
Chapter 3
Mechanics of Anisotropic
Composite Materials

Artur W. Ganczarski, S. Hernik and Jacek J. Skrzypek

Abstract Mechanics of composite materials was in the last decade one of the most
rapidly explored engineering area, basically due to huge progress in composite fabri-
cation and use. The main problem referred in this chapter is how to correctly predict
averaged effective properties by implementation of numerous homogenization tech-
niques. Useful classification of composites with respect to the format of effective
stiffness matrix, based on the analogy between the crystal lattice symmetry and
respective configuration of reinforcement in the RUC, is given. Extended section is
focused on conventionally used Hill’s theorem on upper and lower bounds by Voigt
and Reuss’ isotropic estimation for approximate determination of stiffness and com-
pliancematrices of anisotropic composite. Consistent application of the Hill theorem
to the elements of elastic stiffness or compliance matrices (but not to engineering
anisotropy constants) enable to explain some peculiarities of the Poisson ratio dia-
grams, met in respective bibliography (e.g., Aboudi et al., Micromechanics of Com-
posite Materials, 2013; Sun and Vaidya, Compos. Sci. Technol. 56:171–179, 1996;
Gan et al., Int. J. Solids Struct. 37:5097–5122, 2000). The new effective proposal
to achieve approximation of the mechanical modules of unidirectionally reinforced
composites by the use of hybrid-type rule of weighted average between the Voigt
and Reuss upper and lower estimates is proposed. Capability of this averaged inter-
polation was checked based on selected findings by Gan et al. (Int. J. Solids Struct.
37:5097–5122, 2000) for Boron/Al composite, which show good convergence and
enable to treat weighting coefficients as universal ones over the full Vf range.
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3.1 State of the Art

Essential progress observed in manufacturing processes and application of compos-
ite materials results in necessity to develop methodology of determination of the
effective properties mechanical, thermal, and others. Among the variety of papers
dealing with modeling of effective mechanical properties of composites and their
experimental verification, the following group of papers in which a coupling between
the topology of fibrous reinforcement (or particle) reinforcement and material sym-
metry of constitutive model describing composite can be distinguished, for instance:
Sun and Vaidya [30], Gan et al. [9], Liu et al. [19], Würkner et al. [37], Selvadurai
and Nikopour [28] and others.

Aforementioned papers deal with the modeling of unidirectionally reinforced
composites treated as homogeneous orthotropic solids characterized by some effec-
tive modules that describe average material properties of the composite. Assuming
the periodic fiber arrangement inside the matrix usually two types of Representative
Unit Cells (RUC) that exhibit either the tetragonal symmetry (square array) or the
hexagonal symmetry (hexagonal array) are considered.

In the significant paper by Sun and Vaidya [30] two composite systems: Boron/Al
and Graphite/Epoxy of the respective fixed volume Vf fraction equal to 0.47 and
0.6 are analyzed. Authors find essential scatter in analytical results obtained for two
kinds of composites in comparison with earlier data from the literature, namely:
Hashin and Rosen [10], Whitney and Riley [35], Chamis [6], Sun and Chen [29],
Sun and Zhou [31], Kenaga et al. [15]. In particular, the large scatter is referred to the
effective Young modulus, the effective Kirchhoff modulus, and the effective Poisson
ratio in the plane of transverse isotropy. The obtained material constants, in general,
do not confirm the theorem on upper and lower bounds based on the classical Voigt
and Reuss rules. Especially difficult is to explain the estimated magnitude of the in-
plane Poisson ratio exceeding range of two composite components based on either
the isotropic characteristic of components in Boron/Al composite or the orthotropic
characteristic of components in Graphite/Epoxy composite.

More systematic analysis of the influence of homogenization methods on esti-
mated effective properties of composites is due to Gan et al. [9]. The authors com-
pare the new Strain-Compatible Method of Cells (SCMC)with other homogenization
methods such as Generalized Method of Cells (GMC) Paley and Aboudi [25] and
micromechanical analysis using FEM. For numerical simulation, authors used the
unidirectionally reinforced Boron/Al composite assuming two types of the repre-
sentative unit cells based either on a random topology of parallel fibers or on the
hexagonal array for full spectrum of the volume fraction Vf ∈< 0, 1 >. The homog-
enization results are also compared with the classical approximate calculations based
on Voigt/Reuss mixture rules, Voigt [34], Reuss [27]. The performed analysis con-
firms applicability of the upper/lower bounds for majority of equivalent material
constants except for the in-plane Poisson ratio. However the authors do not pre-
cisely distinguish between the tetragonal or the hexagonal symmetry when modeling
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Representative Unit Cell (RUC) such that all six modules of orthotropy are treated
as independent in spite of clear hexagonal symmetry in fibers topology.

Liu et al. [19] analyze possibility for the Poisson ratio positioned beyond the
Voigt/Reuss estimates. Moreover: “It was found that the effective Young modulus
in both transverse and longitudinal direction can exceed not only the approximate
Voigt estimation, but also the stiffness of the stiffer constituent phase”. The authors
recommend precautions when applying Voigt/Reuss estimates in cases when one of
the components is made of incompressible material.

In the recently published paper by Würkner et al. [37] the effective elastic mod-
ules of the composite formed of isotropic Epoxy matrix and transversely isotropic
Graphite fibers are examined for reasonable wide range of volume fraction Vf ∈<

0.1 ÷ 0.6 > see also comments in Sect. 3.5.5 of this chapter. The rhombic array of
fibers is used for simulations characterized by different topology angles of RUC.
Following cases are considered: γ = 60◦ (hexagonal array), 60◦ < γ < 90◦ (rhom-
bic array) and γ = 90◦ (tetragonal array). The estimated effective modules show
satisfactory coincidence with numerical results given by Jiang et al. [14].

The more general approach to modeling of composites reinforced by unidirec-
tional fibers is recently presented by Selvadurai and Nikopour [28]. Authors con-
sidered the random parallel identical Carbon fibers distribution in the Epoxy matrix
of a composite. In the light of the numerical analysis performed, it is found that
in spite of random fibers distribution it is possible to determine a minimal Repre-
sentative Area Element—RAE (>65 fibers number) that guarantees the property of
transversely isotropic symmetry of hexagonal type (5 independent constants in the
elasticity matrix, see Fig. 3.1).

Extensive state-of-the-art review of the micromechanics-based analysis of com-
posite materials, enriched by numerous actual results, both in the field of homog-
enization techniques and its experimental validation for real long-fiber reinforced
composites, are found in recently published excellentmonograph byAboudi et al. [1].

3.2 Analogy Between the Elastic Matrices
Symmetry at the Level of Crystal Lattice Unit
Cell and the Composite Representative Element

A useful analogy between the crystal lattice symmetry at the level of single crystal
lattice or crystal grains and the relevant microstructure of composite materials of
identical symmetry groups that characterize effective elastic matrices (stiffness or
compliance) at the macrolevel is sketched in Fig. 3.1.

Equations of linear elasticity of crystal and composite materials are written
in (3.1)

{σ}(cr) = [c] {ε}(cr) and {σ} = [E] {ε} (3.1)
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(a)

(b)

(c)

(d)

Fig. 3.1 Classification of selected composites with respect to the format of compliance matrix
[E−1]: a anisotropic fiber arrangement, b rhombic fiber arrangement, c orthotropic fiber arrange-
ment, d square fiber arrangement, e hexagonal fiber arrangement, f regular particle arrangement, g
random particle arrangement, after Tjong andMa [33], Martin-Herrero and Germain [21], Nye [23]
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(e)

(f)

(g)

Fig. 3.1 (continued)

where relevant stiffness matrices at the crystal and composite level possessing iden-
tical symmetry properties are denoted with [s] and [c] whereas {σ}(cr), {ε}(cr), and
{σ}, {ε} stand for stress and strain vectors at the microlevel and the effective stress
and strain averaged over the representative element (RVE or RUC) (see Gan et al.
[9], Selvadurai and Nikopour [28], etc.). The respective compliance matrices used
in Eq. (3.1) can be rewritten in the equivalent fashion

{ε}(cr) = [s] {σ}(cr) and {ε} = [E−1] {σ} (3.2)

where the effective compliance matrix is represented as
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[E−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
−1
11 E

−1
12 E

−1
13 E

−1
14 E

−1
15 E

−1
16

E
−1
21 E

−1
22 E

−1
23 E

−1
24 E

−1
25 E

−1
26

E
−1
31 E

−1
32 E

−1
33 E

−1
34 E

−1
35 E

−1
36

E
−1
41 E

−1
42 E

−1
43 E

−1
44 E

−1
45 E

−1
46

E
−1
51 E

−1
52 E

−1
53 E

−1
54 E

−1
55 E

−1
56

E
−1
61 E

−1
62 E

−1
63 E

−1
64 E

−1
65 E

−1
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

The stiffness and compliance matrices at the crystal level in Eqs. (3.1) and (3.2) are
denoted by [c] and [s] in accordance with the notation used in crystallography as
shown in Table3.2.

Compliance matrices are more convenient for further application since they have,
generally, simpler representation when compared to the respective stiffness matrices,
both expressed in terms of the engineering elasticity constants (Young modules Eii ,
Kirchhoff modules Gi j , Poisson ratios νi j , Chencov modules μi j (kl) and Rabinovich
modules ηi( jk) as shown in Table3.1). In a more general case of fully anisotropic
composite material, for instance when composite material is at the microlevel rein-
forced with Carbon nanotubes of irregular arrangement, the effective continuum of
averaged properties is fully anisotropic and characterized by 21 engineering modules

where the effective compliance matrix of the composite [E−1] expressed in terms of
engineering anisotropy constants is furnished as follows:

[E−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η23(1)
E11

η31(1)
E11

η12(1)
E11

− ν12
E22

1
E22

− ν32
E22

η23(2)
E22

η31(2)
E22

η12(2)
E22

− ν13
E33

− ν23
E33

1
E33

η23(3)
E33

η31(3)
E33

η12(3)
E33

η(1)23
G23

η(2)23
G23

η(3)23
G23

1
G23

μ31(23)
G23

μ12(23)
G23

η(1)31
G31

η(2)31
G31

η(3)31
G31

μ(23)31
G31

1
G31

μ12(31)
G31

η(1)12
G12

η(2)12
G12

η(3)12
G12

μ(23)12
G12

μ(31)12
G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

In Table3.1 engineering anisotropy constants are ordered into five groups:

• Eii—axial elasticity modules (three generalized Young modules)
• Gi j—shear modules at three anisotropy planes (three generalized Kirchhoff
modules)

• νi j—transverse strain coefficients (three generalized Poisson ratios)
• μi j (kl)—Chencov modules (three Chencov modules combining shear in different
anisotropy planes)

• ηi( jk)—Rabinovich modules (nine Rabinovich modules combining shear and
normal strain effects).

It is worth to mention that the symmetry of stress and strain tensors results in appro-
priate symmetry of the compliance (stiffness) matrix, Lekhnitskii [16].
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Table 3.1 Types of engineering modules used in representation of the compliance matrix (3.4)

Engineering modules Coupling effect Considered
axes or planes
(coupling)

Number of
components

Stress
component

Strain
component

E11, E22, E33 Axial Axial Same axes
1 → 1, etc.

3

G12, G32, G31 Shear Shear Same planes
12 → 12, etc.

3

ν21, ν31, ν32 Axial Axial Transverse
directions
1 → 2, etc.

3

μ31(23),μ12(23),μ12(31) Shear Shear Different
planes
13 → 23, etc.

3

η23(1), . . . , η12(3) Shear Axial Normal to
23 → 1, etc.

9

νi j
E j j

= ν j i
Eii

−→ νi j Eii = ν j i E j j

ηi j (k)

Ekk
= η(k)i j

Gi j
−→ ηi j (k)Gi j = η(k)i j Ekk

μi j (ki)
Gki

= μ(ki)i j
G ji

−→ μi j (ki)G ji = μ(ki)i j Gki

(3.5)

A convenient analogy between the crystal lattice symmetry, the effective matrix
and respective configuration/orientation of fibers or particles in exemplary unit cells
of composites is shown in Fig. 3.1. Before we start to discuss items a–g in Fig. 3.1,
a comment should be done that an analogy between the exemplary representative
composite microstructure and the conventional unit cell of a crystal lattice is built
based on the identical stiffness matrix format and symmetry properties at the level
of crystal unit representative cells (lattice) and the level of composite representative
unit cell (fibers/particles geometry, arrangement, etc.), but not on different physical
features.

Such analogy occurs to be helpful in proper description of symmetry groups and
classes of the elastic matrices and proposing their experimental-based identification.

In a general case of anisotropy Eq. (3.4), the respective triclinic crystal lattice
symmetry ensures fully populated stiffness matrices at both levels considered (crystal
lattice vs. microstructure) for instance due to the totally anisotropic Carbon/Carbon
composite (see Fig. 3.1a Martin-Herrero and Germain [21]).

Composites formed by stacking layers (lamina) at different fiber orientation are
called laminates, the effective properties of which vary with orientation, thick-
ness, and stacking sequence of layers. The effective properties of a unidirectional
lamina are classified as orthotropic with different properties in the material direc-
tions (cf. Herakovich and Aboudi [12]). In general, the effective properties of such
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multicomponent systems correspond to averaged orthotropic continuum described
by nine orthotropy modules E11, E22, E33, ν21, ν32, ν31, G12, G23, G31, if elastic
range is considered. The corresponding crystal lattice symmetry is known as the
orthorhombic lattice characterized by three different cell edges a �= b �= c and
identical angles α = β = γ = 90◦, Fig. 3.1c.

Unidirectionally reinforced composites with the regular parallel fibers arrange-
ment correspond to the averaged transversely isotropic continuum at the macrolevel.
However, depending on frequently used periodic fiber arrangements, two of them
are specially interesting: tetragonal (square) fiber array and hexagonal fiber array,
as shown in Fig. 3.1d, e, respectively. Corresponding two crystal lattice cells are also
presented that exhibit equivalence between the in-plane fiber array over the compos-
ite RUC and in-plane atoms in the Crystal Unit Cell CUC arrangements. Note that in
case of tetragonal transverse isotropy, the number of independent modules is equal
to six, whereas in case of hexagonal transverse isotropy this number is reduced to
five.

Consider for a moment a more general case called the monoclinic or oblique sym-
metry. At the level of composite RUC it corresponds to the rhombic fiber array as
shown in Fig. 3.1b. In this case, periodicity is dependent not only on the distance
between layers but also on the angle of slope of the RUC walls 60◦ < γ < 90◦.
The corresponding crystal lattice symmetry is known asmonoclinic lattice symmetry.
This case can be recognized as an intermediate between the triclinic lattice (Fig. 3.1a)
and the orthorhombic lattice (Fig. 3.1c). Consequently, the equivalent stiffnessmatrix
describing monoclinic anisotropy is enriched with four nonzeroth independent ele-

ments E
−1
16 , E

−1
26 , E

−1
36 , and E

−1
45 , such that total number of independent modules of

the compliancematrix is equal to 13 = 9+4. Presence of these additional elements is
a characteristic feature for Rabinovich constants η(i) jk and Chencov constants μi j (kl)

responsible for anisotropy (which are not present in orthotropy).
Consider further more detailed two particular fiber arrangements of the mono-

clinic symmetry (Fig. 3.1b) which easily can be recognized in two fiber arrays of the
tetragonal or the hexagonal symmetry appearing in transversely isotropic long-fiber-
reinforced composites. In both cases, a = b holds but two particular magnitudes of
the slope angle a rhombic array of γ are admitted: γ = 90◦ or γ = 60◦ (Fig. 3.2).
In the first case when γ = 90◦, rhombic fiber array reduces to the square fiber array
(at the composite level) and the equivalent representative crystal lattice cell exhibits
architecture of tetragonal symmetry, as previously shown in Fig. 3.1d. In the second
case when γ = 60◦, any arbitrary rhombic array reduces to another hexagonal fiber
array (at the composite level) with the equivalent crystal lattice cell architecture of
hexagonal symmetry, see Fig. 3.1d. In both cases considered in the compliancematrix[
E

−1
]
of Eq. (3.4) four elements describing the Rabinovich and the Chencov effects

E
−1
16 = E

−1
26 = E

−1
36 = E

−1
45 = 0 disappear such that only nine elements are present

in the orthotropic Hooke law Fig. 3.1e. However, in case of transverse isotropy, the
number of independent modules reduces to either six (square array, γ = 90◦) or
five (hexagonal array, γ = 60◦) since in the last case the in-plane modulus equals

E
−1
66 = (E

−1
11 − E

−1
12 )/2 and should be considered as dependent.
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Fig. 3.2 Square or
hexagonal fiber arrays as
particular cases of rhombic
fiber array

Finally, for the narrower case of the tetragonal lattice namely a = b = c and
α = β = γ = 90◦ the particular cubic crystal lattice is recovered (regular lattice).
The stiffness or compliance matrices are here characterized by three independent
constants: E−1

11 = E−1
22 = E−1

33 , E−1
12 = E−1

13 = E−1
23 , E−1

44 = E−1
55 = E−1

66 see
Fig. 3.1f. Such cubic symmetry case is sometimes expected in certain regular particle
arrangement, as discussed by Desmorat and Marull [7] and Banks-Sills et al. [3].

To make this classification complete, the particle-reinforced composites of irreg-
ular particle shape and their topology should be admitted. In such a case, at the
macrolevel, the properties of isotropy of composite inside RUC can be admitted,
where two independent elastic constants (effective) can satisfactorily be estimated
from theVoigt/Reuss rules basedon theparticle volume fractionVf only, seeFig. 3.1g.

In schematic representation of the elastic matrices of crystal lattice and composite
microstructure, the visualizationofmatrix elementswas adopted afterNye [23]where
• depicts independent modules, ◦ dependent modules, whereas •−• or ◦−◦ pairs of
identical modules, etc. (see Chap.2).

As it was aforementioned, a similarity between the symmetry classes of crystals
at the crystal lattice level and composite microstructure at the macrolevel has sub-
sidiary meaning only. In fact, the crystal symmetry implies format and symmetry of
the elastic crystal matrices: stiffness [ci j ] or compliance [si j ] being 2nd rank matrix
representation of 4th rank crystal elasticity tensors ci jkl or si jkl . Passing from the

http://dx.doi.org/10.1007/978-3-319-17160-9_3_2
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Table 3.2 Equations of elasticity at the crystal level and macrolevel

Notation Crystal level Macrolevel

Tensor σ
(cr)
i j = ci jklε

(cr)
kl σi j = Ei jklεkl

ε(cr)
i j = si jklσ

(cr)
kl εi j = E

−1
i jklσkl

Matrix-vector σ
(cr)
i = ci j ε

(cr)
j σ j = Ei j ε j

ε
(cr)
i = si j σ

(cr)
j εi = E

−1
i j σ j

atomic level (crystal lattice) to the macrolevel (composite RUC), we arrive at the

correspondence to the equivalent composite matrices Ei j or E
−1
i j built as equivalent

representation matrices (averaged in procedure of homogenization) of the composite

effective elasticity tensors Ei jkl or E
−1
i jkl , see Table3.2. It is necessary to distinguish

stress and strain at the atomic crystal lattice level σ
(cr)
i j and ε

(cr)
i j from analogous

variables measured at the level of RUC: macrostress and macrostrain σi j and εi j .
Note that in crystallography, components of tensors ci jkl and si jkl are traditionally
called the stiffness coefficients and the compliance coefficients. On the other hand,
when passing to the macrolevel of analysis, the effective tensor components of com-

posite Ei jkl and E
−1
i jkl are named stiffness and compliance constants. Mention that

there does not exist any direct correspondence between elastic crystal coefficients
and the effective elastic constants of composite material at the macrolevel, c.f. Nye
[23]. Remember also that during the fabrication process of composite, the resid-
ual thermal stresses different in matrix and fibers material have to be built-in into
enriched equations of elasticity. Assuming for simplicity that during the fabrication
process strains have elastic nature only, the application of conventional equations
of thermoelasticity is justified. However, during the final cooling down process of
the composite and also in the fabrication phase, some thermoplastic microstructure
change in the material can be observed. In such cases, the thermoelastic analysis may
occur incorrect (cf. e.g., Herakovich and Aboudi [12]).

3.3 Effective Elastic Matrix Characterization of Composites
with Various Symmetries

3.3.1 Triclinic Anisotropic Long-Fiber-Reinforced Composite
(Anisotropic Fiber Array, Fig. 3.1a)

Elasticity equation of anisotropic composite material (at the macroscale) written in
an arbitrary material frame can be furnished in a following fashion, cf. Eq. (3.4)
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η23(1)
E11

η31(1)
E11

η12(1)
E11

− ν12
E22

1
E22

− ν32
E22

η23(2)
E22

η31(2)
E22

η12(2)
E22

− ν13
E33

− ν23
E33

1
E33

η23(3)
E33

η31(3)
E33

η12(3)
E33

η(1)23
G23

η(2)23
G23

η(3)23
G23

1
G23

μ31(23)
G23

μ12(23)
G23

η(1)31
G31

η(2)31
G31

η(3)31
G31

μ(23)31
G31

1
G31

μ12(31)
G31

η(1)12
G12

η(2)12
G12

η(3)12
G12

μ(23)12
G12

μ(31)12
G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ23
τ31
τ 12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.6)

Taking into account the symmetry conditions of the effective compliance matrix

E
−1
i j = E

−1
j i , see Eq. (3.5), in order to completely determine fully populated 6 × 6

matrix of elasticity total number of required elements is equal to n = (1+6)6
2 = 21.

However, following the reasoning of Lekhnitskii [16] and others, the maximal num-

ber of different from zero but independent matrix elements E
−1
i j equals 18 (see

Table3.1). It follows from requirement that both effective compliance E
−1
i j and stiff-

ness Ei j matrices have to obey transformation rule by three Euler angles. In such
general case of anisotropy, that in crystallography corresponds to triclinic lattice sym-
metry, it is impossible to reduce to zero any matrix elements via some transformation
by a rotation of the reference frame with any angles.

3.3.2 Monoclinic or Oblique Anisotropic Long-Fiber
Composite (Rhombic Fiber Array, Fig. 3.1b)

Composite systems of the rhombic-type fiber architecture represent the particular
case of generally anisotropic composite geometry in such manner as the monoclinic
crystal lattice symmetry is the particular case of general triclinic symmetry at the crys-
tal lattice level. In such rhombic-type fiber array composites, the axis parallel to the
fibers direction can be distinguished (3) being perpendicular to the transverse plane
(1, 2). Corresponding equation of elasticity built on the base of oblique anisotropy
compliance matrix takes the following format

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η12(1)
E11

− ν12
E22

1
E22

− ν32
E22

η12(2)
E22

− ν13
E33

− ν23
E33

1
E33

η12(3)
E33

1
G23

μ31(23)
G23

μ(23)31
G31

1
G31

η(1)12
G12

η(2)12
G12

η(3)12
G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ23
τ31
τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.7)

By contrast to generally anisotropic composite matrix Eq. (3.6), in the case of com-
posite of oblique anisotropy property number of nonzeroth independent material
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structural modules equals 13. Among them: three Young modules E11, E22, E33;
threeKirchhoff modules G23, G31, G12; threePoisson ratios ν21, ν31, ν32; oneChen-
cov modulus μ31(23); and three Rabinovich modules η12(1), η12(2), η12(3) are present
in Eq. (3.7) instead of 21 (18 irreducible) shown in Eq.3.6. On the other hand, appear-
ance of someChencovμ31(23) andRabinovichη12(k) coefficients allows to distinguish
formats of the compliance matrices in case of the rhombic fiber array in which nei-
ther Rabinovoch nor Chencov coefficients are present, when the material orthotropy
frame coincides with the effective stress/strain frame.

3.3.3 Orthotropic Composite (Lamina with Perpendicular
Fiber Arrangement, Fig. 3.1c)

The narrower case of frequently used composites built of a number of layers which
are long-fiber reinforced in an alternate perpendicular layer after layer fashion are
called the orthotropic multi-laminate composites, commonly also named lamina. In
corresponding elasticity matrices, compliance or stiffness, Rabinovich η12(k) and
Chencov μ31(23) coefficients (present in previously discussed Eq.3.7) disappear in
Eq. (3.8) such that the number of independent modules of the effective elastic compli-

ance E
−1
i j or stiffness matrix Ei j is reduced to 9 = 13−4, namely: 3 Young modules

E11, E22, E33; 3 Kirchhoff modules G23, G31, G12; 3 Poisson ratios ν21, ν31, ν32.
These equivalent anisotropy constants of composite have to be either measured in
appropriate 9 tests or estimated by the use of a chosen homogenization method
for assumed perpendicular fiber arrangements (see for instance Gan et al. [9] for
Boron/Al composite)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

− ν12
E22

1
E22

− ν32
E22

− ν13
E33

− ν23
E33

1
E33

1
G23

1
G31

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ23
τ31
τ 12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.8)

Transformation of the relation {ε} = [E−1
] {σ} to {σ} = [E] {ε} is not a trivial one

in case of the elastic orthotropy. It can be done in a numerical fashion by finding
the stiffness matrix [E] which is inverse to the compliance matrix

[
E

−1
]
. Elements

of the stiffness matrix [E] can be explicitly expressed in terms of nine engineering
constants of orthotropic material determined E11, E22, E33, G23, G13, G12, ν21, ν31
and ν32 as follows (see Ochoa and Reddy [24], Tamma and Avila [32])
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σ23
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=

⎡
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E1111 E1122 E1133
E2211 E2222 E2233
E3311 E3322 E3333
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⎤
⎥⎥⎥⎥⎥⎥⎦
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γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.9)

where subsequent elements of the stiffness matrix [E] are given by equations

E1111 = 1−ν23ν32
Δ

E11 E1122 = ν12+ν13ν32
Δ

E22

E1133 = ν13+ν12ν23
Δ

E33 E2222 = 1−ν13ν31
Δ

E22

E2233 = ν23+ν21ν13
Δ

E33 E3333 = 1−ν12ν21
Δ

E33

E2323 = G23 E1313 = G13 E1212 = G12

(3.10)

whereas symbol Δ denotes

Δ = 1 − ν12ν21 − ν13ν31 − ν23ν32 − ν12ν23ν31 − ν21ν13ν32 (3.11)

Note that full orthotropic symmetry and population of both matrices stiffness (3.9)
and compliance (3.8) is saved and refers to appropriate combinations of engineering
constants but not to engineering constants separately, for instance

E1122 = ν21 + ν13ν32

Δ
E22 = ν12 + ν31ν23

Δ
E11 = E2211 etc. (3.12)

Hence only nine orthotropy modules are independent.

3.3.4 Unidirectional Long-Fiber Composite—Transversely
Isotropic Tetragonal Type (Square Fiber Array, Fig. 3.1d)

Particular case of orthotropic composite is transversely isotropic symmetry unidi-
rectional long-fiber-reinforced system in which fibers are built-in with the regular
tetragonal manner (square fiber array, Fig. 3.1d). The effective elasticity matrix of
such composite is described with six independent constants: E11, E33, ν21, ν32, G23
and G12 as shown in Eq. (3.13). At the level of RUC, tetragonal symmetry is observed
(4 in-plane axes)
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(3.13)

3.3.5 Unidirectional Long-Fiber Composite—Transversely
Isotropic Hexagonal Type (Hexagonal Fiber Array
Fig. 3.1e)

In the another case of unidirectionally reinforced composites, when in the system
fibers are row after row shifted by the half-distance, at the level of RUC the hexag-
onal symmetry property holds (six symmetry axes). Hence, only five from among
mechanical constants are independent, since G23 = E22

2(1+ν23)

⎧⎪⎪⎪⎪⎪⎪⎨
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⎪⎪⎪⎪⎪⎪⎭

=
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1
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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σ33
τ23
τ31
τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.14)

The two types of transversely isotropic composites dependent on the fiber arrange-
ment of either tetragonal or hexagonal symmetry are not always consistently exam-
ined which may lead to some erroneous conclusions (cf. Sun and Vaidya [30]).

3.3.6 Regular Particle-Reinforced Composite—Cubic
Symmetry (Regular Particles Arrangement, Fig. 3.1f)

It is commonly assumed that the composites reinforced with a randomly distributed
particles of irregular size and shape can be treated at the level of RVE as the isotropic
continuum. However, in case of some regular particle reinforcement by repeating
identical shape and size particles, the equivalent composite continuum exhibits the
cubic symmetry (Fig. 3.1f). Among the crystal materials of cubic (regular) sym-
metry long list can be mentioned: Pyrites (cubic), Fluor Spar, Rock-salt, Potassium
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Chloride (cf. Love [20]) or Tantalum,Aluminum,Gold, Copper,Germanium,α–iron,
Magnesium Oxide (Magnesia), and Spinel (MgAl2O4) (cf. Berryman [5]). All cubic
symmetry materials are characterized by three independent compliance modules:

E
−1
11 , E

−1
12 and E

−1
44 where E

−1
44 �= (E

−1
11 − E

−1
12 )/2 or equivalently G �= E

2(1+ν)
. In

a similar way, the composite reinforced with three-directional mutually perpendicu-
lar short-fiber of the cubic symmetry is described by three independent engineering
constants E , ν, and G

⎧⎪⎪⎪⎪⎪⎪⎨
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=
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1
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1
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1
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1
G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(3.15)

3.3.7 Isotropic Composite (Random Particle Arrangement,
Fig. 3.1g)

Irregular particle-reinforced composite in which the distribution shape and orien-
tation of particles are fully disordered (chaotic) can be described at the level of the
repeating RVE by the effective elasticity matrix (stiffness or compliance) character-

ized by two independent modules: E
−1
11 , E

−1
12 (E

−1
44 = (E

−1
11 − E

−1
12 )/2 or equiva-

lently G = E
2(1+ν)

). In the isotropic composite with irregular particle reinforcement,
no characteristic material frame can be distinguished inside RVE (infinite number of
symmetry axes)
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(3.16)

Moregeneral approach todescribe particle-reinforced composites inwhich size/shape
and topology of particles are orderedwith the specific symmetriesmay lead to various
symmetry classes of elastic matrices (cf. Banks-Sills et al. [3]).
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3.4 Bounds for Effective Elastic Properties
of Unidirectionally (Long Fiber) Reinforced
Composites of Tetragonal or Hexagonal Symmetry

3.4.1 Nature of Homogenization Problem in Modeling
of Heterogeneous Composites—Voigt and Reuss’
Concept

Composite materials described in Sect. 3.3 have to be considered as two- or multi-
component systems at the microlevel (microcomposites) or the nanolevel (nanocom-
posites). Composite materials are in essence nonhomogeneous or in fact heteroge-
neous materials due to different properties of the system constituents (components)
commonly recognized as the matrix (most frequently metallic, ceramic or polymer)
and the reinforcing fibers or particles (for instance long fibers made of ceramic
or metallic materials and others) although the constituent materials are essentially
homogeneous. At microscale, on boundaries between the components of different
materials a jump of mechanical, thermal, and other properties arise. Averaging meth-
ods inside the representative element (RVE) or the representative cell (RUC) used for
analysis of multicomponent composite materials known as homogenization methods
are based on the assumption that it is possible to determine approximate values of
the effective properties of the equivalent homogeneous composite (heterogeneous
in fact) as well as uniform macrostress and macrostrain (nonuniform in fact at the
microlevel), cf. Fig. 3.3. It is necessary to accept existence of the repeating Rep-
resentative Volume Element—RVE (cf. e.g., Sun and Vaidya [30], Gan et al. [9],
Würkner et al. [37], Bayat and Aghdam [4]), or the Representative Unit Cell—RUC

(a) (b)

Fig. 3.3 Representative volume element RVE: a heterogeneous material at microscale, b homoge-
neous material at macroscale
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(cf. e.g., Li and Wongsto [18], Li [17], Wongsto and Li [36], Pidaparti and May
[26], Banks-Sills et al. [3], Herakovich and Aboudi [12]) which are subsequently
divided into the subcells, Fig. 3.5. The RVE size or the RUC size and geometry have
to be sufficiently large in order to properly catch an essence of composite system
properties and behavior at the macroscale. Simultaneously, they have to be suffi-
ciently small but repeatedly noticeable to assure that the representation of a uniform
deformation field described by the displacement u and the gradient ∇u such that
the averaged (effective) strain ε = 1

2 (∇Tu + ∇u) is justified (cf. Gan et al. [9]).
Note that component material at the microlevel (or nanolevel) is usually isotropic;
however, a multiphase composite can be either isotropic (for majority of particular
composites) or anisotropic (for instance in case of fibrous composites reinforcedwith
directionally oriented fiber beam).

The differences between the RVE (Representative Volume Element) and RUC
(Repeating Unit Cell) concept are discussed in details by Drago and Pindera [8]. The
authors claim that the concept of RVE is addressed to the statistically homogeneous
material at an appropriate scale. Moreover it is assumed that the strain and stress
are uniform throughout the RVE. On the other hand Drago and Pindera assume the
periodicity in the material, both in strain and stress fields. However most researchers
assume that the RUC is the periodic RVE and use its interchangeably [1, 30].

Traditionally it is assumed that the particle-reinforced composites in a disor-
dered manner (e.g., with dispersed micro or nanoparticles as well as short micro or
nanowires) show isotropic symmetry after homogenization (at the level of RVE).
However, the above reasoning has to be accepted with necessary care. If repeatable
shape and regular orientation of reinforcing particles are ensured throughout the
matrix volume, in spite of the isotropic properties of both phases—matrix and rein-
forcement it may happen that after homogenization the averaged material modules at
the macroscale (composite level) exhibit other than isotropic symmetry properties.
Such problem was analyzed by Banks-Sills et al. [3] with respect to the Glass-Epoxy
composite, by the use for simulation particles of various but regular geometries:
spherical, cylindrical, cubic and rectangular parallelepiped. To be more precise the
following unusual remark can be cited: “An interesting surprise for rotated particles
was the existence of unusual material constants which cause normal deformations to
produce orthogonal shear stresses and vice versa effect of Rabinovich’s coefficients
and shear deformations to produce orthogonal shear stresses and vice versa effect of
Chencov’s coefficients”, cf. Banks-Sills et al. [3].

Only in the specific case if reinforcing particles are repeatedly spherical and
do not exhibit same characteristic spatial distribution the assumption about isotropic
symmetry at themacroscale (RVE-level) is reasonable to accept. In such specific case
the classical mixture rules can be applied in order to achieve averaging methods: the
Voigt [34] or theReuss estimates [27]. In the simplest case of two isotropic constituent
phase materials, Voigt and Reuss’ rules of mixture are simply based on the volume
fraction of matrix V1 and reinforcement V2
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V p = p1c1 + p2c2 Voigt’s rule
1
R p

= c1
p1

+ c2
p2

Reuss’ rule
(3.17)

Symbols p1 and p2 stand for elastic constants of constituent materials, matrix and
reinforcement (particles), for instance Young modules E1 and E2 and Kirchhoff
modules G1 and G2 whereas V p and R p denote the corresponding effective modules
E and G averaged at the RVE level. Symbols c1 and c2 stand for volume fraction
of both phases (Vf and 1 − Vf ) with irregular particles distribution throughout the
RVE ignoring effect of local concentration density, size and shape of particles and
their orientation and mutual interaction, see Fig. 3.3a. After homogenization, the
averaged (effective) stress σ and τ are met in RVE instead of different microstresses
in constituent materials: matrix σm and reinforcement σr (see Fig. 3.3b).

The mixture rules Voigt and Reuss’ (3.17) lead to different estimates of averaged
material constants of homogenized isotropic continuum E and G. In case of Voigt
estimate compatibility of strains in both phase materials is assumed, whereas in
case of Reuss’ estimate compatibility of stresses is postulated. The first approach
leads to discontinuity of stress at the boundary between constituents whereas the
second approach causes strain discontinuity. In other words, the Voigt approximation
can be treated as equivalent to kinematically admissible approach in contrast to the
Reuss approximation which is statically admissible. In fact at the microlevel of
heterogeneous composite both stress and strain continuity hold such that the Voigt
and the Reuss approximations can serve as upper and lower estimates for the effective
stiffness matrix elements of anisotropic composite systems (cf. Herakovich [11], Gan
et al. [9]). In the impressive monograph “Micromechanics of composite materials,”
Aboudi et al. [1] analyze the effective engineering constants of the Glass/Epoxy
fibrous composite E11, E22 = E33, ν12 = ν13, ν23, G12 = G13, G23 as functions of
fiber volume fraction Vf . This findings generally confirm the upper and lower bounds
by Voigt and Reuss’ isotropic estimates except for the transverse Poisson ratio ν23
for which an excess of the bounds is observed.

In order to simply explain the essence of Voigt and Reuss’ estimates, consider ele-
mentary one-dimensional two-component mechanical systems sketched in Fig. 3.4
representing: (a) Voigt, (b) Reuss’ and (c) the effective homogeneous elements.

In case of Voigt scheme, Fig. 3.4a, two bars of A1 and A2 cross-sectional areas
that represent matrix and reinforcement (particle) of the same length l are jointed in
parallel (l = l1 = l2 and A = A1+ A2). Loading force F is separated betweenmatrix
and reinforcement F = F1 + F2 whereas identical elongation of both constituents
is equal to the averaged elongation of substituting homogeneous system, Fig. 3.4c:
Δl = Δl1 = Δl2. Hence, when the Hooke law is applied to schemes a) and c) we
arrive at distribution of force between matrix and reinforcement

F1 = E1A1

E(A1 + A2)
F F2 = E2A2

E(A1 + A2)
F (3.18)
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(a) (b) (c)

Fig. 3.4 Uniaxial mechanical models for mixture rules application in composites: a Voigt rule,
b Reuss’ rule, c effective homogeneous material

Finally, introducing definitions of volume fractions V1 = A1/A and V2 = A2/A the
Voigt-based effective Young modulus VE is furnished

E = E1V1 + E2V2 = VE (3.19)

In case ofReuss’ scheme, Fig. 3.4b, two bars of different lengths l1 and l2 and A1 =
A2 = A representing matrix and reinforcement materials are joined in series and
loaded by identical force F = F1 = F2 whereas averaged elongation of substitutive
system Fig. 3.4c is the sum of component elongations Δl = Δl1 +Δl2. Again, when
Hooke law is applied to schemes (b) and (c) the following must hold

Fl

E A
= Fl1

E1A
+ Fl2

E2A
(3.20)

Finally applying definitions of volume fractions V1 = l1/l and V2 = l2/l we arrive
at the Reuss-based effective Young modulus RE in the format

1

E
= V1

E1
+ V2

E2
= 1

RE
(3.21)

In order to make further considerations easier we introduce original notation used
by Hill in [13]. In this way equations describing the uniaxial Voigt and Reuss’ models
can be rewritten in the new following formats. In case of Voigt model the identity
of strains in both phases Vε = ε1 = ε2 holds. Hence the following set of equations
describe the uniaxial Voigt model
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Vσ = Vc1σ1 + Vc2σ2
Vσ = VE Vε
VE Vε = Vc1E1ε1 + Vc2E2ε2
VE = Vc1E1 + Vc2E2

(3.22)

where fractional concentrations by volume of the phases in the Voigt model (see
Fig. 3.4a) are defined as Vc1 = A1/A and Vc2 = A2/A; (Vc1 + Vc2 = 1).

In the analogous way in case of uniaxial Reuss’ model the identity of stresses in
both phases Rσ = σ1 = σ2 holds, hence the basic set of equations is

Rε = Rc1ε1 + Rc2ε2

Rε =
Rε
RE

Rσ
RE

= Rc1
σ1

E1
+ Vc2

σ2

E2
1

RE
=

Rc1
E1

+
Rc2
E2

(3.23)

where fractional concentrations by volume of the phases in the Reuss model (see
Fig. 3.4b) are defined as Rc1 = l1/l and Rc2 = l2/l; (Rc1 + Rc2 = 1).

In fact both pairs Vc1, Vc2 and Rc1, Rc2 can be interpreted as common volume
fraction of both phases Vf and 1 − Vf in the uniaxial models of the same material,
hence it must hold

c1 = Vc1 = Rc1 = Vf c2 = Vc2 = Rc2 = 1 − Vf (3.24)

Note that the Poisson effect is ignored in aforementioned considerations.

3.4.2 General 3D Formulation of Voigt and Reuss’
Homogenization Estimates

On the RVE level, that represents heterogeneous material, the definitions of either
the averaged stress or the averaged strain tensors can be written down

σ = 1

VRVE

∫

VRVE

σdV (3.25)

or

ε = 1

VRVE

∫

VRVE

εdV (3.26)

where VRVE denotes a volume of the chosen RVE, see Aboudi et al. [1].
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Average values of stress and strain σ and ε in RVE are given in terms of σ1,σ2
and ε1, ε2 in the phases by the following relations

σ = c1σ1 + c2σ2 ε = c1ε1 + c2ε2 (3.27)

Since the elastic material is assumed for both phases the obvious relations must hold
at any point in the phases

σ1 = E1 : ε1 and σ2 = E2 : ε2 (3.28)

and
ε1 = E

−1
1 : σ1 and ε2 = E

−1
2 : σ2 (3.29)

if the inverse format is used.
Substitution of (3.28) and (3.29) into (3.27) with the assumption that phases

are uniform and isotropic (σ1,2 = σ1,2, ε1,2 = ε1,2) the analogous relations hold
between the average quantities

σ = c1E1 : ε1 + c2E2 : ε2 ε = c1E
−1
1 : σ1 + c2E

−1
2 : σ2 (3.30)

where consistently ε1 and ε2, as well as σ1 and σ2, stand for uniform strain and
uniform stress fields in each of the phases in RVE, respectively.

A distribution of the two-phase materials in the RVE is obviously not necessarily
random, but must be structurally representative distribution for composite material
at the macrolevel. In the light of above remark a unique relationship between the
average strains in the phases ε1, ε2 upon the average overall strain in RVE ε can be
furnished by the use of strain concentration tensors A1 and A2

ε1 = A1 : ε ε2 = A2 : ε (3.31)

where the obvious condition holds c1A1 + c2A2 = Iwith I being the unit tensor. By
combining Eq. (3.31) with Eq. (3.30) we arrive at

σ = (c1E1 : A1 + c2E2 : A2) : ε = E : ε (3.32)

where E stands for the effective stiffness tensor of the overall composite.
Equivalently reverse unique relationships between the average stresses in the

phases σ1,σ2 upon the average stress in RVE σ

σ1 = B1 : σ σ2 = B2 : σ (3.33)

must hold if the stress concentration tensors B1 and B2 which satisfy the relation
c1B1 + c2B2 = I, are introduced. Again combining Eq. (3.33) with the second of
Eq. (3.30) we arrive at
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ε = (c1E
−1
1 : B1 + c2E

−1
2 : B2) : σ = E

−1 : σ (3.34)

where E
−1

is the effective compliance tensor of the composite.
The first homogenization rule was introduced by Voigt (1889) [34] as average

constants of polycrystals.Assuming the strain concentration is constantA1 = A2 = I

and strain is uniform ε1 = ε2 = ε, it follows:

E = c1E1 + c2E2 (3.35)

Equation (3.35) provides the effective stiffness matrix elements of the composite in
terms of the volume-averaged stiffness of individual phases.

By contrast, Reuss (1929) [27] assumed that constituents of the composite are
subjected to a uniform stress equal to the average stress in RVE B1 = B2 = I in
Eq. (3.33) and effective compliance is given by a rule of mixture as follows:

E
−1 = c1E

−1
1 + c2E

−1
2 (3.36)

Note that in fact neither the Voigt nor the Reuss assumption is correct. The implied
stress due to Voigt causes tractions at phase boundaries not satisfying equilibrium
σ1 �= σ2. On the other hand the implied strain due to Reuss’ causes discontinuity
of strain at the interface between matrix and particle ε1 �= ε2.

3.4.3 Theorem of Lower and Upper Bounds by Voigt
and Reuss’ Estimation

Hill theorem, which is called the theorem of lower and upper bounds, allows to
connect a constitutive description at two scales: micro level at the point level and the
meso level, where the representative volume element RVE is defined. After Auriault
et al. [2], it is assumed that:

• the global variables are the volume means of the local stress and strains, and that
the conservation and constitutive equations have the same structure at microscopic
and mesoscales,

• the assumption of energetic consistency, known as the Hill principle, which
imposes equality on the energy contained within the medium, whether it is
expressed in local variables or using variables defined at mesoscale.

According to the second assumption, the equivalence of energy at micro and RVE
level leads to the following formula:

∫

V

σ : εdV =
∫

V

σ : εdV = V σ : ε (3.37)
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where V = VRVE is used for brevity. Hence, when the Hooke law is applied, both
at micro level σ = E : ε and mesoscale σ = E : ε, the previous equation can be
rewritten as ∫

V

ε : E : εdV = V ε : E : ε (3.38)

According to the Hill–Mandel relation and Eq. (3.37) the following equality holds:

σ : ε =
⎛
⎝ 1

V

∫

V

σdV

⎞
⎠ :
⎛
⎝ 1

V

∫

V

εdV

⎞
⎠ = 1

V

∫

V

σ : εdV = (σ : ε) (3.39)

Let us consider theRepresentativeVolumeElement bounded by surface S inwhich
uniform strain field ε = const accompanies linear displacement field u = ε·x, hence
the external work can be rewritten down as follows:

Lz = 1

2

∫

S

t · udS = 1

2

∫

S

t · ε · xdS = 1

2
ε ·
∫

S

t · xdS (3.40)

Applying the traction boundary condition in following form t = σ · n, where n
stands for a normal vector to the surface, and the Gauss theorem of divergence, the
Eq. (3.40) can be rewritten as follows:

Lz = 1

2
ε ·
∫

V

div (σ · x) dV = 1

2
ε ·
∫

V

[div (σ) · x + σ · div(x)] dV (3.41)

The uniform stress accompanying the uniform strain leads to div(σ) = 0 hence the
external work (3.41) reduces to

Lz = 1

2
ε ·
∫

V

σdV = 1

2
σ : ε = 1

2
(σ : ε) (3.42)

when the Hill–Mandel relation is applied. Applying assumption, that the constitutive
relations at both scales are the same:

σ = E : ε, σ = E : ε (3.43)

the Eq. (3.42) can be rewritten as follows:

σ : ε = (σ : ε) = 1

V

∫

V

ε : E : εdV = ε : E : ε (3.44)
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Let us defined a new fictitious stress field σ̂, where the Hooke law can be defined
as:

σ̂ = E : ε (3.45)

The real, effective fields (e.g., stressσ and strain ε)must fulfil the theorem of minimal
potential energy, hence the energy based on a fictitious stress field σ̂ must be greater
than effective one, so the following inequality is true:

(σ : ε) = 1

V

∫

V

σ : εdV ≤ 1

V

∫

V

σ̂ : εdV (3.46)

Input of the Eq. (3.44) to the left-hand side of above inequality and the definition of
fictitious stress (3.45) on the right-hand side, yields the inequality:

1

V

∫

V

ε : E : εdV = ε : E : ε ≤
∫

V

ε : E : εdV = ε : ε :
⎛
⎝ 1

V

∫

V

EdV

⎞
⎠ (3.47)

After some rearrangements the inequality (3.47) can be rewritten as follows:

E ≤ 1

V

∫

V

EdV (3.48)

Inequality (3.48) means that the effective stiffness tensor on RVE level is the lower
bound of mean constitutive tensor on micro level, where the mean operation is cal-
culated over the volume of Representative Volume Element.

Consider the two-phase continuum, where the total volume of RVE is a sum of
two volumes V = V1 ∪ V2. Next, it is assumed that for the both phases constitutive
law is Hooke equation, where the material behavior is defined by the tensors E1 and
E2. Hence it is possible to change the continuous formulation described by Eq. (3.48)
to the discrete form as follows, compare (3.32):

E ≤ c1E1 + c2E2 = V
E (3.49)

where c1 = V1/V , c2 = V2/V and c1 + c2 = 1. The right-hand side of above
equation is well-known relation called Voigt estimation, which means that Voigt
formula is a lower bound of the effective stiffness matrix components.

On the other hand it is assumed that across entire boundary S the uniformboundary
conditions t = σ · n hold, where σ is a uniform stress in the representative volume
RVE. In this case the work of external forces is as follows



3 Mechanics of Anisotropic Composite Materials 111

Lz = 1

2

∫

S

t · udS = 1

2

∫

S

σ · n · udS (3.50)

Consider the theorem of divergence:

Lz = 1

2
σ :
∫

V

1

2

(
∇u + ∇T u

)
dV = 1

2
σ :
∫

V

εdV = 1

2
σ : ε (3.51)

According to Eq. (3.44) and substituting Hooke law ε = E
−1 : σ the work of

internal forces can be evaluated as follows:

∫

V

σ : εdV = V σ : ε = V σ : E−1 : σ (3.52)

Consider now a new fictitious strain field ε̂ = E
−1 : σ defined in an analogous

fashion as fictitious stress (3.45). On the base of theorem of minimum of potential
energy, the inequality as follows must be true:

∫

V

σ : εdV = V σ : ε ≤
∫

V

σ : ε̂dV (3.53)

According to Hooke law applied to the term of right-hand side in above equation and
taking into account uniform stress σ, it can be evaluated, compare (3.47):

E
−1 ≤ 1

V

∫

V

E
−1dV (3.54)

Consider a similar continuum like previous one, where the whole volume of RVE
is a sum of two volumes V = V1 ∪ V2. Next, it is assumed that for the both phases
constitutive law is Hooke equation, where the material behavior is defined by the
tensors E1 and E2. Therefore it is possible to change the continuous formulation
described by Eq. (3.54) to discrete form as follows, compare (3.49):

E
−1 ≤ c1E

−1
1 + c2E

−1
2 = R

E
−1

(3.55)

where c1 = V1/V , c2 = V2/V and c1 + c2 = 1. The right-hand side of above
equation is well-known relation called Reuss’ estimation, which means that Reuss’
formula is a lower bound of the effective compliance matrix components, or equiva-
lently the upper bound of the elements of the effective stiffness matrix, because the

product E : E−1
is equal identity tensor I.
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3.5 Micromechanics-Based Homogenization Methods

3.5.1 Effective Elastic Stiffness Matrices
of Unidirectional Composites

It is incorrect to directly apply theVoigt and theReuss rules to anisotropic composites
since these simple isotropic mixture rules are based on volume fraction of matrix and
reinforcement materials Vm and Vr, but not on true constituents geometry and topol-
ogy. Hence, Voigt and Reuss’ approximations are insufficient for correct estimation
of the effectivemodules of stiffness or compliancematrices of true composite system,
for instance with long-fiber-reinforced composite architecture of various symmetry.
Temporarymicromechanics-based homogenization models take into account not only
the volume fraction of constituents, but also their configuration, geometry and other
factors such as built-in residual stresses due to fabrication methods. Among them the
following homogenization methods are frequently used: the method of Concentric
Cylinder Assembly (CCA), Hashin and Rosen [10], the Mori–Tanaka Method (MT),
Mori and Tanaka [22], the Generalized Method of Cells (GMC), Paley and Aboudi
[25] or Strain Compatible Method of Cells (SCMC), Gan et al. [9]. Not going deeply
in details, all micromechanics based homogenization methods assume existence of
periodically repeating Representative Volume Element (RVE) or Representative Unit
Cell (RUC) the size and geometry of which must capture the essence of the true
composite behavior on the macroscale, and which can be mapped into a point of a
homogeneous continuum characterized by the displacement field u and the gradi-
ent ∇u. Two common GMC and SCMC assumptions are: displacements continuity
inside the cell and across the subcell boundaries, and constant strain within the sub-
cells ε(βγ), Fig. 3.5. However, by contrast to SCMC method the GMC method does
not account for coupling between the transverse shear stresses and the transverse
normal stresses, cf. Gan et al. [9]. However, both microstresses and microstrains
averaged at the RUC level σ and ε are periodical and repeatable at the macroscale
(cf. Sun and Vaidya [30]).

Exemplary 2D cross-section of the square representative unit cell hl of unidirec-
tionally long-fiber-reinforced composite with RUC domain lh divided into subcells
built of different material h(k)

β l(k)
γ , where k = m and k = r stand for matrix and

reinforcing fiber, is presented in Fig. 3.5. At the subcell level hβlγ the local elastic-
ity equation holds combining local variables in the subcell, microstrain ε(βγ) and
microstress σ(βγ)

σ
(βγ)
i j = E (βγ)

i jkl ε
(βγ)
kl (3.56)

where E (βγ)
i jkl denotes local stiffness tensor in subcell (βγ), different for the matrix

material E (m)
i jkl and the reinforcingfibermaterial E (r)

i jkl . Effective strainεi j and effective
stress σi j averaged inside RUC are defined by approximate equations
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Fig. 3.5 2D (x2, x3 plane)
dicretization of the RUC
cross-section in
unidirectional composite of
fiber direction coincident
with x1 direction with size
h × l divided into subcells
h(m)

β l(m)
γ (matrix) and h(r)

β l(r)γ

(single fiber) of circular
shape approximated by
sufficiently dense square
subcells

εi j = 1
hl

Nβ∑
β=1

Nγ∑
γ=1

hβlγε
(βγ)
i j

σi j = 1
hl

Nβ∑
β=1

Nγ∑
γ=1

hβlγσ
(βγ)
i j

(3.57)

When the inverse formulas for local variables are taken from (3.57), namely ε
(βγ)
i j (εi j )

and σ
(βγ)
i j (σi j ), and substituted next to local equation of elasticity (3.56) at subcell

we arrive at the equation of elasticity at RUC level that combines average stress and
average strain

σi j = 1

hl

Nβ∑
β=1

Nγ∑
γ=1

hβlγ E (βγ)
i jkl A(βγ)

klmn

︸ ︷︷ ︸
Ei jmn

εmn (3.58)

where Aklmn is so called tensorial concentration operator the components of which
A(βγ)

klmn allow to separate properties of constitutive material matrix and reinforcement
(fiber). If the new definition Ei jmn over RUC for averaged stiffness tensor is intro-
duced (cf. Eq.3.58) the averaged elasticity equation in RUC is furnished

σi j = Ei jmnεmn (3.59)

Note that in the averaged elasticity equation (3.59) Eklmn stands for effective stiffness
tensor of composite expressed in terms of the local elasticity tensors in subcellsE(βγ)

and the concentration tensor A(βγ)
klmn represented by thematrix of concentration factors
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Table 3.3 Local and averaged elasticity equations

Notation Subcell level (βγ) RUC level

Index σ
βγ
i j = E βγ

i jklε
βγ
kl σi j = Ei jklεkl

ε
βγ
i j = E−1βγ

i jkl σ
βγ
kl εi j = E

−1
i jklσkl

Vector/matrix {σ(βγ)} = [E(βγ)]{ε(βγ)} {σ} = [E]{ε}
{ε(βγ)} = [E(βγ)]−1{σ(βγ)} {ε} = [E−1]{σ}

defining distribution of constituentmaterials (subcell level) over the RUC (composite
level).

If the vector/matrix notation is used and the homogenized stiffness matrix is
defined in RUC both Eqs. (3.56) and (3.59) can be rewritten in format shown in
Table3.3.

3.5.2 Effective Stiffness Matrices of Unidirectional
Composites Characterized by Regular Fiber
Configuration—Square Array Versus Hexagonal Array

Final format of the effective elastic stiffness matrix of composite E depends not
only on the selected homogenization method (for instance Reuss’, Voigt, GMC,
SCMC etc.) but also on a choice of the Representative Unit Cell RUC. In fact a
proper choice of RUC geometry should follow true fiber topology in the considered
composite. Two basic regular fiber arrays repeating (periodic) at the macroscale
of the unidirectional composite are of particular interest: the square array and the
hexagonal array (Fig. 3.6). The rhombic array (Fig. 3.2) is not commonly used in
practice, and it will not be considered here.

In case of tetragonal symmetry (square array) fibers are arranged in parallel rows
and series being equally spaced by distance a in the matrix material of composite
(Fig. 3.6a). Such fiber configuration in unidirectional composite is used by Tamma
and Avila [32], Würkner et al. [37] and others. By contrast, in case of hexagonal
symmetry (hexagonal array) fibers are distributed in position of parallel rows equally
spaced with distance a but neighboring rows are shifted each to the other with dis-
tance a/2 (Fig. 3.6b). Hexagonal symmetry fiber topology is used for example by
Herakovich and Aboudi [12], Sun and Vaidya [30] and other authors. Configuration
of fibers in composite at the macroscale is a starting point for appropriate selection
of the Representative Unit Cell (RUC) geometry for numerical simulation employed
by the use of homogenization methods in order to find the effective properties of a
composite.

When either the tetragonal or the hexagonal symmetry fiber configurations are
employed various Representative Unit Cells can be defined (cf. Sun and Vaidya [30]
and others).
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(a) (b)

Fig. 3.6 Twoconfigurations offibers in unidirectionally reinforced transversely isotropic composite
(macroscale): a tetragonal symmetry, b hexagonal symmetry

(a) (b) (c)

Fig. 3.7 Representative Unit Cells (RUCs) of tetragonal symmetry (square fiber array): a various
choices of repeating RUCs at the macrolevel, b three shape geometires and fiber dispositions in
RUCs, c three sub-RUCs and fiber geometry with additional symmetry used

In case of the fibers topology that exhibits tetragonal symmetry (square fiber
arrays, Fig. 3.7a) three different representative unit cells are used (see Fig. 3.7b, c).
Due to the transverse isotropy property, in fact the 2D analysis is sufficient whereas
the choice of one of the three cells presented in Fig. 3.7c for numerical simulation is
insignificant.

On the other hand if the fibers topology is governed by the hexagonal symme-
try (hexagonal arrays), Fig. 3.8a, the other two Representative Unit Cells can be
established as shown in Fig. 3.8b. Note that the RUCs of the tetragonal symmetry
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Fig. 3.8 Representative Unit Cells RUCs of hexagonal symmetry: a various choices of repeating
RUCs at themacrolevel, b two different geometries of repeating RUCs—square and rectangular and
corresponding fibers configuration, c shape and fibers disposition in two sub-RUCs with additional
symmetry used

(Fig. 3.7b) have 4 axes of geometrical symmetry whereas the RUCs of the hexagonal
symmetry (Fig. 3.8b) inscribed into the 2a × 2a square or the a × 2a rectangle have
only 2 axes of geometrical symmetry, in spite of that the hexagonal has 6 own sym-
metry axes. A choice of subcells (Fig. 3.7c and Fig. 3.8c) used for homogenization
is in fact arbitrary and does not influence final numerical results, but proper distinc-
tion between the tetragonal and the hexagonal RUCs (Fig. 3.7 vs. Fig. 3.8) should
follow the true fibers arrangement during composite fabrication in order to properly
estimate mechanical characteristics of the composite which meet the experimental
findings (see Sect. 3.5.3).

3.5.3 Sun and Vaidya Findings for Boron/Al Composite

Inwhat follows let us inspect some results presented in Sun andVaidya [30] for trans-
versely isotropic Boron/Aluminum composite by the use of FEM micromechanics-
based homogenization models when compared to other methods, c.f. Hashin and
Rosen [10], Chamis [6] for various fibers topology (square array vs. hexagonal
array) and some experimental evidence. The isotropic material properties of both
constituents: Boron fiber and Aluminum matrix used by the authors are recalled in
Table3.4.

Key to distinct elastic response of the transversely isotropic (unidirectional) com-
posite of either the tetragonal or the hexagonal symmetry is a number of indepen-
dent material constants. In general case of the composite that exhibits plane isotropy
property of tetragonal type, the averaged composite material is characterized by six
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Table 3.4 Material properties of isotropic constituents of the unidirectional Boron fibers reinforce-
ment in the Aluminum matrix, after Sun and Vaidya [30]

Constituent material E (GPa) ν

Boron fiber 379.3 0.1

Aluminum matrix 68.3 0.3

independent constants: E11, E33, ν21, ν32, G23, andG12. By contrast, in case of plane
isotropy of hexagonal type the number of independent material constants is reduced
to five since the shear modulus in the isotropy plane G23 is coupled with the trans-
verse Young modulus E22 and corresponding Poisson ratio ν23 by the relationship
which holds for isotropic media

G23 = E22

2(1 + ν23)
(3.60)

Let us examine the data given in Table3.5 based on Sun and Vaidya [30] in the light
of above constraint. It is visible that in case of micromechanics-based FEM model
with the hexagonal array used by Sun and Vaidya [30] as well as its simulations by
Hashin and Rosen [10] the transversely isotropic hexagonal symmetry roughly holds
Eq. (3.60). However, when the RUC of tetragonal symmetry (square array) is used
by Sun and Vaidya [30] or Chamis [6] composite exhibits the tetragonal symmetry
property.

Note also that in literature a big scatter of both the material properties of the con-
stituents of the same type (Boron/Al) and results based on different homogenization
methods are met.

Table 3.5 Comparison of selected elastic material modules for the Boron/Al composite, obtained
in various numerical experiments by different authors for the same Boron/Al composite material
(Vf = 0.47), after Sun and Vaidya [30]

Material
constants
of composite
Boron/Al
(Vf = 0.47)

FEM Sun and Vaidya [30] Numerical simulations

Square array Hexagonal array Chamis [6] Hashin and
Rosen [10]

E11 (GPa) 215 215 214 215

E22 = E33 (GPa) 144 136.5 156 139.1

G23 (GPa) 45.9 52.5 43.6 54.6

G12 = G13 (GPa) 57.2 54.0 62.6 53.9

ν32 0.29 0.34 0.31 0.31

ν21 = ν31 0.19 0.19 0.20 0.195
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3.5.4 Interpretation of the Theorem of Lower and Upper
Bounds in the Light of Gan et al. [9] and Aboudi
et al. [1] Findings for Boron/Al Composite

Sun and Vaidya findings presented in Sect. 3.5.3 are limited to the selected volume
fraction (Vf = 0.47). For further analysis it is convenient to discuss Gan et al. [9]
findings concerning the similarBoron/Al long-fiber compositeTable3.6, but obtained
for a complete volume fraction spectrum Vf ∈ [0, 1].

Note large discrepancy between the input data used for numerical experiments by
Sun and Vaidya [30] (Table3.4) and that used by Gan et al. [9] (Table3.6). In numer-
ical experiments based on homogenization methods FEM, GMC and SCMS (see
Sect. 3.5.1) Gan et al. [9] compared various round Boron fiber arrangements in the
RUC: unidirectional random (disordered) disposition, the single fiber centered in the
square cell and the hexagonal symmetry array, but applying the general orthotropy
symmetry group (9 material constants explored), see Fig. 3.1. Results obtained from
numerical experiments FEM, GMC and SCMC (Table3.7) closely resemble data
governed by the transverse symmetry group, but in case of GMC method a higher
divergence is met. Further distinction between the tetragonal or the hexagonal sym-
metry group can be done by checking the condition (3.60). An analysis performed in
Table3.8 leads to the conclusion that the considered composite exhibits the tetragonal
symmetry class when GMC and SCMC homogenization methods are involved since
the condition (3.60) does not hold. By contrast, when the micromechanics-based
FEM was implemented the results obtained satisfy the requirement of the hexagonal
symmetry class (condition (3.60) is satisfied) where only 5 material constants are
essentially independent (see Fig. 3.1 and Eq.3.13 vs. 3.14).

Examine closer the selected Gan et al. [9] findings from numerical experiments
based on the regular hexagonal fibers packing in the Boron/Al composite by the use
of SCMChomogenizationmethod, comparedwith theVoigt and Reussmodels relied
upon the volume fractions of the phases only. Inspection of these results obtained
in numerical experiment for long-fiber-reinforced composite characterized by trans-
versely isotropic tetragonal or hexagonal symmetry performed in light of the Hill
theorem on lower and upper bounds by Voigt and Reuss isotropic estimates will be
subject of further considerations.

Chronologically, Voigt (1889) and Reuss (1929) had proposed estimates for engi-
neering constants E and G in polycrystals a long time before Hill proved famous
theorem on lower and upper bounds for the averaged stiffness matrix [E] or the com-

Table 3.6 Material properties of constituents of the unidirectional Boron/Al composite, after Gan
et al. [9]

Constituent material E (GPa) ν

Boron fiber 413.7 0.2

Aluminum matrix 55.16 0.3
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Table 3.7 Approximation of material constants by orthotropic numerical experiment for unidirec-
tional long-fiber Boron/Al composite with random fibers arrangement in-plane transverse to fibers
beam direction and 30 × 30 number od subcells in the RVE, after Gan et al. [9]

Material constants of
Boron composite/Al
(Vf = 0.5)

Homogenization methods (random arrangement of fibers)

FEM GMC SCMC

E11 (GPa) 234.7 234.7 234.7

E22 (GPa) 138.5 117.9 131.0

E33 (GPa) 137.3 113.1 128.6

G23 (GPa) 54.78 37.78 57.70

G21 (GPa) 60.48 42.94 58.51

G31 (GPa) 60.99 40.53 58.77

ν21 0.2361 0.2446 0.2387

ν31 0.2369 0.2492 0.2405

ν32 0.3078 0.3289 0.3182

Table 3.8 Comparison of the shear modules in the transverse plane obtained from the experiment
by Gan et al. [9] for random unidirectional fibers dispersion in RVE (orthotropy) of Boron/Al
composite with the expected magnitude under the hexagonal-type transverse isotropy constraint
(3.60)

FEM GMC SCMC

G23 (GPa) 54.78 37.78 57.70

G23 = E22
2(1+ν32)

52.7 43.45 49.23

% of divergence −3.9 13.0 −17.2

pliance matrix [E−1] addressed to heterogeneous media (see Hill [13]). Recently,
scientists involved in the composite mechanics field and development of reliable
homogenization methods, commonly employ the Hill theorem originated for multi-
phase media, to estimate numerically the effective stiffness or compliance matrices
for composite materials. Very often they need to find the engineering constants which
are conventional input data for existing FEM-based codes addressed to anisotropic
composites. As a consequence, magnitudes of the Young modules E11, E22, E33 and

the Kirchhoff modules G12, G23, G31 counted from [E] or [E−1] lay inside the Voigt
and the Reuss estimates. Contrary, themagnitudes of Poisson ratios ν12, ν23, ν31, that
may exceed both estimates, even though the Hill theorem on lower and upper bounds

holds for all elements of averaged stiffness [E] or compliance [E−1] matrices. Such
peculiarity occurs although the theorem on Voigt and Reuss estimates is fulfilled, if

consistently applied to all elements of elastic matrices [E] or [E−1], but not to the
engineering constants evaluated from the appropriate formulas. Note that the engi-
neering constants are measured from experiments. Such peculiarity can be observed
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for instance in results for theBoron/Al composites presented byGan et al. [9] Fig. 3.9,
as well as the another Glass/Epoxy composites by Aboudi et al. [1], see Fig. 3.10.

Presented in the Fig. 3.9 Voigt and Reuss’ bounds are obtained in two different
ways. First, the “loose” bounds are obtained by extracting the averaged Poisson
ratios from the appropriate stiffness matrix element, which will be discussed further.
Second, the “tight” bounds are obtained in the way of straightforward use of Voigt
and Reuss’ mixture rules to Poisson ratios of both phases. It is evident that the
exemplary results by Gan et al. [9] obtained by application of SCMCmethod exceed
both “loose” as well as “tight” systems of bounds. Similar behavior is typical also for
another Glass/Epoxy composite system discussed by Aboudi et al. [1], see Fig. 3.10.
The Voigt and the Reuss bounds used here are enriched by other “loose” bounds
of Concentric Cylindrical Assemblage model (CCA+, CCA−) which turn out to be
much broader. Although such a broad bound systems are admitted, the Poisson ratios

Fig. 3.9 Peculiarity
of the Poisson ratio ν23
diagrams for the long-fiber
Boron/Al system, after Gan
et al. [9]

Fig. 3.10 Peculiarity of the
Poisson ratio ν23 diagrams
for the long-fiber
Glass/Epoxy composite,
system after Aboudi et al. [1]
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ν23 obtained by use of the Mori–Tanaka method (MT), the Micromechanics-based
Method of Cells (MMC) and the Self Consistent Scheme (SCS) exceed these bounds.

Note that in both cases the “loose” Voigt and Reuss bounds are shown by two
curved diagrams versus Vf in Figs. 3.9 and 3.10, although the Voigt estimate is in
fact linear (from definition). It can be understood when the mixture rules, Voigt and
Reuss’, are consistently applied to the stiffness modulus of E r/m

11 both phases, matrix
and fiber reinforcement

Em/r
11

def= Em/r(1 − νm/r)

(1 + νm/r)(1 − 2νm/r)
(3.61)

namely
VE11 = Em

11(1 − Vr) + E r
11Vr

1
RE11

= (1 − Vr)

Em
11

+ Vr

E r
11

(3.62)

Bars in Eq. (3.62) over the symbol refer to the composite as a whole, superscripts
V and R refer to the Voigt and Reuss’ estimates whereas symbols m/r refer to the
constituents (matrix and fiber reinforcement). Symbols V/RE11 are given by the
following formulas

VE11 =
VE(1 − Vν)

(1 + Vν)(1 − 2 Vν)

RE11 =
RE(1 − Rν)

(1 + Rν)(1 − 2 Rν)

(3.63)

Solution of the above equation system (3.63) for the magnitudes of averaged Poisson
ratio ν with the Young modules VE , RE averaged straightforwardly by the use of
appropriate mixture rules for Voigt and Reuss’ estimates

VE(Vf) = Em(1 − Vf) + E rVf
1

RE(Vf)
= 1 − Vf

Em + Vf

E r
(3.64)

yields the following formula for the “loose” Poisson ratio bounds

V/Rν =

√√√√
(
1 −

V/RE11

V/RE

)2
− 8

(
1 −

V/RE11

V/RE

)
V/RE11

V/RE
+ 1 −

V/RE11

V/RE

4
V/RE11

V/RE

(3.65)

Alternatively, applying the Voigt or the Reuss mixture rules directly to the Poisson
ratios of both phases, matrix νm and fiber νr other two “tight” Poisson ratio bounds
are found
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Vν = νm(1 − Vf) + νrVf
1
Rν

= 1 − Vf

νm
+ Vf

νr
(3.66)

where the “tight” Voigt bound preserves linearity.
Concluding, both “loose” bounding diagrams in Figs. 3.9 and 3.10 exhibit non-

linear property since the magnitudes of Poisson ratios were obtained in an artificial
paths: either by extracting them from Eq. (3.63) or by straightforward application of
themixture rules to engineering Poisson ratios for which linear “tight” Voigt estimate
is saved (3.66).

Finally, when the Hill theorem of lower and upper bounds is consistently applied
to the elements of elastic stiffness or compliance matrices then and only then all
effective matrix elements of a composite considered lay inside the lower and upper
bounds or atmost at one of the bounds. In fact, if the results byGan et al. [9], originally
presented in terms of the engineering anisotropic constants E11, E22, G23, G12, ν12
and ν23 are consistently transformed to the space of elements of compliance matrix

E
−1
11 , E

−1
33 , E

−1
12 , E

−1
23 , E

−1
44 , E

−1
55 , the results obtained by use of the SCMC method

follow the Hill theorem upper and lower bounds as shown in Fig. 3.11.

3.5.5 Approximation of Mechanical Modules of Long-Fiber
Unidirectionally Reinforced Composites by the Use
of a Hybrid Rule Between Voigt and Reuss Estimates

Mention at the beginning that classical mixture rules by Voigt (3.171) and Reuss
(3.172) apply a random dispersion of composite constituents over RVE. It is obvious
that theVoigt and theReuss estimates converge at appropriatemagnitudes ofmodules
of matrix and reinforcement for volume fraction Vf = 0 or Vf = 1, respectively. This
question should be carefully considered in light of fabrication procedure. Namely,
assuming identical fibers of circular cross-section regularly packed over the RUC
either according to square or hexagonal arrayswe arrive at twodifferentmaximal fiber
packing limits Vfmax, see Fig. 3.12. It is seen thatmaximal fiber packing for the square
array V sq

fmax
∼= 78.5% is much lower than analogous maximal fiber packing for the

hexagonal array V hex
fmax

∼= 90.7%.Evenhighermaximalfiber packing canbe achieved
by using fibers of either various diameters or noncircular cross-section (square cross-
section fibers or honey-comb cross-section fibers joined by thinmatrix layers).Hence,
the homogenization results according toVoigt or Reuss for surroundings Vf ∼= 1 have
only theoretical sense. Analogous objections can be formulated to homogenization
results for surroundings Vf ∼= 0 where there is difficult to talk about a composite.

Consider now in detail results by Gan et al. [9]. In what follows in order to for-
mulate a weighted homogenization rule based on a tensorial interpolation between
lower and upper bounds it will bemore convenient to consistently formulate theVoigt
and Reuss estimates in application to stiffness or compliance matrix components but
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.11 Interpretation of the Gan et al. [9] results in the space of elements of effective compliance

matrix [E−1] obtained on the base of diagrams of engineering constants of the Boron/Al composite
in light of theorem of upper and lower bounds by the Voigt and Reuss estimates
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(a)

(b)

Fig. 3.12 Illustration of maximal fiber packing for identical fibers of circular cross-section in case
of: a square array, b hexagonal array

not to the engineering constants (what is commonly done). The weighted homog-
enization rule allows to formulate the approximate method to estimate elements of
effective elasticitymatrices (stiffness or compliance) by the use of the values of lower
and upper bounds and performing interpolation between them with the use of new
tensor-like rule of mixture (a hybrid formulation). In this way it will be possible to
build diagrams for all orthotropic matrix components [E−1] in the full range of vol-
ume fraction Vf ∈ [0, 1] assuming coincidence with known experimentally obtained
matrix [expE−1] for one arbitrarily chosen volume fraction V 0

f . Additionally, coin-
cidence with known matrices of pure constituents: Vf = 0 for matrix material and
Vf = 1 for fiber material must hold.

Let us rewrite the scalar Voigt and Reuss formulas (3.17) into matrix Voigt and
Reuss formulas, respectively to stiffness or compliance matrices

V[E] = c1[rE] + c2[mE] (3.67)

or
R[E−1] = c1[rE−1] + c2[mE−1] (3.68)

where common fractional concentrations by volume of the phases according Voigt
and Reuss’ rules c1 = Vf and c2 = 1 − Vf as previously shown for uniaxial models
(3.24), see Aboudi et al. [1]. This simplification means that orientation of reinforce-
ment is ignored, such that fractional concentrations depend on volume fraction Vf
only. Symbols [r/mE] and [r/mE−1] stand for elements of stiffness or compliance
matrices for reinforcing fiber or matrix, respectively. As a matter of fact c1 and c2
must account for both volume fraction and reinforcement orientation, therefore for
determination of them advanced homogenization schemes are required (e.g., FEM,
GMC, SCMC, CCM and others).
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In what follows a simple rule of weighted average between, the Voigt and the
Reuss upper and lower estimates is proposed. Such approach is based on tensorial
interpolation between upper and lower estimates which enables to avoid application
of numerous cumbersome homogenization methods, for instance micromechanics-
based FEM, GMC, SCMC, CCM etc.

To this end, we define weighting vector αk built of weighting coefficients for
subsequent elements of stiffness or compliance matrices. For brevity we confine
ourselves to the compliance matrix only. Hence, the proposed hybrid or weighting
homogenization rule takes the following format

E
−1

11 (Vf) = αV
1 E

−1
11 (Vf) + (1 − α1)

RE
−1
11 (Vf)

E
−1

22 (Vf) = αV
2 E

−1
22 (Vf) + (1 − α2)

RE
−1
22 (Vf)

E
−1

33 (Vf) = αV
3 E

−1
33 (Vf) + (1 − α3)

RE
−1
33 (Vf)

E
−1

23 (Vf) = αV
4 E

−1
23 (Vf) + (1 − α4)

RE
−1
23 (Vf)

E
−1

13 (Vf) = αV
5 E

−1
13 (Vf) + (1 − α5)

RE
−1
13 (Vf)

E
−1

12 (Vf) = αV
6 E

−1
12 (Vf) + (1 − α6)

RE
−1
12 (Vf)

E
−1

44 (Vf) = αV
7 E

−1
44 (Vf) + (1 − α7)

RE
−1
44 (Vf)

E
−1

55 (Vf) = αV
8 E

−1
55 (Vf) + (1 − α8)

RE
−1
55 (Vf)

E
−1

66 (Vf) = αV
9 E

−1
66 (Vf) + (1 − α9)

RE
−1
66 (Vf)

(3.69)

Additionally, independence of theweighting coefficientsαk of the volume fraction Vf
over the whole range of Vf ∈ [0, 1] is assumed. This assumption refers to definition
of convex set of two vectors. If the magnitudes of stiffness or compliance elements
are known at certain point Vf = V 0

f

[E−1
(V 0

f )] = [expE−1(V 0
f )] (3.70)

then it is possible to determine unknown vector of weighting coefficients αk for the
compliance. Applying these coefficients over the whole range of volume fraction
Vf ∈ [0, 1] the sought elements of compliance matrix can be determined.

3.5.6 Capability of the Proposed Hybrid-Type Rule Versus
Experimental Evidence in Light of Fiber Array
Symmetry: Tetragonal or Hexagonal

The weighting average homogenization rules defined in the previous Sect. 3.5.5 by
Eqs. (3.69) are rather simple and effective ones that allow to easily predict unknown
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Table 3.9 Values of weight coefficients according to compliance matrix components for Voigt and
Reuss’ homogenization and SCMC [9]

[E−1] Interpolation points αk

[VE−1] × 10−2 (GPa−1) [RE−1] × 10−2 (GPa−1) [SCMC
E

−1] × 10−2 (GPa−1)

E−1
11 1.01 0.42 0.909 0.833

E−1
22 1.01 0.42 0.909 0.833

E−1
33 1.01 0.42 0.463 0.075

E−1
23 −0.29 −0.09 −0.116 0.142

E−1
13 −0.29 −0.09 −0.116 0.142

E−1
12 −0.29 −0.09 −0.300 1.050

E−1
44 2.59 1.01 2.130 0.707

E−1
55 2.59 1.01 2.268 0.794

E−1
66 2.59 1.01 2.130 0.707

constitutive modules of the composite system over the whole range of the volume
fraction Vf ∈ [0, 1] providing that they are known for one V 0

f . Efficiency of this
method is tested by the use of the results of numerical simulation by SCMS homog-
enization method [9]. To this end nine weighting coefficients αk for the orthotropic
Boron/Al composite are calculated by interpolation between Voigt and Reuss’ esti-
mates shown in Fig. 3.13.Magnitudes of theweighting coefficientsαk are established
at the point V 0

f = 0.513 by comparison with the homogenization results SCMC by
Gan et al. [9]. Obviously the weighting homogenization rulemust give correct results
at the end points Vf = 0 and Vf = 1. Calculated weighting coefficients and set of
predictions V

E
−1, RE−1, SCMC

E
−1 for nine elements of compliance matrix are pre-

sented in Table3.9. The results of the weighting homogenization rule are verified
with the results given by Gan et al. [9] based on SCMC method, that fully confirm
the assumption that weighting coefficients αk can be treated as universal ones for
the composite tested over the full range of volume fraction as shown by curves of
weight rule • versus SCMC homogenization �.

3.5.7 Interpretation of Results Obtained by Weighting
Homogenization in Terms of Engineering Constants

Nevertheless the formulated in previous subsection “hybrid” mixture rules based on
weighting interpolation between Voigt and Reuss’ estimates have to be formulated
in the space of elements of elasticity matrix (compliance or stiffness), where Hill
theorem of lower and upper estimates by Voigt and Reuss holds, it is usually neces-
sary to express the results in terms of engineering orthotropy constants. The reason
for such representation results from usually applied homogenization techniques to
engineering constants, but not to elasticity elements. This system of engineering
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Fig. 3.13 Comparison of SCMC [9], Voigt, Reuss and proposed hybrid rule according to compli-
ance matrix coefficients
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constants is dominant in the subject literature, see Aboudi et al. [1], Gan et al. [9],
Sun and Vaidya [30], and others.

To this end the engineering constants have to be extracted either from the com-
pliance

E11 = 1/E
−1

11 E22 = 1/E
−1

22 E33 = 1/E
−1

11

G44 = 1/E
−1

44 G55 = 1/E
−1

55 G66 = 1/E
−1

66

ν12 = −E
−1

12 /E
−1

11 ν13 = −E
−1

13 /E
−1

11 ν23 = −E
−1

23 /E
−1

22

(3.71)

or the stiffness

E11 = 2E12E13E23 + E11E22E33 − E33E
2

12 − E11E
2

23 − E22E
2

13

E22E33 − E
2

23

E22 = 2E12E13E23 + E11E22E33 − E33E
2

12 − E11E
2

23 − E22E
2

13

E11E33 − E
2

13

E33 = 2E12E13E23 + E11E22E33 − E33E
2

12 − E11E
2

23 − E22E
2

13

E11E22 − E
2

12

G44 = E44 G55 = E55 G66 = E66

ν12 = E12E33 − E13E23

E22E33 − E
2

23

ν13 = E13E22 − E12E23

E22E33 − E
2

23

ν23 = E23E11 − E13E12

E11E33 − E
2

13

(3.72)

matrices.
In what follows the conversion of results shown in the previous section given

in the elasticity modules space, to the system of engineering orthotropic constants
is done preserving previously used assumption of the transversely isotropic hexag-
onal symmetry. The comparison of engineering orthotropic constants is presented
in Fig. 3.14. The figure contains only four plots, because the transversely isotropic
hexagonal symmetry assumption has been proven and Poisson’s ratios are not dis-
cussed. Young and Kirchhoff modules obtained from proposed weighting rule (3.69)
coincide with the Gan et al. [9] results.
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Fig. 3.14 Comparisonof SCMC[9],Voigt,Reuss’ andproposedhybrid estimates in the engineering
orthotropic constants domain
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