Chapter 1
Introduction to Mechanics
of Anisotropic Materials

Artur W. Ganczarski, H. Egner and Jacek J. Skrzypek

Abstract This book is focused on constitutive description of mechanical behavior
of engineering materials: both conventional (e.g., polycrystalline homogeneous
isotropic or anisotropic metallic materials) and nonconventional ones (e.g., heteroge-
neous multicomponent usually anisotropic composite materials) fabricated by mod-
ern material engineering. Effective material properties at the macrolevel depend on
both the material microstructure (isotropic or originally anisotropic in general case)
and on dissipative phenomena occurred on fabrication and consecutive loading phase
resulting in irreversible microstructure changes (acquired anisotropy). The material
symmetry is a background and anisotropy is a core around which the book is formed.
In this way a revision of classical rules of enhanced constitutive description of mate-
rials is required. The aim of this introductory chapter lies in providing, apart from
classical definitions of tensor single invariants, also the choice of state variables
necessary to describe irreversible microstructure changes accompanying coupled
dissipative phenomena, and basic definitions of common invariants of either two
second-order tensors (e.g., stress/strain and damage tensors) or two different-order
tensors (e.g., stress/strain and fourth-order structural tensors). Concise classification
of anisotropic materials with respect to symmetry of elastic matrices as referred to
the crystal lattice symmetry is given, and extended analogy between symmetries
of constitutive material matrices (elastic and yield/failure) is also discussed. Next,
strain and complementary energy as function of either stress/strain invariants (ini-
tial elastic isotropy) or common stress/strain—damage invariants (damage acquired
anisotropy) are mentioned. Constitutive equation of linear elasticity in terms of com-
mon invariants of strain and structural orthotropic tensors is given. The scope of
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this chapter provides necessary tools for more extended constitutive description of
materials which exhibit either virgin anisotropy or damage or phase change acquired
anisotropy following microstructure changes.

Keywords Single or common tensor invariants * Material symmetry and constitutive
matrices + Virgin or acquired anisotropy * Shear and volumetric change coupling *

Strain energy of anisotropic materials -+ Damage and phase change state variables -
Constitutive tensors analogy

1.1 Second-Order Tensors

1.1.1 Stress Tensor and Stress Tensor Invariants

Stress tensor o, when mathematical 0;; 7,j =1,2,3,0ri, j = x,y, z, and engi-
neering notations are used is furnished as

011 012 013 Oxx Oxy Oxz Ox Txy Txz
loijl=] 021022003 | = | Oyx Oyy Oyz | = | Tyx Oy Tyz (L.1)
031 032 033 Ozx Ozy Ozz Tzx Tzy Oz

where x, y, z denote cartesian coordinate system.
When symmetry of the stress tensor o;; = o; is assumed, the stress tensor can
be represented as columnar stress vector as follows:

011
022
T 033
{o} ={o11,02,033,003,013,012} = 3 (1.2)
013
g12
When the definition of stress deviator is assumed as
1
Sij = 0ij — gdkk(sij = 0ijj — ahé,j = 0ij — gtr (0’) (51‘]‘ (1.3)
1 . . . li=j
where oy, = 30kk denotes either hydrostatic or mean stress, while d; i =V0i £

denotes Kronecker’s symbol, decomposition of the stress tensor into the stress axiator
and the stress deviator takes the following form:

oc=opl+s (1.4)
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where absolute notation o1 and s are used for the stress axiator and the stress
deviator, respectively

opb 0 0
[onl] =] 0 o O
0 0 o
b (1.5)
Ox —Oh  Txy Txz Sxx Sxy Sxz
[s] = Tyx Oy —Oh Tyz = | Syx Syy Syz
Tzx sz O0; — Oh Szx Szy Szz
Classical stress transformation rule from i, j to k, [ directions is
Okl = Qi1 0jj (1.6)

where second-order tensor transformation rule is applied and ay;, a;; denote direction
cosines of the transformation from the original frame i, j = x, y, z in the new
reference frame k, [ = £, n, . Itis possible to distinguish the specific transformation
into eigendirections (principal directions) for which the corresponding stress tensor
takes the diagonal representation

Oxx Oxy Oxz transformation o1 00
Oyx Oyy Oy; | ————> | 0 02 0 (L.7)
Ozx Ozy Ozz 0 003

Three principal stresses are determined as real roots of the cubic equation, being
solution of eigenproblem for the stress tensor o

o= (1.8)

where \; = o1, 07, 03 stand for eigenvalues. These principal stresses are real roots
of the characteristic equation of stress tensor \; = o;

det(c — A1) =0 (1.9)

which can be rewritten in the equivalent fashion
0* = l1;0* + hyo — [, =0 (1.10)
Three coefficients of the characteristic equation (1.10) I, I,, I3, are called the

principal invariants of the stress tensor and may be defined in terms of stress
components
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Ly =tr(o) = 0jj = 0xx + Oyy + 02z [MPa]
by = Oxx Oxy Oyy Oy Oz7 Ozx
- =
Oyx Oyy Ozy Ozz Oxz Oxx

= OxxOyy + OyyOzz + 0770xx — (O')%y + U%Z + O'Z2x) [MPaZ] (111)

Oxx Oxy Oxz
I3y = deto = |0y Oyy Oyz | = OxxOyy0z;
Ozx O'Zy Ozz7

3
+205y0y:00x — (0x205, + 0yy0%, + 02:0%,) [MPa?]

Apart from the principal invariants, the basic stress invariants also called the generic
stress invariants are of particular importance, namely

Jig = 0ij =tr (o) [MPa]

. | 2 2
ho =Loijo =t (0?)  [MPa?] (1.12)
J3o = Y0ij0 k0% = tr (03) [MPa?]

It is seen that the basic stress invariants can be interpreted as traces of subsequent
powers of stress tensor o, ol=0-0,0°=0-0-0,if appropriate coefficients 1,
1/2, 1/3 are used. Note that the basic invariants differ from the principal invariants,
which are coefficients of the characteristic equation (1.10).

The basic stress invariants Ji,, J25, J3, are expressed in terms of the principal

stress invariants I, I»,, I3, as follows:

Jig = o
o = 312 — Dy (1.13)
B0 = 313, = If, 10 + I3

g

The reciprocal relations are

Iie = Jis

ho = 3J% — )y (1.14)

o = i, = Jiyhao + J3g
Decomposition of the stress tensor into the stress axiator (spherical tensor) and the
stress deviator (1.3—1.5) leads to the following system of principal or generic invari-
ants of the stress deviator

Jis =si; =1tr(s) =0 [MPa]
D = Lsijsji = du (s?)  [MPa?] (1.15)
J3s = %Sijsj'kski = %tr (s3) [MPa’]
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where, in similar fashion as in Eq. (1.12), subsequent powers of the stress deviator
5,52 =s-5,58° =555 are used. Note that the first basic deviatoric stress invariant
Jis is equal to zero according to definition (1.3).

Additionally, some engineering tensor stress invariants characterized by the stress
dimension homogeneity [MPa], by contrast to the above defined basic invariants of

different dimensions [MPa], [MPa?], [MPa>] are frequently used as

on = $J1s = 3tr (0) = $o : 1= Loy [MPa] 116)
Oeq = /3J2s =/ %sijsj-,- [MPa] ’

The first of them oy, is easily recognized as the mean stress and the second geq
represents the commonly used stress intensity also called the effective stress.
1.1.2 Strain Tensor and Strain Tensor Invariants

Strain tensor € = ¢;; when uniform mathematical notation i, j = 1,2,3 ori, j =
X, y, z, and the engineering notation are used, is furnished as

1 1
€11 €12 €13 Exx Exy Exz Ex 2wy 27z
_ _ _ |1 1
eijl=|enenes | =|eweyey: | =| 37 & 3%z (1.17)
€31 €32 € Erx Ezy € 1 1
31 €32 €33 X €7y <zz 2Vex 3Vzy &z

where x, y, z denote cartesian coordinate frame.
Transformation of the strain tensor is described in a similar fashion as the stress
tensor transformation (1.6), namely

Ekl = Akialj€ij (1.18)
Similarly, the principal strains can be obtained by solution of the eigenproblem of
the tensor
e=1 (1.19)
or equivalently as solution of characteristic equation of strain tensor
3 2 —
e —heet + hee — 3. =0 (1.20)
Coefficients of the above equation I1., I5., I3- denote the principal invariants of the

small (linearized) strain tensor and are defined as the homogeneous, scalar functions
of the strain components
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lie =tr(e) = € = xx +€yy + 622
b = Exx Exy Eyy Eyz €zz €zx
e =
Eyx Eyy Ezy €zz €xz Exx
= (22 2 2
= Exx€yy t Eyy€zz + EzzExx (Exy +ey, + €7x)

(1.21)
Exx Exy €xz

. = |eyx Eyy Eyz | = ExxEyyEzz + 25xy5yz<€zx

Ezx Ezy €zz
2 2 2
— (aemsyZ +eyyey, + ezzexy)

If symmetry of the strain tensor is assumed equivalent representation of the strain
tensor in the form of columnar strain vector may be applied as

11
€22
T €33
{e} = {e11, €22, €33, €23, €13, €12} = s (1.22)
€13
€12

When the definition of the strain deviator, analogous to the stress deviator (1.3), is
used, we arrive at

1 1
€ij = E&ij — ggkkisij = E&jj _5m5ij =Eij — gtr (€) 5,']' (1.23)

where ey, denotes mean (volumetric) strain. Decomposition of the strain tensor into
the strain axiator and the strain deviator is given according to the scheme

e=epl+e (1.24)

when the absolute notation was used, where £, 1 and e denote the strain axiator and
the strain deviator, respectively

em 0 O
[eml] = 0em O
0 0 en
1 1 1.25
€ —€E€m 3y 2 Vxz €xx €xy €xz ( )
[e] = %’yyx €y —€m %’sz = | éx Eyy €yz

1 1 €rx €7y €
2 Vzx 2%y €z~ €m LIRS
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The basic or the generic strain tensor invariants are defined in analogous fashion
as in Eq. (1.12)
Jic = €ii =1tr (g)

Joe = %Eijsji = %tr (62) (1.26)

1 1
J3e = eijejren = tr (€7)

The basic strain tensor invariants Ji., Jac, J3- are expressed in terms of the principal
strain invariants /., I., I3 as

Jie = e
Joe =312 — I (1.27)

Je =315 — IL.be + I

The reciprocal relationships are

Lie = Jie
he = 5JE — ) (1.28)
I = gJ = Ji Do + s

&

The principal invariants of the strain deviator may be determined in an analogous
way as the principal invariants of the stress deviator (1.15), namely

Jie = ejj =tr(e) =0
Joe = 3eijeji = 5t (&%) (1.29)

1 1
J3e = zeijejreri = ztr (e3)

1.1.3 Matrix Representation of Stress and Strain Tensors

Stress 0;; and strain ;; are the second-rank tensors having in general 32 = 9 compo-
nents, since each of indices i, j runs from 1 to 3. Each of them can be interpreted as
linear transformation of a certain vector to another vector. In case of the stress tensor,
linear transformation of direction cosines #; into a traction vector p; according to
rule

pi = 0ijnj (1.30)

is written down or
p1L=o11n| +oppn + o13n3

p2 = 02111 + 022h2 + 02313 (1.31)
p3 = o31n1 + 03212 + 03313
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when the expanded form is used. Applying the matrix-vector notation to the above
formulae the equivalent form is reached

p1 o11 012 013 ni
P2t = | 021 022 023 ny (1.32)
D3 031 032 033 n3

In Eq. (1.32) the second-rank stress tensor is represented by the 3 x 3 tensor repre-
sentation matrix and analogously, the strain tensor representation matrix

011 012 013 €11 €12 €13
o] = | 021 022 023 [e] = | €21 €22 €23 (1.33)
031 032 033 €31 €32 €33
Due to symmetry conditions of both the stress o;; = 0j; and the strain ¢;; =

€;; tensors, both representation matrices are symmetric, comprising 6 independent
components each. When engineering notation is used, replacing 1, 2, 3 frame by
X, y, z cartesian coordinate frame, and introducing appropriate notation o;; = 7;;
andg;; = %%j fori # j, we arrive at

1 1
Oxx Txy Txz Exx 3Vxy 3 Vxz
— — 1
[o] = Oyy Tyz [e] = Eyy 3z (1.34)
Oz €2z

1.1.4 Decomposition of Strains

In the case of infinitesimal deformation the total strain €;; can be expressed as the sum
of the elastic (reversible) strain 6?]-, inelastic (irreversible) strain E} i and thermal
T.

strain EU :

ey =S el 4l (1.35)

In the process of deformation, various microstructural rearrangements of material
structure may take place, for example, the changes in density and configuration
of dislocations, the development of microscopic cavities, changes from primary to
secondary phase, etc. All these rearrangements may contribute to both reversible and
irreversible strains (cf. Abu Al-Rub and Voyiadjis [1]), therefore:

E d eph
ey =¢€xten e oo 1.36
I p d ph (1.36)
Eps = Ers T Epy T Epg + -
where sf; is a “pure” elastic strain, and sj’f, el 55}, ... arerespectively the reversible

and irreversible components of the total strain induced by dissipative phenomenon
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Fig. 1.1 Components of the c /
strain tensor afi induced /
by kth dissipative / /
phenomenon /

Slk 8E

(see Fig.1.1), e.g., plastic flow, damage, phase transformation, etc. For example,
in the case of thermo-elastic-plastic-damage material the total strain tensor ¢;; is
expressed as

ers = e+ e el p el el (1.37)
5+ el
s crs

d

+5» consists of both reversible (ed) and irre-

while its damage-induced component, €
versible (1d) damage strain terms:

ed =% cld (1.38)

1.2 Fourth-Order Tensors and Matrix Representation

1.2.1 Stiffness and Compliance Matrices—Voigt’s Notation

General linear elasticity equation for anisotropic material, frequently called the gen-
eralized Hooke law, takes the forms

-1
€ij = Ejjyok  0ij = Eijucn (1.39)

where the fourth-rank elasticity tensors, stiffness E;ji or compliance Ei;lll’ are
defined, in general by 3* = 81 components, since each of indices i, j, k, [ runs
through 1, 2, 3. Because of the symmetry of the stress oj; = o and the strain
€ij = €j; tensors, both the stiffness and compliance tensors are symmetric with
respect to change of indices in pairs i <> j and k < [

-1 -1 -1
Eijii = Ejiki = Eijic By = Ejipy = Ejjpy (1.40)
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Additionally, because of property of positive definiteness of strain energy or com-
plementary energy the symmetry with respect to change of indices between pairs
ij <> kI must also hold

Eiju = Ewij  Ejjy = Eqi; (1.41)

Because of symmetry conditions (1.40) and (1.41) from among 81 components of
stiffness or compliance tensors, only 21 are independent. In order to describe the gen-
eralized Hooke’s law (1.39) by use of vector-matrix Voigt’s notation, stress and strain
tensors are written as columnar stress and strain vectors, if the following scheme of
change between tensor i, j = 1,2, 3 and vectors k = 1,2, ..., 6 indices holds:

ij 11 22 33 23,32 31,13 12,21

A S ¥ { (1.42)
kK 1 2 3 4 5 6

From the above scheme we obtain the following representations of stress and strain
tensors:

o1
o2
011 012 013 01 06 05 o3
[oij] = on 023 | — o204 | >
a g
33 3 o5
ol
(1.43)
€1
&2
€11 €12 €13 €1 €6 €5 o
[eij] = enen | — 64| =1
€ 5
33 3 e
€6

Analogous scheme is applied to the first and second pairs of indices of stiffness and
compliance tensors

mn
2Eiji1 = Emn, 2E;;}, = E;;} if m or n go through 4, 5, 6 (1.44)

ijk
4Eijki = Emn, 4E._1[ = Er;}l if both m and n go through 4, 5, 6

ijk

Eijki = Epn, E,_,,il = E_1if m or n go through 1,2, 3

where appropriate factors 2 or 4 are applied.
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For instance, if the axial strain £1; is considered the transformation scheme is as
follows:

ent = Eqj o1 + Efy02 + Efj33033 + 2E 53003 + 2E 3013 + 2E 01

1 ! 1 i ) !

€] = Efllal + Eleaz + Ef310'3 + E174104 + EE-10'5 + Ef6106
(1.45)

In case the shear strain £33 is considered, the following are furnished:

-1 -1 -1 -1 -1 .
€23 = Ep311011 + Ep30p020 + Ep333033 + 2E5353023 + 2E5313013 + 2E53,012

J 4 J J J 4

264 = 2E5 01 + 2E 535,00 + 2E 73303 + 4E 304 + 4ES 305 + 4ES o6
i/ Jll i/ 1 \L 1 J/ 1 ¢ 1 1
Y = Ejqo1r+ Epor+ Epgos+ Eyon + Eio5 + 0 Eios

(1.46)

Finally, the generalized Hooke’s law (1.39) is represented in vector-matrix notation

as follows:
5i=Ei;lo'j (i=1,23,j=12,...,6)

vi=Ejlo; (=456j=12....6 (1.47)
or
(&) =B (o) (148)
or equivalently
lo} = [El{e} (1.49)

where [E] or [E~!] denote representation matrices of elastic stiffness or compli-
ance tensors, whereas {€} and {o} denote the columnar vectors of strain and stress,
respectively. When columnar vectors of stress and strain are used as well as elasticity
matrices are explicitly written down, Hooke’s law is furnished as

m ol ol el el el 17
Eyy Eyy By |Ey Es Eg
€1 -1 -1 -1 -1 -1 —1 (o]
- Eyl Eyy Eps|Eyy Eys Eng
2 ENTRNNES RN R R R N
e | _ Ey; Eyy Esy|Esy Ezs Exg 03 (1.50)
Y4 gV gl gl gl gl gl T4 ’
a1 By Egz|Egy Eys Egg
s ES e EMNED B ED || T
6 st Esy Es3|Esy Ess Esg T6
N e i L
| Eq1 Eey Egs |Eey Egs Egs |
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or _ _
Ey E2 Ei3|E14 Ei5 E6
g

E> Ex Exz|Ezq Eps Ene !

a2 &2

o3 E3y E3p E33|E34 E3s E36 £3

g1

- (1.51)
T4 E41 Egy E43|Ess E4s Ese | | 74

-

TS Esy Esy Es3|Esq Ess Ese s

6 Y6

| E61 E62 Ec3|Eea Ees Ee6 |

where engineering notation for shear stress 7; = o (j =4, 5, 6) is used.
It should be mentioned that symmetric stiffness [ E;;j] = [E ;] and symmetric com-
pliance [Ei;l] = [Ej_il] matrices, both having dimension 6 x 6, are representation

matrices of fourth-rank elasticity tensors Ej;j;; or compliance El; ,i ;- Transformation

of each matrix to another coordinate frame can be performed if the matrix nota-
tion (1.51) is replaced by the tensor notation (1.39), or by use of the appropriate
transformation matrix [Q]

[E'] = [QI"[E][Q] (1.52)

For instance, if the stiffness matrix is considered the transformation matrix takes the
form

quiq11 912912 413913
Q21921 922922 423923
Q] 31931 932932 433433
2931921 2932922 2933923
2931911 2932912 2933913

2921911 2912922 2913923 (1.53)
4124913 q13411 q12911
423922 423921 422421
433432 433431 q324931

433922 + 432923 933921 + 431923 431922 + 432921
q33912 + 432913 933911 + 431913 431912 + 432911
413922 + 912923 913921 + 411923 411922 + 412921

the coefficients of which are scalar products of corresponding direction cosines g;; =
nin; between both coordinate frames.

1.2.2 The Choice of State Variables

The irreversible rearrangements of the internal structure can be represented by a
group of variables describing the current state of material microstructure:

(vky = (vp yd yrh (1.54)
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where V¥ may be scalars, vectors, or even rank tensors. For damage description, in
the case where the damaged material remains isotropic, the current state of damage
is often represented by the scalar variable V¢ = D denoting the volume fraction of
cracks and voids d V4 in the total volume dV°. Damage acquired orthotropy requires
a second-order tensor, for example, the classical Murakami—Ohno [38] tensor Vd
D;j, see Eq. (1.61). In the most general case of anisotropy the description of damage
needs to be embodied in an eight-order tensor (cf. Cauvin and Testa [6]), while the
principle of strain equivalence allows using fourth-order tensors, see Sect. 1.2.3. For
phase transformation analysis the scalar variable VP = ¢ is commonly adopted (cf.
Egner and Skoczen [14]), which denotes the volume fraction of the secondary phase
in the total volume of the two-phase Representative Volume Element. However, a
scalar variable is not capable of describing the acquired anisotropy due to partially
directional nature of the secondary inclusions in the primary matrix. Therefore,
instead of scalar variable a second-order phase change tensor can be defined in
analogy to the damage tensor:

3
h=g= Gnion (1.55)

i=1

where &; describes the ratio of the secondary phase area dAE)h to the total area dA? on
the principal plane of normal unit vector n; (cf. Egner [13]). Another group of state
variables consists of internal (hidden) variables corresponding to the modifications
of loading surfaces:
ky _ P P p

{h*) = {rp’aij’lijkl’gijklmn’"' (1.56)

d .d jd d ’
A ks Jijkimns -+

d

correspond to isotropic expansion of the loading surface, apl a - affect

loading surface translatoric displacements, li kD l?j 1 are hardening tensors of the
fourth order which includes varying lengths of axes and rotation of the loading
surface, and glpj Klmn> gl‘.ij Klmn dt.ascrib.e c.han.ges of the curvature of the loading surface
(distortion) related to appropriate dissipative phenomenon (cf. Kowalsky et al. [27],
see Fig. 1.2). The complete set of state variables {Vy} reflecting the current state of
the thermodynamic system consists of observable variables: elastic (or total) strain
tensor E?j and absolute temperature T', and two groups of microstructural {V*} and
hardening {h*} state variables:

where rP, r

Va) = {e5;, T: VP,V VPR P pd Rt ) (1.57)

When thermo-elastic-plastic-damage two-phase material is considered, the exem-
plary set of state variables for a general case of hardening/softening effects induced
by different dissipative phenomena is further listed in Table 7.1.
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Fig. 1.2 Modifications N
of the loading surface in the initial loading surface
space of thermodynamic

conjugate forces {J*} R
(after [13])

anisotropic hardenig

e
RLLLLEPR
.

-y

.*

. .~
kinematic
» _ hardening

~

isotropic
hardening™~/

distortional
hardening

~ . et
* o .."l"""‘

When the material is subjected to reverse tension-compression cycles, the unsym-
metrical behavior in tension and compression is observed as the unilateral response
due to partial crack closure effect. To describe the phenomenon of the unilateral
damage, also called the damage deactivation or the crack closure/opening effect, a
decomposition of the stress or strain tensors into the positive or negative projection is
usually introduced using the fourth-rank projection operators (cf. Krajcinovic [30];
Bielski et al. [4]):

3
€ij = Z"‘(gl)”ﬁ)"ﬁgz)”g?"%)€kl = i(fzzﬁkl (1.58)
I=1

where the fourth-rank tensor Bl.(;,g ; is built of directional cosines between the principal

and the current spatial systems, "S) and x(e7) = H(a) + (H(—a), H is a Heaviside
function and ( is a material constant.

1.2.3 Damage and Damage Effect Tensors

So far constitutive description of material has not accounted for influence of damage.
Damage means existence of microvoids and microcracks in the material that result in
essential deterioration of mechanical properties at the macroscale, such as strength
and stiffness or compliance.

In the simplest case when microvoids are spherical and homogeneously distributed
in material, damage is described by the scalar damage variable D, usually called the
damage parameter, Fig. 1.3
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effective
modulus

initial _~F
modulus

A (initial configuration) B (physical ( (pseudo - undamaged
configuration - damaged) configuration)
o=Esg o=E¢ 6=E¢

Fig. 1.3 Three configurations used in CDM: a initial, b damaged, ¢ effective pseudo-undamaged

Ad
D= (1.59)

Scalar damage variable D, introduced by Kachanov [24] and Rabotnov [46], rep-
resents the loss of effective area from the initial A to the damaged A9 states. In
order to generalize the scalar damage variable to the case when microvoids exhibit
clearly directional nature, the vector damage variable D;, is proposed by Davison
and Stevens [11], Kachanov [25], Krajcinovic and Fonseka [28]

Al
Di=-%t i=1,2,3 (1.60)
Aj
Murakami and Ohno [39] introduced more general damage variable defined by the
symmetric second-rank damage tensor D, capable of capturing an orthotropic dam-
age nature
D1 D12 D13
D= Dy Do3 (1.61)
D33

Recently, researches aimed towards correct description of damage mechanism in
elastic-brittle rock-like materials, ceramics or concrete led to definition of the
Sfourth-rank damage tensors, e.g., Chaboche [8], Krajcinovic [29] or Lubarda and
Krajcinovic [35]. Apart from the above-mentioned damage variables possessing
clear geometric interpretation other damage variables referring to physical planes,
described in details e.g., by Gambarotta and Lagomarsino [15], Seweryn and Mrdz
[48] should also be mentioned. More general classifications of damage variables
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were listed in following subject monographs by Krajcinovic [29, 30], Skrzypek and
Ganczarski [51], Betten [3] or Murakami [40].

In the frame of continuum damage mechanics (CDM), three configurations
are considered: initial configuration A that describes material in undamaged state
D(A) = 0, physical configuration I3 referring to the damaged state D(BB) # 0, and
the equivalent, fictitious pseudo-undamaged configuration C in which real heteroge-
neous material is substituted by a homogeneous material, free of damage D(C) = 0,
as schematically is shown in Fig. 1.3.

The physical (damaged) configuration 5 is equivalent to the effective (pseudo-
undamaged) configuration C in a certain sense, for instance, of strain equivalence
Chaboche [7], stress equivalence Taher et al. [54], or elastic strain energy equivalence
Cordebois and Sidoroff [10]. In physical configuration 5 damage state manifests
through the effective elasticity modulus E, for instance,

E=E(1—-D) or E=El-D)? (1.62)

where the hypotheses of strain or stress equivalence (first formula) or elastic energy
equivalence are used. Contrarily, in the effective configuration C damage state man-
ifests by the definition of the effective variables o, &, respectively

. E _ _ [E _ |E
O=0=, E=€E OF O=0,=, £=¢&/— (1.63)
E E E

or equivalently

g — — g
=, = or =
1—p °7° “T1-D

, E=¢e(1—D) (1.64)

The damage effect matrix, being matrix representation of the damage effect tensor
[M] = [diag {M11, M2z, M33, Mas, Mss, Meg}] (1.65)

is expressed in terms of the damage parameter D as follows:

1
[M] = —— [diag{1,1,1,1, 1, 1}] (1.66)
1-D
where the diagonal form is applicable.
Damage effect matrix plays an essential role in definitions of the damage effective
stress tensor o

T
~ Ox Ty gz Tyz Txz Txy
Mo — ’ 7 , , , 1.67
to} = Mlia) 1—D1—D1—D1—D1—D1—D] (.on
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and the damage effective compliance (stiffness) matrix [E™1]

[E-1 = MITE-M] =
1 —v —v
1 —v
B 1 1 (1.68)
~ E(1—-D)? 1+v

14+v
14+ v

For brevity, in all the above equations (1.62—1.68) the assumption of material
isotropy in undamaged state (A) is applied.

Assumption of the isotropic damage nature is too strong a simplification since
usually microvoids or microcracks are of oval or directional shapes. A proper damage
description requires application of orthotropic damage representation (1.61), which
under the assumption of the principal damage frame reduces to the diagonal form,
where Dy, D>, D3 components may be interpreted by reduction of effective areas 1,
2, 3 (1.60), hence

AS
D = D, D; = A—’ i=1,2,3 (1.69)

Chosen representations of the damage effect matrix based on various hypotheses,
after Chen and Chow [9], Skrzypek [49], Murakami [40], can be defined as follows:

o i}
=D
1—D, L
[M,] = R (1.70)
JA=Dy(-D5) 1
JA=Dy(-Dn 1
L Ja=Dn-Dy
or
- 1 -
1-D; |
1-Ds L
[M] = 1=Ds ! (1.71)

1—0.5(D,+D3) .
1=0.5(D3+ D))

L 1-0.5(D1+Dy) -



18 A.W. Ganczarski et al.

or

)= é(lwlz)l( )
2\ T =or

L b (w7 + )
(1.72)

The damage effective stress can be defined, for instance in the following two ways,
both satisfying symmetry of the effective stress o (D):

Ox Txy Tz
1/2 1/2 1=-Dy /(A-Dn)(1-D2) ~/(1-D1)(1-D3)
o T . ) o
{J}—[Ml ] { }[M ] — [o] = 1-Dy \/(I_D%)(I—Dg)
1—D;3
(1.73)
or
Txy Txz
(1- Dl)2 (=D (1=Dy) (—D))(I-D3)
o} = ' ol = 9y Tyz
{0'} == [Ml] {U} [Ml] I [0'] = (17D2)2 (1= Dz)(l D3)
(1- D3)2
(1.74)

Exemplary effective compliance matrices take the following representations,
Skrzypek and Ganczarski [51]:

[E- ‘]—[MI]T[E vy =
(1— D1)2 - Dl)(l Dy) (1- Dl)(l D3)
—U
(I-Dy)(1-Dy) (1— 02)2 [ Dz)(l D3)

-V -V
(I-D3)(1-Dy) (1-D3)(1-D3) (1- D3)2

g

14+v
(1-Dy)(1-D3)
1+v
(1-D3)(1-Dy)

14+v
(1=Dp(1=Dy) |
(1.75)



1 Introduction to Mechanics of Anisotropic Materials 19

or

[E-1= ([le[E N+ [E-M]) =

—V
=D; D1 = OS(D1+Dz) T=05(D1+D5)
= os<1)z+r),> 1-D; Dz = 05(D2+D3)
1| 1= 05(D1+D1) - 05(Dz+D2) 1—D3
E 4
1=05(D,1D3)
14+v
T=0.5(D1+D3)

14v
1-0.5(D1+D2)

(1.76)

In both cases, for the sake of brevity, material isotropy at the undamaged state
was assumed.

In a more general case of full damage anisotropy the fourth-rank damage tensor
D; 1, built of 21 independent components, should be used.

Following Cauvin and Testa [6] the effective stiffness tensor is defined as

=10-D):E=R:E (1.77)

where fourth-rank tensors R and D stand for damage effect and damage tensors,
respectively. In general case of full damage anisotropy the 6 x 6 matrix representation
of the fourth-rank damage tensor is as follows:

Dy D12 D13 D14 D5 Dig
Dy, Dr3 Dyy Dys Dog
D33 D34 D35 D3
D] = 1.78
D] D44 Dys Dy (1.78)
Dss Dsg
Des

As a particular case the orthotropic damage is considered as example for which the
unsymmetric orthotropic damage matrix reduces to

Dy Dy Di3
Dy Dy D3

D3y D3, D33

[D] = (1.79)

Dss
Des

In the particular case when the orthotropic symmetry of damaged material is
considered, the damage tensor takes the following matrix representation, after Cauvin
and Testa [6], also Ganczarski [17]:
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[ Di111 Di122 D133 i
Dao11 Dozoa D233
D3311 D3322 D3333
2Dy323
2D1313
2D1212 |

(D] (1.80)

defined by 12 independent elements, in general nonsymmetric because three elements
under diagonal D711, D3311, D3327 are truly independent.

In the narrower case of transverse isotropy (in the plane 2, 3), number of inde-
pendent elements of the tensor D;jx; reduces to 5, namely D1, D3, D3, Dy, Ds

[ D1 Dy Dy 7
Dy D3 Dy
Dz/ D4 D3
D] = 1.81
(D] be— Dy (1.81)

Ds

Ds |

Two components D»>11 = D3311 = D/ are dependent, and expressed as
1
Dy = 15 [Dy +v (D1 — D3) — vDy4] (1.82)

This kind of transverse isotropy will further be classified as transverse isotropy case
of hexagonal symmetry (5 independent components in contrast to another transverse
isotropy of tetragonal symmetry where all 6 components are truly independent, see
Table 1.1).

The 6 x 6 transversely isotropic compliance matrix is of the following form:

-1 v vo .
E; E; E;
_w 1 _ 3
E, E» E,
~_ _vp _ w3 1

[E ]: E; E, Ep | (183)
Gy |
G2
s
L G|2 -

in which damage affected modules expressed in terms of damage variables are
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Table 1.1 Classification of anisotropic elastic materials with respect to stiffness matrix symmetry
referring to crystal lattice cf. Nye [42]

Conventional unit cells
of space lattices

Stiffness matrix [C]

Conventional unit cells
of space lattices

Stiffness matrix [C]

a*tb#c
a # B #7290
triclinic lattice

2. y# 90°

b

a
a*b+c
o=PB=90°%y+90°

monoclinic lattice

e

o= B v#90°

rhombohedral lattice

a=p=y=9
orthorhombic lattice

anisotropic Hooke’s
(21 constants)

monoclinic or oblique
Hooke’s anisotropy

!
=

(e]

trigonal anisotropy
(6 constants)

orthotropic Hooke’s
(9 constants)

5.

a

a
a=b*c
a=B=y=90°

tetragonal lattice

6.

a
a+c

o =90°%y=120°

hexagonal lattice

7.

a
a
a=b=c
a=B=y=90°

cubic (regular) lattice

8.

==
\'
%

55

polycrystal

oo !

oo o

transversely isotropic
tetragonal Hooke’s
(6 constants)

=

Pk
e

isotropy (2 constants)

(@]

hexagonal Hooke’s
(5 constants)

el

f’

Cubic Hooke’s
(3 constants)

1.7'

E _E(l D1)(1—D3—D4)—2D, D>/

1—D3—D4—2vD>/
_ v(1=D3—D4)—(1—v)D>/
V12 = = 1-D3;—Ds—20Dy
Er,—E (1=D3+ Dy)[(1=D1)(1=D3—D4)—2Dy Dy/]
2 = B {0=D)(A=D3—vD4)—vD,(1—D3 + Dg)—(1 + ) D2 D2/ (1.84)
1z — (A=D1 (W=vD3=Dy) +vDy(1=D3 + Da)=(1+v) Dy Do/ ’
23 = "0=D)(I=D3—vD4)—vD>r(1—D3 + D3)—(1 + ) D2 D2/
Gy = ﬁ(l — D3 — Dy)
G2 = 5t (1 = Ds)
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More accurate description of anisotropic damage may be provided by use of fabric
tensors, see Murakami [40], Voyiadjis and Kattan [55], Yun-bing and Xing-fu [56],
Lubarda and Krajcinovic [35]. For this reason a unit spherical surface around a given
point P(x) in the RVE is considered (see Fig. 1.4), and the directional distribution
&(n) of the microvoid density on the unit sphere is defined as a polynomial function
of the direction vector n

§(n) = Do + Djj fij(n) + Djjui fijia(n) + - - - (1.85)

Expression (1.85) is a generalized Fourier series with respect to the irreducible tensor
bases fij(n), fiju@®), ...

1
fij(n) = ninj — 36i;

1
fijki(n) = ninjngn; — 5 (6;jnen; + dignjng + dyn jng

] (1.86)
+0jkning + 6jning + onin;) + W(éij”knl
+ dikn jng + Oy jng)
The tensor bases fij(n), fijxi(n), ... are symmetric with respect to the indices,

consist of even-order tensor components, and have vanishing trace.

The tensors Dy, D;j, D;j, ... characterize the directional distribution of damage,
and are called fabric tensors. For given £(n) they can be derived by calculating the
following integrals (cf. Murakami [40]):

Do =7~ [&myds2
52

Dij = %% f §(n) fij(n)d2 (1.87)
S2

Diji = 1=32579 [ £(n) fijx (n)ds2
SZ

The even-order tensors Do, D;j, D;jk, ... represent completely the damage state of
the materials, and have been used as the internal state variables in thermodynamic
modeling of creep and brittle damage, see Onat and Leckie [43], Lacy et al. [32].
Concluding, it is worth to mention that virgin material anisotropy may either
manifest from the very beginning of the elastic response when appropriate anisotropic

Fig. 1.4 Unit spherical
surface to represent
directional void distribution
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formulation of Hooke’s law is required or at damage initiation phase when damage
acquired anisotropy appears as shown above. In the last case the elasticity matrix
at the virgin state may have isotropic nature, whereas after some dissipative process
initiates it changes to anisotropic form.

1.3 Common Invariants of the Second-Order
and Fourth-Order Tensors

1.3.1 Common Invariants of Two Second-Order Tensors:
The Stress/Strain and the Damage Tensors

A fundamental (irreducible) set of common invariants of two second-order tensors
comprises 10 invariants. In a particular case when the common strain-damage space
(g, D) is considered they are furnished as

Jie = tr(e) = €ii

Jre = %tr(s €)= %5,-jeji

J3e = %tr(e ‘E-€) = %ajejkski

Jip = (D) = D;;

Jop = (D - D) = 1Dy Dy

J3p = tr(D - D - D) = $D;;Dji Dy
Jiep =tr(e - D) =¢;jDj;

Jrep = tr(e-€- D) = ¢gjje ji Dy

Jiecp =tr(e - D - D) =¢;;Dj; Dy

Jaep =tr(e-€- D - D) = g€ i Dy Dy

(1.88)

When another stress-damage commonly used space (o, D) is considered the fol-
lowing holds:

Jio = tr(o) = 0y

Jry = %tr(a -0) = %UijO'j,‘

J3, = %tr(a -0-0)= %U,‘jojkaki

Jip =t(D) = Dj;

Jop = %tl‘(D -D) = %Diiji

Jap = %tr(D -D-D)= %Diijka,’

Jiop =tr(o - D) = 0;;Dj;

Jroop =tr(o -0 - D) = Jl'ijka,'

Jsgp =tr(o - D - D) =0;jDj; Dy

Jaigp =tw(o -0 - D - D) =0jojx Dy Dy

(1.89)
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1.3.2 Common Invariants of Two Different-Order Tensors:
The Second Stress/Strain and the Fourth-Order
Structural Tensors

The orthotropic material is characterized by three mutually perpendicular symmetry
planes determined by three second-rank tensors called the structural tensors in terms
of which the elastic strain energy W can be represented as

W=WeE, MY, MP M) (1.90)

When axes of material orthotropy coincide with axes of reference frame the structural
tensors take the simplified forms

100 000 000
MY =] 00| M® = 10| M®=| 00 (1.91)
0 0 1

for which the following holds:
1=MD 4+ M® 4 M® (1.92)

Condition (1.92) means that the structural tensors are mutually dependent. Hence,
elastic strain energy (1.90) can be represented in terms of two structural tensors
chosen as independent, e.g., M M and M@

W=We, MY, M?) (1.93)
Analogously, strain tensor can be written as € = 1€ = € - 1, which finally leads to

1.94
e=MD . e+ M?P . e+ M® .e=1-¢ (154

Summing up, the above equations assure symmetry of the strain tensor &
1 1 1
e= E(E'Mm +MD )+ S MP 4+ M .e)+ 5(5~M(3) +M® .g) (1.95)

The following representation of elastic strain energy in terms of 7 invariants can be
obtained:

W =W|t(e), %tr(s - €), %tr(s -g-€),

tr(e - MWD), tr(e - MP), tr(e - MP), tr(e - e - M?)] (1.56)
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comprising both 3 single strain invariants and 4 common strain and structural tensor
invariants. However, based on (1.95) two first-strain invariants can be represented as

tr(e) = tr(e - M(l)) + tr(e - M(z)) +tr(e - M(3)) (1.97)

tr(e-e)=tr(c-e MYy +tr(e-e - MPD)+tr(e-e- M) ’
whereas the third strain invariant %tr(z—: - € - €) is ignored because strain energy must
be a quadratic function of strain €. For further details see Sect. 1.7.3.

1.4 Classification of Elastic Materials with Respect
to Symmetry Groups and Classes

For further considerations, analogy between the crystal lattice symmetry groups and
classes and corresponding symmetry of the stiffness matrices defined for crystalline
materials might be useful (cf. e.g. Nye [42]). Unit cells of the eight conventional
crystal lattices are demonstrated based on Love [34] and Jastrzebski [23], whereas
corresponding constitutive elasticity matrices are schematically sketched applying
Nye’s graphics (symbol e refers to independent element, symbol o refers to depen-
dent element, symbols @—® or O—O0 represent pairs of identical matrix elements,
symbols @ stand for pairs of elements in which one is doubled (effect of engi-
neering notation applied to shear strain v;; = 2¢;;), whereas symbols @——© denote
pairs of elements of the same absolute value but opposite signs, respectively.

1.4.1 Triclinic Hooke’s Anisotropy (21 Constants)

Deformation of representative cube taken of the generally anisotropic material of
triclinic symmetry subjected to exemplary axial tension along three axes is fully
anisotropic. This means that it comprises both anisotropic axial strains (transforma-
tion of the cube to a rectangular prism) and anisotropic shear strains (transformation
of the rectangular prism to a parallelepiped), as schematically sketched in Fig. 1.5.
In such a case of general deformation the elastic compliance matrix is fully popu-
lated. In other words, all components of the columnar stress vector depend on all six
components of the columnar strain vector (36 combinations). Final representation
of compliance matrix for fully anisotropic (triclinic) material is as follows:
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Fig. 1.5 Schematic

deformation of representative
cube of anisotropic triclinic
material under uniaxial
tension along three axes ™2

A.W. Ganczarski et al.

i

&

1 23 /2
"3
[E~1] =
r 1 _wvor _wsi | M3 M1y M2 9 — _
E1 Ep Ei| FEi E11 E11 o o o o o
_ Vi2 1 _wao | M23(2) "M31(2) "Mi2(2)
Eaz  FEaz Eao 77E22 nEQZ nE22 i e o
_ Vi3 _ V23 1 23(3) 31(3) 12(3) ° e o
Eaz Eaz Faz Eaz Eaz Eaz
T(1)23 T(2)23 77(3)23 1 [31(23) F12(23) .
Glos Gl G Glas Glas G °
77(1?%1 77(2§§1 77(3%%1 l‘(z:f)&m 12‘3 .u12(2§1)
Gz1 Gz Gai G31 G31 G31 b
Nyi2 M)z M@E)12 | He3)i2 H(31)12 1 °
- Giz Giz Giz | Gaiz G12 Giz - — (1.98)

Symmetry of the elastic compliance matrix (1.98) results from symmetry of both
stress and strain tensors, namely

=7  —vki=viEj;
Nij N(k)ij
Fe = G- — MiiwGij = Nwij Exk (1.99)
Mg(/jl) = N(Gk_l,)il'/ —> MijiyG ji = pikinij O
In should be pointed out that the symmetry Ei_jl = ]E;i] holds for elements

of compliance matrix but not for corresponding engineering material constants
Eii, vij, Gij, NG jk» Mijki) as shown in (1.100) versus (1.98) (Table 1.2)

[ E} EL EGED EF ER
Ezii Ez{ 2{ E;{ Ezsi E;{
i Ey Esy Esy |Esy Exs Exg
[]E ]_ Ezﬁ] E;zl E;gl ELtl E‘E_l E;61 (1.100)
E5) Es; Esy |Esy Esg Esg
Egl Eg) Eg |Eg)' Eg Egf
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Table 1.2 Superposition of the strain tensor components of anisotropic material corresponding to

subsequent stress tensor components

Strains
State axial shear
€1 €2 €3 Y23 V31 V12
831 3 3 3 Y
1 1 N T_,z L Lo 1.1 3 1 2
&) g o | 2 s 2
o V21 . V31 - M23(1) - M31(1) - T12(1)
—01 ——01 ——=—01| —/—01 —01 —
. Eiq By By E By By
31
f I — 3 3
o 1 1 V3] Y
: ol ol Lo|| 4 L2 1A iR 2
i L, Igz 2
Vi2 - 1 - V32 M23(2) - MN31(2) - M12(2) -
— =02 =02 ——=—02| —/—o02 ——02 ——02
Fao Foo _FEoo Foo Foo Foo
- 2 2y Y
1 3 12
j 1 3 [ T—>2 1<—T < 1 ©
2 B 123 (—l
Slg e e — T—»z Z
V13 V23 1 M23(3) M31(3) M12(3) -
—_ —_ 3
Ess Es3 Es3
3 3
& e (o - =9 e
2
1 - M(31)237_ N(12)237_
23 ——T23 —=—T23
Gas G Gas
3 3
VZ/)S(\ T—>2 IJ/ 131 l‘j\’ :QZ
2
H(23)31 - 1 - H2)31 -
31 ——T31 — 731
G31 G31 G31
3 3
o= P S 1= 1> 2
2
H(23)12T H(31)117_ 1 -
12 12 ——T12
G2 G2 G2

Elastic engineering modules of five types can be sorted in the following way, after

Lekhnitskii [33]:

e FE;;—axial modules (3 generalized Young’s modules)

e G;j—shear modules for planes parallel to the coordinate planes (3 generalized

Kirchhoff’s modules)

o v;j—Poisson’s ratios characterizing the contraction in the direction of one axis
when tension is applied in the direction of another axis (3 generalized Poisson’s

coefficients)
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o 1;jkn—coefficients characterizing shears in planes parallel to the coordinate
planes resulting from shear stresses acting in other planes parallel to the coor-
dinate planes (3 Chencov’s modules)

e 1;i(jkhy—mutual influence coefficients characterizing extensions in the directions
of the coordinate axes resulting from shear stresses acting in the coordinate planes
(9 Rabinovich’s modules)

The aforementioned modules are listed in Table 1.3. In case of full anisotropy the
shear stress acting in one plane results in a shear strain appearing in another plane.
This effect is described by the three Chencov modules. Hence, the bottom right-hand
side block of the compliance matrix (1.100) is fully populated, in contrast to the
case of isotropy where shear stress acting in one plane results in shear strain in the
same plane exclusively. This means that in case of isotropy the considered block of
compliance matrix must have the diagonal form.

In order to describe effect of axial stresses on shear strains (upper right-hand
side block), as well as effect of shear stresses on axial strains (lower left-hand side
block), it is necessary to define 9 additional modules 7)) j«, called Rabinovich’s
modules where the appropriate symmetry conditions hold (1.99). The total number
of discussed modules is equal to 21. However, only 18 of them are truly independent
because the compliance matrix [E~!'] has to obey transformation with respect to
three Euler angles. It should be pointed out that in general case of anisotropy it is not
possible to find any reference frame for which any element of the compliance matrix
can be equal to zero. The general case of anisotropy corresponds to the triclinic
symmetry lattice cell in which all three edges differ from each other and all three
angles between them differ from each other and none of them is equal to 90°, as
shown in item 1 of Table 1.1.

Table 1.3 Engineering modules defining elements of elastic compliance matrix (1.98) of fully
anisotropic material

Engineering elastic Coupling between | Corresponding axes or planes Number of
modules coefficients

Stress| Strain

Ei1, Ex, Exs Axial | Extension | The same axes 1 — 1, etc.
G12,G32, G3p Shear | Shear strain| The same planes 12 — 12, etc.
1, V31, V32 Axial | Extension | Different exes 1 — 2, etc.

131(23)> 112(23)» #1231) | Shear | Shear strain| Different planes 13 — 23, etc.

O | W | W|Ww|lw

M3(1)s - - -» N2(3) Shear | Extension | Normal to shear plane 23 — 1, etc.
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1.4.2 Monoclinic Hooke’s Anisotropy (13 Constants)

Among anisotropic materials the narrower group called monoclinic symmetry can
be distinguished. Monoclinic or oblique symmetry corresponds to monoclinic space
lattice cell symmetry in which all three edges differ from each other, whereas two
angles are equal to 90° and one is different, as shown in item 2 of Table 1.1. The cor-
responding stiffness matrix symmetry characterizes through incomplete population
in which only 13 elements are not equal to zero, as shown below.

[E~'] =
r_1 _ V21 _ V31 Mi2(1) 7 —
E1 Eqn Eq Ei1 L
_ V12 1 _ V32 Mi2(2)
Ezy  Eaz2 Eao Fao
_ vi3 _ Va3 1 M12(3)
Es3  Fs3 FEas Es3
1 F31(23)
2 Gag o o
H(23)31 1 °
Gs1 Gs1
N1z M2)12 M3)12 1 °
L G2 G2 G2 Giz - = —

(1.101)

In other words, in case of monoclinic symmetry only three of the Rabinovich modules
and only one of the Chencov modules are different from zero.

1.4.3 Trigonal/Rhombohedral Hooke’s Anisotropy
(6 Constants)

Another important narrower case of material anisotropy called trigonal anisotropy
can be distinguished. The trigonal anisotropy corresponds to the rhombohedral cell
lattice in which all three edges are equal to each other and all three angles are equal but

different from 90°, as shown in item 3 of Table 1.1. The corresponding compliance
matrix takes the following representation:

[E™] = )
1 _ver _wsi| ") _
Eqn B B Ei o
_vi2 1 _va1|_ M3
E22 E11 Ell Ell
_viz _ Vis 1 °
Es3 B3  Bsg
M23 _ T(1)23 1
Gas Gas Gag
1 2p19(31)
Gt G31
2131)12 2(1+4v12) o
L [&P Eip -

(1.102)
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Itis seen that in case of trigonal symmetry among Rabinovich’s modules only two are
nonzeroth but in fact only one of them is independent because they only differ in sign.
Additionally, only one Chencov’s modulus is different from zero but in fact it is the
dependent modulus due to the speciﬁc coupling between components 2E Ql =F 5_61
and E2_41 = —E14 as well as E 11 = E22 s Eqgy = Es_s s E1_31 = E2_31 whereas

66 = (E 111 - E, o /2 must hold. Finally for trlgonal symmetry only 6 elements
of the compliance matrix are independent, see Berryman [2].

1.4.4 Orthorhombic Hooke’s Orthotropy (9 Constants)

The majority of engineering materials exhibit a specific symmetry property, which
may result in reduction of the number of nonzeroth elastic modules. It can be done
when, for chosen symmetry group or class, some particular material directions are
defined in such a way that transformation of the compliance matrix from an arbitrary
coordinate frame to the given structural symmetry frame leads to the zeroth popula-
tion of the top right-hand side and the bottom left-hand side blocks of the compliance
matrix (1.98), and additionally the bottom right-hand side block possesses a diag-
onal form. In such practically important cases both the nine Rabinovich 7z and
the three Chencov ;) modules are equal to zero, and consequently, coupling
between the shear stresses and elongations does not exist such that shear strains are
produced exclusively by the action of stresses at the same planes. In this particular
symmetry, called orthotropy, there exist three mutually perpendicular axes (1, 2, 3)
that determine the three material orthotropy planes. The orthotropy symmetry case
corresponds to the orthorhombic lattice in which all three edges differ each from
other but all angles are equal to 90°, as presented in item 4 of Table 1.1.

[ L _ v vsn 11 —
E11 Ell Ell * °
iz 1 vs2
Egg E22 E22
_ i3 _ Va3 _1
L33 Es3  Fss T
Gag 0 0 i
L
€ °
1
L Giz2 1 L o |
(1.103)
The following conditions must hold to assure matrix symmetry:
121 V12 V13 V31 123 V32
—_—_ = === === (1.104)

Enn  Exn Eys  En Eys  Ex

Finally, in case of orthotropy the number of independent material constants is nine,
that is, three generalized Hooke’s modules E11, Ex, E33, 3 generalized Kirchhoff’s
modules G132, G23, G31 and three generalized Poisson’s ratios 121, 13, 13].
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1.4.5 Tetragonal Hooke’s Transverse Isotropy (6 Constants)

For several engineering applications the general orthotropic symmetry model seems
too complicated, since additional symmetry conditions frequently appear. Particu-
larly, when conditions of isotropy hold in selected orthotropy plane the so-called
transverse isotropy obeys.

In case of so-called tetragonal symmetry material properties in the plane (1, 2)
satisfy condition of cubic symmetry, see item 5 of Table 1.1

Ey1=Epn, Gi3=Gx3, 131 =v3n (1.105)

Hence, in case of transverse isotropy of tetragonal symmetry the number of indepen-
dent material constants is equal to 6: Eq1, E33, G23, G12, 21, v31. Corresponding
crystal lattice is sketched in item 5 of Table 1.1, where tetragonal lattice being special
case of the orthorhombic lattice with a = b # ¢ obeys.

When the constraints (1.105) are applied to compliance matrix (1.103) the
transverse isotropy tetragonal symmetry case yields

11 Eu En .\: I
L s
[ ]
Ga:
23 1 .\.
Gas

1
Gz | °

(1.106)

It follows from the constraints (1.105) that six independent material constants define
the tetragonal symmetry matrix:

e FE11, Ez3—two Young’s modulus in the plane of isotropy and direction perpendic-
ular to this plane,

e 151, v31—two Poisson’s ratios referring to transverse contraction or swelling
caused by tension or compression in direction perpendicular to isotropy plane,

e G2, Goz—two different Kirchhoff’s modules in the isotropy or orthotropy planes.

1.4.6 Hexagonal Hooke’s Transverse Isotropy (5 Constants)

In special case of the transverse isotropy called hexagonal symmetry the additional
constraint must obey for the shear modulus in the isotropy plane

Eq

Gp=—1
2 2(1 4+ v21)

or  Egl=2 (El_ll - El—;) (1.107)
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where modulus G 3 is expressed in terms of the transverse Young modulus E11 and
transverse Poisson’s ratio v»1. Hence, in case of the transverse isotropy of hexagonal
symmetry the number of independent constants is equal to 5: Eqq, E33, G23, V21,
v31. A choice of the five independent material constants from among six can be
performed in an optional way, for instance

r_1 Va1 _ V31 T ° —
E1 E1 E1s .\. I
1 vs1
By B
L [}
L

G
23 \
Gas

2(14+v21)
L Eq °

(1.108)

Rolled metals, some multi-phase composite materials, basalt, or columnar ice are
examples of transversely isotropic materials, however, precise distinction between
the tetragonal or hexagonal symmetry classes is often difficult (see for example
Gan et al. [16]).

1.4.7 Cubic Hooke’s Symmetry (3 Constants)

Further reduction in the number of independent constants leads to cubic symmetry for
which the compliance matrix is characterized by three independent material constants
Ei1=E» =E33=E,Gy; =G31 = G2 = G and 11 = v31 = v3» = v. Hence,
the following form of the compliance matrix is furnished:

i

SIS

&=
[

wlfss/Na/N

QlH
Q=
Q=

N

(1.109)

Note that in case of cubic symmetry the condition (1.107) does not hold. The corre-
sponding cubic or regular lattice is shown in item 7 of Table 1.1. A particular example
of the cubic symmetry material is nickel-based single crystal superalloy widely used
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in aircraft engines, especially for turbine blades as discussed by Desmorat and Marull
[12]. The cubic symmetry is the narrower symmetry case known from crystallogra-
phy, see Jastrzebski [23], since fully isotropic crystal lattices are unknown.

1.4.8 Isotropic Hooke’s Symmetry (2 Constants)

All the aforementioned symmetry groups have equivalences in existing crystal lattice
systems. Nevertheless, even narrower than the cubic symmetry called isotropy is
frequently used. The isotropy requires the infinite symmetry group which means that
all material directions are equivalent in terms of mechanical, thermal, electric, optical,
and magnetic properties. In other words it is not possible to distinguish any specific
direction. The isotropy is helpful when describing the majority of polycrystalline
materials either in a virgin state or artificially fabricated as particulate composites,
nano-composites, etc., see item 8 of Table 1.1.

In an isotropic material physical properties are independent of the reference
frame. Hence, any optional reference frame x, y, z is sufficient for unique defini-
tion of material properties. In order to derive mathematical form of the Hooke law
of isotropic material it is most convenient to apply superposition of strain com-
ponents {e} = {Ex, €y, €25 Vyzs Vox %Cy} caused by subsequent stress components
{o} = {04, 0y, 02, Tyz, Tex, Txy} (see Table 1.2). Applying vector-matrix notation
the isotropic Hooke law takes the form

{e} = [JE‘I] (o} (1.110)

where the isotropic compliance matrix [E~'] takes the following representation.
1 \\
G

It is clear that the elastic isotropic material is uniquely defined by two independent
material constants, the choice of which from among E, G, v is optional. In the
above representation diagonal modules E and G are chosen as independent. Hooke’s
law can also be transformed to the following inverse relation, (see Ottosen and
Ristinmaa [44]):

DO DO
3=
—

QlH
Q=

(1.111)

{o} = [E]{e} (1.112)
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where the isotropic stiffness matrix [E] is defined as

M1 —v v v ]
1—v v
1—v
Fl = _ 1.113
LE] (I+v)(1-2v) 1-2v ( )
2
1-2v
2 1-2v
L P

Format of elastic stiffness matrix (1.113) involves elements all dependent on both
E and v such that the format equivalent to (1.111) cannot be achieved. Explicit
separation of the diagonal matrix elements related to shear deformation and the
off-diagonal matrix elements related to extension is possible by use of the format
expressed in terms of Lamé’s constants A and p

A+ 2p A A
A+ 2u A \‘\.—I
A+ 2u
2p
2
2p

where the classical definitions of Lamé’s constants hold

(1.114)

Ev

It is worth to mention that the last format (1.114) can be interpreted by use of Nye
graphics (e or o) where three off-diagonal first quarter elements and three diagonal
third quarter elements are considered as independent.

The considered case of elastic isotropy is the only symmetry case for which it
is possible to separate effects of shape and volume changes when decomposition of
strain and stress tensors into deviators and axiators (1.5), (1.25) is used as

1 1
eml=—oml e

_ 1.116
3K 26’ (1.116)

Two modules in the above pair of relations called the bulk modulus K and the
Kirchhoff modulus G can be expressed in terms of the Young modulus E and the

Poisson ratio v
E E

K:m G:m (1.117)
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However, in all other cases of material anisotropy (items 1 to 7 in Table1.1)
aforementioned separation of volumetric from shear effects is impossible.

In the particular case of plane stress state in the x, y plane strain component €,
can be expressed in terms of strain components in x, y plane as follows:

v
1—v

0, =0—>¢,=—

(ex +&y) (1.118)

Finally, plane stress stiffness matrix [E can be reduced to the 3 x 3 matrix

vE

Ox 1 —gz 1 —E1/2 0 Ex
14
oy t=| e 0 &y (1.119)
T. E ,
w 0 ‘ 2 J U7

1.5 Analogy Between Constitutive Fourth-Order Tensors:
The Elastic (Hooke’s) and the Yield/Failure (von Mises’)
of the Same Symmetry

Identification of material symmetry in elastic range of deformation (anisotropy,
orthotropy, transverse isotropy, isotropy, etc.) is a starting point to appropriate
description of both the limit criteria that control transition from the elastic range into
the state connected with energy dissipation (material damage, plastic yield, phase
change, etc.) as well as correct constitutive description of deformation processes
in nonelastic range. It can be expected that if material in the elastic range exhibits
isotropic behavior, then at least in the initial phase of plastic yielding it will approx-
imately save properties of isotropy. The nature of elastic deformation resulting from
interatomic distances change in crystal lattice is qualitatively different from the nature
of plastic deformation commonly interpreted as plastic microslips considered usu-
ally as slips and dislocations between atom layers inside lattice. However, it can be
expected that during more advanced plastic deformation certain orientation of plas-
tic slip systems in the particular grains leading to appearance of a material texture
characterized by an acquired anisotropy is observed (metal forming processes like
rolling, drawing and press forming, see Mr6z and Maciejewski [37]).

On the other hand if material even in elastic range is characterized by an anisotropy
(e.g., long fiber reinforced composites, wood, biological tissues) it can be expected
that in nonelastic range it will also exhibit anisotropy. However, it will be possible
decrease of a symmetry class toward more general plastic anisotropy, for instance
due to gradual evolution of elastic orthotropy. It can be however noticed that in case
of dissipative processes different from plasticity (e.g., material damage or failure)
loss of isotropy may be expected just in the elastic range, as observed in elastic
brittle materials e.g., ceramics, composites, concrete, etc. Additionally, initiation and
growth of other dissipative processes connected with plastic yielding, phase change
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or other structural changes may result in change in the initial symmetry class. For
example, in case of spheroidal graphite cast iron which generally exhibits brittle-
ductile behavior a gradual transition from elastic anisotropy caused by directional
damage to a state close to isotropy may be observed.

It can be assumed that features of anisotropy present in the elastic range are in
general inherited in nonelastic range if some dissipative processes like plastic yield,
damage, failure are present. Notice however that even, in the case when in inelastic
range material behaves as isotropic, initiation of inelastic range (plasticity, damage,
or failure) may provoke a material symmetry change. It was previously discussed
that in case of damage evolution the fourth-rank damage effect tensor [M(D)] may
be used to describe degeneration of the elasticity tensor [E] = [M(D)]T[E][M(D)],
in a similar fashion effect of other dissipative phenomena such as plastic yield,
structural change due to phase transformation may result in anisotropy nucleation
and growth.

Analogy between crystal unit cells of space lattices and constitutive matrices of
elasticity and initiation of plasticity is presented in Table 1.4. In the fundamental book
by Love [34] the analogy between crystal symmetry classes and groups from one
side and appropriate forms of elastic strain energy function W = % {e}T [E] {e} from
the other, is demonstrated. In this book an extension of the aforementioned analogy
also for symmetry of constitutive matrix of plastic yield initiation [IT] appearing in
the von Mises criterion {o}T [II]{c} = 1 is proposed. Unit cells of the four chosen
space lattices have been presented following Jastrzebski [23], whereas correspond-
ing constitutive elasticity matrices have schematically been presented applying Nye
[42] graphics (symbol e refers to independent element, symbol o refers to depen-
dent element, whereas symbols @&—® or O—O0 represent pairs of identical matrix
elements).

In case of full anisotropy the complete analogy between the Hooke matrix and the
von Mises plasticity matrix holds (21 independent matrix elements in both classes).
However, when narrower symmetry groups are considered: orthotropic, transversely
isotropic of tetragonal or hexagonal classes, it is necessary to notice that elastic
matrices are usually defined in stress tensor coordinates, whereas plastic constitutive
matrices are often defined in the narrower stress deviator coordinates.

Reduction of the tensorial space to the deviatoric one is always equivalent to
imposing additional constraints, hence the number of independent elements of plas-
ticity matrix is always lower than the corresponding number of independent elements
of elasticity matrix. Namely, it is clear that the 6-element orthotropic deviatoric Hill’s
matrix corresponds to the 9-element orthotropic Hooke’s matrix. Similarly, the 4-
element transversely isotropic tetragonal class Hill’s matrix corresponds to the 6-
element Hooke’s matrix, when the independence of Hill’s matrix of hydrostatic stress
is imposed. Finally, the 3-element transversely isotropic hexagonal class Hu—Marin
matrix corresponds to the 5-element transversely isotropic hexagonal class Hooke
matrix. Let us note that pairs of identical matrix elements are arranged in the same
way in both matrices of elasticity and plasticity.

Nevertheless, some dependent elements in the plasticity matrix (as represented
by symbol o) correspond to independent elements of elasticity matrix (sketched by
symbol e), but general population of both matrices remains unchanged.
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Table 1.4 Analogy between chosen symmetry groups: triclinic, orthorhombic, tetragonal and
hexagonal symmetry of Hooke’s matrix and plastic yield initiation von Mises’ matrix

Conventional unit cells
of space lattices

Chosen constitutive matrix symmetry

Elastic Hooke’s matrix

2w= (e}’ [Bl{e}

Plastic yield initiation matrix

(o [IT{c}=1

Q>

&
2
<Y
triclinic lattice
C

a

orthorhombic lattice

p a

a
tetragonal lattice

a
a . a
hexagonal lattice

Hooke’s (21 constants)

von Mises (21 constants)

[ONeN ]
O @O
® OO

orthotropic Hooke’s
(9 constants)

ool

deviatorc Hill’s
(6 constants)

\

transversely isotropic
tetragonal Hooke’s
(6 constants)

ool

e &
.

deviatoric transversely
isotropic teragonal Hill’s
(4 constants)

“

o

transversely isotropic
hexagonal Hooke’s
(5 constants)

> &
\

pseudodeviatoric
transversely isotropic
hexagonal Hu-Marin’s

(3 constants)
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The commonly used term “fransversely isotropic criterion” may be misleading
as long as an additional distinction between the fetragonal and the hexagonal sym-
metry is not introduced. The aforementioned distinction is known from the literature
dealing with prediction of composite behavior in elastic range and its validation by
experiments. For example, Sun and Vaidya [53] examined two types of materials:
Boron/Al composite and Graphite/Epoxy composite, and found that some of them
exhibit tetragonal while others hexagonal symmetry classes. However, even this dis-
tinction between tetragonal and hexagonal symmetry classes may be insufficient to
describe some composite materials, for example, SiC/Ti unidirectional lamina exam-
ined by Herakovich and Aboudi [19]. This is basically caused by residual stresses
that appear after cooling-down during fabrication process.

The above considerations are limited to the description of initial yield surface
only. Generally, it is assumed that during plastic hardening the initial yield surface
possessing certain symmetry is rebuilt in an isotropic way, which is generally not
true. This question was discussed, e.g., by Malinin and Rzysko [36], who invoked
Mursa [41] results for OTCz Titanium Alloy that confirms assumption of isotropic
nature of plastic hardening. However, Hu and Marin’s [22] findings for Aluminum
Alloy showed anisotropic nature of plastic hardening rather than isotropic.

Nevertheless, the plastic hardening theory is usually taken in an isotropic fash-
ion, e.g., Malinin and Rzysko [36], Ottosen and Ristinmaa [44], Hill [20, 21]. Such
approach, although commonly used, may be questionable in light of the aforemen-
tioned experimental testing, some of which confirm such assumption, cf. Mursa [41]
(Titanium alloy) but others contradict it cf. Hu and Marin [22] (Aluminum alloy),
Kowalewski and Sliwowski [26] (influence of first common invariant).

1.6 Strain Energy and Complementary Energy—The State
Potentials for Isotropic or Anisotropic Materials

Material is called elastic if its response (deformation) is independent of loading
history (Fig. 1.6), which means that stress is determined to be strain

oij = 0ij(€k) (1.120)

or vice versa
gij = €ij(ok1) (1.121)

After the fully closed loading—unloading cycle (A-B-A), the initial material state A
is recovered, independent of the loading—unloading path, Fig. 1.6b.

When the concept of strain energy per unit volume W [Nm/m3] is introduced,
the following definitions hold:

W(e) =/O’(6)d6 or Weeij) =/Uij(6k1)d€ij (1.122)
0 0
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@ _ (b,
B(g;=0;')
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Fig. 1.6 Schematic illustration of elastic material response: a strain energy and complementary
energy, b independence of final state of loading history

in case of the uniaxial or the multiaxial loadings, respectively. In the following
fashion the complementary energy per unit volume C [Nm/m?] is defined as

C(o) 2/5(§)d< or C(oij) :/ql,'(ekl)dql,' (1.123)
0 0

It is seen from Fig. 1.6 that the following is true:
C(oij) = oijeij — W(eij) (1.124)

It should be emphasized that in the considered case of pure elastic material both the
strain energy YV and complementary energy C are independent of loading path but
depend on the current state exclusively.

In a more general case, when the deformation process is accompanied by perma-
nent (irreversible) changes in material microstructure, for instance, resulting from
plastic yielding, damage growth, or phase transformation during martensitic change
or other irreversible phenomena, the strain energy and the complementary energy
depend on loading history.

In the elastic material for which strain energy depends on the current state only
W(e;;) but does not depend on strain path

Ooij  Oou

— K 1.125
Oexl Oeij ( )

the strain energy can be used as an invariant potential function for the stresses

(1.126)



40 A.W. Ganczarski et al.

In a similar fashion the complementary energy that depends on the current state only
C(o;) but does not depend on strain path

Ogii 0
eij _ 9k (1.127)
Ooy  0Oojj
can be used as an invariant potential function for the strain as follows:
dC(oij
iy = 2o (1.128)
Uij

In a general case of nonlinear elastic material the strain energy and the complemen-
tary energy are not equal to each other, W # C, whereas only in the case of linear
elastic material the equality V) = C holds.

In the above considerations the initial state was treated as stress and strain free,
point A (o = 0, ¢ = 0) in Fig. 1.6. In the more general case a residual stress and/or
strain are built-in A™ (¢ = 0™, ¢ = ). This residual state may result from
fabrication process or prior loading history in which some irreversible changes of
material structure have occurred (e.g., cyclic plasticity) or certain residual stresses or
strains have been built-in (e.g., after cooling-down of long fiber reinforced composite
characterized by different thermal properties of fiber and matrix). Note that in general
this residual state is unknown since the whole history of material, which contains
complete information about fabrication, its initial machining, as well as concerning
unloading process prior to the appearance of this self-balanced residual stress, is
unknown.

Consider the process of elastic deformation of material starting from the residual
state A (0", ™) toward the final state B(Ao, Ac¢), assuming at the beginning
uniaxial tension (see Fig. 1.7).

The increment of elastic strain energy of material corresponding to applied strain
AW(Ae) in the presence of residual stress €™ is equal to

Aeg
AW(Ag) = / Ao (Ae)d(Ae) (1.129)
0
Fig. 1.7 Process of elastic G

deformation of material with

prior residual state included O HAC - TN =1
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In the particular case of linear Hooke’s law for isotropic material it yields
1 2
AW(Ae) = EE(AE) (1.130)

where
Ac=FEAe Ao=0—-0% Asg=ec—£° (1.131)

obey. In the more general case of multiaxial deformation state the strain energy per
unit volume of elastic material in the presence of residual stress may be written as
Agij
AW(AQ./') = / Acij(Aer)d(Agij), (1.132)
0

whereas in case, if linear elastic material is assumed, the linear relation combining
stress and strain increments is furnished as

Acij = EjjrAc (1.133)

Equation (1.132) represents the increment of elastic energy AV in the presence of
the residual state €;; = £;2° + Ae;j, hence

Agij
AW(Agij) = / Eij Aed(Aeij) (1.134)
0

where the fourth-rank stiffness tensor E; i is used. Note that Eq. (1.134) is true both
for isotropic and anisotropic materials of optional class of symmetry. The stiffness
tensor Ejjz; comprises complete information defining the elastic material response.

In a similar way, the complementary energy increment AC of elastic material in
the presence of residual stress can be written as

Aoy

AC(Aow) = / Acyi (Asmn)d(Agkr) (1.135)
0

If the linear elastic material is assumed we arrive at

Aoy

AC(Acy) = / E;!

klmn

AGund(Ackr) (1.136)



42 A.W. Ganczarski et al.

—1

where E;,

stands for the compliance tensor of elastic material
Aewy = Eppp AGun (1.137)

The above Eq. (1.137) is an extension of the law of linear elastic material to the case of

existence of anonzeroth residual stress and strain Ao;; = oj; —afj’s, Acy = e —ep;

oij — 0i;° = Eiju (et — 1) (1.138)
or
ex = €1 = Eggpy (0mn — o) (1.139)

When the vector-matrix notation is used the fourth-rank elastic tensors E; jx; or E lgrlm
can be represented by the symmetric 6 x 6 matrices: [[E] or [E—1] called the stiffness
or the compliance matrices, respectively, whereas the tensors o;; — U{;S or gg — &5
take the format of columnar vectors of overstress or overstrain, respectively,

o = oy i ey

02 = 03y €2 ey

033 ~ 035 €3 5 (1.140)
™37y 723~ N3 '
31— Tap PR i

Ti2 = 7Y M2 =Ny

Hence, when the Voigt notation is used Eqgs. (1.138) and (1.139) can be written in
equivalent fashion
{a‘ — o™l =[E] {r—: - eres} (1.141)

or
[e—e*}=E{o - 0™ (1.142)

1.7 Elastic Strain Energy as Function of Invariants

The stress and the strain invariants are presented in Sect. 1.1. In the present section
the elastic strain energy per unit volume 1V expressed as the scalar product of both

these tensors 1
WZEJUE]‘{ (1.143)

will also be presented in terms of invariants. In the case of isotropic material three
basic invariants of the strain tensor are sufficient for unique representation of the strain
energy, whereas in case of elastic material comprising damage the use of common
invariants defining internal material microstructure is necessary (see Sect. 1.3).



1 Introduction to Mechanics of Anisotropic Materials 43

1.7.1 Elastic Strain Energy of Isotropic Materials

The simplest example of the scalar function of tensorial argument is the elastic strain
energy VV(e). In the case of isotropic material the strain tensor is uniquely determined
in terms of three basic or generic strain invariants (1.26) as follows:

W(e) = Wie, Jae, J3e) (1.144)

Constitutive law of elastic material (1.126) can be written as follows:

ow oW oL  OW 0l  OW 0J3

T Qer; T 0h. Oz | 0z Oei; O Oeig (1.145)
where 1. 01 03
oe,) = 0jj E =€) E = E€ikEkj (1.146)
hence,
Oij = g;v dij + 3}/2\: gij + g}:\: EikEkj (1.147)
Introducing the Lamé elastic constants \ = m and p = 2(1—‘11,) with
gl/lva = Ak g}/vzg =2u g};\i =0 (1.148)
we arrive at the classical Hooke law of the isotropic material
0ij = Aexklij + 2peij (1.149)

Summing up, the isotropic elastic Hooke material is uniquely defined by the strain
energy which depends on the first and the second basic invariants of the strain tensor

1
W= E/\(J15)2 +2up. (1.150)

but does not depend on the third invariant J3..

1.7.2 Strain or Complementary Energy of Elastic-Damage
Material—Common Strain-Damage and Stress-Damage
Invariants; the Helmholtz or the Gibbs State Potentials

Theory of invariants allows to determine minimal number the basic invariants
from which all other tensorial invariants necessary to obtain a sufficiently general
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representation of the state equations can be built (cf. e.g., Spencer [52], Rymarz [47]).
Usually the strain energy per unit volume WV(g;;) or the complementary energy per
unit volume C(o;;) is taken as the state potential of elasticity (see Sect.1.7.1). As
shown in Sect. 1.7.1, in case of elastic isotropy three invariants sufficiently determine
both types of energy W(J;:) or C(Ji,), i = 1,2, 3.

A scalar function dependent on a pair of tensorial arguments, each of them being
the symmetric second-rank tensor, is a more complex case. The representative exam-
ple of such a case is the strain energy of damaged material YV (e, D). Analogous
to the isotropic material (1.144), both tensors € or D are determined by their single
basic invariants J;. or Jip, i = 1,2, 3. However, the scalar function dependent on
both arguments WW(e, D) has to be uniquely defined not only by single invariants J;.
and J;p but also by the common invariants Jj.p, j = 1, 2,3, 4. This leads to the
format dependent on six single and four common invariants (total 10)

W(e, D) = W:, Jac, J3e, Jips 2, J3D5 J1eD, J2:D, 32D, Jacp)  (1.151)

In addition, the strain energy WV has to be a decreasing function with damage growth
since energy is released during the damage nucleation and growth, so it has to be
linear with respect to D. Hence, the strain energy cannot depend either on the third
strain invariant J3. and on the two single damage invariants J>p, J3p and also on
the two common invariants Jz. p, J4-p (underlined arguments in Eq. (1.151)). Based
on the above physical reasons the strain energy of elastic damaged material can
completely be represented in terms of a combination of five invariants (three single
and two common)

W(€1 D) = Pw(e, D) = pz/](‘llé"a J2Ev Jle JIED» JZED) (1152)

In this way an invariant representation of the Helmholtz free energy per unit mass is
furnished and finally applied as the state potential that determines the stress state in
a unique fashion

5 = Olpv(e, D)

1.153
e ( )

Note also that when the representation (1.152) is specified, some combinations of
invariants are allowed for which the scalar function i (e, D) remains quadratic with
respect to €. Hence, following Murakami and Kamiya [38] the free energy function
pY (e, D) per unit mass is furnished as

+m3JicJ1ep + nadoep '
or

p(e, D) = %)\ (tre)? + ptr (e - €) + 1y (tre)? tr(D)

+mtr (€ - €) tr(D) + mtr(e)tr (€ - D) + mutr (e - € - D) (1.155)

when the equivalent representation is used, e.g., Skrzypek et al. [50].
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Remember that the above formulas (1.154) and (1.155) for the Holmholtz free
energy refer to the specific case of elastic anisotropy which is acquired as the result
of damage nucleation and growth. Hence, in a virgin state where damage does not
exist the energy representation of the isotropic elastic material has to be recovered,
such that symbol € has to be referred to the elastic strain &°.

In a general 3D case the following matrix representation of the constitutive equa-
tion with total formulation holds:

022
033
023
013

(o1 )

L 012 )

TSEy1 SErp SEi3SEs SEis SEre | [ €5
SEyy SE3 SEnas SEzs SEne 5,

_ SEs3 s%34 S117;35 SE;36 53 (1.156)
SE44 *E4s5 “Eue 33
symm. SEss SEsg 53
L SEeo J L1752

where SE, ij represents effective elastic-damage secant stiffness matrix. The damage
acquired anisotropy is described by the 6x6 symmetric secant stiffness matrix as
follows (cf. Skrzypek et al. [50]):

SEnn = A+ 244 20p +m)te(D) +2(3 + 14) D1y
SEzp = A+ 2u+ 20 + m)tr(D) + 2(n3 + na) Doa
“Exy = A+ 24 420 + m)te(D) +2(3 + 14) D33
“Eip = A +2mitr(D) + 13(D11 + D)

SE13 = A+ 2nmitr(D) + m3(D11 + D33)

SExs = A+ 2mitr(D) + m3(Da + D33)

SEss = % [200 + 2mptr(D) + 14(D33 + D2)]

SE4s = D>

SEss = % [2p0 + 2mtr(D) + 14(D1y + D33)]
o (1.157)
E46 = naDi13

“Ee6 = 3 241+ 2mtr(D) + na(D11 + D)
SEs¢ = naD23

SE1s = 13D23

SEx4 = 834 = (113 + n4) D23

SErs = mDi3

SEis = S35 = (13 + n4) D13

SE36 = m13D12

SE16 = %S = (113 +14) D12
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The alternative formulation based on a concept of the complementary energy C
represented by a scalar function of the two tensorial arguments o and D, namely
C(o, D), leads to the Gibbs potential function per unit mass G as follows (cf.
Hayakawa—Murakami [18], Murakami [40]):

C(o, D) = pG(J1s, J20, S35, J1D, 2D, J3D, J10D> J20D, J30Ds Jaop)  (1.158)

where the crack closure effect due to compressive stress, originally introduced in
Hayakawa—Murakami [18], is omitted.

Repeating the above reasoning for physical nature of the Gibbs complementary
energy C(o, D), only five of the above aforementioned ten (1.158) common stress
and damage invariants can be admitted, namely

C(o, D) = pG(o, D) = pG(Jis, J20, J1D, J16D, J20D) (1.159)

Hence, in case of the elastic isotropic material in a virgin state which changes to
anisotropic material due to damage evolution, the Gibbs state potential takes the
following format (cf. Hayakawa and Murakami [18]):

pG(a, D) = — 5 (ra)? + Ltr (o - 0) + 9 (ro)? tr(D) (1.160)
+ htr (o - o) tr(D) + Ystr(o)tr (o - D) + 4tr (o - o - D) ’
which is complementary to (1.155). The matrix representation of secant compliance
matrix referring to Hayakawa—Murakami type elastic-plastic-damage material is as
follows:

e N
€5, “Ey CEp CEjy 0 0 0 [ o1
sp—1 sp-1
€5 “Eyy “E;y 0 00 g
=1
Sl B 000 73 (1.161)
£55 SE¥ 0 0 023
€93 symm. SES_S] 0 o013
e )| SEge | Lona)

where B
SE[) = £ +2u(D)(9) +92) + 2Dy (93 + Va)

SEy = —% +201tr(D) +03(Dyy + Do)

SE;y = —% +201tr(D) +03(Dyy + D33)

SEyy) = L 420D +92) + 2D 03 + U4)

SEyy = —% +201te(D) + 93(Da2 + D33) (1.162)
SE3y = L +201t(D) +93(D + D33)

SE = 52 4 20,u(D) + 94(Dap + D33)

st_sl = % + 295tr(D) + ¥4(D11 + D33)

“Egg = £ + 202t1(D) + 94(D11 + D1a)
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Note that the Gibbs complementary energy per unit mass refers to elastic strains
e® and is represented in the stress space by the quadratic function of o linear with
respect to D, in a similar way as the Helmholtz free energy pi) (e, D) but defined in
the strain space.

Four material constants 7); appearing in the Helmholtz state potential (1.155) as
well as four constants v); appearing in the Gibbs state potential (1.160) (i = 1,2, 3, 4)
act as additional material constants to the elastic constants of the virgin elastic
isotropic material: \, i or E, v, defining effect of damage on the state equation.
Namely, when the Helmholtz potential function W = pi(e, D) is used as the stress
potential we arrive at the state equation o = E(D) : €

o= 8(L:}) = [Atr(e) + 2ntr(e)tr(D) + mstr (e - D)]1 (1.163)
+2[p+mu(D)] e+ mtr(e)D +m(e-D+ D -¢)

On the other hand, when the formulation based on the Gibbs potential function is
used as the strain potential C = pG (o, D) we obtain the state equation in equivalent
forme =E~ (D) : o
0
€= (Lg) =—ztr(o)1+ %a’ + 291tr(D)tr (o)1

o
+2%htr(D)o : 1+ Y3 [tr (o - D)1+ tr(o) D]
+9Y4(c-D+ D - o)

(1.164)

Note however that in the case of elastic damaged material constitutive matrices
stiffness [[E(D)] and compliance [E~! (D)] are rebuilt following damage evolution
such that originally isotropic elastic material acquires an anisotropy.

The state equation of elastic damaged material (1.155) was calibrated for the high
strength concrete by Murakami and Kamiya [38], see also Skrzypek [49] as shown
in Table 1.5.

Apart from the constants of isotropic elasticity E, v (A, ) additional four con-
stants n; (i = 1, 2, 3, 4) are shown in Table 1.5.

The state equation of elastic moderate ductility with damage (1.164) was cali-
brated for spheroidal graphite cast iron FCD400 by Hayakawa and Murakami [18],
see also Skrzypek [49] as shown in Table 1.6.

Apart from the constants of isotropic elasticity E, v (A, ) additional four con-
stants %; (i = 1, 2, 3, 4) are shown Table 1.6.

Table 1.5 Calibration of six material constants in the constitutive equation of high strength concrete,
after Murakami and Kamiya [38])

E (GPa) v () n1 (MPa) 72 (MPa) 73 (MPa) 14 (MPa)
21.4 0.2 —400 -900 100 —23500
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Table 1.6 Callibration of six material constants in the constitutive equation of the spheroidal
graphite cast iron FCD400, after Hayakawa and Murakami [18]

E (GPa) v () 9; MPa~!) |9, MPa~l) |93 MPa~!) |94 (MPal)
169 0.285 —3.95x 107! [4.0 x 107° —4.0x 1077 |2.50 x 107°

The more extended analysis including: crack closure effect under compressive
stress, the initial damage threshold, and the subsequent damage growth during the
hardening phases can be found in Murakami and Kamiya [38], Hayakawa and
Murakami [18], Skrzypek et al. [50], Bielski et al. [4], Kuna-Ciskat
and Skrzypek [31].

1.7.3 Strain Energy of the Elastic Orthotropic
Materials—The Structural Tensors

So far the case of scalar function of second-order tensors expressed in terms of
invariants has been discussed. The more general case of a scalar function of a pair of
tensorial arguments being the second-order and the structural tensors is considered
in this section. The strain energy of orthotropic material W = W(e, M®) is the
representative example of such a case.

The constitutive equation of orthotropic hyperelastic material is obtained by
differentiation of the strain energy function, cf. Boehler [5]

oW oW oW ow
A4S Y (O Ndd V) iy V{C)
7T % T Tant Tan
0 0
+ B—)Z(e MDD+ MD . e) 4+ —a];\; (e-M?P+M? . ¢ (1.165)
ow

+

IV e . M® 1+ MD .
o7 (e + €)

where the following definitions of common invariants are used:

Ji=tre-MD)  h=t(Ee-M?) J=tr(e- MP)
M @ 3 (1.166)

Jy=tr(e-e M) Js=tr(e-e - M*“) Jo =tr(e-e- M)
and definitions (1.91) hold. Following Boehler [5], in order to determine the con-
stitutive equation of linear orthotropic material we choose, (see also Ottosen and
Ristinmaa [44])
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g—JV\: =1 + 01+ B3

ow

8_.]2 =1 + a3y + B33

oW (1.167)
o =1 +ash + a3

oW oW oW

on T o T a5

The coefficients (31, (52, 33 can be substituted by corresponding coefficients o, a4,
as in order to satisfy symmetry of orthotropic stiffness matrix

b=, h=o, [F=oas (1.168)

The above yields the constitutive equation of linear orthotropic material by use of
common invariants of strain and structural tensors

o = [aqtr(e - MD) + aptr(e - MP) + agtr(e - M) MD
+ [aatr(e - MD) + astr(e - MP) + astr(e - M) MP
+ [autr(e - MD) + astr(e - MP) + agtr(e - M) MO (1.169)
+a7(e- MY + MYV . g)+ag(e- M + M .¢)
+ag(e- M +M® . ¢)

Equation (1.169) can be rewritten in the classical form at o = E : € when the
consecutive tensor products € - M () and their traces are defined. For instance,

Exx Exy Exz 1 €xx 00
ce- MDD = Eyy Eyz | - 0 =|ey 00 (1.170)
€17 0 €xz 00
from where one finds
tr(e - MYy = ¢, (1.171)
and
2exx Exy €xz
e MDY 4 MDD .= exy 00 (1.172)
exz 0 0

When the remaining products € - M® and e - M® are calculated analogously, the
coefficients preceding the components of the strain tensor are grouped, and when the
engineering notation is consequently used the state equation (1.169) can finally be
furnished in the following form:
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Oxx E\ Ep Eg3 Exx

Oyy E> Exy Ex3 Eyy

Oz | _ | E31 E3 E33 €z (1.173)
Tyz Eyq Vyz .

Tzx Ess Vzx

Txy Ee6 Vxy

Subsequent elements of stiffness matrix of the orthotropic elastic material [E] are
expressed in terms of coefficients «; as follows:

Ein=a1+2a7 Ep=Enz=a E3=Ej;=qu
Exn=a3+2a3 Ex=FEx»=a5 E33=as+ 2 (1.174)
Ey=ags+a9 Ess=ay+a; Eg=a7+ag

Note that the above described procedure of linear orthotropic elasticity derivation is
based on the theory of invariant representation which differs from the conventional
approach (1.103). More detailed distinction between different ways of formulating
the linear elasticity constitutive laws will be presented in Sect. 1.9.

1.8 Remarks on Irreducible Coupling of Volumetric
and Shear Response in Anisotropic Materials

In the general case of full material anisotropy complete mutual coupling between all
stress and strain components holds. In fact, the generalized Hooke law (1.39) with
the compliance matrix for general anisotropy taken in the form (1.98) leads to (after
Rabinovich [45])

el = —(o11 — 121022 — 131033
Eyy
+ M3yT23 + N31(1)T31 + M2(1)T12)
€0 = —(— V2011 + 022 — V32033

E>
+ M3@)™23 + MB12)T31 + N122) T12)

€33 = — (— V13011 — 123022 + 033
Ex»
+ M33)T23 + M313)T31 + N123)T12) (1.175)
1
Y23 = G_23 (77(1)23011 + M2)23022 + 1(3)23033
+ ™3 + p3123)731 + M12(23)T12)
1
V3= 5 (77(1)31011 + 1231022 + 1(3)31033

G31
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+ 123(31)T23 + 731 + M12(31)7’12)

1

Y12 = G_12 (77(1)12011 + 1212022 + 1(3)12033

+ 123(12) 723 + H31(12)T12 + 712)

Note that in the above equations elastic extensions €11, €22, £33 depend not only on
all normal stresses 011, 022, 033 but also on all shear stresses 73, 731, 712 (through
the generalized Young modules E;; and the Rabinovich modules 1);j ), resulting
in nonzeroth elements of symmetric constitutive matrix of elasticity in its right
top block. Moreover, the shear strains 723, 731, 712 depend on all shear stresses
723, T31, T12 (through the generalized Kirchhoff modules G;; and the Chencov coef-
ficients p;jxr)) as well as on all normal stresses 11, 022, 033 such that the left
bottom and the right bottom blocks of the elasticity matrix are fully populated. The
above remarks lead in consequence to the conclusion that, in all cases different from
isotropy, pure volumetric deformation is inseparable from pure shear deformation.
In other words, irreducibility of elasticity equations (1.175) into uncoupled law of
volume change and law of shape change holds when the decomposition of strain and
stress tensors into axiator and deviator € = ¢,1 + e and o = o1 + 5 is used.

This impossibility is inevitable even in a narrower case of orthotropy (1.103) in
spite of the fact that shear stresses are uncoupled to the extensions and, vice versa,
normal stresses do not result in shear strains. In order to trace this let us rewrite
(1.103) as

1
€11 = — (011 — 121022 — V31033)
Eq
1
€2 = — (—vi2o11 + 022 — V13033)
Ex»
1 (1.176)
€33 = — (—V13011 — 123022 + 033)
E33
y ™3 " T31 y T12
23 = —— 3] = —— ==
G G3i Gy

Calculating the unit volume change called dilatation ® = €11 + €32 + €33 we obtain

1
O =3eyy = — (011 — 121022 — 131033)
En
1
+ —— (—vi2o11 + 022 — V13033) (1.177)
Ex»

1
+ — (113011 — 23022 + 033)
E33



52 A.W. Ganczarski et al.

or recalling the symmetry of elasticity matrix (1.104) the equivalent form is furnished

o11 022 033
e — I-vy—v3)+—=—U—-vi2—v2) + — 1 —vi3 —123)
En Exn E33

(1.178)

Note that in case of orthotropy dilatation is expressed not only in terms of the hydro-
static stress @ = @120 (on) but by the more general function ® = @' (g1, 022, 033;
E;j,vij)or® = O (gpx; Ez_]llcl)

In the particular case of isotropy when E;; = E, v;; = v the above equations
reduce to the classical form

. 1-2 3(1-2
O =3¢y = - (11 +o22+033) = Mah (1.179)
E E
or
_ 1 ke __E (1.180)
™= ) '

in which dilatation or mean strain £, depends on hydrostatic stress oy, exclusively.
Contrary to the previous case for material orthotropy by use of the following
definition of deviatoric strain:

1 _ 1 _
e=e—zeul=E Lo — §@°ft°(akk;Eij,L,)1 (1.181)
we obtain
ML _va v ]
En En En 0 0 0
e _vi2 1 _ v o
1 Exn Exn Ex 0 0 0 !
en v _ms Lo 0 0 022
ez | _ Ezz  E33  Ez3 033
€23 0 0 0|5 0 0 023
o o 0o o0 0L o[
e G31 012
0 0 0]0 0 & (1.182)
1
1
1

—30° (oyy; E[,;ld) 0
0
0
In other words, the pure shear deformation obtained by subtracting of the dilatation

from the full deformation depends also on @°™, so separation of these two effects
is impossible.
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1.9 Cauchy’s Elasticity, Hyperelasticity, or Hypoelasticity

In the theory of linear elasticity in case of infinitesimal deformations occurring in
isothermal or adiabatic conditions the constitutive relations linking tensors of stress
and strain can be defined in three equivalent ways:

e According to the Cauchy formulation it is assumed that there exists an equilib-
rium state, called natural state, for which all components of the stress and strain
tensors are equal to zero and to which material returns after removing loadings.
An environment of natural state obeys unique value relation between stress and
strain as

oij = Eijuen (1.183)

e According to the Green formulation, also called hyperelasticity, it is postulated an
existence of function of elastic strain energy per unit volume WV which is equal to
zero in an environment of natural state and such that an increment of work done
by stress is equal to an increment of strain energy

ow 1 1

gij = _3€ij W= Eai.ﬁkl = injklgiji?kl (1.184)

e According to the third formulation, called hypoelasticity, it is postulated an incre-
mental relation of the following form:

Oojj Oep

dojj = Ejjuden  or = Eiju—- (1.185)

For all three cases: Cauchy’s, hyper- and hypoelasticity tensor E;jr; may depend on
temperature but is independent of stress and strain tensors.

Note however that in the general case of nonlinearity constitutive tensors of elas-
ticity or hyperelasticity (1.183) and (1.184) may differ from constitutive tensor of
hypoelasticity (1.185). In the first case tensor representative matrix E is the secant
matrix [E] = [sc[E], whereas in the other case it is the tangent matrix [E] = [;nE].

It is worth to mention that although Cauchy, hyper- and hypoformulations of
elasticity are alternative in case of theory of infinitesimal deformations, they may lead
to essentially different results after entering the finite deformation range. Namely,
introducing definitions of finite strains

1 (‘314,- 81/!./ 8141' 814.,'
1 (0w Ouj /6’1_2(ax,+axi+axjaxi) Lise
E”_E(E,-Jra_x,-) U (Ou Ou;  Ou O, (1.186)
\EU_ 2 (axj' 8x,~ ax]‘ 8)6,‘ )
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where ¢;; and €;; stand for Green’s and Almansi’s strain tensors, respectively, and
corresponding stress tensors

po 0X; 8Xj

_— 1.187
» O O Okl ( )

Oij —> Eij =

where ¢;; and X;; denote the Lagrange and the second Piola—Kirchhoff stress tensors
instead of formulations (1.183—1.185) we arrive at mutually different formulations

Lij = Eijuen
DW _ 1 5 86,'./'

Dt po 7 or (1.188)
Do;; .
=, ~ Oir$2pj = 0jpS2pi = Eijucu

Dt
In case of hypoelastic material subjected to finite deformation appropriate constitu-
tive equation (1.188)3 comprises both the symbol of objective derivative of the stress
tensor Do;j /Dt and an effect of change of stress tensor resulting from rigid rotation
which is described by skew-symmetric spin tensor

0 l(%_%) _l(%_%)
2 \0x3 Oxp 2 \0x; Ox3
1 (0Ouy Oits 1 (0 )
Q= —=(—-=—" 0 | — == 1.18
/ 2 (8)63 3)62) 2 (3362 axl) ( ?)
Gy SRV CTTT
2 8)61 8)63 2 8)62 8)61
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