2396815
http://www.busybox.net
http://www.busybox.net

Tracking Middleboxes in the Mobile World with TraceboxAndroid 91

20. Qian, Z., Mao, Z.M.: Off-path TCP sequence number inference aattack - how
firewall middleboxes reduce security. In: Proc. IEEE Symposium on Security and
Privacy (SP), May 2012

21. Qian, Z., Mao, Z.M., Xie, Y.: Collaborative TCP sequence number inference attack:
how to crack sequence number under a second. In: Proc. ACM Conference on
Computer and Communications Security (CCS), October 2012

22. Wing, D., Cheshire, S., Boucadair, M., Penno, R.: Port control protocol (PCP).
RFC 6887, Internet Engineering Task Force, April 2013

23. Aboba, B., Dixon, W.: IPsec-network address translation (NAT) compatibility
requirements. RFC 3715, Internet Engineering Task Force, March 2004

24. Medina, A., Allman, M., Floyd, S.: Measuring interactions between transport pro-
tocols and middleboxes. In: Proc. ACM SIGCOMM Internet Measurement Con-
ference (IMC), October 2004

25. Hesmans, B., Duchene, F., Paasch, C., Detal, G., Bonaventure, O.: Are TCP exten-
sions middlebox-proof? In: Proc. Workshop on Hot Topics in Middleboxes and
Network Function Virtualization, December 2013

26. Jacobson, V., Braden, R., Borman, D., Satyanarayan, M., Kistler, J.J.,
Mummert, L.B., Ebling, M.: TCP extension for high performance. RFC 1323,
Internet Engineering Task Force, May 1992

27. Microsoft: Network connectivity fails when you try to use Windows Vista behind a
firewall device. Technical report, Microsoft (2012). http://support.microsoft.com/
kb/934430

28. Android Developers: Device monitor. http://developer.android.com/tools/help/
monitor.html

29. Donnet, B., Friedman, T.: Internet topology discovery: a survey. IEEE Communi-
cations Surveys and Tutorials 9(4), December 2007

30. Luckie, M., Hyun, Y., Huffaker, B.: Traceroute probe methode and forward IP path
inference. In: ACM SIGCOMM Internet Measurement Conference (IMC), October
2008

31. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,
Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with paris traceroute.
In: Proc. ACM/USENIX Internet Measurement Conference (IMC), October 2006

32. Katz-Bassett, E., Madhyastha, H., Adhikari, V., Scott, C., Sherry, J., van Wesep,
P., Krishnamurthy, A., Anderson, T.: Reverse traceroute. In: Proc. USENIX Sym-
posium on Networked Systems Design and Implementations (NSDI), June 2010

33. Donnet, B., Raoult, P., Friedman, T., Crovella, M.: Efficient algorithms for large-
scale topology discovery. In: Proc. ACM SIGMETRICS, June 2005

34. Beverly, R., Berger, A., Xie, G.: Primitives for active Internet topology mapping:
Toward high-frequency characterization. In: Proc. ACM/USENIX Internet Mea-
surement Conference (IMC), November 2010

35. Craven, R., Beverly, R., Allman, M.: Middlebox-cooperative TCP for a non end-
to-end Internet. In: Proc. ACM SIGCOMM, August 2014

36. Xu, X., Jiang, Y., Flach, T., Katz-Bassett, E., Choffnes, D., Govindan, R.: Investi-
gating transparent web proxies in cellular networks. In: Mirkovic, J., Liu, Y. (eds.)
PAM 2015. LNCS, vol. 8995, pp. 262–276. Springer, Heidelberg (2015)

37. Kingo: Warranty disclaimer (2014). http://www.kingoapp.com/root-disclaimer.
htm

38. Touch, J., Mankin, A., Bonica, R.: The TCP authentication option. RFC 5925,
Internet Engineering Task Force, June 2010

39. Zweig, J., Partridge, C.: TCP alternate checksum options. RFC 1145, Internet
Engineering Task Force, February 1990

http://support.microsoft.com/kb/934430
http://support.microsoft.com/kb/934430
http://developer.android.com/tools/help/monitor.html
http://developer.android.com/tools/help/monitor.html
http://www.kingoapp.com/root-disclaimer.htm
http://www.kingoapp.com/root-disclaimer.htm

Web

Assessing Affinity Between Users and CDN Sites

Xun Fan1,2(B), Ethan Katz-Bassett2, and John Heidemann1,2

1 Information Sciences Institute, USC, Marina Del Rey, California
{xunfan,ethan.kb}@usc.edu

2 Computer Science Department, USC, Marina Del Rey, California
johnh@isi.edu

Abstract. Large web services employ CDNs to improve user perfor-
mance. CDNs improve performance by serving users from nearby Front-
End (FE) Clusters. They also spread users across FE Clusters when one
is overloaded or unavailable and others have unused capacity. Our paper
is the first to study the dynamics of the user-to-FE Cluster mapping
for Google and Akamai from a large range of client prefixes. We mea-
sure how 32,000 prefixes associate with FE Clusters in their CDNs every
15 minutes for more than a month. We study geographic and latency
effects of mapping changes, showing that 50–70 % of prefixes switch
between FE Clusters that are very distant from each other (more than
1,000 km), and that these shifts sometimes (28–40 % of the time) result
in large latency shifts (100 ms or more). Most prefixes see large latencies
only briefly, but a few (2–5 %) see high latency much of the time. We
also find that many prefixes are directed to several countries over the
course of a month, complicating questions of jurisdiction.

1 Introduction

Large web services serve their content from multiple sites to reduce client latency,
to spread load, and to provide redundancy against failure. These services use
Content Distribution Networks (CDNs) that operate Front-End (FE) Clusters,
each consisting of multiple servers in a specific location [7,31]. The CDN dynam-
ically directs users to specific FE Clusters at the granularity of network prefix
which Google does and perhaps so do other CDNs. The CDN may direct a user
to a FE Cluster using routing (anycast with BGP) or using DNS controlled by
a mapping algorithm [3,6,14,28].

Ideally user prefixes might map to the nearest FE Cluster to minimize net-
work latency. In practice, user-FE Cluster mapping is often more involved—a
FE Cluster may be temporarily down, a nearby FE Cluster may be overloaded,
estimates of user location may be incorrect or out-of-date, or peering costs may
influence FE Cluster choice, as reported by Facebook [16].

There are several reasons users, regulators, researchers, and CDN operators
should care about the dynamics of a CDN’s mapping from users to FE Clusters.
Users care about performance, and we show that changes in FE Cluster can
result in noticeable performance differences (§ 4). Regulators and some users

c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 95–110, 2015.
DOI: 10.1007/978-3-319-17172-2 7

96 X. Fan et al.

may care about where their data goes, particularly when different political juris-
dictions have different requirements for privacy. Countries have different policies
about censorship [29], and requirements for law enforcement access to user data
vary by jurisdiction. Recent concerns about surveillance prompted countries to
suggest data should be kept domestically [8]. While prior studies enumerated and
geolocated CDN networks [1,2,15], an understanding of dynamics helps interpret
such mappings. In addition, a better understanding of user-FE Cluster mapping
might help CDN operators understand better how other CDNs work.

The first contribution of this paper is to provide the first evaluation of how
user prefixes associate with FE Clusters of CDNs from a large number of network
prefixes. We regularly collect data for the Google and Akamai CDNs from a very
broad range of vantage points for an extended period—we consider over 32k user
prefixes, covering 180 countries and 5158 ASes, with data every 15 minutes for
four weeks (§ 3). In addition, we use 192 PlanetLab nodes to measure network
and application latency of the two CDNs over one week. We find that many
user prefixes experience mapping changes frequently. About 20% of Google user
prefixes and 70% of Akamai user prefixes see more than 60 mapping changes
(twice everyday on average) in a month (§ 4.1).

Second, we show how changes in user/FE Cluster associations may affect
user performance (§ 4). We find that, over one month, most prefixes (50–70%)
are redirected from one FE Cluster to another that is very distant, and that
sometimes (28–40%) these shifts result in large changes in latency. These shifts
are usually brief, but a few users (2–5%) receive poor performance much of the
time. We also identify several reasons for these changes, including load balancing
and servers being temporarily taken out of production and later restored.

Finally, we look at the geographic footprint of which FE Clusters users
employ (§ 4.5). We find that many prefixes are directed to several countries
over the course of a month, complicating questions of jurisdiction.

2 Background: CDNs and DNS Redirection

CDNs deploy front-ends around the Internet. Front-ends (FEs) are servers that
users connect to request web pages or services. For our purposes, we are inter-
ested in FE Clusters, each of which represents the FEs in a single physical and
network location that provide the same services.

Some CDNs use DNS to direct users to front-ends. When a user performs a
DNS lookup for CDN-hosted content, the CDN’s DNS returns IP addresses of
a front-end(s) to serve that user. In practice, CDNs generally perform the same
redirection for all users in a given network prefix. We call this association between
network prefix and front-end the CDN’s prefix-FE Cluster mapping. Generally,
CDNs strive to map prefixes to nearby FE Clusters to reduce network latency,
but the mapping may also be influenced by load, maintenance, or other factors.
This paper focuses on observing the results of CDN’s prefix-FE Cluster mapping;
we do not attempt to reverse engineer the CDN’s specific algorithm.

When a prefix p is mapped to FE Cluster A at one time, then later mapped
to FE Cluster B, we call this a prefix-FE Cluster mapping change. We call (A,B)

Assessing Affinity Between Users and CDN Sites 97

Table 1. Datasets collected as part of this work

coverage frequ- start date
name where used target (prefixes) ency (length)
Google-15min-EDNS § 4.1 § 4.2 § 4.5 Google 32,871 15 min. 2014/03/28 (30)
Akamai-Apple-15min-ODNS § 4.1 § 4.2 § 4.5 Akamai 29,535 15 min. 2014/03/28 (30)
Akamai-Huff-15min-ODNS § 4.1 § 4.2 § 4.5 Akamai 28,308 15 min. 2014/11/17 (30)
PlanetLab-DNS-TTL § 4.3 both 192 20 s/5 m 2014/04/23 (7)
Google-15min-early § 4.4 Google 32,324 15 min. 2013/12/13 (30)
Google-location-EDNS § 3.3 Google 10,057,110 1 day 2014/03/28 (30)
Akamai-Apple-location-ODNS § 3.3 Akamai 271,357 once 2014/04/14 (-)
Akamai-Huff-location-ODNS § 3.3 Akamai 185,370 once 2014/11/12 (-)
ODNS-2013 § 3 - 271,357 once 2013/10/21 (-)

the switching pair. Our goal is to understand these mapping changes—how often
do they occur, how many users change, where did they go before and after.

3 Data Collection

We measure Google and Akamai using existing methodology. Our contribution is
new long-term observations and analysis of dynamics. Our datasets (Table 1) pro-
vide daily observations for a month from 10M prefixes, and frequent (15-minute)
observations for a 30k subset of prefixes.

3.1 Enumerating CDN Front-End Servers with DNS

We focus on the Google and Akamai CDNs because they are massively dis-
tributed, host popular services, and use DNS (not anycast) to map users to FE
Clusters. Following prior work, we enumerate CDN infrastructure by issuing DNS
queries for a service hosted by the CDN. For Google, we query for www.google.

com. For Akamai, we query www.apple.com in Akamai-Apple-15min-ODNS dataset
and www.huffingtonpost.com in Akamai-Huff-15min-ODNS dataset. They are
both static websites hosted by Akamai. We query two websites for Akamai
because our initial queries for www.apple.com, turned out to only cover a small set
of Akamai’s FE Clusters while www.huffingtonpost.com has larger coverage. We
expect our results for the specific Google and Akamai services that we study to
generalize to other services they each operate that also use DNS-based redirec-
tion. Since the fundamentals of replica selection are similar, they may also apply
to application-level redirection such as in YouTube and Akamai’s web caching,
but we do not evaluate application-level services in this paper.

To better understand prefix-FE Cluster mapping we use three techniques.
We get broad coverage with both EDNS-client-subnet and queries through open
resolvers. We get more controlled, detailed measurements from PlanetLab.

Broad Probing. We probe Google with the DNS EDNS-client-subnet exten-
sion, following prior work [2,24]. This approach allows one to simulate queries

www.google.com
www.google.com
www.apple.com
www.huffingtonpost.com
www.apple.com
www.huffingtonpost.com

98 X. Fan et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
D

F
 o

f p
re

fix
es

Count of FE Clusters or mapping changes

FE
Clusters

Mapping
changes

Google

Akamai-Huff

Akamai-Apple

(C)

(D)

(A)

(B)

(E)

Fig. 1. Number of different FE
Clusters and number of mapping
changes that user prefixes seen in
one month for Google and Akamai.
Datasets: Google-15min-EDNS,
Akamai-Apple-15min-ODNS and
Akamai-Huff-15min-ODNS

Table 2. Statistics on the number of IPs
and FEs found for Google and Akamai.
Datasets: Google-15min-EDNS and Akamai-
Huff-15min-ODNS

Akamai
Google -Huff

Total IPs 24,150 100% 9,492 100%

Clustered 22,679 94% 8,843 93%
Un-clustered 1,471 6% 649 7%

Geolocated 22,101 92% 7,953 84%
Un-geolocated 2,049 8% 1,593 16%

Clustered and 20,861 86% 7,953 84%
Geolocated

Total FE Clusters 983 1,195

from any location, but while Google supports it, Akamai added support only
in mid-2014, which as part-way through our study [23]. Thus we do not use it
with Akamai and instead probe Akamai with open DNS resolvers to make DNS
queries from around the globe, again following prior work [9,15]. Open resolvers
are often in people’s homes, so we use them judiciously to measure Akamai.
We choose a subset of global open resolvers that we collected in 2013 (ODNS-
2013) as the source user prefixes. It contains 32,871 open resolver IPs, each from
a unique /24 prefix, and covers 180 countries/regions and 5158 ASes. We use
about 32k open resolvers so that our measurement settings can finish a query in
15 minutes. To identify this subset, we start with all open resolvers and take five
complete enumerations of mappings for both CDNs over two months. We then
discard those that do not respond in every trial, and finally we keep only those
necessary to complete the IP-level enumeration that we saw in our five trials.

For Google, we issue DNS EDNS-client-subnet extension queries for the /24
prefixes1 of the chosen open resolvers. Google hosts front-ends both on its back-
bone network and data centers (on-net) and in other ISPs around the world
(off-net). We select prefixes to get broad coverage of FE Clusters, thus under-
representing prefixes that are served directly from on-net FE Clusters. However,
we believe our data is not drastically different from what we observe from all
routable /24 prefixes, as the difference is moderate (70% of prefixes are mapped
to on-net FE Clusters in our data and 88% of all routable /24 prefixes are
mapped to on-net FE Clusters from Google-location-EDNS dataset). For Aka-
mai, we probe directly to the chosen open resolvers. We probe both Google and
Akamai every 15 minutes for all the 32,871 prefixes. We choose 15 minutes to
limit load we impose on open resolvers.
1 We always use /24 prefixes and so just write prefix from here.

Assessing Affinity Between Users and CDN Sites 99

Since open resolvers sometimes do not respond, we discard prefixes that miss
more than 10% of their probes, leaving 29,535 and 28,308 prefixes in Akamai-
Apple and Akamai-Huff.

Table 2 shows the total number of front-end IP addresses we find using broad
probing. In total, we find 24,150 Google front-end IPs. For Akamai, we find 685
front-end IPs hosting www.apple.com (the Akamai-Apple dataset, omitted from
the table for space) and 9,492 Akamai front-end IPs hosting www.huffingtonpost.

com in 30 days (Akamai-Huff, shown in the table). We will see later that there are
also many more FE Clusters hosting www.huffingtonpost.com than www.apple.

com, and we believe this difference comes from the different SLAs used by the
two sites. Compared to published reports of the sizes of the Google [2] and
Akamai [19] CDNs, we know that our coverage is incomplete, but we believe
we cover a good part of Google’s CDN (about 70% of prior results [2]). Akamai
runs tens of thousands of servers; our methodology tracks only the part of that
infrastructure used by our targets. We focus on specific clients hosted by Akamai
so we can study user-prefix dynamics for thousands of user prefixes without
creating excessive measurement traffic. We observe about three times more IPs
in Google’s clusters compared to Akamai’s. Our methodology of sampling specific
URLs means that we do not fully enumerate clusters, and load-balancing and
other factors mean IP addresses do not necessarily indicate cluster size, so we
focus on clusters rather than IP addresses.

Performance Probing. In order to also study the effects of mapping changes
on user-experienced performance, we use PlanetLab to collect ping times to the
front-ends and application-level page fetches, as described in § 4.3.

We also issue frequent DNS queries from PlanetLab. Following prior work [25],
we probe on DNS TTL intervals (the quickest an end user might experience
changes) to capture prefix-FE Cluster mapping changes. (TTL for Google DNS
is 5 minutes and Akamai is 20 seconds.)

We collect our PlanetLab-DNS-TLL dataset using probing at these rates for
7 days. We use 192 PlanetLab nodes, each in a distinct /24 prefix.

3.2 FE Cluster Identification

Since we are interested in mapping changes between FE Clusters, not IP addresses,
we use our previous technique to group IP addresses into FE Clusters based on
similarity of round-trip times from PlanetLab [2]. Table 2 shows our clustering
results. We find 983 FE Clusters for Google from 22,679 replying IP addresses.
We were unable to cluster 1,471 Google IPs because they do not respond to the
pings we need for clustering. For Akamai, we find 1,195 Akamai FE Clusters from
9,492 IP addresses in Akamai-Huff dataset, (336 Akamai FE Clusters from 650 IP
addresses in Akamai-Apple, not in the table), with 649 IPs we could not cluster.
We have no way of identifying, clustering, or geolocating IP addresses that do not
reply to measurements, so we must discard them.

www.apple.com
www.huffingtonpost.com
www.huffingtonpost.com
www.huffingtonpost.com
www.apple.com
www.apple.com

100 X. Fan et al.

3.3 Front-End Geolocation

We geolocate FE Clusters in our datasets using our previous CCG technique
(Client-Centric-Geolocation) [2]. CCG geolocates FE Clusters by averaging the
locations of the prefixes they serve after aggressively removing prefixes clearly
distant from the FE. From that earlier work, we have daily measurements of
Google since 2013. We use one month of that data (dataset: Google-location-
EDNS), selecting the period and subset of prefixes to match our prefix-FE Clus-
ter mapping datasets.

We use an alternate source of data for geolocation since Akamai did not
support EDNS-client-subnet queries when our measurements began (§ 3.1). We
collect data from open resolvers and apply the CCG algorithm to it ourselves. We
use the whole set of open resolvers (ODNS-2013) we collected in 2013 as clients
for CCG. The set of open resolver contain 600,000 open resolver IP addresses
from 271,357 distinct /24 prefixes, covering 217 countries/regions and 11,793
ASes. Since it covers a fraction of the 10 million total routable /24 prefixes, we
validate the use of CCG with open resolvers and find that it provides similar
accuracy to CCG with all routable /24 IP prefixes. Our geolocation is accurate,
with 90% of IP addresses having distance error within 500km [10].

CCG does not provide locations for 8% of Google IP addresses and about
16% of Akamai IPs (Table 2). Typically, CCG fails for FE Clusters that see an
insufficient number of clients, so these servers may be relatively unimportant.

4 Dynamics of User Redirection

4.1 Are User Prefixes Mapped to Different FE Clusters?

We first examine how many mapping changes and how many FE Clusters each
user prefix observes over one month. Figure 1 shows the cumulative distribution.
We see that 20% and 70% of prefixes observe more than 60 mapping changes
((A) and (B) in Figure 1) in a month (average 2 a day) for Google and Akamai
respectively, suggesting mapping changes are common for many prefixes. (The
number of changes we report here is much smaller than prior work [25] because
we report the changes between clusters, not just IP addresses.) In addition, we
see that most user prefixes have fairly stable mappings for Google, with 92% of
them being mapped to at most 4 FE Clusters ((C) in Figure 1). Akamai user
prefixes seem to experience more variation, with only around 40% being mapped
to 4 FE Clusters or fewer and 14% being mapped to 20 or more FE Clusters ((D)
and (E) in Figure 1). This analysis shows that mappings changes are common,
with some users changing frequently and most occasionally.

4.2 Distances of Mapping Changes

We next examine the distance between the FE Clusters that users switch between.
We expect that a user would see little latency change when switched between
nearby FE Clusters, while mapping changes between very distant FE Clusters are

Assessing Affinity Between Users and CDN Sites 101

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F
 o

f p
re

fix
es

Distance of switching pair (x1000 km)

Akamai-Huff
Akamai-Apple

Google

Fig. 2. CDF of distance of switching
pairs over all prefixes after a random
observation time t

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D

F
 o

f p
re

fix
es

Max distance of switching pair (x1000 km)

Akamai-Huff

Akamai-Apple

Google

Fig. 3. CDF of maximum distance of
switching pair seen in one month over
all prefixes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
D

F
 o

f p
re

fix
es

Count of prefix see large distance switches

Google

Akamai-Huff

Akamai-Apple

Fig. 4. CDF of the number of times
in a month each prefix sees mapping
changes of large distances (more than
1000km)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f p
re

fix
es

Fraction of time prefixes map to large latency cluster

Google
Akamai

Fig. 5. CDF of fraction of time user
prefixes spend on a FE Cluster with
large latency (where page-fetch time is
100 ms worse than in the prior/next
mapping)

more likely to lead to large latency change. Unless the client is equidistant between
the old and new FE Clusters, a large change in FE distance suggests a non-optimal
choice of a FE.

We measure distance between the switching pair of a prefix-FE Cluster map-
ping change. We randomly choose an observation time t, then find the switching
pair of the next mapping change (A,B) for each prefix after time t. We then plot
the CDF of distance between A and B over all prefixes. We see nearly identical
distributions after three trials and so report one case as representative.

Figure 2 shows the CDF of the distance between the switching pair for all
prefixes over one randomly chosen observation times for Google and Akamai.
While some prefixes switch between FE Clusters that are near each other (about
26–33% are within 100 km), many prefixes change between FE Clusters that are

102 X. Fan et al.

far apart. More than 50% Google changes and 30% of Akamai changes move
between switching pairs more than 1000 km apart.

Long-Distance Remapping: Akamai. When measured at a random time We
see that many prefixes change between FE Clusters that are distant from each
other. We next consider this question for every time over a month. Figure 3 plots
the distribution of the maximum distance of switching pairs seen by every prefix
in one month. Many prefixes experience long-distance changes. For example, 50%
of prefixes switch between Google FE Clusters that are at least 1000 km apart,
and 60-70% experience such a switch for Akamai servers. Figure 4 shows the
distribution of the number of times prefixes experience large distance switching
pairs. We see that a few Google prefixes (9%) and many Akamai prefixes (40-
50%) move large distances (1000 km) more than 10 times in a single month,
suggesting it’s not rare for these long distance re-mappings to happen. In § 4.4
we explore reasons why these changes may occur.

4.3 Effects of Mapping Changes on Users

To understand how changes to prefix-FE Cluster mappings affect users, we con-
sider when mapping changes affects (or does not affect) user latency.

Large Distance Leads to Larger Latency. While § 4.2 showed that users are
sometimes mapped to FE Clusters in very different places, it does not directly
measure performance. While a prefix equidistant between two FE Clusters may
see similar performance from both, in most cases we expect that a prefix that is
redirected to a very different place will see different user-visible performance.

Here we study measurements taken from 192 prefixes hosting PlanetLab sites
since evaluating user performance requires measurements taken from inside each
prefix. Although these sites are only a small subset, we verified that they gener-
ally are representative of our measurements with 32,871 prefixes [10].

We assess user performance by measuring network latency and application
performance. We measure network and application latencies every DNS TTL,
and also immediately after we observe a prefix p has changed its mapping from
FE Cluster A to B (prior work measured latency [25,27], but not around map-
ping changes). We measure network latency with ICMP echo request (ping),
observing RTT p,A and RTT p,B . We measure application latency by fetching a
web page to observe PFT p,A and PFT p,B . To avoid noise in individual observa-
tions, each observation uses two pings and one page fetch, and analysis uses the
second smallest of the 10 most recent observations. For Google we fetch a 75 kB
web page corresponding to a search for “USA” (http://www.google.com/search?
q=USA). For Akamai we fetch the 9.5 kB home page of Apple (http://www.apple.
com). We then evaluate the absolute value of the difference of these metrics:
RTT δ

p,A,B = |RTT p,A −RTT p,B | and PFT δ
p,A,B = |PFT p,A −PFT p,B |. We use

absolute value to judge overall changes, since data shows that at steady state,
mapping changes generally alternate between nearer to further FE Clusters.

http://www.google.com/search?q=USA
http://www.google.com/search?q=USA
http://www.apple.com
http://www.apple.com

Assessing Affinity Between Users and CDN Sites 103

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F
 o

f s
w

itc
hi

ng
 p

ai
rs

Latency difference of switching pairs (ms)

near switches RTT
near switches page fetch

distant switches RTT
distant switches page fetch

(a) Google

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F
 o

f s
w

itc
hi

ng
 p

ai
rs

Latency difference of switching pairs (ms)

near switches RTT
near switches page fetch

distant switches RTT
distant switches page fetch

(b) Akamai

Fig. 6. Prefix-FE Cluster latency changes after a mapping change, measured by RTT
(dashes) and page fetch time (solid). Left line are near switches, right line are distant
switches. (Dataset: PlanetLab-DNS-TTL)

For each prefix, we evaluate all mapping changes over the entire measurement
period, giving a set of observations of many RTT δ

p,A,B and PFT δ
p,A,B . Since

changes are generally symmetric, we merge the (A,B) and (B,A) directions
and take the median value of all observations to get RTTmδ

p,A,B and PFTmδ
p,A,B .

Finally, to understand if large distance switches affect performance, we divide
observations into distant switches, where A and B are 1000 km apart or more,
and near switches where they are less than 1000 km. We then plot the CDF of
RTTmδ and PFTmδ for each group.

Figure 6 shows results for Google and Akamai. We first see that the switches
between distant FE Clusters (the wider, right-most lines) show much greater
performance changes than switches between nearby ones (the thinner, left lines).
For Google, near switches show smaller performance changes (RTTmδ < 50 ms
and PFTmδ < 150 ms), while for distant switches group, more than 40% have
changes more than twice that (RTTmδ > 100 ms and PFTmδ > 400 ms). The
results of Akamai are similar, with only 2% of near switches showing RTTmδ >
100 ms, while the number is 28% for distant switches.

To summarize, prefixes that switch between FE Clusters that are far apart
tend to also observe large network and page-fetch latency changes.

How Long Do Prefixes Stay On Non-Optimal FE Clusters? Fortunately,
we next show that switches that increase user latency are usually brief for most
prefixes. We analyze our PlanetLab data to see what fraction of time user pre-
fixes spend in a mapping that has large latency (for this subset of data). We
focus on distant switching pairs, those with distance larger than 1000 km, and
of these, those with long differences in page-fetch times (PFTmδ > 100 ms). The
resulting subset are all prefixes with large distance switches that raise application

104 X. Fan et al.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

04-01
04-08

04-15
04-22

04-29

T
ot

al
 n

um
be

r
of

 F
E

 C
lu

st
er

s

Observations (every 15 minutes)

Fig. 7. Total number of Google FE
Clusters seen from all prefixes at each
observation.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

C
D

F
 o

f p
re

fix
es

Number of countries prefixes mapped to

Google Akamai-Huff

Akamai-Apple

Fig. 8. CDF of the number of different
countries to which prefixes are mapped.

latency. Finally, we look at how long each prefix remained at the larger-latency
FE Cluster, computing the fraction of observations the prefix spent there.

Figure 5 shows the CDF of fraction of time user prefixes spend on FE Clusters
with large latency (where page-fetch time is 100 ms worse than in the prior
mapping). Most of these FE Clusters are used only briefly (97% of Google and
93% of Akamai prefixes spend less than 5% of their time at FE Clusters with
high application latency). But the tail is long, with 2% of Google and 5% of
Akamai prefixes spending more than 60% of time on distant FE Clusters and
seeing higher application latencies, even though lower-latency FE Clusters exist.

4.4 Reasons for Mapping Changes

We have shown that mapping changes are common. We next evaluate why they
occur. Although we cannot categorize every change, we see three general reasons:
FE Clusters drain and restore (that is, temporarily shut down), load balancing,
user-to-FE Clusters mapping reconfiguration. We cannot completely separate
these categories without inside knowledge of each CDN. However, our external
observations provide some evidence of each.

FE Clusters Drain and Restoration. CDN sometimes drain some of their
FE Clusters, assigning no user prefixes to them, in order to, for example, perform
maintenance or troubleshoot problems. For example, Facebook recently drained
an entire datacenter as part of an infrastructure stress test [30]. As an example
drain event, Figure 7 shows the number of active FE Clusters in Google over
our Google-15min-EDNS dataset. We see a large drop around April 23rd (from
900 to 60 FE Clusters). Examination of the clusters before and after the drop
shows that Google stopped directing clients to all FE Clusters not in Google
ASes (the off-net FE Clusters). They restored broader service, then shut off-net
FE Clusters again on April 28th.

Assessing Affinity Between Users and CDN Sites 105

We checked if these drains biased our previous observations (§ 4.2 and § 4.3).
To do so, we re-examined the distance user prefixes switched with and without
these days where all off-net FE Clusters drained. We confirmed that overall
changes are small, meaning regular changes in mapping dominate our results.

Load Balancing. We observe two patterns of behavior that we believe are
due to load-balancing of user prefixes across multiple FE Clusters. First, we
sometimes see some prefixes (about 10% for Google and 30% for Akamai) switch
between two FE Clusters quite frequently (on average every hour). We sample
10 prefixes from each of these groups, and for each prefix, both FE Clusters
they switched between are close to each other (within 200 km). This behavior
may indicate that the CDN is spreading the load between FE Clusters at two
different PoPs. Second, we see that a few Google FE Clusters (about 10 of 900)
display diurnal patterns (as seen in spectral analysis [21]), suggesting some load
balancing due to changes in diurnal traffic patterns.

Reconfiguration of User-to-FE Clusters Mapping. Both Google and Aka-
mai strive to optimize performance for users by associating prefixes with nearby
FE Clusters [7,18]. Long-term shifts in routing, user population, and FE Clus-
ter deployments may shift this mapping as the CDN re-optimizes. In early data
(Google-15min-early dataset), we saw that Google would occasionally shift one-
third of user prefixes at the same time [31]. These bulk shifts have diminished
in recent observations of Google and never appeared in Akamai, but both CDNs
currently have a few percent of user prefixes that have stable mappings for weeks.

Changes also happen at short timescales—Facebook reconfigures their map-
ping over the course of a day due to changes in observed client latency [16].
We know that Google and Akamai also have short-term changes, but we do not
know if they are responses to changes in user latency or responses to changes
due to their CDN infrastructure, such as load balancing.

Unknown. We also observe some mapping changes that are not explained by
the above reasons. For example, we see Google sometimes map prefixes to very
distant Google FE Clusters (across continents) for a single observation.

4.5 Geographic Footprint Seen by User Prefixes

Prefix-FE Cluster mapping changes across long distances, suggesting that users
may see FE Clusters in different countries.2 For some users, traffic leaving a
given country may raise concerns about privacy or legal jurisdiction. We next
show that some prefixes in many countries are often mapped abroad.

First, we assess how many countries each prefix is mapped to over the course
of a month in Figure 8. We see that more than half of prefixes are mapped to
different countries over time (50% for Google, and 60–70% for Akamai). It is
2 We use the term country generically, sometimes considering smaller or larger regions.

106 X. Fan et al.

Table 3. Top 10 source countries (with ISO country codes) and their percentage
of prefixes that had been mapped to FE Clusters in other countries, and the to three
non-domestic countries serving them. Datasets: Google-15min-EDNS and Akamai-Huff-
15min-ODNS

Google Akamai-Huff
source non-domestic non-domestic
country % 1st 2nd 3rd % 1st 2nd 3rd
us (United States) 11% be (4%) nl (4%) de (3%) 98% ca (38%) gb (27%) fr (27%)
kr (S. Korea) 97% jp (58%) us (19%) cn (18%) 99% tw (99%) jp (6%) nl (3%)
ru (Russia) 99% us (35%) be (6%) nl (5%) 96% se (74%) no (43%) de (40)
jp (Japan) 55% us (30%) nl (9%) be (7%) 100% cn (92%) us (67%) vn (9%)
br (Brazil) 48% nl (18%) be (17%) us (14%) 83% us (78%) cl (53%) ar (35%)
tw (Taiwan) 45% us (24%) be (9%) nl (9%) 99% cn (74%) us (72%) vn (48%)
cn (China) 51% us (27%) nl (11%) be (11%) 99% jp (93%) us (89%) gb (67%)
it (Italy) 60% us (40%) de (19%) fr (5%) – – – –
gb (U. Kingdom) 54% us (40%) nl (19%) be (8%) – – – –
au (Australia) 52% us (24%) nl (18%) be (11%) – – – –
hk (Hong Kong) – – – – 90% cn (88%) jp (25%) vn (12%)
tr (Turkey) – – – – 91% it (82%) se (46%) de (23%)
fr (France) – – – – 99% pl (69%) gb (57%) es (56%)

common for a user to be served from multiple countries. We caution that this
result reflects two biases in our data: first, our prefix selection under-representing
prefixes that are served directly from the provider, as described in § 3.1. Second,
because of cluster drain (§ 4.4), we expect many prefixes to shift from off-net
FE Clusters, present in many countries, to on-net FE Clusters that operate in
only a few countries.

We next consider from where prefixes are served. For each service we select
the 10 countries that originate the most user prefixes, then identify from where
they are served. (We exclude prefixes that are never served domestically on the
assumption that they have no local option or that our geolocation is wrong.)
For each country we consider two questions: what portion of prefixes leave the
country? Where does their traffic go?

Table 3 shows the results for Google and Akamai. (The top countries differ
because the CDNs are different.) For each country, the first column shows how
many of that country’s prefixes that are sometimes mapped outside its borders.
The following three columns show which other countries most often provide
service. For Akamai, we show only Akamai-Huff data here for space; we show
Akamai-Apple data in [10] and summarize any differences here.

We see that all prefixes but U.S.-ones have many non-domestic mappings—
around 50% of user prefixes for Google and more than 90% for Akamai. We see
that Google often serves from the U.S., Belgium and Netherlands, perhaps those
countreis have good connectivity and host Google datacenters [22]. For Akamai,
we see that U.S. FE Clusters serve prefixes from other countries, perhaps because
of good U.S. connectivity. Akamai-Huff selection (and also Akamai-Apple) shows
a stronger geographic locality than Google, with French and Turkish prefixes
remaining in Europe and Hong Kong prefixes in Asia. Surprisingly, most Chinese
prefixes are sent abroad in both Akamai datasets.

Assessing Affinity Between Users and CDN Sites 107

Both Google and Akamai often map prefixes outside their originating country.
Countries that have expressed privacy concerns, such as Brazil [8], or regions with
strict privacy laws, such as the European Union, may find traffic leaving their
legal jurisdiction weakens their ability to implement some policies. For example,
Brazil’s exact set of foreign countries varies depending on CDN or service, but in
all cases their prefixes are served outside Brazil. In other cases, prefixes in some
countries find services in others that have strict limits on domestic handling of
some topics. Examples include South Korea and Japan receiving service from
China (with limits on Chinese politics), and in Akamai-Apple data where Brazil
served from Germany (with limits on Nazi politics). While such issues may not be
a concern for Apple or Huffingtonpost’s home page, it may be for other services
using these CDNs.

5 Related Work

Prior work compared the performance of CDN-selected front-end servers and
other servers of the same CDN [17,20,25,27]. Su et al. use Akamai’s choice of
server location to influence their selection to leverage Akamai’s network measure-
ments [25]. Triukose et al. compare the page download performance difference
between Akamai selected server with 80 other randomly selected Akamai servers
to study if CDNs enhance performance [27]. Krishnamurthy et al. study CDN
DNS load balancing performance by using two dozen clients to detect DNS load
balancing every 30 minutes and performing file download when observing CDN
server changes [17]. Otto et al. compare HTTP latency between CDN servers
returned by different DNS servers to measure the impact of using remote DNS
on CDN performance [20]. Our work differs from this prior work by exploring
how CDNs change their prefix-FE Cluster mappings over time, and how these
changes affect network and application latency for users.

The Ono system uses large set of clients (120,000) to study affinity between
users and CDN servers [5]. They use this information to help peer selection in
peer-to-peer networks to reduce cross-ISP traffic. Our work also uses a large set
of client prefixes to assess user-to-CDN affinity, but we focus on understanding
the properties of prefix-FE Cluster mapping changes and their potential impact
on both users and previous CDN studies.

Huang et al. studied the cache dynamics from users to Facebook Edge Caches
as viewed from within Facebook [16]. Facebook optimizes to balance latency,
server load, and peering cost, sometimes directed users to caches that are not
physically nearest. Our paper complement theirs by looking from the user side.

Torres et al. studied mechanism and policy of user to content server mapping
of Youtube using video flow data collect from 5 distinct locations over a week [26].
They Geolocate Youtube datacenters using CBG and find that non-negligible
fraction of traffic are provided by non-preferred datacenter. They find that the
reasons of non-preferred datacenter access include load balancing, DNS server
variations, limited availability of rarely accessed videos and alleviating hot-spot
due to popular videos. Our work differs from theirs by focusing on the effects of

108 X. Fan et al.

user to FE Cluster mapping changes on users, while they focus on understanding
the mapping dynamics themselves. We also have a broader coverage on user
prefixes and CDN FE Clusters while theirs is deeper from a few vantage points.

Cases et al. [4] and Finamore et al. [13] each study associations between
web services, hosting organizations, content-server IPs, and service provisioning.
They use min-RTT estimates to cluster IPs to datacenters. They use measure-
ments from one ISP and observe user/datacenter switches suggesting load bal-
ancing. We also cluster IPs to datacenters, but with many vantage points [2].
Both their work and ours identifies load balancing and mapping changes, but
they apply their work to provisioning while we study its effects on end-users.

Fiadino et al. use a month of HTTP flow data collected from a major Euro-
pean ISP to study the traffic anomaly caused by cache selection dynamics and
the impacts on both ISP and users [11,12]. They found Facebook traffic anomaly
by identify large amount of flow shift from Akamai to other hosting organiza-
tion of Facebook. They report the anomaly may increase the transit cost of the
users’ ISP. They also found Youtube traffic anomaly that shift traffic to different
set of /24 subnets of Youtube and found that the shift affect user experienced
throughput. Our work differs from them in following ways. First, the methodolo-
gies are quite different. They detect synchronized mapping changes for particular
web services by watching for large shifts in flow volumes, while we directly mea-
sure target FE Clusters with EDNS-client-subnet and direct DNS queries. Their
approach is ideal for studying a single ISP when traffic is available, but the sec-
ond difference is that our approach allows us to provide much broader coverage.
We examine 32k user prefixes from hundreds of countries and ASes, while their
study focuses only on users of a single ISP. Last, we study how often users traffic
changes countries.

6 Conclusions

This work provides the first evaluation of the dynamics of CDN redirection of
user’s network prefixes to Front-End Clusters from a large range of prefixes. We
gather new data about Google and Akamai, and we find that some prefixes switch
between FE Clusters that are long distances apart, often seeing large changes
in latency and application-level performance. While most of prefixes only stay
shortly on FE Clusters that have large application level latency, a few percent
of prefixes are mapped to those FE Clusters much of the time. We also find that
many user prefixes are directed to multiple countries in a month, complicating
questions of jurisdiction.

Acknowledgements and Data Availaility. Our data is publicly available at
http://www.isi.edu/ant/traces/mapping_cdns/. This work was identified by the
USC IRB (IIR00001412, March 2013) as non-human subject research. We thank Matt
Calder for his assistance with CCG.

This research is partially sponsored by the Department of Homeland Security
(DHS) Science and Technology Directorate, HSARPA, Cyber Security Division, BAA

http://www.isi.edu/ant/traces/mapping_cdns/

Assessing Affinity Between Users and CDN Sites 109

11-01-RIKA and Air Force Research Laboratory, Information Directorate under agree-
ment number FA8750-12-2-0344, NSF CNS-1351100, and via SPAWAR Systems Cen-
ter Pacific under Contract No. N66001-13-C-3001. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views contained herein are those of the authors and
do not necessarily represent those of DHS or the U.S. Government.

References

1. Ager, B., et al.: Web content cartography. In: ACM IMC (2011)
2. Calder, M., Fan, X., Hu, Z., Katz-Bassett, E., Heidemann, J., Govindan, R.:

Mapping the expansion of google’s serving infrastructure. In: IMC, October 2013
3. Carter, R.L., Crovella, M.E.: Server selection using dynamic path characterization

in wide-area networks. In: IEEE INFOCOM, April 1997
4. Casas, P., Fiadino, P., Bar, A.: Ip mining: extracting knowledge from the dynamics

of the internet addressing space. In: ITC (2013)
5. Choffnes, D., Bustamante, F.E.: Taming the torrent: a practical approach to reduc-

ing cross-ISP traffic in peer-to-peer systems. In: ACM SIGCOMM (2008)
6. Crovella, M.E., Carter, R.L.: Dynamic server selection in the internet. In: IEEE

HPCS, August 1995
7. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, B.: Globally

distributed content delivery. IEEE Internet Comput. 6(5), 50–58 (2002)
8. Edgerton, A.: NSA Spying allegations put google on hot seat in Brazil (2013).

http://www.businessweek.com/news/2013-10-28/nsa-spying-allegations-put-
google-on-hot-seat-corporate-brazil

9. Fan, X., Heidemann, J., Govindan, R.: Evaluating anycast in the domain name
system. In: IEEE INFOCOM (2013)

10. Fan, X., Katz-Bassett, E., Heidemann, J.: Assessing affinity between users and
CDN sites (extended). http://www.isi.edu/xunfan/affinity_tech_report.pdf

11. Fiadino, P., D’Alconzo, A., Bar, A., Finamore, A., Casas, P.: On the detection of
network traffic anomalies in content delivery network services. In: ITC (2014)

12. Fiadino, P., D’Alconzo, A., Casas, P.: Characterizing web services provisioning via
cdns: the case of Facebook. In: TRAC (2014)

13. Finamore, A., Gehlen, V., Mellia, M., Munafò, M., Nicolini, S.: The need for an
intelligent measurement plane: the example of time-variant cdn policies. In: IEEE
NETWORKS (2012)

14. Guyton, J.D., Schwartz, M.F.: Locating nearby copies of replicated internet servers.
In: ACM SIGCOMM, pp. 288–298, August 1995

15. Huang, C., Wang, A., Li, J., Ross, K.W.: Measuring and evaluating large-scale
CDNs. Technical Report MSR-TR-2008-106, Microsoft Research, October 2008

16. Huang, Q., Birman, K., van Renesse, R., Lloyd, W., Kumar, S., Li, H.C.: An
analysis of facebook photo caching. In: ACM SOSP (2013)

17. Krishnamurthy, B., Wills, C., Zhang, Y.: On the use and performance of content
distribution networks. In: ACM IMW, pp. 169–182 (2001)

18. Krishnan, R., et al.: Moving beyond end-to-end path information to optimize CDN
performance. In: ACM IMC (2009)

19. Mao, M., et al.: Peer-assisted content distribution in akamai netsession. In: ACM
IMC, pp. 31–42 (2013)

20. Otto, J.S., et al.: Content delivery and the natural evolution of dns: remote dns
trends, performance issues and alternative solutions. In: ACM IMC (2012)

http://www.businessweek.com/news/2013-10-28/nsa-spying-allegations-put-google-on-hot-seat-corporate-brazil
http://www.businessweek.com/news/2013-10-28/nsa-spying-allegations-put-google-on-hot-seat-corporate-brazil
http://www.isi.edu/ xunfan/affinity_tech_report.pdf

110 X. Fan et al.

21. Quan, L., Heidemann, J., Pradkin, Y.: When the Internet sleeps: correlating diurnal
networks with external factors. In: ACM IMC (2014)

22. Robinson, F.: Google Sets Big belgian investment, April 2013. http://blogs.wsj.
com/brussels/2013/04/10/google-sets-big-belgian-investment/

23. Higginbotham, S.: Akamai signs deal with opendns to make the web faster.
http://gigaom.com/2014/06/03/akamai-signs-deal-with-opendns-to-make-the-web-
faster/

24. Streibelt, F., Böttger, J., Chatzis, N., Smaragdakis, G., Feldmann, A.: Exploring
EDNS-client-subnet adopters in your free time. In: ACM IMC (2013)

25. Su, A.-J., Choffnes, D.R., Kuzmanovic, A., Bustamante, F.E.: Drafting behind
Akamai (Travelocity-based detouring). In: ACM SIGCOMM (2006)

26. Torres, R., Finamore, A., Kim, J.R., Mellia, M., Munafo, M.M., Rao, S.: Dissecting
video server selection strategies in the Youtube CDN. In: ICDCS (2011)

27. Triukose, S., Wen, Z., Rabinovich, M.: Measuring a commercial content delivery
network. In: ACM WWW, pp. 467–476 (2011)

28. Wendell, P., Jiang, J.W., Freedman, M.J., Rexford, J.: DONAR: decentralized
server selection for cloud services. In: ACM SIGCOMM, August 2010

29. Wikipedia. Internet censorship by country. http://en.wikipedia.org/wiki/

Internet_censorship_by_country

30. Sverdlik, Y.: Facebook turned off entire data center to test resiliency.
http://www.datacenterknowledge.com/archives/2014/09/15/facebook-turned-off-
entire-data-center-to-test-resiliency/

31. Zhu, Y., Helsley, B., Rexford, J., Siganporia, A., Srinivasan, S.: LatLong: diagnos-
ing wide-area latency changes for CDNs. IEEE TNSM 9(1), September 2012

http://blogs.wsj.com/brussels/2013/04/10/google-sets-big-belgian-investment/
http://blogs.wsj.com/brussels/2013/04/10/google-sets-big-belgian-investment/
http://gigaom.com/2014/06/03/akamai-signs-deal-with-opendns-to-make-the-web-faster/
http://gigaom.com/2014/06/03/akamai-signs-deal-with-opendns-to-make-the-web-faster/
http://en.wikipedia.org/wiki/Internet_censorship_by_country
http://en.wikipedia.org/wiki/Internet_censorship_by_country
http://www.datacenterknowledge.com/archives/2014/09/15/facebook-turned-off-entire-data-center-to-test-resiliency/
http://www.datacenterknowledge.com/archives/2014/09/15/facebook-turned-off-entire-data-center-to-test-resiliency/

The Online Tracking Horde: A View from
Passive Measurements

Hassan Metwalley1(B), Stefano Traverso1, Marco Mellia1, Stanislav Miskovic2,
and Mario Baldi1,2

1 Politecnico di Torino, Torino, Italy
{metwalley,traverso,mellia}@tlc.polito.it

2 Symantec Corp., California, USA
{stanislav miskovic,mario baldi}@symantec.com

Abstract. During the visit to any website, the average internaut may
face scripts that upload personal information to so called online track-
ers, invisible third party services that collect information about users
and profile them. This is no news, and many works in the past tried to
measure the extensiveness of this phenomenon. All of them ran active
measurement campaigns via crawlers. In this paper, we observe the phe-
nomenon from a passive angle, to naturally factor the diversity of the
Internet and of its users. We analyze a large dataset of passively col-
lected traffic summaries to observe how pervasive online tracking is. We
see more than 400 tracking services being contacted by unaware users,
of which the top 100 are regularly reached by more than 50 % of Inter-
nauts, with top three that are practically impossible to escape. Worse,
more than 80 % of users gets in touch the first tracker within 1 second
after starting navigating. And we see a lot of websites that hosts hundreds
of tracking services. Conversely, those popular web extensions that may
improve personal protection, e.g., DoNotTrackMe, are actually installed
by a handful of users (3.5 %). The resulting picture witnesses how per-
vasive the phenomenon is, and calls for an increase of the sensibility of
people, researchers and regulators toward privacy in the Internet.

1 Introduction

Internet is the revolution that changed our life, allowing us to be informed, buy
goods, enjoy shows, play games, keep in touch with friends, and freely express
our opinions to potentially very large audiences. People are more and more con-
nected to the Internet, with mobile terminals allowing access to information from
anywhere, anytime. Companies see the Internet as a means to stay in contact
with their customers, to attract them, and to offer more and more personalized
content. Not surprisingly, a large fraction of Internet businesses rely on online
advertising, a market that keeps growing year by year, and that generated $42B
revenue in 2013 according to the Interactive Advertising Bureau [1].

This work was conducted under the Narus Fellow Research Program.

c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 111–125, 2015.
DOI: 10.1007/978-3-319-17172-2 8

112 H. Metwalley et al.

Online advertisement – ads for short – enables companies to design very tar-
geted campaigns. The web offers the capability of reaching specific groups of users
assembled with very fine granularity, leveraging knowledge of personal interests
and taste of individuals. In order to collect such knowledge, companies track the
users during their everyday online activity, constantly collecting information for
marketing purposes (e.g., products browsed on a shopping website, online newspa-
pers usually read, movies liked). This information is used to profile a user in order
to deliver tailored ads, recommend movies to watch, or goods to buy.

Online trackers play a key role in this ecosystem as third-party services that
“shadow” users during their browsing activity. Trackers rely on host of solutions
to identify a user, ranging from storing a cookie on the user browser or device to
exotic tracking techniques that fingerprint users across several web sites [7,14,
18]. The tracker business models also vary greatly. Some offer customized ads,
while others sells user information to ads companies, acting as data brokers.
Google’s DoubleClick and Yahoo’s YieldManager are notable tracker examples.
However, the full list of companies that build their business around information
collection includes several hundreds.

The mechanisms associated to tracking users can be beneficial for both com-
panies and consumers. But they also raise many privacy concerns among the
regulators and researchers. Ultimately, the consciousness of the people about
their privacy being violated in the Internet is growing day by day.

Several works in the literature study the latest advances in online tracking,
unveiling new and more subtle mechanisms [7,13,16,17], and proposing coun-
termeasures to be protect users’privacy, typically in the form of browser plugins
[2–6]. Some works studied the pervasiveness of online tracking by running active
measurement campaigns and by crawling the web [8,12,15]. This paper falls in
this second class: we aim at quantifying the pervasiveness and extensiveness of
online tracking. Differently to any previous work, we are the first, to the best of
our knowledge, to leverage passive measurements, which have the major advan-
tage to naturally factor the users into the picture. We address questions as how
many tracking services an internaut would normally face during her activity?
How different is the picture from past years, or from different vantage points?
How invasive are tracking services?

For our study, we rely on an extensive dataset composed by (anonymized)
traces we collect by passively observing normal users from four different probes
installed in two ISPs in two different countries. We use this data to pinpoint
the traffic exchanged with a list of online trackers that we manually built from
various sources. We then collect statistics to characterize such traffic.

Results confirm what is known from the literature: online tracking is ubiqui-
tous. We count more than 400 active online tracking services, with 100 of them
being regularly contacted by more than 50% of users, and the most pervasive ones
that are impossible to avoid. Results confirm observations shown in other works
based on active campaigns [12,16], but our passive approach naturally factors
the user browsing behavior, and allows us to obtain a very detailed and fine-
grained picture that quantifies the pervasiveness of tracking services in real life.

The Online Tracking Horde: A View from Passive Measurements 113

For instance, 77% of users face the first tracker just 1 s after starting their
online activity. We observe websites that nowadays embed more than 50-100
third-party trackers, attracted by the chance to monetize visits, and in prac-
tice contributing to collect personal information. Notably, most of these services
are not popular to enter in the top list of websites (and thus have never being
considered by active studies). Yet, those are popular enough to collect a sizable
number of users. Our unique vantage point allows us to measure things that
active campaigns can not gauge. We are the first at quantifying the popularity
of privacy-enhancer browser plugins. Surprisingly this is limited, with DoNot-
TrackMe installed by a mere 3.5% of users. This testifies the small consciousness
and sensibility of internauts versus their privacy. Similarly, by splitting statis-
tics by type of user device, we highlight how Android devices are more prone
to interact with tracking services than iOS devices and regular Windows PCs.
Finally, our measurements highlight another phenomenon: the increase adoption
of HTTPS as the means to collect data. This exacerbate the tension on the need
to protect users privacy, since for instance this mines the possibility to develop
in-network solutions to control and limit online tracking services.

We hope the picture we draw can contribute to increase the sensibility of
people, researchers and regulators towards privacy in the Internet. We do not
believe in an “arms race” as a possible solution, but rather in a solution in which
people is offered the means to take informed choices.

The remainder of the paper is structured as follows. Sec. 2 introduces the
related work, Sec. 3 details the dataset we employ in this study, Sec. 4 presents
the results, and, finally, Sec. 5 concludes the paper.

2 Related Work

Our work is related to recent literature in the area of web measurement driven
studies about web tracking and online advertisement. We can divide most of the
notable works in this area in three branches. The first branch is mostly oriented
to understand which identifiers and techniques online tracking services exploit to
record users’ browsing activities. Yen et al. [18] examine the common identifiers
trackers can leverage to identifying users, and the authors of [16] and [11] describe
the techniques third party trackers and online social networks use to monitor the
activity of their users. The second branch is mostly oriented to understand the
leakage of personal information due to web trackers. For instance, Balachander
et al. [15] studies privacy leakage and evolution of third party trackers over four
years from 2005 to 2008 using DNS logs. Another notable example is [14], which
analyzes how popular websites share users’ private information with tracking
services, remarking that this trend is worryingly diffused. The last branch focuses
about the analysis of the mechanisms which drive online advertisement. Vallina
et al. [17] specifically examine ads in mobile terminals. Our aim is different as
we address the problem of understanding how pervasive tracking services are by
leveraging a large set of passive measurements. And to the best of our knowledge,
we are the first to perform this analysis following a passive approach.

114 H. Metwalley et al.

Table 1. The sets of traces we consider in this study.

Trace Probe Period IP addr Services

ISP1-Vp1-1d-05/12 ISP1-Vp1 09/05/2012 11660 200320
ISP1-Vp1-1d-05/13 ISP1-Vp1 08/05/2013 12218 239230
ISP1-Vp1-1d-05/14 ISP1-Vp1 07/05/2014 10458 238617

ISP1-Vp1-1d-02/14 ISP1-Vp1 26/02/2014 11027 247797
ISP1-Vp2-1d-02/14 ISP1-Vp2 26/02/2014 11927 297488
ISP2-Vp1-1d-02/14 ISP2-Vp1 26/02/2014 4911 113648

(a) One-day long traces.

Trace Probe Period IP addr Services

ISP1-Vp1-10d-10/14 ISP1-Vp1 13-23/10/2014 13408 1046339
ISP1-Vp2-10d-10/14 ISP1-Vp2 13-23/10/2014 11149 1306612
ISP1-Vp3-10d-10/14 ISP1-Vp3 13-23/10/2014 1321 415550

(b) Ten-day long traces.

Our study shares some common points with other works. We discuss in the
following the differences which distinguish our work. Barford et al. [8] build their
analysis around a dataset they collect thanks to a web crawler they develop.
Web crawling lets the authors infer detailed information about the online ads
which populate webpages. They specifically focus on the analysis of online ads,
while our study addresses online tracking services in general, and from users’
perspective.

The work which mostly approaches this study is Gomer et al. [13], where
authors propose a methodology to identify tracking services from the analysis
of pages returned by search queries. Specifically, using Google, Bing and Baidu,
they run popular queries (extracted from the 2005 KDD dataset). They then
crawl the top 10 returned pages, and check for the presence of trackers embedded
in each page.

Similarly, [10] and [12] offer a global point of view of this phenomenon. In
first case, Castelluccia et al. [10] analyze the provenance of most important third
party tracking services using two popular browser extensions, AdBlock Plus
and Ghostery, for the geographical classification. In second case, Falahrastegar
et al. [12] crawl the top websites in Alexa rank for different countries, and mea-
sure the per-country pervasiveness of third party trackers. Despite our study
share the same aim, as said, we rely on passive traces. This allows us to natu-
rally factor the interactions with third-party trackers and real internauts during
their daily activities, and check the impact of multiple devices, or browsers, or
even malware eventually being installed on end-users’ terminals.

Finally, we are the first to analyze in a real scenario the adoption of those do-
not-tracking extensions as AdBlock Plus or DoNotTrackMe which are expected
to protect users’ privacy. Thanks to our vantage point, we show the breadth of
the most invasive trackers, considering both the services hosting them, and the
users’ chances to contact them.

3 Dataset

In this work, we employ four different passive probes running Tstat1 that we
installed in Points-of-Presences (PoPs) in the operational networks of two differ-
ent ISPs (ISP1 and ISP2) in Europe. Tstat observes all packets flowing on the
links connecting the PoP to the ISP backbone network. It rebuilds each TCP
1 http://tstat.polito.it

http://tstat.polito.it

The Online Tracking Horde: A View from Passive Measurements 115

flow, tracks it, and at the end of the flow, logs more than 100 detailed statis-
tics in a simple text format. For instance, for each TCP flow, Tstat logs the
anonymized client IP address, the server IP address, the application (L7) pro-
tocol type, L7-bytes sent and received, etc. Tstat also implements DN-Hunter,
an advanced mechanism that allows to annotate each TCP flow with the server
hostname the client resolved via DNS before actually contacting the server IP
address [9]. For TCP connections carrying HTTP and HTTPS data, DN-Hunter
has been proved to unveil the service being contacted, e.g., www.acme.com or
mail.acme.com. For HTTP traffic, Tstat produces a separate log which details
most relevant HTTP fields: the HTTP method (GET, POST, etc.), the server
hostname, the URL path, the referer, the client user-agent, etc.2

We have been collecting TCP and HTTP logs since May 2012. In this work,
we focus on a subset of the data. Specifically, we consider three probes (ISP1-
Vp1, ISP1-Vp2 and ISP1-Vp3) that are located in PoPs of the same ISP (ISP1),
in two different cities of the same country. A fourth probe (ISP2-Vp1) is installed
in a different ISP (ISP2), in a second country. Tab. 1 describes, for each trace,
the name used throughout the paper, the location, the period, the number of
households (identified by the IP address of the access gateway, see next section),
and the total number of different services, i.e., server hostnames. Tab. 2(a) refers
to traces which are one-day long, from the same probe, collected on the second
Wednesday of May 2012, 2013 and 2014. We complement them with three traces
we collected in the same day (February 26th, 2014), but from three different
PoPs and countries. Tab. 2(b) refers to ten-day long traces that we collected
from three different PoPs of ISP1, during the same period in October 2014.

Among the details, Tab. 1 shows that the dataset we use covers several thou-
sands of regular users, which browse some millions of hostnames. Results we
present are as such generic, even if specific to the country where the vantage
points are located.

3.1 Identifying Active Users and Number of Connected Devices

Notice that the client IP address field in our logs refer to the access gateway
(ADSL/FTTH modem) customers are given by the ISP. As such, the IP address
can be considered as an identifier of the household, which may hide several
actual devices and users that connect to the Internet using NAT at the access
gateway. This includes possible households in which no actual user is present,
but in which some device generates some traffic. In particular, ISP1 offers native
VoIP communications. The access gateway acts also as VoIP gateway, thus we
2 The traffic logs Tstat generates do not contain information which may offend ISP

users privacy. Indeed, Tstat processes IP packets (and their payload) in real time and
generates transport- and HTTP-level logs in which we take care of obfuscating any
privacy sensitive information (e.g., IP addresses are anonymised using irreversible
hashing functions, all URLs are truncated, etc.). Second, Tstat has no visibility on
encrypted traffic (HTTPS), where the sensitive information concentrates. Further-
more, we report that our traffic monitoring activity is approved by the Security
Office of the ISP in which we deploy our probes.

116 H. Metwalley et al.

0.0 0.2 0.4 0.6 0.8 1.0
Ranking

100

101

102

103

104

105

N
um

be
r

of
flo

w
s

TCP - HTTP, HTTPS flows
TCP - HTTPS flows

(a) Number of flows per household. Trace
ISP1-Vp1-1d-05/14.

100 101 102

Number of unique user-agents per households

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) CDF of user-agents seen behind a
single household. Trace ISP1-Vp1-10d-
10/14.

Fig. 1. Per-household statistics.

expect some households to appear as “active” (IP address is used) even if no
terminal is present (we observe VoIP data only).

Fig. 1(a) shows the number of total HTTP and HTTPS flows per each IP
address, sorted for increasing number. Notice the log scale on y-axis. Plot refers
to trace ISP1-Vp1-1d-05/14. It shows the bias induced in ISP1 by the presence
of VoIP gateways at the modem. They indeed generate some signalling HTTP
and HTTPS traffic to report VoIP usage statistics to the operator. The presence
of the sharp knee in the figure suggests that a simple threshold based filter is
sufficient to identify “active” households.3 In the remainder of the paper, we take
a conservative choice, by considering active only those IP addresses for which we
see at least one HTTPS flow, and at least 100 HTTP or HTTPS total flows for
the 1-day long dataset (1000 flows for the 10-day long traces). This filters out
those sources of traffic we are not interested in (e.g., smart TVs, VoIP gateways,
or pure P2P clients). Most active households reach 100, 000 flows per day.

To quantify the presence of multiple clients that are hidden behind the NAT
at the ADSL router, Fig. 1(b) shows the CDF of the number of different user-
agents seen for a given active IP address. We consider only user-agents associated
to actual browsers, for PC and mobile terminals. We leverage the User-agents
0.3.1 Python library for this.4 Results show that only 20% of households have
only one terminal, with 75% of them showing between 2 to 10 different user-
agents. Manually checking this, we observe a lot of smartphones and tablets,
with some cases showing multiple browsers being normally used. Surprisingly,
in few cases we see more than 10 user-agents. A manual check shows the pres-
ence of suspicious behavior with possibly a malware generating lots of HTTP
requests toward few IP addresses serving advertisements. HTTP requests contain
a rotating set of legitimate browsers user-agents. We suspect this to be related
to some click fraud activity, i.e., a malicious user artificially generating clicks on
3 We use the term “household” and “user” interchangeably in the paper.
4 https://pypi.python.org/pypi/user-agents

https://pypi.python.org/pypi/user-agents

The Online Tracking Horde: A View from Passive Measurements 117

ads servers by forging user-agents. We noted the presence of these outliers, and
check their presence is not affecting our statistics in the remainder of the paper.

3.2 Identifying Online Tracking Services

We build a list of online tracking services by merging together data we obtain
from different sources. First, inspired by the approach used by the authors
of [12], we instrument a browser to visit the top 500 websites of the global
Alexa rank. For each page, we visit it and use the Ghostery plugin [2] to pin-
point the presence of trackers. Given then the hostname of the tracker server,
we extract only the second-level domain name to reduce the list. For instance
from cnt2.acmetracksyou.com and srv1.acmetracksyou.com we consider acme-
tracksyou only. We repeat the procedure using the top 500 websites in the general
Alexa rank, and of countries where ISP1 and ISP2 are located. By merging the
resulting lists we obtain more than 350 distinct online tracker services. Then,
we complement this list with the one obtained from the developers of Abine5,
and with some specific trackers we manually identify. This list also includes
hostnames referring to trackers specifically tailored to track mobile clients. The
final list consists of 443 distinct online tracking services. The list includes only
services that we classify as third party sites that collect users’ information, and
eventually serve advertisements. This includes tracking services that profile users
explicitly (e.g., Doubleclick) or that track users when on a website (e.g., Google
Analytics). We do not consider social network buttons, plugins, and active code.

In the remainder of the paper, we rely on this list to pinpoint connections
that clients establish with tracker servers. When analyzing the TCP logs, we use
the DN-Hunter hostname to identify traffic to trackers. For HTTP logs instead
we use the server hostname in the HTTP request.

4 Results

4.1 Penetration of Online Tracking Services

We start our analysis by measuring the “penetration” of each online tracker that
appears in our list. We consider the trace ISP1-Vp1-10d-10/14. Fig. 2 reports
the percentage of users that contacted at least one time a given tracker with
respect to users that we find active considering the entire 10 days. The results
are shocking: the top online tracking services – DoubleClick, Google Analytics,
and Google Syndication – track 98.8%, 98.7% and 97.4% of users, i.e., as soon
as a user goes online, sooner or later she/he will contact one of Google tracking
services. While they might be known to some users, the list of trackers includes
a vast majority of players that are mostly unknown even to experts internauts.
Fig. 2 reports some of the names. Observe the solid blue curve which refer to
the ten-day long period. More than 50% of users contacts 120 distinct trackers,
with 429 out of 443 trackers that have being contacted by at least one user.
5 https://www.abine.com/

https://www.abine.com/

118 H. Metwalley et al.

do
ubl

ec
lic

k
(1

)

w
eb

or
am

a
(5

0)

vo
ic
efi

ve
(1

00
)

bi
dt

hea
tr

e
(1

50
)

ad
k2

(2
00

)

4d
sp

ly
(2

50
)

cn
zz

(3
00

)

m
yb

uys
(3

50
)

m
ed

ia
la

nd
(4

00
)

ze
st

at
dz

(4
29

)

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

u
se

rs
(%

)

10 Days

5 Days

2 Days

1 Day

Fig. 2. Penetration of online trackers in ISP1-Vp1-10d-10/14.

go
og

le-
an

aly
tic

s

do
uble

cli
ck

go
og

les
yn

dic
at

ion

go
og

lea
ds

er
vic

es

sco
re

ca
rd

re
se

ar
ch

ad
nxs

im
rw

or
ldw

ide
cri

teo
2m

dn

se
rv

in
g-s

ys

go
og

let
ag

se
rv

ice
s

ad
for

m

ad
dt

his

ru
bic

on
pr

oje
ct

ad
s.y

ah
oo

at
dm

t
tu

rn

mat
hta

g

pu
bm

at
ic

qu
an

tse
rv

e

moo
kie1

blu
ek

ai

op
en

x

0

20

40

60

80

100

Pe
rc

en
ta

ge
of

us
er

s
(%

)

May 2014 May 2013 May 2012

Fig. 3. Penetration of online trackers compared for different years in ISP1-Vp1-1d-
05/*.

When considering shorter periods of time, e.g., one, two, five days (red, green
and black curves), the number of users seen by trackers decreases. Yet, the top
20 trackers can observe more than 35% of internauts active during the first day
of the trace.

Next, we compare penetration of trackers over years. Fig. 3 shows the results.
This time we are considering one-day long traces during October 2012, 2013 and
2014, and we focus on the top 23 trackers. Penetration is higher in this case
as we compute it over the active population of a single day. Top trackers show
marginal changes over year, reflecting the fact that they have saturated the
coverage. Going down in the list, we see that most of trackers shows an increase

The Online Tracking Horde: A View from Passive Measurements 119

do
uble

cli
ck

go
og

le-
an

aly
tic

s

ge
miu

s

go
og

les
yn

dic
at

ion

go
og

lea
ds

er
vic

es

ad
oc

ea
n

sco
re

ca
rd

re
se

ar
ch

cri
teo

2m
dn

ad
kon

tek
st

ad
nxs

ad
dt

his

im
rw

or
ldw

ide

qs
er

vz

go
og

let
ag

se
rv

ice
s

sm
ar

ta
ds

er
ve

r

op
tim

ize
ly
at

dm
t

se
rv

in
g-s

ys

ad
s.y

ah
oo

ad
for

m

ru
bic

on
pr

oje
ct

pu
bm

at
ic

tu
rn

0

20

40

60

80

100

Pe
rc

en
ta

ge
of

us
er

s
(%

)

ISP1-Vp1 ISP1-Vp2 ISP2-Vp1

Fig. 4. Penetration of online trackers compared for different years in ISP1-Vp1-1d-
02/14, ISP1-Vp2-1d-02/14 and ISP2-Vp1-1d-02/14.

in the penetration, with only few exceptions. Some new players shows up, i.e.,
ads.yahoo. No service went out of business (or disappeared).

We next compare the penetration from different vantage points. Fig. 4 show
results considering the top-30 most popular trackers seen in the merged list
of ISP1 and ISP2. Again, one-day long traces (in February 2014) are consid-
ered. Two observation holds: ISP1-Vp1 and ISP1-Vp2 show practically the same
results. Despite being in two different cities, the population interest and habits
is very similar, being in the same country. Conversely, comparing ISP1 and ISP2
results, we observe a very different penetration for some trackers, which reflects
a localized service. This confirms the finding in [12] which highlighted the differ-
ent coverage of online tracking services. For instance, Google tracking services
present a higher penetration in Country 2 than in Country 1, while some trackers
do not cover ISP2 market, e.g., imrworldwide, and viceversa, e.g., adocean.

To gauge the amount of data trackers collect, we compute the distribution
of the fraction of TCP flows to trackers (not reported for the sake of brevity).
We observe that 60% of users exchange from 10% to 30% of flows with trackers.
We also see few cases in which more than 95% of flows are sent to trackers.
Investigating, we observe i) click fraud activity of some users infected by some
ad-malware, and ii) some mobile application that keeps downloading tens of
ad-banners per minute, for hours. Both are likely illicit behaviors caused by
malicious attackers that abuse of unaware users to game the ads market.

At last, we measure to which extent the top trackers rely on encrypted chan-
nels, i.e., HTTPS, to collect information about the users. To this end, we measure
how many TCP flows the users exchange with the trackers, and how many of
these flows are HTTPS. We consider again the one-day long traces we collected

120 H. Metwalley et al.

go
og

le-
an

aly
tic

s

do
uble

cli
ck

go
og

les
yn

dic
at

ion

go
og

lea
ds

er
vic

es

sco
re

ca
rd

re
se

ar
ch

ad
nxs

im
rw

or
ldw

ide
cri

teo
2m

dn

se
rv

in
g-s

ys

go
og

let
ag

se
rv

ice
s

ad
for

m

ad
dt

his

ru
bic

on
pr

oje
ct

ad
s.y

ah
oo

at
dm

t
tu

rn

mat
hta

g

pu
bm

at
ic

qu
an

tse
rv

e

moo
kie1

blu
ek

ai

op
en

x

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
of

H
T

T
P

S
flo

w
s

(%
)

May 2014 May 2013 May 2012

Fig. 5. Percentages of HTTPS transactions users establish with third party tracking
services for different years in ISP1-Vp1-1d-02/1*.

in 2012, 2013 and 2014. Fig. 5 reports the percentages of connections carrying
HTTPS traffic for the top 23 most popular trackers. We observe some trackers
do use encryption to collect users’ information: in 2014, google-analytics (39%),
adform (33%), ads.yahoo (31%) and mookie1 (36%). In general almost all the
top 23 tracker has consistently increased the usage of HTTPS over the last three
years. This is also mandated by the general increase of HTTPS-enabled websites
that enforce HTTPS for all third party content too.

4.2 Popularity of Privacy Enhancer Plugins

We now investigate the popularity of plugins that can enhance and customize
the browsing experience. We focus on those well-know plugins which i) block
Javascript code commonly used by advertisers (NoScript), ii) warn about the
presence of online tracking service (Ghostery, WordOfTrust, DoNotTrackMe),
and iii) block advertisement traffic (AdBlock, AdBlockPlus). We count how
many users run these plugins. For each plugin, we perform some active experi-
ments to understand which hostnames it has to contact to check if updates are
available6 We then compute the fraction of users that contact such hostnames
in our traces.

We report in Fig. 6 the shares of households that have installed a given plu-
gin in at least one device, together with the percentage of those which did not
6 We observe that each plugin contacts its update server with a fairly large frequency

(e.g., at any browser bootstrap or once a day) with respect to the considered obser-
vation window.

The Online Tracking Horde: A View from Passive Measurements 121

NoS
cri

pt

Ghos
ter

y

W
eb

OfT
ru

st

DoN
otT

ra
ck

M
e

AdB
loc

k

Adb
loc

kPlu
s

No plu
gin

0

20

40

60

80

100

Pe
rc

en
ta

ge
of

us
er

s
(%

)

ISP1-Vp1 ISP1-Vp2 ISP1-Vp3

Fig. 6. Percentage of households installing the most popular do-not-tracking plugins.
Results from traces ISP1-Vp*-10d-10/14.

install any plugin in any device. We compute these statistics for all our ten-
day long traces. As shown, the share of users installing a plugin is in general
rather small, and it seems that users are more interested in blocking the ads
they encounter while browsing the web, rather than trackers. Indeed the pop-
ularity of AdBlockPlus is between 10% to 18%. Less than 3.5% of users run
DoNotTrackMe. Moreover, we observe that more than 80% of the users do not
install any of the considered plugins, thus offering the trackers the capability of
easily following their surfing activity.

4.3 Trackers Penetration among Services

Next, we investigate the penetration of the online trackers among different ser-
vices (e.g., websites) that users contact during their everyday online activity. To
this end, we consider the HTTP trace. From each URL where the hostname is a
given tracker, we check the Referer field to observe which service was embed-
ding it. As before, we consider only the second level domain name as the name of
the service. We count more than 25,000 services that host third party trackers.
For each of them, we count how many users contacted them, i.e., how popular
they are, and how many and which trackers they embed. In the scatter plot in
Fig. 7, each black dot represents a service; the x-axis (in log scale) reports the
number of distinct users accessing it; the y-axis reports the number of embedded
trackers. Data refers to ISP1-Vp1-1d-5/14. The scenario is rather heterogeneous,
with many services embedding several tens of tracking services. We observe both
unpopular services hosting many trackers – e.g., the few services contacted by
one or two users only, but hosting more than 50 trackers – and popular services
hosting a few trackers – e.g., the rightmost bottom corner of the plot. In general
the number of trackers per service tends to increase with the popularity of the
service.

122 H. Metwalley et al.

100 101 102 103

User rank

1

50

100

150

200

250

E
m

be
dd

ed
tr

ac
ke

rs
google-search

Fig. 7. Scatter plot of the number of users contacting a service, and the number of
trackers embedded by the same service. ISP1-Vp1-1d-5/14.

1 25 50 75 100 125 150

Tracker rank

1

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

Se
rv

ic
es

Fig. 8. Trackers embedded by the services users visited (black dots), and the number
of services covered by each tracker (red curve). trace ISP1-Vp1-1d-5/14.

When checking the results we noticed that www.google.com, the most popular
service, apparently embeds 222 trackers. By manually digging in our traces we
observe that such large number of trackers is due to a bug in the google-search
widget installed in version 4 of Android devices which affect our (and possible
other datasets). Indeed, when an Android user performs a search query using
the widget, and then visit a webpage by tapping on a link in the returned page,
the Android browser keeps using http://www.google.com as Referer field for
all objects that actually refer to the visited page. Besides affecting our results,
this bug can possibly also poison the counters that trackers use to share their
revenues with services.

To complement the above observations, we analyze tracker’s “breadth”, i.e.,
the number of services that embed each tracker. We report the results in Fig. 8.

http://www.google.com

The Online Tracking Horde: A View from Passive Measurements 123

The x-axis reports the rank of the 150 most popular trackers in our lists, and the
y-axis reports all the services present in ISP1-Vp1-1d-05/14. Each dot represents
the association of tracker x with the service y. We sort the services by considering
their popularity among the users, from the most popular (top) to the least
popular (bottom). First, most popular services embeds a large variety of trackers
(observe the dense area in the top part of the plot). This confirms the trend of
Fig. 7. Second, the dense vertical area in the leftmost part of the plot indicates
that trackers with the highest penetration are also associated to many services
(and vice-versa). To ease the visualization, the red solid curve shows the number
of services associated to each tracker in the rank. The curve is very steep, with
less than 10 trackers are associated to more than 1000 services. In particular,
the three trackers with the largest service coverage belong to Google: google-
analytics, doubleclick and googlesyndication, embedded by 17, 814, 8, 176, and
5, 921 services, corresponding to 71%, 32%, and 24% of the total number of
active services, respectively. The first tracker not belonging to Google in the
rank, addthis takes the fourth place with 3, 080 (12%) covered services. Despite
this, it sees more than 50% of population (see Fig. 3). This reflect a market
dominated by Google, in which a lot of other small players are present. The ones
that are hosted in popular domains are able to still track a lot of users.

4.4 Time to Be Tracked

In this section, we investigate how invasive trackers are at getting in touch with
users. We measure how much time a user spends online before encountering
the first tracker. Let T0 be the time of the first HTTP or HTTPS TCP flow
generated by a user, and let T1 be the time of the first TCP flow to a tracker. We
measure the Time-To-Tracker as TTT = T1−T0. For this analysis, we leverage
the TCP trace in ISP1-Vp1-1d-5/14. We consider only those households for
which we know just PC-based terminals are used, i.e., only one single PC-based
user-agent is seen. Results are astonishing: TTT is smaller than 1 s in 77% of
PC users, i.e., as soon as a users goes online, she/he hits the first tracker in less
than a second. Even worse, 100% of users have a TTT smaller than 100 s. When
considering all households, we observe even shorter TTT .

To give the intuition behind this, we detail the number of HTTP connections
needed to hit a tracker using the HTTP traces. We split the dataset according to
the user-agent field in three categories: PC-based, Android-based and iOS-based.
For each category, we compute the distribution of the number of HTTP requests
a user generates before contacting a tracker. Fig. 9 plots the results. Indepen-
dently on the device, in about 10% of the cases, the first HTTP transaction of
the day goes to a tracker7, and within the first 100 (1000) requests in about 60%
(97%) of the cases. Interestingly, users with an Android device contact a tracker
earlier on than users with a PC or an iOS-based device.
7 The reason why the first HTTP request goes to a tracker is due to the user browsing

on HTTPS before moving to HTTP, thus becoming visible for this measure.

124 H. Metwalley et al.

100 101 102 103 104

Number of HTTP Flows before Contacting a Tracker

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g
e

o
f

u
se

rs
(%

)

Android

PC

iOS

Fig. 9. CDF of number of HTTP requests before contacting a tracker. Trace ISP1-
Vp1-1d-5/14.

5 Conclusions

Motivated by the privacy concerns that online tracking services have recently
raised, we presented in this paper a passive characterization of this phenomenon.
We leveraged a large dataset of traffic summaries we collected from ISPs located
in two different countries to passively quantify the pervasiveness and the intru-
siveness of online tracking services in our life. To the best of our knowledge,
we are the first to passively analyze the behavior of trackers in a real scenario,
where the users are naturally factored.

The results presented in this paper are boggling. We observed that top 100
trackers collect information from 50% of the users on a regular basis. Plus, some
of these being able of tracking 98% of the Internauts. They are embedded into
more than 70% of websites, including the most popular ones, but also those that
are visited by few users. Similarly, trackers’ intrusiviness is astonishing, with 77%
of users that contacts a tracker within 1 second after she/he starts browsing the
web. We also observe that trackers are increasingly embracing HTTPS to collect
data. While this is possibly driven by the increase of HTTPS usage, this increases
the warning level since is becomes more and more complicated to control and
limit the information they can collect.

Our results show that the consciousness of the users about their activity
being monitored by trackers is limited. Indeed, only a small fraction of users
rely on privacy-enhancer browser plugins as DoNotTrackMe, and they appear to
be more interested in ad-blocking extensions such as AdBlockPlus.

We believe that the information contained in this paper can contribute to
increase the consciousness of people about the fragility of their privacy in modern
web. We hope that our findings may be of stimulus for regulators, researchers
and practitioners who aim at designing solutions to let the users take control of
the information they exchange with the Internet.

The Online Tracking Horde: A View from Passive Measurements 125

References

1. IAB internet advertising revenue report, 2013 full year results. http://www.iab.
net/media/file/IAB Internet Advertising Revenue Report FY 2013.pdf

2. Ghostery. https://www.ghostery.com/en/
3. DoNotTrackMe. http://www.abine.com/donottrackme.html
4. Privacy Badger. https://www.eff.org/privacybadger
5. AdBlockPlus. http://adblockplus.org/
6. WoT. https://www.mywot.com/
7. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The

web never forgets: persistent tracking mechanisms in the wild. In: ACM SIGSAC
(2014)

8. Barford, P., Canadi, I., Krushevskaja, D., Ma, Q., Muthukrishnan, S.: Adscape:
harvesting and analyzing online display ads. In: WWW (2014)

9. Bermudez, I.N., Mellia, M., Munafo, M.M., Keralapura, R., Nucci, A.: DNS to the
rescue: discerning content and services in a tangled web. In: ACM IMC (2012)

10. Castelluccia, C., Grumbach, S., Olejnik, L.: Data harvesting 2.0: from the visible
to the invisible web. In: WEIS (2013)

11. Chaabane, A., Kaafar, M.A., Boreli, R.: Big friend is watching you: analyzing
online social networks tracking capabilities. In: ACM WOSN (2012)

12. Falahrastegar, M., Haddadi, H., Uhlig, S., Mortier, R.: The rise of panopticons:
examining region-specific third-party web tracking. In: Dainotti, A., Mahanti, A.,
Uhlig, S. (eds.) TMA 2014. LNCS, vol. 8406, pp. 104–114. Springer, Heidelberg
(2014)

13. Gomer, R., Mendes Rodrigues, E., Milic-Frayling, N., Schraefel, M.: Network anal-
ysis of third party tracking: User exposure to tracking cookies through search. In:
ACM WI-IAT (2013)

14. Krishnamurthy, B., Naryshkin, K., Wills, C.E.: Privacy leakage vs. Protection mea-
sures: the growing disconnect. In: W2SP (2011)

15. Krishnamurthy, B., Wills, C.: Privacy diffusion on the web: a longitudinal perspec-
tive. In: WWW (2009)

16. Roesner, F., Kohno, T., Wetherall, D.: Detecting and defending against third-party
tracking on the web. In: USENIX NSDI (2012)

17. Vallina-Rodriguez, N., Shah, J., Finamore, A., Grunenberger, Y., Papagiannaki, K.,
Haddadi, H., Crowcroft, J.: Breaking for commercials: characterizing mobile adver-
tising. In: ACM IMC (2012)

18. Yen, T.F., Xie, Y., Yu, F., Yu, R.P., Abadi, M.: Host fingerprinting and tracking on
the web: privacy and security implications. In: NDSS (2012)

http://www.iab.net/media/file/IAB_Internet_Advertising_Revenue_Report_FY_2013.pdf
http://www.iab.net/media/file/IAB_Internet_Advertising_Revenue_Report_FY_2013.pdf
https://www.ghostery.com/en/
http://www.abine.com/donottrackme.html
https://www.eff.org/privacybadger
http://adblockplus.org/
https://www.mywot.com/

SFMap: Inferring Services over Encrypted Web
Flows Using Dynamical Domain Name Graphs

Tatsuya Mori1(B), Takeru Inoue2, Akihiro Shimoda3, Kazumichi Sato3,
Keisuke Ishibashi3, and Shigeki Goto1

1 Department of Computer Science and Communications Engineering,
Waseda University, Tokyo, Japan

mori@nsl.cs.waseda.ac.jp
2 NTT Network Innovation Laboratories, NTT Corporation, Tokyo, Japan
3 NTT Network Technology Laboratories, NTT Corporation,Tokyo, Japan

Abstract. Most modern Internet services are carried over the web. A sig-
nificant amount of web transactions is now encrypted and the transition to
encryption has made it difficult for network operators to understand traffic
mix.Thegoal of this study is to enablenetworkoperators to inferhostnames
within HTTPS traffic because hostname information is useful to under-
stand the breakdown of encrypted web traffic. The proposed approach cor-
relates HTTPS flows and DNS queries/responses. Although this approach
may appear trivial, recent deployment and implementation of DNS ecosys-
tems have made it a challenging research problem; i.e., canonical name
tricks used by CDNs, the dynamic and diverse nature of DNS TTL set-
tings, and incompletemeasurements due to the existence of various caching
mechanisms. To tackle these challenges, we introduce domain name graph
(DNG), which is a formal expression that characterizes the highly dynamic
and diverse nature of DNS mechanisms. Furthermore, we have developed
a framework called Service-Flow map (SFMap) that works on top of the
DNG. SFMap statistically estimates the hostname of an HTTPS server,
given a pair of client and server IP addresses. We evaluate the performance
of SFMap through extensive analysis using real packet traces collected from
two locationswithdifferent scales.Wedemonstrate thatSFMapestablishes
good estimation accuracies and outperforms a state-of-the-art approach.

1 Introduction

Background:
Monitoring and understanding traffic mix is crucial for network operators. Port
number conventions and deep packet inspection (DPI) are widely used to under-
stand the breakdown of traffic mix. However, these techniques have become less
effective for the following reasons. First, the majority of modern services, such as
social networking service, video, andmessaging services, are all performed overweb
traffic [9], and port number information is too coarse-grained to distinguish such
services from each other. Second, the encryption of communication channels has
disabled inspection ofHTTPheaders,which includeuseful information such as uni-
form resource identifiers (URIs). Modern protocols for accelerating the web such
c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 126–139, 2015.
DOI: 10.1007/978-3-319-17172-2 9

SFMap: Inferring Services Over Encrypted Web Flows 127

s1 m1 n1m2

Fig. 1. Example of a CNAME chain

1 10 100 1000 10000 100000 1000000
TTL values (seconds)

0

0.2

0.4

0.6

0.8

1

C
D

F

A records
CNAME records

Fig. 2. CDFs of TTL values

s1

m1

n1

s1

m1

n1

n2

1: n1 s1

: n2 s2

s2

Fig. 3. An example of CNAME ambiguity

as SPDY and Websocket employ mandatory encryption of HTTP with SSL/TLS
(secure socket layer/transport layer security), i.e.,HTTPS.Naylor et al. [7] recently
reported that fraction of HTTPS traffic volume measured at a large-scale ISP has
significantly increased over these 2+ years (from April 2012 to July 2014). They
also found that their meausrement study suggests that cost of deploying HTTPS
is decreasing. Hence, the increasing adoption of HTTPS brings new research chal-
lenges to traffic classification problems [2,5]1.

Goal and Challenges:
Based on the aforementioned information, this work aims to enable network opera-
tors to infer thehostnamesofHTTPStraffic.Hostnameinformation isuseful fornet-
work operators to understand what types of services are carried over HTTPS flows.
Although the IP address property of an HTTPS server may reveal that the server
is used by a particular company such as Google, this information often fails to pro-
vide us with information about the services that are used over the flow, such as web
searches, blogs, and videos. Such services are associated with distinct hostnames
such as www.google.com, www.blogspot.com, and www.youtube.com. Bermudez
et al. [2] revealed that simple reverse DNS lookup does not return accurate domain

1 We note that server name indication (SNI) extention of TLS can be used to obtain
hostname of HTTPS server. However, there are many client/server implementations
that do not adopt SNI. In fact, in our dataset, roughly half of HTTPS clients did not
use the SNI extention.

www.google.com
www.blogspot.com
www.youtube.com

128 T. Mori et al.

informationusedbyHTTPS servers.Thus, to understand the trafficmix ofHTTPS
flows, we need to infer server hostnames.

The main idea of our approach is to correlate HTTPS flows and DNS
queries/responses.Thebasicassumption is thatprior to requestinganHTTPSflow,
a web application should resolve the IP address of the HTTPS server by querying a
DNSquery.Therefore,bymonitoringpriorDNSqueries/responses,wecanestimate
thehostnamethat is associatedwith IPaddress of theHTTPSserver.Although this
approach might look trivial, there are three practical challenges.
(Challenge 1) Canonical name (CNAME) tricks used by CDNs

First, modern CDN providers leverage CNAME tricks to accelerate the effi-
ciency of content delivery [10]. Figure 1 shows an example of a CNAME chain used
by a CDN provider. Here, assume that we know that the IP address of an observed
HTTPS server is s1 = 23.2.132.181. Now, our task is to associate s1 with the origi-
nal hostname, n1 = www.ieee.org. However, as is shown in Fig. 1, n1 is not directly
resolved to s1 due to the existence of the CNAME chain. Using this chain structure,
a CDN provider can provide the optimal server IP address s1 to serve the content of
n1 to client c1. Thus, to associate s1 and n1, we need to keep track of the CNAME
chain, which exhibits dynamic and complex behavior as we shall see soon.
(Challenge 2) Incomplete measurements

ADNS record canbe cachedby severalmechanisms such as localDNS resolvers,
DNS caching within operating systems, and DNS caching within applications such
as web browsers. The implementations of these caching mechanisms are diverse.
Some recent implementations used in web browsers store DNS records aggressively
to improve response time, thereby ignoring DNS TTL settings [4]. Even though
such implementations violate the rule of DNS TTL, they can work because even if a
selected server IP address is no longer an optimal one, the server IP address gener-
ally continues to be valid.Thus, due to the standard and illicit cachingmechanisms,
a DNS query, which should have appeared prior to an HTTP request, is often invis-
ible. The absence of DNS queries suggests that we require estimation techniques to
recover incomplete measurements.
(Challenge 3) Dynamicity, diversity, and ambiguity

Everyhostnameused inDNS is assigned a time-to-live (TTL),whichdefines the
lifetime of the hostname within a stub DNS resolver. If the hostname is not queried
again before the TTL has expired, the DNS record of the hostname will be removed
froma stubDNS resolver. In general, the hostnames in aCNAMEchain have differ-
ent TTL values. Figure 2 presents an example of cumulative distributive function
(CDF)ofTTLvalues forhostnames thatare resolved to IPaddresses (Arecord)and
hostnames that are resolved toCNAMEs (CNAMErecord).Note that the datawas
taken from a mid-sized production network, and the characteristics of CDF were
the same for other dataset. The graph clearly shows that A record hostnames have
shorter TTLs than CNAME hostnames. For example, more than 50% of A record
hostnames have TTL values that are less than 60 seconds. This indicates that the
association between hostnames and IP addresses is highly dynamic. These host-
names have shorter TTLs because CDN providers tend to control traffic at a fine
granularity [4].

SFMap: Inferring Services Over Encrypted Web Flows 129

The diversity of TTL values and DNS caching mechanisms leads to ambiguity
of CNAME association behavior. We illustrate an actual sample in Fig. 3, which
presents DNS resolutions for a client, c1. The first observation generates the rela-
tionship between s1 andn1 for client c1. The second observation generates the rela-
tionship between s2 and n2 for client c1. Now, assume an estimation problem. If
we observe the pair (c1, s1), which hostname should it be associated with? If we
simply keep the relationships shown above, the answer is n1. However, due to the
existence of intermediate CNAME node m1, the actual answer is n2 because m1
is now associated with s2 by a query of n2, and n1 is associated with m1 due to a
caching mechanism. Note that this behavior depends on the implementation of the
stub DNS resolver used by the client c1. If the implementation ignores intermedi-
ate CNAME nodes, the answer could ben1. Thus, there is an intrinsic ambiguity in
CNAME associations.

Contributions:
In this work, we present a novel methodology that aims to infer the hostnames of
HTTPS flows, given the three research challenges shown above. The key contribu-
tions of this work are summarized as follows.

– We present domain name graph (DNG), which is a formal expression that can
keep track of CNAME chains (Challenge 1) and characterize the dynamic and
diverse nature of DNS mechanisms and deployments (Challenge 3).

– We develop a framework called Service-Flow map (SFMap) that works on top
of theDNG. SFMap estimates the hostname of anHTTPS server given a pair of
client and server IP addresses. It can statistically estimate the hostname even
when associating DNS queries are unobserved due to caching mechanisms, etc.
(Challenge 2).

– Through extensive analysis using real packet traces, we validate the perfor-
mance of SFMap in terms of accuracy and resource consumption.

The remainder of this paper is organized as follows. Section 2 summarizes the
relatedwork.Section3describes theproposedSFMap framework indetail.Weeval-
uate the performance of SFMap in Section 4. Section 5 discusses the limitations of
SFMap and future research directions. We conclude our work in Section 6.

2 RelatedWork

Many studies have examined the Internet traffic classification problem.Ref. [3] lists
68 studies on the topic. Here, we focus our attention on the studies that make use
of DNS information to the traffic classification problem [2,6,8]. Mori et al. [6] pro-
posedamethodto identify trafficoriginating fromlarge-scalevideo-sharingservices
such asYouTube.The key ideawas to extract the rules of IP address numbering and
naming conventions of fully qualified domain names (FQDNs) used for the services.
Although their approach may work for a limited scope, it cannot be used to solve
more generic web traffic classification problems. Plonka et al. [8] presented a traffic
classification method that uses DNS traffic. They developed a method that stores

130 T. Mori et al.

per client DNS rendezvous state information in a tree-like data structure. Although
their results demonstrated that the DNS rendezvous-based method performs well,
even for encrypted traffic, their goal was different from ours because they assumed
that DNS traffic implies the ground truth. In contrast, our goal is to estimate the
hostnamesofHTTPStraffic fromtheobservationsofDNStraffic.Bermudezetal.[2]
developed a framework called DN-Hunter, which aims to classify traffic flows using
DNS traffic.DN-Hunter uses aFIFO(first-in first-out) circular list to store the rela-
tionships among FQDN information and client-server pairs. Since the scope of DN-
Hunter is mostly similar to ours, this work compares the performance of SFMap
with DN-Hunter.

3 SFMapFramework

This section describes SFMap in detail. Section 3.1 presents the overview of the
SFMap framework. Section 3.2 describes DNG, which is a key component of the
SFMap framework. Section 3.3 details how SFMap estimates hostnames. Lastly,
Section 3.4 explains how SFMap updates DNG and statistics that are used for the
estimation.

3.1 Overview

Thegoal of SFMap is to infer ahostnamenof anHTTPSflowbyassociatingpreced-
ing DNS responses with a flow key, which is defined with a pair of server IP address
s and client IP address c. To this end, SFMap needs to address the research chal-
lenges discussed in Section 1. To tackle the research challenges, the SFMap frame-
work works on top of DNG, which will be detailed in the next subsection. A DNG
keeps track of the structure of DNS records; thus, it can deal with CNAME chains
(Challenge 1).Next, by relaxing the constraints of theDNG, the SFMap framework
can handle cases wherein there are no preceding DNS responses that are associated
with the client-server pair (challenge 2).Thedetails of the hostname estimationwill
be described in Section 3.3. Finally, by adequately maintaining the DNG and using
the observed TTL values, the SFMap framework can deal with the dynamic nature
of DNS mechanisms (Challenge 3). The updating mechanism for the DNG will be
discussed in Section 3.4.

Figure 4 summarizes the components of the SFMap framework. SFMap has
threemain functions, i.e., Learner,Estimator, andUpdater. Learner consists of two
components: the DNG and the Frequency counter. Learner component reads DNS
queries/responsesandbuildsandkeepstheDNGandFrequencycounter.Estimator
performs host estimation; i.e., given a pair of client-server IP addresses (c, s) for an
HTTPS flow, estimator returns the most plausible hostname(s) using the informa-
tion collected from DNG and Frequency counters. Updater reads DNS queries/re-
sponses and updates the status of the DNG and the Frequency counter.

Given these primitives, our problem can be formulated as maximum likelihood
estimation (MLE)under the constraints of aDNG.Given cand s in anHTTPSflow,

SFMap: Inferring Services Over Encrypted Web Flows 131

{s, c}

n

Fig. 4. Components of SFMap

the MLE is formulated as follows.

n̂(c, s) = argmax
n∈N

Pr(n, c, s) (1)

s.t. N = {n ∈ Vc : n →
Gc

s}, (2)

where Gc = (Vc, Ec) denotes a DNG built for c, and binary operator x →
G

y repre-

sentswhethervertexxcanreachtovertexy ongraphG. In the following,wedescribe
how we build and update Gc, how we extract N , how we compute the likelihood
probability Pr(n, c, s), and how we get the final estimation n̂.

3.2 DNG

A DNG, Gc, is a directed graph used to keep A and CNAME records observed in
DNS responses queried by client c. DNGs can be built separately for each client
c. A vertex, v ∈ Vc, is a server IP address or a hostname, while an edge, e ∈ Ec,
represents an A or CNAME record that links a vertex to another vertex. Each edge
is grafted by a correspondingAor CNAMErecord observed in aDNS response, and
is associated with its expire time determined by observed TTL. If an edge, e ∈ Ec,
is expired, it will be removed from Gc.

Here, we examine how the DNG expression naturally represents the behavior
of DNS resolution. Assume that clients obtain a server address via DNS responses
only and that we have never missed any DNS response for the clients; i.e., DNGGc

represents all name resolutions requested by a client c. When a client c sends an
HTTP request to a server n, the server n’s IP address s should have been resolved
by DNS. This association of n and s obtained through the DNS mechanism can be
expressed as a path from n to s on the DNGGc. Note that there are cases where we
cannot find such a path due to the caching mechanisms. In such cases, we need to
employ several techniques that will be described soon.

3.3 Estimator

In the estimation phase,wemust first select candidate hostnames that are likely the
original hostname for a given client-server pair (c, s). We extract a set of candidate

132 T. Mori et al.

hostnamesN fromDNGGc, usingEq. 2. If |N | ≥ 1,we estimate the hostname with
theMLEshown inEq. 1.Amethod to calculate the likelihoodprobabilityPr(n, c, s)
will be shown later.

As we mentioned in Section 1, N can be an empty set due to the standard
and illicit DNS caching mechanisms. In such cases, we cannot directly associate
an HTTPS flow with preceding DNS responses. To deal with these cases, SFMap
extends the candidate hostnames by relaxing the constraint of edge expiration.
This relaxation enables us to select hostnames that are missed due to the existence
of DNS clients that ignore DNS TTL for improving the user experience. Now, N
is obtained as

N = {n ∈ Vc : n →̃
Gc

s}, (3)

where G̃c = (Vc, Ẽc) and Ẽc include both valid and expired edges.
Finally, ifwedonothaveanycandidatehostnamesat this stage,weuse theunion

of all clients’ DNGs (union DNG). In other words, we use the observations of other
clients as a hint to estimate the most plausible hostname. Let C denote a set of all
clients. The union DNG is defined as G = (V =

⋃
c∈C Vc, E =

⋃
c∈C Ec). Using

the union DNG G, the candidate hostnames can be selected as

N = {n ∈ V : n →
G

s}. (4)

It then estimates the hostname with the following MLE formulation:

n̂ = argmax
n∈N

Pr(n, s). (5)

Like Eq. 3, we can further relax the constraint of expiration for the union DNG G;
i.e.,

N = {n ∈ V : n →̃
G

s}, (6)

where G̃ = (V, Ẽ) and Ẽ include both valid and expired edges.
To recap, the Estimator runs the combinations below from top to bottom in

a step-by-step manner until a plausible hostname is found. For future reference,
we give names to these steps, where LE and UE refer to Local and Union Estima-
tors, andNTErefers to “NoTTLExpiration”. For instance, the estimatorLE-NTE
(Local Estimator with No TTL Expiration) starts with the first step and continues
to the second step until at least one candidate hostname is found, but will not pro-
ceedtothethirdandfourthsteps.Wewill examinetheaccuraciesof theseestimators
to study the factors that contribute to improve the estimation accuracies.

Step MLE constraint Name
1st Eq. (1) Eq. (2) LE
2nd Eq. (1) Eq. (3) LE-NTE
3rd Eq. (5) Eq. (4) UE
4th Eq. (5) Eq. (6) UE-NTE

SFMap: Inferring Services Over Encrypted Web Flows 133

Finally, we note the time complexity of the Union Estimators. In the Union
DNG, a single-source path search from s with reverse edges requires O(|E|) on a
directed acyclic graphwith topological sort, and frequency lookups are executed for
n ∈ N ⊆ V . Therefore, the time complexity of Union Estimators is O(|V | + |E|).
However, we empirically revealed that the actual mean time complexity is much
smaller than this worst-case upper bound, and is close to O(|Vc| + |Ec|) because
majority of hostnames can be estimated with LE and LE-NTE as we shall show in
Section 4. The details are omitted due to the space limitation.

Calculationof theLikelihoodProbabilities. Tocalculate the likelihoodprob-
abilities, we make use of empirical data. Let Fc(n, s) denote the frequency of DNS
messages queried by client c for hostnamenwith resolved address s. UsingFc(n, s),
Eq. 1 can be calculated as

argmax
n∈N

Pr(n, c, s) = argmax
n∈N

Fc(n, s).

Similarly, Eq. 5 can be calculated as

argmax
n∈N

Pr(n, s) = argmax
n∈N

F (n, s),

whereF (n, s) =
∑

c∈C Fc(n, s).Themethod toupdate the frequencywill be shown
in the next subsection.

3.4 Updater

The Updater updates DNG Gc and frequency Fc when it receives a DNS response.
A DNS response is associated with client c and queried hostname n�. The response
also includes a set of A records and another set of CNAME records. Let these sets
be A and M , respectively. An A record associates hostname n and server address
s, while a CNAME record associates two hostnames n′ and n. Let these records be
(n, s) ∈ A and (n′, n) ∈ M , respectively.

Due to the existenceof shortTTLvalue set for anArecord, a client often resolves
an intermediate hostname (i.e., CNAME) instead of the original one. In such a case,
the frequency of an original hostname is undervalued. To cope with such a case,
SFMap increments the frequencies of all original hostnames that can reach to the
queried hostname. Let a set of edges be Ec = {(n′′, n), (n′, n), (n, s)}, where n is
a CNAME of n′′ or n′. If n� = n is queried, the Updater increments Fc(n′′, s) and
Fc(n′, s), instead of Fc(n, s). Note that we assume that original hostnames should
be leaf vertices on a DNG (a leaf is a vertex without incoming edge). In fact, more
than 99.7% of requested hostnames are leaf vertices in our observations.

Algorithm 1 presents an algorithm that updates Gc and Fc upon receiving a
DNS response, (c, n�, A,M). We discount the incremental value by the number of
(n′, s) pairs at Line 7, because the algorithm incrementsFc for all n′ ∈ V reachable
to n� and for all s in A. At Line 3, we update the expiration time of edge (u, v). In
addition to Algorithm 1, the Updater periodically checks the TTL expiration for

134 T. Mori et al.

Algorithm 1. Updater
Input: c, n�, A, M // DNS response

1 for (u, v) ∈ A ∪ M do
2 Ec = Ec ∪ {(u, v)} // to add edge

3 update expire time of edge (u, v)

4 N ′ = {n′ ∈ Vc : (∗, n′) �∈ Ec, n
′ →

Gc

n�} // leaf vertices reachable to n�

5 for n′ ∈ N ′ do
6 for (∗, s) ∈ A do
7 Fc(n

′, s) = Fc(n
′, s) + 1

|N′|·|A| // to increment frequency

8 return Gc, Fc

all edges. If the DNS TTL expires for an edge (u, v), the edge will be removed. The
time complexity ofmaintenance isO(|Vc|) for the loop atLine 5, assumingO(|A|) =
O(|M |) = O(1).

4 Evaluation

Here, we first describe the datasets used and present some basic statistics derived
from the data. We then evaluate the estimation accuracy of SFMap. For reference,
we compare the performance of SFMap with DN-Hunter [2]. Finally, we examine
the resource consumption of SFMap, which was implemented with Python.

4.1 Datasets and Statistics

To investigate the effectiveness of SFMap, we used the two datasets, LAB and
PROD, which are the packet traces collected from a gateway router of local area
network used by a research group and a gateway router of middle-scale produc-
tion network, respectively. The basic statistics of the datasets are summarized in
Table 1. As is shown in Table 1, the datasets cover two different scales, small and
middle. Both datasets have same time length, twelve hours. Of the twelve hours,
the last two hours are used to examine the accuracy; i.e., the first 10 hours are
used for warm-up phase. We adopted the length of warm-up from the observation
of TTL distribution shown in Fig. 2; i.e., majority of the DNS resource records
had TTL values less than 10 hours.

Here, we present the characteristics of DNGs derived from our datasets. Table 2
presents the statistics of theDNGs.Forbrevity,weomitDNGswithTTLexpiration
because these DNGs should be smaller than those without TTL expiration. As is
shown in the table, Union DNGs have fewer nodes and edges. For instance, since
the number of clients for the LAB dataset is 10 (see Table 1), the total number of
nodes in the Local DNGs should be 10 × 460 = 4600. Thus, the number of total
nodes in the Union DNG (=2849) is less than the number of total nodes in the Local
DNGs. This observation implies that (1) each client-server pair in the Local DNGs

SFMap: Inferring Services Over Encrypted Web Flows 135

Table 1. Basic statistics of the datasets

learning # of # of DNS estimating # of # of HTTP # of
time clients responses time servers requests hostnames

LAB 0 ∼ 12 h 10 5,226 10 ∼ 12 h 1,705 542 1,135

PROD 0 ∼ 12 h 4,250 86,854 10 ∼ 12 h 10,785 55,091 10,534

Table 2. Statistics of the DNGs at the end of measurement period

Local DNG Union DNG
w/o TTL expiration w/o TTL expiration

mean mean total total
of nodes # of edges # of nodes # of edges

LAB 460 755 2,849 5,979

PROD 56 80 25,403 172,974

1 2 3 4 5 6 7 8 9 10
Number of candidate hosts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

1 2 3 4 5 6 7 8 9 10
Number of candidate hosts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Fig. 5. CDFs of the number of candidate hostnames for each HTTP request: LAB (left)
and PROD (right)

hasduplicate nodes and edges, and (2) theUnionDNGscanbemaintainedwith less
memory. Figure 5 shows the CDF of the number of candidate hostnames for each
HTTP request. The results suggest that roughly 15% of the HTTP requests have
multiple candidates; i.e., we must statistically estimate the original hostname from
these candidates.

4.2 Estimation Accuracy

Our methodology was evaluated using the two datasets. We make use of HTTP
as a means to evaluate the accuracy of our methodologies. The ground truth was
obtained from HTTP request headers, which contain hostname information. We
note thatalthoughthedistributionsofhostnamescouldbedifferentbetweenHTTP
and HTTPS, the fundamental mechanism of resolving hostname before starting
HTTP/HTTPS communication should be identical. From the packet traces, we

136 T. Mori et al.

Table 3. Accuracies of the estimators (exact matching)

LE LE-NTE UE UE-NTE DN-Hunter

LAB 54.98% 68.08% 71.59% 92.25% 67.90%

PROD 79.90% 88.29% 90.88% 90.88% 85.40%

Table 4. Accuracies of the estimators (public suffix matching)

LE LE-NTE UE UE-NTE DN-Hunter

LAB 57.20% 70.30% 73.80% 94.46% 73.43%

PROD 83.20% 92.12% 94.52% 94.98% 89.98%

Table 5. Accuracies of the Top-3 estimations (UE-NTE)

Exact matching Public suffix

Hit in 1 Hit in 2 Hit in 3 Hit in 1 Hit in 2 Hit in 3

LAB 92.25 97.23 98.16 94.46 98.16 98.16

PROD 90.88 95.77 96.71 94.98 97.01 97.43

readDNSpackets tobuildandupdate theDNGs.For eachHTTPrequestpair (c, s),
we estimate the hostnameand compare it against the ground truth.For comparison
purposes, we implemented DN-Hunter [2]. DN-Hunter has a single parameter that
determines the size of memory, which keeps track of tuples of (c, s,N), whereN is a
hostname.To obtain the highest performance ofDN-Hunter,we set infinite amount
of memory size. We note that this configuration did not overflow physical memory
we used in our experiments.

Table 3 and Table 4 summarize the results, where we use the notations intro-
duced in Section 3.3.Table 3 shows the estimation accuracies in the context of exact
matching, andTable 4 relaxesmatching using a public suffix [1]; i.e., we can see that
aaa.example.com and bbb.example.com are matched in the context of the public
suffix. Using the public suffix matching allows us to distinguish hostnames with dif-
ferent domains, e.g., youtube.com and google.com.

First, the accuracies were improved for estimators with no TTL expiration
(NTE). This observation suggests that there are a non-negligible number of DNS
implementations that ignore TTL settings, which agrees with a previous report [4].
Second, the Union DNG also contributed to improve the accuracy. This obser-
vation suggests that using other clients’ information is useful in improving the
accuracy when no other hint is available. Third, if we allow public suffix match-
ing, accuracies are further improved for all the estimators. The UE-NTE achieved
roughly 95% of accuracy for both datasets. Finally, the UE-NTE outperformed
DN-Hunter. For the exact matching experiments, while the estimation error rates
of DN-Hunter were 15-32%, the estimation error rates of UE-NTE were 8–9%.
Thus, UE-NTE successfully reduced the error rates by 50-70%.

DN-hunter returns a single hostnamegivena client-server pair; however, if there
are multiple candidate hostnames, SFMap can return several hostnames with the
highest likelihood probabilities. Table 5 shows the results where we accept the top

aaa.example.com
bbb.example.com
youtube.com
google.com

SFMap: Inferring Services Over Encrypted Web Flows 137

Table 6. Memory usage of RAM and processing time for UE-NTE

memory (MB) time (s)

LAB 35.1 0.8

PROD 686.2 20.6

three hostnames as estimation.Notably, accuracies exceed 96-98% for exactmatch-
ing if we pick up the top three hostnames. We note that in most cases, the host-
names ranked in the top three look similar. For instance, the top three hostnames
are: pagead2.googlesyndication.com, pubads.g.doubleclick.net, and googleads.g.
doubleclick.net, which are all attributed to Ad Network services. Thus, by extend-
ing the candidate hostnames,we can establish better estimations thatwork in prac-
tice. This extension is acceptable for our original motivation; i.e., understanding
the mix of HTTPS traffic.

4.3 Resource Consumption

We study the resource consumption of SFMap, using its implementation with
Python. We note that the implementation has a much room for improvement in
terms of optimizing resource management. Table 6 shows the amount of memory
consumed and the amount of time to process the entire data, including data for
warm-up.Theresultsdemonstrate thatour implementationofSFMapworkswithin
a reasonable amount of memory, i.e., less than 40 MB for LAB and less than 700
MB for PROD. Also, processing time is much shorter than the actual measurement
length, 12 hours. Thus, SFMap should work in a real-time fashion. We will further
discuss the scalability of SFMap in the next section.

5 Discussion

Here,we discuss the limitations of the proposed SFMap framework.We also outline
several future research directions that can help extend our framework.

5.1 Sources ofMisclassification

By carefully examining the estimation results, we found several intrinsic sources of
misclassification. There are several factors that are associated with the incomplete
measurements.Aswementionedbefore, thefirst factor is the existence of aggressive
DNScachingmechanismsthat ignoreDNSTTLsetting.Thesecond factorwe found
through this study was mobility of terminals; i.e., an IP address had already been
resolved inothernetworkbefore the terminal arrived to thevantagepoint.The third
factor we found was the use of an IP address in the URI. We found a non-negligible
number of HTTP requests had such URIs. We manually inspected the cases and
found that there are several applications that likely hard-coded an IPaddress; thus,
they never send DNS queries. Although these are not the controlling factors today,
we may need to address them if such deployments become popular in future.

pagead2.googlesyndication.com
pubads.g.doubleclick.net
googleads.g.doubleclick.net
googleads.g.doubleclick.net

138 T. Mori et al.

5.2 Scalability

As shown in Section 4.3, our SFMap implementation processed traffic collected at
middle-scale production network within a reasonable amount of memory; i.e., less
than 700 MB. Then, we may want to ask whether SFMap works for large-scale net-
works. First, because SFMap does not require per-packet processing, we believe
that the processing timedoes notmatter in practice. It just processesDNS response
packets and the first packets of HTTPS flows, ignoring remaining packets. Further-
more,aswediscussed inSection3.3, empirical studies revealedthat timecomplexity
of estimation is close toO(|Vc|+ |Ec|), which is fairly small as shown in Table 2. We
also note that estimation processes can be parallelized if we need it. Second, it is
clear that the size of DNGs increases as the number of observed client increases. If
the size of DNG becomes large enough to press the capacity of memory, we need
to eliminate old records. Instead of keeping all the records for a certain amount of
time, e.g., 12 hours, we may want to quickly delete old records that are less-likely to
be reused in future. More sophisticated way to manage the elements in DNGs is left
for the future study. Another possible solution would be to build a new algorithm
that can maintain and update DNGs in a more compact data structure. The topic
is also left for the future study.

6 Summary

The SFMap hostname estimation framework was presented. SFMap enables net-
work operators to estimate the hostnames of HTTPS traffic by observing DNS
queries/responses. To tackle the challenges that arise from the recent dynamic
deployment anddiverse implementations ofDNS ecosystems, the proposed SFMap
framework runs on top of a single key component; i.e., a DNG, which is a formal
expression that characterizes the highly dynamic and diverse nature of DNS mech-
anisms. From extensive analyses using real packet traces collected from two dis-
tinct locations with different network scales, we have demonstrated that SFMap
has good estimation accuracy and can outperform DN-Hunter, which is a state-of-
the-art estimation technique. Our experiments using middle-scale network traffic
with thousands of clients demonstrated that SFMap can be run on a standard com-
modity PC, using less than 700 MB of memory space. In future, we plan to enhance
the scalability of SFMap.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
25880020.

References

1. Public suffix list. https://publicsuffix.org/
2. Bermudez, I.N., Mellia, M., Munafo, M.M., Keralapura, R., Nucci, A.: DNS to

the rescue: discerning content and services in a tangled web. In: Proc. of IMC,
pp. 413–426 (2012)

https://publicsuffix.org/

SFMap: Inferring Services Over Encrypted Web Flows 139

3. CAIDA. Internet traffic classification. http://www.caida.org/research/traffic-
analysis/classification-overview/

4. Callahan,T.,Allman,M.,Rabinovich,M.:OnModernDNSBehavior andProperties.
SIGCOMM Comput. Commun. Rev. 43(3), 7–15 (2013)

5. Korczynski, M., Duda, A.: Markov chain fingerprinting to classify encrypted traffic.
In: Proc. of INFOCOM, pp. 781–789 (2014)

6. Mori, T., Kawahara, R., Hasegawa, H., Shimogawa, S.: Characterizing traffic flows
originating from large-scale video sharing services. In: Ricciato, F., Mellia, M.,
Biersack, E. (eds.) TMA 2010. LNCS, vol. 6003, pp. 17–31. Springer, Heidelberg
(2010)

7. Naylor, D., Finamore, A., Leontiadis, I., Grunenberger, Y., Mellia, M., Munafo, M.,
Papagiannaki, K., Steenkiste, P.: The cost of the “S” in HTTP. In: Proc. of CoNext
(2014)

8. Plonka, D., Barford, P.: Flexible traffic and host profiling via DNS rendezvous. In:
Proc. of SATIN (2011)

9. Sandvine. Global internet phenomena report: 1H 2014. http://bit.ly/1jHpsW5
10. Su, A.-J., Choffnes, D.R., Kuzmanovic, A., Bustamante, F.E.: Drafting behind

akamai (travelocity-based detouring). In: Proc. of SIGCOMM, pp. 435–446 (2006)

http://www.caida.org/research/traffic-analysis/classification-overview/
http://www.caida.org/research/traffic-analysis/classification-overview/
http://bit.ly/1jHpsW5

Security

Monitoring Internet Censorship with UBICA

Giuseppe Aceto1(B), Alessio Botta1, Antonio Pescapè 1, Nick Feamster 2,
M. Faheem Awan3, Tahir Ahmad3, and Saad Qaisar3

1 University of Napoli Federico II, Napoli, Italy
{giuseppe.aceto,a.botta,pescape}@unina.it
2 Georgia Institute of Technology, GA, USA

feamster@cc.gatech.edu
3 NUST SEECS, Islamabad, Pakistan

{10mscsemawan,11msccstahmad,saad.qaisar}@seecs.edu.pk

Abstract. Censorship is becoming increasingly pervasive on the Inter-
net, with the Open Net Initiative reporting nearly 50 countries practicing
some form of censorship. Previous work has reported the existence of many
forms of Internet censorship (e.g., DNS tampering, packet filtering, con-
nection reset, content filtering), each of which may be composed to build a
more comprehensive censorship system. Automated monitoring of censor-
ship represents an important and challenging research problem, due to the
continually evolving nature of the content that is censored and the means
by which censorship is implemented. UBICA, User-based Internet Censor-
ship Analysis, is a platform we implemented to solve this task leveraging
crowdsourced data collection. By adopting an integrated and multi-step
analysis, UBICA provides simple but effective means of revealing censor-
ship events over time. UBICA has revealed the effect of several censorship
techniques including DNS tampering and content filtering. Using UBICA,
we demonstrate evidence of censorship in several selected countries (Italy,
Pakistan, and South Korea), for which we obtained help from local users
and manually validated the automated analysis.

1 Introduction

Akin to network monitoring for faults, attacks, and performance variations,
Internet censorship monitoring is a relatively new field of research with method-
ologies, tools and practices still in course of definition. We consider Internet
censorship detection as “the process that, analyzing network data, reveals impair-
ments in the access to content and services caused by a third party (neither the
client system nor the server hosting the resource or service) and not justifiable
as an outage”. In turn, Internet censorship monitoring is the automated and
continuous process of detecting Internet censorship over time, with the aim of
revealing status changes in terms of the affected targets or the adopted censor-
ing techniques. Regardless of the ethical and political positions regarding cen-
sorship, the interference with Internet protocols standard and intended behavior

This work has been carried out thanks to a Google Faculty Research Award for the
project UBICA (User-Based Internet Censorship Analysis).

c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 143–157, 2015.
DOI: 10.1007/978-3-319-17172-2 10

144 G. Aceto et al.

has practical implications. Moreover significant aspects of censorship, such as
its enforceability, its transparency, and the accountability of the censors to the
affected population, strongly depend on the technical details of the censorship
technique adopted and thus evolve with both the technology and its application
in practice. Collection of the appropriate network measurements for monitoring
censorship is thus a fundamental part of understanding the existence, prevalence
and evolution of censorship [3,12], and to tell it from unintentional network out-
ages or performance issues. Although tools for monitoring censorship abound,
most of them do not base their analysis or conclusions on widespread, scalable,
continuous network measurement. One well-known censorship monitoring tool
is Herdict [1], a crowd-sourced platform. Its main interface is a website allowing
users to report about “accessibility”of URLs from within their browser; this way
the platform leverages crowdsourcing both for the collection of targets of interest
for the users, and by having the users to perform an application-level censorship
test. A browser plugin also allows users to submit reports without accessing the
web interface. Another tool called CensMon is specifically designed for censor-
ship monitoring [16]. It is designed for continuous and automatic functioning,
and addresses the “needle in a haystack” problem of selecting targets worth
checking by feeding the system with URLs automatically harvested from a vari-
ety of online sources. The most complete and wide-ranging tool for censorship
detection is provided by the OONI project [10]. It is a Free Software project, part
of the wider Tor project with which it is tightly integrated. The main component
is a Python script offering a list of censorship detection tests to be performed
using Tor. In addition to platforms or tools for censorship detection and moni-
toring, previous work has performed many studies of various censoring systems
and techniques [8,18], often focused on the Great Chinese Firewall [5,15,19], or
investigate outage-like censorship events [2,7].

In this paper we discuss results obtained by means of a platform for cen-
sorship monitoring called UBICA, standing for User-based Internet Censorship
Analysis. Due to space constraints, we focus on the results and on the analyses
allowed by the platform, and describe the platform at a functional level, referring
to future works for a more in-depth discussion. UBICA adopts an integrated and
multi-step analysis and provides a simple but effective dashboard thanks to which
censorship events are easily spotted and described also in their temporal evolu-
tion. UBICA integrates an algorithm for detecting censorship based on Internet
measurements: if the test finds evidence of blocking, additional tests attempt to
identify possible mechanisms, including DNS blocking, IP blocking, No HTTP
Reply, RST (TCP-level tampering), Infinite HTTP Redirect, and Block page.
Using UBICA for several months on selected targets, we found evidence of sev-
eral censorship techniques, such as DNS tampering and content filtering. We
validated the accuracy of UBICA with the help of users in selected countries
and also show evidence of censorship in several countries (Italy, Pakistan, and
South Korea).

Monitoring Internet Censorship with UBICA 145

(a) Architecture diagram (b) Report interface (detail: global map)

Fig. 1. The UBICA platform

2 UBICA

The main objective of UBICA is to provide users with a censorship monitoring
system that presents both a report on world-wide Internet censorship status and
a quick view of censorship from users’ perspectives. To gather data, the plat-
form leverages a distributed deployment of probes belonging to different kinds
(router-based, headless client, GUI-client) that are orchestrated by a central
management server. The platform provides: (i) dynamically updated censorship
tests; (ii) dynamically updated targets to be verified; (iii) support for differ-
ent types of probing clients; (iv) automatic censorship detection and censorship
technique identification. Fig. 1a shows the UBICA architecture. An example of
monitoring report is shown in fig. 1b.

Monitoring Control Flow. The collection of evidences of censorship is per-
formed through active measurements from the probes, that periodically retrieve
from the Management Server a list of test requirements (eventually updating
the necessary targets lists and code). The target lists are build from up-to-date
reports from Herdict [1], a list of worldwide top accessed websites, and lists sug-
gested from in-country volunteers; they are distributed to probes based on the
country the probe is located at. After the evidence collection each probe packs
all the results in a report file and uploads it back to the Management Server.
Such server asynchronously parses the reports and inserts the relevant informa-
tion into an SQL Database. The Analysis Engine periodically processes data
in the database, performing the censorship detection analyses described in the
Experimental results section. The different types of measurements performed are
described in the following.

DNS Resolution. To collect clues about this phase, a name resolution is
elicited: given a fully qualified domain name, a DNS request of type A is issued
from the probe towards its default resolver. The tool used to issue the request is

146 G. Aceto et al.

nslookup. To distinguish among different DNS tampering techniques, the same
request is issued also towards a list of open resolvers, used as control resolvers
from inside the censored network. The list of open resolvers is the same as the
one used in [14].

TCP Reachability. To check for filtering triggered by IP:port, this test tries
to establish a TCP connection, starting a three-way handshake with a given
timeout. The tests takes as parameters targetIP:port and a timeout value in
seconds, that has been set by default to 15s.

HTTP Reachability. This test issues an HTTP GET request: the response (or
lack of it) from the server is collected, along with application level values. The
HTTP header field User-Agent is chosen randomly from a list of the most com-
mon user agent strings, according to [9]. The tool used to issue the request and
collect application level information is curl.The report from this test includes
several values, such as content type, HTTP response code, number of redirects,
etc., not reported for the sake of brevity.

3 Experimental Results

With the help of professional and personal contacts, a number of software probes
have been deployed in different countries worldwide, plus more than a dozen
BISmark routers [17] from an experimental deployment in Pakistan, one in Italy
and another one in USA. The distributed platform PlanetLab [4] has also been
employed, deploying UBICA probes in the most diverse set of countries avail-
able at the time of the experiments. The measurement campaigns have been
conducted using more than 200 probes, constituted by: 47 clients with GUI (run
by volunteers both in Italy and abroad); 188 headless clients (of which 19 run
by volunteers worldwide and 169 in PlanetLab nodes); and 16 BISmark home
routers run by volunteers (mostly in Pakistan). The target lists for each country
included Herdict reports for the country, a list of worldwide top accessed web-
sites, and URLs suggested by local volunteers. Measurements have been made
from 31 different countries, testing more than 16K different targets (about 15K
different hostnames) on a timespan of 4 months.

The application of the UBICA detection algorithm to data collected in this
experimental campaign and the time analysis of the related outcomes have tested
the functionalities of the platform. In the following we report an extract of the
most interesting results, concentrating on those for which we had a ground truth.

3.1 Censorship in Pakistan

In ONI country profiles, Pakistan (PK) is classified as applying “selective
filtering”, showing a consistent level of censorship and tight control on Inter-
net communications across the national border. The government body Pakistan
Telecommunication Authority (PTA) is in charge of the management of the Pak-
istan Internet Exchange, the exchange point connecting the country to the rest

Monitoring Internet Censorship with UBICA 147

of the Internet, and maintains a blacklist of URLs to be censored [14]. According
to the last report from The OpenNet Initiative, blocked resources belong to the
classes: religion, sex, and politics.

A General View. Our experimental campaigns performed through UBICA
probes in Pakistan evidenced that many resources were actually censored in
this country. The censorship detection algorithm reported that the techniques
used were mainly two: DNS injection and HTTP tampering. To understand
what happened and to confirm these results we analyzed the intermediate data,
comprising the results of the different tests performed by UBICA. We describe
the overall results and the details about the intermediate ones in the following.

As for DNS, 68% of the resources are identically resolved from inside PK
and USA (USA has been used for comparison purposes). Thus the algorithm
for censorship detection excluded the occurrence of DNS-based censorship for
the related resources. Therefore, for the remaining resources, the analysis has
exploited information about the size of the resource (the content size tests).
Similar analysis based on content size has been recently published in [11], but it
leverages the availability of a ground truth, i.e., a copy of the content known to
be uncensored, to compare with. Our algorithm, described hereafter, does not
need such knowledge.

Considering the size of the resource (webpage) that has been retrieved, and
averaging on all measurements from within a country, we expect to find a sig-
nificant difference between different countries if one of the two is censoring the
content by means of a “blocking page”. For each URL u, the average resource
size per country su,PK =

∑
uinPK size(u)

|PK| is calculated and divided by the corre-
sponding size averaged on all the other countries; as an example, we show the
ratio with USA in this case, but in the following reports the more general setup
is adopted. Considering the empirical CDF of such ratio (Fig. 2a), we can see
that while most of URLs show a comparable average size, there is an interesting
fraction of them whose size is much smaller in Pakistan than in USA. The empir-
ical probability mass function distribution reported in Fig. 2b clearly shows two
modes: one centered in 1 and a smaller one close to 0. The variability around
1 can be considered as due to differences in parts of the HTML code that are
updated in the dynamic generation of the resource. The relatively big variations
that lead to the mode close to zero hint to a different phenomenon, on which
we will focus to find evidence of censorship. To differentiate between the two
modes, we choose a threshold of 0.3, which is halfway between the two modes
minus a guard interval of 0.2 to account for variability across multiple countries
and coherently with the design principles of the detection algorithm. An excerpt
of some URLs whose size ratio falls below this threshold (in total 56, of which 28
are youtube videos) are reported in Tab. 1. We took one of the URLs selected
through the average content size ratio test, namely ninjaproxy.com (accounting
for 343Bytes in Pakistan and 14753Bytes from USA) and looked at the HTML
code received by the client in Pakistan. The inspection confirmed that the page
is completely different from the one retrieved from outside Pakistan (not shown
for space constraints). Indeed censorship has been enacted providing a webpage

148 G. Aceto et al.

Table 1. Selection of URLs whose content size ratio (size PK divided by size USA) is
smaller than 0.3; URL path is truncated for presentation constraints

URL size PK size USA Ratio
barenakedislam.wordpress.com 453.0 49095.63 0.01
ninjaproxy.com 342.45 14085.42 0.02
NinjaProxy.com 342.39 13154.06 0.03
www.similarsites.com 375.33 13701.44 0.03
www.youtube.com 4183.91 144177.2 0.03
www.freefacebookproxies.com 9041.17 241485.33 0.04
friendlyatheist.com 7881.34 205294.23 0.04
www.loonwatch.com 2661.73 65075.19 0.04
www.sodahead.com 3575.67 73969.7 0.05
www.hotspotshield.com 731.8 10789.91 0.07
face-of-muhammed.blogspot.com 6208.7 85342.93 0.07
www.foxnews.com 4705.53 63425.26 0.07
www.buzzfeed.com 22097.93 287001.77 0.08
www.freefacebookproxies.com 18245.93 233254.73 0.08
www.hotspotshield.com 870.1 10632.97 0.08
www.cagle.com/news/muhammad 3594.5 40974.12 0.09
www.smugbox.com/facebook/... 1883.93 21455.95 0.09
www.faithfreedom.org/Gallery/... 1438.93 15423.32 0.09
www.turbohide.com/ 896.91 8744.12 0.1
www.unblockbook.net 812.48 6348.47 0.13
www.thesecretninjaproxy.info 469.79 3416.17 0.14
www.kproxy.com. 647.47 4694.55 0.14
www.kproxy.com 666.39 4618.71 0.14
www.unblock-facebook.net 840.26 5783.3 0.15
www.blockedsiteaccess.com 1271.46 7780.19 0.16

(a) Empirical CDF (b) Empirical PDF

Fig. 2. Distribution of content size ratios (size PK divided by size USA) for each URL,
tested URLs are from [14] (468 URLs)

with iframe redirection to a blocking page. These results are consistent with [14],
and the analysis in the report by The Citizen Lab on this country. More details
on reports generated by UBICA are described in the following for specific targets
that better expose the detection algorithm inner working.

The Case of YouTube. One of the final results of the UBICA detection
algorithm is the summary of the censorship techniques detected for a given
target as accessed from different ISPs. This report shows an evaluation of cen-
sorship conditions and technologies in the considered country for the specified
resource. An example of blocked URL showing interesting differences among ISPs
is the streaming video platform - with content and comment sharing from users
- YouTube (www.youtube.com), integrated with the social network google plus
and the search engine google). The report that UBICA generated for the URL

www.youtube.com

Monitoring Internet Censorship with UBICA 149

 0

 20

 40

 60

 80

 100

Content available

Content plausible

TCP reachable

Default DNS plausible

Control DNS plausible

oc
cu

rr
en

ce
s

(%
)

Micronet Broadband (Pvt) Ltd.
National WiMAX/IMS environment

Pakistan Telecom Company Limited
Transworld Associates (Pvt.) Ltd.

WITRIBE PAKISTAN LIMITED

(a) Comparison of results for different
censorship techniques

 0

 20

 40

 60

 80

 100

Default DNS errors

Control DNS errors

Default DNS failing IPs

Control DNS failing IPs

Default DNS blocking IPs

Control DNS blocking IPs

Default DNS error pages

Control DNS error pages

oc
cu

rr
en

ce
s

(%
)

Micronet Broadband (Pvt) Ltd.
National WiMAX/IMS environment

Pakistan Telecom Company Limited
Transworld Associates (Pvt.) Ltd.

WITRIBE PAKISTAN LIMITED

(b) Detail of DNS analysis

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

C
D

F

size ratio

th
re

sh
ol

d

ITALY
PAKISTAN

UNITED STATES

(c) Empirical CDF of content size ratio

Fig. 3. Censorship in Pakistan: the case of YouTube

of a resource on YouTube, as tested from different ISPs in Pakistan, is shown in
form of a bar chart in Fig. 3a. The lack of bars in the second aggregate (with label
“Content plausible”) means that this resource is never reachable, even though
for all but one ISP, a resource is returned when performing an HTTP request
(first aggregate of bars, labeled “Content available”). We recall that “Content
plausible” is the percentage of URLs that passed the size ratio censorship test,
and thus present a content size comparable to the average on all countries. The
outcome of this test is represented in Fig. 3c as a CDF of the ratio of the size
of the downloaded content in one sample over the global average of such size.
The CDF generated for Pakistan is shown (in green) along with other countries
for comparison: Italy (cyan) and U.S.A. (in dark blue); the aggregation level is
country, thus considering samples for the whole nations regardless of the ISP.
The graph shows clearly that the size ratios in Pakistan are close to 0 (i.e. the
content size is very small compared with the global average) with relative fre-
quency 1 (always), while for both the other countries the occurrences fall close to
1 (thus same content size as the global average) with relative frequency greater
than 0.9 (for U.S.A. 0.91 for a size 1.23 times the average, for Italy 0.95 for a size

150 G. Aceto et al.

1.11 times the average). Comparing with the size ratio threshold (set to 0.3) we
notice that the test has correctly separated results in Pakistan from the ones in
the other countries. Moreover as the detected condition is above the coherence
threshold, the reported results are consistent over each country dataset.

TCP-level tests (Fig.3a, third aggregate, label “TCP reachable”) show almost
100% reachability for all the ISPs, thus either no censorship is enacted at this
layer, or DNS tampering precedes it. By considering the default DNS results for
two ISPs “Micronet Broadband (Pvt) Ltd.” and “Witribe Pakistan Ltd.” no result
yields a plausible IP address (i.e. neither a known block page or a failing IP, nor a
DNS error), similarly for “Pakistan Telecom Company Ltd.” only 11.7% is plausi-
ble. These ISPs clearly block the resource with DNS tampering. The DNS overall
results show equal values for the default and the control resolvers, thus the inferred
technique is DNS injection. The ISPs “Transworld Associates” (cyan in Fig. 3b)
and “National Wi-Max/IMS” (dark blue) do not perform DNS tampering on the
resource under analysis; yet for both the content size ratio analysis has detected
censorship: an HTTP tampering technique has been applied. To gather informa-
tion regarding the symptom the user gets in the censored networks, we leverage
the detailed DNS analysis, shown in Fig. 3b. It can be noted that, while two ISPs
(namely, “Micronet Broadband (Pvt) Ltd.” and “Witribe Pakistan Ltd.”) both
use DNS tampering to provide the user with an explicit block page, the ISP “Pak-
istan Telecom Company Ltd.” provides an address that will likely cause an error
(either at TCP-level or an HTTP-404), thus confounding the customer without
providing explicit notification of censorship.

From the comparison between the summarized view (Fig. 3a) and the DNS
analysis details (Fig. 3b) the behavior of one ISP (“Pakistan Telecom Com-
pany Ltd.”, in magenta) seems inconsistent with the expected symptom, as the
detected technique (“DNS injection - failing IP”) should have elicited an error,
and not the high percentages found both in TCP reachable and Content avail-
able bars (3a). By inspecting the collected evidence data it resulted that the
IP address returned by the ISP under analysis is 127.0.0.1, corresponding
to localhost, i.e. for each machine is the address of the machine itself (net-
work level loopback). While other “specialized” network address ranges [6] are
unlikely to be assigned to active hosts in the same LAN of the probe, localhost
for sure is, and the outcome of a TCP connection to the port 80 and possibly
an HTTP request depend on the presence of a service listening on that port,
and the response the service will return, if present. The inspection confirms the
verdict of the platform, that detected censorship and the actual technique DNS
injection regardless of the misleading symptoms (no errors at any level of the
stack - DNS, TCP, HTTP).

3.2 Censorship in Korea

The access to online content in South Korea is regulated by a government body,
Korea Communications Standards Commission (KCSC) nominated by the pres-
ident and in charge of the Ethics of Internet communications. The nation is

Monitoring Internet Censorship with UBICA 151

reported by ONI as applying “selective filtering” for Social topics and “perva-
sive filtering” for the Conflict/Security category.

Adult Websites. A category of websites that is forbidden per order of the
Ethical authority is the one showing adult content (classified among “obscenity
and perversion”). The detection algorithm has signaled censorship for URLs
such as hardsextube.com, pornhub.com and redtube.com, coherently with the
expectations. We will consider the case of hardsextube.com in detail, as the
other presents analogous results.

Considering the summarized view for the different tested techniques aggre-
gated by country (Fig. 4a), it becomes evident the peculiar response in Korea
with respect to the other tested countries. More specifically, the “content plau-
sible” percentage of tests, result of the analysis based on the size ratio of the
downloaded resource, is near 0% while other countries show near 100%, thus
limiting to Korea only the issue in accessing the original content. Also no other
censorship detection technique has been matched, thus excluding DNS Tamper-
ing and TCP-level filtering.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Content available

Content plausible

TCP reachable

Default DNS plausible

Control DNS plausible

oc
cu

rr
en

ce
s

(%
)

BRAZIL
ITALY

KOREA(Rep. of-)
UNITED KINGDOM

UNITED STATES

(a) Comparison of censorship evidences
results across countries

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

C
D

F

size ratio

th
re

sh
ol

d

UNITED KINGDOM
ITALY

KOREA(Rep. of-)
UNITED STATES

BRAZIL

(b) Empirical CDF of the content size
ratio

Fig. 4. Censorship in Korea: porn websites

To inspect in more detail the test that has detected censorship we refer to
Fig. 4b, where the Empirical Cumulative Distribution Function is drawn of the
ratio of each sample content size over the global average. It can be seen that
only results for Korea (in dark blue, close to the top border of the graph) are
almost completely (0.98%) below the detection threshold (empirically set to 0.3
as for the preceding analyses). All other countries have the almost totality of
samples beyond 1.1, with the exception for U.K., U.S.A., and Brazil, with small
fraction (less than 0.16) falling just short of the threshold.

These results have not raised a censorship verdict due to the small relative
occurrence (pre-filtering data cleansing ignores cases that represent less than
70% of the results). We have manually checked the content and found that

hardsextube.com
pornhub.com
redtube.com
hardsextube.com

152 G. Aceto et al.

corresponds to mobile versions of the requested website. The detection algorithm
based on the size ratio has proved robust to content adaptation [13] in this
scenario, but further research should be pursued in order to generalize this result.

To validate the censorship verdict, we have manually inspected the returned
resource.We have seen that the returned webpage, result of the HTTP tampering
technique, consists of a single JavaScript section whose effect when interpreted
by the browser is to redirect to the address http://warning.or.kr, the official
block page of the Korean authority for Internet censorship.

3.3 Censorship in Italy

Internet censorship in Italy is enforced mainly against websites proposing online
gaming, betting and copyright infringement. Another significant motivation for
censorship is the block of child pornography, but due to ethical issues in poten-
tially involving volunteers in police investigations the latter has not been tested.
Thanks to UBICA we could see that no centralized censoring infrastructure is
present, as censoring is detected for different ISPs starting and ending at differ-
ent times, and censoring techniques are sometimes different (in the vast majority
DNS hijacking, and case-specific TCP blocking).

The Italian Agency for State Monopolies (AAMS) 1 provides an official list
of domains2 that have been blocked because of infringement of the Italian laws
on online gaming and betting (both require a state license). Another -but non
official - source is provided by an independent researcher in his “observatory on
censorship” website3 where a list of censored domains together with the authority
that issued the censoring order and the date it was issued are reported.

In the case of blocks of websites proposing online gaming and betting the
block is explicit (by means of a blockpage), while for websites related to file
sharing the block is not motivated, resulting in a network error or a website
describing a generic error. The censoring technique used most across all the
tested ISPs is DNS hijacking, whose effect is graphically shown in Fig. 5 and
in which DNS resolution requested to the probe default resolver is compared
between probes from inside Italy (red lines) and USA (blue lines).

A few specific examples are described in the following.

Betting and Gaming. The website http://bet365.com will be used as a rep-
resentative of the betting and gaming website class. The results of censorship
analysis algorithms for the resource bet365.com is reported in Fig. 6a. We can
see that for the ISP “NGI” the percentage of DNS resolutions performed by
the probe default resolver is as little as 4.5%. This is reflected by an analogous
percentage of content of plausible size. From the same graph it can be seen
that also for “Wind Telecomunicazioni” and “Telecom Italia” providers there
1 Amministrazione Autonoma dei Monopoli di Stato, http://eee.aams.gov.it
2 http://www.aams.gov.it/sites/aams2008/files/documenti old/private/downloads/

documentazione/scommesse/Elenco siti inibiti/elenco siti inibiti.rtf
3 http://censura.bofh.it/elenchi.html

http://warning.or.kr
http://bet365.com
bet365.com
http://eee.aams.gov.it
http://www.aams.gov.it/sites/aams2008/files/documenti_old/private/downloads/documentazione/scommesse/Elenco_siti_inibiti/elenco_siti_inibiti.rtf
http://www.aams.gov.it/sites/aams2008/files/documenti_old/private/downloads/documentazione/scommesse/Elenco_siti_inibiti/elenco_siti_inibiti.rtf
http://censura.bofh.it/elenchi.html

Monitoring Internet Censorship with UBICA 153

Fig. 5. DNS hijacking in Italy: DNS resolution graph for betting websites. Ellipses con-
tain host names, rectangles contain IP addresses, arrow lines are resolutions requested
by probes to their default resolver: for dashed lines probes are inside Italy, while for
solid lines the probe is in USA.

are low percentages of plausible DNS resolution (31.2% and 46.1% respectively)
and similar percentages of plausible content size (23.8% and 46.1% respectively).
Only for the “Center for REsearch And Telecommunication Experimentation”
ISP, serviced by the GARR 4 , both the DNS resolutions and the downloaded
content size are always plausible, showing no censorship on this network for the
considered resource.

The verdict for the other ISPs is of censorship by means of DNS hijacking
towards an explicit blockpage, in fact by comparing the result between the default
DNS resolver and the control ones it can be noted that no control DNS is affected.

The reason for the specific kind of DNS hijacking (blockpage) is evident when
inspecting the results of the DNS analysis, reported as a bar chart in Fig. 6b. Here
we can see that for all the three ISPs implementing censorship, the resulting DNS
response belongs to the list of known blockpages. Thus the adopted censoring
technique has the effect of presenting the user with a block webpage explicitly
telling him/her of the censorship. From the Fig. 6b it can also be noted that
with the exception of “NGI Spa”, with 95.4%, no ISP gives percentages close to
the totality. The possible causes of this behavior can be: (i) a variability of the
censor behavior in the analysis time interval (beginning or ending of censorship);
(ii) heterogeneity of the probe environment at a granularity smaller than the ISP
level. The temporal evolution of the case under description is shown in Fig. 6c.
It can be seen that the oscillating results between reachability (upper line) and
unreachability is limited to the default resolvers (the first two entries in the key,
prepended with “DEF:”), while the control resolvers always report the domain
as uncensored. It can be noted that the default DNS server address - as reported
in the DNS reply - corresponds to localhost: a local caching application such
4 The “GARR” is the Italian Academic and Research telecommunication network.

154 G. Aceto et al.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Content available

Content plausible

TCP reachable

Default DNS plausible

Control DNS plausible

oc
cu

rr
en

ce
s

(%
)

C.Re.A.T.E.
NGI Spa

Telecom Italia S.p.a.
Wind Telecomunicazioni spa

(a) Comparison of censorship techniques
per different ISPs

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Default DNS errors

Control DNS errors

Default DNS failing IPs

Control DNS failing IPs

Default DNS blocking IPs

Control DNS blocking IPs

Default DNS error pages

Control DNS error pages

oc
cu

rr
en

ce
s

(%
)

C.Re.A.T.E.
NGI Spa

Telecom Italia S.p.a.
Wind Telecomunicazioni spa

(b) Detail of DNS analysis

unreach

reach

2013-10-05

2013-10-19

2013-11-02

2013-11-16

2013-11-30

2013-12-14

2013-12-28

DEF:127.0.1.1
DEF:127.0.0.1

8.8.8.8
8.26.56.26

209.244.0.3
208.67.222.222
198.153.192.40

(c) DNS temporal analysis

Fig. 6. Censorship in Italy: gaming and betting websites, the case of bet365.com

as dnsmasq5 is in function on the probe system, preventing the collection of the
local default resolver.

Streaming and File Sharing. The second class of websites censored in Italy is
constituted by repositories and index directories for file sharing and multimedia
streaming. For this class of websites UBICA has reported a much more diverse
scenario across the different ISPs; we will describe it in the following taking as
an example the index directory http://thepiratebay.sx. The overall behavior of
censorship techniques used by different Italian ISPs is summarized in Fig. 7a.
Besides the low percentages of plausible DNS responses for the default resolver,
low percentages are present also for control DNS servers. Moreover, differently
from the case of betting websites, also the ISP connected through the Academic
and Research network GARR presents low percentages (less than 50% for both
default and control resolvers, and close to 40% of content availability). Another

5 dnsmasq is an open source DNS cache and forwarder, installed by default on several
distribution of Linux, including OpenWrt and Ubuntu, main OSes for the UBICA
probes. Website: http://www.thekelleys.org.uk/dnsmasq/doc.html

bet365.com
http://thepiratebay.sx
http://www.thekelleys.org.uk/dnsmasq/doc.html

Monitoring Internet Censorship with UBICA 155

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Content available

Content plausible

TCP reachable

Default DNS plausible

Control DNS plausible

oc
cu

rr
en

ce
s

(%
)

C.Re.A.T.E.
NGI Spa

Telecom Italia S.p.a.
Wind Telecomunicazioni spa

(a) Comparison of results of different
techniques

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Default DNS errors

Control DNS errors

Default DNS failing IPs

Control DNS failing IPs

Default DNS blocking IPs

Control DNS blocking IPs

Default DNS error pages

Control DNS error pages

oc
cu

rr
en

ce
s

(%
)

C.Re.A.T.E.
NGI Spa

Telecom Italia S.p.a.
Wind Telecomunicazioni spa

(b) Detail of DNS analysis

unreach

reach

2013-10-05

2013-10-19

2013-11-02

2013-11-16

2013-11-30

2013-12-14

2013-12-28

DEF:127.0.1.1
DEF:127.0.0.1

8.8.8.8
8.26.56.26

209.244.0.3
208.67.222.222
198.153.192.40

(c) DNS temporal analysis for the “Wind”
ISP

Fig. 7. Censorship in Italy: file sharing websites, the case of thepiratebay.sx

notable difference is in the result for TCP reachability: while for the online
betting website this measure scored close to 100% reachability for 3 out of 4
ISP (and more than 75% for the remaining one), in the case of the file sharing
website 2 ISPs show less than 50% reachability at the TCP level. A more in-
depth inspection of the results of DNS tests, reported in Fig. 7b, shows a more
diverse condition with respect to the case of betting websites (Fig. 6b).

All the ISPs show different DNS errors, both for default and control DNS
servers. One ISP (“Wind Telecomunicazioni”) shows a 65.5% responses return-
ing a failing IP (127.0.0.1) for the default resolver, and 7.7% of NXDOMAIN
or TIMEOUT DNS errors. Different percentages of errors are shown by the other
ISPs, each characterized by the presence of multiple symptoms of DNS unreach-
ability in strong discordance with the case of betting websites (each ISP con-
centrated in one kind of DNS unreachability symptom). The temporal analysis
of the DNS measures, represented in the time series of Fig. 7c, helps explain-
ing such combination of results for the “Wind” ISP. In fact, similarly to the
case of betting websites (Fig. 6c), there is an oscillation between reachability

thepiratebay.sx

156 G. Aceto et al.

and unreachability for the default resolvers, spanned over the first half of the
timeline, again explainable with the lack of control over the default DNS set for
the probe. In this case, however, all the resolvers, no matter if default or con-
trol, report unreachability. The unreachability of thepiratebay.sx starting from
December 10th 2013 is verified by the probes in all the countries, signaling that
a server-side event has occurred. From manual check of external information (the
news section of the same website, freshly moved to another Top Level Domain:
http://thepiratebay.se/blog/234) we can validate the finding of the UBICA plat-
form: the old hostname has been dismissed on December 10th.

4 Conclusions

In this paper we have presented results obtained by means of UBICA (User-based
Internet Censorship Analysis), a crowdsourced platform for Internet censorship
monitoring. We have ran UBICA for several months on selected targets and
we have found evidences of several censorship techniques, such as DNS tamper-
ing and content filtering. In this paper we have shown practical results from
the following countries: Italy, Pakistan, and South Korea. In these countries we
obtained help from local users (and we really thank them) and we validated our
analysis using a ground truth built by manual inspection of evidences. We have
shown how the UBICA architecture and its main features are able to run an
integrated and multi-step analysis to provide a simple but effective dashboard
thanks to which censorship events are easily spotted and described also in their
temporal evolution. Being based on crowdsourced data and on repeated mea-
surements, the completeness and accuracy of the monitoring depend on user
participation: to foster community participation we have provided a lightweight
UBICA client for linux platforms and the online access to client reports, both
available at http://ubica.comics.unina.it.

References

1. Herdict Project. http://www.herdict.org
2. Anderson, C.: Dimming the internet: Detecting throttling as a mechanism of

censorship in iran. arXiv preprint arXiv:1306.4361
3. Chaabane, A., Chen, T., Cunche, M., Decristofaro, E., Friedman, A., Kaafar,

M.A., et al.: Censorship in the wild: Analyzing internet filtering in syria. In: ACM
SIGCOMM IMC (2014)

4. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M.,
Bowman, M.: Planetlab: an overlay testbed for broad-coverage services. ACM
SIGCOMM Computer Communication Review 33(3), 3–12 (2003)

5. Clayton, R.C., Murdoch, S.J., Watson, R.N.M.: Ignoring the great firewall of
China. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 20–35.
Springer, Heidelberg (2006)

6. Cotton, M., Vegoda, L., Bonica, R., Haberman, B.: Special-Purpose IP Address
Registries. RFC 6890 (Best Current Practice), April 2013

thepiratebay.sx
http://thepiratebay.se/blog/234
http://ubica.comics.unina.it
http://www.herdict.org
http://arxiv.org/abs/1306.4361

Monitoring Internet Censorship with UBICA 157

7. Dainotti, A., Squarcella, C., Aben, E., Claffy, K.C., Chiesa, M., Russo, M., Pescapé,
A.: Analysis of country-wide internet outages caused by censorship. In: SIGCOMM,
pp. 1–18. ACM (2011)

8. Dornseif, M.: Government mandated blocking of foreign web content (2003).
http://arxiv.org/abs/cs/0404005

9. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010)

10. Filastò, A., Appelbaum, J.: Ooni: Open observatory of network interference. In:
USENIX FOCI 2012 (2012)

11. Jones, B., Lee, T.W., Feamster, N., Gill, P.: Automated detection and fingerprint-
ing of censorship block pages. In: ACM SIGCOMM IMC (2014)

12. Khattak, S., Javed, M., Khayam, S.A., Uzmi, Z.A., Paxson, V.: A look at the
consequences of internet censorship through an ISP lens. In: ACM SIGCOMM
IMC (2014)

13. Md Fudzee, M.F., Abawajy, J.: A classification for content adaptation system. In:
iiWAS, pp. 426–429. ACM (2008)

14. Nabi, Z.: The anatomy of web censorship in pakistan. In: USENIX FOCI 2013
(2013)

15. Park, J.C., Crandall, J.R.: Empirical study of a national-scale distributed intrusion
detection system: Backbone-level filtering of HTML responses in China. In: ICDCS,
pp. 315–326. IEEE (2010)

16. Sfakianakis, A., Athanasopoulos, E., Ioannidis, S.: Censmon: A web censorship
monitor. In: USENIX FOCI 2011 (2011)

17. Sundaresan, S., De Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè,
A.: Measuring home broadband performance. CACM 55(11), 100–109 (2012)

18. Verkamp, J.P., Gupta, M.: Inferring Mechanics of Web Censorship Around the
World. In: FOCI. USENIX (2012)

19. Xu, X., Mao, Z.M., Halderman, J.A.: Internet censorship in china: where does
the filtering occur? In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS, vol. 6579,
pp. 133–142. Springer, Heidelberg (2011)

http://arxiv.org/abs/cs/0404005

How Dangerous Is Internet Scanning?

A Measurement Study of the Aftermath
of an Internet-Wide Scan

Elias Raftopoulos1(B), Eduard Glatz1, Xenofontas Dimitropoulos1,2,
and Alberto Dainotti3

1 ETH Zurich, Zürich, Switzerland
rilias@tik.ee.ethz.ch

2 FORTH-ICS, Crete, Greece
3 CAIDA, UC San Diego, San Diego, USA

Abstract. Internet scanning is a de facto background traffic noise that
is not clear if it poses a dangerous threat, i.e., what happens to scanned
hosts? what is the success rate of scanning? and whether the problem
is worth investing significant effort and money on mitigating it, e.g., by
filtering unwanted traffic? In this work we take a first look into Internet
scanning from the point of view of scan repliers using a unique combina-
tion of data sets which allows us to estimate how many hosts replied to
scanners and whether they were subsequently attacked in an actual net-
work. To contain our analysis, we focus on a specific interesting scanning
event that was orchestrated by the Sality botnet during February 2011
which scanned the entire IPv4 address space. By analyzing unsampled
NetFlow records, we show that 2 % of the scanned hosts actually replied
to the scanners. Moreover, by correlating scan replies with IDS alerts
from the same network, we show that significant exploitation activity
followed towards the repliers, which eventually led to an estimated 8 %
of compromised repliers. These observations suggest that Internet scan-
ning is dangerous: in our university network, at least 142 scanned hosts
were eventually compromised. World-wide, the number of hosts that were
compromised in response to the studied event is likely much larger.

Keywords: Botnet characterization · Network scanning · IDS · Netflow

1 Introduction

Botnets of up to millions of compromised computers are presently the most widely-
used cyberweapon for executing criminal activities, such as fraud, sensitive data
leakage, distributed denial-of-service attacks, and spam. Botnets engage into large-
scale scanning to enumerate vulnerable hosts for targeted criminal activities or
simply propagation [6,26]. A recent study showed that scanning accounts for 34-
67% of all connection attempts in an academic ISP [15]. Besides, recent advances
in scanning software make it possible to scan the entire IPv4 address space in
c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 158–172, 2015.
DOI: 10.1007/978-3-319-17172-2 11

A Measurement Study of the Aftermath of an Internet-Wide Scan 159

less than 45 minutes [10], simplifying further the execution of aggressive scanning
attacks. In spite of the prevalence of scanning, it is difficult to assess how dan-
gerous it is, i.e., is it simply an innocent background traffic noise or a dangerous
threat that is worth investing effort and money for blocking it?

In this work we take a novel look into Internet scanning from the point
of view of scan repliers. We combine unsampled Netflow records and IDS alerts
collected from a university network to assess the aftermath of a specific scanning
event. In particular, we focus on the “sipscan”, an Internet-wide scanning event
orchestrated from the Sality botnet over 12 days in February 2011 that was
analyzed by Dainotti et al. [9]. This event had several interesting characteristics:
1) it used a well-orchestrated stealth scanning strategy; 2) it originated from 3
million IP addresses; 3) it is believed that it scanned the entire Internet address
space; and 4) it targeted Session Initiation Protocol (SIP) [25] servers.

We show that this scanning event escalated into persistent exploitation
attempts towards the hosts that replied to the sipscan. We use our data to
assess the effectiveness of scanning in terms of scan repliers and hosts that were
eventually compromised. We find that 2% of the scanned IP addresses replied
and at least 8% of the repliers were eventually compromised. Besides, our anal-
ysis shows that scanners originated primarily from Eastern countries, while the
subsequent exploitation attempts originated from Western countries. This sug-
gests that information about scan repliers was communicated to the subsequent
attackers (likely through underground channels). Moreover, we observe 352,350
new scanner IP addresses and show that the sipscan was largely undetected by
the IDS used in the observed network, which only raised alerts for 4% of the
scan probes.

In summary, our work makes the following contributions:

• We conduct a first measurement study about Internet scanning focusing on
scan repliers and the aftermath of scanning.

• We show that significant exploitation activity followed a specific scanning
event and estimate the success rate.

• We provide new insights about Internet scanning and the sipscan: 1) we
observe a segregation of roles between scanners and exploiters; and 2) that
the sipscan originated from 352,350 new IP addresses.

The rest of the paper is structured as follows. We first discuss related research
in Section 2. In Section 3 we describe the used data-sets. Then, Section 4 presents
how unsampled NetFlow records were used to detect the sipscan and measure
scan repliers. Then, in Section 5 we characterize the exploitation activity that
followed based on our IDS data. Finally, Section 6 discusses the impact of false-
positive IDS alerts on our analysis and Section 7 concludes our paper.

160 E. Raftopoulos et al.

2 Related Work

A long line of measurement studies has analyzed botnets over the last years,
following their evolution from centralized IRC-based [7,8] to fully decentralized
C&C architectures [17]. The goal of these efforts has been to characterize bot-
net activities [24], analyze C&C communication methods [8], and estimate the
respective botnet size and geographical properties [27]. Their observations have
been used to fine tune network defences [14] and tailor novel detection mecha-
nisms [16].

One of the most integral aspects of botnet activity is scanning. Since scanning
is widespread [15] and regularly captured by monitoring infrastructures [5,7], it
is imperative for security analysts to have a measure regarding its severity and
impact on the victim population. However, few studies have focused on the prob-
ing characteristics of botnets. In [28] Paxson et al. analyzed traffic captured at
honeynets in order to study the statistical properties of 22 large-scale scanning
events. In a followup study, Li et al. [20] extracted botnet scan traffic from
honeynet data and used it to infer general properties of botnets, such as popula-
tion characteristics, blacklisting effectiveness, dynamics of new bot arrivals and
scanning strategies. Finally, Yegneswaran et al. [7] analyzed the source code of
a widely-used botnet malware, revealing the scanning capabilities of basic IRC
bots.

Most related to our work, Dainotti et al [9] discovered an interesting stealthy
scan of the entire IPv4 address space that was carried out by the Sality botnet
and analyzed the different phases of the event. However, this study was based
solely on packet traces collected at the UCSD network telescope and does not
provide insights regarding the effectiveness of scanning and its followup activity.
In our work, we detect the sipscan in a large ISP with live hosts, identify the set
of hosts that replied to scanners, and analyze the targeted exploitation activity
that followed. This way, we provide new insights about the escalation of this
event and the effectiveness of scanning in terms of turnover.

3 Monitoring Infrastructure and Data Collection

In this section, we describe the monitored network and the data we use in this
study. We collected our measurements from the network of the main campus of
the Swiss Federal Institute of Technology at Zurich (ETH Zurich). The ETH
Zurich network is large and diverse. During our data collection period, which
spanned 5 months (between the 1st January and the 31th of May 2011), we
observed in total 79,821 internal hosts. On these hosts, the IT policy grants full
freedom to users regarding the software and services they can use.

We select two data sources that provide complementary views into the studied
event. First, we collect unsampled NetFlow data from the only upstream provider
of ETH Zurich. Netflow produces summary records for all flows crossing the mon-
itoring point. However, Netflow lacks context, since it does not provide informa-
tion regarding the type of activity that triggered a flow. To fill this gap, we use

A Measurement Study of the Aftermath of an Internet-Wide Scan 161

IDS data collected from a Snort sensor, which captures and analyzes all traffic
crossing our infrastructure’s border router. Snort uses signature-based payload
matching to perform protocol analysis, revealing more information about the
type of activity that triggered an observed packet sequence. The two passive
monitoring data sets complement each other, since they capture flow summaries
for all traffic and finer (payload/header) details for packets that trigger IDS sig-
natures. A detailed description of our data collection methodology can be found
in our accompanying technical report [11].

4 Sipscan Detection

To extract sipscan traffic from NetFlow data, we rely on heuristics introduced
by Dainotti et al. [9], which are based on the analysis of the payload of sipscan
packets. However, because flow data do not include packet payload contents, we
adapted the extraction rules. We focus on the UDP part of sipscan traffic, which
is sufficient to detect sipscan activity and identify sipscan sources. Specifically,
we identify a sipscan flow as a single-packet one-way flow towards port 5060/udp
having a size in the range of 382 to 451 bytes.

30/1 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2

10K

20K

30K

40K

50K

Date

U
ni

qu
e

S
ou

rc
e

IP
s

(1
hr

 b
in

s)

10

20

30

40

50

U
ni

qu
e

S
ou

rc
e

IP
s

(1
hr

 b
in

s)

sipscan sources
sipscan repliers

(a) ETH Zurich (NetFlow trace)

30/1 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2
0

50K

100K

150K

200K

250K

Date

U
ni

qu
e

S
ou

rc
e

IP
s

(1
hr

 b
in

s)

(b) UCSD (full packets trace)

Fig. 1. Number of IP addresses per hour sourcing or replying to scan flows in ETH
Zurich and in the UCSD network telescope

In Figure 1a, we highlight how the host population sourcing attacks towards
the SIP service port evolved over 16.7 days (from 31/01/2011 to 16/02/2011). In
Figure 1b, we illustrate how the same event was captured by the UCSD network
telescope. Note that Dainotti et al. [9] used full packet traces collected at the
network telescope in order to estimate the scanning population. The similarity
in these two patterns, indicates that our heuristic adapted to Netflow records,
is able to capture the same phenomenon as seen on our network. We observe
two major sipscan outbreaks in terms of participating attackers along with a
minor fraction of hosts engaged continuously in SIP scanning. The first outbreak
starts at 2011.01.31 21:30 UTC and lasts until approximately 2011.02.06 22:40,
while the second outbreak starts at 2011.02.11 14:10 and lasts until 2011.02.12

162 E. Raftopoulos et al.

15:00 UTC. In total, 952,652 scanners participated in the scan. A significant
number (352,350) of hosts targeting our infrastructure were not observed in the
population of Sality scanners detected by the UCSD network telescope, which
were 2,954,108 [9]. This finding indicates that the size (expressed in terms of
source IP addresses) of the botnet was at least 11.9% larger than the lower
bound estimated in the previous work. At the victim side, 77,158 hosts within
ETH Zurich were scanned at least once during the 16.7 days period, meaning
that the coverage of the scan in our infrastructure was 96.6%. The scan was
largely stealthy, in terms of generated alerts from the IDS, since only 4% of the
respective probing flows triggered a scan-related IDS signature.

In contrast to [9], our data set allows us to identify those target hosts that
reply to the sender of a sipscan flow. For this purpose, we search for two-way flows
matching a relaxed filter (i.e., requiring port 5060/UDP only). Additionally, we
look at the number of attacker-victim host pairs where a sipscan flow is answered
with an ICMP flow. For this answer type, we see a weak correlation of ICMP
flow counts with the two sipscan outbreaks. On the other hand, when looking
at host pairs where we have biflows, we observe a strong correlation of biflow
counts with the sipscan outbreaks indicating that sipscan attacks significantly
result in bidirectional communication between attacker and victim. In Figure 1a
we present the number of unique internal IP source addresses responding to the
sipscan. In total, we identify 1,748 sipscan repliers, whereas during the scan we
find 3.8 new unique internal IPs responding to the scan every hour. For 80.2%
of the repliers we detected a TCP reply originating from the respective host,
whereas for 8.3% of the repliers, the sipscan was answered with an ICMP flow.
0.2% of the replies involved both a TCP and an ICMP flow, while the remaining
11.5% used neither TCP or ICMP.

5 Aftermath of the Sipscan

5.1 Inbound Exploitation Attempts

In this section, we study the impact of the sipscan on the target host population
within ETH Zurich. We first investigate if scanning was a precursor of subsequent
exploitation attempts targeting hosts that replied to the scanners. Recall that
our IDS data cover 5 months, including one month before the beginning of the
sipscan (31/01/2011) and approximately 3.5 months after its end (16/02/2011).

In Figure 2a, we show how the daily number of exploitation alerts per target
host triggered by inbound traffic changed after the sipscan. We consider alerts
of the VRT rule sets exploit.rules, exploit-kit.rules, and indicator-shellcode.rules
and of the ET rule set emerging-exploit.rules. These rule sets [11] are tailored to
detect exploit activity, including buffer overflow attacks, remote command exe-
cution, brute force authorization and privilege escalation attempts. In Figure 2a,
we also show the daily number of exploitation alerts per target host for the base-
line, i.e., the ETH Zurich hosts that did not reply to the scanners according to
our data. The baseline accounts for 78,073 hosts, whereas the number of sipscan

A Measurement Study of the Aftermath of an Internet-Wide Scan 163

(a) Inbound exploitation alerts (b) New offending IPs

Fig. 2. Daily number of inbound exploitation alerts and new offending IPs per target
host over a period of 5 months. The shaded region marks the duration of the sipscan.

repliers is 1,748. In the pre-sipscan period sipscan repliers were involved on aver-
age in 122 exploitation alerts per day. During the sipscan period we see that this
number increases to 842 alerts per day, whereas after the sipscan it remains high
at 931 alerts per day. In sharp contrast, the inbound exploitation activity associ-
ated with the baseline remains low after the sipscan. On average, each host is a
target to 1.2 alerts per day, which is a baseline noise caused by automated threats
attempting to propagate and false alerts. The respective noise level for the sipscan
repliers in the pre-sipscan period is 0.4 alerts per day. After the sipscan, this num-
ber increases to 3.7 alerts per day. The high number of exploitation alerts towards
sipscan repliers persists even 4 months after the end of the sipscan, although it is
more intense during the first two months (from 31/1 to 28/2), when 68% of the
total exploitation alerts are triggered. Out of the 1,748 sipscan repliers, we observe
that 852 were involved in inbound exploitation alerts.

Next, we study whether the observed increase in exploitation activity comes
from new offenders. Figure 2b illustrates the daily number of new offending IP
addresses per target host for sipscan repliers and for the baseline. We report IP
addresses that appear in exploitation alerts, however we consider an address new
only when it has not previously appeared in the entire alert trace. A baseline
host records a new external attacker approximately every four days consistently
throughout the 5-month period. However, this number increases sharply for sip-
scan repliers during the sipscan, when each victim is attacked on average by 1.4
new IP addresses per day. Moreover, we investigate whether these IP addresses
are known blacklisted hosts using four public blacklists [1–4]. Figure 2b shows
that only 7% of the new offenders were already blacklisted, while this number
drops to almost 0 before and after the sipscan period.

In addition, we explore how persistent the attacking hosts are in terms of
generated exploitation alerts, and examine whether the attackers targeting the
sipscan repliers are more persistent compared to the ones targeting the baseline.
In Figure 3a, we compare the average number of exploitation alerts per target
for sipscan repliers and baseline attackers, respectively. We see that the former
group tends to be more persistent triggering in the median case 4 exploitation
alerts per target, whereas the same number for the latter group is 2 alerts. The

164 E. Raftopoulos et al.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
Exploitation Persistence

Number of Exploitation Alerts Per Target

C
C

D
F

Attackers targeting SIP−scan repliers
Attackers targeting ETH Baseline

(a) Persistence of exploitation attackers (b) Exploitation attempt alert volume

Fig. 3. Persistence of exploitation attackers and alert volume for exploitation attempts
targeting SIP related ports

Table 1. Top 10 countries used by the sipscanners compared to the respective countries
for exploitation attack originators. Geo location data for sipscan sources and exploita-
tion attack originators was obtained using the MaxMind GeoIP Lite Database[21].

sipscanners CAIDA sipscanners ETH Exploiters ETH

Rank % Country % Country % Country

1 12.55 Turkey 10.06 Indonesia 27.11 United States
2 12.54 India 9.72 Turkey 12.70 Canada
3 8.64 Brazil 7.32 China 9.90 China
4 7.23 Egypt 6.86 Brazil 7.01 Switzerland
5 5.77 Indonesia 6.52 Egypt 4.98 Germany
6 5.59 Romania 5.94 India 4.78 Taiwan
7 5.58 Russian Federation 4.80 Thailand 4.31 Japan
8 5.36 Vietnam 4.06 Philippines 3.31 India
9 5.10 Thailand 3.71 Russian Federation 2.95 Russian Federation
10 3.01 Ukraine 3.20 Romania 2.88 Brazil

increased persistence towards sipscan repliers is more prominent in the tails of
the distributions. We see that the top 10% most active attackers towards sipscan
repliers launch up to 73 alerts on average per target, whereas the respective
number for the baseline is only 21 alerts.

We also investigate the similarity between the IP addresses of scanners
(extracted from NetFlow) and of exploiters (extracted from Snort alerts towards
sipscan repliers). Surprisingly, we observe that out of 6,676 exploiter and 1.3
million scanner IP addresses, only 17 are in common. This suggests that there
is a clear separation between scanners and bots wielded to exploit target hosts.
In Table 1, we compare the geographical distribution of the scanners detected
in our infrastructure and in the UCSD network telescope [9] with the exploiters
targeting the ETH Zurich sipscan repliers. The geographical distribution of scan-
ners seen in the UCSD network telescope and in ETH Zurich is very similar with
the exception of China. In our data set China is a significant source of SIP scan-
ning accounting for 7.32% of the total scanners population. On the UCSD data
set China is ranked 27th. More importantly, the geographical distribution of
exploiters is particularly interesting, since it is dominated by Western countries

A Measurement Study of the Aftermath of an Internet-Wide Scan 165

and United States in particular, which is the most strongly represented country
with 27.11% of the exploiters. In contrast, the geographical distribution of scan-
ners is dominated by Eastern countries. US is not sourcing sipscanning, which is
remarkable since the analysis of the botnet has shown a strong presence in the
United States [13]. This observation shows that information about scan repliers
was communicated from scanning to attacking bots through unknown channels.

Finally, we examine the exploitation activity on port numbers related to SIP.
Figure 3b shows the number of exploitation alerts targeting sipscan repliers on
ports 5060, 5061, 5070 and 80. Ports 5060, 5061 and 5070 are used by SIP for
control and data traffic. Moreover, the sipscan binary attempts to open a con-
nection and gain administration privileges on port 80, where an HTTP server
may provide remote administration to SIP servers [12]. Figure 3b shows a sharp
increase of exploitation activity targeting SIP ports during and after the sipscan.
Before, the sipscan we observe on a daily basis less than 12 exploitation alerts tar-
geting SIP ports and 3 alerts targeting port 80. During the sipscan period, these
numbers jump to 135 and 27, respectively, exhibiting approximately a ten-fold
increase. Moreover, during the sipscan period 22% of all inbound exploitation
alerts are on SIP ports. In the post-scan period we observe that these values
drop, but still remain significant compared to the pre-sipscan period. Specifi-
cally, the daily number of exploitation alerts targeting SIP ports and port 80 are
5 and 21, respectively.

To summarize the key findings of this section, we first observe a steep increase
in exploitation alerts against sipscan repliers right after the sipscan, which is
associated only with sipscan repliers and not with other hosts in the monitored
infrastructure. Second, we observe that the attackers associated with the increase
appear for the first time during the sipscan and were not active before. Third, we
observe a sharp increase in exploitation alerts towards SIP ports and show that
these exploitation attempts happen in close temporal proximity to the sipscan.
We believe these findings constitute sufficient evidence that the sipscan was
the precursor of a subsequent large-scale exploitation activity targeting sipscan
repliers.

5.2 Sality Alert Classification and Outbound Exploitation Activity

In Sections 4 and 5.1, we analyzed the inbound scanning and exploitation activity
towards the monitored network. In this section, we shift our attention to IDS
alerts raised by outbound traffic originated by sipscan repliers, and analyze the
new behavioral patterns that emerge. A comprehensive overview of the activity
exhibited by the Sality bot based on the forensics investigation of compromised
hosts can be found in our technical report [11].

In Table 2, we list the Snort identifiers (SIDs) and their official short descrip-
tion for relevant signatures that are triggered in our data. To compile the list, we
manually analyzed the outbound alerts generated by sipscan repliers. We found
the new types of alerts that emerged in the post-scan period and inspected their
signatures in order to identify specific behaviors. We group signatures into four
categories shown in Table 2.

166 E. Raftopoulos et al.

Table 2. Snort signatures related to Sality bot lifecycle

SID Signature Description
[C&C Communication] Communication with botnet controller.

2404138:2404156 ET DROP Known Bot C&C Server Traffic TCP/UDP
2000348 ET ATTACK RESPONSE IRC - Channel JOIN on non-std port
2000334 ET P2P BitTorrent peer sync
2009971 ET P2P eMule KAD Network Hello Request
2008581 ET P2p BitTorrent DHT ping Outbound
2010142 ET P2P Vuze BT UDP Connection Outbound
2008584 ET P2P BitTorrent DHT announce peers request

2181 P2P BitTorrent transfer
[Exfiltration] Possible leakage of sensitive user data.

5 SENSITIVE-DATA Email Addresses Outbound
2006380 ET Policy Outgoing Basic Auth Base64 HTTP Password detected unencrypted
2010784 ET CHAT Facebook Chat POST Outbound
2000347 ET ATTACK RESPONSE IRC - Private message on non-std port

1463 CHAT IRC message Outbound
[Propagation] Attempted infection of vulnerable hosts.

2007695,2008070 ET User-Agent Malware overflow attempt
4060 POLICY RDP attempted administrator connection request

2006546 ET SCAN LibSSH Based SSH Connection - BruteForce Attack
2002383 ET SCAN Potential FTP Brute-Force attempt

3817 TFTP GET transfer mode overflow attempt
2010643 ET SCAN Multiple FTP Administrator Login Attempts- Brute Force Attempt
2001972 ET SCAN Behavioral Unusually fast Terminal Server Traffic, Potential Scan or Infection
2001569 ET SCAN Behavioral Unusual Port 445 traffic

[Egg Download] Possible download of malicious executable.
2009897 ET MALWARE Possible Windows Executable sent when remote host claims to send a Text File
19270 POLICY attempted download of a PDF with embedded Javascript
15306 WEB-CLIENT Portable Executable binary file transfer

2003546 ET USER Agents Suspicious User agent Downloader
2007577 ET TROJAN General Downloader Checkin URL
2012648 ET Policy Dropbox Client Downloading Executable
2009301 ET Policy Megaupload file download service access

Signatures in the group C&C Communication detect the activity triggered
by a bot when calling its controller for instructions. In the case of the HTTP
version of the Sality bot, the signatures in the SID range (2404138:2404156) are
triggered when a set of known blacklisted C&C servers are contacted, whereas
the signature (2000348) detects the setup of an IRC channel, which is used
by the bot and the controller to communicate. The remaining alerts are related
to the P2P version of the bot and are triggered when the bot is either attempting
to join the P2P network, instantiating a new P2P connection, or fetching the
latest peers list.

Signatures in the group Exfiltration are tailored to detect the exfiltration of
confidential data. The SIDs (5,2006380) are triggered when passwords or email
addresses are sent from the intranet unencrypted. The signature (2010784) is
triggered when the bot is attempting to leak sensitive information using Face-
book’s POST mechanism. This alert should be expected to generate a significant
amount of false positives, since it is also triggered when a user sends a legiti-
mate Facebook message. However, a sudden sharp increase in the amount of
Facebook POST operations could signify a malicious activity. The signatures
with SIDs (2000347,1463) are triggered when information is exfiltrated using an
IRC channel.

A Measurement Study of the Aftermath of an Internet-Wide Scan 167

Signatures in the group Propagation are generated when the bot is attempt-
ing to infect exposed vulnerable hosts. The main targeted vulnerabilities are the
MS-LSASS buffer overflow and the MS-WebDav vulnerability related to services
used for accessing remote network shares. The set of signatures shown in Table 2
are fine-tuned to detect brute force privilege escalation attacks (4060,2006546,
2002383,2010643), buffer overflow exploitation attempts (2007695,2008070,
3817), and targeted scanning on these services (2001972 ,2001569).

(a) C&C alerts (b) Egg Download alerts

(c) Propagation alerts (d) Exfiltration alerts

Fig. 4. Daily number of different types of alerts per host for sipscan repliers and for
baseline hosts over a period of 5 months

Finally, signatures in the group Egg Download correspond to attempts made
by the bot to fetch a malicious binary from a remote domain. The down-
loaded executable can be either an update of Sality’s own code or can cor-
respond to a new malware pushed to the infected population. Signatures with
SIDs (15306,2003546,2007577) detect the activity of Sality’s downloader module
when attempting to check a suspicious URL or when a binary download is initi-
ated. Sality tries to obfuscate the downloaded binary by hiding it in seemingly
legitimate files, such as Text and PDF documents. This activity is detected by
signatures with SIDs (2009897,19270). The obfuscation is used to evade detec-
tion by cloud providers, such as Dropbox and Megaupload, which are exploited
in order to host the malicious content. Signatures with SIDs (2012648,2009301)
detect the download of executables from these sites.

Figure 4a shows the average number of C&C alerts triggered by sipscan
repliers and baseline hosts. For sipscan repliers, we differentiate between IRC

168 E. Raftopoulos et al.

and P2P C&C alerts, whereas for the baseline we include both types of alerts.
After the sipscan, we see a sharp increase in the IRC C&C alerts, which indicates
that hosts are attempting to contact known malicious IRC servers operating as
controllers. This behavior continues for approximately two months, during which
we see daily on average 2.4 C&C alerts per sipscan replier. However, on April 11
(day 111) there is a clear shift in the pattern of triggered signatures: the volume
of IRC alerts suddenly drops, while the volume of P2P alerts rises. This signifies
a likely upgrade in the mode of C&C communication of the Sality botnet.

Figure 4b illustrates the daily number of Egg Download alerts per sipscan
replier and baseline host. After the sipscan, we observe 4 malware downloading
spikes, during which the daily alert count ranges from 1.6 to 3.4 per sipscan
replier. The spike that occurs on April 11 (day 111), seems to be associated with
the shift in the communication method used to contact the controller shown in
Figure 4a. We believe that during that event the Sality botnet pushed a major
update to the infected population, upgrading itself from the centralized HTTP
to the fully decentralized P2P version.

In Figure 4c, we show the daily number of Propagation alerts per local host
for sipscan repliers and baseline hosts. We see that after the sipscan the number
of outbound exploitation attempts originating from the sipscan repliers increases
drastically, exhibiting an average daily value of 1.2 alerts per host compared to
only 0.21 alerts per baseline host. The most dominant alerts of this group are
the privilege escalation attempts with SIDs (4060,2006546,2002383,2010643)
accounting for 72% of the observed activity.

Finally, Figure 4d illustrates the daily number of information leakage alerts
per local host for sipscan repliers and baseline hosts. Again we see a sharp
increase in the number of exfiltration alerts for sipscan repliers in the post-sipscan
period, where the daily average increases from 4.7 to 18.2 alerts per host. The
triggered alerts are dominated by the signature ET CHAT Facebook Chat POST
Outbound, which accounts for 83% of all alerts. However, this signature is also
triggered by legitimate user activity and may introduce a significant number of
false positives. This is reflected in the high baseline in the pre-sipscan period,
which accounts on average for 4.7 alerts per host. Although the baseline for this
alert group is high, we can still see a clear increase in the post-sipscan period
when its alert volume quadruples. Summarizing the key finding, we discovered
major changes in the alert patterns of sipscan repliers that correlate with the
behavior of the Sality bot.

5.3 Sality-Bot Infections

In this section, we build a heuristic to identify this behavioral shift and extract
likely Sality infections. We use our heuristic to conservatively estimate a lower
bound on the success rate of the sipscan in terms of infected hosts. Note, that we
do not have the goal to build a general purpose detector, but rather a systematic
way to identify infected sipscan repliers in the monitored network.

Our heuristic is summarized in Algorithm 1. We focus on sipscan repliers
that were subsequently attacked. Then we find repliers that exhibit a persistent

A Measurement Study of the Aftermath of an Internet-Wide Scan 169

increase in outbound exploitation activity for the four signature classes listed
in Table 2, while their respective activity in the pre-sipscan period is low. In
particular, for the four classes in Table 2, we first compute the number of alerts
per day each internal host generates. Our heuristic then finds and keeps hosts
that trigger in the pre-sipscan period fewer alerts per day than the corresponding
baseline of that day plus a tolerance of 1.5× the inter-quartile range of the
baseline. If a host has more alerts per day even for a single day, then it is
discarded from further consideration because it is either already infected or it
generates a large number of false positives. Second, our heuristic makes the same
comparison in the post-sipscan period. If the daily alert count is consistently
above the tolerance threshold, then it constitutes an indication of compromise
activity. To assess whether this increase persists, we count the number of daily
bins where it is above the threshold and tolerate only 5% of the post-sipscan
bins where this condition is not met. We consider only the bins in which a host
has generated at least one alert of any type.

Input:
BS

T : mean count of S type alerts generated by Baseline hosts on day T

IST : IQR of S type alerts generated by Baseline hosts on day T

RS
T : mean count of S type alerts generated by sipscan repliers on day T

S={CnC Communication, Reporting, Propagation, Egg Download}
Result: Returns true if the examined host is infected, false otherwise.
foreach alert type S do

BelowThreshCount = 0;
for Ti = 1:Tmax do

if isHostActiveAt(Ti) eq false then next;;

SignificanceThresh = BS
Ti

+ 1.5 ∗ ISTi
;

if Ti ≤ Tscan then
if RS

Ti
> SignificanceThresh then

return false;
end

else
if RS

Ti
≤ SignificanceThresh then

BelowThreshCount += 1;
end

end
if BelowThreshCount/(Tmax − Tscan) > 0.05 then

return false;
end

end
end
return true;

Algorithm 1. Pseudo-code for identifying Sality-bot infections

Our heuristic takes a conservative approach by introducing several conditions
to make a Sality infection assessment. It is possible, however, that a Sality bot
exhibits some of the post-sipscan behaviors presented in Section 5.2, but not all.
For example, some examined hosts show persistent signs of C&C communication
and attempts to propagate, but do not attempt to leak data. Others attempt to
exfiltrate data, but do not frequently visit malicious domains to fetch malware.
By tailoring our heuristic to only make an assessment if all alert types in the post-

170 E. Raftopoulos et al.

sipscan period exhibit a persistent increase, we attempt to minimize possible
false positives even if we introduce a number of false negatives. This way, we
believe we can estimate a lower bound of the Sality infections that occurred in
our infrastructure.

Our heuristic identified a total of 142 Sality infections in our IDS data set. In
the first stage of reconnaissance, 77,158 exposed ETH Zurich IPs were scanned.
Out of these only 1,748 (2%) hosts replied to the scanners. Almost half of the sip-
scan repliers, specifically 48%, were subsequently the targets of inbound exploita-
tion attacks. Based on our heuristic we identified that 142 hosts showed persistent
signs of infection during the post-sipscan period. Therefore, the sipscan turnover,
i.e. the percentage of hosts that were infected out of the sipscan repliers, was 8%.

6 Discussion about IDS False Positives

The quality of IDS alerts we study in Section 5 heavily relies on the accuracy
of the inferences made by the Snort sensor deployed in our infrastructure. Snort
has been criticized for generating an excessive number of false positives, often
exceeding 99% [18,19]. Such high false positive rates can introduce significant
bias in our measurements, resulting in skewed results. However, in this work
we have focused on signatures which, based on our previous work [22,23], were
shown to be reliable, generating only a small number of false positives. Specifi-
cally, in [22] we performed a thorough evaluation of the alerts being triggered by
Snort in our infrastructure and identified signatures that generate a large num-
ber of false positives. These alerts have been excluded from the current work.
Moreover, in [23] we introduced a complexity criterion to evaluate the effective-
ness of a Snort signature in terms of correctly identifying malicious activity. The
alerts analyzed in Section 5 are triggered by highly complex signatures, which
our analysis in [23] has shown to be more reliable, generating a low number of
false positives.

7 Conclusions

In this work, we analyzed the aftermath of an Internet-wide scanning event [9]
in a university network focusing on scan repliers. Using a unique combination of
unsampled Netflow records and IDS alerts we found that the sipscan was followed
by significant exploitation activity that led to at least 142 infected hosts in the
studied network and likely many more worldwide. The effectiveness of scanning
in terms of targeted hosts that replied and repliers that were eventually compro-
mised was 2% and at least 8%, respectively. We also observed a segregation of
roles between scanners and exploiters, which originated from different geograph-
ical locations. We therefore conclude that Internet scanning is dangerous as it
leads to many compromised hosts. Understanding how these observations differ
across networks and scanning events is an interesting subject for future research.

A Measurement Study of the Aftermath of an Internet-Wide Scan 171

References

1. Anonymous postmasters early warning system. http://www.apews.org
2. Dshield: Internet storm center (2014). http://www.dshield.org/
3. Shadowserver foundation (2014). https://www.shadowserver.org/
4. Threatexpert - automated threat analysis (2014). http://www.threatexpert.com/
5. Bacher, P., Holz, T., Kotter, M., Wicherski, G.: Know your enemy: Tracking bot-

nets (2008). http://www.honeynet.org/papers/bots
6. Bailey, M., Cooke, E., Jahanian, F., Xu, Y., Karir, M.: A survey of botnet tech-

nology and defenses. In: CATCH 2009, Washington, District of Columbia, USA
(2009)

7. Barford, P., Yegneswaran, V.: An inside look at botnets. In: Malware Detection,
Advances in Information Security, vol. 27 (2007)

8. Cooke, E., Jahanian, F., Mcpherson, D.: The zombie roundup: Understanding,
detecting, and disrupting botnets, pp. 39–44 (2005)

9. Dainotti, A., King, A., Claffy, K., Papale, F., Pescap, A.: Analysis of a “/0” stealth
scan from a botnet. In: ACM IMC 2012 (2012)

10. Durumeric,Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its securityapplications. In: USENIX 2013 (2013)

11. Dimitropoulos, X., Raftopoulos, E., Glatz, E., Dainotti, A.: The days after a “/0”
scan from the sality botnet (2014), Technical Report 358. http://www.csg.ethz.ch/
people/rilias/publications/Sality RaDi14.pdf

12. Falliere, N.: A distributed cracker for voip (2011)
13. Falliere, N.: Sality: Story of a peer-to-peer viral network (2011)
14. Freiling, F.C., Holz, T., Wicherski, G.: Botnet Tracking: Exploring a Root-Cause

Methodology to Prevent Distributed Denial-of-Service Attacks (2005)
15. Glatz, E., Dimitropoulos, X.: Classifying internet one-way traffic. In: Proc. of the

2012 ACM Conf. on Internet Measurement. ACM, NY (2012)
16. Gu, G., Junjie, Z., Lee, W.: BotSniffer: detecting botnet command and control

channels in network traffic. In: NSDI (2008)
17. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and miti-

gation of peer-to-peer-based botnets: a casestudy on storm worm. In: LEET 2008
(2008)

18. Julisch, K., Dacier, M.: Mining intrusion detection alarms for actionable knowledge.
In: The 8th ACM Conference on Knowledge Discovery and Data Mining

19. Kruegel, C., Robertson, W.: Alert verification - determining the success of intrusion
attempts. In: DIMVA (2004)

20. Li, Z., Goyal, A., Chen, Y., Paxson, V.: Towards situational awareness of large-scale
botnet probing events. Transactions on Information Forensics and Security

21. MaxMind Lite. http://dev.maxmind.com/geoip/legacy/geolite/
22. Raftopoulos, E., Dimitropoulos, X.: Detecting, validating and characterizing com-

puter infections in the wild. In: Proceedings of IMC (2011)
23. Raftopoulos, E., Dimitropoulos, X.: A quality metric for ids signatures: In the wild

the size matters. EURASIP Journal on Information Security
24. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to

understanding the botnet phenomenon. In: Proc. of the ACM IMC 2006 Conference
(2006)

25. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E.: Sip: Session initiation protocol (2002)

http://www.apews.org
http://www.dshield.org/
https://www.shadowserver.org/
http://www.threatexpert.com/
http://www.honeynet.org/papers/bots
http://www.csg.ethz.ch/people/rilias/publications/Sality_RaDi14.pdf
http://www.csg.ethz.ch/people/rilias/publications/Sality_RaDi14.pdf
http://dev.maxmind.com/geoip/legacy/geolite/

172 E. Raftopoulos et al.

26. Shin, S., Lin, R., Gu, G.: Cross-analysis of botnet victims: new insights and impli-
cations. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol.
6961, pp. 242–261. Springer, Heidelberg (2011)

27. Stone-gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,
R., Kruegel, C., Vigna, G.: Your botnet is my botnet: Analysis of a botnet takeover

28. Yegneswaran, V., Barford, P., Paxson, V.: Using honeynets for internet situational
awareness. In: HotNets IV (2005)

Investigating the Nature of Routing Anomalies:
Closing in on Subprefix Hijacking Attacks

Johann Schlamp1(B), Ralph Holz2, Oliver Gasser1, Andreas Korsten1,
Quentin Jacquemart3, Georg Carle1, and Ernst W. Biersack3

1 Technische Universität München, München, Germany
{schlamp,korsten,carle,gasser}@net.in.tum.de

2 NICTA, Sydney, Australia
Ralph.Holz@nicta.com.au

3 Eurecom Sophia Antipolis, Biot, France
{jacquemart,biersack}@eurecom.fr

Abstract. The detection of BGP hijacking attacks has been at the focus
of research for more than a decade. However, state-of-the-art techniques
fall short of detecting subprefix hijacking, where smaller parts of a vic-
tim’s networks are targeted by an attacker. The analysis of correspond-
ing routing anomalies, so-called subMOAS events, is tedious since these
anomalies are numerous and mostly have legitimate reasons.

In this paper, we propose, implement and test a new approach to
investigate subMOAS events. Our method combines input from several
data sources that can reliably disprove malicious intent. First, we make
use of the database of a Internet Routing Registry (IRR) to derive busi-
ness relations between the parties involved in a subMOAS event. Second,
we use a topology-based reasoning algorithm to rule out subMOAS events
caused by legitimate network setups. Finally, we use Internet-wide net-
work scans to identify SSL-enabled hosts in a large number of subnets.
Where we observe that public/private key pairs do not change during
an event, we can eliminate the possibility of an attack. We can show
that subprefix announcements with multiple origins are harmless for the
largest part. This significantly reduces the search space in which we need
to look for hijacking attacks.

1 Introduction

Autonomous Systems (ASes) use the Border Gateway Protocol (BGP) to prop-
agate information about paths to certain destinations. Despite being vital to
traffic forwarding on the Internet, BGP does not feature any security mecha-
nisms like origin or neighbor authentication. Reports such as [1,2,8,11] have
shown that attacks do occur and are real threats. Systems like S-BGP [5] and
RPKI [4] have been developed to add integrity protection and origin authentica-
tion to BGP. However, due to the considerable resources needed to deploy them,
they are not widely used. Consequently, a number of mechanisms to (at least)
detect attacks on BGP have been developed [7,9,12,14,15]. Although they are

c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 173–187, 2015.
DOI: 10.1007/978-3-319-17172-2 12

174 J. Schlamp et al.

able to detect certain attacks like the hijacking of entire IP prefixes, they suffer
from relatively high rates of false-positive alarms.

In this paper, we investigate a particularly interesting phenomenon in BGP
that is elusive to investigations yet can be an indication of a serious threat:
subprefix hijacking where rogue ASes announce routes to prefixes that are fully
contained inside prefixes originated by other, legitimate ASes. We call these
subMOAS events. Such an attack leads to a ‘black hole’ for a victim’s network
since BGP generally prefers routes to more specific prefixes. However, business
relationships between ASes and their customers naturally lead to a very large
number of subMOASes as well. It is an unsolved challenge to tell the many benign
events apart from the (rarer) malicious ones: on average, we observe nearly 75
subMOASes per hour with peaks of several hundred events.

Our contribution in this work is a filter system to identify legitimate sub-
MOAS events such that a much more reasonable number of ‘still suspicious’ cases
remains. These can either be manually inspected or serve as the input for future
detection systems. Our approach is to combine data sources that are external
to BGP to draw conclusions about the legitimacy of subMOAS events. First,
we use information from the RIPE database to infer business and management
relationships between the IRR objects stored in the database. Such information
can only be altered by entities with valid access credentials. Our assumption
is that an attacker does not have these credentials. Second, we use a topology
algorithm to reason whether an attacker targets subprefixes of his own upstream
provider. This is highly unlikely as the victim would simply be able to filter out
the malicious BGP updates. Third, we use data from Internet-wide scans of the
SSL/TLS landscape to determine hosts whose public/private key combinations
are unique and remain stable over a longer period of time. These hosts serve as
beacons. If their public/private key pair remains the same during a subMOAS
event, we can rule out malicious interference. The assumption here is that a
BGP hijacker cannot compromise hosts in hijacked prefixes and steal their keys.
In our evaluation, we will see that our methods are very effective on the input
data. Since their coverage can still be increased, this is an encouraging result.

The remainder of this paper is organised as follows. Section 2 presents related
work. We describe our methodology in Section 3 and present our results and the
lessons learned in Section 4.

2 Related Work

There is a huge body of relevant and related literature. In the following, we
can only focus on a few selected contributions. Evidence that BGP hijacking
attacks occur has been provided in several publications, e.g., by Ramachan-
dran and Feamster [10] (short-lived tampering with BGP for spam purposes)
and Schlamp et al. [11] (a longer-lived occurrence). Possibly the first attempt
to detect hijacks was made by Lad et al. [7]: a control-plane technique focus-
ing exclusively on reporting multiple-origin AS (MOAS) prefixes. The authors
of [9] provided heuristics to assess that the announced MOAS paths comply

Investigating the Nature of Routing Anomalies 175

with standard economy-based routing policy. Wählisch studied the correlation
between routing policies and RPKI-invalid announcements in [13]. The authors
of [15] use a hop-count metric to evaluate the number of IP hops between a mon-
itor and a target network—changes in this number indicate a topology change.
Argus [12] uses multiple monitors for ping measurements to distinguish between
two zones affected and unaffected by the respective BGP updates. Importantly,
these techniques focus primarily on MOAS. In contrast, we focus on subMOAS
events. Here, active probing to detect an affected and an unaffected part of the
Internet topology is not possible, since all of the Internet topology is affected by
a corresponding BGP update (due to BGP’s preference of routes to more specific
prefixes). The above methods would thus not work. The authors of [3] discuss
detection techniques for subMOASes. Their approach requires that upstream
providers allow IP spoofing, which is not always the case. The mechanism in [14]
can detect network cut-offs from inside a victim’s network, but works on a local
level only.

3 Methodology

Our methodology consists of four steps. First, we determine actual subMOAS
events from BGP routing tables and update messages. Subsequent steps focus on
eliminating subMOAS events with legitimate causes. To this end, we establish
a filter chain. First, we use the RIPE IRR database to infer the ownership for
certain so-called IRR resources. If we find that an alleged attacker actually is
the legitimate owner of a resource or has been delegated authority over it, we
consider such a subMOAS event as legitimate. Our filter is currently limited to
the RIPE space, but can be extended to other IRR databases. The next filter
is a topology-based reasoning algorithm: the idea is that an attacker is unlikely
to hijack his own upstream provider as this provider could simply counter the
attack by filtering out malicious BGP udpates. The last filter uses data from
active SSL/TLS scans. For a given prefix in a subMOAS event, we verify if
Web hosts in this prefix presented the same public key before and during a
subMOAS occurence. If so, we may assume that the prefix is not hijacked as the
attacker would have to be in possession of the private key, too, to fake a successful
connection. This leaves us with a much smaller remainder of subMOAS events.

3.1 Identification of subMOASes

In a subMOAS-based attack, an attacker uses his AS to attract a victim’s traffic
by advertising a subprefix of a victim’s (less specific) prefix. This efffectively
blackholes a part of the victim’s network. To discover subMOAS events, we
analyze RouteViews Oregon’s routing table. We store prefix announcements in a
binary prefix tree, where nodes hold information about the origin of an announce-
ment. We only consider effective subMOAS: we discard cases where affected pre-
fixes are fully announced by multiple origins, i.e., regular MOAS cases. Instead,
we look for more specific prefixes that are originated by a different AS than the

176 J. Schlamp et al.

Fig. 1. Distribution of prefix lengths for subMOAS announcements (CDF)

enclosing prefix. We thereby compare the most specific parts of a prefix, i.e.,
those parts that are decisive with respect to longest prefix matching, with its
directly enclosing prefix to obtain all IP ranges that are affected by a subMOAS
announcement. For instance, if the prefixes 10.0.0.0/22 and 10.0.0.0/24 are
originated by the same origin AS, we would still recognize a subMOAS event for
the /22 prefix if 10.0.0.0/23 is originated by a different AS.

As of June 1, 2014, RouteViews Oregon’s routing table holds 511,118
announced prefixes (≈62.7% of the IPv4 space). A total of 76,121 prefixes are
subMOAS announcements (covering ≈3.44% of the IPv4 space). These figures
emphasize that subMOAS are a very common and naturally occuring phe-
nomenon, with attacks hard to detect in the large number of benign events.
On average, more specific subMOAS prefixes are longer than corresponding less
specifics by a factor of 28 (see Figure 1). Hence, it will be essential to identify
a great number of SSL/TLS-enabled hosts in advance in order to allow for the
comparison of public keys before and during any new event.

3.2 Utilizing IRR Databases

All five Internet Routing Registries (IRR) maintain databases that contain infor-
mation pertaining to the management of Internet resource holders. A recent
study [6] matched prefixes and ASes observed in BGP and IRR by looking for
appropriate database objects. We provide a generalized set of inference rules
for benign subMOAS events, which take into account multiple origins observed
in BGP as well as complex relationships between the affected prefixes and a
suspicious origin AS.

Our filter is designed for the RIPE database as RIPE provides daily snap-
shots with a precise data model and a certain amount of consistency enforced.
Still, IRR databases are updated by individual resource holders and can thus be
outdated or even hold conflicting information. Our filter accounts for this. Note
that filters for other IRR databases are easy to design; this is ongoing work.

Investigating the Nature of Routing Anomalies 177

Fig. 2. Entities and relations in the
RIPE database relevant for our filter

Table 1. Information stored in our
graph database, June 2014

Instance Nodes Relations

MNTNER 48,465
←maintained by– [*] 5,307,883

ORGANISATION 81,260
←org– [*] 199,644

AUT-NUM 27,616
←import– AUT-NUM 221,690
←origin– ROUTE 245,831

INETNUM 3,871,827

ROUTE 236,604

Data Model. Since February 2012, we download and evaluate daily snapshots
of the RIPE database. Figure 2 shows entities and relations in the RIPE database
that are of significance for our work. We use a graph database to store the
extracted data using the same schema as in the figure. We also track all changes
over time. The RIPE database models access rights with MNTNER objects. Only
maintainers with valid credentials can modify or delete objects. For any object,
this is expressed by adding a maintained by reference pointing to the respective
MNTNER object. ORGANISATION objects are optional and mainly used to provide
administrative contact details. The RIPE snapshots remove details for privacy
reasons but preserve the references to the objects themselves. INETNUM objects
represent allocated or assigned IPv4 prefixes managed by RIPE. ROUTE objects
are created by resource holders and are used to document or confirm intended
prefix announcements by specific ASes. To create a ROUTE object, a resource
holder needs to provide valid maintainer credentials for both the INETNUM and the
AUT-NUM object. The corresponding maps to relation is computed by our parsing
algorithm. AUT-NUM objects represent AS numbers and may be referenced as the
origin of ROUTE objects. Our parsing algorithm also deduces import relations
from free-text description fields, which are often used to model routing policies in
the so-called Routing Policy Specification Language (RPSL). When resources are
deleted from the RIPE database, RPSL definitions may still reference (now) non-
existing ASes. We account for this by tracking such orphaned import relations.

As of June, 2014, our database holds more than 4 million nodes and 5 mil-
lion relations extracted from the RIPE database. Figure 1 provides details for
selected objects that are relevant for our approach. We can see that less than
50,000 MNTNER objects share more than 5 million incoming maintained by refer-
ences. Although optional, roughly 80,000 ORGANISATION objects are referenced
by almost 200,000 other objects. Less than 30,000 AUT-NUM objects import rout-
ing policies from more than 220,000 other AUT-NUM objects. Nearly 250,000 ROUTE
objects bind prefix announcements to less than 30,000 AUT-NUM objects. We will
see that these figures allow our filter to be very effective.

178 J. Schlamp et al.

(a) br rpsl (b) br mntner (c) br org (d) br org mntner

(e) rh route (f) rh mntner (g) rh org (h) rh org mntner

Fig. 3. IRR inference rules used for the legitimization of subMOAS events (a)–(d)
Legitimate business relationships (e)–(h) Legitimate resource holders

Infering Resource Ownership. Recall that our fundamental assumption is
that an attacker does not have the credentials to change the RIPE database
in order to cover his attack. Accordingly, we look for legitimate relationships
between the parties involved in a subMOAS event to disprove an attack. Given
a routing change that results in a subMOAS, we map the affected AS numbers
and prefixes to AUT-NUM and INETNUM objects in our graph database. We then
traverse the graph along a path of legitimizing relations. We look for paths
between a) the two affected AS or b) the more specific prefix and its origin AS.
If we succeed with a), we can infer a valid business relation between the victim
and the suspected attacker. If we succeed with b), the suspected attacker holds
ownership rights for the more specific prefix and is thus authorized to originate
it from his AS.

Legitimizing paths are formed by one or more of the following relations:
import, origin, maintained by and org. Figure 3 shows the complete set of our
inference rules. Entities without surrounding circles represent subMOAS infor-
mation derived from BGP data, encircled items represent nodes in our database.
We first look for an import relation from the alleged victim to the attacker
(Figure 3 (a)). This would imply that the suspected victim deliberately updated
the RIPE database to document his willingness to accept the suspected attacker’s
route updates. This indicates a business relationship rather than an attack, and
we consider it proof for a legitimate subMOAS event. Similar arguments apply
for the victim’s AUT-NUM object being maintained by the attacker’s MNTNER object
(Figure 3 (b)) since no victim would grant his attacker such privileges. Relations

Investigating the Nature of Routing Anomalies 179

to a common ORGANISATION object (Figure 3 (c)) and even a path from different
affected organisations to a common MNTNER (Figure 3 (d)) can also be considered
strong evidence for an underlying business relationship.

If we are not able to find a path with the above rules, we look for evidence
that a suspected attacker is in fact the legitimate holder of a subprefix resource in
question. We first check if we can map the subprefix to a ROUTE object. If so, we
search for an origin relation to the suspected attacker’s AUT-NUM object (Figure 3
(e)). To create such a ROUTE object, valid maintainer credentials are needed for
the AUT-NUM object, but also for the implicitly given INETNUM object represented
by the subprefix. If the alleged attacker is able to provide both, we consider him
the owner of the subprefix and the subMOAS case to be legitimate. Note that
we also check for ROUTE objects that bind less specific prefixes to the suborigin
AS. This implies that the attacking AS is the owner of the corresponding larger
IP range, of which only a part is advertised in BGP. As network operators are
free to announce their networks in any given size, such cases are legitimate, too.

The remaining rules in Figure 3 (f)–(h) are similar to those in (b)–(d): we
aim to identify a legitimizing path based on shared MNTNER or ORGANISATION
objects—in these cases between the subprefix mapped to an INETNUM object
and the AUT-NUM object of the originating AS. Once again, we do not look for
exact matches to the INETNUM object but also allow for larger IP ranges since a
resource holder is not required to advertise his assigned prefixes as a whole.

Our figures from Table 1 show that these rules have the potential to be
highly effective, since we observe a high degree of interconnections: On average,
MNTNER objects are referenced by 110 other objects, and ORGANISATION objects
have at least eight incoming relations. In addition, we have nearly ten times
more ROUTE objects and import relations than AUT-NUM objects. It is therefore
promising to look for objects with common references to these objects. Note that
our approach does not require the RIPE database to be complete, and not even
to be conflict-free. Our inference rules are solely based on legitimate objects.
In case of absent or conflicting database objects, we are unable to establish a
legitimizing path—we cannot wrongly legitimate a subMOAS event this way.

3.3 Topology Reasoning

The next filter in our chain is topology-based. For each subMOAS occurrence, we
extract all AS paths that lead to the affected subprefixes and build a directed
graph. In essence, this graph represents all possible paths to the subprefixes’
origins, regardless of the selected route. We use the graph to check if at least
one of the observed AS paths to the more specific origin AS contains the origin
AS of the less specific one. If this is the case, we consider the subMOAS event
to be legitimate: if it were illegitimate, the owner of the less specific prefix
would not forward malicious BGP updates upstream. The legitimate scenario
occurs, for example, when a smaller Internet service provider obtains Internet
connectivity and a block of IP addresses from a larger carrier; other reasons
might be multihoming setups or the use of static routes invisible to BGP.

180 J. Schlamp et al.

(a) IPv4-wide ground truth (b) Rescan of active hosts

Fig. 4. Timeline for obtaining our ground truth

3.4 Cryptographic Assurance with SSL/TLS

Our final filter uses data sets obtained from our regular Internet-wide scans
of the SSL/TLS protocols on port 443 (HTTPS). The idea is to identify legiti-
mate subMOAS events by checking the public/private key pair used in SSL/TLS
handshakes. We assume that an attacker cannot obtain cryptographic keys from
a victim. Thus, if a host uses the same key pair before and during a subMOAS
event, we may infer the legitimacy of an event. For this to work, we first need to
establish a ground truth: a collection of mappings of IP addresses to public keys.
Due to the fluctuating nature of the Internet in terms of IP address assignments,
routing paths and change-overs of SSL/TLS keys, we carry out two subsequent
scans to establish a ground truth.

First, we initiate a SSL/TLS scan of the entire routable IP space. To reduce
the intrusiveness and to avoid our probes being dropped by destinations, the
scans are carried out much more slowly than it would be technically possible.
We also inform a number of CERTs, research institutes and blacklist providers
before a scan, and maintain our own blacklist of networks based on feedback
from operators.

Figure 4 shows the timeline for obtaining our ground truth. Our first scan
lasted from 7-24 April 2014. It yielded 27.2 million IP addresses where we could
retrieve certificate chains in the SSL/TLS handshake. For our ground truth,
we focus on particularly stable hosts with unchanging IP addresses and stable,
unique public keys. We thus scanned the 27.2 million hosts a second time one
month later (7-24 May 2014) and filtered out all IP addresses for unresponsive
hosts or for which the public key had changed. We arrived at 5.4 million stable
hosts. The final step was to discard hosts that had already been affected by
subMOAS events. This is necessary since a subMOAS event at the time of the
scan would mean we would have connected to a host possibly under the control
of an attacker. By checking against all BGP messages received in intervals of 15
minutes, roughly 20,000 hosts were discarded in this step. Note that discarded
hosts may be eventually reincluded into the ground truth by rescanning on a
periodic basis, thus mitigating the effects of short-lived subMOAS events. The
resulting set of 5,356,634 hosts can be considered stable: for each host, both
its IP address and corresponding public key had remained unchanged, and no
subMOAS event occured during our connection to the host.

Note that our ground truth naturally becomes less effective over time due
to long-term changes of hosts. The implication for our methodology, however, is

Investigating the Nature of Routing Anomalies 181

once again unproblematic, since we gradually miss out on legitimizing subMOAS
events, but we cannot accidentally overcount. In addition, we update our ground
truth on a monthly basis to overcome a decrease in our coverage.

With this ground truth available, we can now reliably detect whether hosts
affected by an emerging subMOAS event still present the same public key as
before the event. To this end, we are in need of a real-time framework to timely
initiate the re-scanning of affected hosts.

3.5 Real-Time Framework

subMOAS events may be of long duration (in the range of several months),
but we also observed events that lasted much shorter (e.g., for several hours or
minutes only). To account for this variability in duration, we set up a real-time
framework to continously analyze subMOAS events. Note that it is imperative
that our SSL/TLS scans are carried out before and within the life time of an
event, i.e., we need to perform our scans quickly after a subMOAS arises.

Our real-time framework comprises several steps that are executed every two
hours. First, we obtain the latest BGP data: a two-hour old RIB dump and
all BGP update messages until present time. We extract all subMOAS events
that started within this time frame and have not been withdrawn yet. Next, we
apply our IRR filters and identify legitimate events. We also apply our topology
reasoning algorithm and use our ground truth scan to look up stable SSL/TLS
hosts contained in the more specific prefixes to initiate SSL/TLS scans.

At the same time, we obtain all scan results from the previous run and com-
pare cryptographic host keys to those obtained in our ground truth scan. Note
that, in general, one must not assume that a scan always reaches the more spe-
cific prefix. At the moment we observe a subMOAS event, routing may have
already changed along the path of our upstreams, hence our BGP view might be
out-dated. Due to such propagation delays inherent to BGP, this issue cannot
be resolved by a tight coupling of our SSL/TLS scanner to the subMOAS detec-
tion alone. Instead, we sanitize our scan results with the help of a subsequent
validation process. After we have collected a new set of cryptographic keys, we
further evaluate the following two hours of BGP data, and discard scan results
for which the subMOAS event changed or vanished within this time frame. Note
that man-in-the-middle attacks where an attacker is able to forward our scans
to the legitimate destination are beyond the scope of our work. Besides, our
approach does not allow us to analyze events that last shorter than two hours.
However, this is no inherent limitation and can be mitigated by selecting a
shorter analysis period (i.e., investing more resources).

4 Evaluation

We begin our evaluation with an analysis of the frequency of subMOAS events
during the time frame of our experiment. We then show how much each filter in
our chain can contribute to identify legitimate events. Based on our results, we
discuss lessons learned at the end of this section.

182 J. Schlamp et al.

Fig. 5. subMOAS events observed over the duration of our experiment

Fig. 6. Distribution of subMOAS recurrences, CCDF

4.1 subMOAS Analysis

Figure 5 shows the frequency of subMOAS events we observed in the period of
2-12 June 2014. On average, we encountered 148.2 events over two hours (the
minimum number is 27; the maximum number is 1,206). Figure 6 gives details on
subMOAS events that occurred more than once, i.e., concerned the same prefixes
and ASes. On average, subMOASes recurred 2.2 times, with a maximum of 84
occurrences.

During the duration of our experiments, we observed a total of 8,071 unique
subMOAS events. We were able to legitimize 46.5% of these events by subsequent
application of our filter chain. Table 2(a) presents an overview of individual filter
results. IRR-based analysis could rule out 10.8% legitimate events; topology
reasoning could contribute about 31.7%, and SSL/TLS about 22.9%.

Investigating the Nature of Routing Anomalies 183

Table 2. Overview of our results
total in %

All subMOAS events 8,071 100%

IRR analysis 870 10.78%
topology reasoning 2,560 31.72%
SSL/TLS scans 1,851 22.93%

Legitimate events (cum.) 3,755 46.53%

(a) Combined filter results

total in %

Individual SSL/TLS scans∗ 37,043 100%

with different SSL/TLS key 773 2.09%
no response (port closed) 3,302 8.91%
with same SSL/TLS key 32,968 89.0%

Covered subMOAS events 2,116 100%

Legitimate events 1,851 87.48%

(c) SSL/TLS scan results.
∗986 scans were removed due to routing changes

total in %

Covered subMOAS events 1,048 100%

br rpsl 362 34.54%
br mntner 519 49.52%
br org 51 4.87%
br org mntner 145 13.84%

rh route 692 66.03%
rh mntner 599 57.16%
rh org 159 15.17%
rh org mntner 160 15.27%

Legitimate events (cum.) 870 83.02%

(b) IRR analysis results

With our combined filter chain, we are able to legitimize nearly half of all
subMOAS events present in today’s routing tables. We emphasize that this is not
an upper limit that would be inherent to our methodology: it is simply because,
at this point, we only use sources that cover about 60% (4,795) of all events.
Rather, the results for the individual filters suggest that adding further data
source like other IRRs (ARIN, APNIC, etc.) or other cryptographic protocols
(SSH, IMAPS, etc.) have the potential to shrink the result space much further.

IRR Analysis. Table 2(b) shows how effective our IRR-based filters are at
eliminating legitimate subMOAS events for prefixes registered by RIPE. Rules
that aim at capturing business relationships can eliminate about 65% of these
events. Rules that establish legitimate resource holding can eliminate about 72%.
In combination, we find that 83.0% of events that are based in the RIPE service
region are legitimate. Our previous analysis with Table 1 indicated that IRR
inference rules based on MNTNER and ROUTE objects could perform best; the results
presented above confirm this finding.

SSL/TLS Scans. Table 2(c) shows the total numbers of observed keys. In
terms of legitimized subMOAS events, we are able to rule out 87.5% of events
with at least one SSL/TLS-enabled host in the respective subprefixes.
Figure 7 shows the distribution of SSL/TLS hosts per subMOAS prefix. 75%
of the prefixes host at least one SSL/TLS-enabled machine, 25% even contain
more than 10 hosts.

184 J. Schlamp et al.

Fig. 7. Distribution of SSL/TLS hosts per subMOAS subprefix (CCDF). Only subpre-
fixes with at least one SSL/TLS host have been considered.

Note that for more than 75% of all subMOAS events, we have more than one
host available to use for cryptographic confirmation. We even have more than
ten hosts available in about 25% of all events. The average number of SSL/TLS
hosts per subMOAS subprefix is 17; the minimum and maximum numbers are
1 and 2,070, respectively. These figures allow our SSL/TLS filter to be highly
robust against short outages of single hosts, since it is enough for us to confirm
that at least one cryptographic key remains unchanged per subMOAS event.

Figure 8 shows that the populations of unchanging and changing keys remain
relatively stable for the lifetime of our ground truth. While a certain decline
is evident, it remains in the range of 5% or less. Finally, Figure 9 shows the
percentages of hosts that became unresponsive during our live scans, which
increases very slowly, too. These findings suggest that the interval for obtaining
new ground truth hosts can be set to one month or even longer. Note that out-
liers with a larger fraction of changed certificates or unresponsive hosts are the
result of a lower initial number of available ground truth hosts.

4.2 Lessons Learned

The results from our filters are quite encouraging. Given that we achieve high
elimination rates for the IP space we can currently cover (already 60%), we offer
the following conclusions.

First, data obtained from IRR databases is highly useful to identify legitimate
subMOAS events, even if some data may be incomplete or outdated. Our results
encourage us to extend our IRR analysis to the remaining databases in other
service regions—we expect a significant increase of our coverage. Furthermore,
we would encourage IRR operators to publish database snapshots on a daily
basis to aid in this effort at demystifying routing anomalies.

Second, active scans are equally powerful. The coverage of our methodology
corresponds exactly to the number of Web hosts that use unique keys, a set of

Investigating the Nature of Routing Anomalies 185

Fig. 8. Percentage of same and different SSL/TLS keys during our experiment

Fig. 9. Number of unresponsive SSL/TLS hosts over the duration of our experiment

hosts that remained pleasingly stable throughout our experiments. The coverage
can be even increased in the future by focusing on additional cryptographic
protocols, e.g. like IMAPS and SSH. We intend to perform regular ground truth
scans and to deploy our filter techniques continously.

Our work aims at the detection and analysis of subMOAS events. It is thus
not applicable to other types of routing anomalies that do not exhibit subMOAS
conflicts, e.g. interception attacks. However, our ultimate goal is to be able to
reduce the huge search space for subprefix hijacking attacks to a manageable
size for manual inspection, and to allow automated reasoning about subMOAS
routing anomalies. Our analysis chain lends itself well to integration of future
detection systems: a) to narrow down the number of suspicious routing anomalies
and b) to cross-check the resulting alarms.

186 J. Schlamp et al.

5 Conclusions and Outlook

We introduced a methodology that allows us to reliably identify subMOAS events
with legitimate causes. Our method combines data from several sources and
proves promising: although coverage for the entire Internet can be improved, our
individual filter techniques are highly effective. Our findings show that both IRR
databases and active scans are useful tools to reason about routing anomalies in-
depth. Moreover, we outlined straightforward steps to increase coverage, which
puts manual inspection of the remaining subMOAS events within reach. Finally,
we intend to grow our framework into a service that makes its data publicly
available on a continuous and permanent basis. This framework promises to be
greatly beneficial for future systems to detect subprefix hijacking. We invite the
research community to participate in this effort. We would be delighted to have
our results used as input for further detection systems or by seeing further filters
developed by fellow researchers.

Acknowledgments. This work has been supported by the German Federal Min-
istry of Education and Research (BMBF) under support code 01BY1203C, project
Peeroskop, and by the European Commission under the FP7 project EINS, grant num-
ber 288021.

References

1. Ballani, H., Francis, P., Zhang, X.: A study of prefix hijacking and interception in
the Internet. In: Proc. ACM SIGCOMM 2007, pp. 265–276 (2007)

2. Hepner, C., Zmijewski, E.: Defending against BGP man-in-the-middle attacks.
Talk at BlackHat 2009 (2009)

3. Hu, X., Mao, Z.M.: Accurate real-time identification of IP prefix hijacking. In:
Proc. IEEE Symposium on Security and Privacy, pp. 3–17 (2007)

4. Huston, G., Bush, R.: Securing BGP and SIDR. IETF Journal 7(1) (2011)
5. Kent, S., Lynn, C., Seo, K.: Secure Border Gateway Protocol (SBGP). IEEE

Journal on Selected Areas in Communications 18(4), April 2000
6. Khan, A., Kim, H.-C., Kwon, T., Choi, Y.: A comparative study on ip prefixes and

their origin ases in bgp and the irr. SIGCOMM Comput. Commun. Rev. 43(3),
16–24 (2013)

7. Lad, M., Massey, D., Pei, D., Wu, Y., Zhang, B., Zhang, L.: PHAS: a prefix hijack
alert system. In: Proc. 15th USENIX Security Symposium, vol. 15 (2006)

8. Pilosov, A., Kapela, T.: Stealing the Internet: An Internet-scale man in the middle
attack. In: Talk at DEFCON 16 (2008)

9. Qiu, J., Gao, L.: Detecting bogus BGP route information: going beyond prefix
hijacking. In: Proc. 3rd Int. Conf. on Security and Privacy in Communication
Networks (SecureComm) (2007)

10. Ramachandran, A., Feamster, N.: Understanding the network-level behavior of
spammers. In: Proc. ACM SIGCOMM 2006 (2006)

11. Schlamp, J., Carle, G., Biersack, E.W.: A forensic case study on as hijacking: the
attacker’s perspective. ACM SIGCOMM CCR 43(2), 5–12 (2013)

Investigating the Nature of Routing Anomalies 187

12. Shi, X., Xiang, Y., Wang, Z., Yin, X., Wu, J.: Detecting prefix hijackings in the
Internet with argus. In: Proc. ACM SIGCOMM IMC (2012)

13. Wählisch, M., Maennel, O., Schmidt, T.C.: Towards Detecting BGP Route Hijack-
ing Using the RPKI. ACM SIGCOMM CCR 42(4), 103–104 (2012)

14. Zhang, Z., Zhang, Y., Hu, Y.C., Mao, Z.M., Bush, R.: iSPY: Detecting IP prefix
hijacking on my own. IEEE/ACM Trans. on Networking 18(6), 1815–1828 (2010)

15. Zheng, C., Ji, L., Pei, D., Wang, J., Francis, P.: A light-weight distributed scheme
for detecting IP prefix hijacks in real-time. In: Proc. ACM SIGCOMM 2007 (2007)

The Abandoned Side of the Internet: Hijacking
Internet Resources When Domain Names Expire

Johann Schlamp1(B), Josef Gustafsson1, Matthias Wählisch2,
Thomas C. Schmidt3, and Georg Carle1

1 Technische Universität München, München, Germany
{schlamp,gustafss,carle}@net.in.tum.de
2 Freie Universität Berlin, Berlin, Germany

m.waehlisch@fu-berlin.de
3 HAW Hamburg, Hamburg, Germany
schmidt@informatik.haw-hamburg.de

Abstract. The vulnerability of the Internet has been demonstrated by
prominent IP prefix hijacking events. Major outages such as the China
Telecom incident in 2010 stimulate speculations about malicious inten-
tions behind such anomalies. Surprisingly, almost all discussions in the
current literature assume that hijacking incidents are enabled by the lack
of security mechanisms in the inter-domain routing protocol BGP.

In this paper, we discuss an attacker model that accounts for the
hijacking of network ownership information stored in Regional Internet
Registry (RIR) databases. We show that such threats emerge from aban-
doned Internet resources (e.g., IP address blocks, AS numbers). When
DNS names expire, attackers gain the opportunity to take resource own-
ership by re-registering domain names that are referenced by correspond-
ing RIR database objects. We argue that this kind of attack is more
attractive than conventional hijacking, since the attacker can act in full
anonymity on behalf of a victim. Despite corresponding incidents have
been observed in the past, current detection techniques are not qualified
to deal with these attacks. We show that they are feasible with very little
effort, and analyze the risk potential of abandoned Internet resources for
the European service region: our findings reveal that currently 73 /24

IP prefixes and 7 ASes are vulnerable to be stealthily abused. We dis-
cuss countermeasures and outline research directions towards preventive
solutions.

1 Introduction

Internet resources today are assigned by five Regional Internet Registrars (RIRs).
These non-profit organisations are responsible for resources such as blocks of
IP addresses or numbers for autonomous systems (ASes). Information about
the status of such resources is maintained in publicly accessible RIR databases,
which are frequently used by upstream providers to verify ownership for customer
networks. In general, networks are vulnerable to be hijacked by attackers due to
c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 188–201, 2015.
DOI: 10.1007/978-3-319-17172-2 13

The Abandoned Side of the Internet: Hijacking Internet Resources 189

the inherent lack of security mechanisms in the inter-domain routing protocol
BGP. Real attacks have been observed in the past that led to the development of
a variety of detection techniques and eventually of security extensions to BGP
[8,11]. Common to these attacks is a malicious claim of IP resources at the
routing layer. However, claims of network ownership can be also made at RIR
level, a fact that has received little attention so far.

In a history of more than three decades, a vast number of Internet resources
have been handed out to numerous users under varying assignment policies. Some
ASes or prefixes have never been actively used in the inter-domain routing, others
changed or lost their original purpose when companies merged or vanished. It
is not surprising that some Internet resources became abandoned, i.e. resource
holders ceased to use and maintain their resources.

In this paper, we focus on threats that emerge from abandoned Internet
resources. Currently, there is no mechanism that provides resource ownership
validation of registered stakeholders. Instead, the control over email addresses
that are stored with RIR database objects is often considered a proof of owner-
ship for the corresponding resources. Our contribution is a generalized attacker
model that takes into account these shortcomings. We thoroughly evaluate the
risk potential introduced by this attack by drawing on several data sources, and
show that the threat is real. Since this kind of attack enables an attacker to fully
hide his identity, it makes hijacking more attractive, and significantly harder to
disclose. Consequently, we show that state-of-the-art detection techniques based
on network measurements are ill-suited to deal with such attacks. Even so, these
attacks have been evidenced in practice, and should thus be taken into account
by future research.

We continue the discussion by establishing our attacker model in Section 2.
In Section 3, we estimate the risk potential of abandoned resources, and show
that there is a real threat. As a result, we outline an approach to mitigate this
threat, and discuss limitations of related work in Section 4. In particular, we
outline the need for a system that provides resource ownership validation. We
conclude our discussion in Section 5.

2 Attacker Model

Conventional attacks on BGP are based on its lack of origin validation, which
allows an attacker to originate arbitrary prefixes or specific subnets from his
own AS. We propose a new attacker model that accounts for attackers to take
ownership of abandoned resources. In such a scenario, an attacker is able to act
on behalf of his victim, in particular to arrange upstream connectivity. Misled
upstream providers unknowingly connect one or several ASes including prefixes
of the victims as instructed by an attacker who successfully hides his true iden-
tity. Following this model, the anonymous attacker can participate in the coop-
erative Internet exchange at arbitrary places without any formal incorrectness.
In the following, we generalize a real incident to derive preconditions that enable
this kind of attack.

190 J. Schlamp et al.

2.1 Background: The LinkTel Incident

In previous work [17], a corresponding attack has been observed in practice,
which is known as the LinkTel incident. The authors studied this attack and
showed that a victim’s prefixes originated from his own AS, while the victim
itself abandoned his business. The authors reconstructed the attacker’s course
of action to claim ownership of the abandoned resources. The LinkTel incident
thereby revealed a major flaw in the Internet eco-system: validation of resource
ownership is most often based on manual inspection of RIR databases. In this
context, it was shown that the attacker was able to gain control over the vic-
tim’s DNS domain, and thus over corresponding email addresses. The involved
upstream provider presumably validated that the attacker’s email address was
referenced by the hijacked resources’ RIR database objects. Given this proof of
ownership, the upstream provider was convinced by the attacker’s claim to be
the legitimate holder of the resources. Surprisingly, the attacker captured the
victim’s DNS domain by simply re-registering it after expiration.

For several months, the attacker’s abuse of the hijacked resources remained
unnoticed. By combining several data sources, the authors showed that the
hijacked networks were utilized to send spam, to host web sites that advertised
disputable products, and to engage in IRC communication. After the victim
recovered his business, he learned that his networks were listed on spamming
blacklists. However, the attacker’s upstream provider refused to take action at
first, since the victim was unable to refute the attacker’s ownership claims.

2.2 Preconditions for an Attack

Based on the insights gained from the LinkTel incident, we show that the
attacker’s approach can be generalized. To enable hijacking of Internet resources,
the following preconditions have to be met: (a) Internet resources are evidentially
abandoned and (b) the original resource holder can be impersonated.

If an organisation goes out of business in an unsorted manner, these condi-
tions are eventually met. As a first consequence, the organisation ceases to use
and maintain its resources. If this situation lasts over a longer period of time,
the organisation’s domain name(s) expire. Since day-to-day business lies idle,
re-registration and thus impersonation becomes practicable for an attacker. At
that moment, upstream connectivity can be arranged on behalf of the victim,
since face-to-face communication is not required in general. Routers can be sent
via postal service, or even be rented on a virtualized basis. Details on BGP and
network configuration are usually exchanged via email, IRC, or cellular phone,
and payment can be arranged anonymously by bank deposits or other suitable
payment instruments. Without revealing any evidence about his real identity,
the attacker is able to stealthily hijack and deploy the abandoned resources.

2.3 Implications

The implications of this attacker model are manifold. First, an attacker may act
on behalf of a victim, thereby effectively hiding his own identity and impeding

The Abandoned Side of the Internet: Hijacking Internet Resources 191

disclosure. This makes hijacking more attractive as it enables riskless network
abuse. It hinders criminal prosecution, and could be used to deliberately create
tensions between organisations or even countries. Due to the lack of a system
for resource ownership validation, these attacks only depend on idle organisa-
tions or missing care by legal successors of terminated businesses. Even after the
discovery of such an attack, it is difficult for the victim to mitigate since reclaim-
ing ownership is the word of one person against another at first. The LinkTel
incident [17] proves that this is not only a realistic scenario: such attacks are
actually carried out in practice.

The benefit of attacks based on abandoned resources can even be higher
than in the case of conventional attacks. Hijacking productive networks rarely
lasts for more than a few hours, since the victim can receive great support
in mitigating the attack. Moreover, for most cases, the benefit is reduced to
blackholing a victim’s network – with the Youtube-Pakistan incident being a
prominent example. In addition, monitoring systems for network operators exist
that raise alarms for unexpected announcements of their prefixes. However, due
to the very nature of abandoned resources, virtually no one is going to take
notice of an attack. Our attacker model thus accounts for stealthily operating
attackers who aim at persistently maintaining malicious services.

3 Abandoned Internet Resources

We identify readily hijackable Internet resources by searching RIR databases for
unmaintained resource objects. Subsequently, we distinguish between resources
that are still in use, with potential for network disruption, and resources that
are fully abandoned and ready to be abused stealthily. Such resources are espe-
cially attractive for attackers for two reasons. First, the resource is assigned to
an organisation for operational use and thus represents a valid resource in the
Internet routing system. Second, an attacker can easily claim ownership by tak-
ing control of the contact address referenced by corresponding RIR database
objects, iėḃy re-registering a domain name.

Consequently, we look for RIR database objects that reference email addresses
with expired DNS names. Since the inference of invalid domain names can also be
the result of poorly maintained resource objects or typing errors, it is important
to take into account recent database activities for individual resource owners, and
to correlate this information with BGP activity.

The following analysis is based on archived RIPE database snapshots over
2.5 years (23 February, 2012 till 9 July, 2014). Our results are representative for
the European service region only, but similar analyses can be done with little
effort for other service regions, too.

3.1 Resource Candidates from RIR Database

RIPE, like all other RIRs, provides publicly available database snapshots on a
daily basis. Most of the personally related information is removed due to privacy

192 J. Schlamp et al.

Table 1. Data objects stored in the RIPE database, and references to DNS names.
9 July, 2014.

Object type Frequency DNS references

inetnum 3,876,883 1,350,537 (34.84 %)
domain 658,689 97,557 (14.81 %)
route 237,370 50,300 (21.19 %)
inet6num 231,355 8,717 (3.77 %)
organisation 82,512 0 (0.00 %)
mntner 48,802 0 (0.00 %)
aut-num 27,683 6,838 (24.70 %)
role 20,684 14,430 (69.76 %)
as-set 13,655 2,500 (18.31 %)
route6 9,660 723 (7.48 %)
irt 321 162 (50.47 %)

Total 5,239,201 1,531,764 (29.24%)

concerns. Some attributes, however, remain unanonymized, which we utilize to
extract DNS names.

Available Data Objects. The RIPE database holds more than 5.2 million
objects. These objects can be updated from the Web or via email. Most of these
objects optionally hold an email address in the notify field, to which corre-
sponding update notifications are sent. Despite anonymization, we found that
these notify fields are preserved in the publicly available database snapshots,
which is also the case for abuse-mailbox attributes. To extract DNS names, we
parse these email addresses where applicable.

Table 1 shows the distribution of stored objects by type along with the num-
ber of DNS names we were able to extract. Although we found more than 1.5
million references to DNS names, the total number of distinct names is only
21,061. This implies that, on average, more than 72 objects reference the same
DNS name. The overall fraction of objects that reference a domain name is
29.24 %, which is surprisingly high since the database snapshots are considered
to be anonymized.

Hijackable Internet resources are given by inetnum and aut-num objects,
which represent blocks of IP addresses and unique numbers for autonomous sys-
tems respectively. Exemplary database objects are provided in Figure 1, further
details on the RIPE database model and update procedures are available at [16].

It is worth noting that the attacker neither needs authenticated access to
the database nor does the attacker need to change the database objects. The
attacker only needs to derive a valid contact point. We assume that the (publicly
available) notification address usually belongs to the same DNS domain as the
technical contact point. Detailed analysis is subject to future work; in our study,
we disregard groups of objects that reference more than a single DNS domain
as a precaution.

The Abandoned Side of the Internet: Hijacking Internet Resources 193

inetnum: 194.28.196.0 - 194.28.199.255

netname: UA-VELES

descr: LLC "Unlimited Telecom"

descr: Kyiv

notify: internet@veles-isp.com.ua

mnt-by: VELES-MNT

aut-num: AS51016

as-name: VALES

descr: LLC "Unlimited Telecom"

notify: internet@veles-isp.com.ua

mnt-by: VELES-MNT

Fig. 1. Examples of RIPE database objects (inetnum and aut-num objects)

Grouping Objects by Maintainer. The RIPE database is mostly main-
tained by resource holders themselves. Its security model is based on references
to mntner (maintainer) objects, which grant update and delete privileges to
the person holding a mntner object’s password. This security model allows us
to infer objects under control of the same authority by grouping objects with
references to a common mntner object. We use these maintainer groups to esti-
mate the impact of an attack for individual authorities: On average, we observed
nearly 110 such references per mntner object, with a maximum of up to 436,558
references1. The distribution of the number of objects per maintainer group is
presented in Figure 2.

For each of the maintainer groups, we obtain the set of all DNS names refer-
enced by a group’s objects. To unambiguously identify maintainer groups with
expired domains, we merge disjoint groups that reference the same DNS domain,
and discard groups with references to more than one DNS name. From an initial
amount of 48,802 maintainer groups, we discard (a) 937 groups of zero size, i.e.
unreferenced mntner objects, (b) 31,586 groups without domain name references,
and (c) 4,990 groups with multiple references. The remaining 11,289 groups can
be merged to 8,441 groups by identical DNS names. We further discard groups
that do not include any hijackable resources, i.e. inetnum and aut-num objects,
which finally leads us to 7,907 object groups.

Note that the number of these groups is a lower bound: an attacker could
identify even more with access to unanonymized RIPE data. As discussed above,
each of these groups is maintained by a single entity. If a group’s DNS name
expires, we consider the entity’s resources to be a valuable target for an attacker.

3.2 Refinement by Activity Measures

To confirm that a set of resources is abandoned, our approach is based on com-
plementary data sources. We start with domain names that expire, which is a
1 The meta information refers to Interbusiness Network Administration Staff of Tele-

com Italia.

194 J. Schlamp et al.

Fig. 2. RIPE database objects grouped by references to a common maintainer object
(CCDF)

strong yet inconclusive indication for a fading resource holder. We gain further
evidence by considering only resources that are neither changed in the RIPE
database nor announced in BGP. Including both administrative (DNS, RIPE)
and an operational (BGP) measures gives a comprehensive picture on the uti-
lization of the resources.

Lifetime of Domain Names. We used the whois system to query expiry
dates for all extracted DNS names (cf., Sect. 3.1). Figure 3 shows the distri-
bution of these dates. At the time of writing, 214 domain names have been
expired. Another 121 names expire within the week, given that the owners miss
to renew their contracts. The most frequent top level domains are .com (27.9 %),
.ru (21.5 %), and .net (13.0 %), while the most frequent expired TLDs are .ru
(20.1 %), .it (16.4 %), and .com (9.81 %). The longest valid domains are reg-
istered until 2108 and mostly represent governmental institutions. The longest
expired domain has been unregistered for nearly 14 years. With respect to the
maintainer groups derived above, a total of 65 groups that reference expired
DNS names remain. These groups hold 773 /24 networks and 54 ASes, and are
subject to closer investigation.

RIPE Database Updates. For each of the 7,907 maintainer groups – divided
into 7,842 valid groups and 65 with expired DNS names – we extracted the
minimum time since the last change for any of its database objects. Note that
we filtered out automated bulk updates that affected all objects of a certain

The Abandoned Side of the Internet: Hijacking Internet Resources 195

Fig. 3. Expiry dates for DNS names referenced by RIPE database objects

Fig. 4. RIPE database updates by maintainer group (CDF)

type2. Figure 4 shows the distribution of database updates for groups with valid
and for groups with expired domain names. While about 10 % of the valid groups
show changes within two months, DNS-expired groups differ strikingly: the 10 %-
quantile is at nearly 5 months. Hence, given these long times without updates,
we consider resource groups that exhibit an object update within 6 months to
2 For instance, RIPE added a new status attribute to all aut-num objects on 27 May,

2014.

196 J. Schlamp et al.

be still maintained and not abandoned. Note that we do not assume inactivity
in absence of such changes.

BGP Activity. To confirm inactivity, we correlate the RIPE database updates
with activities in the global routing system. For that, we analyze all available
BGP update messages from the RouteViews Oregon’s feed for the same time
frame. This data set comprises 83,255 files with 18.4 billion announcements and
1.04 billion withdraw messages for resources assigned by RIPE. Given this data,
we are able to extract two indicators: (1) the time since an IP prefix was last
visible from the RouteViews monitor, and (2) the time since the last deployment
of a RIPE-registered AS number by looking at AS path attributes. Figure 5
shows the distribution of last activity in BGP for any Internet resource in our
maintainer groups. Nearly 90 % of resources in valid groups are visible in BGP at
the moment. Surprisingly, most of the remaining groups did not show any activity
at all during the last 2.5 years. About 75 % of the DNS-expired resources are
present in today’s routing table – and are thus still actively used. The remaining
resources did show some activity in the past (10 %) or were never observed in
BGP during our analysis period (15 %).

These findings confirm our assumption that inactivity in the RIPE database
does not necessarily imply operational shutdown. While up to 85 % of the expired
resources were seen in BGP within the last 2.5 years, Figure 4 indicates that
not more than 55 % of the expired resources received an update in the RIPE
database. We further learn that some expired resources did show BGP activity
in the past, and do not show any activity today. Note that we disregard resources
with recent BGP activity. These resources could potentially be hijacked already;
however, attacks that started before our analysis are beyond the scope of our
approach.

3.3 Hijackable Resources

So far, we learned that 65 maintainer groups with a total of 773 /24 networks
and 54 ASes reference expired DNS names. Our activity measures further indi-
cate that valid groups yield higher activity than expired groups. By combining
these measures, we are able to infer resources that are inactive from both an
administrative and an operational point of view. Figure 6 shows the time since
the latest change by any of these measures, i.e., the minimum value of both
measures.

This combined activity measure clearly splits the 65 expired maintainer
groups into two disjoint sets: 52 cases were active within the last 3 months,
while 13 cases did not show any activity for more than 6 months. We consider
these remaining 13 cases to be effectively abandoned. These resource groups
represent a total number of 15 inetnum objects (with an equivalent of 73 /24
networks) and 7 aut-num (i.e., AS number) objects.

Now that we have identified vulnerable resources, we feel obliged to protect
these resources. Since any attacker could repeat our analysis, we are going to

The Abandoned Side of the Internet: Hijacking Internet Resources 197

Fig. 5. BGP update messages observed by maintainer group (CDF)

Fig. 6. Combined RIPE/BGP activity by maintainer group (CDF)

contact endangered resource holders before publishing our findings. Although
communication via e-mail is futile due to expired domains, we can fall back on
telephone numbers provided in the RIPE database to reach out for the operators.

4 Research Agenda

For the problem of abandoned Internet resources, one might argue that the
threat is not caused by a technical but a social problem because operators agree

198 J. Schlamp et al.

to their peering relations based on a weak authentication scheme. This scheme
can be replaced by stronger verification – the required data already exists. RIRs
have contracts with the owners of delegated resources and thus are aware of more
reliable contact points (e.g., telephone numbers). However, the current situation
shows that we need mechanisms, tools, and procedures which are not tedious
for operators but allow for easy resource verification. Our approach to identify
abandoned resources can be easily extended to continuously monitor resources
of all RIRs. This would allow us to warn network operators about potential
risks. Finding scalable approaches to implement early warning and prevention
in real-time, though, is an open research issue.

4.1 Limitations of Related Work

Current research is particularly focused on the detection of BGP hijacking
attacks. Proposed mitigation techniques look on the control plane, the data
plane, or both. Control plane monitoring is used to identify anomalies in BGP
routing tables to infer attacks [1,6,9,14,21]. Such approaches are prone to false
positives due to legitimate causes for anomalies. Techniques based on data plane
measurements account for changes of the router topology [22,23], or of hosts in
supposedly hijacked networks [4,5,18]. These approaches rely on measurements
carried out before and during an attack. Beyond that, studies on the malicious
intent behind hijacking attacks exist [15,17,19,20].

All detection approaches require the observation of suspicious routing changes.
Attacks based on our attacker model take place outside the routing system, and
thus do not lead to noticeable routing changes – apart from a supposedly legit-
imized organisation starting to reuse its Internet resources. Hence, current detec-
tion systems are incapable to deal with this kind of attack.

The DNS has been widely studied in the context of malicious network activ-
ities, mainly concerning spammers or fraud websites. Proactive blacklisting of
domain names [3] does not help in our scenario as the threat is effective on the
routing layer. Identifying orphaned DNS servers [7] is also out of scope of this
paper as the attacker does not leverage the DNS server but the expiring domain.

4.2 Resource Ownership Validation

Despite its effectiveness, we consider our approach to detect and monitor aban-
doned resources as outlined above an intermediate solution only. In fact, we
argue that there is a need for resource ownership validation.

There is ongoing effort to increase the deployment of a Resource Public Key
Infrastructure (RPKI) [11]. In its present state, the RPKI allows for validation of
route origins by using cryptographically secured bindings between AS numbers
and IP prefixes. This mechanism prevents common hijacking attacks. In terms of
hijacking abandoned resources, however, this system is ineffective in its current
form since the abandoned origin AS is taken over as well, and origin validation
performed by BGP routers [13] will indicate a valid BGP update.

The Abandoned Side of the Internet: Hijacking Internet Resources 199

Even though the RPKI itself can be misused [2], at the moment it represents
the only mechanism for proofing securely ownership of Internet resources. We
merely lack a clear procedure in the context of abandoned Internet resources.
One approach could be the following operational rule: a peering request is only
established when resource objects of the requesting peer exist in the RPKI.
Recent time stamps for these objects indicate that the requesting peer has control
over the resources as only authorized users can create such objects. Such a scheme
seems feasible from the operational perspective and might even increase the
incentives to deploy RPKI.

RPKI is part of BGPsec, an even larger effort to secure BGP. This extension
to the protocol remedies the risk of hijacking abandoned resources due to its path
validation capabilities: in our model, an attacker cannot provide valid crypto-
graphic keys to sign update messages as specified by BGPsec [10]. However, the
development of BGPsec is at an early stage, and the benefit compared to pure
origin validation is questionable in particular in sparse deployment scenarios [12].

Future research should be carried out on enabling Internet service providers to
validate resource ownership of customers. We see the potential of such a system
not only in preventing attackers from hijacking abandoned Internet resources. It
would also establish trust in customer-provider and peer-to-peer relationships, as
well as in resource transfers issued by RIRs or LIRs.

5 Conclusion

Motivated by a real-world case study, we introduced a generalized attacker model
that is aimed on the hijacking of abandoned Internet resources. We showed that
such an attack is feasible with little effort, and effectively hides the attacker’s
identity by acting on behalf of a victim. By studying orthogonal data sources
over a period of more than 30 months, we could give evidence of a high risk
potential of such attacks. Only in the European RIR database, we found 214
expired domain names that control a total of 773 /24 networks and 54 ASes, all
of which can be easily hijacked. About 90 % of these resources are still in use,
which enables an attacker to disrupt operational networks. The remaining 10 %
of the resources are fully abandoned, and ready to be stealthily abused.

Our findings led us to the conclusion that state-of-the-art systems are limited
to deal with this kind of attack. More importantly, we argued that there is a
need for resource origin validation. Such a framework would not only prevent
attacks, but could also strengthen today’s Internet eco-system by establishing
trust in resource ownership.

Ethical Considerations. In this paper, we sketched a new attack vector. Up
until now, it is unclear how common such attacks are; our findings thus might
trigger new malicious activities. However, we also showed that this attack is
already known to attackers, and we sketched countermeasures to mitigate this
concern. In addition, we contact the holders of vulnerable resources before pub-
lication of our findings.

200 J. Schlamp et al.

Acknowledgments. This work has been supported by the German Federal Min-
istry of Education and Research (BMBF) under support code 01BY1203C, project
Peeroskop, and by the European Commission under the FP7 project EINS, grant num-
ber 288021.

References

1. Ballani, H., Francis, P., Zhang, X.: A study of prefix hijacking and interception in
the internet. In: Proc. ACM SIGCOMM 2007, pp. 265–276 (2007)

2. Cooper, D., Heilman, E., Brogle, K., Reyzin, L., Goldberg, S.: On the risk of
misbehaving RPKI authorities. In: Proc. of HotNets-XII. ACM, New York (2013)

3. Felegyhazi, M., Kreibich, C., Paxson, V.: On the potential of proactive domain
blacklisting. In: Proc. of the 3rd USENIX LEET Conference. USENIX Association,
Berkeley (2010)

4. Hong, S.-C., Ju, H.-T., Hong, J.W.: IP prefix hijacking detection using idle scan.
In: Hong, C.S., Tonouchi, T., Ma, Y., Chao, C.-S. (eds.) APNOMS 2009. LNCS,
vol. 5787, pp. 395–404. Springer, Heidelberg (2009)

5. Hu, X., Mao, Z.M.: Accurate real-time identification of IP prefix hijacking. In:
Proc. IEEE Symposium on Security and Privacy, pp. 3–17 (2007)

6. Jacquemart, Q., Urvoy-Keller, G., Biersack, E.: A longitudinal study of BGP
MOAS prefixes. In: Dainotti, A., Mahanti, A., Uhlig, S. (eds.) TMA 2014. LNCS,
vol. 8406, pp. 127–138. Springer, Heidelberg (2014)

7. Kalafut, A.J., Gupta, M., Cole, C.A., Chen, L., Myers, N.E.: An empirical study of
orphan DNS servers in the internet. In: Proc. of the 10th ACM SIGCOMM IMC,
pp. 308–314. ACM, New York (2010)

8. Kent, S., Lynn, C., Seo, K.: Secure Border Gateway Protocol (SBGP). IEEE Jour-
nal on Selected Areas in Communications 18(4), April 2000

9. Lad, M., Massey, D., Pei, D., Wu, Y., Zhang, B., Zhang, L.: PHAS: A prefix hijack
alert system. In: Proc. 15th USENIX Security Symposium, vol. 15 (2006)

10. Lepinski, M.: BGPSEC Protocol Specification. Internet-Draft - work in progress
00, IETF, March 2011

11. Lepinski, M., Kent, S.: An Infrastructure to Support Secure Internet Routing. RFC
6480, IETF, February 2012

12. Lychev, R., Goldberg, S., Schapira, M.: Bgp security in partial deployment: Is the
juice worth the squeeze?. In: Proc. of ACM SIGCOMM, pp. 171–182. ACM, New
York (2013)

13. Mohapatra, P., Scudder, J., Ward, D., Bush, R., Austein, R.: BGP Prefix Origin
Validation. RFC 6811, IETF, January 2013

14. Qiu, J., Gao, L.: Detecting bogus BGP route information: going beyond prefix
hijacking. In: Proc. 3rd Int. Conf. on Security and Privacy in Communication
Networks (SecureComm) (2007)

15. Ramachandran, A., Feamster, N.: Understanding the network-level behavior of
spammers. In: Proc. ACM SIGCOMM 2006 (2006)

16. RIPE NCC. RIPE Database Update Reference Manual. http://www.ripe.net/
data-tools/support/documentation/RIPEDatabaseUpdateManual20140425 edit.
pdf

17. Schlamp, J., Carle, G., Biersack, E.W.: A forensic case study on as hijacking: the
attacker’s perspective. ACM SIGCOMM CCR 43(2), 5–12 (2013)

http://www.ripe.net/data-tools/support/documentation/RIPEDatabaseUpdateManual20140425_edit.pdf
http://www.ripe.net/data-tools/support/documentation/RIPEDatabaseUpdateManual20140425_edit.pdf
http://www.ripe.net/data-tools/support/documentation/RIPEDatabaseUpdateManual20140425_edit.pdf

The Abandoned Side of the Internet: Hijacking Internet Resources 201

18. Shi, X., Xiang, Y., Wang, Z., Yin, X., Wu, J.: Detecting prefix hijackings in the
Internet with argus. In: Proc. ACM SIGCOMM Internet Measurement Conference
(IMC) (2012)

19. Vervier, P.-A., Thonnard, O.: SpamTracer: How stealthy are spammers? In: 5th
Int. Workshop on Traffic Monitoring and Analysis (TMA 2013) (2013)

20. Vervier, P.-A., Jacquemart, Q., Schlamp, J., Thonnard, O., Carle, G., Urvoy-Keller,
G., Biersack, E.W., Dacier, M.: Malicious BGP hijacks: appearances can be deceiv-
ing. In: IEEE ICC Communications and Information Systems Security Symposium
(ICC CISS 2014) (2014)

21. Wählisch, M., Maennel, O., Schmidt, T.C.: Towards Detecting BGP Route Hijack-
ing Using the RPKI. ACM SIGCOMM CCR 42(4), 103–104 (2012)

22. Zhang, Z., Zhang, Y., Hu, Y.C., Mao, Z.M., Bush, R.: iSPY: Detecting IP prefix
hijacking on my own. IEEE/ACM Trans. on Networking 18(6), 1815–1828 (2010)

23. Zheng, C., Ji, L., Pei, D., Wang, J., Francis, P.: A light-weight distributed scheme
for detecting IP prefix hijacks in real-time. In: Proc. ACM SIGCOMM 2007,
pp. 277–288 (2007)

New Protocols

DoS Amplification Attacks – Protocol-Agnostic
Detection of Service Abuse in Amplifier

Networks

Timm Böttger1(B), Lothar Braun1 , Oliver Gasser1, Felix von Eye2,
Helmut Reiser2, and Georg Carle1

1 Technische Universität München, Munich, Germany
{boettget,braun,gasser,carle}@net.in.tum.de

2 Leibniz Supercomputing Centre, Munich, Germany
{voneye,reiser}@lrz.de

Abstract. For many years Distributed Denial-of-Service attacks have
been known to be a threat to Internet services. Recently a configura-
tion flaw in NTP daemons led to attacks with traffic rates of several
hundred Gbit/s. For those attacks a third party, the amplifier, is used
to significantly increase the volume of traffic reflected to the victim.
Recent research revealed more UDP-based protocols that are vulnerable
to amplification attacks. Detecting such attacks from an abused ampli-
fier network’s point of view has only rarely been investigated.

In this work we identify novel properties which characterize ampli-
fication attacks and allow to identify the illegitimate use of arbitrary
services.

Their suitability for amplification attack detection is evaluated in large
high-speed research networks. We prove that our approach is fully capa-
ble of detecting attacks that were already seen in the wild as well as
capable of detecting attacks we conducted ourselves exploiting newly
discovered vulnerabilities.

1 Introduction

Denial-of-Service attacks aim at making services unavailable to their intended
users. Attackers can use different methods to consume bandwidth or deplete
other resources of the victim. One method to exhaust bandwidth is called Dis-
tributed Reflection Denial-of-Service (DRDoS) attack: an attacker sends forged
requests to several servers with the victim’s spoofed source address. In response
the servers will send replies to the victim. If these replies are significantly larger
than the requests the attack is called an amplification attack.

Recent research has shown that at least 14 UDP-based protocols are vulner-
able to such attacks [10]. Reports show that current amplification attacks can
result in more than 100 Gbit/s of bandwidth consumption [11]. The spam block-
list provider Spamhaus was attacked by a DNS amplification attack in March
2013 with an unprecedented traffic rate of up to 300 Gbit/s [8].

c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 205–218, 2015.
DOI: 10.1007/978-3-319-17172-2 14

206 T. Böttger et al.

Researchers proposed many different mechanisms to identify and protect vic-
tims of DRDoS attacks. Furthermore commercial products for this purpose exist.
One provider of such products is CloudFlare [1], who successfully mitigated
the above mentioned attack against Spamhaus. In contrast the development of
approaches to detect actual service abuse received less attention. Operators of
amplifier networks (i.e. networks in which services are abused as amplifiers) are
in a good position to take effective countermeasures if they are aware of that
their services are used in an attack. However, to enable service operators to
employ countermeasures, they first must know that their services are abused
as amplifiers. Unfortunately detecting amplification attacks on the border of an
amplifier network is more challenging, because illegitimate incoming requests
might look the same as legitimate requests.

In this paper we present a novel method to detect service abuse of arbitrary
UDP-based protocols in amplifier networks. Our method leverages knowledge
on amplification attacks to distinguish legitimate client requests from spoofed
attack requests. We evaluate our method with measurements in a large-scale
university network. Furthermore, we inject our own attacks into the network for
protocols that are known to be exploitable, but for which we did not observe
any real world attacks yet.

The remainder of the paper is structured as follows: In Sect. 2 we dis-
cuss related work on amplification attacks and DRDoS detection. The following
Sects. 3 and 4 present our detection mechanism: we start with already known
yet still important prerequisites in Sect. 3 and continue with describing our new
approach in Sect. 4. We evaluate the approach in Sect. 5, followed by a discus-
sion on the approach’s limitations in Sect. 6. Finally, we conclude the paper in
Sect. 7.

2 Related Work

Denial-of-Service attacks have been an active research topic for many years.
Specht and Lee provide a taxonomy of attacks, tools and countermeasures and
give a good overview of different DoS attack types [12]. Among other attacks,
the authors discuss amplification as one way to generate large amounts of attack
traffic. Certain protocols, e.g. DNS or SNMP, have long been known to be vul-
nerable to amplification attacks: Several studies analyze amplification attacks
based on the DNS protocol and researchers proposed different methods to iden-
tify attack victims [4], [9], [14]. The majority of these studies aims at finding
attacks on the border of the victim’s network or at detecting attacks which
target specific application layer protocols.

Other protocols have recently been identified to be vulnerable to amplifica-
tion attacks. Rossow revisits a number of UDP-based applications and identifies
14 of them to be vulnerable [10]. He describes how these protocols can be used
to conduct attacks and analyzes their possible impact. Even though the list of
vulnerable protocols is impressive and contains protocols that have not been
known to be vulnerable, it is also known that further protocols such as SIP

DoS Amplification Attacks – Protocol-Agnostic Detection of Service Abuse 207

are vulnerable as well [2]. Based on such findings, one can presume that other
protocols could be vulnerable to amplification attacks as well. Therefore we see
the need for an amplification attack detection mechanism that works indepen-
dently from specific protocols. The detection method presented in this paper is
protocol-agnostic and thus differs from previous approaches focusing mostly on
individual protocols.

Rossow presents a first detection approach for amplifier networks that is
based on NetFlow data [10]. He compares the amount of request and response
data sent between a client and a server and reports an attack if a certain thresh-
old is exceeded. The approach is restricted to network protocols that are known
to be vulnerable and operate on a fixed UDP port. At the same time he also
acknowledges that protocols which exhibit a download-like behavior, e.g. the
also vulnerable BitTorrent protocol, will lead to false positives.

Rossow also discusses other approaches for detecting amplification attacks
and compares them to his own proposal. Since our work relies on the same
considerations as his work, all his considerations apply to our approach as well.
We therefore refer the reader to the paper by Rossow [10] for further discussion
and comparison with other related work.

3 Important Prerequisites

Some important prerequisites needed for our detection approach to work were
already formalized and described by Rossow in [10]:

To identify attacks the communication between a server and a client has
to be modeled. In certain protocols, e.g. DNS, the client uses a new port for
each request message. The communication between a single client and server
can therefore result in multiple UDP flows. To aggregate such a set of flows
Rossow proposes to use a so-called pairflow for each server/client pair:

pairflow :=< CIP , SIP , Sport, B2s, B2c, t > (1)

In a pairflow CIP matches the client IP, SIP and Sport are the server’s IP and
port. Furthermore the payload bytes sent to the server (B2s) and to the client
(B2c) are assessed. The duration t of the pairflow is recorded for calculating
average rates. To identify the server in a communication flow a fixed set of 14
well-known UDP server ports is used.

In addition Rossow defines the so-called bandwith amplification factor (BAF)
to characterize the amount of traffic exchanged between client and server. The
BAF is calculated per pairflow as:

BAF =
len(UDP payload) amplifier to victim
len(UDP payload) attacker to amplifier

(2)

Communication between a server and a client with at least a 10 kBit/s data
exchange rate, a BAF larger than five and a server that sends more than 10 MB
of payload is classified to be an amplification attack.

208 T. Böttger et al.

4 Detection Approach

Our detection approach exploits characteristics of attack traffic to distinguish
it from legitimate traffic. For modeling the communication relationship between
server and client we rely on the foundations laid by Rossow as explained in the
previous section. We also stick to his thresholds, i.e. classifying a pairflow as
an attack if it exhibits a BAF of five and more than 10MB of traffic are sent
towards the victim. These thresholds are reasonable as amplification attacks are
characterized by an amplifier which sends a lot more traffic than it receives.
Hence we expect pairflows corresponding to an amplification attack to exhibit
a (relatively) large BAF. The threshold of 10MB is probably large enough to
not be easily reached with simple requests but at the same time should be small
enough such that amplification attacks certainly reach it.

In contrast to Rossow we want to provide a protocol-agnostic approach that
does not depend on a fixed set of well-known UDP server ports. To build a
pairflow, however, we need to identify the client and server roles of the com-
munication. As these roles can not be reliably determined we assume that the
servers are within our network. This simplification is reasonable because we want
to detect amplifiers within the monitored network. However, this might lead to
internal clients being treated as servers, potentially resulting in false positives.

As opposed to Rossow we are not working with NetFlow data, thus we chose
to apply ten minutes active/inactive timeouts to each pairflow.

4.1 Characteristic Properties of an Amplification Attack

Even though the bandwidth and BAF criteria are surely fulfilled by every ampli-
fication attack relying only on these two criteria is, as we will show later in
Sect. 5, not sufficient because they are also fulfilled by legitimate service usage
(e.g. Peer-to-Peer or VPN traffic). Hence more criteria are needed to prevent
false positive alarms from being generated.

To derive further criteria it is beneficial to discuss certain aspects of an ampli-
fication attack in more detail: To conduct an amplification attack the attacker
sends requests to an amplifier service, which she expects to be answered with
responses larger than the requests. These responses are in turn sent to the vic-
tim. In order to accomplish this task, the attacker must use the IP address of
the victim as source address for her requests.1 If the attacker is not located on
the same broadcast domain as the amplifier or the victim, which is the common
case we focus on, then the attacker will not see any response packets from the
amplifying service.
1 It seems reasonable to assume that nowadays filter mechanisms to mitigate IP spoof-

ing are widely deployed. Unfortunately the Spoofer Project reports that roughly
40% of all AS’ worldwide allow (at least partially) for using spoofed sender IP
addresses [13]. Furthermore to effectively prevent IP spoofing all AS’ must filter
their traffic, because the attacker needs to find only one AS allowing spoofed IP
addresses. Hence we must IP spoofing expect to happen.

DoS Amplification Attacks – Protocol-Agnostic Detection of Service Abuse 209

Therefore an attacker can neither establish shared state with the amplifying
service through the request packets, nor can she be sure that her requests produce
the desired response. As a consequence she cannot send arbitrary requests to
the amplifying service, but only those that do not require shared state. She
furthermore is interested in sending requests where she is reasonably sure to
produce a large response. As the possible requests an adversary would use are
limited, we expect highly similar messages from the attacker during a single
attack. In turn the responses generated by the amplifier are also expected to
share similarities.

If an attacker is successful with provoking the amplifier to generate messages,
then the victim will receive many unsolicited messages, i.e. messages that it did
not request and hence not expects. A reasonable network stack should react to
such unsolicited messages by sending ICMP port unreachable messages. There-
fore in the early stages of an attack, when the resources are not yet depleted,
such ICMP messages sent by the victim might be observed.

4.2 Improved Amplification Attack Detection Criteria

Based on the previous considerations we propose to use the following additional
criteria for amplification attack detection:

Request and Response Packet Size Similarity: The attacker wants to
obtain a large amplification factor while at the same time she is, as argued
above, restricted in the requests she can send. Thus she is likely to only use a
very small set of different requests, for which she verified in advance that they
will generate large responses. A simple attacker might even stick to using only
the one request which yields the highest amplification factor. In conclusion the
attacker will only use a few different short requests, so we expect the sizes of the
request messages to be very similar.

The amplifying service on the other hand cannot rely on shared state with
the attacker, therefore, if not returning random information, the responses to
the same request are expected to be similar. Likewise, as the attacker only uses
a few different request messages, the amplifying service can only generate a few
different responses. Thus we also expect the sizes of the response messages to
be similar between all responses belonging to a single attack. To measure this
similarity we assess the packet’s payload sizes in both directions of the commu-
nication.

Request and Response Payload Similarity: We already justified that an
attacker will only rely on a very restricted set of requests. For a single attack
we therefore expect the payloads of the requests sent by the attacker to be
very similar. The responses from the amplifier are expected to exhibit the same
characteristic as these responses are generated by only a small set of different
requests.

In order to assess the similarity of the messages, we apply the deflate com-
pression as provided by the zlib library [16] to the payloads and use the ratio

210 T. Böttger et al.

of compressed and uncompressed size for a similarity estimation. The deflate
algorithm uses both Huffmann coding and LZ77 compression to create the com-
pressed data. To save resources on the monitoring system we sample 100 packets
per direction of a pairflow after this pairflow reached the BAF threshold and
then apply the compression to this sample only. Using the payloads we calculate
a similarity factor (SF) per traffic direction as

SF = 1 − len(deflate(concatenated UDP payload))
len(concatenated UDP payload)

. (3)

A similarity factor close to one indicates good compressible and hence similar
payloads, a similarity factor close to zero indicates rarely compressible and hence
unsimilar payloads. This calculation is performed separately for each direction.

Unsolicited Messages: The messages from the amplifying service that the
victim receives are unsolicited messages. A network stack should react on these
messages with ICMP port unreachable messages if no service is running on the
port that receives the UDP frame. As a further attack indicator we count the
number of ICMP port unreachable messages for any possible victim.

IP Spoofing: We use the IP header field of incoming requests to determine the
path length between the sender of the request and the amplifier service. Initial
TTL field values are set by the operating system and differ between the OS2.
Each IP router on the way decrements the TTL by one. We record the TTL of
the incoming requests and calculate the IP path length by comparing the value
to the nearest known initial value for different operating systems. If we receive
an ICMP reply from the victim, we also extract the path length in the same way.
We can use the difference between those values to check whether the path length
of the request from the attacker and the path length of the victim differ. If we
do not receive any ICMP messages, we try to obtain the path length ourselves
by performing trace routes to the victim.

Other Criteria: Surely there will be further criteria that can be used to dis-
tinguish legitimate and attack traffic. One possible criterion might be the client’s
inter-arrival times. For an attack we would expect very small, almost similar inter-
arrival times,whereas for an interactive sessionwewould expect higher inter-arrival
times with a higher variance. However, so far we restrict our attention to the four
criteria mentioned above and leave further criteria for future research.

2 Linux and many BSD variants use an initial TTL of 64, Windows networking stacks
have an initial value of 128 and some Unix variants start with a TTL of 255.

DoS Amplification Attacks – Protocol-Agnostic Detection of Service Abuse 211

5 Evaluation

We implemented our method as a module of an Intrusion Detection System (IDS)
and evaluated it on real traffic traces. Sect. 5.1 describes our measurement setup
in a large university network. As only a small subset of all vulnerable protocols
is currently used in real-world attacks, we additionally conducted attacks our-
selves to also evaluate our approach on the other protocols, which we describe
in Sect. 5.2. Our measurements in a high-speed research network are explained
in Sects. 5.3, 5.4 and 5.5. We begin by briefly presenting the individual mea-
surement runs, continue with using a subset of one run for deriving detection
thresholds and finish by applying these thresholds to all three measurement runs.

5.1 Measurement Setup

We conducted the traffic measurements in the Munich Scientific Network (MWN)
which is operated by the Leibniz Supercomputing Centre (LRZ). This network
infrastructure connects the different sites of the Munich universities, many stu-
dent residence halls, the Bavarian Academy of Science and Humanities, the
Bavarian State Library, Max Planck and Fraunhofer Society institutes and vari-
ous museums. In the course of one month the LRZ handles more than 1200 TByte
of inbound and 730 TByte of outbound traffic. On average the measured link
transmitted 2.6 GBit/s of incoming and approximately 1.5 GBit/s of outgoing
traffic.

The traffic measurements were conducted on a dated commodity server run-
ning a Linux 3.2 kernel. It employs a 3.2 GHz Intel Core i7 CPU with four cores
with hyperthreading and 12 GB RAM. The machine is connected to a moni-
toring session at the LRZ’s border gateway router via an Intel 10 GE network
card that is based on the 82598EB chipset. The card is driven by PF RING
and Direct NIC Access (DNA) [6], which is a zero-copy solution that allows the
network card to directly copy packets into the userspace application without
any CPU overhead. The capturing was configured to pass only UDP and ICMP
traffic to the user space application, because we expect IP address spoofing to
happen only on UDP.

5.2 Generated Attack Traffic

During our initial investigation, we realized that the only real-world attacks in
the network were abusing DNS and NTP services. However, recent prior research
showed that additional protocols are vulnerable [10]. In order to evaluate whether
our approach is suitable to detect those cases, we created our own attacks on
known vulnerable protocols. We searched for freely available attack tools for
amplification attacks and found several that supported attacks on SNMP, DNS
and NTP. None of the other vulnerable protocols were supported by these tools,
so we added support for these protocols. The functional extensions are imple-
mented to exploit the vulnerabilities as outlined in [2] and [10] .

212 T. Böttger et al.

Some of the vulnerable protocols could easily be exploited: NTP, DNS,
SNMPv2, Chargen and SIP have implementations that are simple to exploit if the
service is provided to the open Internet. For some protocols we had to alter the
standard configurations, as per default the services are configured securely.

Other services posed more difficulties: The legacy Quote-of-the-Day (QOTD)
service’s exploitability strongly depends on the actual implementation and the
size of the returned quotes. Implementations following the recommendations of
the RFC [7] only send quotes with 512 or less characters. Therefore they can only
produce low bandwidth attacks. Nevertheless exploiting the protocol is possible.

For aMule, Quake3 and Steam we are able to confirm their vulnerability.
However, all of them include hard-coded rate-limits which effectively prohibit
the generation of significant attack traffic. Thus we could not include them in
our evaluation. Similarly many BitTorrent clients employ rate-limiting for their
vulnerable DHT protocol. However, when intially writing this paper we discov-
ered that the Mainline DHT plugin of Vuze [15] was vulnerable. More recent
versions seem not to be vulnerable to our attacks any longer.

We created attacks using services we deployed in the monitored amplifier
network. Both attacker and victim networks were placed outside the monitored
networks. This setup allowed us to inject the attack traffic and simultaneously
monitor it as part of our live traffic measurements. Our attacks lead to amplifi-
cation factors (BAFs) ranging from roughly five (BitTorrent) and ten (SIP) up
to 2,500 (NTP). Using the NTP protocol we generated 500MB per attack, using
BitTorrent we generated roughly 100MB and using SIP only 30MB.

5.3 The Measurement Runs

For the final evaluation of our detection approach we conducted three measure-
ment runs. The first one took place from June 7 until June 13, 2014 and lasted for
144 hours. The second run lasted for 96 hours from September 26 until Septem-
ber 30, 2014. The last run was performed from September 30 until October 1,
2014 and captured another 24 hours. For each run we logged all the pairflows
exceeding the BAF-thresholds mentioned in the beginning of Sect. 4. The infor-
mation in Table 1 thus refers to all logged pairflows only. We only conducted
own attacks during measurement run #1.

Table 1. Measurement Runs

Run #1 Run #2 Run #3

Duration (in h) 144 96 24
Total Bytes Sent 7,340.66 GB 3,425.62 GB 734.67 GB
Total Packets Sent 6,589,456,476 3,208,724,852 674,865,692

Total Pairflows Reported 77,693 45,747 10,974
Unique Server-Port-Client Triples 22,428 14,567 4,058
Unique Server-Port Pairs 3,324 1,682 504
Unique Servers 530 309 204

DoS Amplification Attacks – Protocol-Agnostic Detection of Service Abuse 213

5.4 Deriving Detection Thresholds

If we want to use the criteria explained above to detect amplification attacks,
we must first define detection thresholds. For that we extracted a sample set
of pairflows, which we manually classified as attacks or legitimate traffic. This
training set was chosen as a subset of the first measurement by only considering
an 8 hour timeframe. It was chosen in such a way that it includes most of
the attacks we conducted ourselves. The training set covered roughly 5% of
the traffic captured during the first measurement run. Table 2 contains further
details about the size of the training set.

Table 2. Training Set

Training Set Run #1 Share

Duration (in h) 8 144 5.55%
Total Bytes Sent 380.19 GB 7,340.66 GB 5.18%
Total Packets Sent 365,076,992 6,589,456,476 5.54%

Total Pairflows Reported 4,883 77,693 6.28%
Unique Server-Port-Client Triples 1,573 22,428 7.01%
Unique Server-Port Pairs 348 3,324 10.47%
Unique Servers 146 530 27.54%

In the following we will separately deal with our attacks using the Quote-
of-the-Day (QOTD) protocol. They are unique in the sense that for the same
request the server can reply with an arbitrary quote. This will significantly inter-
fere with our detection criteria as we assumed that for a reasonable service the
replies to the same request will be the similar. But as QOTD is the only3 ser-
vice exhibiting this behavior network operators will be able to compensate for
attacks using this one special service. Nevertheless dealing with QOTD services
even today is relevant as identifying a thousand exploitable QOTD services in the
Internet took Rossow less than four minutes on average [10]. It is true that also
for other attacks the attacker can try to evade the detection by using different
requests. However, to achieve a significant impact she will still have to stick to a
set of requests yielding a high amplification factor. Thus by just sampling more
packets per pairflow the similarity can still be detected and this problem can
be remediated. But so far we did not observe any attacks with varying request
patterns.

We begin with how the similarity factors differ between attack and legitimate
traffic. Please not that in the following each pairflow is only displayed once. Hence
multiple attacks from the same attacker towards the same victim using the same
protocol only result in one data point plotted. According to Fig. 1 the similarity
factors already seem to provide a measure to distinguish the two classes of traffic:
3 Every other service exhibiting this behavior can be seen as QOTD service with a

very broad set of quotes.

214 T. Böttger et al.

As we claimed above for attacks we observe high similarity factors whereas for
legitimate traffic the similarity factors are significantly lower. As expected the
QOTD-attacks exhibit a significantly lower similarity factor as the other attacks.
Based on our training set we choose to require similarity factors of 0.75 or more
in each direction to classify a pairflow as an attack. This choice ensures that
all attacks are captured while at the same time the vast majority of legitimate
pairflows is not captured. The SF-values less than zero are artifacts caused by
our packet capture method. They stem from pairflows from which due to active
timeouts only a few packets were sampled. This lead to an increased size after
compression.

Fig. 1. Similarity Factors Fig. 2. Packet Sizes To Client

As second criterion we want to evaluate the difference in the sizes of the
packets. We calculated the difference between the average packet size and the
minimal resp. maximal packet size and took the smaller of the two differences. As
Fig. 2 and 3 indicate these differences are also different for attack and non-attack
traffic. In accordance with these figures the remainder of this paper requires a
difference of 25 or less bytes of the packet sizes in either direction to client or
direction to the server for an amplification attack to happen.

We also tried exploiting the ICMP unreachable replies. As shown in Fig. 4 it
is true that for attack traffic we observe more ICMP unreachable replies as for
legitimate traffic. But even in our small subset of mostly controlled attacks the
number of ICMP unreachable replies varies largely. As we cannot assure that
for every attack ICMP unreachable replies are present, we will not further use
this criterion for our attack detection. However as their presence still is a strong
indicator for an undesired behavior resp. an attack, the generated alarms should
be enriched with the number of observed ICMP unreachable replies.

The same is true for the path length detection. We could only obtain path
length information for a minority (roughly 20%) of all pairflows. Thus we cannot

DoS Amplification Attacks – Protocol-Agnostic Detection of Service Abuse 215

Fig. 3. Packet Sizes To Server Fig. 4. ICMP Port Unreachable Replies

rely on mismatches in path length for the actual attack detection, but for a
pairflow classified as attack the path length information can be used to harden
the detection result.

As the MWN connects different types of users like universities, student halls
or research institutions, the traffic we observe is a representative cross-section
of different network types. We therefore believe that for other networks similar
thresholds as the ones we derived here can be used.

5.5 Live Measurement Evaluation

To evaluate the decisiveness of our new criteria and thresholds we applied them
to all pairflows exceeding the BAF-thresholds. After applying them we manually
verified all pairflows that were marked as an attack. For the pairflows classified
as legitimate traffic we only verified that we did not miss an attack using one of
the well-known vulnerable protocols.

We grouped alerts by the triple of server, port and client, hence a long-lasting
attack resulting in several pairflows is counted only once. Table 3 summarizes
the detection results and proves that our approach is capable of very precisely
distinguishing legitimate from attack traffic. It detected all attacks that took
place and at the same time produced only very few false positive alarms.

Table 3. Detection Summary

Run #1 Run #2 Run #3

BAF identified services 3,324 1,682 504
BAF identified alarms 22,428 14,567 4,058

True positive alarms 277 30 18
False positives alarms 3 9 0

True negative alarms 22,149 14,534 4,041
False negatives alarms 0 0 0

For the true positives we encountered some attacks (roughly five per run)
using the SIP-protocol, which were similar to our own attacks. Thus we classify

216 T. Böttger et al.

them as amplification attacks, while we cannot distinguish them from enumer-
ation attacks for sure. In any case, administrators should be informed about
them.

All the false positive alarms were mainly raised due to highly similar pay-
load content. For all of them we determined the used application layer protocol
with nDPI [5] resulting in six alarms for BitTorrent, one for Skype and two for
unknown protocols. In all cases we could manually verify the similarity of the
payloads due to the presence of repeating byte patterns. For Skype and BitTor-
rent we cannot explain what caused the similarity. For the unknown protocol a
lot of null-bytes were observed which were probably used for payload padding.

This evaluation further proves that our additional criteria are necessary.
When omitting them and only relying on the BAF-criteria from the beginning of
Sect. 4, all pairflows that our approach classified as true negative alarms would
be classified as amplification attacks. Thus applying only the BAF-criteria to all
server ports without additional checks leads to a large amount of false positive
alarms.

6 Detection Evasion and Limitations

In the following we will discuss evasion strategies and limitations of our approach.

Evading Detection: Our detection approach imposes assumptions on the
attacker’s behavior which can be used by an attacker to evade the detection.
First of all we require a certain BAF and amount of traffic to be sent. An attacker
can clearly evade our detection by generating less traffic. However, by doing so,
she reduces the impact of the attack, which is desirable from our point of view.
When reducing the amount of traffic sent below our detection rate, the impact
of this attack is very low and hence neglectable. To overcome this an adversary
could employ several amplifiers and forging requests such that each amplifier
does not send more than 10 MB of traffic in ten minutes. However, to achieve a
significant impact many amplifiers must be used as for this scenario each single
amplifier may not exceed an average outgoing traffic rate of 136 kBit/s.

Instead of reducing the amount of attack traffic, an attacker can try to adapt
his request packet lengths and payload entropy. She has two ways to achieve this
goal: Firstly, she can send garbage messages to the amplifying service that are
not legitimate messages. Since we have a generic protocol-independent approach,
we cannot detect this. However, the attacker will reduce his amplification factor
if she sends such messages. Secondly, she can try to employ different types of
messages in his attack, which still result in large response messages. In general,
however, this decreases the amplification factor as typically only a few requests
yield high amplification ratios. This can be further dealt with by sampling more
packets per pairflow to get a better estimate of the message similarity. Figure 1
indicates that there is a large gap between attacks and legitimate traffic when
evaluating the similarity factors. Hence lowering the detection threshold should
allow for detecting even attacks with a varying request message scheme while at

DoS Amplification Attacks – Protocol-Agnostic Detection of Service Abuse 217

the same time only very few additional false positive alarms are raised. Evading
the detection of our approach would therefore reduce the impact that an attacker
can have with his amplification attack.

Limitations of the Approach: We rely on estimating the entropy of the com-
munication. If an attacker succeeds in generating encrypted amplification traffic,
this criterion will fail as encrypted traffic looks rather random. However, we argue
that generating encrypted amplification traffic is not easily achievable. Setting
up encryption requires holding state which in case of an amplification attack as
explained above is not possible.

The approach is designed for networks that can be monitored at a single
point, in the simplest case for networks having only one uplink. If a network
is connected through multiple uplinks our approach can still be applied if the
traffic running through the uplinks is consolidated in a suitable way at single
monitoring points. This might be achieved by consolidating all traffic at one
monitoring point or at multiple monitoring points by applying a suitable split-
ting scheme. Nevertheless monitoring a network with multiple uplinks is a more
general problem set which is out of the scope for this paper.

7 Conclusion

Distributed Reflection Denial-of-Service attacks are responsible for significant
disruptions in the Internet. Recent research mainly has focused on detection
of DRDoS-attacks on the edge of the victim’s network. The potential counter-
measures against such attacks that service operators in amplifier networks can
employ remained unused, as detection of such attacks was hardly possible. In
this paper we presented a novel approach to successfully solve this shortcoming.

As detection base we reused ideas from an already existing detection app-
roach. Our key contributions are two novel detection criteria which allow for
distinguishing between legitimate and attack traffic for any arbitrary application
protocol. We showed that our protocol-agnostic approach enhances the detection
process by not only defending against attacks on static port numbers, but also
to thwart novel DRDoS attacks. Our practical evaluation in a large scientific
network revealed that with our approach we were able to detect real attacks as
well as artificial attacks that used new vulnerabilities.

In comparison to other mitigation strategies, like e.g. BCP 38 [3], our app-
roach is applicable in the amplifier network, where the BCP 38 approach focuses
on filtering in the attacker’s network. Patching or disabling affected services also
is a possible solution, however simply patching or disabling might not always
be possible. With our approach network operators can at least detect ongoing
amplification attacks. Additionaly our method only requires modest hardware;
we used a dated commodity server.

In the future the detection scheme can be improved by changing it to a
feedback-driven approach using machine-learning capabilities. We are confident
that the criteria we developed in this paper will be suitable features for such

218 T. Böttger et al.

an approach. Additionally measures to detect IP spoofing will surely help to
strengthen the detection results.

Acknowledgments. This work has been supported by the German Federal Min-
istry of Education and Research (BMBF) under support code 01BY1203C, project
Peeroskop, and 16BP12304, EUREKA project SASER, and by the European Commis-
sion under the FP7 project EINS, grant number 288021.

References

1. CloudFlare. https://www.cloudflare.com/ (last accessed: December 2014)
2. Özavci, F.: VOIP Wars: Return of the SIP, DEFCON 21, August 2013.

http://www.defcon.org/images/defcon-21/dc-21-presentations/Ozavci/DEFCON-
21-Ozavci-VoIP-Wars-Return-of-the-SIP-Updated.pdf (last accessed: December
2014)

3. Ferguson, P., Senie, D.: Network Ingress Filtering: Defeating Denial of Service
Attacks which employ IP Source Address Spoofing. RFC 2827 (Best Current Prac-
tice), May 2000. http://www.ietf.org/rfc/rfc2827.txt, updated by RFC 3704

4. Kambourakis, G., Moschos, T., Geneiatakis, D., Gritzalis, S.: Detecting DNS
amplification attacks. In: Lopez, J., Hämmerli, B.M. (eds.) CRITIS 2007. LNCS,
vol. 5141, pp. 185–196. Springer, Heidelberg (2008)

5. nDPI-Homepage. http://www.ntop.org/products/ndpi/ (last accessed: December
2014)

6. Direct NIC Access - Gigabit and 10 Gigabit Ethernet Line-Rate Packet Cap-
ture and Injection. http://www.ntop.org/products/pf ring/dna/ (last accessed:
December 2014)

7. Postel, J.: Quote of the Day Protocol. RFC 865 (INTERNET STANDARD), May
1983. http://www.ietf.org/rfc/rfc865.txt

8. Prince, M.: The DDoS That Almost Broke the Internet, March 2013. http://blog.
cloudflare.com/the-ddos-that-almost-broke-the-internet (last accessed: December
2014)

9. Rastegari, S., Saripan, M.I., Rasid, M.F.A.: Detection of Denial of Service Attacks
against Domain Name System Using Neural Networks. International Journal of
Computer Science Issues (IJCSI) 7(4) (2009)

10. Rossow, C.: Amplification hell: Revisiting network protocols for DDoS abuse.
In: Proceedings of the 2014 Network and Distributed System Security (NDSS)
Symposium, San Diego, CA, February 2014

11. Soluk, K.: NTP ATTACKS: Welcome to The Hockey Stick Era, February
2014. http://www.arbornetworks.com/asert/2014/02/ntp-attacks-welcome-to-
the-hockey-stick-era/ (last accessed: December 2014)

12. Specht, S., Lee, R.: Distributed denial of service: Taxonomies of attacks, tool and
countermeasures. In: Proceedings of the ISCA 17th International Conference on
Parallel and Distributed Computing Systems, San Francisco, CA, September 2002

13. Spoofer Project: State of IP Spoofing. http://spoofer.cmand.org/summary.php
(last accessed: December 2014)

14. Sun, C., Liu, B., Shi, L.: Efficient and low-cost hardware defense against DNS
amplification attacks. In: IEEE Global Telecommunications Conference (GLOBE-
COM 2008). IEEE (2008)

15. Vuze homepage. http://www.vuze.com/ (last accessed: December 2014)
16. zlib Homepage. http://www.zlib.net/ (last accessed: December 2014)

https://www.cloudflare.com/
http://www.defcon.org/images/defcon-21/dc-21-presentations/Ozavci/DEFCON-21-Ozavci-VoIP-Wars-Return-of-the-SIP-Updated.pdf
http://www.defcon.org/images/defcon-21/dc-21-presentations/Ozavci/DEFCON-21-Ozavci-VoIP-Wars-Return-of-the-SIP-Updated.pdf
http://www.ietf.org/rfc/rfc2827.txt
http://www.ntop.org/products/ndpi/
http://www.ntop.org/products/pf_ring/dna/
http://www.ietf.org/rfc/rfc865.txt
http://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
http://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
http://www.arbornetworks.com/asert/2014/02/ntp-attacks-welcome-to-the-hockey-stick-era/
http://www.arbornetworks.com/asert/2014/02/ntp-attacks-welcome-to-the-hockey-stick-era/
http://spoofer.cmand.org/summary.php
http://www.vuze.com/
http://www.zlib.net/

Measuring DANE TLSA Deployment

Liang Zhu1(B), Duane Wessels2, Allison Mankin2, and John Heidemann1

1 University of Southern California, Angeles, US
liangzhu@usc.edu

2 Verisign Labs, San Francisco, US
{dwessels,amankin}@verisign.com

Abstract. The DANE (DNS-based Authentication of Named Entities)
framework uses DNSSEC to provide a source of trust, and with TLSA
it can serve as a root of trust for TLS certificates. This serves to com-
plement traditional certificate authentication methods, which is impor-
tant given the risks inherent in trusting hundreds of organizations—risks
already demonstrated with multiple compromises. The TLSA
protocol was published in 2012, and this paper presents the first sys-
tematic study of its deployment. We studied TLSA usage, developing
a tool that actively probes all signed zones in .com and .net for TLSA
records. We find the TLSA use is early: in our latest measurement, of
the 485k signed zones, we find only 997 TLSA names. We characterize
how it is being used so far, and find that around 7–13 % of TLSA records
are invalid. We find 33 % of TLSA responses are larger than 1500 Bytes
and will very likely be fragmented.

1 Introduction

The Domain Name System (DNS) is central to Internet use. Originally used
mainly to map between names and IP addresses or services, DNS has grown to
support many other applications. To protect DNS information from modifica-
tion or forgery, DNS Security Extensions (DNSSEC) provides integrity of DNS
data via a cryptographic chain of trust following the DNS hierarchy. Traditional
public-key infrastructure (PKI) places trust in multiple Certification Authori-
ties (CAs, or PKI-CAs). Rather than the PKI’s many roots and shallow tree,
DNSSEC provides a single root and deeper hierarchy, decreasing the size of the
root of trust and thus its vulnerability to compromise.

DANE (DNS-based Authentication of Named Entities) takes advantage of the
DNSSEC-provided root of trust to authenticate TLS (Transport Layer Security)
certificates. It places TLSA records in the DNS hierarchy and uses DNSSEC
to validate their integrity. DANE TLSA therefore complements PKI Certificate
Authorities, allowing TLS-users to better control certificates validation and pro-
tect against classes of CA compromise (as has occurred before [5,6]).

The DANE standard was published in 2012 [14], relatively recently. Although
standardized, little is known about how actively DANE is being used. After two
years, how many domains are using DANE? How widely used is TLSA? In this
paper, we start to answer these questions.
c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 219–232, 2015.
DOI: 10.1007/978-3-319-17172-2 15

220 L. Zhu et al.

This paper presents the first systematic study of DANE TLSA deployment.
Its first contribution is to describe an efficient methodology to actively probe
DANE TLSA deployment status for three protocols on six ports. We apply
this method to get a complete view of DANE usage at the two largest generic
top-level domains (gTLDs): .com and .net for more than four months. (Passive
monitoring would provide an incomplete view.) Our second contribution is to
track DANE TLSA growth. We see that deployment remains very early, with
only 997 TLSA names of the 485k DNSSEC zones, but use is steadily increasing
(§4.1). Our third contribution is to evaluate DANE usage in two ways. We check
for correct use of TLSA, and we consistently find 7%-13% of TLSA records are
invalid: no IP address, no certificate, or a mismatch between the TLSA record
and the certificate (§4.3). This high rate of misconfiguration suggests that DANE
remains experimental, not mandatory. DANE has several operational modes, so
we also characterize which are most popular, finding that DANE is most often
used (76% of the time) to establish trust independent of the public CA hierarchy
(§4.4). Our final contribution is to evaluate how DANE interacts with UDP. We
find that find 33% of TLSA responses exceed the Ethernet MTU and will be
fragmented at the IP layer, raising potential performance issues (§4.5).

2 Background and Related Work

We next briefly review DNS, DNSSEC, and DANE TLSA, and prior work observ-
ing DNS.

2.1 DNS

DNS is a protocol that maps domain names to Resource Records (RRs) using
globally distributed servers to provide a consistent global namespace distributed
across millions of servers [20,21]. There are many types of RRs, from A and AAAA
for IPv4 and IPv6 addresses, or MX for the mail server for a given domain. RRs are
stored in zones, with each zone managing part of the namespace (*.example.com).
An authoritative name server provides the answer for a zone.

2.2 DNSSEC

DNS originally assumed a cooperative internet, so its basic design did not pro-
tect against malicious attempts to alter or pollute the namespace. DNSSEC
was developed to protect the integrity of DNS responses by cryptographically
signing the zone, allowing anyone to verify that RRs are what the zone owner
intended [2–4]. For most users, DNSSEC trust is anchored in the single, signed
root zone. The chain of trust extends to lower levels of the namespace via signed
delegations in the form of Delegation Signer (DS) records. The operator of a
signed zone is responsible for publishing its DS records in its parent zone.

.com
.net

Measuring DANE TLSA Deployment 221

2.3 DANE TLSA

DANE (DNS-based Authentication of Named Entities) is the idea that DNSSEC
allows the DNS hierarchy to provide a root of trust for different types of infor-
mation. DANE can compliment the traditional public-key infrastructure (PKI)
Certification Authorities (CAs, or PKI-CAs) by giving operators of TLS-based
services more control over how they indicate the authenticity of their TLS certifi-
cates. The CA model has come under scrutiny recently due to CA compromises
and a lack of transparency and choice in the set of trusted CAs.

The DANE framework can provide trust for many different applications.
DANE TLSA [14] is the first of these, providing methods to verify X.509 server
certificates used in Transport Layer Security [9]. This paper addresses the deploy-
ment of DANE TLSA; studies of TLSA design and TLS performance with DANE
are not our focus.

In DANE TLSA, domain name owners publish “certificate association data”
in the DNS as TLSA RRs. TLSA RRs specify how applications can verify an
X.509 certificate. Options range from providing the X.509 certificate itself, iden-
tifying a particular already-known intermediate CA, any already-known inter-
mediate CA, or specify a new CA to serve as trust anchor. It can further specify
whether the entire certificate, or only the public key, must be matched, and
whether matching is based on hashes or an exact match of the given data.
Figure 1 highlights the different ways that TLSA complements and constrains
traditional CA methods.

TLSA associates records with particular network services to support different
certificates for different services on the same host. TLSA names are prefixed with
a port number and protocol name. For example, the TLSA record for the HTTPS
service at www.example.com is stored under the name 443. tcp.www.example.
com.

2.4 Related Work

We are not the first to scan the DNS. Several groups have walked the DNS reverse
hierarchy, and ISC makes this data available publicly [16]. Others have used active
DNS queries to study potential DNSSEC DDoS attacks [33], and uncover opera-
tional practices ofEDNS-Client-Subnet (ECS) adopters [32]. SecSpider has tracked
DNSSEC deployment and health since 2005 [26]. NIST monitors DNSSEC deploy-
ment of a set of government, industry and university domains [23]. Our probing
is similar to these measurements, but targeted tracking growth of DANE TLSA.
The Internet Society also provides pointers to DNSSEC deployment reports [8].
We provide data about DANE TLSA that could fit in such a report.

To support testing, several organizations have created correct or intentionally
misconfigured DANE sites [7,24,37]. Other groups have created websites or tools
that allow one to validate DANE TLSA (and DNSSEC) by request [10,19,22],
both with IPv4 and IPv6 [1,31], and published DANE TLSA enabled mail
servers [19]. Our measurements complement test cases and on-demand tests by
evaluating deployment correctness as seen in the field, at least for two large
TLDs.

www.example.com

222 L. Zhu et al.

(a) Certifi-
cate valida-
tion without
DANE TLSA.

(b) TLSA Usage 0. The TLSA
record constrains the PKIX
validation to a specific certifi-
cate authority.

(c) TLSA Usage 1. The TLSA
record constrains the PKIX
validation to a specific server
certificate.

(d) TLSA Usage 2. The TLSA
record constrains the PKIX
validation to a CA trust an-
chor that might not be known
to the application.

(e) TLSA Usage 3. The TLSA
record specifies a server certifi-
cate that might not validate
via the application’s PKIX
mechanism.

Fig. 1. The different ways that DANE TLSA complements and constrains certificate
validation in applications

3 Monitoring DANE TLSA Deployment

To understand current DANE TLSA deployment we are interested in long-term
observations of its use and growth. We have developed PryDane, a new tool that
takes a set of zone names as input, then evaluates all those that use DNSSEC to
see which also use TLSA. For zones with TLSA records, it also validates whether
records match the the servers’ certificates.

3.1 How to Track TLSA-Enabled Names

Our goal is to track increased deployment of DANE TLSA over time. Since the
DNS is large, TLSA records are currently rare, and we need to probe regularly,
our first challenge is to efficiently search DNS for TLSA use. Two possible meth-
ods present themselves: passive collection from live traffic, and TLD zone files.
Each has advantages and disadvantages.

Measuring DANE TLSA Deployment 223

Fig. 2. Pseudo code of our probing system

Passive collection of DNS (for example, [11]) can provide usage and pop-
ularity with basic DNS data. It also can collect data across the entire DNS
namespace. However, passive collection is likely incomplete, missing zones that
never happen to be used during observation, and collection can be complex and
sometimes unreliable.

Zone files are available for all gTLDs through ICANN’s Centralized Zone
Data Service [15]. We find that zone files are generally more reliable and easier
to process, and they guarantee complete coverage within the TLD. They do not,
however, indicate which names are actually being queried, and do not cover the
entire DNS namespace since most ccTLDs do not make their zone files available.
Nonetheless, for this study, we have chosen to use TLD zone files as our data
source. So far we have only used the .com and .net zone files. See Section 5 for
details about the zone files we used. Including more gTLDs is future work.

To get a set of meaningful targets to probe, we select all DNSSEC signed
names by extracting those delegations that have accompanying DS records. We
ignore non-DNSSEC names because TLSA records are only trustworthy when
their integrity is ensured, and use of TLSA without DNSSEC is an error.

We probe several services that are TLSA early-adopters: HTTPS, SMTP
(mail [29]), and XMPP (Jabber [18,28]). Other services that may use TLS are
VPNs and secure SIP, but we omit these because we know of no deployments
that support DANE TLSA. Table 1 lists when protocol support for TLSA began,
and our gradual addition of protocol coverage. We look for DANE TLSA use
with service discovery methods specific to each protocol as shown in Figure 2.
Generally these probe only with the target domain, but some MX records point
to e-mail servers in domains outside our targets (.com and .net).

.com
.net
.com
.net

224 L. Zhu et al.

Table 1. Protocol and implementation support for TLSA, and when our coverage
begins for each

TLSA Support probing
protocol port date start
HTTPS [9] 443 2013-03-04 [10] 2014-07-14
SMTP [13] 587 2014-01-15 [29] 2014-07-14

25 2014-10-02
465 2014-10-02

XMPP [27] 5222 experimental 2014-10-14
5269 [18,28] 2014-10-14

Table 2. Number of TLSA names on Dec. 3, 2014. We discovered a few TLSA names
outside the zone of .com and .net, since some mail servers are not in those two TLDs.

scanned size 130.30M (100%)
non-DNSSEC 129.82M (99.63%)
DNSSEC 485k (0.37%)

non-TLSA zones ∼485k
TLSA zones 443 [100%]

com and net 365 [82.4%]
other zones 78 [17.6%]

TLSA names 997 {100%}
HTTPS (443) 393 {39.5%}
SMTP (25) 314 {31.5%}

(465) 87 {8.7%}
(587) 105 {10.5%}

XMPP (5222) 49 {4.9%}
(5269) 49 {4.9%}

4 Observations and Findings

Our measurements provide several key findings: estimates of DANE TLSA deploy-
ment, growth, and correctness.

4.1 The Number of TLSA Enabled Names

As of Dec. 3, 2014, PryDane monitors 485k DNSSEC secured .com and .net
zones. Among those, 997 TLSA names are found (Table 2).

Our measurement shows the deployment of DANE TLSA is steady increasing
overall (Figure 3), although the fluctuation of the curve also exists, which we
think is caused by the experimental deployment and occasional DNS failure.
Adding protocols results in jumps in the number of total names that we find
on 2014-10-02 and 2014-10-14. We also find that port-443 TLSA names increase
faster than port-587 names which does not increase much (almost flat curve).
If we project the current linear trend, the population will double in 6 months.

.com
.net
.com
.net

Measuring DANE TLSA Deployment 225

Fig. 3. Number of TLSA names and zones over 142 days. New probes are added during
our measurement: (a) add probing SMTP port 25 and 465; (b) add probing XMPP
port 5222 and 5269.

Table 3. Sample zone numbers and penetration of DNSSEC and DANE TLSA at the
end of our current observation

zone date total DNSSEC TLSA Pdnssec Ptlsa

com 2014-12-03 115.2M 405k 183 .0035 .0005

net 2014-12-03 15.1M 79k 182 .0053 .0023

Growth so far is largely linear but our collection methodology will allow longer
observation to determine if usage increases and follows an S (sigmoid) curve.

Currently there are only few applications, such an add-on [10] available for
common browsers and Postfix mail server [29], supporting DANE TLSA. Deploy-
ment of DANE TLSA should pick up quickly as the application support is imple-
mented.

4.2 Compare DANE TLSA and DNSSEC Deployment

To understand the deployment of DANE TLSA, we compare the growth of
DNSSEC and DANE TLSA over time. We find DANE TLSA is growing well
given it’s relative immaturity.

To compare them we consider the penetration of each technology into its
base of possible users. We define the penetration of DANE TLSA (Ptlsa) as the
fraction of the number of TLSA zones over all DNSSEC zones (Ntlsa/Ndnssec).
Since Ntlsa is limited by Ndnssec (DANE TLSA replies on DNSSEC for authen-
tication), we normalize by the number of DNSSEC zones. We consider a zone to
be TLSA active if that zone contains at least one TLSA record. Similarly, the
penetration of DNSSEC (Pdnssec) is the fraction of zones using DNSSEC over
all active zones (Ndnssec/Nall).

226 L. Zhu et al.

Fig. 4. TLSA validation (ports 443 and 587 only) without cert usage 0 over 142 days.
There are consistently 7%-13% TLSA enabled names do not match servers’ certificates
(lower red bars).

We obtain DNSSEC data from TLDs operators. Combining those with our
measurement results, we track Ptlsa and Pdnssec during our time of observation.
The absolute values of penetration are small for both TLDs (less than 0.6%)
Table 3, indicating DNSSEC deployment is still modest, 9 years after stan-
dardization. Compared to current DNSSEC deployment, DANE TLSA seems
promising given its novelty (only 2 years after standardization). We observe
Pdnssec > Ptlsa because of greater DNSSEC maturity. Ideally we would compare
the first year of DNSSEC deployment with current DANE TLSA deployment.
However, the correct data of early DNSSEC deployment is not available because
many zones had DNSSEC signed names before the signing of .com and .net
zones.

4.3 TLSA Record Validation

Having found TLSA records, we also check them for correct usage. We find 7–
13% TLSA records are consistently showing invalid over two months (Figure 4).
We identify several problems: no IP address, no certificate, or a mismatch between
the TLSA record and the certificate at the IP address. We categorize our TLSA
validation results in the following.

No IPv4: There are some domain names having an associate TLSA record,
but without an A record (no IPv4 address). In this case, it’s impossible to get a
certificate through IPv4, thus no validation could be done. Over 142 days of our
observation, 24 unique domain names in total fall into this case. Among those, 5
domain names consistently report no IPv4 addresses every day. To further study
the consistent no-IPv4 names, we queried AAAA record (IPv6) for those names.
We found 3 of them pointing to the same CNAME record having a IPv6 address,
one of them has an IPv6 address, and the rest don’t have IPv6 address.

.com
.net

Measuring DANE TLSA Deployment 227

No certificate: For some TLSA records, we were unable to retrieve the
server’s certificate. In these cases our call to the OpenSSL command timed out.
We believe this problem is cased by the remote server, since the probing machine
is well connected to internet and has no problems fetching certificates in all the
other cases.

Mismatching: Sometimes the TLSA record and certificate exist, but they
don’t match based on the given options in the TLSA record. We think this is
mostly caused by expiration of either certificate or TLSA record, and one of them
is not updated correspondingly. This accounts for most of the invalid cases. The
lacking of feedback from users also makes web operators pay little attention to
those deployed TLSA records, since TLSA is not widely used at this time.

We plan to add more functionality to our TLSA validation process. We val-
idate the certificate through IPv4 addresses after getting a TLSA record. We
would like to also check certificates through IPv6, however our probing systems
currently sit on a network without global IPv6 reachability. We leave validat-
ing IPv6 certificate as a future work. For simplicity, we currently assume DNS
integrity without validating DNSSEC chain, and only checks whether the certifi-
cate matches the corresponding TLSA records or whether a trust anchor is found,
based on the different options. To support DNSSEC validation in our measure-
ment, we plan to use cache to avoid constantly fetching common DNSSEC keys,
potentially improving performance. TLSA records in an unsigned domain is also
an error because their integrity cannot be protected by DNSSEC. Measuring this
kind of error would require probing all domains, an expensive task inconsistent
with our goal of minimizing network traffic. Exploration of this class of error is
possible future work.

There are several websites built to allow one to validate DANE TLSA and
DNSSEC by request [10,22,31]. Our measurements complement these on-demand
tests and show a broader view of DANE TLSA healthiness.

4.4 Observed TLSA Parameters

TLSA can specify several different trust relationships, such as requiring a specific
CA or certificate. More explanation about TLSA option is presented in subsection
2.3. We next study which are currently in use.

We study the latest one-day sample (Figure 5). We observe that the major
group of combination is domain-issued certificate (76%, certificate usage: 3)
matching full certificate (71%, selector: 0) with SHA-256 (84%, matching type:
1), and this does not change much over the time of our observation. The domi-
nant use of domain-issued certificate indicates that most DANE TLSA cases are
actually independent from CA without serving its trust source. SHA-256 is cur-
rently strong enough and it’s not necessary to use stronger algorithm bringing
more bits in DNS response, causing the problem of larger DNS packets subsec-
tion 4.5. There is a small number (1.5%) of TLSA records using exact matching
(matching type: 0) which may bring the problems of large response packets sub-
section 4.5. We recommend not to use full certificate matching unless TLSA
record is used to deliver the server’s certificate.

228 L. Zhu et al.

Fig. 5. Distribution of different options in TLSA record. This figure shows one sample
of total 1123 TLSA records in 997 TLSA responses captured on Dec. 3, 2014.

4.5 Problematically Large TLSA Packets

When TLSA response blows up to more than 1500 bytes, it suffers IP fragmen-
tation causing various problems: resend-all loss recovery [17], middleboxes block
fragments [38], and fragmentation attacks [12]. Large TLSA packets also force
DNS to fallback to retry using TCP, and fragments have to be re-assembled,
adding the extra resolving latency.

There are several causes leading to large TLSA response. First, a TLSA
response can contain multiple TLSA records, either for certificate rollover or
for different assertions [14]. In the sample of Dec. 3, 2014, we observe 9.5%
out of 997 TLSA responses contain more than one TLSA record. As number of
TLSA records increases, the packet size rises correspondingly. Second, the exact
matching of certificate in TLSA record without using a hash value adds much
more to response packets. We examine the sizes of current SSL certificates by
using data collected by Rapid7 Labs [30]. We find median size of X.509 certificate
is 774 B, indicating that a TLSA response containing 2 full certificates gets
IP fragmented. Third, with DNSSEC enabled and multiple RRs in authority
and additional sections, a TLSA response is more likely to be problematically
large, which is the common problem of DNS response, not limited to TLSA. To
examine the actual TLSA response sizes, we actively query the corresponding
authoritative servers for those TLSA names we found. We find that 33% TLSA
responses are larger than 1500 bytes, leading to the problems of IP fragmentation
(Figure 7). Those large response packets are mostly caused by the several RRs
with different names in authority and additional sections.

We suggest that DNS zone operators limit the number of TLSA records for
one domain name, use hash matching instead of exact matching, and limit the
number of RRs in authority and additional sections to avoid future possible IP
fragmentation.

Measuring DANE TLSA Deployment 229

0

0.2

0.4

0.6

0.8

1

 100 1000 10000

C
D

F

Sizes of X.509 Certificates (Bytes)

512 B

1500 B
median
774 B

Fig. 6. Cumulative distribution of certificate sizes based on IPv4 SSL certificate data
from Rapid7 Labs [30]. Date: 2014-09-29

0.2

0.4

0.6

0.8

 0 1000 2000 3000 4000 5000

C
D

F

Response Size (Bytes) with DNSSEC

>1500: IP fragmentation likely

Fig. 7. Cumulative distribution of the response sizes with DNSSEC from authoritative
servers of the 997 TLSA names on Dec. 3, 2014

4.6 Different Certificates Through IPv4 and IPv6

The difference between IPv4 and IPv6 certificates is problematic for DANE
TLSA with usage “domain-issued certificate”, because one domain names nor-
mally (more than 90% as we observed) has one associated TLSA record, in which
case, one TLSA record cannot match two different certificates.

To detect this circumstance (different IPv4 and IPv6 certificates for the same
name), we conduct additional measurement from another vantage point with
working IPv6 access. (Our main probing server does not have IPv6 connectivity.)
For each TLSA enabled name we detect, we actively fetch certificate through
IPv4 and IPv6 if they have one, and we compare the two certificates. As of Oct
1, 2014, we find 238 out of 390 TLSA names have both IPv4 and IPv6 certificates,
among which we detect 15 names (under 10 different sub-domain) have different
certificates between IPv4 and IPv6. Operators might forget to update one of

230 L. Zhu et al.

them when rolling over the certificates, leading to this inconsistency. We suggest
domain name owners pay attention attention to this problem if they prepare to
deploy DANE TLSA in their domain.

5 Representativeness of Our Results

Although we study two of the largest TLDs (.com and .net), they are only a
subset of the Internet. Some other TLDs have as many or more signed delega-
tions, however those ccTLD zone files are not generally available. We believe the
data we study is large enough to provide an overview of current deployment of
DANE TLSA. We do not know of any bias in the subset that we measure.

Our dataset is large: as of Dec. 3 2014, there are 115.2M and 15.1M active
zones in .com and .net respectively [34,36].

Second, we probed all DNSSEC signed sub-zones from these two TLDs, by
extracting all DS records in the zone files. On Dec. 3 2014, we probed 405k
DNSSEC signed .com zones, and 79k signed .com zones [35]. We only probe
DNSSEC signed zones because DANE relies on DNSSEC for integrity. While a
TLSA record can be placed in non-DNSSEC-signed zones, such records are not
effective because they lack the integrity verification provided by DNSSEC.

Third, we explore three major secure services (HTTPS, SMTP and XMPP) that
are most likely to use TLSA records. Other services using TLS are VPN and
SIP applications. However, we know of no deployments using DANE TLSA for
them.

6 Conclusion and Future Work

This paper presents the first measurement of DANE TLSA deployment. The
main results are summarized as follows. Current CA-based certificate authenti-
cation works well in most cases and people don’t feel the need to use a completely
new authentication protocol, although DANE provides several benefits, such as
reducing attack surface and making Secure/Multipurpose Internet Mail Exten-
sions (S/MIME) global deployment possible [25]. Our measurement shows DANE
TLSA use is early. However, the increasing trend of DANE TLSA deployment
emerges. Our TLSA validation shows current DANE deployment has security
inconsistency. Among TLSA records found, there are consistently around 7%-
13% TLSA records mismatching server’s certificates over the time of our obser-
vation. We observed that the most common (71%-84%) usage of TLSA record is:
domain-issued certificate matching full certificates with SHA-256. We find 33%
TLSA responses suffering IP fragmentation, resulting in fragmentation attacks
and additional latency of query processing.

Our monitoring system PryDane is continuously running to keep track of new
deployment of DANE. We are working on releasing the source code. (Pseudocode
is shown in Figure 2.) We are exploring different services leading to TLSA records
deployed in DNS, other than SMTP and HTTPS. We are also extending PryDane
to capture other possible DANE cases, such as OPENPGPKEY [39], and adding

.com
.net
.com
.net
.com
.com

Measuring DANE TLSA Deployment 231

IPv6 certificate validation. Our current measurements cover .com and .net with
direct access to the zones; future work may explore other DNSSEC signed zones,
or passive DNS analysis of TLSA.

Acknowledgments. Liang Zhu began this work on an internship at Verisign. The
work of Liang Zhu and John Heidemann in this paper is partially sponsored by the
Department of Homeland Security (DHS) Science and Technology Directorate, HSARPA,
Cyber Security Division, via SPAWAR Systems Center Pacific under Contract No.
N66001-13-C-3001, and via BAA 11-01-RIKA and Air Force Research Laboratory,
Information Directorate under agreement number FA8750-12-2-0344. The U.S. Gov-
ernment is authorized to make reprints for Governmental purposes notwithstanding
any copyright. The views contained herein are those of the authors and do not neces-
sarily represent those of DHS or the U.S. Government.

References

1. NLnetLabs. Ldns (ldns-dane). http://www.nlnetlabs.nl/projects/ldns/
2. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Dns security introduction

and requirements. RFC 4033, March 2005
3. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Protocol modifications

for the dns security extensions. RFC 4035, March 2005
4. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Resource records for the

dns security extensions. RFC 4034, March 2005
5. Bhat, S.: Gmail Users in Iran Hit by MITM Attacks, August 2011. http://

techie-buzz.com/tech-news/gmail-iran-hit-mitm.html
6. Comodo. Comodo Fraud Incident, March 2011. https://www.comodo.com/

Comodo-Fraud-Incident-2011-03-23.html
7. Deploy360 Porgramme. Dane test sites. http://www.internetsociety.org/deploy360/

resources/dane-test-sites/
8. Deploy360 Porgramme. Dnssec statistics. http://www.internetsociety.org/deploy

360/dnssec/statistics
9. Dierks, T., Rescorla, E.: The transport layer security (tls) protocol version 1.2.

RFC 5246, August 2008
10. DNSSEC/TLSA Validator. https://www.dnssec-validator.cz
11. Edward Bjarte Fjellskal. PassiveDNS tool. https://github.com/gamelinux/

passivedns
12. Herzberg, A., Shulmanz, H.: Fragmentation considered poisonous. In: Proc. of

IEEE Conference on Communications and Network Security (CNS), October 2013
13. Hoffman, P.: Smtp service extension for secure smtp over transport layer security.

RFC 3207, February 2002
14. Hoffman, P., Schlyter, J.: The dns-based authentication of named entities (dane)

transport layer security (tls) protocol: Tlsa. RFC 6698, August 2012
15. ICANN. The Centralized Zone Data Service. https://czds.icann.org/
16. Internet Systems Consortium. Internet domain survey, January 2008. web page

http://www.isc.org/solutions/survey
17. Kent, C.A., Mogul, J.C.: Fragmentation considered harmful. SIGCOMM Comput.

Commun. Rev. 25(1), 75–87 (1995)
18. Learmonth, I., Gunasekaran, S.: Bootstrapping Trust with DANE, April 2014.

https://www.hackerleague.org/hackathons/kings-of-code-hack-battle-at-tnw-euro-
pe-conference-2014/hacks/bootstrapping-trust-with-dane

.com
.net
http://www.nlnetlabs.nl/projects/ldns/
http://techie-buzz.com/tech-news/gmail-iran-hit-mitm.html
http://techie-buzz.com/tech-news/gmail-iran-hit-mitm.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://www.internetsociety.org/deploy360/resources/dane-test-sites/
http://www.internetsociety.org/deploy360/resources/dane-test-sites/
http://www.internetsociety.org/deploy360/dnssec/statistics
http://www.internetsociety.org/deploy360/dnssec/statistics
https://www.dnssec-validator.cz
https://github.com/gamelinux/passivedns
https://github.com/gamelinux/passivedns
https://czds.icann.org/
http://www.isc.org/solutions/survey
https://www.hackerleague.org/hackathons/kings-of-code-hack-battle-at-tnw-europe-conference-2014/hacks/bootstrapping-trust-with-dane
https://www.hackerleague.org/hackathons/kings-of-code-hack-battle-at-tnw-europe-conference-2014/hacks/bootstrapping-trust-with-dane

232 L. Zhu et al.

19. Mail Server Security Test. https://www.tlsa.info/
20. Mockapetris, P.: Domain names - concepts and facilities. RFC 1034, November

1987
21. Mockapetris, P.: Domain names–implementation and specification. RFC 1035,

November 1987
22. NIST. Danelaw. https://www.had-pilot.com/dane-tests.html
23. NIST. Estimating ipv6 and dnssec external service deployment status. http://

fedv6-deployment.antd.nist.gov
24. NIST. Tlsa test tree. https://www.had-pilot.com/tlsa-test.html
25. Osterweil, E., Kaliski, B., Larson, M., McPherson, D.: Reducing the x. 509 attack

surface with dnssecs dane. SATIN: Securing and Trusting Internet Names, March
2012

26. Osterweil, E., Ryan, M., Massey, D., Zhang, L.: Quantifying the operational status
of the dnssec deployment. In: Proceedings of the 8th ACM SIGCOMM Conference
on Internet Measurement, IMC 2008, pp. 231–242. ACM, New York, NY, USA
(2008)

27. Saint-Andre, E.P.: Extensible messaging and presence protocol (xmpp): Core. RFC
3920, October 2004

28. Pennock, P.: XMPP & DANE with Prosody, May 2014. http://bridge.grumpy-
troll.org/2014/05/xmpp-dane-with-prosody

29. Postfix. http://www.postfix.org/TLS README.html
30. Schloesser, M., Gamble, B., Nickel, J., Guarnieri, C., Moore, H.: Project Sonar:

IPv4 SSL Certificates, September 2014. https://scans.io/study/sonar.ssl
31. SIDN labs. Tlsa validator. https://check.sidnlabs.nl/dane
32. Streibelt, F., Böttger, J., Chatzis, N., Smaragdakis, G., Feldmann, A.: Exploring

edns-client-subnet adopters in your free time. In Proceedings of the 2013 Confer-
ence on Internet Measurement Conference, IMC 2013, pp. 305–312. ACM, New
York, NY, USA (2013)

33. van Rijswijk-Deij, R., Sperotto, A., Pras, A.: Dnssec and its potential for ddos
attacks: A comprehensive measurement study. In: Proceedings of the 2014 Con-
ference on Internet Measurement Conference, IMC 2014, pp. 449–460. ACM, New
York, NY, USA (2014)

34. Verisign.Daily zone counts. http://www.verisigninc.com/en US/channel-resources/
domain-registry-products/zone-file-information/index.xhtml

35. Verisign. Dnssec scoreboard. http://scoreboard.verisignlabs.com
36. Verisign. The Domain Name Industry Brief, December 2014. www.verisigninc.com/

assets/domain-name-report-december2014.pdf
37. Verisign Labs. Dane/tlsa demonstration. http://dane.verisignlabs.com/
38. Weaver, N., Kreibich, C., Nechaev, B., Xson, V.P.: Implications of netalyzr’s DNS

measurements. In: Proc. of Workshop on Securing and Trusting Internet Names
(SATIN), April 2011

39. Wouters, P.: Using dane to associate openpgp public keys with email addresses.
Work in progress, February 2014 (draft-wouters-dane-openpgp-02)

https://www.tlsa.info/
https://www.had-pilot.com/dane-tests.html
http://fedv6-deployment.antd.nist.gov
http://fedv6-deployment.antd.nist.gov
https://www.had-pilot.com/tlsa-test.html
http://bridge.grumpy-troll.org/2014/05/xmpp-dane-with-prosody
http://bridge.grumpy-troll.org/2014/05/xmpp-dane-with-prosody
http://www.postfix.org/TLS_README.html
https://scans.io/study/sonar.ssl
https://check.sidnlabs.nl/dane
http://www.verisigninc.com/en_US/channel-resources/domain-registry-products/zone-file-information/index.xhtml
http://www.verisigninc.com/en_US/channel-resources/domain-registry-products/zone-file-information/index.xhtml
http://scoreboard.verisignlabs.com
www.verisigninc.com/assets/domain-name-report-december2014.pdf
www.verisigninc.com/assets/domain-name-report-december2014.pdf
http://dane.verisignlabs.com/

A First Look at Real Multipath TCP Traffic

Benjamin Hesmans(B), Hoang Tran-Viet, Ramin Sadre,
and Olivier Bonaventure

ICTEAM, Universitécatholique de Louvain, Louvain-la-Neuve, Belgium
benjamin.hesmans@uclouvain.be

Abstract. Multipath TCP is a new TCP extension that attracts a grow-
ing interest from both researchers and industry. It enables hosts to send
data over several interfaces or paths and has use cases on smartphones,
datacenters or dual-stack hosts. We provide the first analysis of the oper-
ation of Multipath TCP on a public Internet server based on a one-week
long packet trace. We analyse the main new features of Multipath TCP,
namely the utilisation of subflows, the address advertisement mechanism,
the data transfers and the reinjections and the connection release mech-
anisms. Our results confirm that Multipath TCP operates correctly over
the real Internet, despite the presence of middleboxes and that it is used
over very heterogeneous paths.

1 Introduction

The Transmission Control Protocol (TCP) [23] was designed when hosts were
equipped with a single interface. When two hosts exchange data through a TCP
connection, all packets generated by the client (resp. server) must be sent from
the same IP address. This remains true even if the communicating hosts have sev-
eral interfaces and thus IP addresses that could be used to improve performance
or resilience. In today’s networks, this limitation is becoming a major drawback.
Cellular and WiFi networks are available in most cities and smartphone users
would like to be able to start a TCP connection in a WiFi hotspot and continue
it later via their 3G interface. Reality with TCP is different [20]. Datacenters
provide multiple paths between servers, but all packets from a given connection
always follow the same path [24]. Dual stack hosts would like to exploit their
IPv6 and IPv4 paths simultaneously but with regular TCP they can only rely
on Happy Eyeballs [29].

Multipath TCP (MPTCP) is a recent TCP extension that has been stan-
dardised by the Internet Engineering Task Force [10] to solve this problem. In
a nutshell, thanks to Multipath TCP, a multihomed host can use several inter-
faces (and thus IP addresses) to support a single TCP connection. Multipath
TCP can pool all the resources available to improve the performance and the
resilience of the service provided to the applications [30]. Several use cases for
Multipath TCP have already been studied by the research community includ-
ing datacenters [24] and WiFi/3G offload [4,6,20]. Implementers and industry
are adopting Multipath TCP quickly. As of this writing, Multipath TCP imple-
mentations exist on Linux [18], Apple iOS and MacOS [1], FreeBSD [28] and
c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 233–246, 2015.
DOI: 10.1007/978-3-319-17172-2 16

234 B. Hesmans et al.

Solaris [7]. Apple has enabled Multipath TCP by default for its voice recogni-
tion SIRI application running on all recent iPhones and iPads. Today, there are
thus hundreds of millions of devices that use Multipath TCP on the Internet.

Despite of this large scale deployment, little is known about how Multipath
TCP really behaves in the global Internet. In this paper, we provide a first
analysis of the Multipath TCP packets received and sent by the server that
hosts the reference implementation in the Linux kernel1. Besides Apple’s servers
that support the SIRI application, this is probably the most widely used public
Multipath TCP server. By observing how real users use this new protocol, we
complement the existing measurement that relied on simulations, emulations or
active measurements.

This paper is organised as follows. In Section 2, we describe our dataset,
how the packets have been collected and the software that we used to analyse
them. Section 3 describes the main features of the Multipath TCP protocol and
analyses their impact based on the collected packets. Section 4 compares our
work with related work. We conclude the paper in Section 5.

2 Dataset

The dataset2 used in this paper is a one-week long packet trace collected in
November 2014 at Université catholique de Louvain (UCL). It has been collected
using tcpdump and contains the headers of all TCP packets received and sent
by the server hosting the Multipath TCP Linux kernel implementation. Apart
from a web server, the machine also hosts an FTP server and an iperf server. It
has one physical network interface with two IP addresses (IPv4 and IPv6) and
runs the stable version 0.89 of the Multipath TCP implementation in the Linux
kernel [18].

To analyse the Multipath TCP connections in the dataset, we have extended
the mptcptrace software [11] developed by the same authors. mptcptrace han-
dles all the main features of the Multipath TCP protocol and can extract various
statistics from a packet trace. Our extensions to mptcptrace have been included
in the last release. Furthermore, we have combined it with tcptrace [17] and
its output has been further processed by custom python scripts.

Table 1 summarizes the general characteristics of the dataset. In total, the
server received around 136 million TCP packets carrying 134 GiBytes of data
(including the TCP and IP headers) during the measurement period. As shown in
table 1 (in the block “Multipath TCP”), a significant fraction of the TCP traffic
was related to Multipath TCP. Unsurprisingly, IPv4 remains more popular than
IPv6, but it is interesting to note that the fraction of IPv6 traffic from the
hosts that are using Multipath TCP (9.8%) is larger than from the hosts using
regular TCP (3.7%). On the monitored server, dual-stack hosts are already an
important use case for Multipath TCP. It should be noted that the monitored
1 http://www.multipath-tcp.org
2 The anonymised packet trace is available at http://multipath-tcp.org/data/

TMA-2015.tar.gz.

http://www.multipath-tcp.org
http://multipath-tcp.org/data/TMA-2015.tar.gz
http://multipath-tcp.org/data/TMA-2015.tar.gz

A First Look at Real Multipath TCP Traffic 235

Table 1. Dataset characteristics

Collection period Nov. 17 – 24, 2014

All TCP Total IPv4 IPv6

of packets [Mpkt] 136.1 128.5 7.6
of bytes [GiByte] 134.0 129.0 5.0

Multipath TCP Total IPv4 IPv6

of packets [Mpkt] 29.4 25.0 4.4
of bytes [GiByte] 20.5 18.5 2.0

server is mainly used by Multipath TCP users and developers who are likely to be
researchers or computer scientists. These users probably have better connectivity
that the average Internet user.

We have also studied the application protocols used in the Multipath TCP
traffic. Around 22.7% of the packets were sent or received on port 80 (HTTP).
A similar percentage of packets (21.2%) was sent to port 5001 (iperf) by users
conducting throughput measurements. The FTP server, was responsible for the
majority of packets. It hosts the Debian and Ubuntu packages for the Multipath
TCP kernel and is thus often used by Multipath TCP developers.

Considering the number of connections, 89.7% of them were targeted on
HTTP, 6.4% for iperf, 1.9% for FTP control connections and the remaining
2.0% on higher ports are likely FTP data connections.

Another important figure is the number of distinct Multipath TCP clients
connected to our server. While identifying this figure exactly is not trivial, infor-
mation about client IP addresses may be useful to give some feeling about the
variety of clients’ location. Among 790 distinct client IP addresses we observed,
there are 562 IPv4 addresses coming from 464 distinct class C IPv4 network
prefixes and 228 different IPv6 addresses coming from 79 distinct 48-bit IPv6
prefixes.

3 Analysis

Multipath TCP is a major extension to TCP that modifies many features of the
protocol. A detailed overview of Multipath TCP is outside the scope of this paper
and may be found in [10,19]. In this section, we first describe the key features
of Multipath TCP. Then, each subsection focuses on a particular aspect of the
protocol that is explained and analysed in more details based on the collected
packet trace.

Like most TCP extensions, Multipath TCP defines a new TCP option that
is used during the initial three-way handshake. This MP CAPABLE option contains
several important parameters [10,19]. A prominent characteristic of Multipath
TCP is that, to be able to use several paths, Multipath TCP combines sev-
eral TCP connections called subflows inside a single Multipath TCP connec-
tion. These subflows are linked together by using a token extracted from the

236 B. Hesmans et al.

MP CAPABLE option and included in the MP JOIN option that is exchanged during
the handshake of the other subflows. To support mobile hosts, Multipath TCP
allows each host to advertise its current list of addresses to its peer [10]. This is
done thanks to the ADD ADDR and REMOVE ADDR options that can be sent at any
time over one of the TCP subflows. It is important to note that the subflows that
compose a Multipath TCP connection is not fixed. The set of subflows changes
during the lifetime of the connection since each host can add or remove a subflow
at any time.

3.1 Which Hosts Use Multipath TCP?

The first question that we asked ourselves while analysing the trace was the char-
acteristics of the clients that contacted the monitored server. Since the packet
trace was collected on the server that hosts the Multipath TCP implementation
in the Linux kernel, we can expect that many Linux enthusiasts use it to down-
load new versions of the code, visit the documentation, perform tests or verify
that their configuration is correct. These users might run different versions of
Multipath TCP in the Linux kernel or on other operating systems[7]. Unfortu-
nately, as of this writing, there is not enough experience with the Multipath
TCP implementations to detect which operating system was used to generate
specific Multipath TCP packets. This is an interesting direction for future work.
Instead, we focus our analysis on the number of addresses used by the clients.

Thanks to the ADD ADDR option, it is possible to collect interesting data
about the characteristics of the clients that contact our server. Over the 5098
observed Multipath TCP connections, 3321 of them announced at least one
additional address. Surprisingly, only 21% of the collected IPv4 addresses in the
ADD ADDR option were globally routable addresses. The remaining 79% of the
IPv4 addresses found in the ADD ADDR option were private addresses and in some
cases link-local addresses. The large number of private address confirms that
Multipath TCP’s ability to pass through NATs is an important feature of the
protocol [10].

The IPv6 addresses collected in the ADD ADDR option had more diversity.
We first observed 72% of globally routable IPv6 addresses. The other types of
addresses that we observed are shown in Table 2. The IPv4-compatible and
the 6to4 IPv6 addresses were expected, but the link local and documentation
addresses should have been filtered by the client and never be announced over
Multipath TCP connections. The Multipath TCP specification [10] does not
currently specify the types of addresses that can be advertised over a Multipath
TCP connection. It should probably be updated to specify which types of IPv4
and IPv6 addresses can be announced with the the ADD ADDR option.

Another interesting point to note is that although the ADD ADDR option
defined in [10] can also be used to advertise transport protocol port numbers
together with IP addresses, we didn’t detect any utilisation of this feature in our
trace.

A First Look at Real Multipath TCP Traffic 237

Table 2. Special addresses advertised by clients

Address type Count

Link-local (IPv4) 51
Link-local (IPv6) 241

Documentation only (IPv6) 21
IPv4-compatible IPv6 13

6to4 206

3.2 How Quickly Are Subflows Established?

The previous section has shown that a large number of (multihomed) hosts
exchange Multipath TCP packets with our server. Our server has a single inter-
face but two IP addresses (IPv4 and IPv6). Like the other Multipath TCP
implementations [7], it never creates subflows [18] because, as confirmed by the
measurements in the previous section, the client is likely to reside behind a NAT
or a firewall that would block these subflow establishments.

The current implementation of Multipath TCP in the Linux kernel [18] uses
two strategies to create subflows. The first strategy, supported by the default
path manager on multihomed hosts, is to create a full-mesh of subflows as soon
as possible. Figure 1 shows the delay between the SYN segment sent on the initial
subflow and the SYN segment of the first subflow. For 88.9% of the Multipath
TCP connections composed of two or more subflows, the first subflow is estab-
lished within less than one second. For 46.5% of the connections, this delay is
shorter than 100 msec. The longest delay between the establishment of a Multi-
path TCP connection and the first subflow is 360 seconds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 101 102 103 104 105 106

C
D

F

Delay CAPA-SYN to First Join (ms)

Fig. 1. Delay between the SYN of initial flow and the first MP JOIN

238 B. Hesmans et al.

For test purposes and to support local balancing over multiple equal cost
paths [24], another path manager can be used on single-homed hosts. This path
manager creates n subflows from the single IP address of the client to the server.
An analysis of all the observed Multipath TCP connections indicates that this
path manager was used by about one third of the connections that we observed.

Multipath TCP can also support backup subflows [20]. In this case, the client
indicates that a subflow is a backup subflow at subflow establishment time or
by sending the MP PRIO option on an existing subflow. In the analysed trace, we
did not observe any utilisation of this option.

When Multipath TCP is used over heterogeneous paths, its performance can
decrease if the paths have different round-trip-times or bandwidth [22]. Figure 2
plots, for all Multipath TCP connections using two or more subflows, the CDF
of the difference between the minimum and the maximum average round-trip-
times over all the subflows that compose each Multipath TCP connection. These
average round-trip-times were computed by using tcptrace [17]. Less than 10%
of the Multipath TCP connections have subflows having the same average round-
trip-times. Almost 54.3% of the Multipath TCP connections combine subflows
with a spread of up to 10 msec. 13.7% of the connections have a spread larger
than 50 msec. This is an important indication about the heterogeneity of the
paths over which Multipath TCP is used today.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-1 100 101 102 103 104

C
D

F

RTT difference (ms)

Fig. 2. Difference between the maximum RTT and minimum RTT among subflows
belonging to one MPTCP connection

3.3 How Many Subflows Are Used?

In theory, a Multipath TCP connection can gather an unlimited number of sub-
flows. In practice, implementations [7] limit the number of concurrent subflows.
The Linux implementation [18] used on the monitored server can support up to

A First Look at Real Multipath TCP Traffic 239

32 different subflows. We analyse here the number of subflows that are estab-
lished for each Multipath TCP connection. Since our server never establishes
subflows, this number is an indication of the capabilities of the clients that
interact with it.

Figure 3 provides the distribution of the number of subflows per Multipath
TCP connection. We show the distribution for the number of successfully estab-
lished subflows, i.e., subflows that complete the handshake, as well as for all
attempted ones. As can be seen, several connection attempts either fail com-
pletely or establish less subflows than intended. In total, we observe 5098 suc-
cessful connections with 8701 subflows. The majority of the observed connections
(57%) only establish one subflow. Around 27% of them use two subflows. Only
10 connections use more than 8 subflows, which are omitted from the figure.

 0

 500

 1000

 1500

 2000

 2500

 3000

0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 c

on
ne

ct
io

ns

Number of subflows per connection

Successful
Attempted

Fig. 3. Distribution of subflows per connection

The fact that many Multipath TCP connections establish more than one
subflow affects the connection sizes as perceived on TCP level. In Figure 4 we
show the cumulative distribution of the number of payload bytes exchanged on
the Multipath TCP connections and compare it with the size distribution of the
individual TCP connections. As expected, we see a larger number of small TCP
subflow connections.

It should be noted that establishing multiple subflows does not necessarily
mean that the payload of a Multipath TCP connection is evenly distributed over
them. This will be further discussed in Section 3.6. While the MP PRIO option
has been introduced to Multipath TCP providing the capability to change the
priority of a subflow, we do not observe any subflow using this option.

240 B. Hesmans et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

101 102 103 104 105 106 107 108 109 1010

C
D

F

Transfered data (Bytes)

Multipath TCP connections
Subflows

Fig. 4. Distribution of data on Multipath TCP connections and the subflows

3.4 Do Middleboxes Interfere with Multipath TCP?

The interference caused by various types of middleboxes has significantly affected
the design of the Multipath TCP protocol [10,13,25]. Multipath TCP can cope
with middleboxes that modify the source/destination IP addresses and ports,
but also change the TCP sequence numbers or split/reassemble TCP segments
[12]. If a middlebox strips TCP options, the Multipath TCP implementation in
the Linux kernel performs a fallback to regular TCP [10]. The worst middlebox
interference for Multipath TCP is when a middlebox such as a NAT using a
Application Level Gateway changes “transparently” the payload of TCP seg-
ments, e.g. to translate the ASCII representation of an IP address. Multipath
TCP can detect this type of interference by using the DSS checksum which is
computed over the data and the Multipath TCP option [10,25]. Given that the
TCP segments are already protected by the TCP checksum, an error in the DSS
checksum is always a sign of middlebox interference.

If a host receives a TCP segment with a valid TCP checksum and an invalid
DSS checksum, it sends an MP FAIL option to inform the peer of the interference
and performs a fallback to regular TCP. Among more than 5000 Multipath
TCP connections that we have analysed, we observe three transmissions of the
MP FAIL option. In all three cases, MP FAILs are sent on port 21 (FTP). This
is a relatively small number knowing that the monitored server provides FTP
services that are subject to middlebox interference [12] due to Application Level
Gateways included in NAT devices. We did not observe the MP FAIL option
on port 80 despite the fact that transparent proxies are often reported [26].
Surprisingly, we also observe this MP FAIL option inside IPv6 packets.

As explained earlier, the utilisation of the DSS Checksum [10] ensures that
middlebox interference is detected and that the data is transported correctly.
However, computing the DSS Checksum consumes CPU ressources [25] and the

A First Look at Real Multipath TCP Traffic 241

DSS checksum can be disabled on a per connection basis. During the three-way
handshake on the initial subflow, the client and the server can opt out the DSS
Checksum. The DSS Checksum is only disabled if both propose to disable it. If
either the client or the server is configured to use the DSS Checksum, then it
is used in both directions. Since the monitored server was configured to always
us the DSS Checksum, it was active for all Multipath TCP connections. This is
the default configuration which is recommended in the Internet [10]. The DSS
Checksum should only be disabled in controlled environments such as datacen-
ters that are known to be immune of middlebox interference. We were surprised
to measure that about 5% of the Multipath TCP connections established with
our server requested to disable the DSS Checksum. This configuration was prob-
ably chosen for performance reasons, but it puts the data transfert at risk of
undetected middlebox interference.

3.5 How Do Multipath TCP Connections Terminate?

TCP uses two different mechanisms to terminate a connection. Most connections
should terminate by exchanging FIN segments in both directions [23]. Some
connections terminate abruptly with the transmission of a RST segment due to
problems or because the server does not want to wait in the CLOSE WAIT state
[2]. Each of the TCP subflows that compose a Multipath TCP connection can be
terminated using one of these mechanisms. Above the subflows, Multipath TCP
also includes similar mechanisms to terminate the Multipath TCP connection
[10]. If all the data has been transferred correctly, a Multipath TCP connection
should terminate with the exchange of DATA FIN options in both directions.
We observe that 89% of the 5098 monitored Multipath TCP connections are
terminated by exchanging DATA FINs. Multipath TCP also includes a fast close
mechanism that allows a host to terminate a Multipath TCP connection by
sending a FAST CLOSE option inside a RST segment. This feature was included in
[10] to enable a server to quickly terminate a Multipath TCP connection. It is
used by roughly 10% of the observed Multipath TCP connections.

3.6 How is Data Distributed?

Since a Multipath TCP connection combines several TCP subflows, data can be
transmitted over any of these subflows. The Linux implementation of Multipath
TCP uses a packet scheduler [21] to select the subflow over which each data
segment is transmitted. The monitored server uses the default scheduler that
tries to send data on the subflow having the smallest round-trip-time among
the subflows whose congestion window is open. The client could use another
scheduler such as the round-robin scheduler or any custom scheduler [21].

The utilisation of the default scheduler implies that the data is not evenly
distributed among the different subflows. Figure 5 shows, for connections com-
posed of more than one subflow, how the data is distributed among the initial
subflow and the other subflows of the connection. We observe that around 52%
of the connections send less than half of their data over the initial subflow.

242 B. Hesmans et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Fraction of data sent through initial subflow

Fig. 5. Fraction of data on initial subflow over total data for connections with more
than one subflow

In contrast, around 30% of the connections transfer their data nearly entirely
over the initial subflow. There are different possible explanations for this
behaviour. One reason could be that those connections are simply too short or
too small to use the additional subflows. However, we have studied their length
and size distribution and could not find any prevalence of very short or small
connections among them in comparison to other connections.

Like regular TCP connections, Multipath TCP connections can be impacted
by packet losses. The Multipath TCP implementation in the Linux kernel
includes three main strategies to cope with losses. If an isolated packet is lost,
Multipath TCP will use the fast retransmit mechanism to retransmit it over the
subflow where it was initially sent. This is the normal behaviour of a TCP connec-
tion. If a retransmission timer expires, this usually indicates a more severe loss.
In this case, Multipath TCP evaluates whether the data should be retransmit-
ted over the same subflow as the original transmission or over another subflow.
In the latter case (reinjection), data will be retransmitted over both subflows
to ensure that any middlebox over one of the paths observes in-sequence data
[10,12]. In some cases, such retransmissions can also occur when one of the sub-
flows is too slow compared to the other ones [25]. If a subflow dies, e.g. due
to the failure of a WiFi interface, then all unacknowledged data sent over this
subflow is retransmitted over the remaining subflows. These reinjections are an
indication of the inefficiency of Multipath TCP. Since reinjected data is sent over
two or more subflows, a large reinjection rate will result in a badly performing
Multipath TCP connection.

Figure 6 shows the fractions of reinjected data (bytes) for the Multipath
TCP connections composed of at least two subflows. We provide the CDF for
transmissions from the client to the server resp. from the server to the client.
We observe that more than 90% of the connections do not have any reinjection.

A First Look at Real Multipath TCP Traffic 243

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
D

F

Fraction of reinjected data

Client to server
Server to client

Fig. 6. Fraction of reinjected data over total data for connections

More than 98% of the connections have fewer than 2% of reinjections. This shows
that reinjections are rare and that the overhead caused by them is very low in
comparison to the overall TCP retransmission rate of 0.8–2.4% reported in [5].
We also observe that the fraction of reinjections is larger in the client-to-server
direction than in the opposite one. The reasons for this will be the topic of future
work. Finally, it should be noted that the results shown in the figure should be
taken with caution for fractions above 30%. Due to the small population size and
the presence of very short connections, extreme cases, such as a single-packet
connection with reinjection, do have a visible impact on the tail of the empirical
CDF.

4 Related Work

Various researchers have studied the performance of Multipath TCP on cellular
networks and/or the global Internet. As of this writing, most of these studies
have focussed on performing active measurements among a relatively small set
of connected devices. We are not aware of published studies where large Multi-
path TCP packet traces have been analysed in details. In this section, we thus
compare our findings with the main results obtained with active measurements.
Although several implementations of Multipath TCP exist [7], we are not aware
of published results that compare their performance. In fact, most of the pub-
lished papers use the Linux implementation.

Several researchers have analysed the performance of Multipath TCP in cellu-
lar networks. Paasch et al. propose, implement and evaluate path management
strategies to efficiently support 3G and WiFi interfaces with Multipath TCP
[20]. The Linux implementation [18] is used by the monitored server and likely
most of the clients that sent packets. Chen et al. [4] and Deng et al. [6] also

244 B. Hesmans et al.

perform measurements with the Multipath TCP implementation in the Linux
kernel. Chen et al. focus on bulk transfers over WiFi and 3G and conclude that
Multipath TCP provides performance benefits compared to regular TCP. Deng
et al. analyse different scenarios. Their measurements show that the benefits
of using Multipath TCP increase with the volume of data transferred. Lim et
al. present other measurements with cellular and WiFi networks in [16] and
focus on tuning the Multipath TCP implementation to reduce the energy con-
sumption. Williams et al. use experiments to investigate the use of Multipath
TCP (MPTCP) to augment cellular 3G connections with roadside infrastructure
[27]. Ferlin et al. use the NorNet infrastructure [15] to analyse the performance
of Multipath TCP in heterogeneous networks (WiFi and 2G or 3G) [9]. Their
measurements show that when the difference in bandwidth between the two
interfaces is large (e.g. 2G and WiFi), then the performance of Multipath TCP
may suffer. They propose an algorithm that monitors the subflow performance
and disables the under-performing ones.

Multipath TCP is not the only transport protocol that is capable of support-
ing multiple paths. The Stream Control Transmission Protocol [8] (SCTP) has
been implemented in most operating systems. It was designed with multihoming
in mind and support for concurrent multipath was added to SCTP [14] before
the deployment of Multipath TCP. However, we have not found in the scientific
literature detailed measurements of the performance of SCTP based on passive
measurements. As shown in [3] only a small fraction of the published SCTP
research is based on real measurements on the Internet.

5 Conclusion

In this paper, we have presented a first analysis of the behaviour of Multipath
TCP based on a one-week long packet trace collected on a popular Multipath
TCP server. Since the server hosts the Multipath TCP implementation in the
Linux kernel, it is mainly used by developpers and researchers. Furthermore,
we expect that most clients use the same Linux implementation as the one
running on the server. We have analysed the real utilisation of the new features
introduced in this TCP extension, namely the establishment of the subflows, the
advertisement of addresses, the reinjection of data, the detection of middlebox
interference and the termination of the Multipath TCP connections.

Some of our results confirm that the protocol operates correctly over the
Internet. Others were less expected and provide an insight on the operation
of this protocol over the Internet. Firstly, Multipath TCP hosts can use many
interfaces. Some hosts announced up to 14 different IP addresses over a single
Multipath TCP connection. Secondly, the subflows that compose a Multipath
TCP connection are usually established very quickly. This corresponds to the
default strategy of the current Linux implementation and confirms that clients
mainly use this implementation. Thirdly, when two or more subflows are used,
their average round-trip-times can differ by 10-100 msec for 40% of the Multipath
TCP connections. This is a large delay difference that indicates that Multipath

A First Look at Real Multipath TCP Traffic 245

TCP is used in heterogeneous environments. This delay difference must be taken
into account by Multipath TCP implementors who are tuning their implemen-
tations. Fourthly, Multipath TCP spreads the data over the different subflows
and rarely needs to reinject some data over another subflow. Finally, there are
middleboxes that interfere with Multipath TCP, even in IPv6 networks.

For our future work, we will collect a longer trace to study in more details
other aspects of the protocol such as identifying the congestion control scheme
used on the subflows, the packet scheduler used by the client, or measuring
the short term dynamics of the data transmission on the different subflows or
middlebox interference.

Acknowledgments. This work was partially supported by the ITN METRICS and
the FP7 TRILOGY 2 projects funded by the European Commission and by the BEST-
COM IAP.

References

1. Apple. ios: Multipath tcp support in ios 7. http://support.apple.com/en-us/
HT201373

2. Arlitt, M., Williamson, C.: An Analysis of TCP Reset Behaviour on the Internet.
SIGCOMM Comput. Commun. Rev. 35(1), 37–44 (2005)

3. Budzisz, L., Garcia, J., Brunstrom, A., Ferrús, R.: A Taxonomy and Survey of
SCTP Research. ACM Comput. Surv. 44(4), 18:1–18:36 (2012)

4. Chen, Y.-C., Lim, Y.-S., Gibbens, R., Nahum, E., Khalili, R., Towsley, D.:
A measurement-based study of multipath TCP performance over wireless networks.
In: ACM SIGCOMM IMC (2013)

5. Jerry Chu, H.K.: Tuning TCP parameters. In: Proceedings of The Seventy-Fifth
Internet Engineering Task Force. IETF (2009)

6. Deng, S., Netravali, R., Sivaraman, A., Balakrishnan, H.: WiFi, LTE, or Both?:
measuring multi-homed wireless internet performance. In: IMC 2014, pp. 181–194.
ACM, New York, NY, USA (2014)

7. Eardley, P.: Survey of MPTCP Implementations. Internet-Draft draft-eardley-
mptcp-implementations-survey-02, IETF Secretariat, July 2013

8. Stewart, R., (Ed.): Stream Control Transmission Protocol. IETF RFC 4960,
September 2007

9. Ferlin, S., Dreibholz, T., Alay, O.: Multi-Path transport over heterogeneous wireless
networks: does it really pay off? In: Proceedings of the IEEE Global Communica-
tions Conference (GLOBECOM), Austin, Texas/U.S.A., December 2014

10. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP Extensions for Multipath
Operation with Multiple Addresses. IETF RFC 6824, January 2013

11. Hesmans, B., Bonaventure, O.: Tracing multipath TCP connections. In: SIG-
COMM 2014 (poster), pp. 361–362 (2014)

12. Hesmans, B., Duchene, F., Paasch, C., Detal, G., Bonaventure, O.: Are TCP exten-
sions middlebox-proof? In: CoNEXT Workshop HotMiddlebox (2013)

13. Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., Tokuda, H.: Is It
Still Possible to Extend TCP? In: 2011 ACM SIGCOMM Conference on Internet
Measurement Conference, IMC 2011, pp. 181–194 (2011)

http://support.apple.com/en-us/HT201373
http://support.apple.com/en-us/HT201373

246 B. Hesmans et al.

14. Iyengar, J., Amer, P., Stewart, R.: Concurrent multipath transfer using SCTP
multihoming over independent end-to-end paths. IEEE/ACM Transactions on Net-
working 14(5), 951–964 (2006)

15. Kvalbein, A., Baltrūnas, D., Evensen, K., Xiang, J., Elmokashfi, A., Ferlin, S.: The
NorNet Edge Platform for Mobile Broadband Measurements. Computer Networks,
Special Issue on Future Internet Testbeds, 61:88–101, March 2014. ISSN 1389–1286

16. Lim, Y., Chen, Y., Nahum, E., D., Gibbens, R.: Improving energy efficiency of
MPTCP for mobile devices. CoRR, abs/1406.4463, (2014)

17. Ostermann, S.: tcptrace. http://www.tcptrace.org
18. Paasch, C., Barre, S., et al.: Multipath TCP implementation in the Linux kernel

(2014). http://www.multipath-tcp.org
19. Paasch, C., Bonaventure, O.: Multipath TCP. ACM Queue 12(2), 40:40–40:51

(2014)
20. Paasch, C., Detal, G., Duchene, F., Raiciu, C., Bonaventure, O.: Exploring

mobile/wifi handover with multipath TCP. In: ACM SIGCOMM workshop Cell
Net, pp. 31–36 (2012)

21. Paasch, C., Ferlin, S., Alay, O., Bonaventure, O.: Experimental evaluation of mul-
tipath TCP schedulers. In: 2014 ACM SIGCOMM Workshop on Capacity Sharing
Workshop, CSWS 2014, pp. 27–32 (2014)

22. Paasch, C., Khalili, R., Bonaventure, O.: On the benefits of applying experimental
design to improve multipath TCP. In: Proceedings of CoNEXT 2013, pp. 393–398.
ACM, New York, NY, USA (2013)

23. Postel, J.: Transmission Control Protocol. IETF RFC 793, September 1981
24. Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., Handley, M.:

Improving datacenter performance and robustness with multipath TCP. In: ACM
SIGCOMM 2011 (2011)

25. Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M., Duchene, F.,
Bonaventure, O., Handley, M.: How hard can it be?. designing and implement-
ing a deployable multipath TCP, In: USENIX NSDI (2012)

26. Weaver, N., Kreibich, C., Dam, M., Paxson, V.: Here Be Web Proxies. In:
Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 183–192.
Springer, Heidelberg (2014)

27. Williams, N., Abeysekera, P., Dyer, N., Vu, H., Armitage, G.: Multipath TCP
in Vehicular to Infrastructure Communications. Technical Report Centre for
Advanced Internet Architectures, Technical Report 140828A, Swinburne Univer-
sity of Technology (2014)

28. Williams, N., Stewart, L., Armitage, G.: FreeBSD kernel patch for Multipath TCP
July 2014. http://caia.swin.edu.au/urp/newtcp/mptcp/tools.html

29. Wing, D., Yourtchenko, A.: Happy Eyeballs: Success with Dual-Stack Hosts. RFC
6555, April 2012

30. Wischik, D., Handley, M., Braun, M.: The Resource Pooling Principle. ACM SIG-
COMM Computer Communication Review 38(5), 47–52 (2008)

http://www.tcptrace.org
http://www.multipath-tcp.org
http://caia.swin.edu.au/urp/newtcp/mptcp/tools.html

Author Index

Aceto, Giuseppe 143
Ahmad, Tahir 143
Aracil, Javier 3

Baldi, Mario 111
Biersack, Ernst W. 173
Bonaventure, Olivier 233
Botta, Alessio 143
Böttger, Timm 205
Braun, Lothar 205

Carle, Georg 173, 188, 205
Casas, Pedro 49

D’Alconzo, Alessandro 64
Dainotti, Alberto 158
Dimitropoulos, Xenofontas 158
Donnet, Benoit 79

Edeline, Korian 79
Espinet, François 31

Faheem Awan, M. 143
Fan, Xun 95
Feamster, Nick 143
Fiadino, Pierdomenico 49

García-Dorado, José Luis 3
Gasser, Oliver 173, 205
Glatz, Eduard 158
Goto, Shigeki 126
Gustafsson, Josef 188

Heidemann, John 95, 219
Hesmans, Benjamin 233
Holz, Ralph 173

Inoue, Takeru 126
Ishibashi, Keisuke 126

Jacquemart, Quentin 173
Joumblatt, Diana 31

Kangasharju, Jussi 17
Karkulahti, Ossi 17
Katz-Bassett, Ethan 95
Korsten, Andreas 173

Mankin, Allison 219
Mellia, Marco 111
Metwalley, Hassan 111
Miskovic, Stanislav 111
Mori, Tatsuya 126

Pescapè, Antonio 143

Qaisar, Saad 143

Raftopoulos, Elias 158
Ramos, Javier 3
Reiser, Helmut 205
Rodríguez, Miguel 3
Romirer-Maierhofer, Peter 64
Rossi, Dario 31

Sadre, Ramin 233
Sato, Kazumichi 126
Schiavone, Mirko 49, 64
Schlamp, Johann 173, 188
Schmidt, Thomas C. 188
Shimoda, Akihiro 126

Thirion, Valentin 79
Tran-Viet, Hoang 233
Traverso, Stefano 111

Uceda, Víctor 3
von Eye, Felix 205

Wählisch, Matthias 188
Wessels, Duane 219

Zhu, Liang 219

	Preface
	Organization
	Contents
	Measurement Tools and Methods
	Selective Capping of Packet Payloads for Network Analysis and Management
	1 Introduction
	1.1 Problem Statement
	1.2 State of the Art

	2 Detection of ASCII Traffic
	2.1 ASCII-Runs Threshold
	2.2 ASCII-Percentage Threshold
	2.3 Multiple Thresholds

	3 Selective Capping Sniffer Architecture
	4 Results and Discussions
	4.1 Compression Ratio
	4.2 Performance Evaluation

	5 Conclusions and Future Work
	References

	Youtube Revisited: On the Importance of Correct Measurement Methodology
	1 Introduction
	2 Related Work
	3 Data Collection
	4 Results
	4.1 Popularity
	4.2 Views
	4.3 Age
	4.4 Categories
	4.5 Length
	4.6 Summary of Results and Methods

	5 Conclusion
	References

	Zen and the Art of Network Troubleshooting: A Hands on Experimental Study
	1 Introduction
	2 Related Work
	3 Problem Statement and Model
	4 Troubleshooting Algorithm
	5 Calibration of the Emulation Environment
	5.1 Software Tools
	5.2 Delay and Bandwidth Calibration

	6 Experimental Results
	6.1 Performance at a Glance
	6.2 Sensitivity Analysis

	7 Conclusions and future work
	References

	Mobile and Wireless
	Vivisecting WhatsApp in Cellular Networks: Servers, Flows, and Quality of Experience
	1 Introduction
	2 An Overview on WhatsApp
	3 Hosting Infrastructure
	3.1 Methodology
	3.2 Measurements Analysis

	4 Traffic Analysis
	5 Quality of Experience in WhatsApp
	6 The WhatsApp Blackout
	7 Concluding Remarks
	References

	Device-Specific Traffic Characterization for Root Cause Analysis in Cellular Networks
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Device Categorization
	3.2 Operating System Classification

	4 Results
	4.1 Device-specific Characteristics at the Data Plane
	4.2 Device-Specific Characteristics at the Signaling Plane
	4.3 Investigation of a Device-Specific Anomaly

	5 Conclusions and Future Work
	References

	Tracking Middleboxes in the Mobile World with TraceboxAndroid
	1 Introduction
	2 Tracebox
	3 TraceboxAndroid
	3.1 System Core
	3.2 Front Office
	3.3 Back Office

	4 Evaluation
	4.1 Methodology
	4.2 Results
	4.3 Impact on Mobile Devices

	5 Related Work
	6 Conclusion
	References

	Web
	Assessing Affinity Between Users and CDN Sites
	1 Introduction
	2 Background: CDNs and DNS Redirection
	3 Data Collection
	3.1 Enumerating CDN Front-End Servers with DNS
	3.2 FE Cluster Identification
	3.3 Front-End Geolocation

	4 Dynamics of User Redirection
	4.1 Are User Prefixes Mapped to Different FE Clusters?
	4.2 Distances of Mapping Changes
	4.3 Effects of Mapping Changes on Users
	4.4 Reasons for Mapping Changes
	4.5 Geographic Footprint Seen by User Prefixes

	5 Related Work
	6 Conclusions
	References

	The Online Tracking Horde: A View from Passive Measurements
	1 Introduction
	2 Related Work
	3 Dataset
	3.1 Identifying Active Users and Number of Connected Devices
	3.2 Identifying Online Tracking Services

	4 Results
	4.1 Penetration of Online Tracking Services
	4.2 Popularity of Privacy Enhancer Plugins
	4.3 Trackers Penetration among Services
	4.4 Time to Be Tracked

	5 Conclusions
	References

	SFMap: Inferring Services over Encrypted Web Flows Using Dynamical Domain Name Graphs
	1 Introduction
	2 Related Work
	3 SFMap Framework
	3.1 Overview
	3.2 DNG
	3.3 Estimator
	Calculation of the Likelihood Probabilities.

	3.4 Updater

	4 Evaluation
	4.1 Datasets and Statistics
	4.2 Estimation Accuracy
	4.3 Resource Consumption

	5 Discussion
	5.1 Sources of Misclassification
	5.2 Scalability

	6 Summary
	References

	Security
	Monitoring Internet Censorship with UBICA
	1 Introduction
	2 UBICA
	3 Experimental Results
	3.1 Censorship in Pakistan
	3.2 Censorship in Korea
	3.3 Censorship in Italy

	4 Conclusions
	References

	How Dangerous Is Internet Scanning?
	1 Introduction
	2 Related Work
	3 Monitoring Infrastructure and Data Collection
	4 Sipscan Detection
	5 Aftermath of the Sipscan
	5.1 Inbound Exploitation Attempts
	5.2 Sality Alert Classification and Outbound Exploitation Activity
	5.3 Sality-Bot Infections

	6 Discussion about IDS False Positives
	7 Conclusions
	References

	Investigating the Nature of Routing Anomalies: Closing in on Subprefix Hijacking Attacks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Identification of subMOASes
	3.2 Utilizing IRR Databases
	3.3 Topology Reasoning
	3.4 Cryptographic Assurance with SSL/TLS
	3.5 Real-Time Framework

	4 Evaluation
	4.1 subMOAS Analysis
	4.2 Lessons Learned

	5 Conclusions and Outlook
	References

	The Abandoned Side of the Internet: Hijacking Internet Resources When Domain Names Expire
	1 Introduction
	2 Attacker Model
	2.1 Background: The LinkTel Incident
	2.2 Preconditions for an Attack
	2.3 Implications

	3 Abandoned Internet Resources
	3.1 Resource Candidates from RIR Database
	3.2 Refinement by Activity Measures
	3.3 Hijackable Resources

	4 Research Agenda
	4.1 Limitations of Related Work
	4.2 Resource Ownership Validation

	5 Conclusion
	References

	New Protocols
	DoS Amplification Attacks -- Protocol-Agnostic Detection of Service Abuse in Amplifier Networks
	1 Introduction
	2 Related Work
	3 Important Prerequisites
	4 Detection Approach
	4.1 Characteristic Properties of an Amplification Attack
	4.2 Improved Amplification Attack Detection Criteria

	5 Evaluation
	5.1 Measurement Setup
	5.2 Generated Attack Traffic
	5.3 The Measurement Runs
	5.4 Deriving Detection Thresholds
	5.5 Live Measurement Evaluation

	6 Detection Evasion and Limitations
	7 Conclusion
	References

	Measuring DANE TLSA Deployment
	1 Introduction
	2 Background and Related Work
	2.1 DNS
	2.2 DNSSEC
	2.3 DANE TLSA
	2.4 Related Work

	3 Monitoring DANE TLSA Deployment
	3.1 How to Track TLSA-Enabled Names

	4 Observations and Findings
	4.1 The Number of TLSA Enabled Names
	4.2 Compare DANE TLSA and DNSSEC Deployment
	4.3 TLSA Record Validation
	4.4 Observed TLSA Parameters
	4.5 Problematically Large TLSA Packets
	4.6 Different Certificates Through IPv4 and IPv6

	5 Representativeness of Our Results
	6 Conclusion and Future Work
	References

	A First Look at Real Multipath TCP Traffic
	1 Introduction
	2 Dataset
	3 Analysis
	3.1 Which Hosts Use Multipath TCP?
	3.2 How Quickly Are Subflows Established?
	3.3 How Many Subflows Are Used?
	3.4 Do Middleboxes Interfere with Multipath TCP?
	3.5 How Do Multipath TCP Connections Terminate?
	3.6 How is Data Distributed?

	4 Related Work
	5 Conclusion
	References

	Author Index

