
Chapter 1
Introduction to Mechanics
of Anisotropic Materials

Artur W. Ganczarski, H. Egner and Jacek J. Skrzypek

Abstract This book is focused on constitutive description of mechanical behavior
of engineering materials: both conventional (e.g., polycrystalline homogeneous
isotropic or anisotropic metallic materials) and nonconventional ones (e.g., heteroge-
neous multicomponent usually anisotropic composite materials) fabricated by mod-
ern material engineering. Effective material properties at the macrolevel depend on
both the material microstructure (isotropic or originally anisotropic in general case)
and on dissipative phenomena occurred on fabrication and consecutive loading phase
resulting in irreversible microstructure changes (acquired anisotropy). The material
symmetry is a background and anisotropy is a core around which the book is formed.
In this way a revision of classical rules of enhanced constitutive description of mate-
rials is required. The aim of this introductory chapter lies in providing, apart from
classical definitions of tensor single invariants, also the choice of state variables
necessary to describe irreversible microstructure changes accompanying coupled
dissipative phenomena, and basic definitions of common invariants of either two
second-order tensors (e.g., stress/strain and damage tensors) or two different-order
tensors (e.g., stress/strain and fourth-order structural tensors). Concise classification
of anisotropic materials with respect to symmetry of elastic matrices as referred to
the crystal lattice symmetry is given, and extended analogy between symmetries
of constitutive material matrices (elastic and yield/failure) is also discussed. Next,
strain and complementary energy as function of either stress/strain invariants (ini-
tial elastic isotropy) or common stress/strain—damage invariants (damage acquired
anisotropy) are mentioned. Constitutive equation of linear elasticity in terms of com-
mon invariants of strain and structural orthotropic tensors is given. The scope of
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this chapter provides necessary tools for more extended constitutive description of
materials which exhibit either virgin anisotropy or damage or phase change acquired
anisotropy following microstructure changes.

Keywords Single or common tensor invariants ·Material symmetry and constitutive
matrices · Virgin or acquired anisotropy · Shear and volumetric change coupling ·
Strain energy of anisotropic materials · Damage and phase change state variables ·
Constitutive tensors analogy

1.1 Second-Order Tensors

1.1.1 Stress Tensor and Stress Tensor Invariants

Stress tensor σ, when mathematical σi j i, j = 1, 2, 3, or i, j = x, y, z, and engi-
neering notations are used is furnished as

[σi j ] =
⎡
⎣

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦ =

⎡
⎣

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎦ =

⎡
⎣

σx τxy τxz

τyx σy τyz

τzx τzy σz

⎤
⎦ (1.1)

where x, y, z denote cartesian coordinate system.
When symmetry of the stress tensor σi j = σ j i is assumed, the stress tensor can

be represented as columnar stress vector as follows:

{σ} = {σ11,σ22,σ33,σ23,σ13,σ12}T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
σ23
σ13
σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.2)

When the definition of stress deviator is assumed as

si j = σi j − 1

3
σkkδi j = σi j − σhδi j = σi j − 1

3
tr (σ) δi j (1.3)

where σh = 1
3σkk denotes either hydrostatic or mean stress, while δi j =

{
1 i = j
0 i �= j

denotesKronecker’s symbol, decomposition of the stress tensor into the stress axiator
and the stress deviator takes the following form:

σ = σh1 + s (1.4)
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where absolute notation σh1 and s are used for the stress axiator and the stress
deviator, respectively

[σh1] =
⎡
⎣

σh 0 0
0 σh 0
0 0 σh

⎤
⎦

[s] =
⎡
⎣

σx − σh τxy τxz

τyx σy − σh τyz

τzx τzy σz − σh

⎤
⎦ =

⎡
⎣

sxx sxy sxz

syx syy syz

szx szy szz

⎤
⎦

(1.5)

Classical stress transformation rule from i, j to k, l directions is

σkl = aki al jσi j (1.6)

where second-order tensor transformation rule is applied and aki , al j denote direction
cosines of the transformation from the original frame i, j = x, y, z in the new
reference frame k, l = ξ, η, ζ. It is possible to distinguish the specific transformation
into eigendirections (principal directions) for which the corresponding stress tensor
takes the diagonal representation

⎡
⎣

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎦ transformation−−−−−−−−−→

⎡
⎣

σ1 0 0
0 σ2 0
0 0 σ3

⎤
⎦ (1.7)

Three principal stresses are determined as real roots of the cubic equation, being
solution of eigenproblem for the stress tensor σ

σ = λ1 (1.8)

where λi = σ1,σ2,σ3 stand for eigenvalues. These principal stresses are real roots
of the characteristic equation of stress tensor λi = σi

det(σ − λ1) = 0 (1.9)

which can be rewritten in the equivalent fashion

σ3 − I1σσ2 + I2σσ − I3σ = 0 (1.10)

Three coefficients of the characteristic equation (1.10) I1σ, I2σ, I3σ are called the
principal invariants of the stress tensor and may be defined in terms of stress
components
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I1σ = tr(σ) = σi i = σxx + σyy + σzz [MPa]
I2σ =

∣∣∣∣
σxx σxy

σyx σyy

∣∣∣∣+
∣∣∣∣
σyy σyz

σzy σzz

∣∣∣∣+
∣∣∣∣
σzz σzx

σxz σxx

∣∣∣∣
= σxxσyy + σyyσzz + σzzσxx − (σ2

xy + σ2
yz + σ2

zx ) [MPa2]

I3σ = detσ =
∣∣∣∣∣∣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

∣∣∣∣∣∣
= σxxσyyσzz

+ 2σxyσyzσzx − (σxxσ
2
yz + σyyσ

2
xz + σzzσ

2
xy) [MPa3]

(1.11)

Apart from the principal invariants, the basic stress invariants also called the generic
stress invariants are of particular importance, namely

J1σ = σi i = tr (σ) [MPa]
J2σ = 1

2σi jσ j i = 1
2 tr

(
σ2
) [MPa2]

J3σ = 1
3σi jσ jkσki = 1

3 tr
(
σ3
) [MPa3]

(1.12)

It is seen that the basic stress invariants can be interpreted as traces of subsequent
powers of stress tensor σ, σ2 = σ · σ, σ3 = σ · σ · σ, if appropriate coefficients 1,
1/2, 1/3 are used. Note that the basic invariants differ from the principal invariants,
which are coefficients of the characteristic equation (1.10).

The basic stress invariants J1σ, J2σ, J3σ are expressed in terms of the principal
stress invariants I1σ, I2σ, I3σ as follows:

J1σ = I1σ
J2σ = 1

2 I 21σ − I2σ

J3σ = 1
3 I 31σ − I 21σ I2σ + I3σ

(1.13)

The reciprocal relations are

I1σ = J1σ
I2σ = 1

2 J 2
1σ − J2σ

I3σ = 1
6 J 3

1σ − J 2
1σ J2σ + J3σ

(1.14)

Decomposition of the stress tensor into the stress axiator (spherical tensor) and the
stress deviator (1.3−1.5) leads to the following system of principal or generic invari-
ants of the stress deviator

J1s = sii = tr(s) = 0 [MPa]
J2s = 1

2 si j s ji = 1
2 tr

(
s2
) [MPa2]

J3s = 1
3 si j s jkski = 1

3 tr
(
s3
) [MPa3]

(1.15)



1 Introduction to Mechanics of Anisotropic Materials 5

where, in similar fashion as in Eq. (1.12), subsequent powers of the stress deviator
s, s2 = s · s, s3 = s · s · s are used. Note that the first basic deviatoric stress invariant
J1s is equal to zero according to definition (1.3).

Additionally, some engineering tensor stress invariants characterized by the stress
dimension homogeneity [MPa], by contrast to the above defined basic invariants of
different dimensions [MPa], [MPa2], [MPa3] are frequently used as

σh = 1
3 J1σ = 1

3 tr (σ) = 1
3σ : 1 = 1

3σkk [MPa]
σeq = √

3J2s =
√

3
2 si j s ji [MPa] (1.16)

The first of them σh is easily recognized as the mean stress and the second σeq
represents the commonly used stress intensity also called the effective stress.

1.1.2 Strain Tensor and Strain Tensor Invariants

Strain tensor ε = εi j when uniform mathematical notation i, j = 1, 2, 3 or i, j =
x, y, z, and the engineering notation are used, is furnished as

[εi j ] =
⎡
⎣

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎤
⎦ =

⎡
⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦ =

⎡
⎢⎣

εx
1
2γxy

1
2γxz

1
2γyx εy

1
2γyz

1
2γzx

1
2γzy εz

⎤
⎥⎦ (1.17)

where x, y, z denote cartesian coordinate frame.
Transformation of the strain tensor is described in a similar fashion as the stress

tensor transformation (1.6), namely

εkl = aki al jεi j (1.18)

Similarly, the principal strains can be obtained by solution of the eigenproblem of
the tensor ε

ε = λ1 (1.19)

or equivalently as solution of characteristic equation of strain tensor

ε3 − I1εε
2 + I2εε − I3ε = 0 (1.20)

Coefficients of the above equation I1ε, I2ε, I3ε denote the principal invariants of the
small (linearized) strain tensor and are defined as the homogeneous, scalar functions
of the strain components
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I1ε = tr(ε) = εi i = εxx + εyy + εzz

I2ε =
∣∣∣∣
εxx εxy

εyx εyy

∣∣∣∣+
∣∣∣∣
εyy εyz

εzy εzz

∣∣∣∣+
∣∣∣∣
εzz εzx

εxz εxx

∣∣∣∣
= εxxεyy + εyyεzz + εzzεxx − (ε2xy + ε2yz + ε2zx )

I3ε =
∣∣∣∣∣∣
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

∣∣∣∣∣∣
= εxxεyyεzz + 2εxyεyzεzx

− (εxxε
2
yz + εyyε

2
xz + εzzε

2
xy)

(1.21)

If symmetry of the strain tensor is assumed equivalent representation of the strain
tensor in the form of columnar strain vector may be applied as

{ε} = {ε11, ε22, ε33, ε23, ε13, ε12}T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
ε23
ε13
ε12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.22)

When the definition of the strain deviator, analogous to the stress deviator (1.3), is
used, we arrive at

ei j = εi j − 1

3
εkkδi j = εi j − εmδi j = εi j − 1

3
tr (ε) δi j (1.23)

where εm denotes mean (volumetric) strain. Decomposition of the strain tensor into
the strain axiator and the strain deviator is given according to the scheme

ε = εm1 + e (1.24)

when the absolute notation was used, where εm1 and e denote the strain axiator and
the strain deviator, respectively

[εm1] =
⎡
⎣

εm 0 0
0 εm 0
0 0 εm

⎤
⎦

[e] =
⎡
⎢⎣

εx − εm
1
2γxy

1
2γxz

1
2γyx εy − εm

1
2γyz

1
2γzx

1
2γzy εz − εm

⎤
⎥⎦ =

⎡
⎣

exx exy exz

eyx eyy eyz

ezx ezy ezz

⎤
⎦

(1.25)
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The basic or the generic strain tensor invariants are defined in analogous fashion
as in Eq. (1.12)

J1ε = εi i = tr (ε)

J2ε = 1
2εi jε j i = 1

2 tr
(
ε2
)

J3ε = 1
3εi jε jkεki = 1

3 tr
(
ε3
) (1.26)

The basic strain tensor invariants J1ε, J2ε, J3ε are expressed in terms of the principal
strain invariants I1ε, I2ε, I3ε as

J1ε = I1ε

J2ε = 1
2 I 21ε − I2ε

J3ε = 1
3 I 31ε − I 21ε I2ε + I3ε

(1.27)

The reciprocal relationships are

I1ε = J1ε
I2ε = 1

2 J 2
1ε − J2ε

I3ε = 1
6 J 3

1ε − J 2
1ε J2ε + J3ε

(1.28)

The principal invariants of the strain deviator may be determined in an analogous
way as the principal invariants of the stress deviator (1.15), namely

J1e = eii = tr(e) = 0

J2e = 1
2ei j e ji = 1

2 tr
(
e2
)

J3e = 1
3ei j e jkeki = 1

3 tr
(
e3
) (1.29)

1.1.3 Matrix Representation of Stress and Strain Tensors

Stress σi j and strain εi j are the second-rank tensors having in general 32 = 9 compo-
nents, since each of indices i, j runs from 1 to 3. Each of them can be interpreted as
linear transformation of a certain vector to another vector. In case of the stress tensor,
linear transformation of direction cosines n j into a traction vector pi according to
rule

pi = σi j n j (1.30)

is written down or
p1 = σ11n1 + σ12n2 + σ13n3

p2 = σ21n1 + σ22n2 + σ23n3

p3 = σ31n1 + σ32n2 + σ33n3

(1.31)
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when the expanded form is used. Applying the matrix-vector notation to the above
formulae the equivalent form is reached

⎧⎨
⎩

p1
p2
p3

⎫⎬
⎭ =

⎡
⎣

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦
⎧⎨
⎩

n1
n2
n3

⎫⎬
⎭ (1.32)

In Eq. (1.32) the second-rank stress tensor is represented by the 3 × 3 tensor repre-
sentation matrix and analogously, the strain tensor representation matrix

[σ] =
⎡
⎣

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦ [ε] =

⎡
⎣

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎤
⎦ (1.33)

Due to symmetry conditions of both the stress σi j = σ j i and the strain εi j =
ε j i tensors, both representation matrices are symmetric, comprising 6 independent
components each. When engineering notation is used, replacing 1, 2, 3 frame by
x, y, z cartesian coordinate frame, and introducing appropriate notation σi j = τi j

and εi j = 1
2γi j for i �= j , we arrive at

[σ] =
⎡
⎣

σxx τxy τxz

σyy τyz

σzz

⎤
⎦ [ε] =

⎡
⎢⎣

εxx
1
2γxy

1
2γxz

εyy
1
2γyz

εzz

⎤
⎥⎦ (1.34)

1.1.4 Decomposition of Strains

In the case of infinitesimal deformation the total strain εi j can be expressed as the sum
of the elastic (reversible) strain εei j , inelastic (irreversible) strain εIi j , and thermal

strain εTi j :

εrs = εers + εIrs + εTrs (1.35)

In the process of deformation, variousmicrostructural rearrangements ofmaterial
structure may take place, for example, the changes in density and configuration
of dislocations, the development of microscopic cavities, changes from primary to
secondary phase, etc. All these rearrangements may contribute to both reversible and
irreversible strains (cf. Abu Al-Rub and Voyiadjis [1]), therefore:

εers = εErs + εedrs + ε
eph
rs + · · ·

εIrs = ε
p
rs + εdrs + ε

ph
rs + · · · (1.36)

where εErs is a “pure” elastic strain, and εedrs , . . . , ε
p
rs, . . . are respectively the reversible

and irreversible components of the total strain induced by dissipative phenomenon
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Fig. 1.1 Components of the
strain tensor εk

i j induced

by kth dissipative
phenomenon

(see Fig. 1.1), e.g., plastic flow, damage, phase transformation, etc. For example,
in the case of thermo-elastic-plastic-damage material the total strain tensor εi j is
expressed as

εrs = εErs + εedrs︸ ︷︷ ︸
εers

+ εIdrs + ε
p
rs︸ ︷︷ ︸

εIrs

+ εTrs (1.37)

while its damage-induced component, εdrs, consists of both reversible (ed) and irre-
versible (Id) damage strain terms:

εdrs = εedrs + εIdrs (1.38)

1.2 Fourth-Order Tensors and Matrix Representation

1.2.1 Stiffness and Compliance Matrices—Voigt’s Notation

General linear elasticity equation for anisotropic material, frequently called the gen-
eralized Hooke law, takes the forms

εi j = E−1
i jklσkl σi j = Ei jklεkl (1.39)

where the fourth-rank elasticity tensors, stiffness Ei jkl or compliance E−1
i jkl , are

defined, in general by 34 = 81 components, since each of indices i, j, k, l runs
through 1, 2, 3. Because of the symmetry of the stress σkl = σlk and the strain
εi j = ε j i tensors, both the stiffness and compliance tensors are symmetric with
respect to change of indices in pairs i ↔ j and k ↔ l

Ei jkl = E jikl = Ei jlk E−1
i jkl = E−1

j ikl = E−1
i jlk (1.40)
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Additionally, because of property of positive definiteness of strain energy or com-
plementary energy the symmetry with respect to change of indices between pairs
i j ↔ kl must also hold

Ei jkl = Ekli j E−1
i jkl = E−1

kli j (1.41)

Because of symmetry conditions (1.40) and (1.41) from among 81 components of
stiffness or compliance tensors, only 21 are independent. In order to describe the gen-
eralized Hooke’s law (1.39) by use of vector-matrix Voigt’s notation, stress and strain
tensors are written as columnar stress and strain vectors, if the following scheme of
change between tensor i, j = 1, 2, 3 and vectors k = 1, 2, . . . , 6 indices holds:

i j 11 22 33 23, 32 31, 13 12, 21
↓ ↓ ↓ ↓ ↓ ↓

k 1 2 3 4 5 6
(1.42)

From the above scheme we obtain the following representations of stress and strain
tensors:

[σi j ] =
⎡
⎣

σ11 σ12 σ13
σ22 σ23

σ33

⎤
⎦ →

⎡
⎣

σ1 σ6 σ5
σ2 σ4

σ3

⎤
⎦ →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

[
εi j
] =

⎡
⎣

ε11 ε12 ε13
ε22 ε23

ε33

⎤
⎦ →

⎡
⎣

ε1 ε6 ε5
ε2 ε4

ε3

⎤
⎦ →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.43)

Analogous scheme is applied to the first and second pairs of indices of stiffness and
compliance tensors

Ei jkl = Emn, E−1
i jkl = E−1

mn if m or n go through 1, 2, 3

2Ei jkl = Emn, 2E−1
i jkl = E−1

mn if m or n go through 4, 5, 6

4Ei jkl = Emn, 4E−1
i jkl = E−1

mn if both m and n go through 4, 5, 6
(1.44)

where appropriate factors 2 or 4 are applied.
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For instance, if the axial strain ε11 is considered the transformation scheme is as
follows:

ε11 = E−1
1111σ11 + E−1

1122σ22 + E−1
1133σ33 + 2E−1

1123σ23 + 2E−1
1113σ13 + 2E−1

1112σ12
↓ ↓ ↓ ↓ ↓ ↓ ↓
ε1 = E−1

11 σ1 + E−1
12 σ2 + E−1

13 σ3 + E−1
14 σ4 + E−1

15 σ5 + E−1
16 σ6

(1.45)

In case the shear strain ε23 is considered, the following are furnished:

ε23 = E−1
2311σ11 + E−1

2322σ22 + E−1
2333σ33 + 2E−1

2323σ23 + 2E−1
2313σ13 + 2E−1

2312σ12
↓ ↓ ↓ ↓ ↓ ↓ ↓
2ε4 = 2E−1

2311σ1 + 2E−1
2322σ2 + 2E−1

2333σ3 + 4E−1
2323σ4 + 4E−1

2313σ5 + 4E−1
2312σ6

↓ ↓ ↓ ↓ ↓ ↓ ↓
γ4 = E−1

41 σ1 + E−1
42 σ2 + E−1

43 σ3 + E−1
44 σ4 + E−1

45 σ5 + E−1
46 σ6

(1.46)

Finally, the generalized Hooke’s law (1.39) is represented in vector-matrix notation
as follows:

εi = E−1
i j σ j (i = 1, 2, 3, j = 1, 2, . . . , 6)

γi = E−1
i j σ j (i = 4, 5, 6, j = 1, 2, . . . , 6)

(1.47)

or
{ε} = [E−1] {σ} (1.48)

or equivalently
{σ} = [E] {ε} (1.49)

where [E] or [E−1] denote representation matrices of elastic stiffness or compli-
ance tensors, whereas {ε} and {σ} denote the columnar vectors of strain and stress,
respectively.When columnar vectors of stress and strain are used as well as elasticity
matrices are explicitly written down, Hooke’s law is furnished as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
γ4
γ5
γ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E−1
11 E−1

12 E−1
13 E−1

14 E−1
15 E−1

16

E−1
21 E−1

22 E−1
23 E−1

24 E−1
25 E−1

26

E−1
31 E−1

32 E−1
33 E−1

34 E−1
35 E−1

36

E−1
41 E−1

42 E−1
43 E−1

44 E−1
45 E−1

46

E−1
51 E−1

52 E−1
53 E−1

54 E−1
55 E−1

56

E−1
61 E−1

62 E−1
63 E−1

64 E−1
65 E−1

66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
τ4
τ5
τ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.50)
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or
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
τ4
τ5
τ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E11 E12 E13 E14 E15 E16

E21 E22 E23 E24 E25 E26

E31 E32 E33 E34 E35 E36

E41 E42 E43 E44 E45 E46

E51 E52 E53 E54 E55 E56

E61 E62 E63 E64 E65 E66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
γ4
γ5
γ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.51)

where engineering notation for shear stress τ j = σ j ( j = 4, 5, 6) is used.
It should bementioned that symmetric stiffness [Ei j ] = [E ji ] and symmetric com-

pliance [E−1
i j ] = [E−1

j i ] matrices, both having dimension 6 × 6, are representation

matrices of fourth-rank elasticity tensors Ei jkl or compliance E−1
i jkl . Transformation

of each matrix to another coordinate frame can be performed if the matrix nota-
tion (1.51) is replaced by the tensor notation (1.39), or by use of the appropriate
transformation matrix [Q]

[E′] = [Q]T[E][Q] (1.52)

For instance, if the stiffness matrix is considered the transformation matrix takes the
form

[Q] =

⎡
⎢⎢⎢⎢⎢⎢⎣

q11q11 q12q12 q13q13
q21q21 q22q22 q23q23
q31q31 q32q32 q33q33
2q31q21 2q32q22 2q33q23
2q31q11 2q32q12 2q33q13
2q21q11 2q12q22 2q13q23

q12q13 q13q11 q12q11
q23q22 q23q21 q22q21
q33q32 q33q31 q32q31

q33q22 + q32q23 q33q21 + q31q23 q31q22 + q32q21
q33q12 + q32q13 q33q11 + q31q13 q31q12 + q32q11
q13q22 + q12q23 q13q21 + q11q23 q11q22 + q12q21

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.53)

the coefficients of which are scalar products of corresponding direction cosines qi j =
ni n j between both coordinate frames.

1.2.2 The Choice of State Variables

The irreversible rearrangements of the internal structure can be represented by a
group of variables describing the current state of material microstructure:

{V k} = {V p, V d, V ph, . . .} (1.54)
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where V k may be scalars, vectors, or even rank tensors. For damage description, in
the case where the damaged material remains isotropic, the current state of damage
is often represented by the scalar variable V d = D denoting the volume fraction of
cracks and voids dV d in the total volume dV 0. Damage acquired orthotropy requires
a second-order tensor, for example, the classical Murakami–Ohno [38] tensor V d

i j =
Di j , see Eq. (1.61). In the most general case of anisotropy the description of damage
needs to be embodied in an eight-order tensor (cf. Cauvin and Testa [6]), while the
principle of strain equivalence allows using fourth-order tensors, see Sect. 1.2.3. For
phase transformation analysis the scalar variable V ph = ξ is commonly adopted (cf.
Egner and Skoczeń [14]), which denotes the volume fraction of the secondary phase
in the total volume of the two-phase Representative Volume Element. However, a
scalar variable is not capable of describing the acquired anisotropy due to partially
directional nature of the secondary inclusions in the primary matrix. Therefore,
instead of scalar variable a second-order phase change tensor can be defined in
analogy to the damage tensor:

V ph = ξ =
3∑

i=1

ξi ni ⊗ ni (1.55)

where ξi describes the ratio of the secondary phase area dAph
i to the total area dA0

i on
the principal plane of normal unit vector ni (cf. Egner [13]). Another group of state
variables consists of internal (hidden) variables corresponding to the modifications
of loading surfaces:

{hk} =
{

rp,αp
i j , lpi jkl , g

p
i jklmn, . . .

rd,αd
i j , ldi jkl , g

d
i jklmn, . . .

} (1.56)

where rp, rd correspond to isotropic expansion of the loading surface, αp
i j ,α

d
i j affect

loading surface translatoric displacements, lpi jkl , ldi jkl are hardening tensors of the
fourth order which includes varying lengths of axes and rotation of the loading
surface, and g

p
i jklmn, gdi jklmn describe changes of the curvature of the loading surface

(distortion) related to appropriate dissipative phenomenon (cf. Kowalsky et al. [27],
see Fig. 1.2). The complete set of state variables {Vst} reflecting the current state of
the thermodynamic system consists of observable variables: elastic (or total) strain
tensor εei j and absolute temperature T , and two groups of microstructural {V k} and
hardening {hk} state variables:

{Vst} = {εei j , T ; V p, V d, V ph, . . . , hp, hd, hph, . . .} (1.57)

When thermo-elastic-plastic-damage two-phase material is considered, the exem-
plary set of state variables for a general case of hardening/softening effects induced
by different dissipative phenomena is further listed in Table7.1.

http://dx.doi.org/10.1007/978-3-319-17160-9_7
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Fig. 1.2 Modifications
of the loading surface in the
space of thermodynamic
conjugate forces {J k}
(after [13])

When the material is subjected to reverse tension-compression cycles, the unsym-
metrical behavior in tension and compression is observed as the unilateral response
due to partial crack closure effect. To describe the phenomenon of the unilateral
damage, also called the damage deactivation or the crack closure/opening effect, a
decomposition of the stress or strain tensors into the positive or negative projection is
usually introduced using the fourth-rank projection operators (cf. Krajcinovic [30];
Bielski et al. [4]):

ε∗
i j =

3∑
I=1

κ(εI )n
(ε)
i I n(ε)

j I n(ε)
I k n(ε)

I l εkl = B(ε)
i jklεkl (1.58)

where the fourth-rank tensor B(ε)
i jkl is built of directional cosines between the principal

and the current spatial systems, n(ε)
i I and κ(εI ) = H(a) + ζH(−a), H is a Heaviside

function and ζ is a material constant.

1.2.3 Damage and Damage Effect Tensors

So far constitutive description of material has not accounted for influence of damage.
Damage means existence of microvoids and microcracks in the material that result in
essential deterioration of mechanical properties at the macroscale, such as strength
and stiffness or compliance.

In the simplest casewhenmicrovoids are spherical and homogeneously distributed
in material, damage is described by the scalar damage variable D, usually called the
damage parameter, Fig. 1.3
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Fig. 1.3 Three configurations used in CDM: a initial, b damaged, c effective pseudo-undamaged

D = Ad

A
(1.59)

Scalar damage variable D, introduced by Kachanov [24] and Rabotnov [46], rep-
resents the loss of effective area from the initial A to the damaged Ad states. In
order to generalize the scalar damage variable to the case when microvoids exhibit
clearly directional nature, the vector damage variable Di , is proposed by Davison
and Stevens [11], Kachanov [25], Krajcinovic and Fonseka [28]

Di = Ad
i

Ai
i = 1, 2, 3 (1.60)

Murakami and Ohno [39] introduced more general damage variable defined by the
symmetric second-rank damage tensor D, capable of capturing an orthotropic dam-
age nature

D =
⎡
⎣

D11 D12 D13
D22 D23

D33

⎤
⎦ (1.61)

Recently, researches aimed towards correct description of damage mechanism in
elastic-brittle rock-like materials, ceramics or concrete led to definition of the
fourth-rank damage tensors, e.g., Chaboche [8], Krajcinovic [29] or Lubarda and
Krajcinovic [35]. Apart from the above-mentioned damage variables possessing
clear geometric interpretation other damage variables referring to physical planes,
described in details e.g., by Gambarotta and Lagomarsino [15], Seweryn and Mróz
[48] should also be mentioned. More general classifications of damage variables
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were listed in following subject monographs by Krajcinovic [29, 30], Skrzypek and
Ganczarski [51], Betten [3] or Murakami [40].

In the frame of continuum damage mechanics (CDM), three configurations
are considered: initial configuration A that describes material in undamaged state
D(A) = 0, physical configuration B referring to the damaged state D(B) �= 0, and
the equivalent, fictitious pseudo-undamaged configuration C in which real heteroge-
neous material is substituted by a homogeneous material, free of damage D(C) = 0,
as schematically is shown in Fig. 1.3.

The physical (damaged) configuration B is equivalent to the effective (pseudo-
undamaged) configuration C in a certain sense, for instance, of strain equivalence
Chaboche [7], stress equivalenceTaher et al. [54], or elastic strain energy equivalence
Cordebois and Sidoroff [10]. In physical configuration B damage state manifests
through the effective elasticity modulus Ẽ , for instance,

Ẽ = E(1 − D) or Ẽ = E(1 − D)2 (1.62)

where the hypotheses of strain or stress equivalence (first formula) or elastic energy
equivalence are used. Contrarily, in the effective configuration C damage state man-
ifests by the definition of the effective variables σ̃, ε̃, respectively

σ̃ = σ
E

Ẽ
, ε̃ = ε or σ̃ = σ

√
E

Ẽ
, ε̃ = ε

√
Ẽ

E
(1.63)

or equivalently

σ̃ = σ

1 − D
, ε̃ = ε or σ̃ = σ

1 − D
, ε̃ = ε(1 − D) (1.64)

The damage effect matrix, beingmatrix representation of the damage effect tensor

[M] = [
diag {M11, M22, M33, M44, M55, M66}

]
(1.65)

is expressed in terms of the damage parameter D as follows:

[M] = 1

1 − D

[
diag {1, 1, 1, 1, 1, 1}] (1.66)

where the diagonal form is applicable.
Damage effect matrix plays an essential role in definitions of the damage effective

stress tensor σ̃

{σ̃} = [M] {σ} =
{

σx

1 − D
,

σy

1 − D
,

σz

1 − D
,

τyz

1 − D
,

τxz

1 − D
,

τxy

1 − D

}T
(1.67)
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and the damage effective compliance (stiffness) matrix [Ẽ−1]

[Ẽ−1] = [M]T[E−1][M] =

= 1

E(1 − D)2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν
1 −ν

1
1 + ν

1 + ν
1 + ν

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.68)

For brevity, in all the above equations (1.62–1.68) the assumption of material
isotropy in undamaged state (A) is applied.

Assumption of the isotropic damage nature is too strong a simplification since
usuallymicrovoids ormicrocracks are of oval or directional shapes. A proper damage
description requires application of orthotropic damage representation (1.61), which
under the assumption of the principal damage frame reduces to the diagonal form,
where D1, D2, D3 components may be interpreted by reduction of effective areas 1,
2, 3 (1.60), hence

D =
⎡
⎣

D1
D2

D3

⎤
⎦ Di = Ad

i

Ai
i = 1, 2, 3 (1.69)

Chosen representations of the damage effect matrix based on various hypotheses,
after Chen and Chow [9], Skrzypek [49], Murakami [40], can be defined as follows:

[M1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−D1

1
1−D2

1
1−D3

1√
(1−D2)(1−D3)

1√
(1−D3)(1−D1)

1√
(1−D1)(1−D2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.70)

or

[M2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1−D1

1
1−D2

1
1−D3

1
1−0.5(D2+D3)

1
1−0.5(D3+D1)

1
1−0.5(D1+D2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.71)
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or

[M3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−D1

1
1−D2

1
1−D3

1
2

(
1

1−D2
+ 1

1−D3

)

1
2

(
1

1−D3
+ 1

1−D1

)

1
2

(
1

1−D1
+ 1

1−D2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.72)

The damage effective stress can be defined, for instance in the following two ways,
both satisfying symmetry of the effective stress σ̃(D):

{σ̃} = [M1/2
1 ]T {σ} [M1/2

1 ] −→ [σ̃] =
⎡
⎢⎣

σx
1−D1

τxy√
(1−D1)(1−D2)

τxz√
(1−D1)(1−D3)

σy
1−D2

τyz√
(1−D2)(1−D3)

σz
1−D3

⎤
⎥⎦

(1.73)

or

{σ̃} = [M1]T {σ} [M1] −→ [σ̃] =
⎡
⎢⎣

σx
(1−D1)2

τxy
(1−D1)(1−D2)

τxz
(1−D1)(1−D3)

σy

(1−D2)2
τyz

(1−D2)(1−D3)
σz

(1−D3)2

⎤
⎥⎦

(1.74)

Exemplary effective compliance matrices take the following representations,
Skrzypek and Ganczarski [51]:

[Ẽ−1] = [M1]T[E−1][M1] =

1

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(1−D1)

2
−ν

(1−D1)(1−D2)
−ν

(1−D1)(1−D3)−ν
(1−D2)(1−D1)

1
(1−D2)

2
−ν

(1−D2)(1−D3)−ν
(1−D3)(1−D1)

−ν
(1−D3)(1−D2)

1
(1−D3 )2

1+ν
(1−D2)(1−D3)

1+ν
(1−D3)(1−D1)

1+ν
(1−D1)(1−D2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.75)
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or

[Ẽ−1] = 1
2

([M2][E−1] + [E−1][M2]
) =

1

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−D1

−ν
1−0.5(D1+D2)

−ν
1−0.5(D1+D3)−ν

1−0.5(D2+D1)
1

1−D2

−ν
1−0.5(D2+D3)−ν

1−0.5(D3+D1)
−ν

1−0.5(D3+D2)
1

1−D3

1+ν
1−0.5(D2+D3)

1+ν
1−0.5(D1+D3)

1+ν
1−0.5(D1+D2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.76)

In both cases, for the sake of brevity, material isotropy at the undamaged state
was assumed.

In a more general case of full damage anisotropy the fourth-rank damage tensor
Di jkl , built of 21 independent components, should be used.

Following Cauvin and Testa [6] the effective stiffness tensor is defined as

Ẽ = (I − D) : E = R : E (1.77)

where fourth-rank tensors R and D stand for damage effect and damage tensors,
respectively. In general case of full damage anisotropy the 6×6matrix representation
of the fourth-rank damage tensor is as follows:

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14 D15 D16
D22 D23 D24 D25 D26

D33 D34 D35 D36
D44 D45 D46

D55 D56
D66

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.78)

As a particular case the orthotropic damage is considered as example for which the
unsymmetric orthotropic damage matrix reduces to

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13
D21 D22 D23
D31 D32 D33

D44
D55

D66

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.79)

In the particular case when the orthotropic symmetry of damaged material is
considered, the damage tensor takes the followingmatrix representation, afterCauvin
and Testa [6], also Ganczarski [17]:
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[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133

D2211 D2222 D2233

D3311 D3322 D3333

2D2323

2D1313

2D1212

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.80)

defined by12 independent elements, in general nonsymmetric because three elements
under diagonal D2211, D3311, D3322 are truly independent.

In the narrower case of transverse isotropy (in the plane 2, 3), number of inde-
pendent elements of the tensor Di jkl reduces to 5, namely D1, D2, D3, D4, D5

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D1 D2 D2

D2′ D3 D4

D2′ D4 D3

D3 − D4

D5

D5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.81)

Two components D2211 = D3311 = D2′ are dependent, and expressed as

D2′ = 1

1 − ν
[D2 + ν (D1 − D3) − νD4] (1.82)

This kind of transverse isotropy will further be classified as transverse isotropy case
of hexagonal symmetry (5 independent components in contrast to another transverse
isotropy of tetragonal symmetry where all 6 components are truly independent, see
Table1.1).

The 6 × 6 transversely isotropic compliance matrix is of the following form:

[Ẽ−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

− ν12
E1

− ν12
E1

− ν12
E1

1
E2

− ν23
E2

− ν12
E1

− ν23
E2

1
E2

1
G23

1
G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.83)

in which damage affected modules expressed in terms of damage variables are
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Table 1.1 Classification of anisotropic elastic materials with respect to stiffness matrix symmetry
referring to crystal lattice cf. Nye [42]

E1 = E (1−D1)(1−D3−D4)−2D2D2′
1−D3−D4−2νD2′

ν12 = ν(1−D3−D4)−(1−ν)D2′
1−D3−D4−2νD2′

E2 = E (1−D3 + D4)[(1−D1)(1−D3−D4)−2D2D2′]
(1−D1)(1−D3−νD4)−νD2(1−D3 + D4)−(1+ ν)D2D2′

ν23 = (1−D1)(ν−νD3−D4) + νD2(1−D3 + D4)−(1+ ν)D2D2′
(1−D1)(1−D3−νD4)−νD2(1−D3 + D4)−(1+ ν)D2D2′

G23 = E
2(1+ ν)

(1 − D3 − D4)

G12 = E
2(1+ ν)

(1 − D5)

(1.84)
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More accurate description of anisotropic damagemaybe provided by use of fabric
tensors, see Murakami [40], Voyiadjis and Kattan [55], Yun-bing and Xing-fu [56],
Lubarda and Krajcinovic [35]. For this reason a unit spherical surface around a given
point P(x) in the RVE is considered (see Fig. 1.4), and the directional distribution
ξ(n) of the microvoid density on the unit sphere is defined as a polynomial function
of the direction vector n

ξ(n) = D0 + Di j fi j (n) + Di jkl fi jkl(n) + · · · (1.85)

Expression (1.85) is a generalized Fourier serieswith respect to the irreducible tensor
bases fi j (n), fi jkl(n), …

fi j (n) = ni n j − 1
3δi j

fi jkl(n) = ni n j nknl − 1
7 (δi j nknl + δikn j nl + δiln j nk

+ δ jkni nl + δ jlni nk + δklni n j ) + 1
5×7 (δi j nknl

+ δikn j nl + δiln j nk)

(1.86)

The tensor bases fi j (n), fi jkl(n), … are symmetric with respect to the indices,
consist of even-order tensor components, and have vanishing trace.

The tensors D0, Di j , Di jkl ,… characterize the directional distribution of damage,
and are called fabric tensors. For given ξ(n) they can be derived by calculating the
following integrals (cf. Murakami [40]):

D0 = 1
4π

∫
S2

ξ(n)dΩ

Di j = 1
4π

3×5
2

∫
S2

ξ(n) fi j (n)dΩ

Di jkl = 1
4π

3×5×7×9
2×3×4

∫
S2

ξ(n) fi jkl(n)dΩ

(1.87)

The even-order tensors D0, Di j , Di jkl , … represent completely the damage state of
the materials, and have been used as the internal state variables in thermodynamic
modeling of creep and brittle damage, see Onat and Leckie [43], Lacy et al. [32].

Concluding, it is worth to mention that virgin material anisotropy may either
manifest from the very beginning of the elastic responsewhen appropriate anisotropic

Fig. 1.4 Unit spherical
surface to represent
directional void distribution
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formulation of Hooke’s law is required or at damage initiation phase when damage
acquired anisotropy appears as shown above. In the last case the elasticity matrix
at the virgin state may have isotropic nature, whereas after some dissipative process
initiates it changes to anisotropic form.

1.3 Common Invariants of the Second-Order
and Fourth-Order Tensors

1.3.1 Common Invariants of Two Second-Order Tensors:
The Stress/Strain and the Damage Tensors

A fundamental (irreducible) set of common invariants of two second-order tensors
comprises 10 invariants. In a particular case when the common strain-damage space
(ε, D) is considered they are furnished as

J1ε = tr(ε) = εi i

J2ε = 1
2 tr(ε · ε) = 1

2εi jε j i

J3ε = 1
3 tr(ε · ε · ε) = 1

3εi jε jkεki

J1D = tr(D) = Dii

J2D = 1
2 tr(D · D) = 1

2 Di j D ji

J3D = 1
3 tr(D · D · D) = 1

3 Di j D jk Dki

J1εD = tr(ε · D) = εi j D ji

J2εD = tr(ε · ε · D) = εi jε jk Dki

J3εD = tr(ε · D · D) = εi j D jk Dki

J4εD = tr(ε · ε · D · D) = εi jε jk Dkl Dli

(1.88)

When another stress-damage commonly used space (σ, D) is considered the fol-
lowing holds:

J1σ = tr(σ) = σi i

J2σ = 1
2 tr(σ · σ) = 1

2σi jσ j i

J3σ = 1
3 tr(σ · σ · σ) = 1

3σi jσ jkσki

J1D = tr(D) = Dii

J2D = 1
2 tr(D · D) = 1

2 Di j D ji

J3D = 1
3 tr(D · D · D) = 1

3 Di j D jk Dki

J1σD = tr(σ · D) = σi j D ji

J2σD = tr(σ · σ · D) = σi jσ jk Dki

J3σD = tr(σ · D · D) = σi j D jk Dki

J4σD = tr(σ · σ · D · D) = σi jσ jk Dkl Dli

(1.89)
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1.3.2 Common Invariants of Two Different-Order Tensors:
The Second Stress/Strain and the Fourth-Order
Structural Tensors

The orthotropic material is characterized by three mutually perpendicular symmetry
planes determined by three second-rank tensors called the structural tensors in terms
of which the elastic strain energy W can be represented as

W = W(ε, M(1), M(2), M(3)) (1.90)

When axes ofmaterial orthotropy coincidewith axes of reference frame the structural
tensors take the simplified forms

M(1) =
⎡
⎣
1 0 0
0 0
0

⎤
⎦ M(2) =

⎡
⎣
0 0 0
1 0
0

⎤
⎦ M(3) =

⎡
⎣
0 0 0
0 0
1

⎤
⎦ (1.91)

for which the following holds:

1 = M(1) + M(2) + M(3) (1.92)

Condition (1.92) means that the structural tensors are mutually dependent. Hence,
elastic strain energy (1.90) can be represented in terms of two structural tensors
chosen as independent, e.g., M(1) and M(2)

W = W(ε, M(1), M(2)) (1.93)

Analogously, strain tensor can be written as ε = 1 · ε = ε · 1, which finally leads to

ε = ε · M(1) + ε · M(2) + ε · M(3) = ε · 1
ε = M(1) · ε + M(2) · ε + M(3) · ε = 1 · ε

(1.94)

Summing up, the above equations assure symmetry of the strain tensor ε

ε = 1

2
(ε · M(1) + M(1) ·ε)+ 1

2
(ε · M(2) + M(2) ·ε)+ 1

2
(ε · M(3) + M(3) ·ε) (1.95)

The following representation of elastic strain energy in terms of 7 invariants can be
obtained:

W = W [
tr(ε), 1

2 tr(ε · ε), 1
3 tr(ε · ε · ε),

tr(ε · M(1)), tr(ε · M(2)), tr(ε · M(3)), tr(ε · ε · M(2))
] (1.96)
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comprising both 3 single strain invariants and 4 common strain and structural tensor
invariants. However, based on (1.95) two first-strain invariants can be represented as

tr(ε) = tr(ε · M(1)) + tr(ε · M(2)) + tr(ε · M(3))

tr(ε · ε) = tr(ε · ε · M(1)) + tr(ε · ε · M(2)) + tr(ε · ε · M(3))
(1.97)

whereas the third strain invariant 1
3 tr(ε · ε · ε) is ignored because strain energy must

be a quadratic function of strain ε. For further details see Sect. 1.7.3.

1.4 Classification of Elastic Materials with Respect
to Symmetry Groups and Classes

For further considerations, analogy between the crystal lattice symmetry groups and
classes and corresponding symmetry of the stiffness matrices defined for crystalline
materials might be useful (cf. e.g. Nye [42]). Unit cells of the eight conventional
crystal lattices are demonstrated based on Love [34] and Jastrzebski [23], whereas
corresponding constitutive elasticity matrices are schematically sketched applying
Nye’s graphics (symbol • refers to independent element, symbol ◦ refers to depen-
dent element, symbols•−−• or◦−−◦ represent pairs of identical matrix elements,
symbols •−−◦· stand for pairs of elements in which one is doubled (effect of engi-
neering notation applied to shear strain γi j = 2εi j ), whereas symbols•−−−◦ denote
pairs of elements of the same absolute value but opposite signs, respectively.

1.4.1 Triclinic Hooke’s Anisotropy (21 Constants)

Deformation of representative cube taken of the generally anisotropic material of
triclinic symmetry subjected to exemplary axial tension along three axes is fully
anisotropic. This means that it comprises both anisotropic axial strains (transforma-
tion of the cube to a rectangular prism) and anisotropic shear strains (transformation
of the rectangular prism to a parallelepiped), as schematically sketched in Fig. 1.5.
In such a case of general deformation the elastic compliance matrix is fully popu-
lated. In other words, all components of the columnar stress vector depend on all six
components of the columnar strain vector (36 combinations). Final representation
of compliance matrix for fully anisotropic (triclinic) material is as follows:



26 A.W. Ganczarski et al.

Fig. 1.5 Schematic
deformation of representative
cube of anisotropic triclinic
material under uniaxial
tension along three axes

(1.98)

Symmetry of the elastic compliance matrix (1.98) results from symmetry of both
stress and strain tensors, namely

νi j
E j j

= ν j i
Eii

−→ νi j Eii = ν j i E j j
ηi j (k)

Ekk
= η(k)i j

Gi j
−→ ηi j (k)Gi j = η(k)i j Ekk

μi j (ki)
Gki

= μ(ki)i j
G ji

−→ μi j (ki)G ji = μ(ki)i j Gki

(1.99)

In should be pointed out that the symmetry E
−1
i j = E

−1
j i holds for elements

of compliance matrix but not for corresponding engineering material constants
Eii , νi j , Gi j , η(i) jk , μi j (ki) as shown in (1.100) versus (1.98) (Table1.2)

[
E

−1
]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E−1
11 E−1

12 E−1
13 E−1

14 E−1
15 E−1

16

E−1
21 E−1

22 E−1
23 E−1

24 E−1
25 E−1

26

E−1
31 E−1

32 E−1
33 E−1

34 E−1
35 E−1

36

E−1
41 E−1

42 E−1
43 E−1

44 E−1
45 E−1

46

E−1
51 E−1

52 E−1
53 E−1

54 E−1
55 E−1

56

E−1
61 E−1

62 E−1
63 E−1

64 E−1
65 E−1

66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.100)
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Table 1.2 Superposition of the strain tensor components of anisotropic material corresponding to
subsequent stress tensor components

State axial shear
ε1 ε2 ε3 γ23 γ31 γ12

1
E11

σ1 − ν21

E11
σ1 − ν31

E11
σ1

η23(1)

E11
σ1

η31(1)

E11
σ1

η12(1)

E11
σ1

− ν12

E22
σ2

1
E22

σ2 − ν32

E22
σ2

η23(2)

E22
σ2

η31(2)

E22
σ2

η12(2)

E22
σ2

− ν13

E33
σ3 − ν23

E33
σ3

1
E33

σ3
η23(3)

E33
σ3

η31(3)

E33
σ3

η12(3)

E33
σ3

η(1)23

G23
τ23

η(2)23

G23
τ 23

η(3)23

G23
τ23

1
G23

τ 23
μ(31)23

G23
τ23

μ(12)23

G23
τ 23

η(1)31

G31
τ31

η(2)31

G31
τ 31

η(3)31

G31
τ31

μ(23)31

G31
τ31

1
G31

τ31
μ(12)31

G31
τ 31

η(1)12

G12
τ12

η(2)12

G12
τ 12

η(3)12

G12
τ12

μ(23)12

G12
τ12

μ(31)11

G12
τ12

1
G12

τ12

Strains

Elastic engineering modules of five types can be sorted in the following way, after
Lekhnitskii [33]:

• Eii—axial modules (3 generalized Young’s modules)
• Gi j—shear modules for planes parallel to the coordinate planes (3 generalized

Kirchhoff’s modules)
• νi j—Poisson’s ratios characterizing the contraction in the direction of one axis
when tension is applied in the direction of another axis (3 generalized Poisson’s
coefficients)
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• μi j (kl)—coefficients characterizing shears in planes parallel to the coordinate
planes resulting from shear stresses acting in other planes parallel to the coor-
dinate planes (3 Chencov’s modules)

• ηi( jk)—mutual influence coefficients characterizing extensions in the directions
of the coordinate axes resulting from shear stresses acting in the coordinate planes
(9 Rabinovich’s modules)

The aforementioned modules are listed in Table1.3. In case of full anisotropy the
shear stress acting in one plane results in a shear strain appearing in another plane.
This effect is described by the three Chencov modules. Hence, the bottom right-hand
side block of the compliance matrix (1.100) is fully populated, in contrast to the
case of isotropy where shear stress acting in one plane results in shear strain in the
same plane exclusively. This means that in case of isotropy the considered block of
compliance matrix must have the diagonal form.

In order to describe effect of axial stresses on shear strains (upper right-hand
side block), as well as effect of shear stresses on axial strains (lower left-hand side
block), it is necessary to define 9 additional modules η(i) jk , called Rabinovich’s
modules where the appropriate symmetry conditions hold (1.99). The total number
of discussed modules is equal to 21. However, only 18 of them are truly independent
because the compliance matrix [E−1] has to obey transformation with respect to
three Euler angles. It should be pointed out that in general case of anisotropy it is not
possible to find any reference frame for which any element of the compliance matrix
can be equal to zero. The general case of anisotropy corresponds to the triclinic
symmetry lattice cell in which all three edges differ from each other and all three
angles between them differ from each other and none of them is equal to 90◦, as
shown in item 1 of Table1.1.

Table 1.3 Engineering modules defining elements of elastic compliance matrix (1.98) of fully
anisotropic material

Engineering elastic
modules

Coupling between Corresponding axes or planes Number of
coefficients

Stress Strain

E11, E22, E33 Axial Extension The same axes 1 → 1, etc. 3

G12, G32, G31 Shear Shear strain The same planes 12 → 12, etc. 3

ν21, ν31, ν32 Axial Extension Different exes 1 → 2, etc. 3

μ31(23),μ12(23),μ12(31) Shear Shear strain Different planes 13 → 23, etc. 3

η23(1), . . . , η12(3) Shear Extension Normal to shear plane 23 → 1, etc. 9
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1.4.2 Monoclinic Hooke’s Anisotropy (13 Constants)

Among anisotropic materials the narrower group called monoclinic symmetry can
be distinguished. Monoclinic or oblique symmetry corresponds to monoclinic space
lattice cell symmetry in which all three edges differ from each other, whereas two
angles are equal to 90◦ and one is different, as shown in item 2 of Table1.1. The cor-
responding stiffness matrix symmetry characterizes through incomplete population
in which only 13 elements are not equal to zero, as shown below.

−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η12(1)

E11

− ν12
E22

1
E22

− ν32
E22

η12(2)

E22

− ν13
E33

− ν23
E33

1
E33

η12(3)

E33
1

G23

μ31(23)

G23μ(23)31

G31

1
G31η(1)12

G12

η(2)12

G12

η(3)12

G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.101)

In otherwords, in case ofmonoclinic symmetry only three of theRabinovichmodules
and only one of the Chencov modules are different from zero.

1.4.3 Trigonal/Rhombohedral Hooke’s Anisotropy
(6 Constants)

Another important narrower case of material anisotropy called trigonal anisotropy
can be distinguished. The trigonal anisotropy corresponds to the rhombohedral cell
lattice inwhich all three edges are equal to each other and all three angles are equal but
different from 90◦, as shown in item 3 of Table1.1. The corresponding compliance
matrix takes the following representation:

−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η23(1)

E11

− ν12
E22

1
E11

− ν31
E11

− η23(1)

E11− ν13
E33

− ν13
E33

1
E33η(1)23

G23
− η(1)23

G23

1
G23

1
G31

2μ12(31)

G31
2μ(31)12

G12

2(1+ν12)
E11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.102)
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It is seen that in case of trigonal symmetry among Rabinovich’s modules only two are
nonzeroth but in fact only one of them is independent because they only differ in sign.
Additionally, only one Chencov’s modulus is different from zero but in fact it is the
dependent modulus due to the specific coupling between components 2E−1

14 = E−1
56

and E−1
24 = −E−1

14 as well as E−1
11 = E−1

22 , E−1
44 = E−1

55 , E−1
13 = E−1

23 whereas
E−1
66 = (E−1

11 − E−1
12 )/2 must hold. Finally for trigonal symmetry only 6 elements

of the compliance matrix are independent, see Berryman [2].

1.4.4 Orthorhombic Hooke’s Orthotropy (9 Constants)

The majority of engineering materials exhibit a specific symmetry property, which
may result in reduction of the number of nonzeroth elastic modules. It can be done
when, for chosen symmetry group or class, some particular material directions are
defined in such a way that transformation of the compliance matrix from an arbitrary
coordinate frame to the given structural symmetry frame leads to the zeroth popula-
tion of the top right-hand side and the bottom left-hand side blocks of the compliance
matrix (1.98), and additionally the bottom right-hand side block possesses a diag-
onal form. In such practically important cases both the nine Rabinovich η(i) jk and
the three Chencov μi j (kl) modules are equal to zero, and consequently, coupling
between the shear stresses and elongations does not exist such that shear strains are
produced exclusively by the action of stresses at the same planes. In this particular
symmetry, called orthotropy, there exist three mutually perpendicular axes (1, 2, 3)
that determine the three material orthotropy planes. The orthotropy symmetry case
corresponds to the orthorhombic lattice in which all three edges differ each from
other but all angles are equal to 90◦, as presented in item 4 of Table1.1.

−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11− ν12

E22

1
E22

− ν32
E22− ν13

E33
− ν23

E33

1
E33

1
G23

0 0
1

G13
0
1

G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.103)

The following conditions must hold to assure matrix symmetry:

ν21

E11
= ν12

E22

ν13

E33
= ν31

E11

ν23

E33
= ν32

E22
(1.104)

Finally, in case of orthotropy the number of independent material constants is nine,
that is, three generalized Hooke’s modules E11, E22, E33, 3 generalized Kirchhoff’s
modules G12, G23, G31 and three generalized Poisson’s ratios ν21, ν23, ν31.
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1.4.5 Tetragonal Hooke’s Transverse Isotropy (6 Constants)

For several engineering applications the general orthotropic symmetry model seems
too complicated, since additional symmetry conditions frequently appear. Particu-
larly, when conditions of isotropy hold in selected orthotropy plane the so-called
transverse isotropy obeys.

In case of so-called tetragonal symmetry material properties in the plane (1, 2)
satisfy condition of cubic symmetry, see item 5 of Table1.1

E11 = E22, G13 = G23, ν31 = ν32 (1.105)

Hence, in case of transverse isotropy of tetragonal symmetry the number of indepen-
dent material constants is equal to 6: E11, E33, G23, G12, ν21, ν31. Corresponding
crystal lattice is sketched in item 5 of Table1.1, where tetragonal lattice being special
case of the orthorhombic lattice with a = b �= c obeys.

When the constraints (1.105) are applied to compliance matrix (1.103) the
transverse isotropy tetragonal symmetry case yields

−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

1
E11

− ν31
E11
1

E33
1

G23
1

G23
1

G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.106)

It follows from the constraints (1.105) that six independent material constants define
the tetragonal symmetry matrix:

• E11, E33—two Young’s modulus in the plane of isotropy and direction perpendic-
ular to this plane,

• ν21, ν31—two Poisson’s ratios referring to transverse contraction or swelling
caused by tension or compression in direction perpendicular to isotropy plane,

• G12, G23—two different Kirchhoff’s modules in the isotropy or orthotropy planes.

1.4.6 Hexagonal Hooke’s Transverse Isotropy (5 Constants)

In special case of the transverse isotropy called hexagonal symmetry the additional
constraint must obey for the shear modulus in the isotropy plane

G12 = E11

2(1 + ν21)
or E−1

66 = 2
(

E−1
11 − E−1

12

)
(1.107)
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where modulus G12 is expressed in terms of the transverse Young modulus E11 and
transverse Poisson’s ratio ν21. Hence, in case of the transverse isotropy of hexagonal
symmetry the number of independent constants is equal to 5: E11, E33, G23, ν21,
ν31. A choice of the five independent material constants from among six can be
performed in an optional way, for instance

−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

1
E11

− ν31
E11
1

E33
1

G23
1

G23
2(1+ν21)

E11

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.108)

Rolled metals, some multi-phase composite materials, basalt, or columnar ice are
examples of transversely isotropic materials, however, precise distinction between
the tetragonal or hexagonal symmetry classes is often difficult (see for example
Gan et al. [16]).

1.4.7 Cubic Hooke’s Symmetry (3 Constants)

Further reduction in the number of independent constants leads to cubic symmetry for
which the compliancematrix is characterized by three independentmaterial constants
E11 = E22 = E33 = E , G23 = G31 = G12 = G and ν21 = ν31 = ν32 = ν. Hence,
the following form of the compliance matrix is furnished:

−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
E − ν

E − ν
E

1
E − ν

E
1
E

1
G

1
G

1
G

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.109)

Note that in case of cubic symmetry the condition (1.107) does not hold. The corre-
sponding cubic or regular lattice is shown in item 7 of Table1.1. A particular example
of the cubic symmetry material is nickel-based single crystal superalloy widely used
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in aircraft engines, especially for turbine blades as discussed byDesmorat andMarull
[12]. The cubic symmetry is the narrower symmetry case known from crystallogra-
phy, see Jastrzebski [23], since fully isotropic crystal lattices are unknown.

1.4.8 Isotropic Hooke’s Symmetry (2 Constants)

All the aforementioned symmetry groups have equivalences in existing crystal lattice
systems. Nevertheless, even narrower than the cubic symmetry called isotropy is
frequently used. The isotropy requires the infinite symmetry group which means that
allmaterial directions are equivalent in terms ofmechanical, thermal, electric, optical,
and magnetic properties. In other words it is not possible to distinguish any specific
direction. The isotropy is helpful when describing the majority of polycrystalline
materials either in a virgin state or artificially fabricated as particulate composites,
nano-composites, etc., see item 8 of Table1.1.

In an isotropic material physical properties are independent of the reference
frame. Hence, any optional reference frame x, y, z is sufficient for unique defini-
tion of material properties. In order to derive mathematical form of the Hooke law
of isotropic material it is most convenient to apply superposition of strain com-
ponents {ε} = {

εx , εy, εz, γyz, γzx , γxy
}
caused by subsequent stress components

{σ} = {
σx ,σy,σz, τyz, τzx , τxy

}
(see Table1.2). Applying vector-matrix notation

the isotropic Hooke law takes the form

{ε} =
[
E

−1
]
{σ} (1.110)

where the isotropic compliance matrix [E−1] takes the following representation.

−1 =⎡
⎢⎢⎢⎢⎢⎢⎣

1
E

1
E − 1

2G
1
E − 1

2G
1
E

1
E − 1

2G
1
E

1
G

1
G

1
G

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.111)

It is clear that the elastic isotropic material is uniquely defined by two independent
material constants, the choice of which from among E, G, ν is optional. In the
above representation diagonal modules E and G are chosen as independent. Hooke’s
law can also be transformed to the following inverse relation, (see Ottosen and
Ristinmaa [44]):

{σ} = [E] {ε} (1.112)
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where the isotropic stiffness matrix [E] is defined as

[E] = E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν
1 − ν ν

1 − ν

1−2ν
2

1−2ν
2

1−2ν
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.113)

Format of elastic stiffness matrix (1.113) involves elements all dependent on both
E and ν such that the format equivalent to (1.111) cannot be achieved. Explicit
separation of the diagonal matrix elements related to shear deformation and the
off-diagonal matrix elements related to extension is possible by use of the format
expressed in terms of Lamé’s constants λ and μ

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ
λ + 2μ λ

λ + 2μ
2μ

2μ
2μ

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.114)

where the classical definitions of Lamé’s constants hold

λ = Eν

(1 + ν)(1 − 2ν)
2μ = G (1.115)

It is worth to mention that the last format (1.114) can be interpreted by use of Nye
graphics (• or ◦) where three off-diagonal first quarter elements and three diagonal
third quarter elements are considered as independent.

The considered case of elastic isotropy is the only symmetry case for which it
is possible to separate effects of shape and volume changes when decomposition of
strain and stress tensors into deviators and axiators (1.5), (1.25) is used as

εm1 = 1

3K
σm1 e = 1

2G
s (1.116)

Two modules in the above pair of relations called the bulk modulus K and the
Kirchhoff modulus G can be expressed in terms of the Young modulus E and the
Poisson ratio ν

K = E

3 (1 − 2ν)
G = E

2 (1 + ν)
(1.117)
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However, in all other cases of material anisotropy (items 1 to 7 in Table1.1)
aforementioned separation of volumetric from shear effects is impossible.

In the particular case of plane stress state in the x, y plane strain component εz

can be expressed in terms of strain components in x, y plane as follows:

σz = 0 → εz = − ν

1 − ν

(
εx + εy

)
(1.118)

Finally, plane stress stiffness matrix E can be reduced to the 3 × 3 matrix

⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ =

⎡
⎢⎣

E
1−ν2

νE
1−ν2

0
νE
1−ν2

E
1−ν2

0

0 0 E
2(1+ν)

⎤
⎥⎦
⎧⎨
⎩

εx

εy

γxy

⎫⎬
⎭ (1.119)

1.5 Analogy Between Constitutive Fourth-Order Tensors:
The Elastic (Hooke’s) and the Yield/Failure (von Mises’)
of the Same Symmetry

Identification of material symmetry in elastic range of deformation (anisotropy,
orthotropy, transverse isotropy, isotropy, etc.) is a starting point to appropriate
description of both the limit criteria that control transition from the elastic range into
the state connected with energy dissipation (material damage, plastic yield, phase
change, etc.) as well as correct constitutive description of deformation processes
in nonelastic range. It can be expected that if material in the elastic range exhibits
isotropic behavior, then at least in the initial phase of plastic yielding it will approx-
imately save properties of isotropy. The nature of elastic deformation resulting from
interatomic distances change in crystal lattice is qualitatively different from the nature
of plastic deformation commonly interpreted as plastic microslips considered usu-
ally as slips and dislocations between atom layers inside lattice. However, it can be
expected that during more advanced plastic deformation certain orientation of plas-
tic slip systems in the particular grains leading to appearance of a material texture
characterized by an acquired anisotropy is observed (metal forming processes like
rolling, drawing and press forming, see Mróz and Maciejewski [37]).

On the other hand ifmaterial even in elastic range is characterized by ananisotropy
(e.g., long fiber reinforced composites, wood, biological tissues) it can be expected
that in nonelastic range it will also exhibit anisotropy. However, it will be possible
decrease of a symmetry class toward more general plastic anisotropy, for instance
due to gradual evolution of elastic orthotropy. It can be however noticed that in case
of dissipative processes different from plasticity (e.g., material damage or failure)
loss of isotropy may be expected just in the elastic range, as observed in elastic
brittle materials e.g., ceramics, composites, concrete, etc. Additionally, initiation and
growth of other dissipative processes connected with plastic yielding, phase change
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or other structural changes may result in change in the initial symmetry class. For
example, in case of spheroidal graphite cast iron which generally exhibits brittle-
ductile behavior a gradual transition from elastic anisotropy caused by directional
damage to a state close to isotropy may be observed.

It can be assumed that features of anisotropy present in the elastic range are in
general inherited in nonelastic range if some dissipative processes like plastic yield,
damage, failure are present. Notice however that even, in the case when in inelastic
range material behaves as isotropic, initiation of inelastic range (plasticity, damage,
or failure) may provoke a material symmetry change. It was previously discussed
that in case of damage evolution the fourth-rank damage effect tensor [M(D)] may
be used to describe degeneration of the elasticity tensor [Ẽ] = [M(D)]T[E][M(D)],
in a similar fashion effect of other dissipative phenomena such as plastic yield,
structural change due to phase transformation may result in anisotropy nucleation
and growth.

Analogy between crystal unit cells of space lattices and constitutive matrices of
elasticity and initiation of plasticity is presented in Table1.4. In the fundamental book
by Love [34] the analogy between crystal symmetry classes and groups from one
side and appropriate forms of elastic strain energy functionW = 1

2 {ε}T [E] {ε} from
the other, is demonstrated. In this book an extension of the aforementioned analogy
also for symmetry of constitutive matrix of plastic yield initiation [ĪI] appearing in
the von Mises criterion {σ}T [ĪI] {σ} = 1 is proposed. Unit cells of the four chosen
space lattices have been presented following Jastrzebski [23], whereas correspond-
ing constitutive elasticity matrices have schematically been presented applying Nye
[42] graphics (symbol • refers to independent element, symbol ◦ refers to depen-
dent element, whereas symbols •−−• or ◦−−◦ represent pairs of identical matrix
elements).

In case of full anisotropy the complete analogy between the Hooke matrix and the
von Mises plasticity matrix holds (21 independent matrix elements in both classes).
However, when narrower symmetry groups are considered: orthotropic, transversely
isotropic of tetragonal or hexagonal classes, it is necessary to notice that elastic
matrices are usually defined in stress tensor coordinates, whereas plastic constitutive
matrices are often defined in the narrower stress deviator coordinates.

Reduction of the tensorial space to the deviatoric one is always equivalent to
imposing additional constraints, hence the number of independent elements of plas-
ticity matrix is always lower than the corresponding number of independent elements
of elasticity matrix. Namely, it is clear that the 6-element orthotropic deviatoric Hill’s
matrix corresponds to the 9-element orthotropic Hooke’s matrix. Similarly, the 4-
element transversely isotropic tetragonal class Hill’s matrix corresponds to the 6-
element Hooke’smatrix, when the independence of Hill’s matrix of hydrostatic stress
is imposed. Finally, the 3-element transversely isotropic hexagonal class Hu–Marin
matrix corresponds to the 5-element transversely isotropic hexagonal class Hooke
matrix. Let us note that pairs of identical matrix elements are arranged in the same
way in both matrices of elasticity and plasticity.

Nevertheless, some dependent elements in the plasticity matrix (as represented
by symbol ◦) correspond to independent elements of elasticity matrix (sketched by
symbol •), but general population of both matrices remains unchanged.
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Table 1.4 Analogy between chosen symmetry groups: triclinic, orthorhombic, tetragonal and
hexagonal symmetry of Hooke’s matrix and plastic yield initiation von Mises’ matrix
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The commonly used term “transversely isotropic criterion” may be misleading
as long as an additional distinction between the tetragonal and the hexagonal sym-
metry is not introduced. The aforementioned distinction is known from the literature
dealing with prediction of composite behavior in elastic range and its validation by
experiments. For example, Sun and Vaidya [53] examined two types of materials:
Boron/Al composite and Graphite/Epoxy composite, and found that some of them
exhibit tetragonal while others hexagonal symmetry classes. However, even this dis-
tinction between tetragonal and hexagonal symmetry classes may be insufficient to
describe some composite materials, for example, SiC/Ti unidirectional lamina exam-
ined by Herakovich and Aboudi [19]. This is basically caused by residual stresses
that appear after cooling-down during fabrication process.

The above considerations are limited to the description of initial yield surface
only. Generally, it is assumed that during plastic hardening the initial yield surface
possessing certain symmetry is rebuilt in an isotropic way, which is generally not
true. This question was discussed, e.g., by Malinin and Rżysko [36], who invoked
Mursa [41] results for OTCz Titanium Alloy that confirms assumption of isotropic
nature of plastic hardening. However, Hu and Marin’s [22] findings for Aluminum
Alloy showed anisotropic nature of plastic hardening rather than isotropic.

Nevertheless, the plastic hardening theory is usually taken in an isotropic fash-
ion, e.g., Malinin and Rżysko [36], Ottosen and Ristinmaa [44], Hill [20, 21]. Such
approach, although commonly used, may be questionable in light of the aforemen-
tioned experimental testing, some of which confirm such assumption, cf. Mursa [41]
(Titanium alloy) but others contradict it cf. Hu and Marin [22] (Aluminum alloy),
Kowalewski and Śliwowski [26] (influence of first common invariant).

1.6 Strain Energy and Complementary Energy—The State
Potentials for Isotropic or Anisotropic Materials

Material is called elastic if its response (deformation) is independent of loading
history (Fig. 1.6), which means that stress is determined to be strain

σi j = σi j (εkl) (1.120)

or vice versa
εi j = εi j (σkl) (1.121)

After the fully closed loading–unloading cycle (A-B-A), the initial material state A
is recovered, independent of the loading–unloading path, Fig. 1.6b.

When the concept of strain energy per unit volume W [Nm/m3] is introduced,
the following definitions hold:

W(ε) =
ε∫

0

σ(ε)dε or W(εi j ) =
εi j∫

0

σi j (εkl)dεi j (1.122)
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(a) (b)

Fig. 1.6 Schematic illustration of elastic material response: a strain energy and complementary
energy, b independence of final state of loading history

in case of the uniaxial or the multiaxial loadings, respectively. In the following
fashion the complementary energy per unit volume C [Nm/m3] is defined as

C(σ) =
σ∫

0

ε(ς)dς or C(σi j ) =
σi j∫

0

ςi j (εkl)dςi j (1.123)

It is seen from Fig. 1.6 that the following is true:

C(σi j ) = σi jεi j − W(εi j ) (1.124)

It should be emphasized that in the considered case of pure elastic material both the
strain energy W and complementary energy C are independent of loading path but
depend on the current state exclusively.

In a more general case, when the deformation process is accompanied by perma-
nent (irreversible) changes in material microstructure, for instance, resulting from
plastic yielding, damage growth, or phase transformation during martensitic change
or other irreversible phenomena, the strain energy and the complementary energy
depend on loading history.

In the elastic material for which strain energy depends on the current state only
W(εi j ) but does not depend on strain path

∂σi j

∂εkl
= ∂σkl

∂εi j
(1.125)

the strain energy can be used as an invariant potential function for the stresses

σi j = ∂W(εi j )

∂εi j
(1.126)
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In a similar fashion the complementary energy that depends on the current state only
C(σi j ) but does not depend on strain path

∂εi j

∂σkl
= ∂εkl

∂σi j
(1.127)

can be used as an invariant potential function for the strain as follows:

εi j = ∂C(σi j )

∂σi j
(1.128)

In a general case of nonlinear elastic material the strain energy and the complemen-
tary energy are not equal to each other, W �= C, whereas only in the case of linear
elastic material the equality W = C holds.

In the above considerations the initial state was treated as stress and strain free,
point A (σ = 0, ε = 0) in Fig. 1.6. In the more general case a residual stress and/or
strain are built-in Ares (σ = σres, ε = εres). This residual state may result from
fabrication process or prior loading history in which some irreversible changes of
material structure have occurred (e.g., cyclic plasticity) or certain residual stresses or
strains have been built-in (e.g., after cooling-down of long fiber reinforced composite
characterized by different thermal properties of fiber andmatrix). Note that in general
this residual state is unknown since the whole history of material, which contains
complete information about fabrication, its initial machining, as well as concerning
unloading process prior to the appearance of this self-balanced residual stress, is
unknown.

Consider the process of elastic deformation of material starting from the residual
state Ares(σres, εres) toward the final state B(Δσ,Δε), assuming at the beginning
uniaxial tension (see Fig. 1.7).

The increment of elastic strain energy of material corresponding to applied strain
ΔW(Δε) in the presence of residual stress εres is equal to

ΔW(Δε) =
Δε∫

0

Δσ(Δε)d(Δε) (1.129)

Fig. 1.7 Process of elastic
deformation of material with
prior residual state included



1 Introduction to Mechanics of Anisotropic Materials 41

In the particular case of linear Hooke’s law for isotropic material it yields

ΔW(Δε) = 1

2
E(Δε)2 (1.130)

where
Δσ = EΔε Δσ = σ − σres Δε = ε − εres (1.131)

obey. In the more general case of multiaxial deformation state the strain energy per
unit volume of elastic material in the presence of residual stress may be written as

ΔW(Δεi j ) =
Δεi j∫

0

Δσi j (Δεkl)d(Δεi j ), (1.132)

whereas in case, if linear elastic material is assumed, the linear relation combining
stress and strain increments is furnished as

Δσi j = Ei jklΔεkl (1.133)

Equation (1.132) represents the increment of elastic energy ΔW in the presence of
the residual state εi j = εresi j + Δεi j , hence

ΔW(Δεi j ) =
Δεi j∫

0

Ei jklΔεkld(Δεi j ) (1.134)

where the fourth-rank stiffness tensor Ei jkl is used. Note that Eq. (1.134) is true both
for isotropic and anisotropic materials of optional class of symmetry. The stiffness
tensor Ei jkl comprises complete information defining the elastic material response.

In a similar way, the complementary energy increment ΔC of elastic material in
the presence of residual stress can be written as

ΔC(Δσkl) =
Δσkl∫

0

Δεkl(Δςmn)d(Δςkl) (1.135)

If the linear elastic material is assumed we arrive at

ΔC(Δσkl) =
Δσkl∫

0

E−1
klmnΔςmnd(Δςkl) (1.136)
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where E−1
klmn stands for the compliance tensor of elastic material

Δεkl = E−1
klmnΔσmn (1.137)

The aboveEq. (1.137) is an extension of the law of linear elasticmaterial to the case of
existenceof a nonzeroth residual stress and strainΔσi j = σi j −σres

i j ,Δεkl = εkl−εreskl

σi j − σres
i j = Ei jkl

(
εkl − εreskl

)
(1.138)

or
εkl − εreskl = E−1

klmn

(
σmn − σres

mn

)
(1.139)

When the vector-matrix notation is used the fourth-rank elastic tensors Ei jkl or E−1
klmn

can be represented by the symmetric 6× 6 matrices: [E] or [E−1] called the stiffness
or the compliance matrices, respectively, whereas the tensors σi j − σres

i j or εkl − εreskl
take the format of columnar vectors of overstress or overstrain, respectively,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11 − σres
11

σ22 − σres
22

σ33 − σres
33

τ23 − τ res23
τ31 − τ res31
τ12 − τ res12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11 − εres11
ε22 − εres22
ε33 − εres33
γ23 − γres

23
γ31 − γres

31
γ12 − γres

12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.140)

Hence, when the Voigt notation is used Eqs. (1.138) and (1.139) can be written in
equivalent fashion {

σ − σres} = [E] {ε − εres
}

(1.141)

or {
ε − εres

} = [E−1] {σ − σres} (1.142)

1.7 Elastic Strain Energy as Function of Invariants

The stress and the strain invariants are presented in Sect. 1.1. In the present section
the elastic strain energy per unit volume W expressed as the scalar product of both
these tensors

W = 1

2
σi jε j i (1.143)

will also be presented in terms of invariants. In the case of isotropic material three
basic invariants of the strain tensor are sufficient for unique representation of the strain
energy, whereas in case of elastic material comprising damage the use of common
invariants defining internal material microstructure is necessary (see Sect. 1.3).
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1.7.1 Elastic Strain Energy of Isotropic Materials

The simplest example of the scalar function of tensorial argument is the elastic strain
energyW(ε). In the case of isotropicmaterial the strain tensor is uniquely determined
in terms of three basic or generic strain invariants (1.26) as follows:

W(ε) = W(J1ε, J2ε, J3ε) (1.144)

Constitutive law of elastic material (1.126) can be written as follows:

σi j = ∂W
∂εi j

= ∂W
∂ J1ε

∂ J1ε
∂εi j

+ ∂W
∂ J2ε

∂ J2ε
∂εi j

+ ∂W
∂ J3ε

∂ J3ε
∂εi j

(1.145)

where
∂ J1ε
∂εi j

= δi j
∂ J2ε
∂εi j

= εi j
∂ J3ε
∂εi j

= εikεk j (1.146)

hence,

σi j = ∂W
∂ J1ε

δi j + ∂W
∂ J2ε

εi j + ∂W
∂ J3ε

εikεk j (1.147)

Introducing the Lamé elastic constants λ = νE
(1+ν)(1−2ν)

and μ = E
2(1+ν)

with

∂W
∂ J1ε

= λεkk
∂W
∂ J2ε

= 2μ
∂W
∂ J3ε

= 0 (1.148)

we arrive at the classical Hooke law of the isotropic material

σi j = λεkkδi j + 2μεi j (1.149)

Summing up, the isotropic elastic Hooke material is uniquely defined by the strain
energy which depends on the first and the second basic invariants of the strain tensor

W = 1

2
λ(J1ε)

2 + 2μJ2ε (1.150)

but does not depend on the third invariant J3ε.

1.7.2 Strain or Complementary Energy of Elastic-Damage
Material—Common Strain-Damage and Stress-Damage
Invariants; the Helmholtz or the Gibbs State Potentials

Theory of invariants allows to determine minimal number the basic invariants
from which all other tensorial invariants necessary to obtain a sufficiently general
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representation of the state equations can be built (cf. e.g., Spencer [52], Rymarz [47]).
Usually the strain energy per unit volume W(εi j ) or the complementary energy per
unit volume C(σi j ) is taken as the state potential of elasticity (see Sect. 1.7.1). As
shown in Sect. 1.7.1, in case of elastic isotropy three invariants sufficiently determine
both types of energy W(Jiε) or C(Jiσ), i = 1, 2, 3.

A scalar function dependent on a pair of tensorial arguments, each of them being
the symmetric second-rank tensor, is a more complex case. The representative exam-
ple of such a case is the strain energy of damaged material W(ε, D). Analogous
to the isotropic material (1.144), both tensors ε or D are determined by their single
basic invariants Jiε or Ji D, i = 1, 2, 3. However, the scalar function dependent on
both argumentsW(ε, D) has to be uniquely defined not only by single invariants Jiε

and Ji D but also by the common invariants J jεD, j = 1, 2, 3, 4. This leads to the
format dependent on six single and four common invariants (total 10)

W(ε, D) = W(J1ε, J2ε, J3ε, J1D, J2D, J3D; J1εD, J2εD, J3εD, J4εD) (1.151)

In addition, the strain energyW has to be a decreasing function with damage growth
since energy is released during the damage nucleation and growth, so it has to be
linear with respect to D. Hence, the strain energy cannot depend either on the third
strain invariant J3ε and on the two single damage invariants J2D , J3D and also on
the two common invariants J3εD , J4εD (underlined arguments in Eq. (1.151)). Based
on the above physical reasons the strain energy of elastic damaged material can
completely be represented in terms of a combination of five invariants (three single
and two common)

W(ε, D) = ρψ(ε, D) = ρψ(J1ε, J2ε, J1D, J1εD, J2εD) (1.152)

In this way an invariant representation of the Helmholtz free energy per unit mass is
furnished and finally applied as the state potential that determines the stress state in
a unique fashion

σ = ∂[ρψ(ε, D)]
∂ε

(1.153)

Note also that when the representation (1.152) is specified, some combinations of
invariants are allowed for which the scalar function ψ(ε, D) remains quadratic with
respect to ε. Hence, following Murakami and Kamiya [38] the free energy function
ρψ(ε, D) per unit mass is furnished as

ρψ(ε, D) = 1
2λ(J1ε)2 + 2μJ2ε + η1(J1ε)2 J1D + 2η2 J2ε J1D

+ η3 J1ε J1εD + η4 J2εD
(1.154)

or

ρψ(ε, D) = 1
2λ (trε)2 + μtr (ε · ε) + η1 (trε)2 tr(D)

+ η2tr (ε · ε) tr(D) + η3tr(ε)tr (ε · D) + η4tr (ε · ε · D)
(1.155)

when the equivalent representation is used, e.g., Skrzypek et al. [50].
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Remember that the above formulas (1.154) and (1.155) for the Holmholtz free
energy refer to the specific case of elastic anisotropy which is acquired as the result
of damage nucleation and growth. Hence, in a virgin state where damage does not
exist the energy representation of the isotropic elastic material has to be recovered,
such that symbol ε has to be referred to the elastic strain εe.

In a general 3D case the following matrix representation of the constitutive equa-
tion with total formulation holds:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s Ẽ11
s Ẽ12

s Ẽ13
s Ẽ14

s Ẽ15
s Ẽ16

s Ẽ22
s Ẽ23

s Ẽ24
s Ẽ25

s Ẽ26
s Ẽ33

s Ẽ34
s Ẽ35

s Ẽ36
s Ẽ44

s Ẽ45
s Ẽ46

symm. s Ẽ55
s Ẽ56
s Ẽ66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εe11
εe22
εe33
γe
23

γe
13

γe
12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.156)

where s Ẽi j represents effective elastic-damage secant stiffness matrix. The damage
acquired anisotropy is described by the 6×6 symmetric secant stiffness matrix as
follows (cf. Skrzypek et al. [50]):

s Ẽ11 = λ + 2μ + 2(η1 + η2)tr(D) + 2(η3 + η4)D11
s Ẽ22 = λ + 2μ + 2(η1 + η2)tr(D) + 2(η3 + η4)D22
s Ẽ33 = λ + 2μ + 2(η1 + η2)tr(D) + 2(η3 + η4)D33
s Ẽ12 = λ + 2η1tr(D) + η3(D11 + D22)

s Ẽ13 = λ + 2η1tr(D) + η3(D11 + D33)

s Ẽ23 = λ + 2η1tr(D) + η3(D22 + D33)

s Ẽ44 = 1
2 [2μ + 2η2tr(D) + η4(D33 + D22)]

s Ẽ45 = η4D12
s Ẽ55 = 1

2 [2μ + 2η2tr(D) + η4(D11 + D33)]
s Ẽ46 = η4D13
s Ẽ66 = 1

2 [2μ + 2η2tr(D) + η4(D11 + D22)]
s Ẽ56 = η4D23
s Ẽ14 = η3D23
s Ẽ24 = s S̃34 = (η3 + η4)D23
s Ẽ25 = η3D13
s Ẽ15 = s S̃35 = (η3 + η4)D13
s Ẽ36 = η3D12
s Ẽ16 = s S̃26 = (η3 + η4)D12

(1.157)
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The alternative formulation based on a concept of the complementary energy C
represented by a scalar function of the two tensorial arguments σ and D, namely
C(σ, D), leads to the Gibbs potential function per unit mass G as follows (cf.
Hayakawa–Murakami [18], Murakami [40]):

C(σ, D) = ρG(J1σ, J2σ, J3σ, J1D, J2D, J3D, J1σD, J2σD, J3σD, J4σD) (1.158)

where the crack closure effect due to compressive stress, originally introduced in
Hayakawa–Murakami [18], is omitted.

Repeating the above reasoning for physical nature of the Gibbs complementary
energy C(σ, D), only five of the above aforementioned ten (1.158) common stress
and damage invariants can be admitted, namely

C(σ, D) = ρG(σ, D) = ρG(J1σ, J2σ, J1D, J1σD, J2σD) (1.159)

Hence, in case of the elastic isotropic material in a virgin state which changes to
anisotropic material due to damage evolution, the Gibbs state potential takes the
following format (cf. Hayakawa and Murakami [18]):

ρG(σ, D) = − ν
2E (trσ)2 + 1+ν

2E tr (σ · σ) + ϑ1 (trσ)2 tr(D)

+ϑ2tr (σ · σ) tr(D) + ϑ3tr(σ)tr (σ · D) + ϑ4tr (σ · σ · D)
(1.160)

which is complementary to (1.155). The matrix representation of secant compliance
matrix referring to Hayakawa–Murakami type elastic-plastic-damage material is as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εe11
εe22
εe33
εe23
εe13
εe12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s Ẽ−1
11

s Ẽ−1
12

s Ẽ−1
13 0 0 0

s Ẽ−1
22

s Ẽ−1
23 0 0 0

s Ẽ−1
33 0 0 0

s Ẽ44−1 0 0

symm. s Ẽ−1
55 0

s Ẽ−1
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.161)

where
s Ẽ−1

11 = 1
E + 2tr(D)(ϑ1 + ϑ2) + 2D11(ϑ3 + ϑ4)

s Ẽ−1
12 = − ν

E + 2ϑ1tr(D) + ϑ3(D11 + D22)

s Ẽ−1
13 = − ν

E + 2ϑ1tr(D) + ϑ3(D11 + D33)

s Ẽ−1
22 = 1

E + 2trD(ϑ1 + ϑ2) + 2D22(ϑ3 + ϑ4)
s Ẽ−1

23 = − ν
E + 2ϑ1tr(D) + ϑ3(D22 + D33)

s Ẽ−1
33 = 1

E + 2ϑ1tr(D) + ϑ3(D22 + D33)

s Ẽ−1
44 = 1+ν

E + 2ϑ2tr(D) + ϑ4(D22 + D33)

s Ẽ−1
55 = 1+ν

E + 2ϑ2tr(D) + ϑ4(D11 + D33)

s Ẽ−1
66 = 1+ν

E + 2ϑ2tr(D) + ϑ4(D11 + D22)

(1.162)
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Note that the Gibbs complementary energy per unit mass refers to elastic strains
εe and is represented in the stress space by the quadratic function of σ linear with
respect to D, in a similar way as the Helmholtz free energy ρψ(ε, D) but defined in
the strain space.

Four material constants ηi appearing in the Helmholtz state potential (1.155) as
well as four constantsϑi appearing in theGibbs state potential (1.160) (i = 1, 2, 3, 4)
act as additional material constants to the elastic constants of the virgin elastic
isotropic material: λ,μ or E, ν, defining effect of damage on the state equation.
Namely, when the Helmholtz potential function W = ρψ(ε, D) is used as the stress
potential we arrive at the state equation σ = E(D) : ε

σ = ∂(ρψ)

∂ε
= [λtr(ε) + 2η1tr(ε)tr(D) + η3tr (ε · D)] 1

+ 2 [μ + η2tr(D)] ε + η3tr(ε)D + η4(ε · D + D · ε)
(1.163)

On the other hand, when the formulation based on the Gibbs potential function is
used as the strain potential C = ρG(σ, D) we obtain the state equation in equivalent
form ε = E

−1(D) : σ

ε = ∂(ρG)

∂σ
= − ν

E tr (σ) 1 + 1+ν
2E σ + 2ϑ1tr(D)tr(σ)1

+ 2ϑ2tr(D)σ : 1 + ϑ3 [tr (σ · D) 1 + tr(σ)D]
+ϑ4 (σ · D + D · σ)

(1.164)

Note however that in the case of elastic damaged material constitutive matrices
stiffness [E(D)] and compliance [E−1(D)] are rebuilt following damage evolution
such that originally isotropic elastic material acquires an anisotropy.

The state equation of elastic damaged material (1.155) was calibrated for the high
strength concrete by Murakami and Kamiya [38], see also Skrzypek [49] as shown
in Table1.5.

Apart from the constants of isotropic elasticity E, ν (λ,μ) additional four con-
stants ηi (i = 1, 2, 3, 4) are shown in Table1.5.

The state equation of elastic moderate ductility with damage (1.164) was cali-
brated for spheroidal graphite cast iron FCD400 by Hayakawa and Murakami [18],
see also Skrzypek [49] as shown in Table1.6.

Apart from the constants of isotropic elasticity E, ν (λ,μ) additional four con-
stants ϑi (i = 1, 2, 3, 4) are shown Table1.6.

Table 1.5 Calibrationof sixmaterial constants in the constitutive equationof high strength concrete,
after Murakami and Kamiya [38])

E (GPa) ν (–) η1 (MPa) η2 (MPa) η3 (MPa) η4 (MPa)

21.4 0.2 −400 −900 100 −23500
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Table 1.6 Callibration of six material constants in the constitutive equation of the spheroidal
graphite cast iron FCD400, after Hayakawa and Murakami [18]

E (GPa) ν (–) ϑ1 (MPa−1) ϑ2 (MPa−1) ϑ3 (MPa−1) ϑ4 (MPa−1)

169 0.285 −3.95 × 10−1 4.0 × 10−6 −4.0 × 10−7 2.50 × 10−6

The more extended analysis including: crack closure effect under compressive
stress, the initial damage threshold, and the subsequent damage growth during the
hardening phases can be found in Murakami and Kamiya [38], Hayakawa and
Murakami [18], Skrzypek et al. [50], Bielski et al. [4], Kuna-Ciskał
and Skrzypek [31].

1.7.3 Strain Energy of the Elastic Orthotropic
Materials—The Structural Tensors

So far the case of scalar function of second-order tensors expressed in terms of
invariants has been discussed. The more general case of a scalar function of a pair of
tensorial arguments being the second-order and the structural tensors is considered
in this section. The strain energy of orthotropic material W = W(ε, M(i)) is the
representative example of such a case.

The constitutive equation of orthotropic hyperelastic material is obtained by
differentiation of the strain energy function, cf. Boehler [5]

σ = ∂W
∂ε

= ∂W
∂ J1

M(1) + ∂W
∂ J2

M(2) + ∂W
∂ J3

M(3)

+ ∂W
∂ J4

(ε · M(1) + M(1) · ε) + ∂W
∂ J5

(ε · M(2) + M(2) · ε)

+ ∂W
∂ J6

(ε · M(3) + M(3) · ε)

(1.165)

where the following definitions of common invariants are used:

J1 = tr(ε · M(1)) J2 = tr(ε · M(2)) J3 = tr(ε · M(3))

J4 = tr(ε · ε · M(1)) J5 = tr(ε · ε · M(2)) J6 = tr(ε · ε · M(3))
(1.166)

and definitions (1.91) hold. Following Boehler [5], in order to determine the con-
stitutive equation of linear orthotropic material we choose, (see also Ottosen and
Ristinmaa [44])
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∂W
∂ J1

= α1 J1 + β1 J2 + β2 J3

∂W
∂ J2

= α2 J1 + α3 J2 + β3 J3

∂W
∂ J3

= α4 J1 + α5 J2 + α6 J3

∂W
∂ J4

= α7
∂W
∂ J5

= α8
∂W
∂ J6

= α9

(1.167)

The coefficients β1,β2,β3 can be substituted by corresponding coefficients α2,α4,

α5 in order to satisfy symmetry of orthotropic stiffness matrix

β1 = α2, β2 = α4, β3 = α5 (1.168)

The above yields the constitutive equation of linear orthotropic material by use of
common invariants of strain and structural tensors

σ = [
α1tr(ε · M(1)) + α2tr(ε · M(2)) + α4tr(ε · M(3))

]
M(1)

+ [
α2tr(ε · M(1)) + α3tr(ε · M(2)) + α5tr(ε · M(3))

]
M(2)

+ [
α4tr(ε · M(1)) + α5tr(ε · M(2)) + α6tr(ε · M(3))

]
M(3)

+α7
(
ε · M(1) + M(1) · ε

)+ α8
(
ε · M(2) + M(2) · ε

)
+α9

(
ε · M(3) + M(3) · ε

)
(1.169)

Equation (1.169) can be rewritten in the classical form at σ = E : ε when the
consecutive tensor products ε · M(i) and their traces are defined. For instance,

ε · M(1) =
⎡
⎣

εxx εxy εxz

εyy εyz

εzz

⎤
⎦ ·

⎡
⎣
1
0
0

⎤
⎦ =

⎡
⎣

εxx 0 0
εxy 0 0
εxz 0 0

⎤
⎦ (1.170)

from where one finds
tr(ε · M(1)) = εxx (1.171)

and

ε · M(1) + M(1) · ε =
⎡
⎣
2εxx εxy εxz

εxy 0 0
εxz 0 0

⎤
⎦ (1.172)

When the remaining products ε · M(2) and ε · M(3) are calculated analogously, the
coefficients preceding the components of the strain tensor are grouped, and when the
engineering notation is consequently used the state equation (1.169) can finally be
furnished in the following form:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E11 E12 E13
E21 E22 E23
E31 E32 E33

E44
E55

E66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.173)

Subsequent elements of stiffness matrix of the orthotropic elastic material [E] are
expressed in terms of coefficients αi as follows:

E11 = α1 + 2α7 E12 = E21 = α2 E13 = E31 = α4
E22 = α3 + 2α8 E23 = E32 = α5 E33 = α6 + 2α9
E44 = α8 + α9 E55 = α9 + α7 E66 = α7 + α8

(1.174)

Note that the above described procedure of linear orthotropic elasticity derivation is
based on the theory of invariant representation which differs from the conventional
approach (1.103). More detailed distinction between different ways of formulating
the linear elasticity constitutive laws will be presented in Sect. 1.9.

1.8 Remarks on Irreducible Coupling of Volumetric
and Shear Response in Anisotropic Materials

In the general case of full material anisotropy complete mutual coupling between all
stress and strain components holds. In fact, the generalized Hooke law (1.39) with
the compliance matrix for general anisotropy taken in the form (1.98) leads to (after
Rabinovich [45])

ε11 = 1

E11
(σ11 − ν21σ22 − ν31σ33

+ η23(1)τ23 + η31(1)τ31 + η12(1)τ12)

ε22 = 1

E22
( − ν12σ11 + σ22 − ν32σ33

+ η23(2)τ23 + η31(2)τ31 + η12(2)τ12)

ε33 = 1

E22
( − ν13σ11 − ν23σ22 + σ33

+ η23(3)τ23 + η31(3)τ31 + η12(3)τ12) (1.175)

γ23 = 1

G23

(
η(1)23σ11 + η(2)23σ22 + η(3)23σ33

+ τ23 + μ31(23)τ31 + μ12(23)τ12
)

γ31 = 1

G31

(
η(1)31σ11 + η(2)31σ22 + η(3)31σ33
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+μ23(31)τ23 + τ31 + μ12(31)τ12
)

γ12 = 1

G12

(
η(1)12σ11 + η(2)12σ22 + η(3)12σ33

+μ23(12)τ23 + μ31(12)τ12 + τ12
)

Note that in the above equations elastic extensions ε11, ε22, ε33 depend not only on
all normal stresses σ11,σ22,σ33 but also on all shear stresses τ23, τ31, τ12 (through
the generalized Young modules Eii and the Rabinovich modules ηi j (k)), resulting
in nonzeroth elements of symmetric constitutive matrix of elasticity in its right
top block. Moreover, the shear strains γ23, γ31, γ12 depend on all shear stresses
τ23, τ31, τ12 (through the generalized Kirchhoff modules Gi j and the Chencov coef-
ficients μi j (kl)) as well as on all normal stresses σ11,σ22,σ33 such that the left
bottom and the right bottom blocks of the elasticity matrix are fully populated. The
above remarks lead in consequence to the conclusion that, in all cases different from
isotropy, pure volumetric deformation is inseparable from pure shear deformation.
In other words, irreducibility of elasticity equations (1.175) into uncoupled law of
volume change and law of shape change holds when the decomposition of strain and
stress tensors into axiator and deviator ε = εm1 + e and σ = σm1 + s is used.

This impossibility is inevitable even in a narrower case of orthotropy (1.103) in
spite of the fact that shear stresses are uncoupled to the extensions and, vice versa,
normal stresses do not result in shear strains. In order to trace this let us rewrite
(1.103) as

ε11 = 1

E11
(σ11 − ν21σ22 − ν31σ33)

ε22 = 1

E22
(−ν12σ11 + σ22 − ν13σ33)

ε33 = 1

E33
(−ν13σ11 − ν23σ22 + σ33)

γ23 = τ23

G23
γ31 = τ31

G31
γ12 = τ12

G12

(1.176)

Calculating the unit volume change called dilatation Θ = ε11 + ε22 + ε33 we obtain

Θorto = 3εm = 1

E11
(σ11 − ν21σ22 − ν31σ33)

+ 1

E22
(−ν12σ11 + σ22 − ν13σ33)

+ 1

E33
(−ν13σ11 − ν23σ22 + σ33)

(1.177)
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or recalling the symmetry of elasticitymatrix (1.104) the equivalent form is furnished

Θorto = σ11

E11
(1 − ν21 − ν31) + σ22

E22
(1 − ν12 − ν32) + σ33

E33
(1 − ν13 − ν23)

(1.178)

Note that in case of orthotropy dilatation is expressed not only in terms of the hydro-
static stressΘ = Θ izo(σh)but by themoregeneral functionΘ = Θorto(σ11,σ22,σ33;
Ei j , νi j ) or Θ = Θorto(σkk;E−1

i jkl).
In the particular case of isotropy when Ei j = E , νi j = ν the above equations

reduce to the classical form

Θ izo = 3εm = 1 − 2ν

E
(σ11 + σ22 + σ33) = 3(1 − 2ν)

E
σh (1.179)

or

εm = 1

3K
σh, K = E

3(1 − 2ν)
(1.180)

in which dilatation or mean strain εm depends on hydrostatic stress σh exclusively.
Contrary to the previous case for material orthotropy by use of the following

definition of deviatoric strain:

e = ε − 1

3
εkk1 = E

−1 : σ − 1

3
Θorto(σkk;E−1

i jkl)1 (1.181)

we obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e11
e22
e33
e23
e31
e12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

0 0 0

− ν12
E22

1
E22

− ν32
E22

0 0 0

− ν13
E33

− ν23
E33

1
E33

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
σ23
σ31
σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

− 1
3Θ

orto(σkk;E−1
i jkl)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
1
1
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.182)

In other words, the pure shear deformation obtained by subtracting of the dilatation
from the full deformation depends also on Θorto, so separation of these two effects
is impossible.
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1.9 Cauchy’s Elasticity, Hyperelasticity, or Hypoelasticity

In the theory of linear elasticity in case of infinitesimal deformations occurring in
isothermal or adiabatic conditions the constitutive relations linking tensors of stress
and strain can be defined in three equivalent ways:

• According to the Cauchy formulation it is assumed that there exists an equilib-
rium state, called natural state, for which all components of the stress and strain
tensors are equal to zero and to which material returns after removing loadings.
An environment of natural state obeys unique value relation between stress and
strain as

σi j = Ei jklεkl (1.183)

• According to the Green formulation, also called hyperelasticity, it is postulated an
existence of function of elastic strain energy per unit volumeW which is equal to
zero in an environment of natural state and such that an increment of work done
by stress is equal to an increment of strain energy

σi j = ∂W
∂εi j

W = 1

2
σi jεkl = 1

2
Ei jklεi jεkl (1.184)

• According to the third formulation, called hypoelasticity, it is postulated an incre-
mental relation of the following form:

dσi j = Ei jkldεkl or
∂σi j

∂t
= Ei jkl

∂εkl

∂t
(1.185)

For all three cases: Cauchy’s, hyper- and hypoelasticity tensor Ei jkl may depend on
temperature but is independent of stress and strain tensors.

Note however that in the general case of nonlinearity constitutive tensors of elas-
ticity or hyperelasticity (1.183) and (1.184) may differ from constitutive tensor of
hypoelasticity (1.185). In the first case tensor representative matrix E is the secant
matrix [E] = [secE], whereas in the other case it is the tangent matrix [E] = [tanE].

It is worth to mention that although Cauchy, hyper- and hypoformulations of
elasticity are alternative in case of theory of infinitesimal deformations, theymay lead
to essentially different results after entering the finite deformation range. Namely,
introducing definitions of finite strains

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

) ↗ εi j = 1

2

(
∂ui

∂X j
+ ∂u j

∂Xi
+ ∂ui

∂X j

∂u j

∂Xi

)

↘∈i j= 1

2

(
∂ui

∂x j
+ ∂u j

∂xi
+ ∂ui

∂x j

∂u j

∂xi

) (1.186)
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where εi j and ∈i j stand for Green’s and Almansi’s strain tensors, respectively, and
corresponding stress tensors

σi j −→ Σi j = ρ0

ρ

∂Xi

∂xk

∂X j

∂xl
σkl (1.187)

whereσi j andΣi j denote theLagrange and the second Piola–Kirchhoff stress tensors
instead of formulations (1.183–1.185) we arrive at mutually different formulations

Σi j = Ei jklεkl
DW
Dt

= 1

ρ0
Σi j

∂εi j

∂t
Dσi j

Dt
− σi pΩpj − σ j pΩpi = Ei jkl ∈̇kl

(1.188)

In case of hypoelastic material subjected to finite deformation appropriate constitu-
tive equation (1.188)3 comprises both the symbol of objective derivative of the stress
tensor Dσi j/Dt and an effect of change of stress tensor resulting from rigid rotation
which is described by skew-symmetric spin tensor

Ωi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1

2

(
∂u̇2

∂x3
− ∂u̇3

∂x2

)
−1

2

(
∂u̇3

∂x1
− ∂u̇1

∂x3

)

−1

2

(
∂u̇2

∂x3
− ∂u̇3

∂x2

)
0

1

2

(
∂u̇1

∂x2
− ∂u̇2

∂x1

)

1

2

(
∂u̇3

∂x1
− ∂u̇1

∂x3

)
−1

2

(
∂u̇1

∂x2
− ∂u̇2

∂x1

)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.189)
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26. Kowalewski, Z.L., Śliwowski, M.: Effect of cyclic loading on the yield surface evolution of

18G2A low-alloy steel. Int. J. Mech. Sci. 39, 1, 51–68 (1997)
27. Kowalsky, U., Ahrens, H., Dinkler, D.: Distorted yield surfaces-modelling by higher order

anisotropic hardening tensors. Comput. Math. Sci. 16, 81–88 (1999)
28. Krajcinovic, D., Fonseka, G.U.: The continuous damage theory of brittle materials, part I:

general theory. Trans. ASME J. Appl. Mech. 48, 4, 809–815 (1981)
29. Krajcinovic, D.: Damage mechanics. Mech. Mater. 8, 117–197 (1989)
30. Krajcinovic, D.: Damage Mechanics. Elsevier, Amsterdam (1996)
31. Kuna-Ciskał, H., Skrzypek, J.: CDM based modelling of damage and fracture mechanisms in

concrete under tension and compression. Eng. Fract. Mech. 71, 681–698 (2004)
32. Lacy, T.E., McDowell, D.L., Willice, P.A., Talreja, R.: On the representation of damage evo-

lution in continuum damage mechanics. Int. J. Damage Mech. 6, 62–95 (1997)
33. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Mir Publishers, in Russian:

Nauka 1977, Moscow (1981)
34. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover Publication, New

York (1944)
35. Lubarda, V.A., Krajcinovic, D.: Damage tensors and the crack density distribution. Int. J. Solids

Struct. 30, 20, 2859–2877 (1993)
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