
Chapter 2
Constitutive Equations for Isotropic
and Anisotropic Linear Viscoelastic
Materials

Jacek J. Skrzypek and Artur W. Ganczarski

Abstract In case of isotropic material symmetry, the elastic-viscoelastic
correspondence principle is well established to provide the solution of linear vis-
coelasticity from the coupled fictitious elastic problem by use of the inverse Laplace
transformation (Alfrey–Hoff’s analogy). Aim of this chapter is to show useful
enhancement of the Alfrey–Hoff’s analogy to a broader class of material anisotropy
for which separation of the volumetric and the shape change effects from total vis-
coelastic deformation does not occur. Such extension requires use of the vector–
matrix notation to description of the general constitutive response of anisotropic
linear viscoelastic material (see Pobiedria Izd. Mosk. Univ., (1984) [10]). When
implemented to the composite materials which exhibit linear viscoelastic response,
the classically used homogenization techniques for averaged elastic matrix, can be
implemented to viscoelastic work-regime for associated fictitious elastic Represen-
tative Unit Cell of composite material. Next, subsequent application of the inverse
Laplace transformation (cf. Haasemann and Ulbricht Technische Mechanik, 30(1–
3), 122–135 (2010)) is applied. In a similar fashion, the well-established upper and
lower bounds for effective elastic matrices can also be extended to anisotropic linear
viscoelastic composite materials. The Laplace transformation is also a convenient
tool for creep analysis of anisotropic composites that requires, however, limitation
to the narrower class of linear viscoelastic materials. In the space of transformed
variable s, instead of time space t , the classical homogenization rules for fictitious
elastic composite materials can be applied. For the above reasons in what follows, we
shall confine ourselves to the linear viscoelastic materials, isotropic, or anisotropic.
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2.1 Selected Uniaxial Models of the Isotropic
Linear Viscoelastic Materials

Creep phenomena at elevated temperature are usually treated as nonlinear creep phe-
nomenon problems. There exists broad literature in the field of nonlinear creep, for
example, creep anisotropy Findley et al. [4], survey on constitutive models of non-
linear creep Skrzypek [13], Betten [2], interaction creep and plasticity Krempl [6],
coupling of creep and damage Skrzypek [14], Skrzypek and Ganczarski [15], creep
fatigue damage Murakami [7], and nonconventional creep models of anisotropic
material Altenbach [1] and others.

At the beginning, we confine to the commonly used uniaxial isotropic linear vis-
coelastic models for which a general differential equation models may be written as

p0σ + p1σ̇ + p2σ̈ + · · · pa
∂aσ

∂ta
= q0ε + q1ε̇ + · · · pb

∂bε

∂tb
(2.1)

where p0, p1, . . . , q0, q1, . . . denote material constants, and constitutive equation
is a linear function of the stress σ, strain ε, and their time derivatives σ̇, σ̈, etc.,
and ε̇, ε̈, etc. In such a case by the use of the Laplace transformation L { f (t)} =
̂f (s) =

∞
∫

0
e−stdt , a linear viscoelastic problem can be reduced to associated fictitious

elastic problem in terms of the transformed variable s, σ̂i j (x, s), then the viscoelastic
problemσi j (x, t) is obtained by the inverseLaplace transformation. Symbol { } stands
here for function argument of the Laplace transformation and should not be confused
with the Voigt vector notation.

2.1.1 Maxwell Model

The uniaxial Maxwell model (M) consists of a linear elastic spring εH = σ/E
and a linear viscous dashpot element ε̇η = σ/η connected in a series, Fig. 2.1.
Differentiation of the first formula with time yields ε̇H = σ̇/E . When the additive

Fig. 2.1 Maxwell’s
material: a mechanical
model, b creep curve under
constant loading

(a) (b)
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decomposition of the strain or the stain rate ε̇ = ε̇H+ε̇η is used, we arrive at equation
of the Maxwell model, hence

ε̇ = σ̇

E
+ σ

η
or σ + η

E
σ̇ = ηε̇ (2.2)

When the integration of above equation at constant stress σ = σ1 = const (σ̇ = 0)
and initial condition ε(0) = σ1/E is performed, we arrive at the creep function given
as, see Fig. 2.1b

ε = σ1

(

1

E
+ 1

η
t

)

(2.3)

or

ε = σ1 JM(t), JM(t) = 1

E
+ t

η
(2.4)

The time function JM(t) is the creep compliance function of the Maxwell model.

2.1.2 Voigt–Kelvin Model

TheVoigt–Kelvin model (V–K) consists of a linear spring element and a linear dashpot
element which are connected in parallel as shown in Fig. 2.2a. Adopting the additive
separation of stress into two parts applied to the spring σH = Eε and to the dashpot
ση = ηε̇ with ε = εH = εη , the differential equation of the V–K model takes the
form

ε̇ + E

η
ε = σ

η
(2.5)

If a constant stress σ = σ1 = const (σ̇ = 0) is applied to the V–K model, we arrive
at nonhomogeneous differential equation

ε̇ + E

η
ε = σ1

η
(2.6)

Fig. 2.2 Voigt–Kelvin
model: a mechanical
scheme, b creep strain at
constant stress input

(a) (b)
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The homogeneous equation of (2.6) is an equation of separate variables

ε̇

ε
= − E

η
(2.7)

the general integral of which is given by

ε = C exp

(

− E

η
t

)

(2.8)

When variation of integration constant C(t) with initial condition ε(0) = 0 is done
we arrive at the solution of (2.6)

ε = σ1

E

[

1 − exp

(

− E

η
t

)]

(2.9)

or

ε = σ1 JVK(t), JVK(t) = 1

E

[

1 − exp

(

− E

η
t

)]

(2.10)

Function JVK(t) is the creep compliance function of the V–K model. Note that V–K
model does not account for instantaneous elasticity, hence JVK(0) = 0, see Fig. 2.2b.

When the more general case of a time function σ(t) is applied and variation of
constant C(t) is done in (2.8) we arrive at the differential equation for C(t)

Ċ(t) = 1

η
exp

(

E

η
t

)

σ(t) (2.11)

the general integral of which is expressed in form

C(t) = C1 + 1

η

t
∫

0

exp

(

E

η
ξ

)

σ(ξ)dξ (2.12)

Substitution of (2.12) to (2.8) with the initial condition ε(0) = 0 yields C1 = 0, such
that the following general solution for ε(t) holds

ε(t) = 1

η
exp

(

− E

η
t

) t
∫

0
exp

(

E

η
ξ

)

σ(ξ)dξ

= 1
η

t
∫

0
exp

[

− E

η
(t − ξ)

]

σ(ξ)dξ
(2.13)
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When integration by parts is applied to (2.13), we arrive at so-called integral
representation of the V–K model

ε(t) = σ(t)

E
− 1

E

t
∫

0

exp

[

− E

η
(t − ξ)

]

σ̇(ξ)dξ (2.14)

in which it is clearly seen that the creep function JVK(t) has two terms: independent

of time J0 = 1/E and dependent on time ϕ(t) = 1
E exp

[

− E
η (t − ξ)

]

.

Analogous solution may be reached by use of the Laplace transform method
(2.48). In order to do this the nonhomogeneous V–K equation (2.5) is multiplied
both-side by e−st and integrated with respect to variable t in range from 0 to ∞

∞
∫

0

ε̇(t)e−stdt + E

η

∞
∫

0

ε(t)e−stdt =
∞
∫

0

σ(t)

η
e−stdt (2.15)

Consequently, the algebraic equation of the transformed variable s is obtained

sε̂(s) − ε(0) + E

η
ε̂(s) = σ̂(s)

η
(2.16)

When the initial condition ε(0) = 0 is used, the solution of (2.16) with respect of
transformed variable ε̂(s) is given as the following

ε̂(s) = 1

s + E
η

σ̂(s) (2.17)

Applying next the inverse Laplace transform and taking advantage of property that
multiplication of two transforms in fictitious domain of variable s corresponds to the
convolution of two functions in real time space t , we arrive at the solution of linear
viscoelastic problem

ε(t) = 1

η

t
∫

0

exp

[

− E

η
(t − ξ)

]

σ(ξ)dξ (2.18)

identical to (2.13).
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2.1.3 Standard Model

The Maxwell and the Voigt–Kelvin two-element uniaxial models described in the
Sects. 2.1.1 and 2.1.2 are very simple, although they exhibit strong limitations. The
linear creep function at constant stress input corresponding to the Maxwell model
does not confirm experiments, whereas the Voigt–Kelvinmodel is not capable to cap-
ture the instantaneous elastic strain effect. Trying to overcome the above objections,
the commonly used three-parameter standard model is composed of two parts, a
spring element (E) and the V–K unit (E1, η) connected in a series as shown in
Fig. 2.3a.

The differential equation of the standardmodel can be derived in an analogousway
as for the Maxwell and the Voigt–Kelvin simple models, such that after necessary
rearrangement used, the following is obtained

ηE

E1 + E
ε̇ + E1E

E1 + E
ε = σ + η

E1 + E
σ̇ (2.19)

The simple creep function, when the standard model is subjected to a step function
σ = σ1 = const (σ̇ = 0) and integrated with the initial condition ε(0) = σ1/E
used, takes one of two equivalent forms

ε = σ1

E

[(

1 + E

E1

)

− E

E1
exp

(

− E1

η
t

)]

(2.20)

or

ε = σ1 J s(t), J s(t) = 1

E

[(

1 + E

E1

)

− E

E1
exp

(

− E1

η
t

)]

(2.21)

if the time-dependent creep compliance function characterizing the standard model
J s(t) is used. Note the horizontal asymptote of ε(t) curve as shown in Fig. 2.3b with
the new definition used: 1/H = 1/E + 1/E1.

(a) (b)

Fig. 2.3 The standard model: a mechanical scheme, b creep at constant stress input with
instantaneous elastic strain built-in
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2.1.4 Burgers Model

Although the standard model is free from aforementioned inconvenience of the
Maxwell and the Voigt–Kelvin models, it still exhibits a horizontal asymptote (strain
stabilization) when t → ∞, which usually is not true; since according to experi-
mental findings, the creep strain shows rather the infinite increase with time. In order
to control such behaviors, a more complex four-parameter Burgers model which
consists of two simple units, the Maxwell unit (E1, η1), and the Voigt–Kelvin unit
(E2, η2) coupled in a series can be used, as presented in Fig. 2.4a. The differential
constitutive equation of Burgers’ model may be written in the format

η1η2

E2
ε̈ + η1ε̇ = η1η2

E1E2
σ̈ +

(

η1

E1
+ η1

E2
+ η2

E2

)

σ̇ + σ (2.22)

Note that the above equation is the second-order linear differential equation with
respect to strain and stress but of constant coefficients being functions of four para-
meters E1, E2, η1 and η2. It means that all strain and stress functions and their time
derivatives are the linear functions, whereas the coefficients in Eq. (2.22) are con-
stants: two Young’s modules E1, E2 and two viscosity parameters η1, η2.

When the Burgers model is loaded by a step stress input applied at t = 0 the
integration of Eq. (2.22), with two initial conditions ε(0) = σ1/E , ε̇(0) = σ1/η1 +
σ1/η2 used, leads to one of equivalent relationships

ε = σ1

E1

{

1 + E1

η1
t + E1

E2

[

1 − exp

(

− E2

η2
t

)]}

(2.23)

or

ε = σ1 JB(t), JB(t) = 1

E1

{

1 + E1

η1
t + E1

E2

[

1 − exp

(

− E2

η2
t

)]}

(2.24)

where the creep compliance function characterizing the Burgers model compliance
function JB(t) is applied.

(a) (b)

Fig. 2.4 The Burgers model: a the mechanical scheme, b the simple creep curve at constant stress
input applied at t = 0
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Note that the creep curve described by the Burgers model exhibits a skewed
asymptote which corresponds to the unlimited strain increase with decreasing strain
rate, which better fits the experimental findings, see Fig. 2.4b.

2.1.5 Creep Compliance and Relaxation Behavior
of the Selected Linear Viscoelastic Models

More complex models of linear viscoelastic materials consisting of one Hooke’s
element and n Voigt–Kelvin’s units coupled in a series or one Hooke’s element and
n Maxwell’s units coupled in parallel are analyzed by Betten [2].

Consider now stress relaxation of simple uniaxial linear viscoelastic models dis-
cussed in Sects. 2.1.1–2.1.4, subject to a constant strain ε1 at t = 0, from the initial
stress level σ1 = Eε1.

In case of the Maxwell model, the stress relaxation from the initial level σ1 at
t = 0 to t → ∞ is described as follows

σ(t) = σ1 exp

(

− Et

η

)

(2.25)

Note that the rate of stress decrease changes from the initial σ̇(0) = −σ1E/η to zero,
σ̇(∞) = 0. The so-called relaxation time tr = η/E corresponds to the fictitious case
if the stress decreases continuously at the initial rate and finally it would reach zero
at t = tr.

The Voigt–Kelvin model does not exhibit stress relaxation effect. In this singular
case application of the constant strain input, ε = ε1 at t = 0 can be achieved only
by an infinite initial stress response σ(0) → ∞, such that the following holds

σ(t) = ηε1δ(t) + Eε1H(t) (2.26)

where the term containing the Heaviside unit function H(t) describing the constant
stress in the spring, followed by the infinite stress input in dashpot described by the
δ-Dirac function, appears.

The standard model is free from the above singularity and if it is subject to a
constant strain at t = 0, the stress continuously decreases from the initial level
Eε1(t = 0) to the asymptotically approached value Hε1(t → ∞) such that stress
relaxation function of the standard model is written as

σ(t) = Eε1

[

H

E
+
(

1 − H

E

)

exp

(

− t

n

)]

(2.27)

where the definitions hold:
1

H
= 1

E
+ 1

E1
and n = η

E + E1
.
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Table 2.1 Properties of Maxwell, Voigt–Kelvin, standard and Burgers viscoelastic units, after
Skrzypek [13]

Model Creep compliance function J (t)

Maxwell
1

E

(

1 + E

η
t

)

V–K
1

E

(

1 − e− E
η t
)

Standard
1

E

(

1 + E

E1
− E

E1
e− E1

η t
)

Burgers
1

E1

[

1 + E1

η1
t + E1

E2

(

1 − e
− E2

η2
t
)]

Model Relaxation modulus E(t)

Maxwell Ee− E
η t

V–K E
[

1 + η
E δ(t)

]

Standard E

(

E1

E1 + E
+ E

E1 + E
e− E1+E

η t
)

Burgers
(q1 − q2r1)e−r1t − (q1 − q2r2)e−r2t

A

If the Burgers model is subject to a constant strain ε = ε1 at t = 0, a continu-
ous stress relaxation is described by the combination of two exponential functions
exp(−r1t) and exp(−r2t) (cf. Table2.1), where after Findley et al. [4] the new defi-
nitions are used

p1 = η1

E1
+ η1

E2
+ η2

E2
p2 = η1η2

E1E2
q1 = η1

q2 = η1η2

E2
r1,2 = p1 ∓ A

2p2
A =

√

p21 − 4p2
(2.28)

2.2 The Uniaxial Boltzmann Superposition Principle
of the Isotropic Linear Viscoelastic Materials

2.2.1 Bending of a Beam Subject to Stationary Load

Summarizing the results of previous subsection, response of the arbitrary linear
viscoelastic material at step stress input σ = σ1 = const can be written as follows

ε(x, t) = εe(x)EJ(t) (2.29)
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In other words, strain at the arbitrary material point, being a function of the space
x and time t variables, can be presented as a product of the instantaneous elastic
strain εe(x) depending on x only and the creep compliance function J (t) specifically
chosen for given material model dependent on time t only. In the light of comments
presented in Sect. 2.1.5, Eq. (2.29) does not apply to the Voigt–Kelvin model in a
straightforward manner. The V–K model does not comprise the initial elastic strain.

In particular, a deflection of beam made of the linear viscoelastic material
wve(x, t) at constant loading can be presented as the product of the elastic deflection
we(x) and the dimensionless creep compliance function EJ(t) as follows

wve (x, t) = we (x) EJ (t) (2.30)

For creep compliance functions shown in Table2.1, we arrive at

wM (x, t) = we (x)

(

1 + E

η
t

)

wVK (x, t) = we (x)

[

1 − exp

(

− E

η
t

)]

ws (x, t) = we (x)

[

1 + E

E1
− E

E1
exp

(

− E1

η
t

)]

wB (x, t) = we (x)

{

1 + E1

η1
t + E1

E2

[

1 − exp

(

− E2

η2
t

)]}

(2.31)

The aforementioned relationships hold for all linear viscoelastic models discussed
even though V–K model does not exhibit instantaneous response. This comment
holds for all linear viscoelastic models that do not have free elastic spring.

2.2.2 Bending with Tension of a Beam Subject
to Nonstationary Load

Consider a prismatic beam of doubly symmetric cross-section subject to the axial
force and the bending moment being both functions of coordinate x and time t :
N = N (x, t), M = M(x, t). Assume also that both external forces N and M can be
expressed as products of function dependent of x co-ordinate N = N (x) or M(x) and
one common time function f (t): N (x, t) = N (x) f (t) and M(x, t) = M(x) f (t).
Supposing for simplicity that viscoelastic deformation fulfils theBernoulli hypothesis
of straight and normal segments ε(x, z, t) = λ(x, t) + zκ(x, t), it is possible to
separate Eq. (2.29) into the viscoelastic axial elongation λve and the viscoelastic
curvature κve
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λve (x, t) = N (x)

A

t
∫

0
J (t − ξ)

∂ f (ξ)

∂ξ
dξ

κve (x, t) = M (x)

I

t
∫

0
J (t − ξ)

∂ f (ξ)

∂ξ
dξ

(2.32)

In a particular case, if both generalized forces are applied instantaneously at t = 0:
N (x, t) = N (x)H(t) and M(x, t) = M(x)H(t), remembering that δ-Dirac function
is defined as δ(t) = Ḣ(t) and applying (see Byron and Fuller [3])

t
∫

0

J (t − ξ)δ(ξ)dξ =
t
∫

0

J (ξ)δ(t − ξ)dξ = J (t) (2.33)

we finally obtain equations for viscoelastic elongation λve(x, t) and curvature
κve(x, t) in a form

λve (x, t) = N (x)

E A
J (t)

κve (x, t) = −w′′ (x, t) = M (x)

EI
J (t)

(2.34)

Hence, the axial elongation of the linear viscoelastic beam λve is a product of instan-
taneous (elastic) elongation and the creep compliance function. Analogously, the
curvature of the linear viscoelastic beam κve is a product of instantaneous curvature
and creep compliance function J (t). For simplicity, the conventional beam theory is
adopted here.

2.2.3 Integral Representation of Creep and Relaxation
Functions in Case of Arbitrary Loading History

A general differential equation of uniaxial linear viscoelastic models can be written
as follows:

p0σ + p1σ̇ + p2σ̈ + · · · = q0ε + q1ε̇ + q2ε̈ + · · · (2.35)

where the constant pi , qi are coefficients of the linear arbitrary order differential
constitutive equation, see Eq. (2.1). Order of Eq. (2.35) is equal to number of viscous
elements (dashpots) appearing in the mechanical model. A compact operator format
can be used instead of Eq. (2.35)

Pσ(t) = Qε(t) (2.36)
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where P and Q stand for linear differential operators with respect to time acting on
stress σ(t) and strain ε(t), respectively

P = p0 + p1
∂

∂t
+ p2

∂2

∂t2
+ · · ·

Q = q0 + q1
∂

∂t
+ q2

∂2

∂t2
+ · · ·

(2.37)

It is clear that the linear elastic (Hooke’s) material is a particular case of linear
viscoelastic material in equation of which all time derivatives disappear, whereas
q0/p0 = E .

Note that differential operators P and Q are linear with respect to all derivatives,
hence the operator format of Eq. (2.36) can formally be treated as an algebraic equa-
tion as follows

σ(t)

ε(t)
= Eve(t) Eve(t) = Q(t)

P(t)
(2.38)

The rational operator Eve(t) used in Eq. (2.38) plays a role of the time-dependent
stiffness operator. As a consequence by contrast to elasticity a fraction σ(t)/ε(t) is
not constant but depends on time. Hence, Eq. (2.38) should be read in a symbolic
way as follows

Q(t)

P(t)
↗↘ σ(t)

ε(t)
(2.39)

Class of the linear viscoelastic materials is a subclass of the nonlinear
viscoelastic materials; however, the Boltzmann superposition principle holds for
the linear viscoelastic materials only. The superposition principle states that resul-
tant response of the system ε(t) under the “sum” of causes is equal to the “sum”
of responses corresponding to causes acting separately. In particular if stress σ1 is
applied at time ξ1 and, then, stress σ2 is applied at time ξ2, the resultant strain ε(t) at
any time t > ξ2 is represented as the sum of the strains resulting from both stresses
considered as though each were acting separately

ε [σ1 (t − ξ1) + σ2 (t − ξ2)] = ε [σ1 (t − ξ1)] + ε [σ2 (t − ξ2)] (2.40)

In case of arbitrary loading history, stress σ(t) can be approximated by a sum of
n stress inputs Δσi , hence from the Boltzmann principle the strain output holds

ε(t) =
n
∑

i=1

εi (t − ξi ) =
n
∑

i=1

J (t − ξi )Δσi (2.41)
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If the time step tends to zero, we arrive at the integral form of uniaxial creep strain
for the linear viscoelastic material

ε(t) =
t
∫

0

J (t − ξ)
∂σ(ξ)

∂ξ
dξ =

t
∫

0

J (t − ξ)σ̇(ξ)dξ (2.42)

If the analogous reasoning is applied to the arbitrary strain history (kinematic
control), we arrive at the integral form of the uniaxial stress relaxation for the linear
viscoelastic material

σ(t) =
t
∫

0

E(t − ξ)
∂ε(ξ)

∂ξ
dξ =

t
∫

0

E(t − ξ)ε̇(ξ)dξ (2.43)

In above integral equations, J (t − ξ) and E(t − ξ) denote the creep function and the
relaxation function of the material considered, respectively. In practical applications,
the alternative forms to (2.42) or (2.43) are more convenient

ε(t) = J0σ(t) +
t
∫

0

ϕ(t − ξ)σ̇(ξ)dξ (2.44)

or

σ(t) = E0ε(t) −
t
∫

0

ψ(t − ξ)ε̇(ξ)dξ (2.45)

where separation of the instantaneous and time-dependent outputs are distinguished.
The general integral forms (2.42) or (2.43) do not comprise explicitly initial con-
ditions, whereas in the forms (2.44) or (2.45) J0 or E0 denote initial value of
creep or relaxation functions (at t = 0) whereas time functions ϕ(t − ξ) or
ψ(t − ξ) denote time-dependent parts of creep or relaxation functions. Note that
in Eqs. (2.44) and (2.45) symbol ξ denotes time when the stress or the strain inputs
are imposed, whereas t denotes the observation time when strain response ε(t) or
stress response σ(t) are measured. This approach can be identified as the linear
hereditary model where kernel function depends on time interval t − ξ by contrast
to the nonlinear hereditary models where kernel functions depend on t, ξ separately,
cf. Rabotnov [11].
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2.3 Multiaxial Isotropic Linear Viscoelastic Materials

In what follows, we briefly summarize the fundamentals of the linear viscoelasticity
in case of material isotropy. This will serve as the starting point for further extension
of isotropic to anisotropic linear viscoelastic equations. Such extension will further
be used as convenient tool for analysis of anisotropic viscoelastic composites.

2.3.1 Differential Representation Under a Multiaxial
Stress State

In case of isotropic linear viscoelastic materials under the multiaxial states of stress
and strain, it is convenient to separate volumetric effect from the shape change effect.
Similar to elasticity, such separation is possible only in case of material isotropy (see
Sect. 1.4.8).

Direct extension of linear isotropic viscoelastic constitutive equations (2.36) and
(2.37) to the multiaxial states takes the form

P1si j (t) = Q1ei j (t)
P2σkk (t) = Q2εkk (t)

(2.46)

where P1,Q1,P2, and Q2 are the linear differential operators applicable to the sepa-
rable shape change and the volume change effects. In the explicit format, equations
(2.46) can be rewritten as

(

p′
0 + p′

1
∂

∂t
+ p′

2
∂2

∂t2
+ · · · + p′

a
∂a

∂ta

)

si j (t) =
(

q ′
0 + q ′

1
∂

∂t
+ q ′

2
∂2

∂t2
+ · · · + q ′

b
∂b

∂tb

)

ei j (t)
(

p′′
0 + p′′

1
∂

∂t
+ p′′

2
∂2

∂t2
+ · · · + p′′

a
∂a

∂ta

)

σkk (t) =
(

q ′′
0 + q ′′

1
∂

∂t
+ q ′′

2
∂2

∂t2
+ · · · + q ′′

b
∂b

∂tb

)

εkk (t)

(2.47)

For the purpose of further consideration, it is convenient to transform differential
equations (2.47) expressed in terms of physical time t , f (t) to the equivalent alge-
braic equations expressed in terms of transformed variables s, ̂f (s) according to the
Laplace integral transform

L { f (t)} = ̂f (s) =
∞
∫

0

e−st f (t) dt (2.48)

http://dx.doi.org/10.1007/978-3-319-17160-9_1
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The use of above transformation allows to replace the real initial differential prob-
lem of the linear viscoelastic material (differential equation and appropriate initial
conditions) by the equivalent elastic algebraic equation of a fictitious elastic material.

In the next step, when the fictitious algebraic problem is solved in elementary way,
application of the inverse Laplace transform allows to return to the original viscoelas-
tic problem. Described procedure leads to the solution faster than the straightforward
integration of a differential equation due to the Laplace transform pairs known from
literature.

Basic properties of the Laplace transform commonly used in theory of viscoelas-
ticity can be found among others in, e.g., Nowacki [8], Pipkin [9], Findley et al. [4].
Exemplary Laplace transforms for selected elementary functions f (t) are shown in
Table2.2.

By use of the Laplace transformation equations of transformed isotropic linear
viscoelasticity (2.46) can be expressed in terms of the transformed variable s as
follows

̂P1ŝi j (s) = ̂Q1êi j (s)

̂P2σ̂kk (s) = ̂Q2ε̂kk (s)
(2.49)

Table 2.2 Laplace transforms of frequently used functions

f (t) ̂f (s) f (t) ̂f (s)

ḟ (t) s ̂f (s) − f (0)
t
∫

0
f (ξ)dξ

̂f (s)

s

1
1

s
a

a

s

H(t)
1

s
H(t − a)

e−as

s

δ(t) = Ḣ(t) 1 δ(t − a) e−as

t
1

s2
tn n!

sn+1

e−at 1

s + a
tne−at n!

(s + a)n+1

e−at − e−bt b − a

(s + a)(s + b)
ae−at − be−bt (a − b)s

(s + a)(s + b)

1 − e−at a

s(s + a)

t

a
− 1

a2 (1 − e−at )
1

s2(s + a)
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or
(

p′
0 + p′

1s + p′
2s2 + · · · + p′

asa
)

ŝi j (s) =
(

q ′
0 + q ′

1s + q ′
2s2 + · · · + q ′

bsb
)

êi j (s)
(

p′′
0 + p′′

1s + p′′
2s2 + · · · + p′′

a sa
)

σ̂kk (s) =
(

q ′′
0 + q ′′

1 s + q ′′
2 s2 + · · · + q ′′

b sb
)

ε̂kk (s)

(2.50)

Based on the analogy between Eq. (2.49) that describe transformed viscoelastic prob-
lem and linear isotropic elastic equations

si j = 2Gei j , σkk = 3Kεkk (2.51)

it is possible to findout thegeneralized modules of viscoelasticityGve(t) andKve(t) as

Gve (t) = Q1

2P1
Kve (t) = Q2

3P2
(2.52)

which are time-dependent functions of t . Additionally, if the definitions of Young’s
modulus E and Poisson’s ratio ν known from the elasticity are used

E = 9KG

3K + G
, ν = 3K − 2G

6K + 2G
(2.53)

substitution of (2.52) to (2.53) furnishes the generalized Young’s modulus Eve(t)
commonly called relaxation modulus and generalized Poisson’s ratio νve(t) of
isotropic linear viscoelasticity that can be expressed in terms of time-dependent
operators (2.46)

Eve (t) = 3Q1
P1

Q2
P2

Q1
P1

+ 2Q2
P2

= 3Q1Q2

P2Q1 + 2P1Q2

νve (t) =
Q2
P2

− Q1
P1

2Q2
P2

+ Q1
P1

= P1Q2 − P2Q1

P2Q1 + 2P1Q2

(2.54)

By contrast to elasticity, the abovemodules are time-dependent differential operators
but not material constants.

The deviatoric P1,Q1 and the volumetric P2,Q2 differential operators and the
corresponding transformed operators ̂P1, ̂Q1 and ̂P2,̂Q2 for selected isotropic lin-
ear viscoelastic models are given in Table2.3. When the additional assumption of
hydrostatic pressure independence of the elastic response is used it is necessary to
consequently apply P2 = 1,Q2 = 3K . Note that the above Eqs. (2.52) and (2.54)
refer to isotropic linear viscoelastic material forwhich number of independent gener-
alized modules equals 2, namely Gve(t) and Kve(t) or equivalently Eve(t) and νve(t).
In particular case of isotropic elasticity, the above creep modules reduce to two
constants Gve(t) = G and Kve(t) = K or equivalently Eve(t) = E and νve(t) = ν.
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2.3.2 Integral Representation Under a Multiaxial Stress State

Asmentioned above, in case of isotropic viscoelasticmaterials number of thematerial
time functions is equal to two. Hence, it is possible to separate effects of shape
change from the volume change. In such a way, we arrive at the integral form of
the constitutive equations of isotropic linear viscoelastic material that generalize the
analogous uniaxial equation (2.43) for multiaxial states

si j (t) = 2
t
∫

0
Gve (t − ξ)

∂ei j (ξ)

∂ξ
dξ

σkk (t) = 3
t
∫

0
Kve (t − ξ)

∂εkk (ξ)

∂ξ
dξ

(2.55)

In a particular case, if the volume change is pure elastic, Eq. (2.55) take the simplified
form

si j (t) = 2
t
∫

0
Gve (t − ξ)

∂ei j (ξ)

∂ξ
dξ

σkk = 3Kεkk

(2.56)

2.4 Elastic-Viscoelastic Correspondence Principle
for the Case of Isotropic Materials

Consider at the beginning, a particular case of isotropic linear viscoelastic behavior
for which separation of the volume change from the shape change holds in a similar
fashion as in case of isotropic elastic behavior, see Sect. 1.4.8. Remember however
that in a more general case of the anisotropic behavior, linear elastic, and linear
viscoelastic, this separation is not possible, see Sect. 1.8.

Analogy between the transformed equations of linear isotropic viscoelastic mate-
rials (2.49) and conventional equations of isotropic elasticity (2.51) leads to the
searching of the solutions of viscoelasticity on basis of a priori known coupled
elastic problems. This analogy is known as the elastic-viscoelastic correspondence
principle, see Findley et al. [4].

Let us summarize a complete set of equations of linear isotropic viscoelasticity,
see Skrzypek [13]

• the equilibrium equations

∂σi j (x, t)

∂xi
+ b j (t) = 0 (2.57)

• the constitutive equations formed either in the format of differential operator
representation (2.46)

http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_1
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P1si j (x, t) = Q1ei j (x, t)
P2σkk (x, t) = Q2εkk (x, t)

(2.58)

or in the integral representation (2.55)

si j (x, t) = 2
t
∫

0
Gev (t − ξ) ėi j (x, ξ) dξ

σkk (x, t) = 3
t
∫

0
Kev (t − ξ) ε̇kk (x, ξ) dξ

(2.59)

• the linearized geometric equations

εi j (x, t) = 1

2

[

∂ui (x, t)

∂x j
+ ∂u j (x, t)

∂xi

]

(2.60)

• the boundary conditions under assumption that boundary between domains of
force ΓP and displacement ΓU remain unchanged

Pi (x, t) = σi j (x, t) n j na ΓP

Ui (x, t) = ui (x, t) na ΓU
(2.61)

For simplicity independence of the viscoelastic modules, Gve, Kve from the spatial
coordinates holds. In other words, material homogeneity is assumed. In a particular
case of composite materials although that material is inhomogeneous at microlevel
a homogenization technique allows to reduce such problem to homogeneous at the
RUC level of the representative unit cell, see Chap. 3.

When the Laplace transformation of the above set of Eqs. (2.57)–(2.61) is done
we arrive at the fictitious coupled elastic problem

∂σ̂i j (x, s)

∂xi
+̂b j (x, s) = 0

ŝi j (x, s) = 2ŝGêi j (x, s) = ̂Q1

̂P1
êi j (x, s)

σ̂kk (x, s) = 3ŝKε̂kk (s) = ̂Q2

̂P2
ε̂kk (x, s)

ε̂i j (x, s) = 1

2

[

∂ûi (x, s)

∂x j
+ ∂û j (x, s)

∂xi

]

̂Pi (x, s) = σ̂ j i (x, s) n j at ΓP

̂Ui (x, s) = ûi (x, s) at ΓU

(2.62)

in which the body forceŝb j (x, s), external forces ̂Pi (x, s), displacements ̂Ui (x, s)
as well as fictitious elastic constantŝG (s) and̂K (s) are functions of the transformed
variable s.

http://dx.doi.org/10.1007/978-3-319-17160-9_3
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Finally, the analogy between viscoelastic and coupled elastic problems can be
formulated. Namely if a solution of coupled fictitious elastic problem is known (2.62)
σ̂i j (x, s) and ûi (x, s), the solution of corresponding linear viscoelastic problem
(2.57)–(2.61) can be obtained on the way of the inverse Laplace transformations
σi j (x, t) and ui (x, t). Simultaneously, following relations must hold

̂Gve = ̂Q1 (s)

2ŝP1 (s)
̂Kve = ̂Q2 (s)

3ŝP2 (s)
(2.63)

The correspondence principle can be applied only to the boundary problems where
the interface between the boundaryΓP (where the external forces are prescribed) and
the boundary ΓU (where the surface displacements are given) is independent of time,
see Findley et al. [4]. The above limitation does not hold in case of some material
forming processes, for instance rolling, where the interface between boundaries ΓP

and ΓU varies with time.
An example of elastic-viscoelastic correspondence principle applied to multiaxial

stress and strain states the thick walled tube made of the isotropic standard material
subject to internal pressure p(t) = pH(t) applied instantaneously at t = 0 is
considered after Findley et al. [4]. Taking advantage of the correspondence principle
and recalling Lamé’s solution for coupled elastic problem

ue = pa2

b2 − a2

1 + ν

E

(

b2

r
+ 1 − ν

1 + ν
r

)

(2.64)

substitution of (2.54) for E, ν in (2.64) gives

1 + ν

E
−→ ̂P1

̂Q1

1 + ν

1 − ν
−→ 2̂P2̂Q1 +̂P1̂Q2

3̂P1̂Q2

(2.65)

In this way, a fictitious coupled elastic problem in term of s

û(s) = p̂(s)a2

b2 − a2

̂P1
̂Q1

(

b2

r
+ 2̂P2̂Q1 +̂P1̂Q2

3̂P1̂Q2
r

)

(2.66)

is find out. Applying transformed operatorŝP1,̂P2,̂Q1, and ̂Q2 of standard model
(see Table2.3) under additional assumption that shape change creep deformation is
accompanied by the elastic hydrostatic deformation ̂P2 = 1, ̂Q2 = 3K , we find a
solution of the fictitious coupled elastic problem

û(s) = pa2

b2 − a2

⎛

⎝

A
E ′
1

η′
+ B

s

⎞

⎠ (2.67)
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where A and B are functions of radial coordinate r exclusively

A = − 1

E ′

(

b2

r
+ r

3

)

, B = E ′
1 + E ′

E ′
1E ′

(

b2

r
+ r

3

)

+ 2r

9K
(2.68)

Finally, the solution of the real linear viscoelastic problem is achieved by use of the
inverse Laplace transform of (2.67) in the following format

u(t) = pa2

b2 − a2

{

1

E ′

(

b2

r
+ r

3

)

+ 2r

9K
+ 1

E ′
1

(

b2

r
+ r

3

)

×
[

1 − exp

(

− E ′
1

η′ t

)]} (2.69)

2.5 Integral Representation of the Linear Viscoelastic
Equations of Anisotropic Materials

The elastic-viscoelastic correspondence principle applied for isotropic material pre-
sented in previous Sect. 2.4, was based on mathematically convenient separation of
the volumetric and the shape change effects from total viscoelastic deformation.
However, in case of any class of material anisotropy such separation does not occur.
Hence for sake of generality, we change formulation of the correspondence principle
to the uniform fashion that does not employ the above separation. For convenience,
the vector-matrix notation will be used.

In a general case of anisotropic linear viscoelastic material, the integral form of
constitutive equations is furnished as (see Shu and Onat [12])

εi j (t) =
t
∫

0

veJi jkl (t − ξ) σ̇kl (ξ) dξ (2.70)

or

σi j (t) =
t
∫

0

veEi jkl(t − ξ)ε̇kl(ξ)dξ (2.71)

where veJi jkl(t − ξ) defines the fourth-rank tensor of creep functions; whereas,
veEi jkl(t − ξ) is the fourth-rank tensor of relaxation functions which characterize
viscoelastic properties of anisotropic material. Assuming the symmetry conditions:
veJi jkl =ve Jkli j =ve J jikl =ve Ji jlk , or veEi jkl =ve Ekli j =ve E jikl =ve Ei jlk , both
tensors of viscoelastic anisotropy have 21 independent functions. Both constitutive
tensor functions veJi jkl or veEi jkl depend on current time t (integration limit).
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When the vector-matrix notation is used, the general constitutive equation of
anisotropic linear viscoelastic material defined byEqs. (2.70) and (2.71) takes equiv-
alent integral form

{ε(t)} =
t
∫

0

[veJ(t − ξ)] ∂

∂ξ
{σ(ξ)} dξ (2.72)

or

{σ(t)} =
t
∫

0

[veE(t − ξ)] ∂

∂ξ
{ε(ξ)} dξ (2.73)

When nonabbreviated notation is used introducing matrix of creep compliance func-
tions ve Ji j (t − ξ), we arrive at the following constitutive integral equations of
anisotropic linear material
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where [ve J ]i j = [J (t − ξ)]i j is the creep compliance matrix. For Eq. (2.73) the
inverse relation holds
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In particular case of orthotropic linear viscoelastic material, Eqs. (2.74) and (2.75)
reduce to narrower forms
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⎢

⎢

⎢

⎢

⎢

⎣

veJ11 veJ12 veJ13
veJ21 veJ22 veJ23
veJ31 veJ32 veJ33

veJ44
veJ55

veJ66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ̇11(ξ)
σ̇22(ξ)
σ̇33(ξ)
τ̇23(ξ)
τ̇31(ξ)
τ̇12(ξ)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

dξ (2.76)
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or
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ11(t)
σ22(t)
σ33(t)
τ23(t)
τ31(t)
τ12(t)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=
t
∫

0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

veE11
veE12

veE13
veE21

veE22
veE23

veE31
veE32

veE33
veE44

veE55
veE66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ε̇11(ξ)
ε̇22(ξ)
ε̇33(ξ)
γ̇23(ξ)
γ̇31(ξ)
γ̇12(ξ)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

dξ (2.77)

being extension of equations of orthotropic linear elasticity (1.103). Note that both
stresses and strains are functions of time veσi j =ve σi j (t), veεi j =ve εi j (t), in
similar fashion as elements of creep compliance veJi j =ve Ji j (t − ξ) and relaxation
veEi j =ve Ei j (t − ξ) matrices.

Applying the Laplace transform to Eqs. (2.74) and (2.75), we arrive at the asso-
ciated fictitious elastic constitutive equations in the transformed domain

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ε̂xx (s)
ε̂yy(s)
ε̂zz(s)
γ̂yz(s)
γ̂zx (s)
γ̂xy(s)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= s

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂J11 ̂J12 ̂J13 ̂J14 ̂J15 ̂J16
̂J21 ̂J22 ̂J23 ̂J24 ̂J25 ̂J26
̂J31 ̂J32 ̂J33 ̂J34 ̂J35 ̂J36
̂J41 ̂J42 ̂J43 ̂J44 ̂J45 ̂J46
̂J51 ̂J52 ̂J53 ̂J54 ̂J55 ̂J56
̂J61 ̂J62 ̂J63 ̂J64 ̂J65 ̂J66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ̂xx (s)
σ̂yy(s)
σ̂zz(s)
τ̂yz(s)
τ̂zx (s)
τ̂xy(s)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭
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or
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ̂xx (s)
σ̂yy(s)
σ̂zz(s)
τ̂yz(s)
τ̂zx (s)
τ̂xy(s)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= s

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂E11
̂E12 ̂E13 ̂E14 ̂E15 ̂E16

̂E21 ̂E22 ̂E23 ̂E24 ̂E25 ̂E26
̂E31 ̂E32 ̂E33 ̂E34 ̂E35 ̂E36

̂E41 ̂E42 ̂E43 ̂E44 ̂E45 ̂E46
̂E51 ̂E52 ̂E53 ̂E54 ̂E55 ̂E56
̂E61 ̂E62 ̂E63 ̂E64 ̂E65 ̂E66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ε̂xx (s)
ε̂yy(s)
ε̂zz(s)
γ̂yz(s)
γ̂zx (s)
γ̂xy(s)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.79)

2.6 Application of the Anisotropic Correspondence
Principle to the Case of Orthotropic Composite
Materials

For a purpose of engineering application, for instance to some composite materials in
which at least one of phases exhibits viscoelastic behavior, it is sufficient to assume
the narrower case of orthotropic linear viscoelastic equations (2.76) and (2.77).
When the Laplace transformation is applied to the integral constitutive equations
of the orthotropic linear viscoelastic material (2.76) and (2.77), we arrive at the
associated fictitious orthotropic elastic equations in terms of s

http://dx.doi.org/10.1007/978-3-319-17160-9_1
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{σ̂(s)} = s[̂E(s)] {̂ε(s)} (2.80)

or
{̂ε(s)} = s[̂J(s)] {σ̂(s)} (2.81)

When the vector-matrix notation is applied the corresponding formulas can bewritten
in an expanded fashion

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ̂11(s)
σ̂22(s)
σ̂33(s)
τ̂23(s)
τ̂31(s)
τ̂12(s)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= s

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂E11
̂E12 ̂E13 0 0 0

̂E21 ̂E22 ̂E23 0 0 0
̂E31 ̂E32 ̂E33 0 0 0

0 0 0 ̂E44 0 0
0 0 0 0 ̂E55 0
0 0 0 0 0 ̂E66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ε̂11(s)
ε̂22(s)
ε̂33(s)
γ̂23(s)
γ̂31(s)
γ̂12(s)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭
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or
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ε̂11(s)
ε̂22(s)
ε̂33(s)
γ̂23(s)
γ̂31(s)
γ̂12(s)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= s

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂J11 ̂J12 ̂J13 0 0 0
̂J21 ̂J22 ̂J23 0 0 0
̂J31 ̂J32 ̂J33 0 0 0

0 0 0 ̂J44 0 0
0 0 0 0 ̂J55 0
0 0 0 0 0 ̂J66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ̂11(s)
σ̂22(s)
σ̂33(s)
τ̂23(s)
τ̂31(s)
τ̂12(s)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.83)

The above equations generalize constitutive equations of isotropic viscoelastic mate-
rial (2.62)2,3 to the case ofmaterial orthotropy, where ̂Ei j = ̂Ei j (s) and ̂Ji j = ̂Ji j (s)
stand for the orthotropic relaxation function matrix and the creep compliance matrix,
respectively. Solution of the problem of viscoelastic orthotropy can be obtained on
the way of the Laplace inverse transform applied to the transformed variables σ̂i j (s),
ε̂i j (s), which are retransformed to physical variables σi j (t), εi j (t).

It should be emphasized that in case of anisotropic linear viscoelastic materials,
similar to anisotropic elastic materials, it is not possible to separate the constitutive
equations into the volumetric change and the shape change uncoupled equations since
anisotropy results in full coupling between the volume and the shape viscoelastic
deformation.

In case of compositematerials, the properties ofwhich exhibit the linear viscoelas-
tic features, a generalization of commonly used homogenization techniques (see
Chap.3) to viscoelastic work-regime can be proposed (cf. Haasemann and Ulbricht
[5]). The frequently applied concept of the representative unit cell (RUC) origi-
nally developed for elastic composites can also be adapted to nonelastic behavior of
composites (matrix and/or fiber). To this end, the class of linear viscoelastic mate-
rial occurs to be very convenient when use of the correspondence principle which
enables to transform the real viscoelastic (time-dependent) problem to a fictitious
elastic (time-independent) problem in the domain of new variable s (see Table2.4).

http://dx.doi.org/10.1007/978-3-319-17160-9_3
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Constitutive equation of viscoelastic material can be formulated twice: at the
level of subcell (βγ) where components are described by different viscoelastic equa-
tions (matrix, fibers, particles) and at the level of RUC where different properties of
material are homogenized in a particular way to yield mean or effective viscoelastic
response.

The above described stages of description are briefly presented as follows: at level
of subcell the local constitutive equations of linear viscoelasticity hold

veε
(βγ)
i j (t) =

t
∫

0

ve J (βγ)
i jkl (t − ξ)veσ̇

(βγ)
kl (ξ)dξ (2.84)

or

veσ
(βγ)
i j (t) =

t
∫

0

veE (βγ)
i jkl (t − ξ)veε̇

(βγ)
kl (ξ)dξ (2.85)

where the local variables, microstress, and microstrain are combined by local con-
stitutive time-dependent fourth-rank tensors (the creep compliance tensor or the
relaxation tensor) for the homogeneous constituent material. In a formal fashion
when a homogenization inside the RUC is used, we arrive at

veεi j (t) =
t
∫

0

ve J i jkl(t − ξ)veσ̇kl(ξ)dξ (2.86)

or

veσi j (t) =
t
∫

0

veEi jkl(t − ξ)veε̇kl(ξ)dξ (2.87)

Mean or effective fourth-rank tensors of creep compliance ve J i jkl or relaxation
veEi jkl are defined at the level of RUC in terms of the corresponding local tensors
ve J

(βγ)

i jkl or veE
(βγ)

i jkl at the level of subcell by the use of a homogenization procedure
in an analogous way as for the elastic composite (3.58). Homogenization of the vis-
coelastic properties of the composite material is not a trivial problem and is seldom
met in literature, cf. e.g., Haasemann and Ulbricht [5].

Application of correspondence principle occurs to be very useful since it makes
possible to convert time-dependent heterogeneous viscoelastic problem to associated
time-independent elastic problem for which homogenization tools can directly be
applied. In particular when elastic-viscoelastic analogy is applied for anisotropic
composites at the level of RUC, the application of the Laplace transform allows to
reduce integral equation of real material (2.86) or (2.87) to coupled set of equations
of a fictitious elastic problem in space of the transformed variable s

http://dx.doi.org/10.1007/978-3-319-17160-9_3
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êεi j (s) = ŝE
−1

i jkl(s)
e
̂σkl(s) (2.88)

or
e
̂σi j (s) = ŝEi jkl(s)

êεkl(s) (2.89)

Finally, solution of the anisotropic linear viscoelastic problem can be obtained by the
use of inverse Laplace transformation from the transformed domain êεi j (s),êσi j (s)
to the physical domain veεi j (t),ve σi j (t). When absolute notation is used we get (see
Haasemann and Ulbricht [5])

veσ(t) = ve
E(t) : veε(t = 0) +

t
∫

0

ve
E(t − ξ) : ve ε̇(ξ)dξ

= ve
E(t) : ve ε(t = 0) + [veE : ve ε̇](t)

(2.90)

Recall definition of the Laplace transform of the function f (t) (t > 0) into the
function of transformed variable ̂f (s)

L { f (t)} = ̂f (s)
def=

∞
∫

0

f (t)e−stdt (2.91)

and definition of the convolution of two functions

f (t)
def=

t
∫

0

f1(t − ξ) f2(ξ)dξ ≡ f1(t) ∗ f2(t) (2.92)

Applying the Laplace transform (2.91) to the convolution integral (2.92), we arrive
at the convolution theorem (see Findley et al. [4])

L
⎧

⎨

⎩

t
∫

0

f1(t − ξ) f2(ξ)dξ

⎫

⎬

⎭

= L { f1(t) ∗ f2(t)} = ̂f1(s)̂f2(s) (2.93)

Taking next the Laplace transform of the integral form of constitutive equation of
the anisotropic linear viscoelasticity (2.90), we arrive at the equivalent transformed
algebraic equation of anisotropic linear elasticity according to scheme

veσ(t) =ve
E(t) :ve ε(t = 0) +ve

E(t) :ve ε̇(t) L−→̂σ(s) = ŝE(s) :̂ε(s) (2.94)

defined by function of the transformed variable s. The transformed matrix of

anisotropic fictitious elasticity ŝE(s) is built at the level of RUC of considered
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composite. The above matrix is obtained by the homogenization of the transformed

isotropic local matrices ŝE
(βγ)

(s) at the level of composite microstructure (subcells).
The procedure described above is sketched by the following scheme shown in

Table2.4. The homogenization procedures for the anisotropic elastic composites are
well recognized (for details see next chapter). By contrast, there is no unique and
direct homogenization procedure to yield the effective creep compliance ve J (βγ)

i jkl (t)

and relaxation veE (βγ)
i jkl (t) tensors (e.g., Haasemann and Ulbricht [5]). Hence to over-

come this deficiency, the suggested scheme is as follows: first apply theLaplace trans-
form at the level of subcell in order to eliminate physical time (left path in Table2.4),
second use a homogenization method in order to reach the RUC level for fictitious
elastic RUC of composite material and finally apply the inverse Laplace transform
to arrive at the physical viscoelastic RUC level (right back path in Table2.4).

Usually for sake of simplicity of further applications, the transversely isotropic

effective relaxation matrix ŝE(s) at the level of RUC is sufficient, whereas at the
microlevel (subcell) the isotropic matrices for the constituents (f) fiber and (m)

composite matrix ŝE
(f)

(s) and ŝE
(m)

(s) are usually accepted (see also (2.82)).
Elastic-viscoelastic correspondence principle as applied to orthotropic viscoelastic

Table 2.4 Elastic-viscoelastic homogenization method based on the representative unit cell (RUC)
applied to the associated elastic material by correspondence principle

ε(βγ) =
t

0

ve
J
(βγ) σ̇(βγ) dξ linear viscoelastic {ε} =

t

0

ve
J σ̇ dξ

=============⇒
σ(βγ) =

t

0

ve
E

(βγ) ε̇(βγ) dξ homogenization ? {σ} =
t

0

ve
E ε̇ dξ

⇓ ⇑
L L−1

⇓ ⇑
ε(βγ) = s J

(βγ) σ(βγ) associated elastic ε = s J σ

=============⇒
σ(βγ) = s E

(βγ) ε(βγ) homogenization σ = s E ε
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Fig. 2.5 Beam model and RUC of unidirectional composite according to Haasemann and
Ulbricht [5]

Table 2.5 Viscoelastic
properties of fiber and matrix
material following
Haasemann and
Ulbricht [5]

Fiber Matrix

Relaxation
function

70 + 200 e−0.1t/s 3 + 15 e−t/s

Poisson’s ratio 0.2 0.35

and viscoplastic materials is applied by Haasemann and Ulbricht [5]. In case of uni-
directionally reinforced composite considered by Haasemann and Ulbricht [5] (see
Fig. 2.5), both fiber andmatrix materials were described as isotropic linear viscoelas-
tic (see Table2.5); whereas at macroscale, the sane composite material obeyed the
transverse isotropy symmetry. The Laplace–Carson transform

LC { f (t)} = ̂fC (s) = s

∞
∫

0

e−st f (t) dt (2.95)

was used in order to transform equations of transversely isotropic linear viscoelastic
material in t domain into corresponding equations of fictitious linear elastic mate-
rial in domain of transformed variable s, in which conventional homogenization
techniques of elastic composites were applicable (for details see Chap. 3).
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