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Termination of Elastic Range of Pressure
Insensitive Materials—Isotropic
and Anisotropic Initial Yield Criteria
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Abstract In this chapter basic features of isotropic versus anisotropic initial yield
criteria are discussed. Two ways to account for anisotropy are presented: the explicit
and implicit formulations. The explicit description of anisotropy is rigorously based
on well-established theory of common invariants (Sayir, Goldenblat–Kopnov, von
Mises, Hill). The implicit approach involves linear transformation tensor of the
Cauchy stress that accounts for anisotropy to enhance the known isotropic criteria to
be able to capture anisotropy, hydrostatic pressure insensitivity, and asymmetry of
the yield surface (Barlat, Plunckett, Cazacu, Khan). The advantages and differences
of both formulations are critically presented. Possible convexity loss of the classical
Hill’48 yield surface in the case of strong orthotropy is examined and highlighted in
contrast to unconditionally stable von Mises–Hu–Marin’s criterion. Various transi-
tions from the orthotropic yield criteria to the transversely isotropic ones are carefully
distinguished in the light of irreducibility or reducibility to the isotropic Huber–von
Mises criterion in the transverse isotropy plane and appropriate symmetry class of
tetragonal symmetry (classical Hill’s formulation) or hexagonal symmetry (hexag-
onal Hill’s or von Mises–Hu–Marin’s). The new hybrid formulation applicable for
some engineering materials based on additional bulge test is also proposed.
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5.1 Isotropic Initial Yield Criteria of Pressure Insensitive
Materials

In case of isotropic materials limit criteria for elastic range are independent of refer-
ence frame. For this reason the isotropic initial yield criteria can be written down in
the reduced frame of simple stress tensor invariants f (Jiσ,Πi ) = 0 instead of the
stress tensor components frame f (σij,Πi ) = 0. By contrast, in case of anisotropic
materials the stress components frame has to be applied and the common both stress
and structural tensor invariants should be used (see Table5.2). Such a simplifica-
tion means reduction of the six-dimensional stress space to the three-dimensional
space spanned by arbitrary set of three stress invariants (Jiσ; i = 1, 2, 3). Sym-
bol Πi denotes scalar material constants defining termination of the elastic behavior
through the yield initiation in a form ofmicro-slips in ductile materialΠi = kpi (yield
stresses) or through the local microcracks in brittle materialΠi = kdi (failure limits).

The number of independent material constants Πi depends on the number of
parameters in the equation of limit surface (yield or failure initiation) which have
to be identified from independent strength tests: e.g., the uniaxial tension (kt), the
uniaxial compression (kc), and the pure shear (ks). In the simplest case, when con-
ditions of initial yielding or failure are identical for tension and compression and
simultaneously the shear is not independent constant the number of material con-
stants reduces to one parameter kt = kc = k which corresponds to yield or failure
initiation, whereas ks = k√

3
. Such a limitation is true for majority of ductile mate-

rials (metals and metallic alloys). However, in case of brittle materials that exhibit
different limit stress points for tension and compression (both yield and failure), the
limit surface is to be characterized by at least two independent constants kt �= kc and
such property is called strength differential effect.

Assuming narrower case of the experimentally confirmed for majority of metals
independence of yield initiation from hydrostatic pressure J1σ , we arrive at the limit
surface equation being function of the second and the third stress deviator invariants

f (J2s, J3s; ki ) = 0 (5.1)

Such a narrower class of materials is called hydrostatic pressure insensitive isotropic
materials.

The above condition depends on both the second and the third stress deviator
invariants J2s, J3s but it is independent of the first stress invariant J1σ . It simply
means that the cylindrical limit surface possesses the axis equally inclined to the
principal stress axes (σ1,σ2,σ3) called the hydrostatic axis (Fig. 5.1).

For purpose of further geometric illustration of considered surfaces it is convenient
to apply the Haigh–Westergaard coordinates [21, 63] ξ, ρ, and θ which represent,
respectively: distance along the hydrostatic axis measured from the origin to the
current stress point (effect of J1σ), distance in the deviatoric plane measured from
the hydrostatic axis and the stress point considered (effect of J2s), and the polar
coordinate of the stress point in the deviatoric plane (effect of J3s) (Fig. 5.1). Hence
the following definitions of the Haigh–Westergaard coordinates hold
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Fig. 5.1 Cylindrical yield surface in the Haigh–Westergaard coordinates

ξ = J1σ√
3
, ρ = √

2J2s, cos (3θ) = 3
√
3

2

J3s

(J2s)3/2
for 0 ≤ θ ≤ π

3
(5.2)

Roughly speaking, dependence on the first coordinate ξ stands for noncylindricity,
the second one ρ comprises size and the third one θ describes asymmetry of the yield
surface.

For further consideration it is also convenient to use a concept of the generating
curve of limit surface conventionally called the meridian. Meridians of the limit
surface either yield or failure are curves being intersections of the surface by planes
of θ = const containing the hydrostatic axis. In case of rotationally symmetric limit
surfaces allmeridians are identical. In a particular case of cylindrical surface all cross
sections by planes ξ = const (deviatoric planes) are identical and hence meridians
are straight lines.

In more general case of cylindrical but nonrotationally symmetric surface, which
depends on either the third invariant J3s or alternatively the third coordinate θ, three
of all meridians are of the particular importance (Fig. 5.2)

1

3 2

C

C

T TS
S

Fig. 5.2 Cross section of the cylindrical limit surface in deviatoric plane ξ = const; points T, S,
and C correspond to the tensile kt , the shear ks, and the compressive kc yield points, kt �= kc
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1. Tensile meridian T (θ = 0◦)
2. Shear meridian S (θ = 30◦)
3. Compressive meridian C (θ = 60◦)

Hence the equation of nonrotationally symmetric cylindrical surface (5.1) can be
written as

f (ρ, θ; ki ) = 0 (5.3)

where the independence of the position at the hydrostatic axis ξ is obvious.
Note that in a general caseEq. (5.3) represents cylindrical surface, the cross section

of which is not necessarily circular ρ(θ). This property is called the strength differ-
ential effect or the tension and compression asymmetry kt �= kc. Summarizing, for
isotropic materials considered the 60◦ symmetry property must be fulfilled which
means that the curve in the deviatoric plane is completely described by the form for
the sector 0 ≤ θ ≤ π

3 and this form is repeated in the remaining sectors (Fig. 5.2),
for details see Chen and Han [9], Ottosen and Ristinmaa [47]. In case of majority
of metals yield point stresses for compression and tension do not differ kt = kc = k
which means that no strength differential effect exists. In other words in the Haigh–
Westergaard space arbitrary cross section of a cylindrical yield surface done by any
deviatoric plane has to pass through six skeletal points: Ti (θ = 0◦, 120◦, 240◦)
and Ci (θ = 60◦, 180◦, 300◦) at constant distance from the origin equal to

√
2
3k.

Simultaneously, each of sectorial curve has to pass through three points correspond-
ing to pure shear Si (θ = 30◦, 150◦, 270◦), seeOttosen andRistinmaa [47], (Fig. 5.3).

In the simple case of majority of metals and steels the additional assumption
of independence of the cross section from the angle θ or alternatively from the
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Fig. 5.3 The 60◦ symmetry property of the yield surface (5.3) in the deviatoric plane
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third invariant J3s can be done. In such a case limit surface is the cylindrical and
rotationally symmetric simultaneously as follows:

f (ρ; k) = √
3J2s − k =

√
3

2
sijsij − k =

√
3

2
ρ − k = 0 (5.4)

In such a waywe arrive at the limit case of the unit shear strain energy-based classical
isotropic von Mises criterion occasionally called the Huber–von Mises criterion
anticipated by Huber [31], extended by vonMises [43] and interpreted physically by
Hencky [22], cf. Ottosen and Ristinmaa [47]. When the engineering notation is used
the isotropic von Mises criterion takes the explicitly deviatoric form

(
σy − σz

)2 + (σz − σx )
2 + (

σx − σy
)2 + 6

(
τ2yz + τ2zx + τ2xy

)
= 2k2 (5.5)

or
σ2
1 − σ1σ2 + σ2

2 − σ2σ3 + σ2
3 − σ1σ3 = k2 (5.6)

if principal stresses are used.
In a more general case when the yield criterion depends on both the second and

the third Haigh–Westergaard coordinates f (ρ, θ) or alternatively on both the second
and the third deviatoric stress invariants f (J2s, J3s) we met the historically earlier
cylindrical criterion proposed by Tresca [60]

f (ρ, θ; k) = √
2ρ sin

(
θ − π

3

)
− k = 0 0 ≤ θ ≤ π

3
(5.7)

When the principal stresses are used the classical form of the Tresca criterion

f (σ1,σ2,σ3; k) = max (|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) − k = 0 (5.8)

clearly corresponds to the hypothesis of maximum shear stress. The Tresca criterion
can also by presented in terms of the second and the third stress deviator invariants
(1.15), cf. Reuss [49]

f (J2s, J3s) = 4J 3
2s − 27J 2

3s − 9k2 J 2
2s + 6k4 J2s − k6 = 0 (5.9)

The Tresca initial yield surface is cylindrical but not rotationally symmetric built
on the regular hexagon and the hydrostatic axis Fig. 5.4. It is clear that the Tresca
yield surface represents a regular prism inscribed into the Huber–von Mises circular
cylinder and possessing six joint meridians seen here as six skeletal points T1, T2, T3
and C1, C2, C3 (Fig. 5.4). The Tresca initial yield surface exhibits the 60◦ symmetry
property.

The Tresca limit surface suffers from the existence of edges (tension T1, T2, T3
and compression C1, C2, C3 meridians) in which the normality rule does not hold
Fig. 5.5. In order to avoid this deficiency theHosford andBackhofen [27] andHosford
[28, 29] limit surface can be introduced

http://dx.doi.org/10.1007/978-3-319-17160-9_1
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Fig. 5.4 Cylindrical initial
yield criteria in the
deviatoric plane

Fig. 5.5 Nonuniqueness of
plastic strain increment
direction in case of skeletal
points for Tresca yield
surface
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|σ1 − σ2|m + |σ2 − σ3|m + |σ3 − σ1|m = 2km (5.10)

The discussed criterion is commonly called the Hosford criterion (1964) although it
was earlier suggested by Hershey [24] and Davies [11]. The exponent m used in the
Hosford criterion is an additional material constant that should be chosen according
to experimental evidence. The range of this constant exhibits certain limitations and
particular cases. It can theoretically change in range 1 ≤ m < ∞, cf. Cazacu and
Barlat [7]. In the cases 1 < m < 2 or 4 < m < ∞ the initial yield curves are located
between the Tresca and the Huber–von Mises loci, whereas for m = 1 and m → ∞
or for m = 2 and m = 4 the Tresca or the Huber–von Mises yield loci are recovered,
respectively. If 2 < m < 4 the yield curve slightly exceeds the Huber–von Mises
loci as shown in Fig. 5.6. If 0 < m < 1 is chosen a concave yield curve is met,
which is inadmissible from the Drucker stability postulate point of view. According
to Hershey, magnitudes m = 6 and m = 8 well fit experimental findings.

Concluding, the Tresca initial yield criterion is the inner bound for all limit curves
of the isotropic materials without the strength differential effect. Note however that
there exists wide class of materials which exhibits the strength differential effect
hence the Tresca does not have to be treated as the inner bound nevertheless the
convexity condition resulting from the Drucker postulate is not violated, see Cazacu
and Barlat [7].
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Fig. 5.6 The second Haigh–Westergaard coordinate ρ versus exponent m in Hosford’s criterion
(5.10)

It is also possible to derive the outer bound for all limit curves of the isotropic
materials without the strength differential effect which does not violate convexity
according to Drucker’s postulate. To this end the criterion of maximal deviatoric
stress proposed by Schmidt [53], Ishlinsky [32], and Hill [26] can be used

f (σ1,σ2,σ3; k) = max [|σ1 − σh|, |σ2 − σh|, |σ3 − σh|] − 2

3
k = 0 (5.11)

The above equationwhen rigorously expressed in theHaigh–Westergaard space takes
the alternative form

f (ρ, θ; k) = max

[∣∣
∣
∣

√
2
3ρ cos θ

∣
∣
∣
∣ ,

∣
∣
∣
∣

√
2
3ρ cos

(
θ + 2π

3

)
∣
∣
∣
∣ ,

∣
∣
∣
∣

√
2
3ρ cos

(
θ − 2π

3

)
∣
∣
∣
∣

]
− 2

3k = 0
(5.12)

In this space the outer bound represents a regular prism circumscribed onto the
Huber–von Mises circular cylinder and possessing six joint meridians seen here as
six skeletal points T1, T2, T3 and C1, C2, C3 (Fig. 5.4). By contrast to Tresca’s inner
bound now six meridians do not coincide with the outer bound prism edges but lie
in the middle of walls (Fig. 5.4).

Summarizing the above considerations, the postulate of inner and outer bounds
of limit surfaces of initial yield in isotropic and tension/compression materials (no
strength differential effect included) by Tresca (inner bound) and the criterion of
maximal deviatoric stress (outer bound) define the admissible range for all cylindrical
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Fig. 5.7 Experimental
findings for thin-walled
tubes made of steel (◦),
copper (•), and nickel (�),
after Lode [40]

Fig. 5.8 Yield surfaces
exhibiting strength
differential effect
kt/kc = 0.75, 1.0
(Huber–von Mises), 1.25;
described by (5.13), after
Cazacu and Barlat [7]

limit surfaces for the class of metals and steels. It directly results from both the 60◦
symmetry property in the Haigh–Westergaard space as well as the Drucker convexity
assumption. Hence, all initial yield surfaces of real tension/compression asymmetry
insensitive materials have to include tensile T1, T2, T3 and compressive C1, C2,

C3 meridians being straight lines equidistant form the hydrostatic axis
√

2
3k. For

instance, the Lode [40] experimental findings for thin-walled tubes made of steel,
copper, and nickel confirm suitability of the Huber–vonMises and the Tresca criteria
for prediction of yield initiation in case of ductile materials under the plane stress
state (σ3 = 0), see Fig. 5.7. Limit surface dependent on the second and the third stress
invariants with the strength differential effect accounted for, was used by Raniecki
and Mróz [48] when applied to initial yield or phase change surfaces in NiTi shape
memory alloys

f (J2s, J3s) = (J2s)
3n/2 − c (J3s)

n − k3n = 0 (5.13)

Raniecki and Mróz’s criterion (5.13) includes three material constants c, k, n and
it is an extension of the Cazacu and Barlat [7] criterion for n = 1 for describing
asymmetry in yielding initiation in pressure insensitive isotropic materials, Fig. 5.8

f (J2s, J3s) = (J2s)
3/2 − cJ3s − k3 = 0 (5.14)
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On the other hand, substituting n = 2 to Eq. (5.13) we arrive at Drucker’s
criterion [12]

f (J2s, J3s) = (J2s)
3 − c (J3s)

2 − k6 = 0 (5.15)

5.2 Von Mises Anisotropic Criterion

In a general case of material anisotropy, extension of the isotropic yield initiation
criteria (Table5.3) to the anisotropic yield/failure behavior (Table5.4), by the use
of common invariants of the stress tensor and of the structural tensors of plastic
anisotropy (cf. Hill [25], Sayir [52], Betten [5], Życzkowski [65]), can be shown in
a general fashion

f
(
Π,Πijσij,Πijklσijσkl,Πijklmnσijσklσmn, . . .

) = 0 (5.16)

where Einstein’s summation convention holds.
In such a case, initiation of plastic flow or failure is governed by the structural ten-

sors of material anisotropy of even-ranks:
<0>
ĪI = Π,

<2>
ĪI = Πij,

<4>
ĪI = Πijkl,

<6>
ĪI =

Πijklmn, . . ., etc., instead of the scalar constants ki as it is known for isotropic mate-
rials. Equation (5.16) owns a general representation, but its practical identification
is limited by a large number of required material tests and, additionally, because the
components of the structural tensors are temperature dependent, which makes iden-
tification much more complicated (cf., e.g., Herakovich and Aboudi [23], Tamma
and Avila [59]). Hence, a general form (5.16) is usually more specified and limited
for engineering needs.

In a particular case when a general tensorially polynomial form of Eq. (5.16)
is assumed (cf. Sayir [52], Kowalsky et al. [37], Życzkowski [65], Ganczarski and
Skrzypek [18]) the polynomial anisotropic yield criterion is furnished

(Πijσij)
α + (Πijklσijσkl)

β + (Πijklmnσijσklσmn)
γ + · · · − 1 = 0 (5.17)

where, if the Voigt notation is used the structural anisotropy tensors take correspond-
ing matrix forms

[<2>
ĪI ] =

⎡

⎣
π11 π12 π13

π22 π23
π33

⎤

⎦ (5.18)
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and

[<4>
ĪI ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π11 Π12 Π13 Π14 Π15 Π16
Π22 Π23 Π24 Π25 Π26

Π33 Π34 Π35 Π36

Π44 Π45 Π46
Π55 Π56

Π66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.19)

The even-rank structural anisotropy tensors Πij,Πijkl,Πijklmn, . . . , in Eq. (5.17) are
normalized by the common constant Π and α,β, γ . . ., etc., are arbitrary exponents
of a polynomial representation. In a narrower case if α = 1,β = 1/2, γ = 1/3,
and limiting an infinite form (5.17) to the equation that contains only three common
invariants, we arrive at the narrower form known as the Goldenblat and Kopnov
criterion [19]

Πijσij + (Πijklσijσkl)
1/2 + (Πijklmnσijσklσmn)

1/3 − 1 = 0 (5.20)

which satisfies the dimensional homogeneity of three polynomial components.
Equation (5.20), when limited only to three common invariants of the stress tensor

σ and structural anisotropy tensors of even orders: 2nd Πij, 4th Πijkl, and 6th Πijklmn

is not the most general one, in the meaning of the representation theorems, which
determine the most general irreducible representation of the scalar and tensor func-
tions that satisfy the invariance with respect to change of coordinates and material
symmetry properties (cf., e.g., Spencer [56], Rymarz [51], Rogers [50]). However,
2nd, 4th, and 6th order structural anisotropy tensors, which are used in (5.20) or
in case if α = 1,β = 1, γ = 1 and the deviatoric stress representation used by
Kowalsky et al. [37]

h(1)
ij sij + h(2)

ijklsijskl + h(3)
ijklmnsijsklsmn − h(0) = 0 (5.21)

are found satisfactory for describing fundamental transformation modes of limit sur-
faces caused by plastic or failure processes, namely: isotropic change of size, kine-
matic translation and rotation, as well as surface distortion (cf. Betten [5], Kowalsky
et al. [37]).

In what follows, we shall reduce class of the limit surface from the general ten-
sorially polynomial representation to the forms independent of both the first Πijσij

and the third Πijklmnσijσklσmn common invariants, but preserving the most general
representation for the second common invariant, according to von Mises [43, 44].
In such a case the 4th rank tensor of material anisotropy Πijkl is, in general, defined
by 21 anisotropy modules (but 18 of them independent), since the anisotropy 6 × 6
matrix [ĪI]ij (5.19) can completely be populated. Further reduction of the number
of modules to 15 will be achieved, when the insensitivity of general von Mises
quadratic form with respect to the change of hydrostatic stress will be assumed. In
such a way the general tensorial von Mises criterion will be reduced to the devia-
toric von Mises form defined by 15 anisotropy modules. A choice of 15 anisotropy
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modules considered as independent is, in general, not unique (cf. Szczepiński [58],
Ganczarski and Skrzypek [17]). However, the 15-parameter deviatoric von Mises cri-
terion is sensitive to the change of sign of shear stresses, which may be considered as
questionable (cf., e.g., Malinin and Rżysko [42]). Simplest way to avoid a doubtful
physical explanation for existence of terms linear for shear stresses τij, a reduction
of the 15-parameter von Mises equation to the 9-parameter orthotropic von Mises
criterion can be done. This form does not satisfy the deviatoric property, but when
the constraints of independence of the hydrostatic stress is consistently applied, it
is easily reduced to the deviatoric form, known as orthotropic Hill’s criterion, with
only 6 independent moduli of orthotropy (cf. Hill [25]).

Limiting ourselves to plastic yield initiation in ductile materials, a consecutive
reductionof thegeneral tensorially polynomial anisotropic criterion (5.20) to the form
dependent only on the 4th rank common invariantσijΠijklσkl holds, as it was proposed
in the von Mises criterion for anisotropic yield initiation (item D8 in Table6.3) (cf.
von Mises [43, 44]).

σijΠijklσkl − 1 = 0 (5.22)

When themore convenientVoigt’s vector–matrix notation is used, the formequivalent
to (5.22) is obtained

{σ}T [<4>
ĪI ] {σ} − 1 = 0 (5.23)

where only one fourth-rank tensor of plastic anisotropy ĪI is saved.
Anisotropic von Mises criterion (5.22) or (5.23), being an initial yield criterion of

anisotropic material is an extension of the isotropic Huber–von Mises criterion (5.4).
This is more clear when the Huber–von Mises condition is rewritten in a following
fashion

σijΠ
HMH
ijkl σkl − 1 = 0 (5.24)

where ΠHMH
ijkl stands for the isotropic fourth-rank structural tensor whose represen-

tation matrix is

[ĪIHMH] = 1

k2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − 1
2 − 1

2 0 0 0

1 − 1
2 0 0 0

1 0 0 0
3 0 0

3 0

3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.25)

Note however that condition (5.24) comprises stress tensor components σij but not
stress deviator components sij as commonly used. However, Eq. (5.24) takes analo-
gous form when stress deviator components sij are used, namely

sijΠ
HMH
ijkl skl − 1 = 0 (5.26)

http://dx.doi.org/10.1007/978-3-319-17160-9_6
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since when decomposition of the stress tensor into the deviatoric and the hydrostatic
part is done σij = sij + 1

3σkkδij we arrive at

sijΠ
HMH
ijkl skl +

(
2sij + 1

3
σmmδij

)(
ΠHMH

ijkl δkl

)1
3
σnn − 1 = 0 (5.27)

However, the underlined term in (5.27) is identically equal to zero since the following
holds

ΠHMH
11 + ΠHMH

12 + ΠHMH
13 = 1 − 1

2 − 1
2 = 0

ΠHMH
21 + ΠHMH

22 + ΠHMH
23 = − 1

2 + 1 − 1
2 = 0

ΠHMH
31 + ΠHMH

32 + ΠHMH
33 = − 1

2 − 1
2 + 1 = 0

(5.28)

when the Voigt notation for the Huber–von Mises matrix is used.
The structural 4th rank tensor of plastic anisotropy in Eq. (5.22) must be symmet-

ric: Πijkl = Πklij = Πjikl = Πijlk , if stress tensor symmetry is assumed. Hence, in
case if none other symmetry properties are implied, the von Mises plastic anisotropy
tensor is defined by 21 modules. However, due to its invariance of the tensorial trans-
formation rule, number of independent anisotropy modules is reduced to 18. Finally,
the general anisotropic von Mises criterion can be furnished as

Πxxxxσ
2
x + Πyyyyσ

2
y + Πzzzzσ

2
z +

2Πxxyyσxσy + 2Πyyzzσyσz + 2Πzzxxσzσx+
4Πxxyzσxτyz + 4Πxxzxσxτzx + 4Πxxxyσxτxy+
4Πyyyzσyτyz + 4Πyyzxσyτzx + 4Πyyxyσyτxy+
4Πzzyzσzτyz + 4Πzzzxσzτzx + 4Πzzxyσzτxy+
8Πxyyzτxyτyz + 8Πyzzxτyzτzx + 8Πzxxyτzxτxy+
4Πyzyzτ

2
yz + 4Πzxzxτ

2
zx + 4Πxyxyτ

2
xy = 1

(5.29)

where Πijkl denote 21 components of the von Mises plastic anisotropy tensor.
The von Mises 6 × 6 matrix of plastic anisotropy, being symmetric and fully

populated matrix representation of the 4th rank anisotropy tensor Πijkl shown in
(5.22), is furnished as follows:

(5.30)
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if engineering vectorial representation of the stress tensor {σ} is chosen as

{σ} =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(5.31)

When the matrix coordinates Πij (5.30) are consistently defined by the tensorial
coordinates Πijkl

Π11 = Πxxxx Π22 = Πyyyy Π33 = Πzzzz

Π12 = Πxxyy Π13 = Πxxzz Π23 = Πyyzz

Π14 = 2Πxxyz Π15 = 2Πxxzx Π16 = 2Πxxxy . . .

Π44 = 4Πyzyz Π55 = 4Πzxzx Π66 = 4Πxyxy

Π45 = 4Πyzzx Π46 = 4Πxyyz Π56 = 4Πzxxy

(5.32)

we arrive at the general anisotropic von Mises equation equivalent to (5.29)

Π11σ
2
x + Π22σ

2
y + Π33σ

2
z +

2(Π12σxσy + Π23σyσz + Π31σzσx +
Π14σxτyz + Π15σxτzx + Π16σxτxy +
Π24σyτyz + Π25σyτzx + Π26σyτxy +
Π34σzτyz + Π35σzτzx + Π36σzτxy +
Π45τyzτzx + Π46τxyτyz + Π56τzxτxy)+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.33)

Representation of the anisotropic von Mises condition (5.23) in deviatoric form is
not trivial. The vonMises equation in the vector–matrix notation depends on both the
deviatoric s and the hydrostatic part σh1, when stress decomposition σ = s + σh1
is applied, namely

{s}T [<4>
ĪI ] {s} +

(
2 {s}T + σh {1}T

)(
[<4>
ĪI ] {1} σh

)
− 1 = 0 (5.34)

The tensorial von Mises equation (5.34) can further be reduced to the deviatoric form
independent of the hydrostatic pressure as follows:

{s}T [devĪI] {s} − 1 = 0 (5.35)

only if the constraint

[<4>
ĪI ] {1} = 0 (5.36)
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is consistently applied. The constraint (5.36) guarantees the deviatoric von Mises
equation (5.35) to be represented in the reduced six-dimensional stress space by a
cylindrical surface defined by 15 independent anisotropy modules, when six con-
straints are satisfied

Π11 + Π12 + Π13 = 0
Π12 + Π22 + Π23 = 0
Π13 + Π23 + Π33 = 0
Π14 + Π24 + Π34 = 0
Π15 + Π25 + Π35 = 0
Π16 + Π26 + Π36 = 0

(5.37)

However, the final matrix representation (5.30) with (5.37) employed depends on a
choice of independent elements. Two of such representations are of special impor-
tance.

In the first case, the elements of matrix (5.30) considered as independent are:
Π12,Π13, Π23;Π15,Π16,Π24,Π26,Π34,Π35 and Π44,Π55,Π66;Π45,Π46, Π56,
such that the following first representation for the deviatoric von Mises matrix is
furnished

(5.38)
if constraints (5.37) are applied as follows

Π11 = −Π12 − Π13, Π14 = −Π24 − Π34
Π22 = −Π12 − Π23, Π25 = −Π15 − Π35
Π33 = −Π13 − Π23, Π36 = −Π16 − Π26

(5.39)

In the second case, the elements ofmatrix (5.30) chosen as independent are:Π11,Π22,
Π33;Π15,Π16,Π24,Π26,Π34,Π35 and Π44,Π55,Π66;Π45,Π46,Π56, hence we
arrive at the second representation of the deviatoric von Mises matrix as follows:
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(5.40)
if, instead of (5.39), other substitution is used

Π12 = 1
2 (Π33 − Π11 − Π22)

Π13 = 1
2 (Π22 − Π11 − Π33)

Π23 = 1
2 (Π11 − Π22 − Π33)

Π14 = −Π24 − Π34

Π25 = −Π15 − Π35

Π36 = −Π16 − Π26

(5.41)

A choice of 15 elements in the vonMises matrix (5.30) considered as independent
is not a unique procedure and can result in the different deviatoric vonMises equation
forms. In particular, when a more convenient representation (5.38) is substituted for
[devĪI] in (5.35) we arrive at the following von Mises equation expressed in the
deviatoric stress space

−Π12
(
sx − sy

)2 − Π13 (sx − sz)
2 − Π23

(
sy − sz

)2 +
2
{
τyz

[
Π24

(
sy − sx

) + Π34 (sz − sx )
]+

τzx
[
Π15

(
sx − sy

) + Π35
(
sz − sy

)]+
τxy

[
Π16 (sx − sz) + Π26

(
sy − sz

)]+
Π45τyzτzx + Π46τxyτyz + Π56τzxτxy

}+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.42)

It is visible that above equation owns the clear deviatoric structure hence, when the
tensorial stress space is used instead of the deviatoric one, the analogous equivalent
to (5.42) representation of the deviatoric von Mises equation is also true in terms of
stress components (cf. Szczepiński [58])
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−Π12
(
σx − σy

)2 − Π13 (σx − σz)
2 − Π23

(
σy − σz

)2 +
2
{
τyz

[
Π24

(
σy − σx

) + Π34 (σz − σx )
]+

τzx
[
Π15

(
σx − σy

) + Π35
(
σz − σy

)]+
τxy

[
Π16 (σx − σz) + Π26

(
σy − σz

)]+
Π45τyzτzx + Π46τxyτyz + Π56τzxτxy

}+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.43)

Note, that Eqs. (5.42) or (5.43) are defined by 15 elements Πij. However, the under-
lined terms are sensitive to change of sign of shear stresses, e.g., τyz(σy − σx ) etc.,
which is physically questionable and, finally, such terms are consequently omitted in
some cases (cf., e.g., Malinin and Rżysko [42]). Nevertheless, the full representation
(5.43) might occur useful when the von Mises–Tsai–Wu extension to the brittle-like
material is sought for (cf. Tsai and Wu [61]).

5.3 Orthotropic Initial Yield Criteria—The von Mises
Orthotropic Criterion, the Hill Deviatoric Criterion

General form of the 21-parameter anisotropic von Mises criterion (5.33) involves
nonematerial symmetry property. In a particular case if plastic orthotropy is assumed
for the initial yield criterion (5.23), when represented in principal orthotropy axes,
the 9-parameter orthotropic von Mises matrix (5.30) takes the form

(5.44)

In such a case the general anisotropic von Mises equation (5.33) is reduced to the
narrower 9-parameter orthotropic von Mises criterion

Π11σ
2
x + Π22σ

2
y + Π33σ

2
z +

2(Π12σxσy + Π23σyσz + Π31σzσx )+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.45)

When the Voigt notation is used, the 9-parameter orthotropic von Mises criterion
takes the form

{σ}T [ort ĪI] {σ} − 1 = 0 (5.46)
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that involves definition (5.44). Note that equation (5.46) belongs to the class of
hydrostatic pressure sensitive criteria (cf. item D8 in Table6.3 Khan et al. [35, 36]).

In order to achieve pressure insensitive orthotropic criterion we apply a procedure
described in Sect. 5.2. If we decompose again the stress tensor into deviatoric and
volumetric parts σ = s +σh1 in the orthotropic von Mises equation (5.46) we arrive
at the equation analogous to (5.34)

{s}T [ort ĪI] {s} +
(
2 {s}T + σh {1}T

)
([ort ĪI] {1} σh) − 1 = 0 (5.47)

Assuming further hydrostatic pressure insensitive form the following holds

[ort ĪI] {1} = 0 (5.48)

which leads to three constraints instead of six in general case of vonMises anisotropic
Eq. (5.37)

Π11 + Π12 + Π13 = 0
Π12 + Π22 + Π23 = 0
Π13 + Π23 + Π33 = 0

(5.49)

In this way the orthotropic von Mises criterion (5.46) reduces to the pressure insen-
sitive criterion called Hill’s criterion [25, 26] that contains six independent modules

{s}T [ĪIH] {s} − 1 = 0 (5.50)

Hill’s matrix [ĪIH] appearing in Eq. (5.50) contains six independent modules. A
choice of the three independentmodules form six involved in Eq. (5.49) is not unique.
In what follows two of them are discussed (see two aforementioned forms (5.38) and
(5.40)).

In this way we arrive at the following Hill’s matrices

(5.51)

http://dx.doi.org/10.1007/978-3-319-17160-9_6
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or

(5.52)

When the engineering notation is used, corresponding representations of the Hill’s
criterion are

−
[
Π23

(
σy − σz

)2 + Π13 (σz − σx )
2 + Π12

(
σx − σy

)2]+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.53)

or
Π11σ

2
x + Π22σ

2
y + Π33σ

2
z + (Π33 − Π11 − Π22)σxσy +

(Π22 − Π11 − Π33) σxσz + (Π11 − Π22 − Π33)σyσz +
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.54)

Both representations (5.53) or (5.54) describe the sameHill’s limit surface, but apply-
ing two different choices of six independent elements of the Hill matrices (5.51)
or (5.52). In order to calibrate Hill’s criterion in the form (5.53) or (5.54) three

Fig. 5.9 Six tests for Hill’s
criterion calibration
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tests of uniaxial tension σx = kx ,σy = ky,σz = kz and three tests of pure shear
τxy = kxy, τyz = kyz, τzx = kzx, in directions and planes of material orthotropy
(Fig. 5.9), must be performed. These tests allow to express six modules of material
orthotropy in Eqs. (5.53) and (5.54) in terms of 3 independent plastic tension lim-
its kx , ky, kz (in directions of orthotropy), and 3 independent plastic shear limits
kyz, kzx, kxy (in planes of material orthotropy). Hence,

−Π23 = 1

2

(
1

k2y
+ 1

k2z
− 1

k2x

)

, Π44 = 1

k2yz

−Π13 = 1

2

(
1

k2z
+ 1

k2x
− 1

k2y

)

, Π55 = 1

k2zx

−Π12 = 1

2

(
1

k2x
+ 1

k2y
− 1

k2z

)

, Π66 = 1

k2xy

(5.55)

such that orthotropic Hill’s criteria equivalent to (5.53) or (5.54) can be furnished
in terms of plastic anisotropy limits as follows:

1

2

(
1

k2y
+ 1

k2z
− 1

k2x

)
(
σy − σz

)2 + 1

2

(
1

k2z
+ 1

k2x
− 1

k2y

)

(σz − σx )
2 +

1

2

(
1

k2x
+ 1

k2y
− 1

k2z

)
(
σx − σy

)2 +
(

τyz

kyz

)2

+
(

τzx

kzx

)2

+
(

τxy

kxy

)2

= 1

(5.56)

or (
σx

kx

)2

+
(

σy

ky

)2

+
(

σz

kz

)2

−
(

1

k2x
+ 1

k2y
− 1

k2z

)

σxσy −
(

1

k2y
+ 1

k2z
− 1

k2x

)

σyσz −
(

1

k2z
+ 1

k2x
− 1

k2y

)

σzσx +
(

τyz

kyz

)2

+
(

τzx

kzx

)2

+
(

τxy

kxy

)2

= 1

(5.57)

Note that under a particular plane stress condition, e.g., in the x, y plane, when
σz = τzx = τyz = 0, both formulas (5.56) and (5.57) reduce to the 4-parameter
orthotropic Hill’s condition

σ2
x

k2x
+ σ2

y

k2y
−

(
1

k2x
+ 1

k2y
− 1

k2z

)

σxσy + τ2xy

k2xy
= 1 (5.58)
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where initiation of plastic flow in the x, y plane is controlled not only by the in-plane
limits kx , ky , and kxy, but also by the out-of-plane limit kz , which may finally lead to
inadmissible loss of convexity by the yield surface. This will be discussed in detail
in the next section.

Note that in case when Π23 = Π13 = Π12 = −1/2k2 and Π44 = Π55 = Π66 =
3/k2 the orthotropic Hill criterion (5.53) reduces to the isotropic Huber–von Mises
criterion

(
σy − σz

)2 + (σz − σx )
2 + (

σx − σy
)2 + 6

(
τ2yz + τ2zx + τ2xy

)
= 2k2 (5.59)

The Hill criterion (5.53) is formulated in the space of principal material directions
of orthotropy which in general do not coincide with directions of principal stresses.
In the particular case when the coaxiality holds σx = σ1, σy = σ2, σz = σ3,
τxy = τyz = τzx = 0 we arrive at simplified

− Π23 (σ2 − σ3)
2 − Π13 (σ3 − σ1)

2 − Π12 (σ1 − σ2)
2 = 1 (5.60)

or when calibration (5.55) is used the explicit form of (5.60) is finally furnished

1

2

(
1

k22
+ 1

k23
− 1

k21

)

(σ2 − σ3)
2 +

1

2

(
1

k23
+ 1

k21
− 1

k22

)

(σ3 − σ1)
2 +

1

2

(
1

k21
+ 1

k22
− 1

k23

)

(σ1 − σ2)
2 = 1

(5.61)

Hill’s condition (5.61) represents cylindrical elliptic surface whose axis coincides
with the hydrostatic axis. Nevertheless in some cases, the limit surface looses closed
form for high othotropy degree which may occur when one of following expressions
1
k22

+ 1
k23

− 1
k21

elsewhere 1
k23

+ 1
k21

− 1
k22

or 1
k21

+ 1
k22

− 1
k23

changes the sign. Such

behavior is not admissible and a way how to overcome it will be presented in the next
section.

It is convenient to express Hill’s limit surface by use of the Haigh–Westergaard
coordinates (cf. Ganczarski and Lenczowski [15])

⎧
⎨

⎩

σ1
σ2
σ3

⎫
⎬

⎭
= ξ√

3

⎧
⎨

⎩

1
1
1

⎫
⎬

⎭
+

√
2

3
ρ(θ)

⎧
⎨

⎩

cos θ

cos(θ − 2π
3 )

cos(θ + 2π
3 )

⎫
⎬

⎭
(5.62)
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Fig. 5.10 Comparison of the
Huber–von Mises and the
Hill criteria in deviatoric
plane applying the
Haigh–Westergaard
coordinates ρ(θ) (k1 = k,
k2 = 0.8k, k3 = 1.5k)

to finally obtain Hill’s criterion in form ρ(θ)

ρ(θ) =

⎡

⎢
⎢
⎣

2
(

1
k22

+ 1
k23

− 1
k21

)
sin2

(
θ + π

3

) +
(

1
k23

+ 1
k21

− 1
k22

)
sin2

(
θ − π

3

)

+
(

1
k21

+ 1
k22

− 1
k23

)
sin2 θ

⎤

⎥
⎥
⎦

1/2 (5.63)

Note that in case if k1 = k2 = k3 = k the Huber–von Mises circular cylinder is
recovered Fig. 5.10

ρ =
√
2

3
k = const (5.64)

5.4 Hill’s Criterion Versus Hu–Marin’s Concept
in Case of Strong Orthotropy

Classical orthotropicHill’s criterion [25], despite obvious advantages andwide tech-
nical applications, is limited however by some constraints of applicability, which are
discussed in the present section following [18].

First limitation of applicability range of the classical Hill criterion is established
through the inequality bounding the magnitudes of the engineering orthotropy con-
stants k1, k2, and k3 in order to avoid ellipticity loss of the limit surface in the stress
space when the coordinate axes are aligned with the material axes of orthotropy (see,
e.g., Ottosen and Ristinmaa [47], Ganczarski and Skrzypek [17, 18]). Such limit
bounds put upon the orthotropy limits usually hold in case if the degree of material
orthotropy is moderate. For example, if the material ensures the transverse isotropy
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symmetry, it is shown that the orthotropy degree bounded by the inequality kmax
kmin

< 2
guarantees ellipticity of the limit surface to be saved. However, if the orthotropy
bound is violated, the Hill criterion becomes useless when a possible degeneration
of the elliptic cylindrical surface into two concave hyperbolic cylinders occurs, what
is inadmissible in the light of Drucker’s or Sylvester’s stability postulates.

To illustrate this restriction, we consider two types of true materials for which
the classical Hill criterion occurs to be: either useful, if material orthotropy degree
is not very high such that the ellipticity property of the limit surface is preserved, or
useless if the orthotropy degree is as high as the described limit surface no longer
holds the ellipticity requirement.Otherwords, a physically inadmissible degeneration
of the single convex and simply connected elliptical limit surface into two concave
hyperbolic surfaces occurs.

The following inequality bounds the range of applicability for Hill’s criterion
(cf., e.g., Ottosen and Ristinmaa [47])

2

k21k22
+ 2

k22k23
+ 2

k23k21
>

1

k41
+ 1

k42
+ 1

k43
(5.65)

For simplicity, a coincidence of the principal stress axes with the material orthotropy
axes is assumed in (5.65). In the narrower case of transverse isotropy k1 = k2,
condition (5.65) reduces to the simple form

1

k23

(
4

k21
− 1

k23

)

> 0 (5.66)

Substitution of the dimensionless parameter R = 2( k3
k1

)2 − 1, after Hosford and
Backhofen [27], leads to the simplified restriction

R > −0.5 (5.67)

If the above inequalities (5.65)–(5.67) do not hold, elliptic cross sections of the limit
surface degenerate into two hyperbolic branches and the lack of convexity occurs.
To illustrate this limitation, the yield curves in two planes: the transverse isotropy
(σ1,σ2) and the orthotropy plane (σ1,σ3) for various R–values, are sketched in
Fig. 5.11a, b, respectively. It is observed that when R starting from R = 3 approaches
the limit R = −0.5, the curves change from closed ellipses to two parallel lines,
whereas for R < −0.5 concave hyperbolas appear.

As example of orthotropic engineeringmaterial for which classical Hill’s criterion
can correctly predict the limit surface, consider first the OTCz Titanium Alloy, the
mechanical orthotropic properties of which are given in Table5.1 (cf. Malinin and
Rżysko [42]). Note that, for the OTCz Titanium Alloy, yield limits in the plane of
weak orthotropy 1,2 differ not so much, but the 3 axis is the dominant orthotropy
axis. As a consequence, in the plane of weak orthotropy 1,2 Hill’s ellipse is slightly
rotated towards 2–axis (α12 ≈ 45◦), in contrast to the plane of strong orthotropy
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(a) (b)

Fig. 5.11 Degeneration of theHill’s limit surfacewith themagnitude of theHosford andBackhofen
parameter R: a transverse isotropy plane, b orthotropy plane (after Ganczarski and Skrzypek [18])

Table 5.1 Mechanical properties of orthotropic OTCz Titanium Alloy after Malinin and Rżysko
[42]

Yield limits k1 [MPa] k2 [MPa] k3 [MPa]

490 520 800

1,3, where the rotation of the Hill ellipse is significant (α13 ≈ 71◦), as shown in
Fig. 5.12a, b, respectively.

In a case of high orthotropy degree (observed for majority of the long fiber rein-
forced composites, for instance: Boron/Al, SiC/Ti, Glass/Epoxy, Graphite/Epoxy,
etc., e.g., Herakovich and Aboudi [23], Sun and Vaidya [57], and others), the con-
cept other than Hill’s is proposed. This new approach suggests formulation of limit
criterion based on the 9-parameter von Mises condition, but enhanced by the Hu–
Marin type biaxial orthotropic loading conditions (cf. Hu and Marin [30], Skrzypek
and Ganczarski [54]). It will be demonstrated that, even in a case of arbitrarily strong
orthotropy (for instance, kmax/kmin ≈ 9, in case if brass Ł62 is tested) the property
of ellipticity is saved.

In general case of strong orthotropy, when the ellipticity condition (5.65) does
not hold, the deviatoric Hill criterion (5.56) or (5.57) becomes useless. Hence, in
order to describe physically admissible closed and convex limit surface, the more
general 9-parameter orthotropic von Mises equation (5.44) has to be recalled. In a
narrower case of the principal stress axes coinciding with the material orthotropy
axes the Eq. (5.45) reads as

Π11σ
2
1 + Π22σ

2
2 + Π33σ

2
3 + 2(Π12σ1σ2 + Π23σ2σ3 + Π31σ3σ1) = 1 (5.68)

The condition (5.68) is defined by six material parameters only, because τ23 ≡ τ31 ≡
τ12 ≡ 0, hence its calibration requires six conditions:
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(a)

(b)

Fig. 5.12 Hill’s deviatoric initial yield conditions versus Huber–von Mises’ isotropic approxima-
tion for the OTCz Titanum Alloy (cf. Table5.1): a the plane of “weak” orthotropy (σ1,σ2), b the
plane of “strong” orthotropy (σ1,σ3) (after Ganczarski and Skrzypek [18])
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Fig. 5.13 Graphical
illustration of biaxial loading
conditions (5.70)

three tests of uniaxial tension along the orthotropy axes

σ1 = k1 σ2 = 0 σ3 = 0 −→ Π11 = 1/k21
σ2 = k2 σ1 = 0 σ3 = 0 −→ Π22 = 1/k22
σ3 = k3 σ1 = 0 σ2 = 0 −→ Π33 = 1/k23

(5.69)

and three orthotropic biaxial tension loading conditions (ki , k j ) cf. Fig. 5.13

σ1 = k1 σ2 = k2 σ3 = 0 −→ Π12 = −1/2k1k2
σ1 = k1 σ3 = k3 σ2 = 0 −→ Π13 = −1/2k1k3
σ2 = k2 σ3 = k3 σ1 = 0 −→ Π23 = −1/2k2k3

(5.70)

The similar equibiaxial tension loading conditions are used, e.g., by Khan and
Liu [35].

Calibration of the orthotropic von Mises criterion (5.68), performed with condi-
tions (5.69) and (5.70) used, leads to the three-axial extension of the Hu–Marin type
criterion (cf. Ganczarski and Skrzypek [16], Skrzypek and Ganczarski [54])

(
σ1

k1

)2

− σ1σ2

k1k2
+

(
σ2

k2

)2

− σ2σ3

k2k3
+

(
σ3

k3

)2

− σ1σ3

k1k3
= 1 (5.71)

The enhanced Mises–Hu–Marin type criterion (5.71) is free from Hill’s deficiency
even in case of arbitrarily strong orthotropy degree, since it never violates theDrucker
stability postulate, which is not guaranteed by Hill-type equations. The Hu–Marin-
type Eq. (5.71) can easily be presented in the “pseudo-deviatoric” format

(
σ1

k1
− σ2

k2

)2

+
(

σ2

k2
− σ3

k3

)2

+
(

σ3

k3
− σ1

k1

)2

= 2 (5.72)

Three orthotropy limit yield points k1, k2 and k3 establish the proportional stress/
strength axis of cylindrical Hu–Marin’s surface. Note that this proportional stress/
strength axis, which determines a position of the limit surface axis in the prin-
cipal stress space, is different from the hydrostatic axis, but the condition of
equal ratios σi/ki = α holds at all points belonging to this axis. The extended
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von Mises–Hu–Marin type criteria (5.71–5.72) are always “unconditionally stable”
criteria, that remain convex even for very strong orthotropy, by contrast to the clas-
sical Hill condition in which the possible loss of convexity can be met in the case of
highly orthotropic materials. However, the fully deviatoric format of the Hill criteria
(5.50–5.56) is lost in theHu–Marin type format (5.72) where the hydrostatic pressure
insensitivity is relaxed.

In the particular case of plane stress state σ3 = 0 the three-parameter enhanced
von Mises–Hu–Marin equation (5.71) is reduced to the two-parameter one, as pro-
posed by Hu–Marin [30]

(
σ1

k1

)2

− σ1σ2

k1k2
+

(
σ2

k2

)2

= 1 (5.73)

Comparison of the 2-parameter Hu–Marin plane stress equation (5.73) with the
simplified 4-parameter plane stress Hill’s equation (5.58) written for principal stress
axes, leads to the 3-parameter form

(
σ1

k1

)2

−
(

1

k21
+ 1

k22
− 1

k23

)

σ1σ2 +
(

σ2

k2

)2

= 1 (5.74)

which becomes identical to the vonMises–Hu–Marin equation (5.73) only if follow-
ing constraint holds

1

k23
= 1

k21
+ 1

k22
− 1

k1k2
(5.75)

which is usually not true.
In order to illustrate a suitability of the von Mises–Hu–Marin orthotropic

Eq. (5.71), when compared to certain limitations of the Hill deviatoric Eq. (5.58),
two engineering materials characterized by different degrees of orthotropy: OTCz
Titanium Alloy (“weak” orthotropy) and Ł62 brass (“strong” orthotropy) are studied.
The results are presented in Fig. 5.14a, b on the planes σ1,σ3 and σ1, σ2, respec-
tively. In case of “weak” orthotropy both Hill’s and Hu–Marin’s ellipses differ not so
much, and both concepts are recommended (Fig. 5.14a). However, in case of “strong”
orthotropy, when the inequality (5.65) is not satisfied, following the Hill concept two
concave hyperbolic cylinders are formed by opening of the elliptic cylinder towards
the proportional stress/strength axis (Fig. 5.14b). On the other hand, the Hu–Marin
type surface saves the ellipticity property regardless of the magnitude of orthotropy
degree considered. In other words the Hu–Marin surface is “unconditionally stable”
which remains convex for very strong orthotropy. It is possible due to three additional
constraints (5.70) satisfied for the pairs of orthotropy yield limits (k1, k2), (k2, k3),
and (k3, k1). But, it should be pointed out that the Hu–Marin cylindrical surface
does not satisfy the condition of deviatoricity, hence this condition in fact should be
classified as a specific representative of the hydrostatic pressure sensitive class of
materials where the independence of the hydrostatic stress constraint is relaxed.
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(a)

(b)

Fig. 5.14 Comparison of the Hill and the Hu–Marin plastic yield criteria for two orthotropic
materials of different orthotropy degrees: a “weak” orthotropy in case of OTCz titanium alloy
(k1 = 490MPa, k2 = 520MPa, k3 = 800MPa), b “strong” orthotropy in case of Ł62 brass
(k1 = 105MPa, k2 = 120MPa, k3 = 950MPa) (after Ganczarski and Skrzypek [18])

The aforementioned possible loss of the convexity of classical Hill’s criterion
[25] (5.56) in case of highly orthotropic materials is even more pronounced when
the orthotropic generalization of the isotropicHosford criterion [27] (5.10) for higher
(even) exponents is done
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−Π23|σy − σz |m − Π13|σz − σx |m − Π12|σx − σy |m
+Π44|τyz|m + Π55|τzx|m + Π66|τxy|m = 1

(5.76)

Six generalized orthotropy modules Π23, . . . ,Π66 can be expressed in terms of six
yield point stresses kx , . . . , kxy in analogous fashion as previously discussed manner
of calibration for Hill’s criterion (5.55), namely

−Π23 = 1

2

(
1

|ky |m + 1

|kz|m − 1

|kx |m
)

, Π44 = 1

|kyz|m

−Π13 = 1

2

(
1

|kz |m + 1

|kx |m − 1

|ky |m
)

, Π55 = 1

|kzx|m

−Π12 = 1

2

(
1

|kx |m + 1

|ky |m − 1

|kz|m
)

, Π66 = 1

|kxy|m

(5.77)

Note however that in this extended case (different from m = 2 and m = 4 when the
orthotropic Hill is recovered) dimension of the orthotropy modules Π23, . . . ,Π66
depends on the value of power m and it is equal to MPa−m .

Although the yield criterion defined by Eq. (5.76) with the calibration (5.77) used
has been mathematically verified and its convexity has been proven in case of the
planar anisotropy in the principal stress space if and only ifm ≥ 1 and the orthotropy
modulesΠ23, . . . ,Π66 are positive constant coefficients (seeBarlat andLian [2], also
Chu [10]), in case of the general orthogonal anisotropy in the six-dimensional stress
space convexity is not obvious.

Themore general case, when axes ofmaterial orthotropy are different from axes of
principal stresses, was considered by Ganczarski and Lenczowski [15]. It was shown
that, although the limit surface is closed and convex in space of principal material
orthotropy frame, it occurs that lack of convexity is met when transformation to the
space of principal stress frame is done in terms of three angles defining the mutual
configuration of these two frames. This type of convexity loss was examined for
the brass sheet Ł22 the six orthotropic yield points of which are given in Table5.2
after Malinin and Rżysko [42] who gave three-axial yield point stresses whereas
three shear yield point stresses were estimated in [15] using simplified formulas

kij =
√

kij
3 for m = 2 and kij =

√
kij

2 for m = 6, 8. For simplicity the evolution of the
generalized orthotropic Hosford yield condition (m = 8) with respect to only one of
the Euler angles ϑ was considered. It represents a prism of the semi-hexagonal cross
section with oval corners as presented in Fig. 5.15. The loss of convexity is observed
for 18◦ ≥ ϑ ≥ 26◦.

Table 5.2 Yield point stresses for brass Ł22 after Malinin and Rżysko [42]

m kx [MPa] ky [MPa] kz [MPa] kzy [MPa] kzx [MPa] kxy [MPa]

2 120 105 950 182 194 64.8

6 or 8 120 105 950 157 168 56.1
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Fig. 5.15 Evolution of the
generalized orthotropic
Hosford yield condition
(m = 8) versus the Euler
angle ϑ = 18◦, 20◦, 22◦,
24◦, and 26◦ for brass Ł22,
after Ganczarski and
Lenczowski [15]

It should be pointed out that the limit criteria considered throughout this section
do not exhibit the strength differential effect such that they cannot be recommended
as failure criteria for brittle materials where this effect is essential.

5.5 Transversely Isotropic Case—Hill-Type Tetragonal
Symmetry Versus Hu–Marin-Type Hexagonal
Symmetry Criteria

The second limitation of applicability range of classical Hill’s criterion arises when
the transverse isotropy property is considered. In this section it will be shown that,
if reduction of Hill’s criterion to the transverse isotropy symmetry is performed, the
4-parameter form that satisfies the tetragonal symmetry class is furnished (cf., e.g.,
Voyiadjis and Thiagarajan [62], Sun and Vaidya [57]). This type of symmetry is of
particular importance in case of unidirectional fiber reinforced composites. In such
a case moduli: kx , ky , kz , and kxy are considered as independent (z is the orthotropy
axis), which makes impossible to reduce classical Hill’s criterion to the isotropic von
Mises condition in the plane of transverse isotropy.

To avoid this irreducibility to isotropic von Mises, the newHu–Marin-based trans-
versely isotropic criterion exhibiting hexagonal symmetry is proposed instead of
deviatoric transversely isotropic Hill’s criterion exhibiting tetragonal symmetry. It
enables to achieve reducibility to the isotropic von Mises condition in the transverse
isotropy plane, preserving cylindricity regardless of the magnitude of orthotropy
degree.

Finally, it will be demonstrated that, for some composite materials it is necessary
to further modify the 3-parameter Hu–Marin-type criterion to the new 4-parameter
intermediate-type criterion between classical Hill’s and hexagonal Hu–Marin’s
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concepts, taking advantage of the bulge test. This new hybrid-type criterion differs
essentially from both the Hu–Marin hexagonal type criterion and the isotropic von
Mises criterion in the isotropy plane. Bulge tests have been performed and described,
e.g., by Jackson et al. [33] with equipment used by Lankford et al. [39]. This new
criterion is capable of properly describing the SiC/Ti long fiber reinforced composite
examined by Herakovich and Aboudi [23].

Classical Hill’s equation (5.53–5.54), which is expressed in terms of six indepen-
dent plastic yield limits kx , ky, kz, kyz, kzx , and kxy, (5.56) is often too general for
engineering applications. Orthotropic structural materials usually exhibit the trans-
versely isotropic symmetry, basically due to either fabrication process or microstruc-
ture texture, as often observed in many long parallel fiber reinforced composites. In
particular, if in elastic range the transversely isotropic symmetry group holds, it is
expected that, also for the plastic yield initiation criterion such a narrower symmetry
is true.

In what follows, a distinction between two symmetry classes of the transverse
isotropy–tetragonal or hexagonal type has to be done. Such distinction is known,
e.g., from definitions of Representative Unit Cell used in homogenization methods
for composite materials (cf., e.g., Berryman [4], Sun and Vaidya [57], etc.).

Assume that the z-axis is the orthotropy axis, whereas x, y is the transverse
isotropy plane. When applying Eq. (5.54) with calibrations (5.56) or (5.57) and addi-
tionally assuming kx = ky �= kz , kzx = kzy �= kxy, the number of independent limits
in transversely isotropic Hill’s equation reduces to four for instance: two axial yield
limits kx and kz , and two shear yield limits kzx and kxy (Fig. 5.16).

In this way the following is furnished

−Π13 = −Π23 = 1

2k2z
, Π44 = Π55 = 1

k2zx

−Π12 = 1

k2x
− 1

2k2z
, Π66 = 1

2k2xy

(5.78)

Fig. 5.16 Four independent
tests for transversely
isotropic Hill’s criterion
calibration
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Substitution of (5.78) into (5.51) and (5.52) yields to transversely isotropic Hill’s
matrices

(5.79)
or

(5.80)

The transversely isotropic 4-parameter Hill criteria corresponding to orthotropic
Hill’s criteria (5.56) and (5.57) take the following representations

(
σy − σz

)2 + (σz − σx )
2

2k2z
+

(
1

k2x
− 1

2k2z

)
(
σx − σy

)2 + τ2yz + τ2zx

k2zx
+ τ2xy

k2xy
= 1

(5.81)
or equivalently

σ2
x + σ2

y

k2x
+ σ2

z

k2z
−

(
2

k2x
− 1

k2z

)
σxσy − σyσz + σzσx

k2z
+ τ2yz + τ2zx

k2zx
+ τ2xy

k2xy
= 1 (5.82)

Both forms involve four plastic limits kx , kz, kzx , and kxy, considered as indepen-
dent parameters. Underlined factor in (5.82) includes not only kx but also kz . The
explicitly deviatoric form (5.81) exhibits the similar feature. The plastic state in the
transverse isotropy plane x, y is controlled not only by the tensile yield limit in
this plane kx , but also by the out-of-plane tensile yield limit kz . Concluding, trans-
versely isotropic Hill’s criteria (5.81) or (5.82) have to be classified as the tetragonal
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symmetry format (see Table1.4). The assumption of tetragonal symmetry of the cri-
teria (5.81–5.82) was also considered by Voyiadjis and Thiagarajan [62] in case of
directionally reinforced metal matrix composites (Boron–Aluminum). Broader dis-
cussion that relates to distinction between the tetragonal versus hexagonal symmetry
in the yield/failure criteria will be presented in Sect. 6.5, where additional constraint
for case if Π66 = −2(Π13 + 2Π12) is assumed, such that Π66 has to be considered
as dependent plastic modulus. To this end, if aforementioned constraint postulated
by Chen and Han [9] is applied, the equality holds

Π66 = 4

k2x
− 1

k2z
(5.83)

instead of (5.784) and transversely isotropic 3-parameter Hill’s criteria correspond-
ing to (5.81) and (5.82) in following format
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2
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)
(
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k2z
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(5.84)

or equivalently
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− 1

k2z
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(5.85)

can be written down.
In the particular case of plane stress state in the transverse isotropy plane (x, y)

σx ,σy, τxy �= 0 Eqs. (5.81) or (5.82) reduce to (5.58) with additional condition
kx = ky

σ2
x + σ2

y

k2x
−

(
2

k2x
− 1

k2z

)
σxσy + τ2xy

k2xy
= 1 (5.86)

The above form simply means that commonly used “transversely isotropic Hill’s
criterion” does not coincide in the “transverse isotropy plane” with the isotropic
Huber–von Mises equation

σ2
x + σ2

y

k2x
− σxσy

k2x
+ 3

τ2xy

k2xy
= 1 (5.87)

In other words, when the new transversely isotropic yield criterion, that is free
from inconsistencies between (5.86) and (5.87) is sought for, the material parameter

http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_6
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preceding term σxσy must be equal to Π33 − 2Π11 = 1/k2x and not depend on kz

and, simultaneously, the material parameter Π66 = 3/k2x must depend on kx only.
In order to derive the transversely isotropic yield criterion reducible to coinci-

dence with the Huber–vonMises criterion in the isotropy plane, the new transversely
isotropic hexagonal Hu–Marin equation will be postulated. To obtain this criterion,
the general orthotropic von Mises equation (5.45), which is not deviatoric, can be
calibrated analogously to that presented in (5.69) and (5.70). Namely, when the con-
straints of transverse isotropy are imposed, we invoke:
the two tensile tests in the x- and the orthotropy z-axes and the shear test in the
orthotropy zx-plane

σx = kx , σy = σz = τxy = τyz = τzx = 0 −→ Π11 = Π22 = 1/k2x
σz = kz, σx = σy = τxy = τyz = τzx = 0 −→ Π33 = 1/k2z
τzx = kzx, σx = σy = σz = τxy = τyz = 0 −→ Π44 = Π55 = 1/k2zx

(5.88)

and the three biaxial conditions for coincidence of appropriate pairs of yield limits

σx = kx ,σy = kx , σz = τxy = τyz = τzx = 0 −→ Π12 = −1/2k2x
σx = kx ,σz = kz, σy = τxy = τyz = τzx = 0 −→ Π13 = −1/2kx kz

σx = kx , τxy = kx/
√
3, σy = σz = τyz = τzx = 0 −→ Π66 = 3/k2x

(5.89)

Introduction of (5.88) and (5.89) into orthotropic von Mises’ criterion (5.45) leads
to transversely isotropic 3-parameter hexagonal Hu–Marin’s criterion as follows:

σ2
x + σ2

y

k2x
− σxσy

k2x
+ σ2

z

k2z
− σyσz + σzσx
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+ τ2yz + τ2zx

k2zx
+ 3

τ2xy
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= 1 (5.90)

or
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σy
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− σz
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+
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σz

kz
− σx

kx

)2

+ 3
τ2yz + τ2zx

k2zx
+ 6

τ2xy

k2x
= 2 (5.91)

Note, that the above conditions correspond to generalized Hu–Marin’s equations
(5.71) or (5.72)with k1 = k2,but enhancedby the additional shear terms and referring
to optional directions x, y, z. Equations (5.90) or (5.91) reduce to the Huber–von
Mises equation (5.87) in case of plane stress state in the transverse isotropy plane
(x, y), which means that this new criterion can finally be recognized as transversely
isotropic hexagonal symmetry von Mises–Hu–Marin’s based criterion.

Transversely isotropic conditions—tetragonal Hill’s (5.71) or (5.72) and hexag-
onal Hu–Marin’s (5.90) or (5.91), are examined for given orthotropy degrees
R = 2( kz

kx
)2 − 1 = 2,kxy/kx = 0.8, k(xy)/kx = 0.9, and kzx/kx = 0.8, for fol-

lowing stress states: biaxial normal stresses (σx ,σy) and combined normal with
shear stresses (σx , τxy) in the transverse isotropy plane (see Fig. 5.17a, b), as well as
biaxial normal stresses (σx ,σz) and combined normal with shear stresses (σx , τzx)
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in the orthotropy plane (see Fig. 5.18a, b). It is worth to mention that transversely
isotropic Hill’s condition of tetragonal symmetry (5.81) or (5.82) comprises four
independent plastic yield limits: kx , kz , kzx , and kxy, because shear yield limit in
isotropy plane kxy is considered as independent.

Contrarily, transversely isotropic enhancedHu–Marin-type condition, the symme-
try class of which is hexagonal, is defined by three independent yield limits only: kx ,
kz , and kzx, since in-plane shear yield limit kxy must agree with the Huber–vonMises
criterion in the isotropy plane kxy = kx√

3
. Hence, representation of the transversely

isotropic hexagonal symmetry Hu–Marin-type constitutive matrix of plasticity is as
follows:

(5.92)

The general case of transversely isotropic 4-parameter tetragonal symmetry Hu–
Marin-type yield criterion that preserves convexity but lost property of reducibility
to the isotropic von Mises condition in the plane of transverse isotropy is considered
by Voyiadjis and Thiagarajan [62]. The corresponding matrix of plasticity used by
authors results from the general orthotropic matrix when four independent plastic
onset limits are k1, k2 = k3, k4 = k5, and k6 (if original notation is saved 1 denotes
fiber direction)

(5.93)
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(a)

(b)

Fig. 5.17 Comparison of transversely isotropic criteria in the transverse isotropy planes: Hill’s
tetragonal (5.82), Hu–Marin’s hexagonal (5.90) and Huber–von Mises’ for given magnitudes of
orthotropy ratios: R = 2, kzx/kx = 0.8, k(xy)/kx = 0.9 in case of 2D states of stress: a biaxial
normal stresses (σx ,σy) and b combined normal with shear stresses (σx , τxy) (after Ganczarski and
Skrzypek [18])
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(a)

(b)

Fig. 5.18 Comparison of transversely isotropic criteria in the orthotropy plane: Hill’s tetragonal
(5.82), Hu–Marin’s hexagonal (5.90), and Huber–von Mises for given magnitudes of orthotropy
ratios: R = 2, kzx/kx = 0.8, k(xy)/kx = 0.9, in case of 2D states of stress: a biaxial normal stresses
(σx ,σz) and b combined normal with shear stresses (σx , τzx) (after Ganczarski and Skrzypek [18])
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Introducing for k1, k2, k4, and k6 the following substitution 2
9k21 = 1

k2z
, 2
9k22 = 1

k2x
2
3 (k1k2 + k24) = 1

k2zx
, 2
3 (k

2
2 + k26) = 1

k2xy
we end up with format of the Voyiadjis and

Thiagarajan condition analogous to (5.92) however 4-parameter, where not only kx ,
kz , and kzx but additionally kxy are considered as independent (see doubly underlined
terms in (5.90) and (5.94))

σ2
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y

k2x
− σxσy

k2x
+ σ2

z

k2z
− σyσz + σzσx
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+ τ2yz + τ2zx

k2zx
+ τ2xy

k2xy
= 1 (5.94)

Such criterion is irreducible to the isotropic von Mises type in the plane of isotropy,
but it fits the experimental data for Boron–Aluminum composite tubular specimen
having unidirectional lamina (Dvorak et al. [14] and Nigam et al. [45]).

Both transversely isotropic criteria: Hill-type of tetragonal symmetry (5.81) as
well as Hu–Marin-type of hexagonal symmetry (5.90) describe cylindrical surfaces
in space of principal stresses. However, Hill’s type limit surface represents elliptical
cylinder, the axis ofwhich coincideswith the hydrostatic axis, in contrast to enhanced
Hu–Marin-type limit surface that represents elliptic cylinder, the axis of which forms
a proportional stress/strength axis, different from the hydrostatic axis. It means that
enhanced Hu–Marin’s condition does not satisfy the deviatoricity property, which is
a price for property of reducibility to the Huber–von Mises condition in the isotropy
plane, with cylindricity ensured regardless of the magnitude of orthotropy degree.

A choice of appropriate transversely isotropic limit criterion, of either the tetrag-
onal symmetry (5.81) or the hexagonal symmetry (5.90), depends on coincidence
with experimental findings for real material. This may often lead to one of the two
above considered symmetry classes, but sometimes material limit response is dif-
ferent even from both of them. Note that the shape of limit curves in the trans-
verse isotropy plane is the key to appropriate classification of real transversely
isotropicmaterial as exhibiting tetragonal symmetry or hexagonal ormixed symmetry
properties.

5.6 Hybrid Formulation of Enhanced Hu–Marin-Type
Condition

In what follows a description of new limit criterion of the hybrid symmetry property
between the tetragonal (5.81) or (5.82) and the hexagonal (5.90) or (5.91) symme-
try classes, is proposed. The Hu–Marin type equation of pure hexagonal symmetry
property (5.90) or (5.91) comprises three independent material constants kx , kz , and
kzx. However, real engineering materials of hybrid-type nature are frequently charac-
terized by four independent material constants determined from four tests: two limits
in uniaxial tensions kx and kz , shear limit in orthotropy plane kzx (5.69) and addi-
tionally, in the biaxial tension test (bulge test) k(xy) instead of the first of condition



196 A.W. Ganczarski and J.J. Skrzypek

(a) (b)

(c) (d)

Fig. 5.19 Fitting of the initial yield surface of unidirectional SiC/Ti composite according to
Herakovich and Aboudi findings [23] (symbol �) by the use of transversely isotropic Hu–Marin’s
hybrid-type criterion (5.90): a, b transverse isotropy plane (σx ,σy), c orthotropy plane (σx ,σz), d
orthotropy shear plane (σx , τzx) (after Ganczarski and Skrzypek [18])

(5.701), namely

σx = σy = k(xy) σz = τxy = τyz = τzx = 0 −→ Π12 = − 1
2k2

(xy)
(5.95)

The above condition leads to the hybrid formulation of enhanced Hu–Marin’s con-
dition

σ2
x + σ2

y

k2x
− σxσy

k2(xy)

+ σ2
z

k2z
− σyσz + σzσx

kzkx
+ τ2yz + τ2zx

k2zx
+ 3

τ2xy

k2x
= 1 (5.96)

Equation (5.96) differs from the hexagonal form of Hu–Marin’s condition (5.90) in
the underlined term, where the fourth independent material constant k(xy) is taken
from the bulge test (5.95), additionally to conditions (5.892,3). The hybrid formula-
tion of 4-parameter transversely isotropic Hu–Marin’s condition (5.96) has matrix
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representation as follows:

(5.97)

It is illustrated in Fig. 5.19a–d for the SiC/Ti long fiber reinforced composite by the
use of thick solid line.

The hybrid-type enhanced Hu–Marin criterion is capable of capturing behavior
of some long fiber reinforced composite materials, that in the transverse isotropy
plane exhibit limit response different from both the Hill and the Huber–von Mises
materials (cf., e.g., Herakovich and Aboudi [23]).

5.7 Comparison of Four Selected Transversely Isotropic
Yield Criteria

Transition from the orthotropic yield criterion (von Mises or Hill) to the transverse
isotropy is connected with the reduction of independent plastic modules (von Mises
9 → 6, Hill 6 → 4). These independent modules have to be identified by the use of
appropriate number of tests and constraints. At present section the detailed discussion
of the four selected yield criteria from Sect. 5.5 is performed. To this end we invoke
following selected yield criteria, two of them based on the Hill origin and the other
two based on the von Mises origin
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(5.98)
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The above criteria have been derived in terms of different combinations of engineer-
ing modules based on appropriate identification procedures. All four criteria under
consideration involve three common tests:

σx = kx σz = kz τzx = kzx (5.99)

Additional conditions necessary for full identification take different forms.
In case of the classical Hill criterion (5.981) the additional fourth condition holds:

τxy = kxy (5.100)

Aforementioned Hill’s criterion contains four independent parameters and can be
classified as tetragonal symmetry form (see Table1.4d).

The second formulation (5.982) is also based on Hill’s criterion however the
additional constraint is imposed on the Π66 modulus (see Chen and Han [9])

Π66 = −2(Π13 + 2Π12) = 4

k2x
− 1

k2z
(5.101)

such that number of independent parameters is reduced to three kx , kz , and kzx as a
consequence thisHill’s criterion exhibits property of hexagonal symmetry. However,
it is irreducible to the Huber–von Mises criterion in transverse isotropy plane.

The third formulation (5.983) inherits the von Mises format hence, if reduction
to transverse isotropy is performed, it requires identification of six plastic modules
in terms of three independent plastic limits kx , kz , and kzx. Therefore, except from
three common conditions (5.99) the following additional three must be formulated

σx = σy = kx σx = σy = kx ∧ σz = kz τxy = kx/
√
3 (5.102)

In other words, two biaxial conditions in planes (xy) and (xz) hold and additional
condition imposed on Π66 exhibits Huber–von Mises reducibility property

http://dx.doi.org/10.1007/978-3-319-17160-9_1
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Π66 = 3

k2x
(5.103)

The fourth formulation (5.984) is of specific nature, namely it is based on the von
Mises–Hu–Marin criterion and requires the following three additional conditions

σx = σy = k(xy) σx = σy = kx ∧ σz = kz τxy = kx/
√
3 (5.104)

Hence, (5.1041) essentially differs from (5.1021) since it involves the new indepen-
dent constant k(xy) established from the bulge test in the transverse isotropy plane
(see Jackson et al. [33]).

In conclusion it is clear that only the classical Hill condition is of tetragonal
symmetry whereas all three other proposals discussed above have to be classified
as hexagonal symmetry types even though the reasons of reduction of independent
parameters (4 or 3) are of different nature.

5.8 Implicit Formulation of Pressure Insensitive Anisotropic
Initial Yield Criteria—Barlat’s and Khan’s Concepts

In this section another approach (implicit formulation) is discussed based on a series
of papers developed by Barlat, Planckett, Cazacu, and Khan to mention some names
only. The implicit formulation involves the linear transformation of the Cauchy stress
tensor σ to the transformed stress Σ = L : σ by the use of transformation tensor L
responsible for orthotropy. Such linear transformation concept of the stress tensor
was first introduced by Sobotka [55] and Boehler and Sawczuk [6]

σ̂ij = Aijklσkl (5.105)

where Aijkl stands for a certain dimensionless tensor of anisotropy that satisfies
general symmetry conditions Aijkl = Ajikl = Aijlk = Aklij and the well-known
isotropic yield conditions to hold for anisotropic materials as well if σij are replaced
by σ̂ij. This approach is not directly based on the theory of common invariants in the
sense of Sayir, Goldenblat, Kopnov, Spencer, Boehler, Betten etc. formalism (explicit
formulation). According to this implicit approach an extension of isotropic initial
yield/failure criteria is performed to account for the tension/compression asymmetry
property and tomaterial anisotropy frame (usually orthotropy) by applying the linear
transformation to the stress tensor and inserting this transformed stress tensor into
the originally isotropic yield/failure criteria.

In the paper by Cazacu et al. [8] authors consider both the isotropic yield criterion
for description of asymmetric yielding
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f (J2s, J3s) = (|s1| − k̂s1)a + (|s2| − k̂s2)a + (|s3| − k̂s3)a = 2ka

k̂ = 1 − h( kt
kc

)

1 + h( kt
kc

)
h

(
kt
kc

)
=

[
2a − 2( kt

kc
)a

(2 kt
kc

)a − 2

]1/a
(5.106)

where si , i = 1, . . . , 3 are the principal values of the stress deviator and f gives
the size of the yield locus (isotropic hardening), as well as its extension to include
orthotropyby theuseof linear transformation of the Cauchy stressdeviatorΣ = C : s
through

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13
C12 C22 C23
C13 C23 C33

C44
C55

C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.107)

which lead to following anisotropic equation

(|Σ1| − k̂Σ1)
a + (|Σ2| − k̂Σ2)

a + (|Σ3| − k̂Σ3)
a = 2ka (5.108)

Authors proved convexity of the isotropic yield form (5.106) as well as pressure
insensitivity of its orthotropic form (5.108) obtained through the linear transformation
to the transformed stress frame. However, the question of convexity of the orthotropic
form (5.108) remains open in the light of discussion performed for Hill’s (Fig. 5.11)
and Hosford’s (Fig. 5.15) extensions in case of a highly orthotropic materials.

The proposed yield function appears to be suitable for description of the strong
asymmetry and anisotropy observed in textured Mg-Th andMg-Li binary alloy sheets
and for titanium 4Al-1/4O2, see Cazacu et al. [8]. The orthotropic yield criterion
proposed by Cazacu et al. [8] was also investigated in a series of multiaxial loading
experiments on Ti-6Al-4V titanium alloy by Khan et al. [34].

Extension of Drucker’s isotropic yield criterion (5.15) to anisotropy by use of
common invariants J 0

2 and J 0
3 is due to Cazacu and Barlat [7], and investigated by

Yoshida et al. [64]
(J 0

2 )3/2 − cJ 0
3 − k3 = 0 (5.109)

The constant c in the Eq. (5.109) accounts for the tension/compression asymmetry
defined as

c = 3
√
3(k3t − k3c )

2(k3t + k3c )
(5.110)
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and belongs to two ranges

c ∈
⎧
⎨

⎩

(
0, 3

√
3

2

)
for kt > kc > 0

(
− 3

√
3

2 , 0
)

for 0 < kt < kc
(5.111)

The second and third common invariants of orthotropy are defined as

J 0
2 = 1

6

[
a1(σx − σy)

2 + a2(σy − σz)
2 + a3(σz − σx )

2
]

+ a4τ2xy + a5τ2xz + a6τ2zy

J 0
3 = 1

27

{
(b1 + b2)σ3

x + (b3 + b4)σ3
y + [2(b1 + b4) − b2 − b3]σ3

z

}

+ 2b11τxyτyzτzx + 1
9

{
2(b1 + b2)σxσyσz − (b1σy + b2σz)σ

2
x

− (b3σz + b2σx )σ
2
y − [(b1 − b2 + b4)σx + (b1 + b3 + b4)σy]σ2

z

}

− 1
3

{
τ2yz[(b6 + b7)σx − b6σy − b7σz]

− τ2zx[2b9σy − b8σz − (2b9 − b8)σx ]
− τ2xy[2b10σz − b5σy − (2b10 − b5)σx ]

}

(5.112)

The discussed anisotropic criterion was successfully verified for texturedmagnesium
Mg-Th and Mg-Li alloy sheets. Authors proved convexity of the enhanced isotropic

yield criterion only for c(kt/kc) belonging to the range [− 3
√
3

2 ,− 3
√
3

2 ]. In case of the
anisotropic form of Cazacu and Barlat’s criterion (5.109) the general proof of con-
vexity for the wide class of highly tension/compression asymmetric and anisotropic
materials may not be possible.

More complete representation of J 0
2 and J 0

3 common invariants as well as the
extended model (5.109) verification for high-purity α-titanium is done by Nixon
et al. [46].

Korkolis and Kyriakides [38] applied anisotropic extension of Hosford’s isotropic
criterion (5.10) in terms of principal stress deviator s1, s2 in case of plane stress state

|s1 − s2|n + |2s1 + s2|n + |s1 + 2s2|n = 2kn (5.113)

Folowing Barlat et al. [3] they introduced anisotropy by use of a concept of two linear
transformations S′ = L

′ : s and S′′ = L
′′ : s where L′ and L

′′ are transformation
tensors introducing anisotropy

|S′
1 − S′

2|n + |2S′′
1 + S′′

2 |n + |S′′
1 + 2S′′

2 |n = 2kn (5.114)
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Experimental validation of (5.114) is due to Korkolis and Kyriakides [38] applied to
Al-6260-T4 as well as due to Dunand et al. [13], Luo et al. [41] applied to AA6260-T6
alloys under classical tensile and butterfly shear tests.

Comparison of two different approaches: explicit formulation based on common
invariants and implicit formulation composed as extension of isotropic criteria to
anisotropy and tension/compression asymmetry leads to the following characteristic
features.

The implicit formulation is very advantageous and fruitful in order to build
numerical models able to capture experimental evidence for broad class of inno-
vative metallic materials (mainly metal-based alloys) that simultaneously exhibit
tension/compression asymmetry, anisotropy, and hydrostatic pressure insensitivity.
Apart from these advantages some open questions may be highlighted. Among them
theremight bementioned not obvious physical interpretation for the extended criteria
based on known isotropic forms enhanced through strength differential sensitivity
and orthotropic linear transformation of stress. The general proof of convexity is
rather cumbersome and not attached in a complete and convinced form. Although
the isotropic equations are undestandable, have physical interpretations, and satisfy
convexity requirements the transposition of these equations to the transformed stress
frame may lead to the loss of convexity.

By contrast use of the explicit approach based on well-established theory of com-
mon invariants is more rigorous and so leads to more clear physical interpretation
(energy) and convexity of quadratic or poly-quadratic forms.However, this consistent
approach leads to major difficulties when numerical implementation and experimen-
tal validation are considered. Additional difficulties arise when implementing the
explicit approach to more general cases if the material orthotropy frame does not
coincide with the principal stress frame. Such more general problem was discussed
by Ganczarski and Lenczowski [15] in case of Hill’s and orthotropic Hosford’s cri-
teria. In such a case it is necessary to transform tensor of structural orthotropy to the
frame of principal stress resulting in a possible loss of convexity and even degener-
ation of an initially closed surface into twofold surface (nonclosed).

5.9 Brief Survey of Commonly Used Pressure Insensitive
Isotropic and Anisotropic Initial Yield Criteria

In this section a brief survey of the selected commonly used pressure insensitive
initial yield criteria is presented. The survey is focused on following two aspects:

• isotropic versus anisotropic formulation,
• direct versus indirect dependence on the stress invariants or the common invariants.

Special attention is paid for invariant representation of invoked limit criteria. Cho-
sen isotropic yield criteria are collected in Table5.3. All cited criteria depend on
the second deviatoric invariant and additionally they may depend on the third devi-
atoric invariant. Criteria A1, A2, and A3 are written down in the format directly
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Table 5.3 Survey of pressure insensitive isotropic yield criteria

A. Author(s) Limit criterion

A1 Raniecki and Mróz [48] Eq. (5.13) (J2s)
3n/2 − c(J3s)

n = k3n

A2 Cazacu and Barlat [7] Eq. (5.14) (J2s)
3/2 − cJ3s = k3

A3 Drucker [12] Eq. (5.15) (J2s)
3 − c(J3s)

2 = k6

A4 Huber [31], von Mises [43] Eq. (5.4) 3J2s = k2

A5 Tresca [60], Guest [20] Eq. (5.8) Reuss
[49] Eq. (5.9)

max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) = k
4J 3

2s − 27J 2
3s − 9k2 J 2

2s + 6k4 J2s = k6

|σ1 − σ2| + |σ2 − σ3| + |σ3 − σ1| = 2k

A6 Schmidt [53], Ishlinsky [32] and Hill
[26] Eq. (5.11)

max(|σ1 − σh|, |σ2 − σh|, |σ3 − σh|) = 2
3 k

A7 Hershey [24], Davies [11] and Hosford
[29] Eq. (5.10)

|σ1 − σ2|m + |σ2 − σ3|m + |σ3 − σ1|m = 2km

A8 Cazacu et al. [8] Eq. (5.106) (|s1|−k̂s1)a +(|s2|−k̂s2)a +(|s3|−k̂s3)a = 2ka

dependent on both invariants. The existence of the third invariant being argument of
different power functions enables to capture various asymmetry of the initial yield
curve in the deviatoric plane. The particular case of aforementioned Drucker-like
criteria when c = 0 is the classical Huber–von Mises criterion A4 in which influ-
ence of the third stress invariant is ignored. Another classical Tresca’s criterion A5
is written down in the three equivalent formats: the form suggested by Tresca [60]
and experimentally validated by Guest [20], explicitly invariant Reuss’ form and
the Cazacu and Barlat [7] form being a particular case of Hosford’s criterion A7
when m = 1. The Tresca criterion represents the regular hexagonal prism in the
Haigh–Westergaard space inscribed into the Huber–von Mises circular cylinder (see
Fig. 5.4). The maximal deviatoric stress-based criterion A6 formulated by Schmidt
[53], Ishlinsky [32], and Hill [25] also represents the regular hexagonal prism in
the Haigh–Westergaard space, however circumscribed onto the Huber–von Mises
circular cylinder (see Fig. 5.4). The Tresca and Schmidt–Ishlinsky–Hill criteria are
useful as the inner and outer bounds for all isotropic third stress invariant insensitive
criteria, however the existence of corners on initial yield surfaces is physically ques-
tionable because the uniqueness of plastic strain increment is lost (see Fig. 5.5). The
direct generalization of the Tresca criterion A5 by the use of power form that elim-
inates corners is due to Hershey [24], Davies [11], and Hosford [27]. The exponent
m that ensures convexity has to be taken from the range 1 ≤ m < ∞, see Fig. 5.6.
The Tresca-like criteria A5, A6, and A7 do not account for the tension/compression
asymmetry effect. Another original criterion proposed by Cazacu et al. [8] A8 is
relevant to the Drucker criterion A3 in such a sense that it is a homogeneous func-
tion of degree a in stresses, the cross section of which represents a “triangle” with
rounded corners, see Cazacu et al. [8]. The strength differential effect is included and
controlled by a parameter k̂( kt

kc
). The existence of absolute values in the criterion

proposed results from a reversible shear mechanisms such as slip, since yielding
depends only on the magnitude but not direction of the shear stress, yield criterion
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f (s) = f (−s). Other yield criteria accounting for different representations of the
second and the third invariants due to Sayir that exhibit discrete 120◦-symmetry are
discussed by Altenbach et al. [1].

Chosen anisotropic yield criteria are collected in Table5.4. In the item B1 two
examples of implementation of implicit anisotropic extension of the isotropicDrucker
yield criterion (dependent on the second and the third deviatoric stress invariants)
referring to works by Cazacu and Barlat [7] and Nixon et al. [46] are presented. The
original notation used by the authors is given in Table5.3. By contrast to original
notation in item B1 of Table5.4 the criterion is rewritten in a frame of transformed
stress Σ = L : σ instead of the Cauchy stress frame σ. Due to this concept the
second J 0

2 and the third J 0
3 transformed invariants are expressed in terms of only

one fourth-rank transformation tensor L instead of the second-rank s : <4>

devĪI : s and

the third-rank common invariants s : <6>

devĪI : s : s necessary to be implementedwhen
the Goldenblat–Kopnov explicit formulation would be used. The discussed implicit
formulation shows essential reduction of the number of material constants that have
to be identified in order to capture experimental data (see discussion in Sect. 5.2).
Note that the transformation tensor L exhibits format of the Hill orthotropy matrix
however it is dimensionless. When comparing items B2 and B3 corresponding to the
deviatoric von Mises criterion (5.43) written in the form suggested by Szczepiński
[58] and to the Hill criterion (5.53) [25, 26] different population of corresponding
plastic matrices is applied. In case of Hill’s format the terms which are sensitive to

Table 5.4 Survey of pressure insensitive anisotropic yield criteria

B. Author(s) Limit criterion

B1 Cazacu and Barlat [7] and Nixon et al.
[46] Eq. (5.109)

{ 1
2 tr [(L : σ) · (L : σ)]

}3/2

−c 1
3 tr [(L : σ) · (L : σ) · (L : σ)] = k3

B2 Szczepiński [58] Eq. (5.43) s :
<4>

dev ĪI: s = 1

B3 Hill [25, 26] Eq. (5.53) s :
<4>

ĪI
H: s = 1

B4 Voyiadjis and Thiagarajan [62] Eq. (5.94) σ :
<4>

tris ĪI
VT: σ = 1

B5 Skrzypek and Ganczarski [18, 54]
Eq. (5.90)

σ :
<4>

tris ĪI
HM: σ = 1

B6 Ganczarski and Skrzypek [18] Eq. (5.96) σ :
<4>
hybr
tris ĪI: σ = 1

B7 Cazacu et al. [8] and Khan et al. [34]
Eq. (5.108)

(|Σ1| − k̂Σ1)
a + (|Σ2| − k̂Σ2)

a +
(|Σ3| − k̂Σ3)

a = 2ka

B8 Ganczarski and Lenczowski [15]
Eq. (5.76)

a1|σy − σz |m + a2|σz − σx |m +
a3|σx − σy |m + a4|τyz|m +
a5|τzx|m + a6|τxy|m = 1

B9 Korkolis and Kyriakides [38] Eq. (5.114) |S′
1 − S′

2|n + |2S′′
1 + S′′

2 |n
+ |S′′

1 + 2S′′
2 |n = 2kn
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change of sign of shear stresses, for instance τyz(sy −sz), . . . , τyzτzx, . . . are omitted.
It is equivalent to the reduction of a number of independent plastic modules from 15
to 6.

Items B4, B5, and B6 refer to the transversely isotropic criteria of initial
yield/failure in unidirectionally reinforced Boron–Aluminum fibrous composites.
Voyiadjis and Thiagarajan [62] used generally transversely isotropic tetragonal sym-
metry form of the yield criterion. However the experimental data used for calibration
based on Dvorak et al. [14] and Nigam et al. [45] were limited to narrower case in
which only plane stress state in the orthotropy plane was considered without distinc-
tion between the tetragonal and hexagonal symmetries. All three formulas B4, B5,
and B6 describe cylindrical limit surfaces in stress space, the axis of which does not
coincide with the hydrostatic axis.

The key difference between the Voyiadjis and Thiagarajan formulation B4 and
the Skrzypek and Ganczarski approach B5 both related to the transversely isotropic
materials, lies in the format of doubly underlined terms in Eqs. (5.94) and (5.90),
respectively. Namely when Eq. (5.94) is used the fourth constant kxy is indepen-
dent and determined from experiment, whereas in Eq. (5.90) the fourth constant is
dependent and equals to kxy = kx√

3
. In other words, the Voyiadjis and Thiagarajan

criterion (5.94) is irreducible to the Huber–von Mises criterion in the transverse
isotropy plane, whereas the Skrzypek and Ganczarski criterion is reducible. This
means that the Voyiadjis and Thiagarajan criterion possesses tetragonal symmetry
whereas the Skrzypek and Ganczarski criterion exhibits hexagonal symmetry.

The full reducibility requirement in Eq. (5.90) may occur too restrictive when
some composite materials are experimentally tested. In such a case the hybrid for-
mulation (5.96) is proposed where k(xy) taken from the bulge test in the transverse
isotropy plane is independent leading to 4-parameter tetragonal format (kx , kz , kzx,
and k(xy)). The considered criteria B4, B5, and B6 are in fact secondary pressure
sensitive, however this sensitivity property is inquired due to preserved cylindricity.
The property of cylindricity is predominant and justifies the appearance of criteria
B4, B5, and B6 in this section.

To describe both the asymmetry between tension and compression and the
anisotropy observed in hexagonal closed packed metal sheets, Cazacu et al. [8]
and Khan et al. [34] proposed extension of isotropic criterion (5.106) to the case
of orthotropy represented by item B7. It consists in application of fourth-order lin-
ear transformation operator on the Cauchy stress tensor expressed by its principal
values. The proposed anisotropic criterion was successively applied to the descrip-
tion of the anisotropy and asymmetry of the yield loci of textured polycrystalline
magnesium and binary Mg–Th, Mg–Li alloys and α titanium.

Orthotropic generalization of the Hosford criterion (item A7) in which principal
axes of material orthotropy do not coincide with principal stress axes was proposed
byGanczarski and Lenczowski [15] in the form of itemB8. Next the convexity check
of the yield conditionwas performed in case of the brass sheet of Russian commercial
symbol Ł22, that is material of strong orthotropy slightly different from transverse
isotropy.
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The last criterion (item B9) is another anisotropic generalization of Hosford’s
isotropic criterion (item A7) done by Korkolis and Kyriakides [38] and addressed to
Al-6260-T4 tubes inflated under combined internal pressure and axial load.
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58. Szczepiński, W.: On deformation-induced plastic anisotropy of sheet metals. Arch. Mech.
45(1), 3–38 (1993)

59. Tamma, K.K., Avila, A.F.: An integrated micro/macro modelling and computational methodol-
ogy for high temperature composites. In:Hetnarski, R.B. (ed.) Thermal StressesV, pp. 143–256.
Lastran Corporation Publishing Division, Rochester (1999)

60. Tresca, H.: Mémoire sur l’écoulement des corps solids soumis á de fortes pressions. Comptes
Rendus de l’Académie des Sciences 59, 754–758 (1864)

61. Tsai, S.T., Wu, E.M.: A general theory of strength for anisotropic materials. Int. J. Numer.
Methods Eng. 38, 2083–2088 (1971)

62. Voyiadjis,G.Z., Thiagarajan,G.:An anisotropic yield surfacemodel for directionally reinforced
metal-matrix composites. Int. J. Plast. 11, 867–894 (1995)

63. Westergaard, H.M.: On the resistance of ductile materials to combined stresses in two and three
directions perpendicular to one another. J. Frankl. Inst. 189, 627–640 (1920)

64. Yoshida, F., Hamasaki, H.M., Uemori, T.: A user-friendly 3D yield function to describe
anisotropy of steel sheets. Int. J. Plast. 45, 119–139 (2013)
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