Chapter 3
Mechanics of Anisotropic
Composite Materials

Artur W. Ganczarski, S. Hernik and Jacek J. Skrzypek

Abstract Mechanics of composite materials was in the last decade one of the most
rapidly explored engineering area, basically due to huge progress in composite fabri-
cation and use. The main problem referred in this chapter is how to correctly predict
averaged effective properties by implementation of numerous homogenization tech-
niques. Useful classification of composites with respect to the format of effective
stiffness matrix, based on the analogy between the crystal lattice symmetry and
respective configuration of reinforcement in the RUC, is given. Extended section is
focused on conventionally used Hill’s theorem on upper and lower bounds by Voigt
and Reuss’ isotropic estimation for approximate determination of stiffness and com-
pliance matrices of anisotropic composite. Consistent application of the Hill theorem
to the elements of elastic stiffness or compliance matrices (but not to engineering
anisotropy constants) enable to explain some peculiarities of the Poisson ratio dia-
grams, met in respective bibliography (e.g., Aboudi et al., Micromechanics of Com-
posite Materials, 2013; Sun and Vaidya, Compos. Sci. Technol. 56:171-179, 1996;
Gan et al., Int. J. Solids Struct. 37:5097-5122, 2000). The new effective proposal
to achieve approximation of the mechanical modules of unidirectionally reinforced
composites by the use of hybrid-type rule of weighted average between the Voigt
and Reuss upper and lower estimates is proposed. Capability of this averaged inter-
polation was checked based on selected findings by Gan et al. (Int. J. Solids Struct.
37:5097-5122, 2000) for Boron/Al composite, which show good convergence and
enable to treat weighting coefficients as universal ones over the full V¢ range.
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3.1 State of the Art

Essential progress observed in manufacturing processes and application of compos-
ite materials results in necessity to develop methodology of determination of the
effective properties mechanical, thermal, and others. Among the variety of papers
dealing with modeling of effective mechanical properties of composites and their
experimental verification, the following group of papers in which a coupling between
the topology of fibrous reinforcement (or particle) reinforcement and material sym-
metry of constitutive model describing composite can be distinguished, for instance:
Sun and Vaidya [30], Gan et al. [9], Liu et al. [19], Wiirkner et al. [37], Selvadurai
and Nikopour [28] and others.

Aforementioned papers deal with the modeling of unidirectionally reinforced
composites treated as homogeneous orthotropic solids characterized by some effec-
tive modules that describe average material properties of the composite. Assuming
the periodic fiber arrangement inside the matrix usually two types of Representative
Unit Cells (RUC) that exhibit either the tetragonal symmetry (square array) or the
hexagonal symmetry (hexagonal array) are considered.

In the significant paper by Sun and Vaidya [30] two composite systems: Boron/Al
and Graphite/Epoxy of the respective fixed volume V; fraction equal to 0.47 and
0.6 are analyzed. Authors find essential scatter in analytical results obtained for two
kinds of composites in comparison with earlier data from the literature, namely:
Hashin and Rosen [10], Whitney and Riley [35], Chamis [6], Sun and Chen [29],
Sun and Zhou [31], Kenaga et al. [15]. In particular, the large scatter is referred to the
effective Young modulus, the effective Kirchhoff modulus, and the effective Poisson
ratio in the plane of transverse isotropy. The obtained material constants, in general,
do not confirm the theorem on upper and lower bounds based on the classical Voigt
and Reuss rules. Especially difficult is to explain the estimated magnitude of the in-
plane Poisson ratio exceeding range of two composite components based on either
the isotropic characteristic of components in Boron/Al composite or the orthotropic
characteristic of components in Graphite/Epoxy composite.

More systematic analysis of the influence of homogenization methods on esti-
mated effective properties of composites is due to Gan et al. [9]. The authors com-
pare the new Strain-Compatible Method of Cells (SCMC) with other homogenization
methods such as Generalized Method of Cells (GMC) Paley and Aboudi [25] and
micromechanical analysis using FEM. For numerical simulation, authors used the
unidirectionally reinforced Boron/Al composite assuming two types of the repre-
sentative unit cells based either on a random topology of parallel fibers or on the
hexagonal array for full spectrum of the volume fraction V; €< 0, 1 >. The homog-
enization results are also compared with the classical approximate calculations based
on Voigt/Reuss mixture rules, Voigt [34], Reuss [27]. The performed analysis con-
firms applicability of the upper/lower bounds for majority of equivalent material
constants except for the in-plane Poisson ratio. However the authors do not pre-
cisely distinguish between the tetragonal or the hexagonal symmetry when modeling
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Representative Unit Cell (RUC) such that all six modules of orthotropy are treated
as independent in spite of clear hexagonal symmetry in fibers topology.

Liu et al. [19] analyze possibility for the Poisson ratio positioned beyond the
Voigt/Reuss estimates. Moreover: “It was found that the effective Young modulus
in both transverse and longitudinal direction can exceed not only the approximate
Voigt estimation, but also the stiffness of the stiffer constituent phase”. The authors
recommend precautions when applying Voigt/Reuss estimates in cases when one of
the components is made of incompressible material.

In the recently published paper by Wiirkner et al. [37] the effective elastic mod-
ules of the composite formed of isotropic Epoxy matrix and transversely isotropic
Graphite fibers are examined for reasonable wide range of volume fraction V;y e<
0.1 = 0.6 > see also comments in Sect.3.5.5 of this chapter. The rhombic array of
fibers is used for simulations characterized by different topology angles of RUC.
Following cases are considered: v = 60° (hexagonal array), 60° < ~v < 90° (rhom-
bic array) and v = 90° (tetragonal array). The estimated effective modules show
satisfactory coincidence with numerical results given by Jiang et al. [14].

The more general approach to modeling of composites reinforced by unidirec-
tional fibers is recently presented by Selvadurai and Nikopour [28]. Authors con-
sidered the random parallel identical Carbon fibers distribution in the Epoxy matrix
of a composite. In the light of the numerical analysis performed, it is found that
in spite of random fibers distribution it is possible to determine a minimal Repre-
sentative Area Element—RAE (>65 fibers number) that guarantees the property of
transversely isotropic symmetry of hexagonal type (5 independent constants in the
elasticity matrix, see Fig.3.1).

Extensive state-of-the-art review of the micromechanics-based analysis of com-
posite materials, enriched by numerous actual results, both in the field of homog-
enization techniques and its experimental validation for real long-fiber reinforced
composites, are found in recently published excellent monograph by Aboudietal. [1].

3.2 Analogy Between the Elastic Matrices
Symmetry at the Level of Crystal Lattice Unit
Cell and the Composite Representative Element

A useful analogy between the crystal lattice symmetry at the level of single crystal
lattice or crystal grains and the relevant microstructure of composite materials of
identical symmetry groups that characterize effective elastic matrices (stiffness or
compliance) at the macrolevel is sketched in Fig.3.1.

Equations of linear elasticity of crystal and composite materials are written
in (3.1)

(0} = [c]{e}® and {7} = [E] (&) (3.1)
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Fig. 3.1 Classification of selected composites with respect to the format of compliance matrix
[E~!]: a anisotropic fiber arrangement, b rhombic fiber arrangement, ¢ orthotropic fiber arrange-
ment, d square fiber arrangement, e hexagonal fiber arrangement, f regular particle arrangement, g
random particle arrangement, after Tjong and Ma [33], Martin-Herrero and Germain [21], Nye [23]
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Fig. 3.1 (continued)

where relevant stiffness matrices at the crystal and composite level possessing iden-
tical symmetry properties are denoted with [s] and [¢] whereas {o}", {}", and
{7}, {€} stand for stress and strain vectors at the microlevel and the effective stress
and strain averaged over the representative element (RVE or RUC) (see Gan et al.
[9], Selvadurai and Nikopour [28], etc.). The respective compliance matrices used
in Eq. (3.1) can be rewritten in the equivalent fashion

© —[s]{o}  and  (5) = [E '1(5) (3.2)

where the effective compliance matrix is represented as
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(E,| Epy Ep3|Eyg Eys Erg |
Ey Ey Exy|Ey Ens Exg
| B Fu P B P (33
Egy Eg Eg3|Eyy Eys Eyg
Es) Esy Esy |Esy Ess Esg
Eq Egy Egy |Eqy Eqs Eqq

The stiffness and compliance matrices at the crystal level in Egs. (3.1) and (3.2) are
denoted by [c] and [s] in accordance with the notation used in crystallography as
shown in Table 3.2.

Compliance matrices are more convenient for further application since they have,
generally, simpler representation when compared to the respective stiffness matrices,
both expressed in terms of the engineering elasticity constants (Young modules Ej;,
Kirchhoff modules G, Poisson ratios v;j, Chencov modules p; ;) and Rabinovich
modules 7;(jx) as shown in Table3.1). In a more general case of fully anisotropic
composite material, for instance when composite material is at the microlevel rein-
forced with Carbon nanotubes of irregular arrangement, the effective continuum of
averaged properties is fully anisotropic and characterized by 21 engineering modules
where the effective compliance matrix of the composite [E | expressed in terms of
engineering anisotropy constants is furnished as follows:

1 v | M) M) M2 ]
En Eq En| En En En
_ V2 1 v | 3@ M@ M2

Eyn Exn Exn| Exn Exn Exn

vz vy 1 m33) MWL) M20)

=1 E33  Eszz  E3 E33 E33 E33

[E 1= 3.4)
N3 1M223 N3)23 1 B3123) H12023)

G Gz Gu | Gz Go Ga3
nm3r N3 N33 He3)3L 1 B12GD
G311 Gz Gz G3i G3) G3)
Nz N2 1312 [Eede kEnrz 1
G Gn Gn G2 G2 G2

In Table 3.1 engineering anisotropy constants are ordered into five groups:

e E;;—anxial elasticity modules (three generalized Young modules)

o G;j—shear modules at three anisotropy planes (three generalized Kirchhoff
modules)

e v;j—transverse strain coefficients (three generalized Poisson ratios)

o 1ijj(kiy—Chencov modules (three Chencov modules combining shear in different
anisotropy planes)

e 1i(jky—Rabinovich modules (nine Rabinovich modules combining shear and
normal strain effects).

It is worth to mention that the symmetry of stress and strain tensors results in appro-
priate symmetry of the compliance (stiffness) matrix, Lekhnitskii [16].



3 Mechanics of Anisotropic Composite Materials 93

Table 3.1 Types of engineering modules used in representation of the compliance matrix (3.4)

Engineering modules Coupling effect Considered Number of
axes or planes | components
(coupling)
Stress Strain
component | component
Ei1, Exn, E33 Axial Axial Same axes 3
1 — 1, etc.
G12,G3, G3y Shear Shear Same planes 3
12 — 12, etc.
1, V31, V32 Axial Axial Transverse 3
directions
1 — 2, etc.
[431(23)s H12(23)» [412(31) Shear Shear Different 3
planes
13 — 23, etc.
723(1)s - - - » M12(3) Shear Axial Normal to 9
23 — 1, etc.
Vij __ Yji e — oy
;= By — vijEii = vji Ejj
Mjk) _ N _
Fu = G, MiwGij = Ndij Exk (3.5)
Hij (ki Hki)ij
Gt =6k = HijnGji = 1ukinij G

A convenient analogy between the crystal lattice symmetry, the effective matrix
and respective configuration/orientation of fibers or particles in exemplary unit cells
of composites is shown in Fig.3.1. Before we start to discuss items a—g in Fig. 3.1,
a comment should be done that an analogy between the exemplary representative
composite microstructure and the conventional unit cell of a crystal lattice is built
based on the identical stiffness matrix format and symmetry properties at the level
of crystal unit representative cells (lattice) and the level of composite representative
unit cell (fibers/particles geometry, arrangement, etc.), but not on different physical
features.

Such analogy occurs to be helpful in proper description of symmetry groups and
classes of the elastic matrices and proposing their experimental-based identification.

In a general case of anisotropy Eq.(3.4), the respective triclinic crystal lattice
symmetry ensures fully populated stiffness matrices at both levels considered (crystal
lattice vs. microstructure) for instance due to the totally anisotropic Carbon/Carbon
composite (see Fig.3.1a Martin-Herrero and Germain [21]).

Composites formed by stacking layers (lamina) at different fiber orientation are
called laminates, the effective properties of which vary with orientation, thick-
ness, and stacking sequence of layers. The effective properties of a unidirectional
lamina are classified as orthotropic with different properties in the material direc-
tions (cf. Herakovich and Aboudi [12]). In general, the effective properties of such
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multicomponent systems correspond to averaged orthotropic continuum described
by nine orthotropy modules E11, E», E33, 121, V32, 131, G12, G23, G31, if elastic
range is considered. The corresponding crystal lattice symmetry is known as the
orthorhombic lattice characterized by three different cell edges a # b # ¢ and
identical angles o = 8 = v = 90°, Fig.3.1c.

Unidirectionally reinforced composites with the regular parallel fibers arrange-
ment correspond to the averaged transversely isotropic continuum at the macrolevel.
However, depending on frequently used periodic fiber arrangements, two of them
are specially interesting: fetragonal (square) fiber array and hexagonal fiber array,
as shown in Fig. 3.1d, e, respectively. Corresponding two crystal lattice cells are also
presented that exhibit equivalence between the in-plane fiber array over the compos-
ite RUC and in-plane atoms in the Crystal Unit Cell CUC arrangements. Note that in
case of tetragonal transverse isotropy, the number of independent modules is equal
to six, whereas in case of hexagonal transverse isotropy this number is reduced to
five.

Consider for a moment a more general case called the monoclinic or oblique sym-
metry. At the level of composite RUC it corresponds to the rhombic fiber array as
shown in Fig.3.1b. In this case, periodicity is dependent not only on the distance
between layers but also on the angle of slope of the RUC walls 60° < v < 90°.
The corresponding crystal lattice symmetry is known as monoclinic lattice symmetry.
This case can be recognized as an intermediate between the triclinic lattice (Fig.3.1a)
and the orthorhombic lattice (Fig. 3.1c). Consequently, the equivalent stiffness matrix
describing monoclinic anisotropy is enriched with four nonzeroth independent ele-
ments Fl_él , Ez_ﬁl , 33_61, and E;s]’ such that total number of independent modules of
the compliance matrix is equal to 13 = 9+4. Presence of these additional elements is
a characteristic feature for Rabinovich constants 1)y jx and Chencov constants ;i)
responsible for anisotropy (which are not present in orthotropy).

Consider further more detailed two particular fiber arrangements of the mono-
clinic symmetry (Fig. 3.1b) which easily can be recognized in two fiber arrays of the
tetragonal or the hexagonal symmetry appearing in transversely isotropic long-fiber-
reinforced composites. In both cases, a = b holds but two particular magnitudes of
the slope angle a rhombic array of y are admitted: v = 90° or v = 60° (Fig.3.2).
In the first case when v = 90°, rhombic fiber array reduces to the square fiber array
(at the composite level) and the equivalent representative crystal lattice cell exhibits
architecture of tetragonal symmetry, as previously shown in Fig. 3.1d. In the second
case when v = 60°, any arbitrary rhombic array reduces to another hexagonal fiber
array (at the composite level) with the equivalent crystal lattice cell architecture of
hexagonal symmetry, see Fig. 3.1d. In both cases considered in the compliance matrix

[E’l] of Eq. (3.4) four elements describing the Rabinovich and the Chencov effects

=1 =1 —=-1 =1 . .
E¢ = Eyg = E3g = E45 = 0 disappear such that only nine elements are present

in the orthotropic Hooke law Fig.3.1e. However, in case of transverse isotropy, the
number of independent modules reduces to either six (square array, v = 90°) or
five (hexagonal array, v = 60°) since in the last case the in-plane modulus equals

fé_él = (Fl_ll - Fl_zl)/ 2 and should be considered as dependent.
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Fig. 3.2 Square or rhombic fiber array
hexagonal fiber arrays as (monoclinic symmetry)
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Finally, for the narrower case of the tetragonal lattice namely a = b = ¢ and
a = 3 =~ = 90° the particular cubic crystal lattice is recovered (regular lattice).
The stiffness or compliance matrices are here characterized by three independent
constants: E;' = E, = Ey Ep) = Ef' = Eyy  E})l = Esf = Eg see
Fig.3.1f. Such cubic symmetry case is sometimes expected in certain regular particle
arrangement, as discussed by Desmorat and Marull [7] and Banks-Sills et al. [3].

To make this classification complete, the particle-reinforced composites of irreg-
ular particle shape and their topology should be admitted. In such a case, at the
macrolevel, the properties of isotropy of composite inside RUC can be admitted,
where two independent elastic constants (effective) can satisfactorily be estimated
from the Voigt/Reuss rules based on the particle volume fraction V¢ only, see Fig. 3.1g.

In schematic representation of the elastic matrices of crystal lattice and composite
microstructure, the visualization of matrix elements was adopted after Nye [23] where
e depicts independent modules, o dependent modules, whereas e—e or o—o pairs of
identical modules, etc. (see Chap.?2).

As it was aforementioned, a similarity between the symmetry classes of crystals
at the crystal lattice level and composite microstructure at the macrolevel has sub-
sidiary meaning only. In fact, the crystal symmetry implies format and symmetry of
the elastic crystal matrices: stiffness [¢;;] or compliance [s;;] being 2nd rank matrix
representation of 4th rank crystal elasticity tensors c;ji or s;ji;. Passing from the
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Table 3.2 Equations of elasticity at the crystal level and macrolevel

Notation Crystal level Macrolevel

Tensor al-g.cr) =g jkle,(flr) Gij = EijuEu
ey = sijuoy 5j = Eyu0u

Matrix-vector (ri(cr) =g jaﬁ-cr) gj = E; JEj
Ei(cr) _ 5ijo_;cr) F = E;fl,]

atomic level (crystal lattice) to the macrolevel (composite RUC), we arrive at the

. . . = =1, . .
correspondence to the equivalent composite matrices Ejj or E;; built as equivalent
representation matrices (averaged in procedure of homogenization) of the composite

effective elasticity tensors E; ikl OF F; x> see Table 3.2, It is necessary to distinguish

stress and strain at the atomic crystal lattice level ai(;r) and sl(;r) from analogous
variables measured at the level of RUC: macrostress and macrostrain ¢;; and €;;.
Note that in crystallography, components of tensors c;jx; and s; i are traditionally
called the stiffness coefficients and the compliance coefficients. On the other hand,
when passing to the macrolevel of analysis, the effective tensor components of com-
posite E; ki and Fi_j,ld are named stiffness and compliance constants. Mention that
there does not exist any direct correspondence between elastic crystal coefficients
and the effective elastic constants of composite material at the macrolevel, c.f. Nye
[23]. Remember also that during the fabrication process of composite, the resid-
ual thermal stresses different in matrix and fibers material have to be built-in into
enriched equations of elasticity. Assuming for simplicity that during the fabrication
process strains have elastic nature only, the application of conventional equations
of thermoelasticity is justified. However, during the final cooling down process of
the composite and also in the fabrication phase, some thermoplastic microstructure
change in the material can be observed. In such cases, the thermoelastic analysis may
occur incorrect (cf. e.g., Herakovich and Aboudi [12]).

3.3 Effective Elastic Matrix Characterization of Composites
with Various Symmetries

3.3.1 Triclinic Anisotropic Long-Fiber-Reinforced Composite
(Anisotropic Fiber Array, Fig.3.1a)

Elasticity equation of anisotropic composite material (at the macroscale) written in
an arbitrary material frame can be furnished in a following fashion, cf. Eq.(3.4)
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L v w3 MBIy mea
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_vip 1 wn | me mie) M2
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97

(3.6)

Taking into account the symmetry conditions of the effective compliance matrix
——1 =1

Ejj =Ej,
matrix of elasticity total number of required elements is equal to n = % =21.

However, following the reasoning of Lekhnitskii [16] and others, the maximal num-

see Eq.(3.5), in order to completely determine fully populated 6 x 6

ber of different from zero but independent matrix elements E-;l equals 18 (see

Table 3.1). It follows from requirement that both effective compliance Ei_jl and stiff-

ness E; j matrices have to obey transformation rule by three Euler angles. In such
general case of anisotropy, that in crystallography corresponds to triclinic lattice sym-
metry, it is impossible to reduce to zero any matrix elements via some transformation
by a rotation of the reference frame with any angles.

3.3.2 Monoclinic or Oblique Anisotropic Long-Fiber
Composite (Rhombic Fiber Array, Fig.3.1b)

Composite systems of the rhombic-type fiber architecture represent the particular
case of generally anisotropic composite geometry in such manner as the monoclinic
crystal lattice symmetry is the particular case of general triclinic symmetry at the crys-
tal lattice level. In such rhombic-type fiber array composites, the axis parallel to the
fibers direction can be distinguished (3) being perpendicular to the transverse plane
(1, 2). Corresponding equation of elasticity built on the base of oblique anisotropy
compliance matrix takes the following format

r 1w v 712(1)
— En Eyn En Eyy —
£l _vp 1 _umyp me || o1
€22 Ex»n  Exn Exn Ep 022
= _n3 v L Mm@
€33 | _ Eyz  Ez;  E3 E33 033 (3.7)
=~ - 1 H31(23) T .
223 Gz Gn 23
Y31 Mg.%m GL T31
~ 31 31
712 nmiz M@z NE)2 1 712
L G2 Gnn Gnp G

By contrast to generally anisotropic composite matrix Eq. (3.6), in the case of com-
posite of oblique anisotropy property number of nonzeroth independent material
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structural modules equals 13. Among them: three Young modules E11, E22, E33;
three Kirchhoff modules G13, G31, G12; three Poisson ratios v»1, V31, v32; one Chen-
cov modulus [131(23); and three Rabinovich modules n12(1), N12(2), N12(3) are present
in Eq. (3.7) instead of 21 (18 irreducible) shown in Eq. 3.6. On the other hand, appear-
ance of some Chencov 113123y and Rabinovich 712 x) coefficients allows to distinguish
formats of the compliance matrices in case of the rhombic fiber array in which nei-
ther Rabinovoch nor Chencov coefficients are present, when the material orthotropy
frame coincides with the effective stress/strain frame.

3.3.3 Orthotropic Composite (Lamina with Perpendicular
Fiber Arrangement, Fig. 3.1c)

The narrower case of frequently used composites built of a number of layers which
are long-fiber reinforced in an alternate perpendicular layer after layer fashion are
called the orthotropic multi-laminate composites, commonly also named lamina. In
corresponding elasticity matrices, compliance or stiffness, Rabinovich 12 and
Chencov 113123 coefficients (present in previously discussed Eq.3.7) disappear in
Eq. (3.8) such that the number of independent modules of the effective elastic compli-

ance fi_jl or stiffness matrix E; jisreduced t0 9 = 13 — 4, namely: 3 Young modules
E11, Ex, E33; 3 Kirchhoff modules Gz, G31, G12; 3 Poisson ratios 121, 131, V32.
These equivalent anisotropy constants of composite have to be either measured in
appropriate 9 tests or estimated by the use of a chosen homogenization method
for assumed perpendicular fiber arrangements (see for instance Gan et al. [9] for
Boron/Al composite)

ML v v 7]
_ En En En _
€11 _v2 1 v 11
= Exn Exn Ex =
522 _viz v 1 722
€33 | _ Esz  E3z  Es 033 (3.8)
V23 GLB 723
731 1 731
Y12 G | T12
L [

Transformation of the relation {€} = [E~!] {o’} to {o'} = [E]{e} is not a trivial one
in case of the elastic orthotropy. It can be done in a numerical fashion by finding
the stiffness matrix [E] which is inverse to the compliance matrix [E~"]. Elements
of the stiffness matrix [[E] can be explicitly expressed in terms of nine engineering
constants of orthotropic material determined E11, E2», E33, G23, G13, G12, 21, V3]
and v3; as follows (see Ochoa and Reddy [24], Tamma and Avila [32])
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o1l Ein En Enss g11
022 Exi1 Exon E233 En
o33 | _ | E3311 E3300 E3333 €33 (3.9)
23 E2323 23
731 E1313 Y31
T12 Ei212 Y12
where subsequent elements of the stiffness matrix [[E] are given by equations
1—
Ey = T2 E) Ejp = YR By,
17
Ey33 = YRS Fay Fpypy = SZU3BLEpy (3.10)
Enpsy = YBH2U3 Fay Eagyy = 1M2L By
Ex323 = G3 Eiiz=G3 Epni=G6n
whereas symbol A denotes
A =1—vippp1 — VI3V3] — V2332 — VI2V23V3] — 1VI3V3R2 (3.11)

Note that full orthotropic symmetry and population of both matrices stiffness (3.9)
and compliance (3.8) is saved and refers to appropriate combinations of engineering
constants but not to engineering constants separately, for instance

21 + V13v3 vi2 + V31123
Eq12n = TEZZ = TE“ = E»qi etc. 3.12)

Hence only nine orthotropy modules are independent.

3.3.4 Unidirectional Long-Fiber Composite—Transversely
Isotropic Tetragonal Type (Square Fiber Array, Fig. 3.1d)

Particular case of orthotropic composite is transversely isotropic symmetry unidi-
rectional long-fiber-reinforced system in which fibers are built-in with the regular
tetragonal manner (square fiber array, Fig.3.1d). The effective elasticity matrix of
such composite is described with six independent constants: E11, E33, 121, 32, G23
and G2 as shown in Eq. (3.13). At the level of RUC, tetragonal symmetry is observed
(4 in-plane axes)



100 A.W. Ganczarski et al.

ML _va _va ]

_ En En Eq _
€11 _vp 1 11
= Exn Exn Ex =
€ g
sz _vip _v3 1 722
€ E: E E: g
_33 — 22 22 22 _33 (3. 1 3)
723 c;%g 723
V31 S T31
Y12 Gn T12

1
Gz |

3.3.5 Unidirectional Long-Fiber Composite—Transversely
Isotropic Hexagonal Type (Hexagonal Fiber Array
Fig.3.1e)

In the another case of unidirectionally reinforced composites, when in the system
fibers are row after row shifted by the half-distance, at the level of RUC the hexag-
onal symmetry property holds (six symmetry axes). Hence, only five from among
mechanical constants are independent, since G23 = %

r 1 _va _ 7]
_ En Eqj Eql _
€11 _v2 1 vy 11
= Exn En Ex
522 _vi2 _v3 1 722
€33 | _ Ey Expn Ex 033 (3.14)
723 2( 12‘2’;23 ) ?23 ’
731 1 T31
Y12 G2 T12

1
L Gz |

The two types of transversely isotropic composites dependent on the fiber arrange-
ment of either tetragonal or hexagonal symmetry are not always consistently exam-
ined which may lead to some erroneous conclusions (cf. Sun and Vaidya [30]).

3.3.6 Regular Particle-Reinforced Composite—Cubic
Symmetry (Regular Particles Arrangement, Fig. 3.1f)

It is commonly assumed that the composites reinforced with a randomly distributed
particles of irregular size and shape can be treated at the level of RVE as the isotropic
continuum. However, in case of some regular particle reinforcement by repeating
identical shape and size particles, the equivalent composite continuum exhibits the
cubic symmetry (Fig.3.1f). Among the crystal materials of cubic (regular) sym-
metry long list can be mentioned: Pyrites (cubic), Fluor Spar, Rock-salt, Potassium
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Chloride (cf. Love [20]) or Tantalum, Aluminum, Gold, Copper, Germanium, a—iron,
Magnesium Oxide (Magnesia), and Spinel (MgAl;O4) (cf. Berryman [5]). All cubic
symmetry materials are characterized by three independent compliance modules:
Fl_ll, fl_zl and 3;41 where 3;41 # (El_ll — Fl_zl) /2 or equivalently G # ﬁ In
a similar way, the composite reinforced with three-directional mutually perpendicu-

lar short-fiber of the cubic symmetry is described by three independent engineering
constants £, v, and G

rl _v _v .
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3.3.7 Isotropic Composite (Random Particle Arrangement,
Fig.3.1g)

Irregular particle-reinforced composite in which the distribution shape and orien-
tation of particles are fully disordered (chaotic) can be described at the level of the
repeating RVE by the effective elasticity matrix (stiffness or compliance) character-
ized by two independent modules: Ej| . Eyy (Eq4 = (Ej; — Ej»)/2 or equiva-
lently G = 2(1—€rl/))' In the isotropic composite with irregular particle reinforcement,
no characteristic material frame can be distinguished inside RVE (infinite number of
symmetry axes)

r 1l _v _v 7
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= E E E =
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More general approach to describe particle-reinforced composites in which size/shape
and topology of particles are ordered with the specific symmetries may lead to various
symmetry classes of elastic matrices (cf. Banks-Sills et al. [3]).
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3.4 Bounds for Effective Elastic Properties
of Unidirectionally (Long Fiber) Reinforced
Composites of Tetragonal or Hexagonal Symmetry

3.4.1 Nature of Homogenization Problem in Modeling
of Heterogeneous Composites—Voigt and Reuss’
Concept

Composite materials described in Sect.3.3 have to be considered as two- or multi-
component systems at the microlevel (microcomposites) or the nanolevel (nanocom-
posites). Composite materials are in essence nonhomogeneous or in fact heteroge-
neous materials due to different properties of the system constituents (components)
commonly recognized as the matrix (most frequently metallic, ceramic or polymer)
and the reinforcing fibers or particles (for instance long fibers made of ceramic
or metallic materials and others) although the constituent materials are essentially
homogeneous. At microscale, on boundaries between the components of different
materials a jump of mechanical, thermal, and other properties arise. Averaging meth-
ods inside the representative element (RVE) or the representative cell (RUC) used for
analysis of multicomponent composite materials known as homogenization methods
are based on the assumption that it is possible to determine approximate values of
the effective properties of the equivalent homogeneous composite (heterogeneous
in fact) as well as uniform macrostress and macrostrain (nonuniform in fact at the
microlevel), cf. Fig.3.3. It is necessary to accept existence of the repeating Rep-
resentative Volume Element—RVE (cf. e.g., Sun and Vaidya [30], Gan et al. [9],
Wiirkner et al. [37], Bayat and Aghdam [4]), or the Representative Unit Cell—RUC

averaged
(a) (b) stress in
Fi the RVE
homogenization i
1
m —
O,
E % /| E
|52 < i [ 52
1
e
microstress v
in matrix N |/ T
microstress \l:
in reinforcing Fi Fi
particles

Fig. 3.3 Representative volume element RVE: a heterogeneous material at microscale, b homoge-
neous material at macroscale
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(cf. e.g., Li and Wongsto [18], Li [17], Wongsto and Li [36], Pidaparti and May
[26], Banks-Sills et al. [3], Herakovich and Aboudi [12]) which are subsequently
divided into the subcells, Fig. 3.5. The RVE size or the RUC size and geometry have
to be sufficiently large in order to properly catch an essence of composite system
properties and behavior at the macroscale. Simultaneously, they have to be suffi-
ciently small but repeatedly noticeable to assure that the representation of a uniform
deformation field described by the displacement u# and the gradient Vu such that
the averaged (effective) strain € = %(VTu + Vu) is justified (cf. Gan et al. [9]).
Note that component material at the microlevel (or nanolevel) is usually isotropic;
however, a multiphase composite can be either isotropic (for majority of particular
composites) or anisotropic (for instance in case of fibrous composites reinforced with
directionally oriented fiber beam).

The differences between the RVE (Representative Volume Element) and RUC
(Repeating Unit Cell) concept are discussed in details by Drago and Pindera [8]. The
authors claim that the concept of RVE is addressed to the statistically homogeneous
material at an appropriate scale. Moreover it is assumed that the strain and stress
are uniform throughout the RVE. On the other hand Drago and Pindera assume the
periodicity in the material, both in strain and stress fields. However most researchers
assume that the RUC is the periodic RVE and use its interchangeably [1, 30].

Traditionally it is assumed that the particle-reinforced composites in a disor-
dered manner (e.g., with dispersed micro or nanoparticles as well as short micro or
nanowires) show isotropic symmetry after homogenization (at the level of RVE).
However, the above reasoning has to be accepted with necessary care. If repeatable
shape and regular orientation of reinforcing particles are ensured throughout the
matrix volume, in spite of the isotropic properties of both phases—matrix and rein-
forcement it may happen that after homogenization the averaged material modules at
the macroscale (composite level) exhibit other than isotropic symmetry properties.
Such problem was analyzed by Banks-Sills et al. [3] with respect to the Glass-Epoxy
composite, by the use for simulation particles of various but regular geometries:
spherical, cylindrical, cubic and rectangular parallelepiped. To be more precise the
following unusual remark can be cited: “An interesting surprise for rotated particles
was the existence of unusual material constants which cause normal deformations to
produce orthogonal shear stresses and vice versa effect of Rabinovich’s coefficients
and shear deformations to produce orthogonal shear stresses and vice versa effect of
Chencov’s coefficients”, cf. Banks-Sills et al. [3].

Only in the specific case if reinforcing particles are repeatedly spherical and
do not exhibit same characteristic spatial distribution the assumption about isotropic
symmetry at the macroscale (RVE-level) is reasonable to accept. In such specific case
the classical mixture rules can be applied in order to achieve averaging methods: the
Voigt [34] or the Reuss estimates [27]. In the simplest case of two isotropic constituent
phase materials, Voigt and Reuss’ rules of mixture are simply based on the volume
fraction of matrix V| and reinforcement V,
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VP = pici + paca Voigt’s rule

1 3.17
== a + 2 Reuss’ rule ( )
p P1 p2

Symbols pj and p; stand for elastic constants of constituent materials, matrix and
reinforcement (particles), for instance Young modules E£; and E; and Kirchhoff
modules G| and G, whereas ¥ and Rp denote the corresponding effective modules
E and G averaged at the RVE level. Symbols ¢; and ¢, stand for volume fraction
of both phases (Vi and 1 — V;) with irregular particles distribution throughout the
RVE ignoring effect of local concentration density, size and shape of particles and
their orientation and mutual interaction, see Fig.3.3a. After homogenization, the
averaged (effective) stress o and T are met in RVE instead of different microstresses
in constituent materials: matrix oy, and reinforcement oy (see Fig.3.3b).

The mixture rules Voigt and Reuss’ (3.17) lead to different estimates of averaged
material constants of homogenized isotropic continuum E and G. In case of Voigt
estimate compatibility of strains in both phase materials is assumed, whereas in
case of Reuss’ estimate compatibility of stresses is postulated. The first approach
leads to discontinuity of stress at the boundary between constituents whereas the
second approach causes strain discontinuity. In other words, the Voigt approximation
can be treated as equivalent to kinematically admissible approach in contrast to the
Reuss approximation which is statically admissible. In fact at the microlevel of
heterogeneous composite both stress and strain continuity hold such that the Voigt
and the Reuss approximations can serve as upper and lower estimates for the effective
stiffness matrix elements of anisotropic composite systems (cf. Herakovich [11], Gan
et al. [9]). In the impressive monograph “Micromechanics of composite materials,”
Aboudi et al. [1] analyze the effective engineering constants of the Glass/Epoxy
fibrous composite E11, Ex = E33, v12 = V13, 123, G12 = G13, G723 as functions of
fiber volume fraction V;. This findings generally confirm the upper and lower bounds
by Voigt and Reuss’ isotropic estimates except for the transverse Poisson ratio 123
for which an excess of the bounds is observed.

In order to simply explain the essence of Voigt and Reuss’ estimates, consider ele-
mentary one-dimensional two-component mechanical systems sketched in Fig.3.4
representing: (a) Voigt, (b) Reuss’ and (c) the effective homogeneous elements.

In case of Voigt scheme, Fig.3.4a, two bars of A; and A, cross-sectional areas
that represent matrix and reinforcement (particle) of the same length / are jointed in
parallel (7 =l =hband A = A + A»). Loading force F is separated between matrix
and reinforcement F = F; + F, whereas identical elongation of both constituents
is equal to the averaged elongation of substituting homogeneous system, Fig. 3.4c:
Al = Al; = Al,. Hence, when the Hooke law is applied to schemes a) and c) we
arrive at distribution of force between matrix and reinforcement

E1A E)A
(i B 242

- === 3.18
"TEA + Ay 2T EA + Ay G18)
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(a) (b) (0

L E

Fig. 3.4 Uniaxial mechanical models for mixture rules application in composites: a Voigt rule,
b Reuss’ rule, ¢ effective homogeneous material

Finally, introducing definitions of volumE fractions V; = A; /Z and Vo, = Ay /Z the
Voigt-based effective Young modulus Y E is furnished

E= E\Vi+ EV) = VE 3.19)

In case of Reuss’ scheme, Fig. 3.4b, two bars of different lengths /y and/, and A| =
A, = A representing matrix and reinforcement materials are joined in series and
loaded by identical force F = F| = F, whereas averaged elongation of substitutive
system Fig. 3.4c is the sum of component elongations Al = Alj + Al,. Again, when
Hooke law is applied to schemes (b) and (c) the following must hold

FI  FI Fl
el S (3.20)
EFA EA E>)A
Finally applying definitions of volume fractions Vi =/, /I and V5 = /I we arrive
at the Reuss-based effective Young modulus RE in the format

1 V V. 1
= 1+—2_

"5 B g (3.21)

In order to make further considerations easier we introduce original notation used
by Hill in [13]. In this way equations describing the uniaxial Voigt and Reuss’ models
can be rewritten in the new following formats. In case of Voigt model the identity
of strains in both phases Y& = £ = &, holds. Hence the following set of equations
describe the uniaxial Voigt model
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Vv \%

o= ‘cio1 + VCzJ2

VE: VEVE
VEVz = VC]E]E] + VC2E2€2

VE = VC]E] + VCZEQ

(3.22)

where fractional concentrations by volume of the phases in the Voigt model (see
Fig.3.4a) are defined as V¢ = Aj/A and Voo = Ay /A; Ve + Ve, = 1.
In the analogous way in case of uniaxial Reuss’ model the identity of stresses in

both phases R = o1 = o, holds, hence the basic set of equations is
Rz = Reer + Repey
R_
R.__ E
E=—=
RE
A R (3:23)
RE E, E>
1 Re Rey

RE  E E

where fractional concentrations by volume of the phases in the Reuss model (see
Fig. 3.4b) are defined as Re; = [1 /1 and Rey = L /1; Reyp + Rep = 1),

In fact both pairs Ver, Voo and Rey, Rey can be interpreted as common volume
fraction of both phases V¢ and 1 — V¢ in the uniaxial models of the same material,
hence it must hold

c1 = VC] = RC] =V c) = ch = Rcz =1—-V (3.24)

Note that the Poisson effect is ignored in aforementioned considerations.

3.4.2 General 3D Formulation of Voigt and Reuss’
Homogenization Estimates

On the RVE level, that represents heterogeneous material, the definitions of either
the averaged stress or the averaged strain tensors can be written down

o= / odV (3.25)
VRVE
VRVE
or
€= / edV (3.26)
VRVE
VRVE

where Vryg denotes a volume of the chosen RVE, see Aboudi et al. [1].
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Average values of stress and strain & and € in RVE are given in terms of 1, 62
and €1, €, in the phases by the following relations

o =c101+ o) € =ClE] + & (3.27)

Since the elastic material is assumed for both phases the obvious relations must hold
at any point in the phases

or=E; ¢ and o=E;:¢ep (3.28)

and
e1=E':01 and er=E;':0; (3.29)

if the inverse format is used.

Substitution of (3.28) and (3.29) into (3.27) with the assumption that phases
are uniform and isotropic (012 = &1,2, €12 = €1,2) the analogous relations hold
between the average quantities

o=clE g+ & E:ClEl_l 1o +C2Ez_l o) (3.30)

where consistently £; and €3, as well as o; and o, stand for uniform strain and
uniform stress fields in each of the phases in RVE, respectively.

A distribution of the two-phase materials in the RVE is obviously not necessarily
random, but must be structurally representative distribution for composite material
at the macrolevel. In the light of above remark a unique relationship between the
average strains in the phases €1, €, upon the average overall strain in RVE € can be
furnished by the use of strain concentration tensors A1 and A,

el =A:¢ Erx=MAy:E (3.31)

where the obvious condition holds c¢; A| 4+ c2 Ay = T with [ being the unit tensor. By
combining Eq. (3.31) with Eq. (3.30) we arrive at

T=(CE :A+0E:A):eE=E:€ (3.32)

where E stands for the effective stiffness tensor of the overall composite.
Equivalently reverse unique relationships between the average stresses in the
phases @1, o> upon the average stress in RVE @
oc1=Bi:oc oy,=B:0o (3.33)
must hold if the stress concentration tensors By and B, which satisfy the relation

c1B1 + 2By = 1, are introduced. Again combining Eq.(3.33) with the second of
Eq. (3.30) we arrive at
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E=(E B +0E ' :B):=EF :7 (3.34)

where E_l is the effective compliance tensor of the composite.

The first homogenization rule was introduced by Voigt (1889) [34] as average
constants of polycrystals. Assuming the strain concentrationisconstant A; = Ay =1
and strain is uniform € = €, = €, it follows:

E=cE| +E; (3.35)

Equation (3.35) provides the effective stiffness matrix elements of the composite in
terms of the volume-averaged stiffness of individual phases.

By contrast, Reuss (1929) [27] assumed that constituents of the composite are
subjected to a uniform stress equal to the average stress in RVE By = B, = L in
Eq. (3.33) and effective compliance is given by a rule of mixture as follows:

B =cE " + ;! (3.36)

Note that in fact neither the Voigt nor the Reuss assumption is correct. The implied
stress due to Voigt causes tractions at phase boundaries not satisfying equilibrium
01 # 02. On the other hand the implied strain due to Reuss’ causes discontinuity
of strain at the interface between matrix and particle € # &5.

3.4.3 Theorem of Lower and Upper Bounds by Voigt
and Reuss’ Estimation

Hill theorem, which is called the theorem of lower and upper bounds, allows to
connect a constitutive description at two scales: micro level at the point level and the
meso level, where the representative volume element RVE is defined. After Auriault
et al. [2], it is assumed that:

e the global variables are the volume means of the local stress and strains, and that
the conservation and constitutive equations have the same structure at microscopic
and mesoscales,

e the assumption of energetic consistency, known as the Hill principle, which
imposes equality on the energy contained within the medium, whether it is
expressed in local variables or using variables defined at mesoscale.

According to the second assumption, the equivalence of energy at micro and RVE
level leads to the following formula:

/a:edV:/E:EdV:VE:E (3.37)
1% %
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where V' = Vryg is used for brevity. Hence, when the Hooke law is applied, both
at micro level o = E : € and mesoscale & = E : g, the previous equation can be
rewritten as
/s:E:edV:VE:E:E (3.38)
1%

According to the Hill-Mandel relation and Eq. (3.37) the following equality holds:

1 1 1
o:.e= V/crdV : V/edV =v/a:st=(cr:s) (3.39)

14 14 Vv

Letus consider the Representative Volume Element bounded by surface S in which
uniform strain field € = const accompanies linear displacement field u = €-x, hence
the external work can be rewritten down as follows:

1 1 1
LZ=—/t-udS:—/t-§~de=—§-/t~de (3.40)
2 2 2

S S S

Applying the traction boundary condition in following form ¢ = o - n, where n
stands for a normal vector to the surface, and the Gauss theorem of divergence, the
Eq. (3.40) can be rewritten as follows:

1 1
L,= EE . /div (o-x)dV = EE . / [div (o) - x 4+ o - div(x)]dV (341
4 v
The uniform stress accompanying the uniform strain leads to div(o) = 0 hence the
external work (3.41) reduces to

1 1
L,= Eo/adezﬁzgzz(aze) (3.42)

14

N =

when the Hill-Mandel relation is applied. Applying assumption, that the constitutive
relations at both scales are the same:

g=E:g, o=E:e (3.43)

1 _
UIE:(O’:E):V/E:E:EdV:E:]Eig (3.44)
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Let us defined a new fictitious stress field &, where the Hooke law can be defined
as:
c=E:z (3.45)

The real, effective fields (e.g., stress o and strain €) must fulfil the theorem of minimal
potential energy, hence the energy based on a fictitious stress field & must be greater
than effective one, so the following inequality is true:

1 I [

(U:E):—/U’ZEde—/O’ZEdV (3.46)

Vv Vv
\%4 \%4

Input of the Eq. (3.44) to the left-hand side of above inequality and the definition of
fictitious stress (3.45) on the right-hand side, yields the inequality:

1 — 1
V/e:E:st:E:E:ES/E:E:EdV=E:E: V/]EdV (3.47)
1%

Vv Vv

After some rearrangements the inequality (3.47) can be rewritten as follows:
- 1
E < v / EdV (3.48)
1%

Inequality (3.48) means that the effective stiffness tensor on RVE level is the lower
bound of mean constitutive tensor on micro level, where the mean operation is cal-
culated over the volume of Representative Volume Element.

Consider the two-phase continuum, where the total volume of RVE is a sum of
two volumes V = V; U V,. Next, it is assumed that for the both phases constitutive
law is Hooke equation, where the material behavior is defined by the tensors E; and
[E,. Hence it is possible to change the continuous formulation described by Eq. (3.48)
to the discrete form as follows, compare (3.32):

E<cE + 0k = VE (3.49)

where c; = V1/V,co = V,/V and ¢; + ¢» = 1. The right-hand side of above
equation is well-known relation called Voigt estimation, which means that Voigt
formula is a lower bound of the effective stiffness matrix components.

On the other hand it is assumed that across entire boundary S the uniform boundary
conditions ¢ = & - n hold, where & is a uniform stress in the representative volume
RVE. In this case the work of external forces is as follows
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1
/t-udS:z/E-nmdS (3.50)
S S

Consider the theorem of divergence:
1_ 1 T 1_ 1_ _
L,=—-0: —(Vu+V u)dV:—o-: edV=-0:¢ (3.51)
2 2 2 2
% 4

According to Eq.(3.44) and substituting Hooke law € = E~! : & the work of
internal forces can be evaluated as follows:

/a:edV:VE:E:VE:E_I:E (3.52)
1%
Consider now a new fictitious strain field € = Efl : o defined in an analogous

fashion as fictitious stress (3.45). On the base of theorem of minimum of potential
energy, the inequality as follows must be true:

/U:EdV:VE:ES/E:EdV (3.53)
v v

According to Hooke law applied to the term of right-hand side in above equation and
taking into account uniform stress @, it can be evaluated, compare (3.47):

1
E ' < V/E_ldv (3.54)
\%

Consider a similar continuum like previous one, where the whole volume of RVE
is a sum of two volumes V = V| U V,. Next, it is assumed that for the both phases
constitutive law is Hooke equation, where the material behavior is defined by the
tensors 1 and ;. Therefore it is possible to change the continuous formulation
described by Eq. (3.54) to discrete form as follows, compare (3.49):

E ' <[ + ;' = RE! (3.55)

where c; = V1/V,co = V,/V and ¢1 + ¢» = 1. The right-hand side of above
equation is well-known relation called Reuss’ estimation, which means that Reuss’
formula is a lower bound of the effective compliance matrix components, or equiva-
lently the upper bound of the elements of the effective stiffness matrix, because the

product E : E_l is equal identity tensor 1.
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3.5 Micromechanics-Based Homogenization Methods

3.5.1 Effective Elastic Stiffness Matrices
of Unidirectional Composites

Itis incorrect to directly apply the Voigt and the Reuss rules to anisotropic composites
since these simple isotropic mixture rules are based on volume fraction of matrix and
reinforcement materials Vi, and V;, but not on true constituents geometry and topol-
ogy. Hence, Voigt and Reuss’ approximations are insufficient for correct estimation
of the effective modules of stiffness or compliance matrices of true composite system,
for instance with long-fiber-reinforced composite architecture of various symmetry.
Temporary micromechanics-based homogenization models take into account not only
the volume fraction of constituents, but also their configuration, geometry and other
factors such as built-in residual stresses due to fabrication methods. Among them the
following homogenization methods are frequently used: the method of Concentric
Cylinder Assembly (CCA), Hashin and Rosen [10], the Mori—Tanaka Method (MT),
Mori and Tanaka [22], the Generalized Method of Cells (GMC), Paley and Aboudi
[25] or Strain Compatible Method of Cells (SCMC), Gan et al. [9]. Not going deeply
in details, all micromechanics based homogenization methods assume existence of
periodically repeating Representative Volume Element (RVE) or Representative Unit
Cell (RUC) the size and geometry of which must capture the essence of the true
composite behavior on the macroscale, and which can be mapped into a point of a
homogeneous continuum characterized by the displacement field u and the gradi-
ent Vu. Two common GMC and SCMC assumptions are: displacements continuity
inside the cell and across the subcell boundaries, and constant strain within the sub-
cells 6(*3"/), Fig.3.5. However, by contrast to SCMC method the GMC method does
not account for coupling between the transverse shear stresses and the transverse
normal stresses, cf. Gan et al. [9]. However, both microstresses and microstrains
averaged at the RUC level o and € are periodical and repeatable at the macroscale
(cf. Sun and Vaidya [30]).

Exemplary 2D cross-section of the square representative unit cell 4/ of unidirec-
tionally long-fiber-reinforced composite with RUC domain /A divided into subcells
built of different material h(jk)lf(yk), where k = m and £k = r stand for matrix and
reinforcing fiber, is presented in Fig.3.5. At the subcell level hgl, the local elastic-
ity equation holds combining local variables in the subcell, microstrain €*?) and
microstress o) )

ol = Efp)ey” (3.56)

where Ei(ﬁ;) denotes local stiffness tensor in subcell ((3), different for the matrix

material £ i(]r']lg and the reinforcing fiber material £ f]r,){ ;- Effective strain€;; and effective
stress 0;; averaged inside RUC are defined by approximate equations
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Oij = 7] > Z By

B=1~=1

When the inverse formulas for local variables are taken from (3.57), namely s(ﬂ ) Eij)

and ai(j ) (@), and substituted next to local equation of elasticity (3.56) at subcell
we arrive at the equation of elasticity at RUC level that combines average stress and
average strain

Ng N,
(B 4 B
Gij = — ZZhﬁz E;) Ao Emn (3.58)
/J’ Iy=1
Eijmn

where Axmn 1s so called tensorial concentration operator the components of which
A,(j,ZL allow to separate properties of constitutive material matrix and reinforcement
(fiber). If the new definition E; imn over RUC for averaged stiffness tensor is intro-
duced (cf. Eq.3.58) the averaged elasticity equation in RUC is furnished

Eij = Eijmngmn (3.59)

Note that in the averaged elasticity equation (3.59) E jumn stands for effective stiffness
tensor of composite expressed in terms of the local elasticity tensors in subcells E(??)

and the concentration tensor A(ﬁ )

w1mn YEPrEsented by the matrix of concentration factors



114

Table 3.3 Local and averaged elasticity equations

A.W. Ganczarski et al.

Notation Subcell level (8) RUC level
By By _ = _
Index 057 = Ei‘jllgkl, Gij = EijkiEu
By _ o—1py By =1
i =Eg o €ij = Eijuon
Vector/matrix (o) = [EPN (B} {7} = [El{g}

(€PN} = [P~ g BN}

E =[E (o)

defining distribution of constituent materials (subcell level) over the RUC (composite
level).

If the vector/matrix notation is used and the homogenized stiffness matrix is
defined in RUC both Eqgs.(3.56) and (3.59) can be rewritten in format shown in
Table 3.3.

3.5.2 Effective Stiffness Matrices of Unidirectional
Composites Characterized by Regular Fiber
Configuration—Square Array Versus Hexagonal Array

Final format of the effective elastic stiffness matrix of composite E depends not
only on the selected homogenization method (for instance Reuss’, Voigt, GMC,
SCMC etc.) but also on a choice of the Representative Unit Cell RUC. In fact a
proper choice of RUC geometry should follow true fiber topology in the considered
composite. Two basic regular fiber arrays repeating (periodic) at the macroscale
of the unidirectional composite are of particular interest: the square array and the
hexagonal array (Fig.3.6). The rhombic array (Fig.3.2) is not commonly used in
practice, and it will not be considered here.

In case of tetragonal symmetry (square array) fibers are arranged in parallel rows
and series being equally spaced by distance a in the matrix material of composite
(Fig.3.6a). Such fiber configuration in unidirectional composite is used by Tamma
and Avila [32], Wiirkner et al. [37] and others. By contrast, in case of hexagonal
symmetry (hexagonal array) fibers are distributed in position of parallel rows equally
spaced with distance a but neighboring rows are shifted each to the other with dis-
tance a/2 (Fig.3.6b). Hexagonal symmetry fiber topology is used for example by
Herakovich and Aboudi [12], Sun and Vaidya [30] and other authors. Configuration
of fibers in composite at the macroscale is a starting point for appropriate selection
of the Representative Unit Cell (RUC) geometry for numerical simulation employed
by the use of homogenization methods in order to find the effective properties of a
composite.

When either the tetragonal or the hexagonal symmetry fiber configurations are
employed various Representative Unit Cells can be defined (cf. Sun and Vaidya [30]
and others).



3 Mechanics of Anisotropic Composite Materials 115

(@ (b)
y y

EEXX.

Fig.3.6 Two configurations of fibers in unidirectionally reinforced transversely isotropic composite
(macroscale): a tetragonal symmetry, b hexagonal symmetry
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Fig. 3.7 Representative Unit Cells (RUCs) of tetragonal symmetry (square fiber array): a various
choices of repeating RUCs at the macrolevel, b three shape geometires and fiber dispositions in
RUG:s, ¢ three sub-RUCs and fiber geometry with additional symmetry used

In case of the fibers topology that exhibits tetragonal symmetry (square fiber
arrays, Fig.3.7a) three different representative unit cells are used (see Fig.3.7b, c).
Due to the transverse isotropy property, in fact the 2D analysis is sufficient whereas
the choice of one of the three cells presented in Fig. 3.7c for numerical simulation is
insignificant.

On the other hand if the fibers topology is governed by the hexagonal symme-
try (hexagonal arrays), Fig.3.8a, the other two Representative Unit Cells can be
established as shown in Fig.3.8b. Note that the RUCs of the tetragonal symmetry
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18 0| 8

a

Fig. 3.8 Representative Unit Cells RUCs of hexagonal symmetry: a various choices of repeating
RUC:s at the macrolevel, b two different geometries of repeating RUCs—square and rectangular and
corresponding fibers configuration, ¢ shape and fibers disposition in two sub-RUCs with additional
symmetry used

(Fig.3.7b) have 4 axes of geometrical symmetry whereas the RUCs of the hexagonal
symmetry (Fig.3.8b) inscribed into the 2a x 2a square or the a x 2a rectangle have
only 2 axes of geometrical symmetry, in spite of that the hexagonal has 6 own sym-
metry axes. A choice of subcells (Fig.3.7c and Fig. 3.8c) used for homogenization
is in fact arbitrary and does not influence final numerical results, but proper distinc-
tion between the tetragonal and the hexagonal RUCs (Fig.3.7 vs. Fig.3.8) should
follow the true fibers arrangement during composite fabrication in order to properly
estimate mechanical characteristics of the composite which meet the experimental
findings (see Sect.3.5.3).

3.5.3 Sun and Vaidya Findings for Boron/Al Composite

In what follows let us inspect some results presented in Sun and Vaidya [30] for trans-
versely isotropic Boron/Aluminum composite by the use of FEM micromechanics-
based homogenization models when compared to other methods, c.f. Hashin and
Rosen [10], Chamis [6] for various fibers topology (square array vs. hexagonal
array) and some experimental evidence. The isotropic material properties of both
constituents: Boron fiber and Aluminum matrix used by the authors are recalled in
Table 3.4.

Key to distinct elastic response of the transversely isotropic (unidirectional) com-
posite of either the tetragonal or the hexagonal symmetry is a number of indepen-
dent material constants. In general case of the composite that exhibits plane isotropy
property of tetragonal type, the averaged composite material is characterized by six
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Table 3.4 Material properties of isotropic constituents of the unidirectional Boron fibers reinforce-
ment in the Aluminum matrix, after Sun and Vaidya [30]

Constituent material E (GPa) v
Boron fiber 379.3 0.1
Aluminum matrix 68.3 0.3

independent constants: E11, E33, 121, 32, G23,and G12. By contrast, in case of plane
isotropy of hexagonal type the number of independent material constants is reduced
to five since the shear modulus in the isotropy plane G»3 is coupled with the trans-
verse Young modulus E7; and corresponding Poisson ratio 123 by the relationship
which holds for isotropic media

Ex»

Gy=—"—
2T 20 o)

(3.60)

Let us examine the data given in Table 3.5 based on Sun and Vaidya [30] in the light
of above constraint. It is visible that in case of micromechanics-based FEM model
with the hexagonal array used by Sun and Vaidya [30] as well as its simulations by
Hashin and Rosen [10] the transversely isotropic hexagonal symmetry roughly holds
Eq. (3.60). However, when the RUC of tetragonal symmetry (square array) is used
by Sun and Vaidya [30] or Chamis [6] composite exhibits the tetragonal symmetry
property.

Note also that in literature a big scatter of both the material properties of the con-
stituents of the same type (Boron/Al) and results based on different homogenization
methods are met.

Table 3.5 Comparison of selected elastic material modules for the Boron/Al composite, obtained
in various numerical experiments by different authors for the same Boron/Al composite material
(V = 0.47), after Sun and Vaidya [30]

Material FEM Sun and Vaidya [30] Numerical simulations
constants
of composite
Boron/Al
(Vr =0.47)
Square array Hexagonal array | Chamis [6] Hashin and
Rosen [10]
E11 (GPa) 215 215 214 215
E» = E33 (GPa) | 144 136.5 156 139.1
G23 (GPa) 45.9 52.5 43.6 54.6
G2 = G13 (GPa) | 57.2 54.0 62.6 53.9
V3 0.29 0.34 0.31 0.31
] = 131 0.19 0.19 0.20 0.195
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3.5.4 Interpretation of the Theorem of Lower and Upper
Bounds in the Light of Gan et al. [9] and Aboudi
et al. [1] Findings for Boron/Al Composite

Sun and Vaidya findings presented in Sect.3.5.3 are limited to the selected volume
fraction (Vy = 0.47). For further analysis it is convenient to discuss Gan et al. [9]
findings concerning the similar Boron/Al long-fiber composite Table 3.6, but obtained
for a complete volume fraction spectrum V; € [0, 1].

Note large discrepancy between the input data used for numerical experiments by
Sun and Vaidya [30] (Table 3.4) and that used by Gan et al. [9] (Table 3.6). In numer-
ical experiments based on homogenization methods FEM, GMC and SCMS (see
Sect.3.5.1) Gan et al. [9] compared various round Boron fiber arrangements in the
RUC: unidirectional random (disordered) disposition, the single fiber centered in the
square cell and the hexagonal symmetry array, but applying the general orthotropy
symmetry group (9 material constants explored), see Fig.3.1. Results obtained from
numerical experiments FEM, GMC and SCMC (Table3.7) closely resemble data
governed by the transverse symmetry group, but in case of GMC method a higher
divergence is met. Further distinction between the tetragonal or the hexagonal sym-
metry group can be done by checking the condition (3.60). An analysis performed in
Table 3.8 leads to the conclusion that the considered composite exhibits the fetragonal
symmetry class when GMC and SCMC homogenization methods are involved since
the condition (3.60) does not hold. By contrast, when the micromechanics-based
FEM was implemented the results obtained satisfy the requirement of the hexagonal
symmetry class (condition (3.60) is satisfied) where only 5 material constants are
essentially independent (see Fig.3.1 and Eq.3.13 vs. 3.14).

Examine closer the selected Gan et al. [9] findings from numerical experiments
based on the regular hexagonal fibers packing in the Boron/Al composite by the use
of SCMC homogenization method, compared with the Voigt and Reuss models relied
upon the volume fractions of the phases only. Inspection of these results obtained
in numerical experiment for long-fiber-reinforced composite characterized by trans-
versely isotropic tetragonal or hexagonal symmetry performed in light of the Hill
theorem on lower and upper bounds by Voigt and Reuss isotropic estimates will be
subject of further considerations.

Chronologically, Voigt (1889) and Reuss (1929) had proposed estimates for engi-
neering constants £ and G in polycrystals a long time before Hill proved famous
theorem on lower and upper bounds for the averaged stiffness matrix [E] or the com-

Table 3.6 Material properties of constituents of the unidirectional Boron/Al composite, after Gan
etal. [9]

Constituent material E (GPa) v
Boron fiber 413.7 0.2
Aluminum matrix 55.16 0.3
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Table 3.7 Approximation of material constants by orthotropic numerical experiment for unidirec-
tional long-fiber Boron/Al composite with random fibers arrangement in-plane transverse to fibers
beam direction and 30 x 30 number od subcells in the RVE, after Gan et al. [9]

Material constants of | Homogenization methods (random arrangement of fibers)
Boron composite/Al
(Vr =0.5)

FEM GMC SCMC
Eq; (GPa) 234.7 2347 2347
E» (GPa) 138.5 117.9 131.0
E33 (GPa) 137.3 113.1 128.6
G23 (GPa) 54.78 37.78 57.70
G2 (GPa) 60.48 42.94 58.51
G31 (GPa) 60.99 40.53 58.77
21 0.2361 0.2446 0.2387
V3] 0.2369 0.2492 0.2405
V32 0.3078 0.3289 0.3182

Table 3.8 Comparison of the shear modules in the transverse plane obtained from the experiment
by Gan et al. [9] for random unidirectional fibers dispersion in RVE (orthotropy) of Boron/Al
composite with the expected magnitude under the hexagonal-type transverse isotropy constraint

(3.60)

FEM GMC SCMC
G23 (GPa) 54.78 37.78 57.70
E
Gy = 2(T2532) 527 43.45 49.23
% of divergence -39 13.0 —17.2

pliance matrix [Efl] addressed to heterogeneous media (see Hill [13]). Recently,
scientists involved in the composite mechanics field and development of reliable
homogenization methods, commonly employ the Hill theorem originated for multi-
phase media, to estimate numerically the effective stiffness or compliance matrices
for composite materials. Very often they need to find the engineering constants which
are conventional input data for existing FEM-based codes addressed to anisotropic
composites. As a consequence, magnitudes of the Young modules E;1, E22, E33 and
the Kirchhoff modules G 17, G33, G31 counted from [E] or [Efl] lay inside the Voigt
and the Reuss estimates. Contrary, the magnitudes of Poisson ratios v12, 123, 131, that
may exceed both estimates, even though the Hill theorem on lower and upper bounds
holds for all elements of averaged stiffness [E] or compliance [E_l] matrices. Such
peculiarity occurs although the theorem on Voigt and Reuss estimates is fulfilled, if
consistently applied to all elements of elastic matrices [E] or [E_l], but not to the
engineering constants evaluated from the appropriate formulas. Note that the engi-
neering constants are measured from experiments. Such peculiarity can be observed
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for instance in results for the Boron/Al composites presented by Gan et al. [9] Fig. 3.9,
as well as the another Glass/Epoxy composites by Aboudi et al. [1], see Fig.3.10.
Presented in the Fig.3.9 Voigt and Reuss’ bounds are obtained in two different
ways. First, the “loose” bounds are obtained by extracting the averaged Poisson
ratios from the appropriate stiffness matrix element, which will be discussed further.
Second, the “tight” bounds are obtained in the way of straightforward use of Voigt
and Reuss’ mixture rules to Poisson ratios of both phases. It is evident that the
exemplary results by Gan et al. [9] obtained by application of SCMC method exceed
both “loose” as well as “tight” systems of bounds. Similar behavior is typical also for
another Glass/Epoxy composite system discussed by Aboudi et al. [1], see Fig.3.10.
The Voigt and the Reuss bounds used here are enriched by other “loose” bounds
of Concentric Cylindrical Assemblage model (CCAY, CCA™) which turn out to be
much broader. Although such a broad bound systems are admitted, the Poisson ratios

Fig. 3.9 Peculiarity 0.38
of the Poisson ratio 1,3
diagrams for the long-fiber SCMC
Boron/Al system, after Gan 033 O o
etal. [9] o
C Reuss “loose”
> 028
023 =~ Ctight”
Voigt “loose” ~ =~ = = J22X,
0.18 L L L L L L L L L
""0 01 02 03 04 05 06 07 08 09 1
Vi
Fig. 3.10 Peculiarity of the 0.53
Poisson ratio 1,3 diagrams
for the long-fiber 048 -
Gl ]
ass/Epoxy compo.stte, i L MT
system after Aboudi et al. [1] 0.43
038 ccA+”
= CCA—
R, 9q >
0.33 .\.\ cuss 100s€ MOC
\\
028 | N P
S~ - SCS
0.23 |- T m e\
Voigt “loose”
0.18 1 1 1 1 1 1 1 1 1
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13 obtained by use of the Mori-Tanaka method (MT), the Micromechanics-based
Method of Cells (MMC) and the Self Consistent Scheme (SCS) exceed these bounds.

Note that in both cases the “loose” Voigt and Reuss bounds are shown by two
curved diagrams versus V; in Figs.3.9 and 3.10, although the Voigt estimate is in
fact linear (from definition). It can be understood when the mixture rules, Voigt and
Reuss’, are consistently applied to the stiffness modulus of E ;/lm both phases, matrix
and fiber reinforcement

mjrdef  E™/T(1— 0™

= 3.61
11 (1+ Vm/r)(] _ zym/r) ( )
namely
VEu =EN(1 -V, +ELV;
I A=V n Vi (3.62)

ol m T
REN EY Ey,

Bars in Eq.(3.62) over the symbol refer to the composite as a whole, superscripts
V and R refer to the Voigr and Reuss’ estimates whereas symbols ™/ refer to the
constituents (matrix and fiber reinforcement). Symbols Y/RE ; are given by the
following formulas

_ VE(1 - VD)
VE —
R RE(1 - Rp) ’
Ey

~ (I + Ro)(1 —2Rp)

Solution of the above equation system (3.63) for the magnitudes of averaged Poisson
ratio U with the Young modules VE, RE averaged straightforwardly by the use of
appropriate mixture rules for Voigt and Reuss’ estimates

VE(V;) = E™(1 — Vp) + E'V;
L 1= W (3.64)
RE(Vp)  E™  E

yields the following formula for the “loose” Poisson ratio bounds

VIRE| ’ VREL\ Y/RE VIRE |
1- V/RE -8 1= V/RE V/RE +1-= V/RE
V/Ry _

VRE,,
V/RE

(3.65)

4

Alternatively, applying the Voigt or the Reuss mixture rules directly to the Poisson
ratios of both phases, matrix ™ and fiber " other two “tight” Poisson ratio bounds
are found
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Vo =™ — Vp) + 'V
1 1-Vs Vi (3.66)
Ry = om T or

where the “tight” Voigt bound preserves linearity.

Concluding, both “loose” bounding diagrams in Figs.3.9 and 3.10 exhibit non-
linear property since the magnitudes of Poisson ratios were obtained in an artificial
paths: either by extracting them from Eq. (3.63) or by straightforward application of
the mixture rules to engineering Poisson ratios for which linear “tight” Voigt estimate
is saved (3.66).

Finally, when the Hill theorem of lower and upper bounds is consistently applied
to the elements of elastic stiffness or compliance matrices then and only then all
effective matrix elements of a composite considered lay inside the lower and upper
bounds or at most at one of the bounds. In fact, if the results by Gan et al. [9], originally
presented in terms of the engineering anisotropic constants E11, E», G23, G12, V12
and 13 are consistently transformed to the space of elements of compliance matrix
Ey . Es; . Ery. Eys.Eq, . Ess . the results obtained by use of the SCMC method
follow the Hill theorem upper and lower bounds as shown in Fig.3.11.

3.5.5 Approximation of Mechanical Modules of Long-Fiber
Unidirectionally Reinforced Composites by the Use
of a Hybrid Rule Between Voigt and Reuss Estimates

Mention at the beginning that classical mixture rules by Voigt (3.171) and Reuss
(3.17;) apply a random dispersion of composite constituents over RVE. It is obvious
that the Voigt and the Reuss estimates converge at appropriate magnitudes of modules
of matrix and reinforcement for volume fraction Vi = 0 or V; = 1, respectively. This
question should be carefully considered in light of fabrication procedure. Namely,
assuming identical fibers of circular cross-section regularly packed over the RUC
either according to square or hexagonal arrays we arrive at two different maximal fiber
packing limits Vimax, see Fig. 3.12. It is seen that maximal fiber packing for the square
array Vf?:llax = 78.5 % is much lower than analogous maximal fiber packing for the
hexagonal array Vftrlgi‘x = 90.7 %. Even higher maximal fiber packing can be achieved
by using fibers of either various diameters or noncircular cross-section (square cross-
section fibers or honey-comb cross-section fibers joined by thin matrix layers). Hence,
the homogenization results according to Voigt or Reuss for surroundings V¢ = 1 have
only theoretical sense. Analogous objections can be formulated to homogenization
results for surroundings Vy = 0 where there is difficult to talk about a composite.
Consider now in detail results by Gan et al. [9]. In what follows in order to for-
mulate a weighted homogenization rule based on a tensorial interpolation between
lower and upper bounds it will be more convenient to consistently formulate the Voigt
and Reuss estimates in application to stiffness or compliance matrix components but
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Fig.3.11 Interpretation of the Gan et al. [9] results in the space of elements of effective compliance

matrix [E 1] obtained on the base of diagrams of engineering constants of the Boron/Al composite
in light of theorem of upper and lower bounds by the Voigt and Reuss estimates
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Fig. 3.12 TIllustration of maximal fiber packing for identical fibers of circular cross-section in case
of: a square array, b hexagonal array

not to the engineering constants (what is commonly done). The weighted homog-
enization rule allows to formulate the approximate method to estimate elements of
effective elasticity matrices (stiffness or compliance) by the use of the values of lower
and upper bounds and performing interpolation between them with the use of new
tensor-like rule of mixture (a hybrid formulation). In this way it will be possible to
build diagrams for all orthotropic matrix components [E~'] in the full range of vol-
ume fraction V¢ € [0, 1] assuming coincidence with known experimentally obtained
matrix [*PE~!] for one arbitrarily chosen volume fraction Vfo. Additionally, coin-
cidence with known matrices of pure constituents: Vy = 0 for matrix material and
V¢ = 1 for fiber material must hold.

Let us rewrite the scalar Voigt and Reuss formulas (3.17) into matrix Voigt and
Reuss formulas, respectively to stiffness or compliance matrices

VIE] = ¢1['E] 4 2["E] (3.67)

or
RE ' = i [E™'] + e["E~'] (3.68)

where common fractional concentrations by volume of the phases according Voigt
and Reuss’ rules ¢ = V; and ¢ = 1 — V¢ as previously shown for uniaxial models
(3.24), see Aboudi et al. [1]. This simplification means that orientation of reinforce-
ment is ignored, such that fractional concentrations depend on volume fraction V¢
only. Symbols [/ME] and [/™E~!] stand for elements of stiffness or compliance
matrices for reinforcing fiber or matrix, respectively. As a matter of fact ¢; and ¢;
must account for both volume fraction and reinforcement orientation, therefore for
determination of them advanced homogenization schemes are required (e.g., FEM,
GMC, SCMC, CCM and others).
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In what follows a simple rule of weighted average between, the Voigt and the
Reuss upper and lower estimates is proposed. Such approach is based on tensorial
interpolation between upper and lower estimates which enables to avoid application
of numerous cumbersome homogenization methods, for instance micromechanics-
based FEM, GMC, SCMC, CCM etc.

To this end, we define weighting vector ay built of weighting coefficients for
subsequent elements of stiffness or compliance matrices. For brevity we confine
ourselves to the compliance matrix only. Hence, the proposed hybrid or weighting
homogenization rule takes the following format

=1

Eyy (Vo) = oY Ey (V) + (1 - a)RE} (Vo)

Ep (VD) = oY Ezy (Vo) + (1 — a)REqy (VD)

Exs (VD) = aVEsy (VD) + (1 — a3)REa (VD)

s (V) = oY By (VD) + (1 — a)REzy (V)

Ty (V) = oYE (V) + (1 — as)RE LR (V) (3.69)

Epy V) = a¥Ery (Vo) + (1 — ag)REpy (VD)

Fa (V) = oY By (V) + (1 — anRE (V)

Fos (VD) = oY Esa (VD) + (1 — ag)REag (VD)

oo (VD) = oY Egq (VD) + (1 — 00)R Egg (VD)
Additionally, independence of the weighting coefficients c of the volume fraction V¢
over the whole range of V¢ € [0, 1] is assumed. This assumption refers to definition

of convex set of two vectors. If the magnitudes of stiffness or compliance elements
are known at certain point V; = Vfo

=1
[E (V)] =[PE~ (V)] (3.70)

then it is possible to determine unknown vector of weighting coefficients oy for the
compliance. Applying these coefficients over the whole range of volume fraction
V¢ € [0, 1] the sought elements of compliance matrix can be determined.

3.5.6 Capability of the Proposed Hybrid-Type Rule Versus
Experimental Evidence in Light of Fiber Array
Symmetry: Tetragonal or Hexagonal

The weighting average homogenization rules defined in the previous Sect.3.5.5 by
Eqgs. (3.69) are rather simple and effective ones that allow to easily predict unknown
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Table 3.9 Values of weight coefficients according to compliance matrix components for Voigt and
Reuss’ homogenization and SCMC [9]

[E Interpolation points Qi
[VE~!11 x 1072 (GPa™ 1) |[RE~!] x 1072 (GPa™1)| [SMCE-1] x 10-2 (GPa™ 1)

Ey! 1.01 0.42 0.909 0.833
Ey) 1.01 0.42 0.909 0.833
Ey | 101 0.42 0.463 0.075
Eyy | =029 —0.09 —0.116 0.142
E; | —0.29 —0.09 —0.116 0.142
Ey | —0.29 —0.09 —0.300 1.050
Ey | 259 1.01 2.130 0.707
Eg 2.59 1.01 2.268 0.794
Eg 2.59 1.01 2.130 0.707

constitutive modules of the composite system over the whole range of the volume
fraction V¢ € [0, 1] providing that they are known for one Vfo. Efficiency of this
method is tested by the use of the results of numerical simulation by SCMS homog-
enization method [9]. To this end nine weighting coefficients oy for the orthotropic
Boron/Al composite are calculated by interpolation between Voigt and Reuss’ esti-
mates shown in Fig. 3.13. Magnitudes of the weighting coefficients oy are established
at the point Vf0 = 0.513 by comparison with the homogenization results SCMC by
Gan et al. [9]. Obviously the weighting homogenization rule must give correct results
at the end points Vy = 0 and V¢ = 1. Calculated weighting coefficients and set of
predictions YE~!, RE~1 SCMCE—1 for nine elements of compliance matrix are pre-
sented in Table3.9. The results of the weighting homogenization rule are verified
with the results given by Gan et al. [9] based on SCMC method, that fully confirm
the assumption that weighting coefficients oy can be treated as universal ones for
the composite tested over the full range of volume fraction as shown by curves of
weight rule e versus SCMC homogenization [.

3.5.7 Interpretation of Results Obtained by Weighting
Homogenization in Terms of Engineering Constants

Nevertheless the formulated in previous subsection “hybrid” mixture rules based on
weighting interpolation between Voigt and Reuss’ estimates have to be formulated
in the space of elements of elasticity matrix (compliance or stiffness), where Hill
theorem of lower and upper estimates by Voigt and Reuss holds, it is usually neces-
sary to express the results in terms of engineering orthotropy constants. The reason
for such representation results from usually applied homogenization techniques to
engineering constants, but not to elasticity elements. This system of engineering
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ance matrix coefficients
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constants is dominant in the subject literature, see Aboudi et al. [1], Gan et al. [9],
Sun and Vaidya [30], and others.

To this end the engineering constants have to be extracted either from the com-
pliance

p—— :71 p——
Ey=1/Ey, Eyn =1/Ey Eyz =1/Ey,

—1 —1 —1 371
Gas = 1/E Gss = 1/Ess Gos = 1/Eg 3.71)

—1 =1 —1 =1 —1 =1
vio=—E /Ey, vis=—E3/Ey; 33 =—Ey [Ep

or the stiffness

Ef = 2EE13E3 + EN1EnEsz — ExzEy — Ej1Ey; — ExnEq;
- = p— :2
ExnEsz — Eys
Ey = 2EpEpBEn+ EnEnEss —E3Ey — EnEy — EnEs
- = p— :2
E\1E3z — Eq3
= = = = = = = = = =2 = =2
Fan — 2EnEREnR+EnEnEsy;; —ExREy — E11Eyy — EnEs
3 == = (3.72)
EnwEx» —E
Gas = Eay Gss = Ess Geo = Ecs
EpEss —EEx E3Ep — EnExn
V= — — B=ET— = =
EpnEsz — Eyy EpnEsz — Eyy
EnEn —EEn
EnEsz — Eq3
matrices.

In what follows the conversion of results shown in the previous section given
in the elasticity modules space, to the system of engineering orthotropic constants
is done preserving previously used assumption of the transversely isotropic hexag-
onal symmetry. The comparison of engineering orthotropic constants is presented
in Fig.3.14. The figure contains only four plots, because the transversely isotropic
hexagonal symmetry assumption has been proven and Poisson’s ratios are not dis-
cussed. Young and Kirchhoff modules obtained from proposed weighting rule (3.69)
coincide with the Gan et al. [9] results.
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Fig.3.14 Comparison of SCMC [9], Voigt, Reuss’ and proposed hybrid estimates in the engineering
orthotropic constants domain
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