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Foreword

This book which was prepared by a team of Polish scientists from the University of
Technology in Cracow and edited by Jacek J. Skrzypek and Artur W. Ganczarski is
devoted to the Mechanics of Anisotropic Materials. This topic became more and
more important during the past years. Anisotropy with respect to material behavior
should be taken into account—otherwise recent design requirements like reduction
of mass, precise shape prediction after mechanical treatment, etc., cannot be ful-
filled. Including anisotropy in simulations, for example, based on commercial finite
element codes is not a trivial task since the origins of anisotropy are related to the
microstructure of materials as usual disregarded in phenomenological modeling. In
addition, one has to distinguish initially anisotropic materials and materials that are
initially isotropic, but under loading the evolution of anisotropy can be established.
This makes the constitutive description not easier—instead of “pure” constitutive
equations one needs additionally evolution equations describing the development
of the anisotropy. Recently various monographs in this field were published. But
there is a need for more because up to now no general accepted theory exists.

This monograph contains 7 chapters prepared by Halina and Władysław Egner,
Artur W. Ganczarski, Szymon Hernik, and Jacek J. Skrzypek. The chapters are
related to the theory and numerical simulation of anisotropic materials.

Chapter 1 is an introduction to the mechanics of anisotropic materials. This is at
first a summary of the state of the art in this field. In addition, different represen-
tations of classical equations are given. It is obvious that the mathematical back-
ground is worked out and there are no open questions. Looking on the number of
unknown material parameters the question arises of how to identify these param-
eters. The last part of Chap. 1 is devoted to the classification and description of
anisotropy. This part is unique since a lot of special cases are presented and analogy
between two fourth order tensors (the Hookean tensor and the tensor related to the
von Mises yield and failure) is demonstrated.

Chapter 2 is focused on isotropic and anisotropic linear viscoelastic materials.
The first part is a nice summary of the basics of rheological models. The extension
of the correspondence principle to anisotropic materials is given.
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Chapter 3 is devoted to the anisotropic behavior of composite materials.
Anisotropy is the usual property of any composite (even in the case of short fibers
with chaotic distribution, a significant anisotropy as a result of the injection molding
process can be established. This anisotropy results in approximately 10 % error in
displacement predictions, but 30 % in stress estimates. At first, the analogy between
crystal lattice unit cell and composite representative element is discussed. This
allows using the methods for modeling the symmetries in both cases. Second, the
bounds and micromechanically based homogenization methods are presented. The
concept of limit surfaces, which is usually not related to the micro-scale observation
is an engineering tool to model the limit or failure behavior. It can be used for
various limit states (for example, the beginning of plastic flow or damage pro-
cesses). The mathematics (convexity and normality rules, for example) is presented
in Chap. 4 and the authors demonstrate how to use the mathematical tools in
phenomenological modeling with respect to engineering applications.

Chapters 5 and 6 present two topics which are at the moment under discussion in
the scientific literature: the termination of the elastic range of pressure insensitive
and sensitive materials. Both items are important for any isotropic and anisotropic
initial yield or failure criteria. In addition, starting with Bridgeman’s famous
publications at the end of the 1940s/beginning of the 1950s of the past century,
which discussed for the first time the influence of hydrostatic stress states on
yielding and failure, more and more publications are related to this topic. Jacek J.
Skrzypek and Artur W. Ganczarski present their own points of view. At the same
time they compare their results with the others. It is obvious that a hierarchical
embedding of various approaches can be stated.

Finally in Chap. 7 a short classification of constitutive equations for dissipative
materials is given. This is an important task, especially if one deals with damage-
induced anisotropy.

The present book is a monograph, but at the same time it can be recommended
for a first reading. It can be used also as a textbook for students of Master’s or PhD
studies because of the excellent didactic representation.

Magdeburg Prof. Dr.-Ing.habil. Dr.h.c.mult. Holm Altenbach
April 8, 2015 Lehrstuhl für Technische Mechanik

Institut für Mechanik
Fakultät für Maschinenbau

Otto-von-Guericke-Universität Magdeburg
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Preface

This monograph is focused on constitutive description of mechanical behavior of
engineering materials: both conventional (e.g., polycrystalline homogeneous iso-
tropic or anisotropic metallic materials) and nonconventional ones (e.g., heteroge-
neous multicomponent, usually anisotropic composite materials) fabricated by
modern material engineering. Effective material properties at the macrolevel depend
on both the material microstructure (isotropic or originally anisotropic in general
case) as well as dissipative phenomena occurred on fabrication and consecutive
loading phase, resulting in irreversible microstructure changes. The material sym-
metry is a background and anisotropy is a core around which the book is formed.
Revision of classical rules of enhanced constitutive description of materials, capable
of capturing virgin or acquired anisotropy, hydrostatic pressure dependence, dis-
tortion of initial and subsequent yield/failure surfaces, as well as coupled several
dissipative phenomena, such as (thermo)elastic, viscoelastic, elastic-plastic-damage,
is necessary.

In the past decade new developed technologies for manufacturing of advanced
engineering materials have stimulated numerous original papers addressed to more
enhanced and rigorous constitutive description and its experimental verification.
Among the recent books attempting to combine a progress in constitutive
description of complex materials with modern engineering expectations, some can
be mentioned. These are: The Mechanics of Constitutive Modeling by Ottosen and
Ristinmaa, Elsevier 2005; Advanced Materials and Structures for Extreme
Operating Conditions by Skrzypek, Ganczarski, Rustichelli and Egner, Springer
2008; Innovative Technological Materials, Eds. Rustichelli and Skrzypek, Springer
2010; Continuum Damage Mechanics by Murakami, Springer 2012; Damage
Mechanics in Metal Forming by Saanouni, Wiley 2012; Micromechanics of
Composite Materials by Aboudi, Arnold and Bednarcyk, Elsevier 2013; Plasticity
of Pressure Sensitive Materials, Eds. Altenbach and Öchsner, Springer 2014, to
mention only a few of them. A variety of pioneering original papers given by, e.g.,
Chaboche, Voyiadjis, Aboudi, Barlat, Khan, and many others, need to be
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summarized and presented in a comparative way, to emphasize their significance in
a growth of knowledge in the field addressed. The present monograph is an attempt
to build a bridge between a large number of the new technology inspired and well-
experimented established research papers on one hand, and the systematic and
comparative study from the viewpoint of rigorous classical thermodynamics-based
constitutive descriptions of anisotropic materials on the other hand.

A concise classification of anisotropic materials with respect to symmetry of
elastic matrices referred to as crystal lattice symmetry, and the extended analogy
between symmetries of constitutive material matrices (elastic and yield/failure), are
discussed in Chap. 1. This chapter provides necessary tools for enhanced consti-
tutive description of materials which exhibit the virgin anisotropy or the damage or
phase change acquired anisotropy, following microstructural changes. Apart from
classical definitions of single tensor invariants, the choice of state variables nec-
essary to describe irreversible microstructural changes accompanying coupled
dissipative phenomena, as well as basic definitions of common invariants of either
two second-order tensors (e.g., stress/strain and damage tensors) or two different-
order tensors (e.g., stress/strain and fourth-order structural tensors), are given.

The aim of Chap. 2 is to show useful enhancement of the Alfrey–Hoff analogy to
a broader class of material anisotropy, for which separation of the volumetric and
shape change effects from total viscoelastic deformation does not occur. Such
extension requires use of the vector–matrix notation for description of the general
constitutive response of anisotropic linear viscoelastic material. When implemented
to anisotropic composite materials, which exhibit linear viscoelastic response, the
classically used homogenization techniques for averaged elastic matrix can be
implemented to viscoelastic work-regime for associated fictitious elastic
Representative Unit Cell of composite material. Next, subsequent application of the
inverse Laplace transformation (cf. Haasemann and Ulbricht) is applied. Similarly,
the well-established Hill upper and lower bounds for effective elastic matrices can
be extended to anisotropic linear viscoelastic composite materials. In the space of
transformed variable, instead of time space, the classical homogenization rules for
fictitious elastic composite materials can be adopted.

Mechanics of composite materials in the past decade was one of the most rapidly
explored and developed engineering areas, basically due to huge progress in
composite fabrication and engineering use. The main problem related to Chap. 3 is
focused on and how to correctly predict averaged effective properties by imple-
mentation of numerous homogenization techniques. Useful classification of com-
posites with respect to the format of effective stiffness matrix, based on analogy
between the crystal lattice symmetry and respective configuration of reinforcement
in the RUC, is given. The conventionally used Hill theorem on upper and lower
bounds by Voigt and Reuss isotropic estimates, for approximate determination of
stiffness and compliance matrices of anisotropic composite, is studied. A consistent
application of the Hill theorem to the elements of elastic stiffness or compliance
matrices enables to rule out some peculiarities of the Poisson ratio diagrams met in
the respective bibliography. The new effective approximation of the mechanical
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modules of unidirectionally reinforced composites by use of weighted average
between the Voigt and Reuss upper and lower estimates is also proposed.

The general nature of yield or failure criteria terminating elastic range of iso-
tropic or anisotropic materials is discussed in Chap. 4. The hydrostatic pressure
sensitivity of anisotropic materials can be captured either by the first stress and
second common deviatoric invariants’ direct use, or by the second common stress
invariant use in an indirect fashion. Tension/compression asymmetry in anisotropic
materials is accounted for either by presence of the first common invariant
(translation only) or third common invariant (distortion). Comparison of two ways
to capture anisotropic response: more rigorous explicit common invariant formu-
lations, or implicit approaches based on extension of traditional isotropic criteria in
terms of transformed invariants capable of capturing a complete distortion (Barlat,
Khan, etc.), is shown. Convexity requirement of limit surfaces is discussed and
compared for two material behaviors by use of: Drucker’s material stability pos-
tulate extended to multi-dissipative response, or Sylvester’s stability condition
based on positive definiteness of the tangent stiffness or compliance matrices of
hyperelastic material. Generalized Drucker’s postulate based on elastic-plastic
stiffness matrix is also shown.

Basic features of isotropic or anisotropic initial yield criteria are discussed in
Chap. 5 following explicit versus implicit formulations. The explicit description of
anisotropy is rigorously based on theory of common invariants. The implicit
approach involves linear transformation tensor of the Cauchy stress to enhance the
classical isotropic criteria for capturing anisotropy, hydrostatic pressure sensitivity,
and asymmetry of yield surface. The advantages and differences of both formula-
tions are critically presented. Incidental convexity loss of the classical Hill’48 yield
surface in the case of strong orthotropy is examined and highlighted in contrast to
unconditionally stable von Mises–Hu–Marin criterion. Different transversely iso-
tropic yield criteria are distinguished in light of irreducibility or reducibility to the
isotropic Huber–von Mises criterion in the transverse isotropy plane, and the
appropriate class of tetragonal symmetry (classical Hill’s formulation) or hexagonal
symmetry (hexagonal Hill or von Mises–Hu–Marin criteria) are considered. The
new hybrid formulation, applicable for some engineering materials based on
additional bulge test, is also proposed.

Chapter 6 comprises yield/failure initiation criteria, discussed in detail with
respect to the three following effects: the hydrostatic pressure dependence, tension/
compression asymmetry, isotropic or anisotropic response. In case of anisotropic
materials the explicit formulation, based on either all three common invariants or
first and second common invariants, are addressed especially to case of transverse
isotropy where difference between tetragonal versus hexagonal symmetry is high-
lighted. A mixed approach to formulate the pressure sensitive and tension/com-
pression asymmetric initial failure criteria, capable to describe fully distorted limit
surfaces, which are based on both all stress invariants and the second common
invariant, are proposed. It is particularly addressed to orthotropic materials where
fourth-order linear transformation tensors are used to achieve extension of the
respective isotropic criteria.

Preface xi

http://dx.doi.org/10.1007/978-3-319-17160-9_4
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_6


Chapter 7 presents the general features of thermodynamically based constitutive
modeling. The type of constitutive modeling, based on a hypothesis that the state of
a material is entirely determined by certain values of some variables of state, is well
adapted to the formulation of constitutive equations for deformable solids with
several dissipative phenomena. The classification of constitutive equations is pre-
sented for the following materials: elastic-damage, elastic-plastic, thermo-elastic-
(visco)plastic, and elastic-plastic-damage, in a critical and comparative way.
Damage acquired anisotropy and unilateral damage effect are accounted for. When
plasticity is considered, an alternative multiscale approach, based on polycrystalline
calculations for the description of yield anisotropy and its evolution with accu-
mulated deformation, is also discussed. As an example of thermo-plastic coupling,
the fatigue behavior in nonisothermal conditions is analyzed. Numerical simula-
tions which indicate the significant influence of temperature rate on the response of
constitutive model when cyclic thermo-mechanical loading is considered, are
performed.

Finally, all recent trends to account for modeling material anisotropy and cou-
pling of dissipative phenomena have been highlighted and compared. The advan-
tages and difficulties of both a traditional explicit concept of consistent common
invariant-based polynomial formulation versus recently dynamically developed
implicit approach by extension of isotropic criteria with use of linear transformation
of the Cauchy stress tensor, are critically reviewed. Formal and complete analysis of
couplings between several dissipative phenomena (e.g., thermo-plastic coupling,
damage-plasticity coupling, nonisothermal thermo-damage-plasticity coupling, etc.)
are systematically analyzed in frame of irreversible thermodynamics including
internal variables.

Jacek J. Skrzypek
Artur W. Ganczarski
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Notations

General Rules

• superscripts e;d ;p ;ph ;v ;T refer to elastic, damage, plastic, phase change, viscous,
and thermal quantities, respectively

• superscripts m;r refer to matrix and reinforcement of composite, respectively
• superscript res refers to residual quantity
• superscripts V;R refer to Voigt or Reuss estimate of quantity
• left subscripts preceding matrices secX or tanX refer to tangent or secant matrices,

respectively
• tilde over symbol e denotes effective quantity including effect of damage
• line over symbol − denotes quantity averaged over representative element
• double line over symbol = denotes quantity after weighting homogenization
• roof over symbol b denotes Lapace’s transform of quantity

Operators

x Scalar
xi; x Vector
xij; x Second-rank tensor
xijkl;X Fourth-rank tensor
½X� Matrix
½X�T Matrix transposed
det Determinant
jxj Absolute value
jjxjj Norm
hxi Macaulay bracket ¼ x if x� 0

0 if x\0

�

xix



d
dx

Operator of derivative

_x Time derivative ¼ dx
dt

D
Dt

Absolute derivative

@
@x

Partial derivative

D Operator of time derivative ¼ @
@t

r Nabla ¼ @
@x þ @

@y þ @
@z

D Increment
x� y Diadic product of vectors
x � y Contracted product of tensors
trðxÞ Trace operator or first invariant of tensor
J2ðxÞ Second invariant of tensor
HðtÞ Heaviside’s function
dij Kronecker’s symbol
L;LC Laplace and Laplace–Carson integral transforms
expðxÞ Exponential function
x � y Convolution operator

Latin and Greek Letters Used as Symbols

a c e g i k m p s u w y a e # m q / x K

A C E G I K M P S U W Y b f j n r u C U

b d f h j l n r t v x z c g k p s v D W

B D F H J L N R T V X Z d h l q t w H X

Symbols

a; b Inner and outer radius of cylinder, respectively
a; b; c Lattice edges
aij Direction cosines
A Area of surface
A Strain concentration tensor
A;B;C Material coefficients in Burzyński yield/failure criterion
bi Vector of body forces
b; h; l Dimensions of representative unit cell
B Stress concentration tensor

xx Notations



c Coefficient of cohesion, material constant in Drucker’s
criterion

C Complementary energy per unit volume
D;Di;D;D Damage parameter, vector, second-rank and fourth-rank

tensors
e; eij Strain deviator
E Young’s modulus
Eii Axial modules (generalized Young’s modulus)
Eijkl;E�1

ijkl ;E;E
�1 Hooke’s stiffness or compliance tensors

EðtÞ Relaxation function
veEijklðtÞ;ve EðtÞ Tensor of relaxation functions
f Yield function, dissipation potential
F Force
g Plastic potential function
G Kirchhoff’s modulus
G Gibbs’ potential function
Gij Shear modules (generalized Kirchhoff’s modules)

hð1Þij ; hð2Þijkl; h
ð3Þ
ijklmn

Structural anisotropy tensors after Kowalsky

½Hij� Hessian’s matrix
I Sectional moment of inertia
Iijkl; I Four-rank unit tensor
Iie Principal invariants of strain tensor
Iir Principal invariants of stress tensor
Jie Basic invariants of strain deviator
Jie Basic invariants of strain tensor
Jis Basic invariants of stress deviator
Jir Basic invariants of stress tensor
Jk

� �
Vector of thermodynamic conjugate forces

JðtÞ Creep compliance function
veJijklðtÞ;ve JðtÞ Tensor of creep functions
k Strength, yield point stress
kc; kt; ks Yield point stress under compression, tension,

and pure shear, respectively
kx; ky; kz Plastic tension limits along axes x; y; z; respectively
kyz; kzx; kxy Plastic shear limits in planes ðyzÞ; ðzxÞ; ðxyÞ
K Bulk modulus
l Length
m Compressive to tensile strength ratio
M Bending moment
MðiÞ Second-rank structural tensors
M Fourth-rank damage effect tensor
nij Direction cosines
n Unit vector

Notations xxi



N Axial force
p Cumulative plastic stain, pressure
pi Traction vector
P;Q Linear differential operators
qij Scalar products of corresponding direction cosines
qi Outward heat flux
½Q� Transformation matrix
r Heat source intesity
R Hosford–Backhofen parameter
R Fourth-rank continuity tensor
s Entropy per unit volume
s ; sij Stress deviator
S0; S00 Transformed Cauchy stress deviators
t Time
T Absolute temperature
u Internal energy per unit volume
ui Displacement vector
vi Material velocity
V Volume
Vf Volume fraction
Vk

� �
Vector of internal structural variables

w Deflection of beam
W Strain energy per unit volume
xi; x Euler’s (space) coordinates
Xi Lagrange’s (material) coordinates
1 Second-rank unit tensor
a Material constant in Drucker–Prager’s criterion
a; b; c Lattice angles
cij Shear strain
eij; e Strain tensor
e�ij Strain tensor including crack/opening effect
em Mean strain
eoff Plastic offset
�ij;2ij Green’s and Almansi’s strain tensors, respectively
g Coefficient of dynamic viscosity
gi Coefficients of free energy function in Murakami–Kamiya’s

model
giðjkÞ Rabinovich’s modules
#i Coefficients of Gibbs’ complementary function

in Hayakawa–Murakami’s model
j Curvature
k Extension, plastic multiplier
pij Tensor of plastic anisotropy of second-rank
l; k Lamé’s coefficients

xxii Notations



lijðklÞ Chencov’s modules
m Poisson’s ratio
mij Generalized Poisson’s coefficients
n; q; h Haigh–Westergaard’s coordinates
/ Angle of internal friction
q Mass density
rij; r Stress tensor
req Effective stress
rh Hydrostatic stress
rm Mean stress
f Material constant
sij Components of shear stress
w Helmholtz’s free energy
C Domain
Rij Second Piola–Kirchhoff’s stress tensor
R Transformed Cauchy stress tensor
H Volume change, dilatation
Pij;Pijkl; p; II Structural tensors of plastic/failure anisotropy
Xij Skew-symmetric spin tensor

Notations xxiii



Chapter 1
Introduction to Mechanics
of Anisotropic Materials

Artur W. Ganczarski, H. Egner and Jacek J. Skrzypek

Abstract This book is focused on constitutive description of mechanical behavior
of engineering materials: both conventional (e.g., polycrystalline homogeneous
isotropic or anisotropic metallic materials) and nonconventional ones (e.g., heteroge-
neous multicomponent usually anisotropic composite materials) fabricated by mod-
ern material engineering. Effective material properties at the macrolevel depend on
both the material microstructure (isotropic or originally anisotropic in general case)
and on dissipative phenomena occurred on fabrication and consecutive loading phase
resulting in irreversible microstructure changes (acquired anisotropy). The material
symmetry is a background and anisotropy is a core around which the book is formed.
In this way a revision of classical rules of enhanced constitutive description of mate-
rials is required. The aim of this introductory chapter lies in providing, apart from
classical definitions of tensor single invariants, also the choice of state variables
necessary to describe irreversible microstructure changes accompanying coupled
dissipative phenomena, and basic definitions of common invariants of either two
second-order tensors (e.g., stress/strain and damage tensors) or two different-order
tensors (e.g., stress/strain and fourth-order structural tensors). Concise classification
of anisotropic materials with respect to symmetry of elastic matrices as referred to
the crystal lattice symmetry is given, and extended analogy between symmetries
of constitutive material matrices (elastic and yield/failure) is also discussed. Next,
strain and complementary energy as function of either stress/strain invariants (ini-
tial elastic isotropy) or common stress/strain—damage invariants (damage acquired
anisotropy) are mentioned. Constitutive equation of linear elasticity in terms of com-
mon invariants of strain and structural orthotropic tensors is given. The scope of

A.W. Ganczarski (B) · H. Egner · J.J. Skrzypek
Solid Mechanics Division, Institute of Applied Mechanics,
Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
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2 A.W. Ganczarski et al.

this chapter provides necessary tools for more extended constitutive description of
materials which exhibit either virgin anisotropy or damage or phase change acquired
anisotropy following microstructure changes.

Keywords Single or common tensor invariants ·Material symmetry and constitutive
matrices · Virgin or acquired anisotropy · Shear and volumetric change coupling ·
Strain energy of anisotropic materials · Damage and phase change state variables ·
Constitutive tensors analogy

1.1 Second-Order Tensors

1.1.1 Stress Tensor and Stress Tensor Invariants

Stress tensor σ, when mathematical σi j i, j = 1, 2, 3, or i, j = x, y, z, and engi-
neering notations are used is furnished as

[σi j ] =
⎡
⎣

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦ =

⎡
⎣

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎦ =

⎡
⎣

σx τxy τxz

τyx σy τyz

τzx τzy σz

⎤
⎦ (1.1)

where x, y, z denote cartesian coordinate system.
When symmetry of the stress tensor σi j = σ j i is assumed, the stress tensor can

be represented as columnar stress vector as follows:

{σ} = {σ11,σ22,σ33,σ23,σ13,σ12}T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
σ23
σ13
σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.2)

When the definition of stress deviator is assumed as

si j = σi j − 1

3
σkkδi j = σi j − σhδi j = σi j − 1

3
tr (σ) δi j (1.3)

where σh = 1
3σkk denotes either hydrostatic or mean stress, while δi j =

{
1 i = j
0 i �= j

denotesKronecker’s symbol, decomposition of the stress tensor into the stress axiator
and the stress deviator takes the following form:

σ = σh1 + s (1.4)



1 Introduction to Mechanics of Anisotropic Materials 3

where absolute notation σh1 and s are used for the stress axiator and the stress
deviator, respectively

[σh1] =
⎡
⎣

σh 0 0
0 σh 0
0 0 σh

⎤
⎦

[s] =
⎡
⎣

σx − σh τxy τxz

τyx σy − σh τyz

τzx τzy σz − σh

⎤
⎦ =

⎡
⎣

sxx sxy sxz

syx syy syz

szx szy szz

⎤
⎦

(1.5)

Classical stress transformation rule from i, j to k, l directions is

σkl = aki al jσi j (1.6)

where second-order tensor transformation rule is applied and aki , al j denote direction
cosines of the transformation from the original frame i, j = x, y, z in the new
reference frame k, l = ξ, η, ζ. It is possible to distinguish the specific transformation
into eigendirections (principal directions) for which the corresponding stress tensor
takes the diagonal representation

⎡
⎣

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎦ transformation−−−−−−−−−→

⎡
⎣

σ1 0 0
0 σ2 0
0 0 σ3

⎤
⎦ (1.7)

Three principal stresses are determined as real roots of the cubic equation, being
solution of eigenproblem for the stress tensor σ

σ = λ1 (1.8)

where λi = σ1,σ2,σ3 stand for eigenvalues. These principal stresses are real roots
of the characteristic equation of stress tensor λi = σi

det(σ − λ1) = 0 (1.9)

which can be rewritten in the equivalent fashion

σ3 − I1σσ2 + I2σσ − I3σ = 0 (1.10)

Three coefficients of the characteristic equation (1.10) I1σ, I2σ, I3σ are called the
principal invariants of the stress tensor and may be defined in terms of stress
components
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I1σ = tr(σ) = σi i = σxx + σyy + σzz [MPa]
I2σ =

∣∣∣∣
σxx σxy

σyx σyy

∣∣∣∣+
∣∣∣∣
σyy σyz

σzy σzz

∣∣∣∣+
∣∣∣∣
σzz σzx

σxz σxx

∣∣∣∣
= σxxσyy + σyyσzz + σzzσxx − (σ2

xy + σ2
yz + σ2

zx ) [MPa2]

I3σ = detσ =
∣∣∣∣∣∣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

∣∣∣∣∣∣
= σxxσyyσzz

+ 2σxyσyzσzx − (σxxσ
2
yz + σyyσ

2
xz + σzzσ

2
xy) [MPa3]

(1.11)

Apart from the principal invariants, the basic stress invariants also called the generic
stress invariants are of particular importance, namely

J1σ = σi i = tr (σ) [MPa]
J2σ = 1

2σi jσ j i = 1
2 tr

(
σ2
) [MPa2]

J3σ = 1
3σi jσ jkσki = 1

3 tr
(
σ3
) [MPa3]

(1.12)

It is seen that the basic stress invariants can be interpreted as traces of subsequent
powers of stress tensor σ, σ2 = σ · σ, σ3 = σ · σ · σ, if appropriate coefficients 1,
1/2, 1/3 are used. Note that the basic invariants differ from the principal invariants,
which are coefficients of the characteristic equation (1.10).

The basic stress invariants J1σ, J2σ, J3σ are expressed in terms of the principal
stress invariants I1σ, I2σ, I3σ as follows:

J1σ = I1σ
J2σ = 1

2 I 21σ − I2σ

J3σ = 1
3 I 31σ − I 21σ I2σ + I3σ

(1.13)

The reciprocal relations are

I1σ = J1σ
I2σ = 1

2 J 2
1σ − J2σ

I3σ = 1
6 J 3

1σ − J 2
1σ J2σ + J3σ

(1.14)

Decomposition of the stress tensor into the stress axiator (spherical tensor) and the
stress deviator (1.3−1.5) leads to the following system of principal or generic invari-
ants of the stress deviator

J1s = sii = tr(s) = 0 [MPa]
J2s = 1

2 si j s ji = 1
2 tr

(
s2
) [MPa2]

J3s = 1
3 si j s jkski = 1

3 tr
(
s3
) [MPa3]

(1.15)
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where, in similar fashion as in Eq. (1.12), subsequent powers of the stress deviator
s, s2 = s · s, s3 = s · s · s are used. Note that the first basic deviatoric stress invariant
J1s is equal to zero according to definition (1.3).

Additionally, some engineering tensor stress invariants characterized by the stress
dimension homogeneity [MPa], by contrast to the above defined basic invariants of
different dimensions [MPa], [MPa2], [MPa3] are frequently used as

σh = 1
3 J1σ = 1

3 tr (σ) = 1
3σ : 1 = 1

3σkk [MPa]
σeq = √

3J2s =
√

3
2 si j s ji [MPa] (1.16)

The first of them σh is easily recognized as the mean stress and the second σeq
represents the commonly used stress intensity also called the effective stress.

1.1.2 Strain Tensor and Strain Tensor Invariants

Strain tensor ε = εi j when uniform mathematical notation i, j = 1, 2, 3 or i, j =
x, y, z, and the engineering notation are used, is furnished as

[εi j ] =
⎡
⎣

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎤
⎦ =

⎡
⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦ =

⎡
⎢⎣

εx
1
2γxy

1
2γxz

1
2γyx εy

1
2γyz

1
2γzx

1
2γzy εz

⎤
⎥⎦ (1.17)

where x, y, z denote cartesian coordinate frame.
Transformation of the strain tensor is described in a similar fashion as the stress

tensor transformation (1.6), namely

εkl = aki al jεi j (1.18)

Similarly, the principal strains can be obtained by solution of the eigenproblem of
the tensor ε

ε = λ1 (1.19)

or equivalently as solution of characteristic equation of strain tensor

ε3 − I1εε
2 + I2εε − I3ε = 0 (1.20)

Coefficients of the above equation I1ε, I2ε, I3ε denote the principal invariants of the
small (linearized) strain tensor and are defined as the homogeneous, scalar functions
of the strain components
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I1ε = tr(ε) = εi i = εxx + εyy + εzz

I2ε =
∣∣∣∣
εxx εxy

εyx εyy

∣∣∣∣+
∣∣∣∣
εyy εyz

εzy εzz

∣∣∣∣+
∣∣∣∣
εzz εzx

εxz εxx

∣∣∣∣
= εxxεyy + εyyεzz + εzzεxx − (ε2xy + ε2yz + ε2zx )

I3ε =
∣∣∣∣∣∣
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

∣∣∣∣∣∣
= εxxεyyεzz + 2εxyεyzεzx

− (εxxε
2
yz + εyyε

2
xz + εzzε

2
xy)

(1.21)

If symmetry of the strain tensor is assumed equivalent representation of the strain
tensor in the form of columnar strain vector may be applied as

{ε} = {ε11, ε22, ε33, ε23, ε13, ε12}T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
ε23
ε13
ε12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.22)

When the definition of the strain deviator, analogous to the stress deviator (1.3), is
used, we arrive at

ei j = εi j − 1

3
εkkδi j = εi j − εmδi j = εi j − 1

3
tr (ε) δi j (1.23)

where εm denotes mean (volumetric) strain. Decomposition of the strain tensor into
the strain axiator and the strain deviator is given according to the scheme

ε = εm1 + e (1.24)

when the absolute notation was used, where εm1 and e denote the strain axiator and
the strain deviator, respectively

[εm1] =
⎡
⎣

εm 0 0
0 εm 0
0 0 εm

⎤
⎦

[e] =
⎡
⎢⎣

εx − εm
1
2γxy

1
2γxz

1
2γyx εy − εm

1
2γyz

1
2γzx

1
2γzy εz − εm

⎤
⎥⎦ =

⎡
⎣

exx exy exz

eyx eyy eyz

ezx ezy ezz

⎤
⎦

(1.25)
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The basic or the generic strain tensor invariants are defined in analogous fashion
as in Eq. (1.12)

J1ε = εi i = tr (ε)

J2ε = 1
2εi jε j i = 1

2 tr
(
ε2
)

J3ε = 1
3εi jε jkεki = 1

3 tr
(
ε3
) (1.26)

The basic strain tensor invariants J1ε, J2ε, J3ε are expressed in terms of the principal
strain invariants I1ε, I2ε, I3ε as

J1ε = I1ε

J2ε = 1
2 I 21ε − I2ε

J3ε = 1
3 I 31ε − I 21ε I2ε + I3ε

(1.27)

The reciprocal relationships are

I1ε = J1ε
I2ε = 1

2 J 2
1ε − J2ε

I3ε = 1
6 J 3

1ε − J 2
1ε J2ε + J3ε

(1.28)

The principal invariants of the strain deviator may be determined in an analogous
way as the principal invariants of the stress deviator (1.15), namely

J1e = eii = tr(e) = 0

J2e = 1
2ei j e ji = 1

2 tr
(
e2
)

J3e = 1
3ei j e jkeki = 1

3 tr
(
e3
) (1.29)

1.1.3 Matrix Representation of Stress and Strain Tensors

Stress σi j and strain εi j are the second-rank tensors having in general 32 = 9 compo-
nents, since each of indices i, j runs from 1 to 3. Each of them can be interpreted as
linear transformation of a certain vector to another vector. In case of the stress tensor,
linear transformation of direction cosines n j into a traction vector pi according to
rule

pi = σi j n j (1.30)

is written down or
p1 = σ11n1 + σ12n2 + σ13n3

p2 = σ21n1 + σ22n2 + σ23n3

p3 = σ31n1 + σ32n2 + σ33n3

(1.31)
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when the expanded form is used. Applying the matrix-vector notation to the above
formulae the equivalent form is reached

⎧⎨
⎩

p1
p2
p3

⎫⎬
⎭ =

⎡
⎣

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦
⎧⎨
⎩

n1
n2
n3

⎫⎬
⎭ (1.32)

In Eq. (1.32) the second-rank stress tensor is represented by the 3 × 3 tensor repre-
sentation matrix and analogously, the strain tensor representation matrix

[σ] =
⎡
⎣

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦ [ε] =

⎡
⎣

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎤
⎦ (1.33)

Due to symmetry conditions of both the stress σi j = σ j i and the strain εi j =
ε j i tensors, both representation matrices are symmetric, comprising 6 independent
components each. When engineering notation is used, replacing 1, 2, 3 frame by
x, y, z cartesian coordinate frame, and introducing appropriate notation σi j = τi j

and εi j = 1
2γi j for i �= j , we arrive at

[σ] =
⎡
⎣

σxx τxy τxz

σyy τyz

σzz

⎤
⎦ [ε] =

⎡
⎢⎣

εxx
1
2γxy

1
2γxz

εyy
1
2γyz

εzz

⎤
⎥⎦ (1.34)

1.1.4 Decomposition of Strains

In the case of infinitesimal deformation the total strain εi j can be expressed as the sum
of the elastic (reversible) strain εei j , inelastic (irreversible) strain εIi j , and thermal

strain εTi j :

εrs = εers + εIrs + εTrs (1.35)

In the process of deformation, variousmicrostructural rearrangements ofmaterial
structure may take place, for example, the changes in density and configuration
of dislocations, the development of microscopic cavities, changes from primary to
secondary phase, etc. All these rearrangements may contribute to both reversible and
irreversible strains (cf. Abu Al-Rub and Voyiadjis [1]), therefore:

εers = εErs + εedrs + ε
eph
rs + · · ·

εIrs = ε
p
rs + εdrs + ε

ph
rs + · · · (1.36)

where εErs is a “pure” elastic strain, and εedrs , . . . , ε
p
rs, . . . are respectively the reversible

and irreversible components of the total strain induced by dissipative phenomenon
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Fig. 1.1 Components of the
strain tensor εk

i j induced

by kth dissipative
phenomenon

(see Fig. 1.1), e.g., plastic flow, damage, phase transformation, etc. For example,
in the case of thermo-elastic-plastic-damage material the total strain tensor εi j is
expressed as

εrs = εErs + εedrs︸ ︷︷ ︸
εers

+ εIdrs + ε
p
rs︸ ︷︷ ︸

εIrs

+ εTrs (1.37)

while its damage-induced component, εdrs, consists of both reversible (ed) and irre-
versible (Id) damage strain terms:

εdrs = εedrs + εIdrs (1.38)

1.2 Fourth-Order Tensors and Matrix Representation

1.2.1 Stiffness and Compliance Matrices—Voigt’s Notation

General linear elasticity equation for anisotropic material, frequently called the gen-
eralized Hooke law, takes the forms

εi j = E−1
i jklσkl σi j = Ei jklεkl (1.39)

where the fourth-rank elasticity tensors, stiffness Ei jkl or compliance E−1
i jkl , are

defined, in general by 34 = 81 components, since each of indices i, j, k, l runs
through 1, 2, 3. Because of the symmetry of the stress σkl = σlk and the strain
εi j = ε j i tensors, both the stiffness and compliance tensors are symmetric with
respect to change of indices in pairs i ↔ j and k ↔ l

Ei jkl = E jikl = Ei jlk E−1
i jkl = E−1

j ikl = E−1
i jlk (1.40)
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Additionally, because of property of positive definiteness of strain energy or com-
plementary energy the symmetry with respect to change of indices between pairs
i j ↔ kl must also hold

Ei jkl = Ekli j E−1
i jkl = E−1

kli j (1.41)

Because of symmetry conditions (1.40) and (1.41) from among 81 components of
stiffness or compliance tensors, only 21 are independent. In order to describe the gen-
eralized Hooke’s law (1.39) by use of vector-matrix Voigt’s notation, stress and strain
tensors are written as columnar stress and strain vectors, if the following scheme of
change between tensor i, j = 1, 2, 3 and vectors k = 1, 2, . . . , 6 indices holds:

i j 11 22 33 23, 32 31, 13 12, 21
↓ ↓ ↓ ↓ ↓ ↓

k 1 2 3 4 5 6
(1.42)

From the above scheme we obtain the following representations of stress and strain
tensors:

[σi j ] =
⎡
⎣

σ11 σ12 σ13
σ22 σ23

σ33

⎤
⎦ →

⎡
⎣

σ1 σ6 σ5
σ2 σ4

σ3

⎤
⎦ →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

[
εi j
] =

⎡
⎣

ε11 ε12 ε13
ε22 ε23

ε33

⎤
⎦ →

⎡
⎣

ε1 ε6 ε5
ε2 ε4

ε3

⎤
⎦ →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.43)

Analogous scheme is applied to the first and second pairs of indices of stiffness and
compliance tensors

Ei jkl = Emn, E−1
i jkl = E−1

mn if m or n go through 1, 2, 3

2Ei jkl = Emn, 2E−1
i jkl = E−1

mn if m or n go through 4, 5, 6

4Ei jkl = Emn, 4E−1
i jkl = E−1

mn if both m and n go through 4, 5, 6
(1.44)

where appropriate factors 2 or 4 are applied.
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For instance, if the axial strain ε11 is considered the transformation scheme is as
follows:

ε11 = E−1
1111σ11 + E−1

1122σ22 + E−1
1133σ33 + 2E−1

1123σ23 + 2E−1
1113σ13 + 2E−1

1112σ12
↓ ↓ ↓ ↓ ↓ ↓ ↓
ε1 = E−1

11 σ1 + E−1
12 σ2 + E−1

13 σ3 + E−1
14 σ4 + E−1

15 σ5 + E−1
16 σ6

(1.45)

In case the shear strain ε23 is considered, the following are furnished:

ε23 = E−1
2311σ11 + E−1

2322σ22 + E−1
2333σ33 + 2E−1

2323σ23 + 2E−1
2313σ13 + 2E−1

2312σ12
↓ ↓ ↓ ↓ ↓ ↓ ↓
2ε4 = 2E−1

2311σ1 + 2E−1
2322σ2 + 2E−1

2333σ3 + 4E−1
2323σ4 + 4E−1

2313σ5 + 4E−1
2312σ6

↓ ↓ ↓ ↓ ↓ ↓ ↓
γ4 = E−1

41 σ1 + E−1
42 σ2 + E−1

43 σ3 + E−1
44 σ4 + E−1

45 σ5 + E−1
46 σ6

(1.46)

Finally, the generalized Hooke’s law (1.39) is represented in vector-matrix notation
as follows:

εi = E−1
i j σ j (i = 1, 2, 3, j = 1, 2, . . . , 6)

γi = E−1
i j σ j (i = 4, 5, 6, j = 1, 2, . . . , 6)

(1.47)

or
{ε} = [E−1] {σ} (1.48)

or equivalently
{σ} = [E] {ε} (1.49)

where [E] or [E−1] denote representation matrices of elastic stiffness or compli-
ance tensors, whereas {ε} and {σ} denote the columnar vectors of strain and stress,
respectively.When columnar vectors of stress and strain are used as well as elasticity
matrices are explicitly written down, Hooke’s law is furnished as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
γ4
γ5
γ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E−1
11 E−1

12 E−1
13 E−1

14 E−1
15 E−1

16

E−1
21 E−1

22 E−1
23 E−1

24 E−1
25 E−1

26

E−1
31 E−1

32 E−1
33 E−1

34 E−1
35 E−1

36

E−1
41 E−1

42 E−1
43 E−1

44 E−1
45 E−1

46

E−1
51 E−1

52 E−1
53 E−1

54 E−1
55 E−1

56

E−1
61 E−1

62 E−1
63 E−1

64 E−1
65 E−1

66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
τ4
τ5
τ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.50)
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or
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
τ4
τ5
τ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E11 E12 E13 E14 E15 E16

E21 E22 E23 E24 E25 E26

E31 E32 E33 E34 E35 E36

E41 E42 E43 E44 E45 E46

E51 E52 E53 E54 E55 E56

E61 E62 E63 E64 E65 E66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
γ4
γ5
γ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.51)

where engineering notation for shear stress τ j = σ j ( j = 4, 5, 6) is used.
It should bementioned that symmetric stiffness [Ei j ] = [E ji ] and symmetric com-

pliance [E−1
i j ] = [E−1

j i ] matrices, both having dimension 6 × 6, are representation

matrices of fourth-rank elasticity tensors Ei jkl or compliance E−1
i jkl . Transformation

of each matrix to another coordinate frame can be performed if the matrix nota-
tion (1.51) is replaced by the tensor notation (1.39), or by use of the appropriate
transformation matrix [Q]

[E′] = [Q]T[E][Q] (1.52)

For instance, if the stiffness matrix is considered the transformation matrix takes the
form

[Q] =

⎡
⎢⎢⎢⎢⎢⎢⎣

q11q11 q12q12 q13q13
q21q21 q22q22 q23q23
q31q31 q32q32 q33q33
2q31q21 2q32q22 2q33q23
2q31q11 2q32q12 2q33q13
2q21q11 2q12q22 2q13q23

q12q13 q13q11 q12q11
q23q22 q23q21 q22q21
q33q32 q33q31 q32q31

q33q22 + q32q23 q33q21 + q31q23 q31q22 + q32q21
q33q12 + q32q13 q33q11 + q31q13 q31q12 + q32q11
q13q22 + q12q23 q13q21 + q11q23 q11q22 + q12q21

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.53)

the coefficients of which are scalar products of corresponding direction cosines qi j =
ni n j between both coordinate frames.

1.2.2 The Choice of State Variables

The irreversible rearrangements of the internal structure can be represented by a
group of variables describing the current state of material microstructure:

{V k} = {V p, V d, V ph, . . .} (1.54)
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where V k may be scalars, vectors, or even rank tensors. For damage description, in
the case where the damaged material remains isotropic, the current state of damage
is often represented by the scalar variable V d = D denoting the volume fraction of
cracks and voids dV d in the total volume dV 0. Damage acquired orthotropy requires
a second-order tensor, for example, the classical Murakami–Ohno [38] tensor V d

i j =
Di j , see Eq. (1.61). In the most general case of anisotropy the description of damage
needs to be embodied in an eight-order tensor (cf. Cauvin and Testa [6]), while the
principle of strain equivalence allows using fourth-order tensors, see Sect. 1.2.3. For
phase transformation analysis the scalar variable V ph = ξ is commonly adopted (cf.
Egner and Skoczeń [14]), which denotes the volume fraction of the secondary phase
in the total volume of the two-phase Representative Volume Element. However, a
scalar variable is not capable of describing the acquired anisotropy due to partially
directional nature of the secondary inclusions in the primary matrix. Therefore,
instead of scalar variable a second-order phase change tensor can be defined in
analogy to the damage tensor:

V ph = ξ =
3∑

i=1

ξi ni ⊗ ni (1.55)

where ξi describes the ratio of the secondary phase area dAph
i to the total area dA0

i on
the principal plane of normal unit vector ni (cf. Egner [13]). Another group of state
variables consists of internal (hidden) variables corresponding to the modifications
of loading surfaces:

{hk} =
{

rp,αp
i j , lpi jkl , g

p
i jklmn, . . .

rd,αd
i j , ldi jkl , g

d
i jklmn, . . .

} (1.56)

where rp, rd correspond to isotropic expansion of the loading surface, αp
i j ,α

d
i j affect

loading surface translatoric displacements, lpi jkl , ldi jkl are hardening tensors of the
fourth order which includes varying lengths of axes and rotation of the loading
surface, and g

p
i jklmn, gdi jklmn describe changes of the curvature of the loading surface

(distortion) related to appropriate dissipative phenomenon (cf. Kowalsky et al. [27],
see Fig. 1.2). The complete set of state variables {Vst} reflecting the current state of
the thermodynamic system consists of observable variables: elastic (or total) strain
tensor εei j and absolute temperature T , and two groups of microstructural {V k} and
hardening {hk} state variables:

{Vst} = {εei j , T ; V p, V d, V ph, . . . , hp, hd, hph, . . .} (1.57)

When thermo-elastic-plastic-damage two-phase material is considered, the exem-
plary set of state variables for a general case of hardening/softening effects induced
by different dissipative phenomena is further listed in Table7.1.

http://dx.doi.org/10.1007/978-3-319-17160-9_7
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Fig. 1.2 Modifications
of the loading surface in the
space of thermodynamic
conjugate forces {J k}
(after [13])

When the material is subjected to reverse tension-compression cycles, the unsym-
metrical behavior in tension and compression is observed as the unilateral response
due to partial crack closure effect. To describe the phenomenon of the unilateral
damage, also called the damage deactivation or the crack closure/opening effect, a
decomposition of the stress or strain tensors into the positive or negative projection is
usually introduced using the fourth-rank projection operators (cf. Krajcinovic [30];
Bielski et al. [4]):

ε∗
i j =

3∑
I=1

κ(εI )n
(ε)
i I n(ε)

j I n(ε)
I k n(ε)

I l εkl = B(ε)
i jklεkl (1.58)

where the fourth-rank tensor B(ε)
i jkl is built of directional cosines between the principal

and the current spatial systems, n(ε)
i I and κ(εI ) = H(a) + ζH(−a), H is a Heaviside

function and ζ is a material constant.

1.2.3 Damage and Damage Effect Tensors

So far constitutive description of material has not accounted for influence of damage.
Damage means existence of microvoids and microcracks in the material that result in
essential deterioration of mechanical properties at the macroscale, such as strength
and stiffness or compliance.

In the simplest casewhenmicrovoids are spherical and homogeneously distributed
in material, damage is described by the scalar damage variable D, usually called the
damage parameter, Fig. 1.3
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Fig. 1.3 Three configurations used in CDM: a initial, b damaged, c effective pseudo-undamaged

D = Ad

A
(1.59)

Scalar damage variable D, introduced by Kachanov [24] and Rabotnov [46], rep-
resents the loss of effective area from the initial A to the damaged Ad states. In
order to generalize the scalar damage variable to the case when microvoids exhibit
clearly directional nature, the vector damage variable Di , is proposed by Davison
and Stevens [11], Kachanov [25], Krajcinovic and Fonseka [28]

Di = Ad
i

Ai
i = 1, 2, 3 (1.60)

Murakami and Ohno [39] introduced more general damage variable defined by the
symmetric second-rank damage tensor D, capable of capturing an orthotropic dam-
age nature

D =
⎡
⎣

D11 D12 D13
D22 D23

D33

⎤
⎦ (1.61)

Recently, researches aimed towards correct description of damage mechanism in
elastic-brittle rock-like materials, ceramics or concrete led to definition of the
fourth-rank damage tensors, e.g., Chaboche [8], Krajcinovic [29] or Lubarda and
Krajcinovic [35]. Apart from the above-mentioned damage variables possessing
clear geometric interpretation other damage variables referring to physical planes,
described in details e.g., by Gambarotta and Lagomarsino [15], Seweryn and Mróz
[48] should also be mentioned. More general classifications of damage variables
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were listed in following subject monographs by Krajcinovic [29, 30], Skrzypek and
Ganczarski [51], Betten [3] or Murakami [40].

In the frame of continuum damage mechanics (CDM), three configurations
are considered: initial configuration A that describes material in undamaged state
D(A) = 0, physical configuration B referring to the damaged state D(B) �= 0, and
the equivalent, fictitious pseudo-undamaged configuration C in which real heteroge-
neous material is substituted by a homogeneous material, free of damage D(C) = 0,
as schematically is shown in Fig. 1.3.

The physical (damaged) configuration B is equivalent to the effective (pseudo-
undamaged) configuration C in a certain sense, for instance, of strain equivalence
Chaboche [7], stress equivalenceTaher et al. [54], or elastic strain energy equivalence
Cordebois and Sidoroff [10]. In physical configuration B damage state manifests
through the effective elasticity modulus Ẽ , for instance,

Ẽ = E(1 − D) or Ẽ = E(1 − D)2 (1.62)

where the hypotheses of strain or stress equivalence (first formula) or elastic energy
equivalence are used. Contrarily, in the effective configuration C damage state man-
ifests by the definition of the effective variables σ̃, ε̃, respectively

σ̃ = σ
E

Ẽ
, ε̃ = ε or σ̃ = σ

√
E

Ẽ
, ε̃ = ε

√
Ẽ

E
(1.63)

or equivalently

σ̃ = σ

1 − D
, ε̃ = ε or σ̃ = σ

1 − D
, ε̃ = ε(1 − D) (1.64)

The damage effect matrix, beingmatrix representation of the damage effect tensor

[M] = [
diag {M11, M22, M33, M44, M55, M66}

]
(1.65)

is expressed in terms of the damage parameter D as follows:

[M] = 1

1 − D

[
diag {1, 1, 1, 1, 1, 1}] (1.66)

where the diagonal form is applicable.
Damage effect matrix plays an essential role in definitions of the damage effective

stress tensor σ̃

{σ̃} = [M] {σ} =
{

σx

1 − D
,

σy

1 − D
,

σz

1 − D
,

τyz

1 − D
,

τxz

1 − D
,

τxy

1 − D

}T
(1.67)
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and the damage effective compliance (stiffness) matrix [Ẽ−1]

[Ẽ−1] = [M]T[E−1][M] =

= 1

E(1 − D)2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν
1 −ν

1
1 + ν

1 + ν
1 + ν

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.68)

For brevity, in all the above equations (1.62–1.68) the assumption of material
isotropy in undamaged state (A) is applied.

Assumption of the isotropic damage nature is too strong a simplification since
usuallymicrovoids ormicrocracks are of oval or directional shapes. A proper damage
description requires application of orthotropic damage representation (1.61), which
under the assumption of the principal damage frame reduces to the diagonal form,
where D1, D2, D3 components may be interpreted by reduction of effective areas 1,
2, 3 (1.60), hence

D =
⎡
⎣

D1
D2

D3

⎤
⎦ Di = Ad

i

Ai
i = 1, 2, 3 (1.69)

Chosen representations of the damage effect matrix based on various hypotheses,
after Chen and Chow [9], Skrzypek [49], Murakami [40], can be defined as follows:

[M1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−D1

1
1−D2

1
1−D3

1√
(1−D2)(1−D3)

1√
(1−D3)(1−D1)

1√
(1−D1)(1−D2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.70)

or

[M2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1−D1

1
1−D2

1
1−D3

1
1−0.5(D2+D3)

1
1−0.5(D3+D1)

1
1−0.5(D1+D2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.71)



18 A.W. Ganczarski et al.

or

[M3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−D1

1
1−D2

1
1−D3

1
2

(
1

1−D2
+ 1

1−D3

)

1
2

(
1

1−D3
+ 1

1−D1

)

1
2

(
1

1−D1
+ 1

1−D2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.72)

The damage effective stress can be defined, for instance in the following two ways,
both satisfying symmetry of the effective stress σ̃(D):

{σ̃} = [M1/2
1 ]T {σ} [M1/2

1 ] −→ [σ̃] =
⎡
⎢⎣

σx
1−D1

τxy√
(1−D1)(1−D2)

τxz√
(1−D1)(1−D3)

σy
1−D2

τyz√
(1−D2)(1−D3)

σz
1−D3

⎤
⎥⎦

(1.73)

or

{σ̃} = [M1]T {σ} [M1] −→ [σ̃] =
⎡
⎢⎣

σx
(1−D1)2

τxy
(1−D1)(1−D2)

τxz
(1−D1)(1−D3)

σy

(1−D2)2
τyz

(1−D2)(1−D3)
σz

(1−D3)2

⎤
⎥⎦

(1.74)

Exemplary effective compliance matrices take the following representations,
Skrzypek and Ganczarski [51]:

[Ẽ−1] = [M1]T[E−1][M1] =

1

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(1−D1)

2
−ν

(1−D1)(1−D2)
−ν

(1−D1)(1−D3)−ν
(1−D2)(1−D1)

1
(1−D2)

2
−ν

(1−D2)(1−D3)−ν
(1−D3)(1−D1)

−ν
(1−D3)(1−D2)

1
(1−D3 )2

1+ν
(1−D2)(1−D3)

1+ν
(1−D3)(1−D1)

1+ν
(1−D1)(1−D2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.75)
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or

[Ẽ−1] = 1
2

([M2][E−1] + [E−1][M2]
) =

1

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−D1

−ν
1−0.5(D1+D2)

−ν
1−0.5(D1+D3)−ν

1−0.5(D2+D1)
1

1−D2

−ν
1−0.5(D2+D3)−ν

1−0.5(D3+D1)
−ν

1−0.5(D3+D2)
1

1−D3

1+ν
1−0.5(D2+D3)

1+ν
1−0.5(D1+D3)

1+ν
1−0.5(D1+D2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.76)

In both cases, for the sake of brevity, material isotropy at the undamaged state
was assumed.

In a more general case of full damage anisotropy the fourth-rank damage tensor
Di jkl , built of 21 independent components, should be used.

Following Cauvin and Testa [6] the effective stiffness tensor is defined as

Ẽ = (I − D) : E = R : E (1.77)

where fourth-rank tensors R and D stand for damage effect and damage tensors,
respectively. In general case of full damage anisotropy the 6×6matrix representation
of the fourth-rank damage tensor is as follows:

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14 D15 D16
D22 D23 D24 D25 D26

D33 D34 D35 D36
D44 D45 D46

D55 D56
D66

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.78)

As a particular case the orthotropic damage is considered as example for which the
unsymmetric orthotropic damage matrix reduces to

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13
D21 D22 D23
D31 D32 D33

D44
D55

D66

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.79)

In the particular case when the orthotropic symmetry of damaged material is
considered, the damage tensor takes the followingmatrix representation, afterCauvin
and Testa [6], also Ganczarski [17]:
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[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133

D2211 D2222 D2233

D3311 D3322 D3333

2D2323

2D1313

2D1212

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.80)

defined by12 independent elements, in general nonsymmetric because three elements
under diagonal D2211, D3311, D3322 are truly independent.

In the narrower case of transverse isotropy (in the plane 2, 3), number of inde-
pendent elements of the tensor Di jkl reduces to 5, namely D1, D2, D3, D4, D5

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D1 D2 D2

D2′ D3 D4

D2′ D4 D3

D3 − D4

D5

D5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.81)

Two components D2211 = D3311 = D2′ are dependent, and expressed as

D2′ = 1

1 − ν
[D2 + ν (D1 − D3) − νD4] (1.82)

This kind of transverse isotropy will further be classified as transverse isotropy case
of hexagonal symmetry (5 independent components in contrast to another transverse
isotropy of tetragonal symmetry where all 6 components are truly independent, see
Table1.1).

The 6 × 6 transversely isotropic compliance matrix is of the following form:

[Ẽ−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

− ν12
E1

− ν12
E1

− ν12
E1

1
E2

− ν23
E2

− ν12
E1

− ν23
E2

1
E2

1
G23

1
G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.83)

in which damage affected modules expressed in terms of damage variables are
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Table 1.1 Classification of anisotropic elastic materials with respect to stiffness matrix symmetry
referring to crystal lattice cf. Nye [42]

E1 = E (1−D1)(1−D3−D4)−2D2D2′
1−D3−D4−2νD2′

ν12 = ν(1−D3−D4)−(1−ν)D2′
1−D3−D4−2νD2′

E2 = E (1−D3 + D4)[(1−D1)(1−D3−D4)−2D2D2′]
(1−D1)(1−D3−νD4)−νD2(1−D3 + D4)−(1+ ν)D2D2′

ν23 = (1−D1)(ν−νD3−D4) + νD2(1−D3 + D4)−(1+ ν)D2D2′
(1−D1)(1−D3−νD4)−νD2(1−D3 + D4)−(1+ ν)D2D2′

G23 = E
2(1+ ν)

(1 − D3 − D4)

G12 = E
2(1+ ν)

(1 − D5)

(1.84)
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More accurate description of anisotropic damagemaybe provided by use of fabric
tensors, see Murakami [40], Voyiadjis and Kattan [55], Yun-bing and Xing-fu [56],
Lubarda and Krajcinovic [35]. For this reason a unit spherical surface around a given
point P(x) in the RVE is considered (see Fig. 1.4), and the directional distribution
ξ(n) of the microvoid density on the unit sphere is defined as a polynomial function
of the direction vector n

ξ(n) = D0 + Di j fi j (n) + Di jkl fi jkl(n) + · · · (1.85)

Expression (1.85) is a generalized Fourier serieswith respect to the irreducible tensor
bases fi j (n), fi jkl(n), …

fi j (n) = ni n j − 1
3δi j

fi jkl(n) = ni n j nknl − 1
7 (δi j nknl + δikn j nl + δiln j nk

+ δ jkni nl + δ jlni nk + δklni n j ) + 1
5×7 (δi j nknl

+ δikn j nl + δiln j nk)

(1.86)

The tensor bases fi j (n), fi jkl(n), … are symmetric with respect to the indices,
consist of even-order tensor components, and have vanishing trace.

The tensors D0, Di j , Di jkl ,… characterize the directional distribution of damage,
and are called fabric tensors. For given ξ(n) they can be derived by calculating the
following integrals (cf. Murakami [40]):

D0 = 1
4π

∫
S2

ξ(n)dΩ

Di j = 1
4π

3×5
2

∫
S2

ξ(n) fi j (n)dΩ

Di jkl = 1
4π

3×5×7×9
2×3×4

∫
S2

ξ(n) fi jkl(n)dΩ

(1.87)

The even-order tensors D0, Di j , Di jkl , … represent completely the damage state of
the materials, and have been used as the internal state variables in thermodynamic
modeling of creep and brittle damage, see Onat and Leckie [43], Lacy et al. [32].

Concluding, it is worth to mention that virgin material anisotropy may either
manifest from the very beginning of the elastic responsewhen appropriate anisotropic

Fig. 1.4 Unit spherical
surface to represent
directional void distribution
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formulation of Hooke’s law is required or at damage initiation phase when damage
acquired anisotropy appears as shown above. In the last case the elasticity matrix
at the virgin state may have isotropic nature, whereas after some dissipative process
initiates it changes to anisotropic form.

1.3 Common Invariants of the Second-Order
and Fourth-Order Tensors

1.3.1 Common Invariants of Two Second-Order Tensors:
The Stress/Strain and the Damage Tensors

A fundamental (irreducible) set of common invariants of two second-order tensors
comprises 10 invariants. In a particular case when the common strain-damage space
(ε, D) is considered they are furnished as

J1ε = tr(ε) = εi i

J2ε = 1
2 tr(ε · ε) = 1

2εi jε j i

J3ε = 1
3 tr(ε · ε · ε) = 1

3εi jε jkεki

J1D = tr(D) = Dii

J2D = 1
2 tr(D · D) = 1

2 Di j D ji

J3D = 1
3 tr(D · D · D) = 1

3 Di j D jk Dki

J1εD = tr(ε · D) = εi j D ji

J2εD = tr(ε · ε · D) = εi jε jk Dki

J3εD = tr(ε · D · D) = εi j D jk Dki

J4εD = tr(ε · ε · D · D) = εi jε jk Dkl Dli

(1.88)

When another stress-damage commonly used space (σ, D) is considered the fol-
lowing holds:

J1σ = tr(σ) = σi i

J2σ = 1
2 tr(σ · σ) = 1

2σi jσ j i

J3σ = 1
3 tr(σ · σ · σ) = 1

3σi jσ jkσki

J1D = tr(D) = Dii

J2D = 1
2 tr(D · D) = 1

2 Di j D ji

J3D = 1
3 tr(D · D · D) = 1

3 Di j D jk Dki

J1σD = tr(σ · D) = σi j D ji

J2σD = tr(σ · σ · D) = σi jσ jk Dki

J3σD = tr(σ · D · D) = σi j D jk Dki

J4σD = tr(σ · σ · D · D) = σi jσ jk Dkl Dli

(1.89)
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1.3.2 Common Invariants of Two Different-Order Tensors:
The Second Stress/Strain and the Fourth-Order
Structural Tensors

The orthotropic material is characterized by three mutually perpendicular symmetry
planes determined by three second-rank tensors called the structural tensors in terms
of which the elastic strain energy W can be represented as

W = W(ε, M(1), M(2), M(3)) (1.90)

When axes ofmaterial orthotropy coincidewith axes of reference frame the structural
tensors take the simplified forms

M(1) =
⎡
⎣
1 0 0
0 0
0

⎤
⎦ M(2) =

⎡
⎣
0 0 0
1 0
0

⎤
⎦ M(3) =

⎡
⎣
0 0 0
0 0
1

⎤
⎦ (1.91)

for which the following holds:

1 = M(1) + M(2) + M(3) (1.92)

Condition (1.92) means that the structural tensors are mutually dependent. Hence,
elastic strain energy (1.90) can be represented in terms of two structural tensors
chosen as independent, e.g., M(1) and M(2)

W = W(ε, M(1), M(2)) (1.93)

Analogously, strain tensor can be written as ε = 1 · ε = ε · 1, which finally leads to

ε = ε · M(1) + ε · M(2) + ε · M(3) = ε · 1
ε = M(1) · ε + M(2) · ε + M(3) · ε = 1 · ε

(1.94)

Summing up, the above equations assure symmetry of the strain tensor ε

ε = 1

2
(ε · M(1) + M(1) ·ε)+ 1

2
(ε · M(2) + M(2) ·ε)+ 1

2
(ε · M(3) + M(3) ·ε) (1.95)

The following representation of elastic strain energy in terms of 7 invariants can be
obtained:

W = W [
tr(ε), 1

2 tr(ε · ε), 1
3 tr(ε · ε · ε),

tr(ε · M(1)), tr(ε · M(2)), tr(ε · M(3)), tr(ε · ε · M(2))
] (1.96)
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comprising both 3 single strain invariants and 4 common strain and structural tensor
invariants. However, based on (1.95) two first-strain invariants can be represented as

tr(ε) = tr(ε · M(1)) + tr(ε · M(2)) + tr(ε · M(3))

tr(ε · ε) = tr(ε · ε · M(1)) + tr(ε · ε · M(2)) + tr(ε · ε · M(3))
(1.97)

whereas the third strain invariant 1
3 tr(ε · ε · ε) is ignored because strain energy must

be a quadratic function of strain ε. For further details see Sect. 1.7.3.

1.4 Classification of Elastic Materials with Respect
to Symmetry Groups and Classes

For further considerations, analogy between the crystal lattice symmetry groups and
classes and corresponding symmetry of the stiffness matrices defined for crystalline
materials might be useful (cf. e.g. Nye [42]). Unit cells of the eight conventional
crystal lattices are demonstrated based on Love [34] and Jastrzebski [23], whereas
corresponding constitutive elasticity matrices are schematically sketched applying
Nye’s graphics (symbol • refers to independent element, symbol ◦ refers to depen-
dent element, symbols•−−• or◦−−◦ represent pairs of identical matrix elements,
symbols •−−◦· stand for pairs of elements in which one is doubled (effect of engi-
neering notation applied to shear strain γi j = 2εi j ), whereas symbols•−−−◦ denote
pairs of elements of the same absolute value but opposite signs, respectively.

1.4.1 Triclinic Hooke’s Anisotropy (21 Constants)

Deformation of representative cube taken of the generally anisotropic material of
triclinic symmetry subjected to exemplary axial tension along three axes is fully
anisotropic. This means that it comprises both anisotropic axial strains (transforma-
tion of the cube to a rectangular prism) and anisotropic shear strains (transformation
of the rectangular prism to a parallelepiped), as schematically sketched in Fig. 1.5.
In such a case of general deformation the elastic compliance matrix is fully popu-
lated. In other words, all components of the columnar stress vector depend on all six
components of the columnar strain vector (36 combinations). Final representation
of compliance matrix for fully anisotropic (triclinic) material is as follows:
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Fig. 1.5 Schematic
deformation of representative
cube of anisotropic triclinic
material under uniaxial
tension along three axes

(1.98)

Symmetry of the elastic compliance matrix (1.98) results from symmetry of both
stress and strain tensors, namely

νi j
E j j

= ν j i
Eii

−→ νi j Eii = ν j i E j j
ηi j (k)

Ekk
= η(k)i j

Gi j
−→ ηi j (k)Gi j = η(k)i j Ekk

μi j (ki)
Gki

= μ(ki)i j
G ji

−→ μi j (ki)G ji = μ(ki)i j Gki

(1.99)

In should be pointed out that the symmetry E
−1
i j = E

−1
j i holds for elements

of compliance matrix but not for corresponding engineering material constants
Eii , νi j , Gi j , η(i) jk , μi j (ki) as shown in (1.100) versus (1.98) (Table1.2)

[
E

−1
]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E−1
11 E−1

12 E−1
13 E−1

14 E−1
15 E−1

16

E−1
21 E−1

22 E−1
23 E−1

24 E−1
25 E−1

26

E−1
31 E−1

32 E−1
33 E−1

34 E−1
35 E−1

36

E−1
41 E−1

42 E−1
43 E−1

44 E−1
45 E−1

46

E−1
51 E−1

52 E−1
53 E−1

54 E−1
55 E−1

56

E−1
61 E−1

62 E−1
63 E−1

64 E−1
65 E−1

66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.100)
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Table 1.2 Superposition of the strain tensor components of anisotropic material corresponding to
subsequent stress tensor components

State axial shear
ε1 ε2 ε3 γ23 γ31 γ12

1
E11

σ1 − ν21

E11
σ1 − ν31

E11
σ1

η23(1)

E11
σ1

η31(1)

E11
σ1

η12(1)

E11
σ1

− ν12

E22
σ2

1
E22

σ2 − ν32

E22
σ2

η23(2)

E22
σ2

η31(2)

E22
σ2

η12(2)

E22
σ2

− ν13

E33
σ3 − ν23

E33
σ3

1
E33

σ3
η23(3)

E33
σ3

η31(3)

E33
σ3

η12(3)

E33
σ3

η(1)23

G23
τ23

η(2)23

G23
τ 23

η(3)23

G23
τ23

1
G23

τ 23
μ(31)23

G23
τ23

μ(12)23

G23
τ 23

η(1)31

G31
τ31

η(2)31

G31
τ 31

η(3)31

G31
τ31

μ(23)31

G31
τ31

1
G31

τ31
μ(12)31

G31
τ 31

η(1)12

G12
τ12

η(2)12

G12
τ 12

η(3)12

G12
τ12

μ(23)12

G12
τ12

μ(31)11

G12
τ12

1
G12

τ12

Strains

Elastic engineering modules of five types can be sorted in the following way, after
Lekhnitskii [33]:

• Eii—axial modules (3 generalized Young’s modules)
• Gi j—shear modules for planes parallel to the coordinate planes (3 generalized

Kirchhoff’s modules)
• νi j—Poisson’s ratios characterizing the contraction in the direction of one axis
when tension is applied in the direction of another axis (3 generalized Poisson’s
coefficients)
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• μi j (kl)—coefficients characterizing shears in planes parallel to the coordinate
planes resulting from shear stresses acting in other planes parallel to the coor-
dinate planes (3 Chencov’s modules)

• ηi( jk)—mutual influence coefficients characterizing extensions in the directions
of the coordinate axes resulting from shear stresses acting in the coordinate planes
(9 Rabinovich’s modules)

The aforementioned modules are listed in Table1.3. In case of full anisotropy the
shear stress acting in one plane results in a shear strain appearing in another plane.
This effect is described by the three Chencov modules. Hence, the bottom right-hand
side block of the compliance matrix (1.100) is fully populated, in contrast to the
case of isotropy where shear stress acting in one plane results in shear strain in the
same plane exclusively. This means that in case of isotropy the considered block of
compliance matrix must have the diagonal form.

In order to describe effect of axial stresses on shear strains (upper right-hand
side block), as well as effect of shear stresses on axial strains (lower left-hand side
block), it is necessary to define 9 additional modules η(i) jk , called Rabinovich’s
modules where the appropriate symmetry conditions hold (1.99). The total number
of discussed modules is equal to 21. However, only 18 of them are truly independent
because the compliance matrix [E−1] has to obey transformation with respect to
three Euler angles. It should be pointed out that in general case of anisotropy it is not
possible to find any reference frame for which any element of the compliance matrix
can be equal to zero. The general case of anisotropy corresponds to the triclinic
symmetry lattice cell in which all three edges differ from each other and all three
angles between them differ from each other and none of them is equal to 90◦, as
shown in item 1 of Table1.1.

Table 1.3 Engineering modules defining elements of elastic compliance matrix (1.98) of fully
anisotropic material

Engineering elastic
modules

Coupling between Corresponding axes or planes Number of
coefficients

Stress Strain

E11, E22, E33 Axial Extension The same axes 1 → 1, etc. 3

G12, G32, G31 Shear Shear strain The same planes 12 → 12, etc. 3

ν21, ν31, ν32 Axial Extension Different exes 1 → 2, etc. 3

μ31(23),μ12(23),μ12(31) Shear Shear strain Different planes 13 → 23, etc. 3

η23(1), . . . , η12(3) Shear Extension Normal to shear plane 23 → 1, etc. 9
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1.4.2 Monoclinic Hooke’s Anisotropy (13 Constants)

Among anisotropic materials the narrower group called monoclinic symmetry can
be distinguished. Monoclinic or oblique symmetry corresponds to monoclinic space
lattice cell symmetry in which all three edges differ from each other, whereas two
angles are equal to 90◦ and one is different, as shown in item 2 of Table1.1. The cor-
responding stiffness matrix symmetry characterizes through incomplete population
in which only 13 elements are not equal to zero, as shown below.

−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η12(1)

E11

− ν12
E22

1
E22

− ν32
E22

η12(2)

E22

− ν13
E33

− ν23
E33

1
E33

η12(3)

E33
1

G23

μ31(23)

G23μ(23)31

G31

1
G31η(1)12

G12

η(2)12

G12

η(3)12

G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.101)

In otherwords, in case ofmonoclinic symmetry only three of theRabinovichmodules
and only one of the Chencov modules are different from zero.

1.4.3 Trigonal/Rhombohedral Hooke’s Anisotropy
(6 Constants)

Another important narrower case of material anisotropy called trigonal anisotropy
can be distinguished. The trigonal anisotropy corresponds to the rhombohedral cell
lattice inwhich all three edges are equal to each other and all three angles are equal but
different from 90◦, as shown in item 3 of Table1.1. The corresponding compliance
matrix takes the following representation:

−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η23(1)

E11

− ν12
E22

1
E11

− ν31
E11

− η23(1)

E11− ν13
E33

− ν13
E33

1
E33η(1)23

G23
− η(1)23

G23

1
G23

1
G31

2μ12(31)

G31
2μ(31)12

G12

2(1+ν12)
E11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.102)



30 A.W. Ganczarski et al.

It is seen that in case of trigonal symmetry among Rabinovich’s modules only two are
nonzeroth but in fact only one of them is independent because they only differ in sign.
Additionally, only one Chencov’s modulus is different from zero but in fact it is the
dependent modulus due to the specific coupling between components 2E−1

14 = E−1
56

and E−1
24 = −E−1

14 as well as E−1
11 = E−1

22 , E−1
44 = E−1

55 , E−1
13 = E−1

23 whereas
E−1
66 = (E−1

11 − E−1
12 )/2 must hold. Finally for trigonal symmetry only 6 elements

of the compliance matrix are independent, see Berryman [2].

1.4.4 Orthorhombic Hooke’s Orthotropy (9 Constants)

The majority of engineering materials exhibit a specific symmetry property, which
may result in reduction of the number of nonzeroth elastic modules. It can be done
when, for chosen symmetry group or class, some particular material directions are
defined in such a way that transformation of the compliance matrix from an arbitrary
coordinate frame to the given structural symmetry frame leads to the zeroth popula-
tion of the top right-hand side and the bottom left-hand side blocks of the compliance
matrix (1.98), and additionally the bottom right-hand side block possesses a diag-
onal form. In such practically important cases both the nine Rabinovich η(i) jk and
the three Chencov μi j (kl) modules are equal to zero, and consequently, coupling
between the shear stresses and elongations does not exist such that shear strains are
produced exclusively by the action of stresses at the same planes. In this particular
symmetry, called orthotropy, there exist three mutually perpendicular axes (1, 2, 3)
that determine the three material orthotropy planes. The orthotropy symmetry case
corresponds to the orthorhombic lattice in which all three edges differ each from
other but all angles are equal to 90◦, as presented in item 4 of Table1.1.

−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11− ν12

E22

1
E22

− ν32
E22− ν13

E33
− ν23

E33

1
E33

1
G23

0 0
1

G13
0
1

G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.103)

The following conditions must hold to assure matrix symmetry:

ν21

E11
= ν12

E22

ν13

E33
= ν31

E11

ν23

E33
= ν32

E22
(1.104)

Finally, in case of orthotropy the number of independent material constants is nine,
that is, three generalized Hooke’s modules E11, E22, E33, 3 generalized Kirchhoff’s
modules G12, G23, G31 and three generalized Poisson’s ratios ν21, ν23, ν31.
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1.4.5 Tetragonal Hooke’s Transverse Isotropy (6 Constants)

For several engineering applications the general orthotropic symmetry model seems
too complicated, since additional symmetry conditions frequently appear. Particu-
larly, when conditions of isotropy hold in selected orthotropy plane the so-called
transverse isotropy obeys.

In case of so-called tetragonal symmetry material properties in the plane (1, 2)
satisfy condition of cubic symmetry, see item 5 of Table1.1

E11 = E22, G13 = G23, ν31 = ν32 (1.105)

Hence, in case of transverse isotropy of tetragonal symmetry the number of indepen-
dent material constants is equal to 6: E11, E33, G23, G12, ν21, ν31. Corresponding
crystal lattice is sketched in item 5 of Table1.1, where tetragonal lattice being special
case of the orthorhombic lattice with a = b �= c obeys.

When the constraints (1.105) are applied to compliance matrix (1.103) the
transverse isotropy tetragonal symmetry case yields

−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

1
E11

− ν31
E11
1

E33
1

G23
1

G23
1

G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.106)

It follows from the constraints (1.105) that six independent material constants define
the tetragonal symmetry matrix:

• E11, E33—two Young’s modulus in the plane of isotropy and direction perpendic-
ular to this plane,

• ν21, ν31—two Poisson’s ratios referring to transverse contraction or swelling
caused by tension or compression in direction perpendicular to isotropy plane,

• G12, G23—two different Kirchhoff’s modules in the isotropy or orthotropy planes.

1.4.6 Hexagonal Hooke’s Transverse Isotropy (5 Constants)

In special case of the transverse isotropy called hexagonal symmetry the additional
constraint must obey for the shear modulus in the isotropy plane

G12 = E11

2(1 + ν21)
or E−1

66 = 2
(

E−1
11 − E−1

12

)
(1.107)
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where modulus G12 is expressed in terms of the transverse Young modulus E11 and
transverse Poisson’s ratio ν21. Hence, in case of the transverse isotropy of hexagonal
symmetry the number of independent constants is equal to 5: E11, E33, G23, ν21,
ν31. A choice of the five independent material constants from among six can be
performed in an optional way, for instance

−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

1
E11

− ν31
E11
1

E33
1

G23
1

G23
2(1+ν21)

E11

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.108)

Rolled metals, some multi-phase composite materials, basalt, or columnar ice are
examples of transversely isotropic materials, however, precise distinction between
the tetragonal or hexagonal symmetry classes is often difficult (see for example
Gan et al. [16]).

1.4.7 Cubic Hooke’s Symmetry (3 Constants)

Further reduction in the number of independent constants leads to cubic symmetry for
which the compliancematrix is characterized by three independentmaterial constants
E11 = E22 = E33 = E , G23 = G31 = G12 = G and ν21 = ν31 = ν32 = ν. Hence,
the following form of the compliance matrix is furnished:

−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
E − ν

E − ν
E

1
E − ν

E
1
E

1
G

1
G

1
G

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.109)

Note that in case of cubic symmetry the condition (1.107) does not hold. The corre-
sponding cubic or regular lattice is shown in item 7 of Table1.1. A particular example
of the cubic symmetry material is nickel-based single crystal superalloy widely used
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in aircraft engines, especially for turbine blades as discussed byDesmorat andMarull
[12]. The cubic symmetry is the narrower symmetry case known from crystallogra-
phy, see Jastrzebski [23], since fully isotropic crystal lattices are unknown.

1.4.8 Isotropic Hooke’s Symmetry (2 Constants)

All the aforementioned symmetry groups have equivalences in existing crystal lattice
systems. Nevertheless, even narrower than the cubic symmetry called isotropy is
frequently used. The isotropy requires the infinite symmetry group which means that
allmaterial directions are equivalent in terms ofmechanical, thermal, electric, optical,
and magnetic properties. In other words it is not possible to distinguish any specific
direction. The isotropy is helpful when describing the majority of polycrystalline
materials either in a virgin state or artificially fabricated as particulate composites,
nano-composites, etc., see item 8 of Table1.1.

In an isotropic material physical properties are independent of the reference
frame. Hence, any optional reference frame x, y, z is sufficient for unique defini-
tion of material properties. In order to derive mathematical form of the Hooke law
of isotropic material it is most convenient to apply superposition of strain com-
ponents {ε} = {

εx , εy, εz, γyz, γzx , γxy
}
caused by subsequent stress components

{σ} = {
σx ,σy,σz, τyz, τzx , τxy

}
(see Table1.2). Applying vector-matrix notation

the isotropic Hooke law takes the form

{ε} =
[
E

−1
]
{σ} (1.110)

where the isotropic compliance matrix [E−1] takes the following representation.

−1 =⎡
⎢⎢⎢⎢⎢⎢⎣

1
E

1
E − 1

2G
1
E − 1

2G
1
E

1
E − 1

2G
1
E

1
G

1
G

1
G

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.111)

It is clear that the elastic isotropic material is uniquely defined by two independent
material constants, the choice of which from among E, G, ν is optional. In the
above representation diagonal modules E and G are chosen as independent. Hooke’s
law can also be transformed to the following inverse relation, (see Ottosen and
Ristinmaa [44]):

{σ} = [E] {ε} (1.112)
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where the isotropic stiffness matrix [E] is defined as

[E] = E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν
1 − ν ν

1 − ν

1−2ν
2

1−2ν
2

1−2ν
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.113)

Format of elastic stiffness matrix (1.113) involves elements all dependent on both
E and ν such that the format equivalent to (1.111) cannot be achieved. Explicit
separation of the diagonal matrix elements related to shear deformation and the
off-diagonal matrix elements related to extension is possible by use of the format
expressed in terms of Lamé’s constants λ and μ

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ
λ + 2μ λ

λ + 2μ
2μ

2μ
2μ

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.114)

where the classical definitions of Lamé’s constants hold

λ = Eν

(1 + ν)(1 − 2ν)
2μ = G (1.115)

It is worth to mention that the last format (1.114) can be interpreted by use of Nye
graphics (• or ◦) where three off-diagonal first quarter elements and three diagonal
third quarter elements are considered as independent.

The considered case of elastic isotropy is the only symmetry case for which it
is possible to separate effects of shape and volume changes when decomposition of
strain and stress tensors into deviators and axiators (1.5), (1.25) is used as

εm1 = 1

3K
σm1 e = 1

2G
s (1.116)

Two modules in the above pair of relations called the bulk modulus K and the
Kirchhoff modulus G can be expressed in terms of the Young modulus E and the
Poisson ratio ν

K = E

3 (1 − 2ν)
G = E

2 (1 + ν)
(1.117)
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However, in all other cases of material anisotropy (items 1 to 7 in Table1.1)
aforementioned separation of volumetric from shear effects is impossible.

In the particular case of plane stress state in the x, y plane strain component εz

can be expressed in terms of strain components in x, y plane as follows:

σz = 0 → εz = − ν

1 − ν

(
εx + εy

)
(1.118)

Finally, plane stress stiffness matrix E can be reduced to the 3 × 3 matrix

⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ =

⎡
⎢⎣

E
1−ν2

νE
1−ν2

0
νE
1−ν2

E
1−ν2

0

0 0 E
2(1+ν)

⎤
⎥⎦
⎧⎨
⎩

εx

εy

γxy

⎫⎬
⎭ (1.119)

1.5 Analogy Between Constitutive Fourth-Order Tensors:
The Elastic (Hooke’s) and the Yield/Failure (von Mises’)
of the Same Symmetry

Identification of material symmetry in elastic range of deformation (anisotropy,
orthotropy, transverse isotropy, isotropy, etc.) is a starting point to appropriate
description of both the limit criteria that control transition from the elastic range into
the state connected with energy dissipation (material damage, plastic yield, phase
change, etc.) as well as correct constitutive description of deformation processes
in nonelastic range. It can be expected that if material in the elastic range exhibits
isotropic behavior, then at least in the initial phase of plastic yielding it will approx-
imately save properties of isotropy. The nature of elastic deformation resulting from
interatomic distances change in crystal lattice is qualitatively different from the nature
of plastic deformation commonly interpreted as plastic microslips considered usu-
ally as slips and dislocations between atom layers inside lattice. However, it can be
expected that during more advanced plastic deformation certain orientation of plas-
tic slip systems in the particular grains leading to appearance of a material texture
characterized by an acquired anisotropy is observed (metal forming processes like
rolling, drawing and press forming, see Mróz and Maciejewski [37]).

On the other hand ifmaterial even in elastic range is characterized by ananisotropy
(e.g., long fiber reinforced composites, wood, biological tissues) it can be expected
that in nonelastic range it will also exhibit anisotropy. However, it will be possible
decrease of a symmetry class toward more general plastic anisotropy, for instance
due to gradual evolution of elastic orthotropy. It can be however noticed that in case
of dissipative processes different from plasticity (e.g., material damage or failure)
loss of isotropy may be expected just in the elastic range, as observed in elastic
brittle materials e.g., ceramics, composites, concrete, etc. Additionally, initiation and
growth of other dissipative processes connected with plastic yielding, phase change
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or other structural changes may result in change in the initial symmetry class. For
example, in case of spheroidal graphite cast iron which generally exhibits brittle-
ductile behavior a gradual transition from elastic anisotropy caused by directional
damage to a state close to isotropy may be observed.

It can be assumed that features of anisotropy present in the elastic range are in
general inherited in nonelastic range if some dissipative processes like plastic yield,
damage, failure are present. Notice however that even, in the case when in inelastic
range material behaves as isotropic, initiation of inelastic range (plasticity, damage,
or failure) may provoke a material symmetry change. It was previously discussed
that in case of damage evolution the fourth-rank damage effect tensor [M(D)] may
be used to describe degeneration of the elasticity tensor [Ẽ] = [M(D)]T[E][M(D)],
in a similar fashion effect of other dissipative phenomena such as plastic yield,
structural change due to phase transformation may result in anisotropy nucleation
and growth.

Analogy between crystal unit cells of space lattices and constitutive matrices of
elasticity and initiation of plasticity is presented in Table1.4. In the fundamental book
by Love [34] the analogy between crystal symmetry classes and groups from one
side and appropriate forms of elastic strain energy functionW = 1

2 {ε}T [E] {ε} from
the other, is demonstrated. In this book an extension of the aforementioned analogy
also for symmetry of constitutive matrix of plastic yield initiation [ĪI] appearing in
the von Mises criterion {σ}T [ĪI] {σ} = 1 is proposed. Unit cells of the four chosen
space lattices have been presented following Jastrzebski [23], whereas correspond-
ing constitutive elasticity matrices have schematically been presented applying Nye
[42] graphics (symbol • refers to independent element, symbol ◦ refers to depen-
dent element, whereas symbols •−−• or ◦−−◦ represent pairs of identical matrix
elements).

In case of full anisotropy the complete analogy between the Hooke matrix and the
von Mises plasticity matrix holds (21 independent matrix elements in both classes).
However, when narrower symmetry groups are considered: orthotropic, transversely
isotropic of tetragonal or hexagonal classes, it is necessary to notice that elastic
matrices are usually defined in stress tensor coordinates, whereas plastic constitutive
matrices are often defined in the narrower stress deviator coordinates.

Reduction of the tensorial space to the deviatoric one is always equivalent to
imposing additional constraints, hence the number of independent elements of plas-
ticity matrix is always lower than the corresponding number of independent elements
of elasticity matrix. Namely, it is clear that the 6-element orthotropic deviatoric Hill’s
matrix corresponds to the 9-element orthotropic Hooke’s matrix. Similarly, the 4-
element transversely isotropic tetragonal class Hill’s matrix corresponds to the 6-
element Hooke’smatrix, when the independence of Hill’s matrix of hydrostatic stress
is imposed. Finally, the 3-element transversely isotropic hexagonal class Hu–Marin
matrix corresponds to the 5-element transversely isotropic hexagonal class Hooke
matrix. Let us note that pairs of identical matrix elements are arranged in the same
way in both matrices of elasticity and plasticity.

Nevertheless, some dependent elements in the plasticity matrix (as represented
by symbol ◦) correspond to independent elements of elasticity matrix (sketched by
symbol •), but general population of both matrices remains unchanged.
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Table 1.4 Analogy between chosen symmetry groups: triclinic, orthorhombic, tetragonal and
hexagonal symmetry of Hooke’s matrix and plastic yield initiation von Mises’ matrix
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The commonly used term “transversely isotropic criterion” may be misleading
as long as an additional distinction between the tetragonal and the hexagonal sym-
metry is not introduced. The aforementioned distinction is known from the literature
dealing with prediction of composite behavior in elastic range and its validation by
experiments. For example, Sun and Vaidya [53] examined two types of materials:
Boron/Al composite and Graphite/Epoxy composite, and found that some of them
exhibit tetragonal while others hexagonal symmetry classes. However, even this dis-
tinction between tetragonal and hexagonal symmetry classes may be insufficient to
describe some composite materials, for example, SiC/Ti unidirectional lamina exam-
ined by Herakovich and Aboudi [19]. This is basically caused by residual stresses
that appear after cooling-down during fabrication process.

The above considerations are limited to the description of initial yield surface
only. Generally, it is assumed that during plastic hardening the initial yield surface
possessing certain symmetry is rebuilt in an isotropic way, which is generally not
true. This question was discussed, e.g., by Malinin and Rżysko [36], who invoked
Mursa [41] results for OTCz Titanium Alloy that confirms assumption of isotropic
nature of plastic hardening. However, Hu and Marin’s [22] findings for Aluminum
Alloy showed anisotropic nature of plastic hardening rather than isotropic.

Nevertheless, the plastic hardening theory is usually taken in an isotropic fash-
ion, e.g., Malinin and Rżysko [36], Ottosen and Ristinmaa [44], Hill [20, 21]. Such
approach, although commonly used, may be questionable in light of the aforemen-
tioned experimental testing, some of which confirm such assumption, cf. Mursa [41]
(Titanium alloy) but others contradict it cf. Hu and Marin [22] (Aluminum alloy),
Kowalewski and Śliwowski [26] (influence of first common invariant).

1.6 Strain Energy and Complementary Energy—The State
Potentials for Isotropic or Anisotropic Materials

Material is called elastic if its response (deformation) is independent of loading
history (Fig. 1.6), which means that stress is determined to be strain

σi j = σi j (εkl) (1.120)

or vice versa
εi j = εi j (σkl) (1.121)

After the fully closed loading–unloading cycle (A-B-A), the initial material state A
is recovered, independent of the loading–unloading path, Fig. 1.6b.

When the concept of strain energy per unit volume W [Nm/m3] is introduced,
the following definitions hold:

W(ε) =
ε∫

0

σ(ε)dε or W(εi j ) =
εi j∫

0

σi j (εkl)dεi j (1.122)
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(a) (b)

Fig. 1.6 Schematic illustration of elastic material response: a strain energy and complementary
energy, b independence of final state of loading history

in case of the uniaxial or the multiaxial loadings, respectively. In the following
fashion the complementary energy per unit volume C [Nm/m3] is defined as

C(σ) =
σ∫

0

ε(ς)dς or C(σi j ) =
σi j∫

0

ςi j (εkl)dςi j (1.123)

It is seen from Fig. 1.6 that the following is true:

C(σi j ) = σi jεi j − W(εi j ) (1.124)

It should be emphasized that in the considered case of pure elastic material both the
strain energy W and complementary energy C are independent of loading path but
depend on the current state exclusively.

In a more general case, when the deformation process is accompanied by perma-
nent (irreversible) changes in material microstructure, for instance, resulting from
plastic yielding, damage growth, or phase transformation during martensitic change
or other irreversible phenomena, the strain energy and the complementary energy
depend on loading history.

In the elastic material for which strain energy depends on the current state only
W(εi j ) but does not depend on strain path

∂σi j

∂εkl
= ∂σkl

∂εi j
(1.125)

the strain energy can be used as an invariant potential function for the stresses

σi j = ∂W(εi j )

∂εi j
(1.126)
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In a similar fashion the complementary energy that depends on the current state only
C(σi j ) but does not depend on strain path

∂εi j

∂σkl
= ∂εkl

∂σi j
(1.127)

can be used as an invariant potential function for the strain as follows:

εi j = ∂C(σi j )

∂σi j
(1.128)

In a general case of nonlinear elastic material the strain energy and the complemen-
tary energy are not equal to each other, W �= C, whereas only in the case of linear
elastic material the equality W = C holds.

In the above considerations the initial state was treated as stress and strain free,
point A (σ = 0, ε = 0) in Fig. 1.6. In the more general case a residual stress and/or
strain are built-in Ares (σ = σres, ε = εres). This residual state may result from
fabrication process or prior loading history in which some irreversible changes of
material structure have occurred (e.g., cyclic plasticity) or certain residual stresses or
strains have been built-in (e.g., after cooling-down of long fiber reinforced composite
characterized by different thermal properties of fiber andmatrix). Note that in general
this residual state is unknown since the whole history of material, which contains
complete information about fabrication, its initial machining, as well as concerning
unloading process prior to the appearance of this self-balanced residual stress, is
unknown.

Consider the process of elastic deformation of material starting from the residual
state Ares(σres, εres) toward the final state B(Δσ,Δε), assuming at the beginning
uniaxial tension (see Fig. 1.7).

The increment of elastic strain energy of material corresponding to applied strain
ΔW(Δε) in the presence of residual stress εres is equal to

ΔW(Δε) =
Δε∫

0

Δσ(Δε)d(Δε) (1.129)

Fig. 1.7 Process of elastic
deformation of material with
prior residual state included
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In the particular case of linear Hooke’s law for isotropic material it yields

ΔW(Δε) = 1

2
E(Δε)2 (1.130)

where
Δσ = EΔε Δσ = σ − σres Δε = ε − εres (1.131)

obey. In the more general case of multiaxial deformation state the strain energy per
unit volume of elastic material in the presence of residual stress may be written as

ΔW(Δεi j ) =
Δεi j∫

0

Δσi j (Δεkl)d(Δεi j ), (1.132)

whereas in case, if linear elastic material is assumed, the linear relation combining
stress and strain increments is furnished as

Δσi j = Ei jklΔεkl (1.133)

Equation (1.132) represents the increment of elastic energy ΔW in the presence of
the residual state εi j = εresi j + Δεi j , hence

ΔW(Δεi j ) =
Δεi j∫

0

Ei jklΔεkld(Δεi j ) (1.134)

where the fourth-rank stiffness tensor Ei jkl is used. Note that Eq. (1.134) is true both
for isotropic and anisotropic materials of optional class of symmetry. The stiffness
tensor Ei jkl comprises complete information defining the elastic material response.

In a similar way, the complementary energy increment ΔC of elastic material in
the presence of residual stress can be written as

ΔC(Δσkl) =
Δσkl∫

0

Δεkl(Δςmn)d(Δςkl) (1.135)

If the linear elastic material is assumed we arrive at

ΔC(Δσkl) =
Δσkl∫

0

E−1
klmnΔςmnd(Δςkl) (1.136)
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where E−1
klmn stands for the compliance tensor of elastic material

Δεkl = E−1
klmnΔσmn (1.137)

The aboveEq. (1.137) is an extension of the law of linear elasticmaterial to the case of
existenceof a nonzeroth residual stress and strainΔσi j = σi j −σres

i j ,Δεkl = εkl−εreskl

σi j − σres
i j = Ei jkl

(
εkl − εreskl

)
(1.138)

or
εkl − εreskl = E−1

klmn

(
σmn − σres

mn

)
(1.139)

When the vector-matrix notation is used the fourth-rank elastic tensors Ei jkl or E−1
klmn

can be represented by the symmetric 6× 6 matrices: [E] or [E−1] called the stiffness
or the compliance matrices, respectively, whereas the tensors σi j − σres

i j or εkl − εreskl
take the format of columnar vectors of overstress or overstrain, respectively,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11 − σres
11

σ22 − σres
22

σ33 − σres
33

τ23 − τ res23
τ31 − τ res31
τ12 − τ res12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11 − εres11
ε22 − εres22
ε33 − εres33
γ23 − γres

23
γ31 − γres

31
γ12 − γres

12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.140)

Hence, when the Voigt notation is used Eqs. (1.138) and (1.139) can be written in
equivalent fashion {

σ − σres} = [E] {ε − εres
}

(1.141)

or {
ε − εres

} = [E−1] {σ − σres} (1.142)

1.7 Elastic Strain Energy as Function of Invariants

The stress and the strain invariants are presented in Sect. 1.1. In the present section
the elastic strain energy per unit volume W expressed as the scalar product of both
these tensors

W = 1

2
σi jε j i (1.143)

will also be presented in terms of invariants. In the case of isotropic material three
basic invariants of the strain tensor are sufficient for unique representation of the strain
energy, whereas in case of elastic material comprising damage the use of common
invariants defining internal material microstructure is necessary (see Sect. 1.3).
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1.7.1 Elastic Strain Energy of Isotropic Materials

The simplest example of the scalar function of tensorial argument is the elastic strain
energyW(ε). In the case of isotropicmaterial the strain tensor is uniquely determined
in terms of three basic or generic strain invariants (1.26) as follows:

W(ε) = W(J1ε, J2ε, J3ε) (1.144)

Constitutive law of elastic material (1.126) can be written as follows:

σi j = ∂W
∂εi j

= ∂W
∂ J1ε

∂ J1ε
∂εi j

+ ∂W
∂ J2ε

∂ J2ε
∂εi j

+ ∂W
∂ J3ε

∂ J3ε
∂εi j

(1.145)

where
∂ J1ε
∂εi j

= δi j
∂ J2ε
∂εi j

= εi j
∂ J3ε
∂εi j

= εikεk j (1.146)

hence,

σi j = ∂W
∂ J1ε

δi j + ∂W
∂ J2ε

εi j + ∂W
∂ J3ε

εikεk j (1.147)

Introducing the Lamé elastic constants λ = νE
(1+ν)(1−2ν)

and μ = E
2(1+ν)

with

∂W
∂ J1ε

= λεkk
∂W
∂ J2ε

= 2μ
∂W
∂ J3ε

= 0 (1.148)

we arrive at the classical Hooke law of the isotropic material

σi j = λεkkδi j + 2μεi j (1.149)

Summing up, the isotropic elastic Hooke material is uniquely defined by the strain
energy which depends on the first and the second basic invariants of the strain tensor

W = 1

2
λ(J1ε)

2 + 2μJ2ε (1.150)

but does not depend on the third invariant J3ε.

1.7.2 Strain or Complementary Energy of Elastic-Damage
Material—Common Strain-Damage and Stress-Damage
Invariants; the Helmholtz or the Gibbs State Potentials

Theory of invariants allows to determine minimal number the basic invariants
from which all other tensorial invariants necessary to obtain a sufficiently general
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representation of the state equations can be built (cf. e.g., Spencer [52], Rymarz [47]).
Usually the strain energy per unit volume W(εi j ) or the complementary energy per
unit volume C(σi j ) is taken as the state potential of elasticity (see Sect. 1.7.1). As
shown in Sect. 1.7.1, in case of elastic isotropy three invariants sufficiently determine
both types of energy W(Jiε) or C(Jiσ), i = 1, 2, 3.

A scalar function dependent on a pair of tensorial arguments, each of them being
the symmetric second-rank tensor, is a more complex case. The representative exam-
ple of such a case is the strain energy of damaged material W(ε, D). Analogous
to the isotropic material (1.144), both tensors ε or D are determined by their single
basic invariants Jiε or Ji D, i = 1, 2, 3. However, the scalar function dependent on
both argumentsW(ε, D) has to be uniquely defined not only by single invariants Jiε

and Ji D but also by the common invariants J jεD, j = 1, 2, 3, 4. This leads to the
format dependent on six single and four common invariants (total 10)

W(ε, D) = W(J1ε, J2ε, J3ε, J1D, J2D, J3D; J1εD, J2εD, J3εD, J4εD) (1.151)

In addition, the strain energyW has to be a decreasing function with damage growth
since energy is released during the damage nucleation and growth, so it has to be
linear with respect to D. Hence, the strain energy cannot depend either on the third
strain invariant J3ε and on the two single damage invariants J2D , J3D and also on
the two common invariants J3εD , J4εD (underlined arguments in Eq. (1.151)). Based
on the above physical reasons the strain energy of elastic damaged material can
completely be represented in terms of a combination of five invariants (three single
and two common)

W(ε, D) = ρψ(ε, D) = ρψ(J1ε, J2ε, J1D, J1εD, J2εD) (1.152)

In this way an invariant representation of the Helmholtz free energy per unit mass is
furnished and finally applied as the state potential that determines the stress state in
a unique fashion

σ = ∂[ρψ(ε, D)]
∂ε

(1.153)

Note also that when the representation (1.152) is specified, some combinations of
invariants are allowed for which the scalar function ψ(ε, D) remains quadratic with
respect to ε. Hence, following Murakami and Kamiya [38] the free energy function
ρψ(ε, D) per unit mass is furnished as

ρψ(ε, D) = 1
2λ(J1ε)2 + 2μJ2ε + η1(J1ε)2 J1D + 2η2 J2ε J1D

+ η3 J1ε J1εD + η4 J2εD
(1.154)

or

ρψ(ε, D) = 1
2λ (trε)2 + μtr (ε · ε) + η1 (trε)2 tr(D)

+ η2tr (ε · ε) tr(D) + η3tr(ε)tr (ε · D) + η4tr (ε · ε · D)
(1.155)

when the equivalent representation is used, e.g., Skrzypek et al. [50].
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Remember that the above formulas (1.154) and (1.155) for the Holmholtz free
energy refer to the specific case of elastic anisotropy which is acquired as the result
of damage nucleation and growth. Hence, in a virgin state where damage does not
exist the energy representation of the isotropic elastic material has to be recovered,
such that symbol ε has to be referred to the elastic strain εe.

In a general 3D case the following matrix representation of the constitutive equa-
tion with total formulation holds:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s Ẽ11
s Ẽ12

s Ẽ13
s Ẽ14

s Ẽ15
s Ẽ16

s Ẽ22
s Ẽ23

s Ẽ24
s Ẽ25

s Ẽ26
s Ẽ33

s Ẽ34
s Ẽ35

s Ẽ36
s Ẽ44

s Ẽ45
s Ẽ46

symm. s Ẽ55
s Ẽ56
s Ẽ66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εe11
εe22
εe33
γe
23

γe
13

γe
12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.156)

where s Ẽi j represents effective elastic-damage secant stiffness matrix. The damage
acquired anisotropy is described by the 6×6 symmetric secant stiffness matrix as
follows (cf. Skrzypek et al. [50]):

s Ẽ11 = λ + 2μ + 2(η1 + η2)tr(D) + 2(η3 + η4)D11
s Ẽ22 = λ + 2μ + 2(η1 + η2)tr(D) + 2(η3 + η4)D22
s Ẽ33 = λ + 2μ + 2(η1 + η2)tr(D) + 2(η3 + η4)D33
s Ẽ12 = λ + 2η1tr(D) + η3(D11 + D22)

s Ẽ13 = λ + 2η1tr(D) + η3(D11 + D33)

s Ẽ23 = λ + 2η1tr(D) + η3(D22 + D33)

s Ẽ44 = 1
2 [2μ + 2η2tr(D) + η4(D33 + D22)]

s Ẽ45 = η4D12
s Ẽ55 = 1

2 [2μ + 2η2tr(D) + η4(D11 + D33)]
s Ẽ46 = η4D13
s Ẽ66 = 1

2 [2μ + 2η2tr(D) + η4(D11 + D22)]
s Ẽ56 = η4D23
s Ẽ14 = η3D23
s Ẽ24 = s S̃34 = (η3 + η4)D23
s Ẽ25 = η3D13
s Ẽ15 = s S̃35 = (η3 + η4)D13
s Ẽ36 = η3D12
s Ẽ16 = s S̃26 = (η3 + η4)D12

(1.157)
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The alternative formulation based on a concept of the complementary energy C
represented by a scalar function of the two tensorial arguments σ and D, namely
C(σ, D), leads to the Gibbs potential function per unit mass G as follows (cf.
Hayakawa–Murakami [18], Murakami [40]):

C(σ, D) = ρG(J1σ, J2σ, J3σ, J1D, J2D, J3D, J1σD, J2σD, J3σD, J4σD) (1.158)

where the crack closure effect due to compressive stress, originally introduced in
Hayakawa–Murakami [18], is omitted.

Repeating the above reasoning for physical nature of the Gibbs complementary
energy C(σ, D), only five of the above aforementioned ten (1.158) common stress
and damage invariants can be admitted, namely

C(σ, D) = ρG(σ, D) = ρG(J1σ, J2σ, J1D, J1σD, J2σD) (1.159)

Hence, in case of the elastic isotropic material in a virgin state which changes to
anisotropic material due to damage evolution, the Gibbs state potential takes the
following format (cf. Hayakawa and Murakami [18]):

ρG(σ, D) = − ν
2E (trσ)2 + 1+ν

2E tr (σ · σ) + ϑ1 (trσ)2 tr(D)

+ϑ2tr (σ · σ) tr(D) + ϑ3tr(σ)tr (σ · D) + ϑ4tr (σ · σ · D)
(1.160)

which is complementary to (1.155). The matrix representation of secant compliance
matrix referring to Hayakawa–Murakami type elastic-plastic-damage material is as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εe11
εe22
εe33
εe23
εe13
εe12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s Ẽ−1
11

s Ẽ−1
12

s Ẽ−1
13 0 0 0

s Ẽ−1
22

s Ẽ−1
23 0 0 0

s Ẽ−1
33 0 0 0

s Ẽ44−1 0 0

symm. s Ẽ−1
55 0

s Ẽ−1
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.161)

where
s Ẽ−1

11 = 1
E + 2tr(D)(ϑ1 + ϑ2) + 2D11(ϑ3 + ϑ4)

s Ẽ−1
12 = − ν

E + 2ϑ1tr(D) + ϑ3(D11 + D22)

s Ẽ−1
13 = − ν

E + 2ϑ1tr(D) + ϑ3(D11 + D33)

s Ẽ−1
22 = 1

E + 2trD(ϑ1 + ϑ2) + 2D22(ϑ3 + ϑ4)
s Ẽ−1

23 = − ν
E + 2ϑ1tr(D) + ϑ3(D22 + D33)

s Ẽ−1
33 = 1

E + 2ϑ1tr(D) + ϑ3(D22 + D33)

s Ẽ−1
44 = 1+ν

E + 2ϑ2tr(D) + ϑ4(D22 + D33)

s Ẽ−1
55 = 1+ν

E + 2ϑ2tr(D) + ϑ4(D11 + D33)

s Ẽ−1
66 = 1+ν

E + 2ϑ2tr(D) + ϑ4(D11 + D22)

(1.162)
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Note that the Gibbs complementary energy per unit mass refers to elastic strains
εe and is represented in the stress space by the quadratic function of σ linear with
respect to D, in a similar way as the Helmholtz free energy ρψ(ε, D) but defined in
the strain space.

Four material constants ηi appearing in the Helmholtz state potential (1.155) as
well as four constantsϑi appearing in theGibbs state potential (1.160) (i = 1, 2, 3, 4)
act as additional material constants to the elastic constants of the virgin elastic
isotropic material: λ,μ or E, ν, defining effect of damage on the state equation.
Namely, when the Helmholtz potential function W = ρψ(ε, D) is used as the stress
potential we arrive at the state equation σ = E(D) : ε

σ = ∂(ρψ)

∂ε
= [λtr(ε) + 2η1tr(ε)tr(D) + η3tr (ε · D)] 1

+ 2 [μ + η2tr(D)] ε + η3tr(ε)D + η4(ε · D + D · ε)
(1.163)

On the other hand, when the formulation based on the Gibbs potential function is
used as the strain potential C = ρG(σ, D) we obtain the state equation in equivalent
form ε = E

−1(D) : σ

ε = ∂(ρG)

∂σ
= − ν

E tr (σ) 1 + 1+ν
2E σ + 2ϑ1tr(D)tr(σ)1

+ 2ϑ2tr(D)σ : 1 + ϑ3 [tr (σ · D) 1 + tr(σ)D]
+ϑ4 (σ · D + D · σ)

(1.164)

Note however that in the case of elastic damaged material constitutive matrices
stiffness [E(D)] and compliance [E−1(D)] are rebuilt following damage evolution
such that originally isotropic elastic material acquires an anisotropy.

The state equation of elastic damaged material (1.155) was calibrated for the high
strength concrete by Murakami and Kamiya [38], see also Skrzypek [49] as shown
in Table1.5.

Apart from the constants of isotropic elasticity E, ν (λ,μ) additional four con-
stants ηi (i = 1, 2, 3, 4) are shown in Table1.5.

The state equation of elastic moderate ductility with damage (1.164) was cali-
brated for spheroidal graphite cast iron FCD400 by Hayakawa and Murakami [18],
see also Skrzypek [49] as shown in Table1.6.

Apart from the constants of isotropic elasticity E, ν (λ,μ) additional four con-
stants ϑi (i = 1, 2, 3, 4) are shown Table1.6.

Table 1.5 Calibrationof sixmaterial constants in the constitutive equationof high strength concrete,
after Murakami and Kamiya [38])

E (GPa) ν (–) η1 (MPa) η2 (MPa) η3 (MPa) η4 (MPa)

21.4 0.2 −400 −900 100 −23500
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Table 1.6 Callibration of six material constants in the constitutive equation of the spheroidal
graphite cast iron FCD400, after Hayakawa and Murakami [18]

E (GPa) ν (–) ϑ1 (MPa−1) ϑ2 (MPa−1) ϑ3 (MPa−1) ϑ4 (MPa−1)

169 0.285 −3.95 × 10−1 4.0 × 10−6 −4.0 × 10−7 2.50 × 10−6

The more extended analysis including: crack closure effect under compressive
stress, the initial damage threshold, and the subsequent damage growth during the
hardening phases can be found in Murakami and Kamiya [38], Hayakawa and
Murakami [18], Skrzypek et al. [50], Bielski et al. [4], Kuna-Ciskał
and Skrzypek [31].

1.7.3 Strain Energy of the Elastic Orthotropic
Materials—The Structural Tensors

So far the case of scalar function of second-order tensors expressed in terms of
invariants has been discussed. The more general case of a scalar function of a pair of
tensorial arguments being the second-order and the structural tensors is considered
in this section. The strain energy of orthotropic material W = W(ε, M(i)) is the
representative example of such a case.

The constitutive equation of orthotropic hyperelastic material is obtained by
differentiation of the strain energy function, cf. Boehler [5]

σ = ∂W
∂ε

= ∂W
∂ J1

M(1) + ∂W
∂ J2

M(2) + ∂W
∂ J3

M(3)

+ ∂W
∂ J4

(ε · M(1) + M(1) · ε) + ∂W
∂ J5

(ε · M(2) + M(2) · ε)

+ ∂W
∂ J6

(ε · M(3) + M(3) · ε)

(1.165)

where the following definitions of common invariants are used:

J1 = tr(ε · M(1)) J2 = tr(ε · M(2)) J3 = tr(ε · M(3))

J4 = tr(ε · ε · M(1)) J5 = tr(ε · ε · M(2)) J6 = tr(ε · ε · M(3))
(1.166)

and definitions (1.91) hold. Following Boehler [5], in order to determine the con-
stitutive equation of linear orthotropic material we choose, (see also Ottosen and
Ristinmaa [44])
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∂W
∂ J1

= α1 J1 + β1 J2 + β2 J3

∂W
∂ J2

= α2 J1 + α3 J2 + β3 J3

∂W
∂ J3

= α4 J1 + α5 J2 + α6 J3

∂W
∂ J4

= α7
∂W
∂ J5

= α8
∂W
∂ J6

= α9

(1.167)

The coefficients β1,β2,β3 can be substituted by corresponding coefficients α2,α4,

α5 in order to satisfy symmetry of orthotropic stiffness matrix

β1 = α2, β2 = α4, β3 = α5 (1.168)

The above yields the constitutive equation of linear orthotropic material by use of
common invariants of strain and structural tensors

σ = [
α1tr(ε · M(1)) + α2tr(ε · M(2)) + α4tr(ε · M(3))

]
M(1)

+ [
α2tr(ε · M(1)) + α3tr(ε · M(2)) + α5tr(ε · M(3))

]
M(2)

+ [
α4tr(ε · M(1)) + α5tr(ε · M(2)) + α6tr(ε · M(3))

]
M(3)

+α7
(
ε · M(1) + M(1) · ε

)+ α8
(
ε · M(2) + M(2) · ε

)
+α9

(
ε · M(3) + M(3) · ε

)
(1.169)

Equation (1.169) can be rewritten in the classical form at σ = E : ε when the
consecutive tensor products ε · M(i) and their traces are defined. For instance,

ε · M(1) =
⎡
⎣

εxx εxy εxz

εyy εyz

εzz

⎤
⎦ ·

⎡
⎣
1
0
0

⎤
⎦ =

⎡
⎣

εxx 0 0
εxy 0 0
εxz 0 0

⎤
⎦ (1.170)

from where one finds
tr(ε · M(1)) = εxx (1.171)

and

ε · M(1) + M(1) · ε =
⎡
⎣
2εxx εxy εxz

εxy 0 0
εxz 0 0

⎤
⎦ (1.172)

When the remaining products ε · M(2) and ε · M(3) are calculated analogously, the
coefficients preceding the components of the strain tensor are grouped, and when the
engineering notation is consequently used the state equation (1.169) can finally be
furnished in the following form:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E11 E12 E13
E21 E22 E23
E31 E32 E33

E44
E55

E66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.173)

Subsequent elements of stiffness matrix of the orthotropic elastic material [E] are
expressed in terms of coefficients αi as follows:

E11 = α1 + 2α7 E12 = E21 = α2 E13 = E31 = α4
E22 = α3 + 2α8 E23 = E32 = α5 E33 = α6 + 2α9
E44 = α8 + α9 E55 = α9 + α7 E66 = α7 + α8

(1.174)

Note that the above described procedure of linear orthotropic elasticity derivation is
based on the theory of invariant representation which differs from the conventional
approach (1.103). More detailed distinction between different ways of formulating
the linear elasticity constitutive laws will be presented in Sect. 1.9.

1.8 Remarks on Irreducible Coupling of Volumetric
and Shear Response in Anisotropic Materials

In the general case of full material anisotropy complete mutual coupling between all
stress and strain components holds. In fact, the generalized Hooke law (1.39) with
the compliance matrix for general anisotropy taken in the form (1.98) leads to (after
Rabinovich [45])

ε11 = 1

E11
(σ11 − ν21σ22 − ν31σ33

+ η23(1)τ23 + η31(1)τ31 + η12(1)τ12)

ε22 = 1

E22
( − ν12σ11 + σ22 − ν32σ33

+ η23(2)τ23 + η31(2)τ31 + η12(2)τ12)

ε33 = 1

E22
( − ν13σ11 − ν23σ22 + σ33

+ η23(3)τ23 + η31(3)τ31 + η12(3)τ12) (1.175)

γ23 = 1

G23

(
η(1)23σ11 + η(2)23σ22 + η(3)23σ33

+ τ23 + μ31(23)τ31 + μ12(23)τ12
)

γ31 = 1

G31

(
η(1)31σ11 + η(2)31σ22 + η(3)31σ33
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+μ23(31)τ23 + τ31 + μ12(31)τ12
)

γ12 = 1

G12

(
η(1)12σ11 + η(2)12σ22 + η(3)12σ33

+μ23(12)τ23 + μ31(12)τ12 + τ12
)

Note that in the above equations elastic extensions ε11, ε22, ε33 depend not only on
all normal stresses σ11,σ22,σ33 but also on all shear stresses τ23, τ31, τ12 (through
the generalized Young modules Eii and the Rabinovich modules ηi j (k)), resulting
in nonzeroth elements of symmetric constitutive matrix of elasticity in its right
top block. Moreover, the shear strains γ23, γ31, γ12 depend on all shear stresses
τ23, τ31, τ12 (through the generalized Kirchhoff modules Gi j and the Chencov coef-
ficients μi j (kl)) as well as on all normal stresses σ11,σ22,σ33 such that the left
bottom and the right bottom blocks of the elasticity matrix are fully populated. The
above remarks lead in consequence to the conclusion that, in all cases different from
isotropy, pure volumetric deformation is inseparable from pure shear deformation.
In other words, irreducibility of elasticity equations (1.175) into uncoupled law of
volume change and law of shape change holds when the decomposition of strain and
stress tensors into axiator and deviator ε = εm1 + e and σ = σm1 + s is used.

This impossibility is inevitable even in a narrower case of orthotropy (1.103) in
spite of the fact that shear stresses are uncoupled to the extensions and, vice versa,
normal stresses do not result in shear strains. In order to trace this let us rewrite
(1.103) as

ε11 = 1

E11
(σ11 − ν21σ22 − ν31σ33)

ε22 = 1

E22
(−ν12σ11 + σ22 − ν13σ33)

ε33 = 1

E33
(−ν13σ11 − ν23σ22 + σ33)

γ23 = τ23

G23
γ31 = τ31

G31
γ12 = τ12

G12

(1.176)

Calculating the unit volume change called dilatation Θ = ε11 + ε22 + ε33 we obtain

Θorto = 3εm = 1

E11
(σ11 − ν21σ22 − ν31σ33)

+ 1

E22
(−ν12σ11 + σ22 − ν13σ33)

+ 1

E33
(−ν13σ11 − ν23σ22 + σ33)

(1.177)
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or recalling the symmetry of elasticitymatrix (1.104) the equivalent form is furnished

Θorto = σ11

E11
(1 − ν21 − ν31) + σ22

E22
(1 − ν12 − ν32) + σ33

E33
(1 − ν13 − ν23)

(1.178)

Note that in case of orthotropy dilatation is expressed not only in terms of the hydro-
static stressΘ = Θ izo(σh)but by themoregeneral functionΘ = Θorto(σ11,σ22,σ33;
Ei j , νi j ) or Θ = Θorto(σkk;E−1

i jkl).
In the particular case of isotropy when Ei j = E , νi j = ν the above equations

reduce to the classical form

Θ izo = 3εm = 1 − 2ν

E
(σ11 + σ22 + σ33) = 3(1 − 2ν)

E
σh (1.179)

or

εm = 1

3K
σh, K = E

3(1 − 2ν)
(1.180)

in which dilatation or mean strain εm depends on hydrostatic stress σh exclusively.
Contrary to the previous case for material orthotropy by use of the following

definition of deviatoric strain:

e = ε − 1

3
εkk1 = E

−1 : σ − 1

3
Θorto(σkk;E−1

i jkl)1 (1.181)

we obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e11
e22
e33
e23
e31
e12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

0 0 0

− ν12
E22

1
E22

− ν32
E22

0 0 0

− ν13
E33

− ν23
E33

1
E33

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
σ23
σ31
σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

− 1
3Θ

orto(σkk;E−1
i jkl)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
1
1
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.182)

In other words, the pure shear deformation obtained by subtracting of the dilatation
from the full deformation depends also on Θorto, so separation of these two effects
is impossible.
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1.9 Cauchy’s Elasticity, Hyperelasticity, or Hypoelasticity

In the theory of linear elasticity in case of infinitesimal deformations occurring in
isothermal or adiabatic conditions the constitutive relations linking tensors of stress
and strain can be defined in three equivalent ways:

• According to the Cauchy formulation it is assumed that there exists an equilib-
rium state, called natural state, for which all components of the stress and strain
tensors are equal to zero and to which material returns after removing loadings.
An environment of natural state obeys unique value relation between stress and
strain as

σi j = Ei jklεkl (1.183)

• According to the Green formulation, also called hyperelasticity, it is postulated an
existence of function of elastic strain energy per unit volumeW which is equal to
zero in an environment of natural state and such that an increment of work done
by stress is equal to an increment of strain energy

σi j = ∂W
∂εi j

W = 1

2
σi jεkl = 1

2
Ei jklεi jεkl (1.184)

• According to the third formulation, called hypoelasticity, it is postulated an incre-
mental relation of the following form:

dσi j = Ei jkldεkl or
∂σi j

∂t
= Ei jkl

∂εkl

∂t
(1.185)

For all three cases: Cauchy’s, hyper- and hypoelasticity tensor Ei jkl may depend on
temperature but is independent of stress and strain tensors.

Note however that in the general case of nonlinearity constitutive tensors of elas-
ticity or hyperelasticity (1.183) and (1.184) may differ from constitutive tensor of
hypoelasticity (1.185). In the first case tensor representative matrix E is the secant
matrix [E] = [secE], whereas in the other case it is the tangent matrix [E] = [tanE].

It is worth to mention that although Cauchy, hyper- and hypoformulations of
elasticity are alternative in case of theory of infinitesimal deformations, theymay lead
to essentially different results after entering the finite deformation range. Namely,
introducing definitions of finite strains

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

) ↗ εi j = 1

2

(
∂ui

∂X j
+ ∂u j

∂Xi
+ ∂ui

∂X j

∂u j

∂Xi

)

↘∈i j= 1

2

(
∂ui

∂x j
+ ∂u j

∂xi
+ ∂ui

∂x j

∂u j

∂xi

) (1.186)
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where εi j and ∈i j stand for Green’s and Almansi’s strain tensors, respectively, and
corresponding stress tensors

σi j −→ Σi j = ρ0

ρ

∂Xi

∂xk

∂X j

∂xl
σkl (1.187)

whereσi j andΣi j denote theLagrange and the second Piola–Kirchhoff stress tensors
instead of formulations (1.183–1.185) we arrive at mutually different formulations

Σi j = Ei jklεkl
DW
Dt

= 1

ρ0
Σi j

∂εi j

∂t
Dσi j

Dt
− σi pΩpj − σ j pΩpi = Ei jkl ∈̇kl

(1.188)

In case of hypoelastic material subjected to finite deformation appropriate constitu-
tive equation (1.188)3 comprises both the symbol of objective derivative of the stress
tensor Dσi j/Dt and an effect of change of stress tensor resulting from rigid rotation
which is described by skew-symmetric spin tensor

Ωi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1

2

(
∂u̇2

∂x3
− ∂u̇3

∂x2

)
−1

2

(
∂u̇3

∂x1
− ∂u̇1

∂x3

)

−1

2

(
∂u̇2

∂x3
− ∂u̇3

∂x2

)
0

1

2

(
∂u̇1

∂x2
− ∂u̇2

∂x1

)

1

2

(
∂u̇3

∂x1
− ∂u̇1

∂x3

)
−1

2

(
∂u̇1

∂x2
− ∂u̇2

∂x1

)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.189)
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Chapter 2
Constitutive Equations for Isotropic
and Anisotropic Linear Viscoelastic
Materials

Jacek J. Skrzypek and Artur W. Ganczarski

Abstract In case of isotropic material symmetry, the elastic-viscoelastic
correspondence principle is well established to provide the solution of linear vis-
coelasticity from the coupled fictitious elastic problem by use of the inverse Laplace
transformation (Alfrey–Hoff’s analogy). Aim of this chapter is to show useful
enhancement of the Alfrey–Hoff’s analogy to a broader class of material anisotropy
for which separation of the volumetric and the shape change effects from total vis-
coelastic deformation does not occur. Such extension requires use of the vector–
matrix notation to description of the general constitutive response of anisotropic
linear viscoelastic material (see Pobiedria Izd. Mosk. Univ., (1984) [10]). When
implemented to the composite materials which exhibit linear viscoelastic response,
the classically used homogenization techniques for averaged elastic matrix, can be
implemented to viscoelastic work-regime for associated fictitious elastic Represen-
tative Unit Cell of composite material. Next, subsequent application of the inverse
Laplace transformation (cf. Haasemann and Ulbricht Technische Mechanik, 30(1–
3), 122–135 (2010)) is applied. In a similar fashion, the well-established upper and
lower bounds for effective elastic matrices can also be extended to anisotropic linear
viscoelastic composite materials. The Laplace transformation is also a convenient
tool for creep analysis of anisotropic composites that requires, however, limitation
to the narrower class of linear viscoelastic materials. In the space of transformed
variable s, instead of time space t , the classical homogenization rules for fictitious
elastic composite materials can be applied. For the above reasons in what follows, we
shall confine ourselves to the linear viscoelastic materials, isotropic, or anisotropic.
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2.1 Selected Uniaxial Models of the Isotropic
Linear Viscoelastic Materials

Creep phenomena at elevated temperature are usually treated as nonlinear creep phe-
nomenon problems. There exists broad literature in the field of nonlinear creep, for
example, creep anisotropy Findley et al. [4], survey on constitutive models of non-
linear creep Skrzypek [13], Betten [2], interaction creep and plasticity Krempl [6],
coupling of creep and damage Skrzypek [14], Skrzypek and Ganczarski [15], creep
fatigue damage Murakami [7], and nonconventional creep models of anisotropic
material Altenbach [1] and others.

At the beginning, we confine to the commonly used uniaxial isotropic linear vis-
coelastic models for which a general differential equation models may be written as

p0σ + p1σ̇ + p2σ̈ + · · · pa
∂aσ

∂ta
= q0ε + q1ε̇ + · · · pb

∂bε

∂tb
(2.1)

where p0, p1, . . . , q0, q1, . . . denote material constants, and constitutive equation
is a linear function of the stress σ, strain ε, and their time derivatives σ̇, σ̈, etc.,
and ε̇, ε̈, etc. In such a case by the use of the Laplace transformation L { f (t)} =
f̂ (s) =

∞∫
0
e−stdt , a linear viscoelastic problem can be reduced to associated fictitious

elastic problem in terms of the transformed variable s, σ̂i j (x, s), then the viscoelastic
problemσi j (x, t) is obtained by the inverseLaplace transformation. Symbol { } stands
here for function argument of the Laplace transformation and should not be confused
with the Voigt vector notation.

2.1.1 Maxwell Model

The uniaxial Maxwell model (M) consists of a linear elastic spring εH = σ/E
and a linear viscous dashpot element ε̇η = σ/η connected in a series, Fig. 2.1.
Differentiation of the first formula with time yields ε̇H = σ̇/E . When the additive

Fig. 2.1 Maxwell’s
material: a mechanical
model, b creep curve under
constant loading

(a) (b)



2 Constitutive Equations for Isotropic and Anisotropic Linear … 59

decomposition of the strain or the stain rate ε̇ = ε̇H+ε̇η is used, we arrive at equation
of the Maxwell model, hence

ε̇ = σ̇

E
+ σ

η
or σ + η

E
σ̇ = ηε̇ (2.2)

When the integration of above equation at constant stress σ = σ1 = const (σ̇ = 0)
and initial condition ε(0) = σ1/E is performed, we arrive at the creep function given
as, see Fig. 2.1b

ε = σ1

(
1

E
+ 1

η
t

)
(2.3)

or

ε = σ1 JM(t), JM(t) = 1

E
+ t

η
(2.4)

The time function JM(t) is the creep compliance function of the Maxwell model.

2.1.2 Voigt–Kelvin Model

TheVoigt–Kelvin model (V–K) consists of a linear spring element and a linear dashpot
element which are connected in parallel as shown in Fig. 2.2a. Adopting the additive
separation of stress into two parts applied to the spring σH = Eε and to the dashpot
ση = ηε̇ with ε = εH = εη , the differential equation of the V–K model takes the
form

ε̇ + E

η
ε = σ

η
(2.5)

If a constant stress σ = σ1 = const (σ̇ = 0) is applied to the V–K model, we arrive
at nonhomogeneous differential equation

ε̇ + E

η
ε = σ1

η
(2.6)

Fig. 2.2 Voigt–Kelvin
model: a mechanical
scheme, b creep strain at
constant stress input

(a) (b)
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The homogeneous equation of (2.6) is an equation of separate variables

ε̇

ε
= − E

η
(2.7)

the general integral of which is given by

ε = C exp

(
− E

η
t

)
(2.8)

When variation of integration constant C(t) with initial condition ε(0) = 0 is done
we arrive at the solution of (2.6)

ε = σ1

E

[
1 − exp

(
− E

η
t

)]
(2.9)

or

ε = σ1 JVK(t), JVK(t) = 1

E

[
1 − exp

(
− E

η
t

)]
(2.10)

Function JVK(t) is the creep compliance function of the V–K model. Note that V–K
model does not account for instantaneous elasticity, hence JVK(0) = 0, see Fig. 2.2b.

When the more general case of a time function σ(t) is applied and variation of
constant C(t) is done in (2.8) we arrive at the differential equation for C(t)

Ċ(t) = 1

η
exp

(
E

η
t

)
σ(t) (2.11)

the general integral of which is expressed in form

C(t) = C1 + 1

η

t∫

0

exp

(
E

η
ξ

)
σ(ξ)dξ (2.12)

Substitution of (2.12) to (2.8) with the initial condition ε(0) = 0 yields C1 = 0, such
that the following general solution for ε(t) holds

ε(t) = 1

η
exp

(
− E

η
t

) t∫
0
exp

(
E

η
ξ

)
σ(ξ)dξ

= 1
η

t∫
0
exp

[
− E

η
(t − ξ)

]
σ(ξ)dξ

(2.13)
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When integration by parts is applied to (2.13), we arrive at so-called integral
representation of the V–K model

ε(t) = σ(t)

E
− 1

E

t∫

0

exp

[
− E

η
(t − ξ)

]
σ̇(ξ)dξ (2.14)

in which it is clearly seen that the creep function JVK(t) has two terms: independent

of time J0 = 1/E and dependent on time ϕ(t) = 1
E exp

[
− E

η (t − ξ)
]
.

Analogous solution may be reached by use of the Laplace transform method
(2.48). In order to do this the nonhomogeneous V–K equation (2.5) is multiplied
both-side by e−st and integrated with respect to variable t in range from 0 to ∞

∞∫

0

ε̇(t)e−stdt + E

η

∞∫

0

ε(t)e−stdt =
∞∫

0

σ(t)

η
e−stdt (2.15)

Consequently, the algebraic equation of the transformed variable s is obtained

sε̂(s) − ε(0) + E

η
ε̂(s) = σ̂(s)

η
(2.16)

When the initial condition ε(0) = 0 is used, the solution of (2.16) with respect of
transformed variable ε̂(s) is given as the following

ε̂(s) = 1

s + E
η

σ̂(s) (2.17)

Applying next the inverse Laplace transform and taking advantage of property that
multiplication of two transforms in fictitious domain of variable s corresponds to the
convolution of two functions in real time space t , we arrive at the solution of linear
viscoelastic problem

ε(t) = 1

η

t∫

0

exp

[
− E

η
(t − ξ)

]
σ(ξ)dξ (2.18)

identical to (2.13).
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2.1.3 Standard Model

The Maxwell and the Voigt–Kelvin two-element uniaxial models described in the
Sects. 2.1.1 and 2.1.2 are very simple, although they exhibit strong limitations. The
linear creep function at constant stress input corresponding to the Maxwell model
does not confirm experiments, whereas the Voigt–Kelvinmodel is not capable to cap-
ture the instantaneous elastic strain effect. Trying to overcome the above objections,
the commonly used three-parameter standard model is composed of two parts, a
spring element (E) and the V–K unit (E1, η) connected in a series as shown in
Fig. 2.3a.

The differential equation of the standardmodel can be derived in an analogousway
as for the Maxwell and the Voigt–Kelvin simple models, such that after necessary
rearrangement used, the following is obtained

ηE

E1 + E
ε̇ + E1E

E1 + E
ε = σ + η

E1 + E
σ̇ (2.19)

The simple creep function, when the standard model is subjected to a step function
σ = σ1 = const (σ̇ = 0) and integrated with the initial condition ε(0) = σ1/E
used, takes one of two equivalent forms

ε = σ1

E

[(
1 + E

E1

)
− E

E1
exp

(
− E1

η
t

)]
(2.20)

or

ε = σ1 J s(t), J s(t) = 1

E

[(
1 + E

E1

)
− E

E1
exp

(
− E1

η
t

)]
(2.21)

if the time-dependent creep compliance function characterizing the standard model
J s(t) is used. Note the horizontal asymptote of ε(t) curve as shown in Fig. 2.3b with
the new definition used: 1/H = 1/E + 1/E1.

(a) (b)

Fig. 2.3 The standard model: a mechanical scheme, b creep at constant stress input with
instantaneous elastic strain built-in
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2.1.4 Burgers Model

Although the standard model is free from aforementioned inconvenience of the
Maxwell and the Voigt–Kelvin models, it still exhibits a horizontal asymptote (strain
stabilization) when t → ∞, which usually is not true; since according to experi-
mental findings, the creep strain shows rather the infinite increase with time. In order
to control such behaviors, a more complex four-parameter Burgers model which
consists of two simple units, the Maxwell unit (E1, η1), and the Voigt–Kelvin unit
(E2, η2) coupled in a series can be used, as presented in Fig. 2.4a. The differential
constitutive equation of Burgers’ model may be written in the format

η1η2

E2
ε̈ + η1ε̇ = η1η2

E1E2
σ̈ +

(
η1

E1
+ η1

E2
+ η2

E2

)
σ̇ + σ (2.22)

Note that the above equation is the second-order linear differential equation with
respect to strain and stress but of constant coefficients being functions of four para-
meters E1, E2, η1 and η2. It means that all strain and stress functions and their time
derivatives are the linear functions, whereas the coefficients in Eq. (2.22) are con-
stants: two Young’s modules E1, E2 and two viscosity parameters η1, η2.

When the Burgers model is loaded by a step stress input applied at t = 0 the
integration of Eq. (2.22), with two initial conditions ε(0) = σ1/E , ε̇(0) = σ1/η1 +
σ1/η2 used, leads to one of equivalent relationships

ε = σ1

E1

{
1 + E1

η1
t + E1

E2

[
1 − exp

(
− E2

η2
t

)]}
(2.23)

or

ε = σ1 JB(t), JB(t) = 1

E1

{
1 + E1

η1
t + E1

E2

[
1 − exp

(
− E2

η2
t

)]}
(2.24)

where the creep compliance function characterizing the Burgers model compliance
function JB(t) is applied.

(a) (b)

Fig. 2.4 The Burgers model: a the mechanical scheme, b the simple creep curve at constant stress
input applied at t = 0
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Note that the creep curve described by the Burgers model exhibits a skewed
asymptote which corresponds to the unlimited strain increase with decreasing strain
rate, which better fits the experimental findings, see Fig. 2.4b.

2.1.5 Creep Compliance and Relaxation Behavior
of the Selected Linear Viscoelastic Models

More complex models of linear viscoelastic materials consisting of one Hooke’s
element and n Voigt–Kelvin’s units coupled in a series or one Hooke’s element and
n Maxwell’s units coupled in parallel are analyzed by Betten [2].

Consider now stress relaxation of simple uniaxial linear viscoelastic models dis-
cussed in Sects. 2.1.1–2.1.4, subject to a constant strain ε1 at t = 0, from the initial
stress level σ1 = Eε1.

In case of the Maxwell model, the stress relaxation from the initial level σ1 at
t = 0 to t → ∞ is described as follows

σ(t) = σ1 exp

(
− Et

η

)
(2.25)

Note that the rate of stress decrease changes from the initial σ̇(0) = −σ1E/η to zero,
σ̇(∞) = 0. The so-called relaxation time tr = η/E corresponds to the fictitious case
if the stress decreases continuously at the initial rate and finally it would reach zero
at t = tr.

The Voigt–Kelvin model does not exhibit stress relaxation effect. In this singular
case application of the constant strain input, ε = ε1 at t = 0 can be achieved only
by an infinite initial stress response σ(0) → ∞, such that the following holds

σ(t) = ηε1δ(t) + Eε1H(t) (2.26)

where the term containing the Heaviside unit function H(t) describing the constant
stress in the spring, followed by the infinite stress input in dashpot described by the
δ-Dirac function, appears.

The standard model is free from the above singularity and if it is subject to a
constant strain at t = 0, the stress continuously decreases from the initial level
Eε1(t = 0) to the asymptotically approached value Hε1(t → ∞) such that stress
relaxation function of the standard model is written as

σ(t) = Eε1

[
H

E
+
(
1 − H

E

)
exp

(
− t

n

)]
(2.27)

where the definitions hold:
1

H
= 1

E
+ 1

E1
and n = η

E + E1
.
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Table 2.1 Properties of Maxwell, Voigt–Kelvin, standard and Burgers viscoelastic units, after
Skrzypek [13]

Model Creep compliance function J (t)

Maxwell
1

E

(
1 + E

η
t

)

V–K
1

E

(
1 − e− E

η t
)

Standard
1

E

(
1 + E

E1
− E

E1
e− E1

η t
)

Burgers
1

E1

[
1 + E1

η1
t + E1

E2

(
1 − e

− E2
η2

t
)]

Model Relaxation modulus E(t)

Maxwell Ee− E
η t

V–K E
[
1 + η

E δ(t)
]

Standard E

(
E1

E1 + E
+ E

E1 + E
e− E1+E

η t
)

Burgers
(q1 − q2r1)e−r1t − (q1 − q2r2)e−r2t

A

If the Burgers model is subject to a constant strain ε = ε1 at t = 0, a continu-
ous stress relaxation is described by the combination of two exponential functions
exp(−r1t) and exp(−r2t) (cf. Table2.1), where after Findley et al. [4] the new defi-
nitions are used

p1 = η1

E1
+ η1

E2
+ η2

E2
p2 = η1η2

E1E2
q1 = η1

q2 = η1η2

E2
r1,2 = p1 ∓ A

2p2
A =

√
p21 − 4p2

(2.28)

2.2 The Uniaxial Boltzmann Superposition Principle
of the Isotropic Linear Viscoelastic Materials

2.2.1 Bending of a Beam Subject to Stationary Load

Summarizing the results of previous subsection, response of the arbitrary linear
viscoelastic material at step stress input σ = σ1 = const can be written as follows

ε(x, t) = εe(x)EJ(t) (2.29)
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In other words, strain at the arbitrary material point, being a function of the space
x and time t variables, can be presented as a product of the instantaneous elastic
strain εe(x) depending on x only and the creep compliance function J (t) specifically
chosen for given material model dependent on time t only. In the light of comments
presented in Sect. 2.1.5, Eq. (2.29) does not apply to the Voigt–Kelvin model in a
straightforward manner. The V–K model does not comprise the initial elastic strain.

In particular, a deflection of beam made of the linear viscoelastic material
wve(x, t) at constant loading can be presented as the product of the elastic deflection
we(x) and the dimensionless creep compliance function EJ(t) as follows

wve (x, t) = we (x) EJ (t) (2.30)

For creep compliance functions shown in Table2.1, we arrive at

wM (x, t) = we (x)

(
1 + E

η
t

)

wVK (x, t) = we (x)

[
1 − exp

(
− E

η
t

)]

ws (x, t) = we (x)

[
1 + E

E1
− E

E1
exp

(
− E1

η
t

)]

wB (x, t) = we (x)

{
1 + E1

η1
t + E1

E2

[
1 − exp

(
− E2

η2
t

)]}

(2.31)

The aforementioned relationships hold for all linear viscoelastic models discussed
even though V–K model does not exhibit instantaneous response. This comment
holds for all linear viscoelastic models that do not have free elastic spring.

2.2.2 Bending with Tension of a Beam Subject
to Nonstationary Load

Consider a prismatic beam of doubly symmetric cross-section subject to the axial
force and the bending moment being both functions of coordinate x and time t :
N = N (x, t), M = M(x, t). Assume also that both external forces N and M can be
expressed as products of function dependent of x co-ordinate N = N (x) or M(x) and
one common time function f (t): N (x, t) = N (x) f (t) and M(x, t) = M(x) f (t).
Supposing for simplicity that viscoelastic deformation fulfils theBernoulli hypothesis
of straight and normal segments ε(x, z, t) = λ(x, t) + zκ(x, t), it is possible to
separate Eq. (2.29) into the viscoelastic axial elongation λve and the viscoelastic
curvature κve
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λve (x, t) = N (x)

A

t∫
0

J (t − ξ)
∂ f (ξ)

∂ξ
dξ

κve (x, t) = M (x)

I

t∫
0

J (t − ξ)
∂ f (ξ)

∂ξ
dξ

(2.32)

In a particular case, if both generalized forces are applied instantaneously at t = 0:
N (x, t) = N (x)H(t) and M(x, t) = M(x)H(t), remembering that δ-Dirac function
is defined as δ(t) = Ḣ(t) and applying (see Byron and Fuller [3])

t∫

0

J (t − ξ)δ(ξ)dξ =
t∫

0

J (ξ)δ(t − ξ)dξ = J (t) (2.33)

we finally obtain equations for viscoelastic elongation λve(x, t) and curvature
κve(x, t) in a form

λve (x, t) = N (x)

E A
J (t)

κve (x, t) = −w′′ (x, t) = M (x)

EI
J (t)

(2.34)

Hence, the axial elongation of the linear viscoelastic beam λve is a product of instan-
taneous (elastic) elongation and the creep compliance function. Analogously, the
curvature of the linear viscoelastic beam κve is a product of instantaneous curvature
and creep compliance function J (t). For simplicity, the conventional beam theory is
adopted here.

2.2.3 Integral Representation of Creep and Relaxation
Functions in Case of Arbitrary Loading History

A general differential equation of uniaxial linear viscoelastic models can be written
as follows:

p0σ + p1σ̇ + p2σ̈ + · · · = q0ε + q1ε̇ + q2ε̈ + · · · (2.35)

where the constant pi , qi are coefficients of the linear arbitrary order differential
constitutive equation, see Eq. (2.1). Order of Eq. (2.35) is equal to number of viscous
elements (dashpots) appearing in the mechanical model. A compact operator format
can be used instead of Eq. (2.35)

Pσ(t) = Qε(t) (2.36)
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where P and Q stand for linear differential operators with respect to time acting on
stress σ(t) and strain ε(t), respectively

P = p0 + p1
∂

∂t
+ p2

∂2

∂t2
+ · · ·

Q = q0 + q1
∂

∂t
+ q2

∂2

∂t2
+ · · ·

(2.37)

It is clear that the linear elastic (Hooke’s) material is a particular case of linear
viscoelastic material in equation of which all time derivatives disappear, whereas
q0/p0 = E .

Note that differential operators P and Q are linear with respect to all derivatives,
hence the operator format of Eq. (2.36) can formally be treated as an algebraic equa-
tion as follows

σ(t)

ε(t)
= Eve(t) Eve(t) = Q(t)

P(t)
(2.38)

The rational operator Eve(t) used in Eq. (2.38) plays a role of the time-dependent
stiffness operator. As a consequence by contrast to elasticity a fraction σ(t)/ε(t) is
not constant but depends on time. Hence, Eq. (2.38) should be read in a symbolic
way as follows

Q(t)

P(t)
↗↘ σ(t)

ε(t)
(2.39)

Class of the linear viscoelastic materials is a subclass of the nonlinear
viscoelastic materials; however, the Boltzmann superposition principle holds for
the linear viscoelastic materials only. The superposition principle states that resul-
tant response of the system ε(t) under the “sum” of causes is equal to the “sum”
of responses corresponding to causes acting separately. In particular if stress σ1 is
applied at time ξ1 and, then, stress σ2 is applied at time ξ2, the resultant strain ε(t) at
any time t > ξ2 is represented as the sum of the strains resulting from both stresses
considered as though each were acting separately

ε [σ1 (t − ξ1) + σ2 (t − ξ2)] = ε [σ1 (t − ξ1)] + ε [σ2 (t − ξ2)] (2.40)

In case of arbitrary loading history, stress σ(t) can be approximated by a sum of
n stress inputs Δσi , hence from the Boltzmann principle the strain output holds

ε(t) =
n∑

i=1

εi (t − ξi ) =
n∑

i=1

J (t − ξi )Δσi (2.41)
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If the time step tends to zero, we arrive at the integral form of uniaxial creep strain
for the linear viscoelastic material

ε(t) =
t∫

0

J (t − ξ)
∂σ(ξ)

∂ξ
dξ =

t∫

0

J (t − ξ)σ̇(ξ)dξ (2.42)

If the analogous reasoning is applied to the arbitrary strain history (kinematic
control), we arrive at the integral form of the uniaxial stress relaxation for the linear
viscoelastic material

σ(t) =
t∫

0

E(t − ξ)
∂ε(ξ)

∂ξ
dξ =

t∫

0

E(t − ξ)ε̇(ξ)dξ (2.43)

In above integral equations, J (t − ξ) and E(t − ξ) denote the creep function and the
relaxation function of the material considered, respectively. In practical applications,
the alternative forms to (2.42) or (2.43) are more convenient

ε(t) = J0σ(t) +
t∫

0

ϕ(t − ξ)σ̇(ξ)dξ (2.44)

or

σ(t) = E0ε(t) −
t∫

0

ψ(t − ξ)ε̇(ξ)dξ (2.45)

where separation of the instantaneous and time-dependent outputs are distinguished.
The general integral forms (2.42) or (2.43) do not comprise explicitly initial con-
ditions, whereas in the forms (2.44) or (2.45) J0 or E0 denote initial value of
creep or relaxation functions (at t = 0) whereas time functions ϕ(t − ξ) or
ψ(t − ξ) denote time-dependent parts of creep or relaxation functions. Note that
in Eqs. (2.44) and (2.45) symbol ξ denotes time when the stress or the strain inputs
are imposed, whereas t denotes the observation time when strain response ε(t) or
stress response σ(t) are measured. This approach can be identified as the linear
hereditary model where kernel function depends on time interval t − ξ by contrast
to the nonlinear hereditary models where kernel functions depend on t, ξ separately,
cf. Rabotnov [11].
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2.3 Multiaxial Isotropic Linear Viscoelastic Materials

In what follows, we briefly summarize the fundamentals of the linear viscoelasticity
in case of material isotropy. This will serve as the starting point for further extension
of isotropic to anisotropic linear viscoelastic equations. Such extension will further
be used as convenient tool for analysis of anisotropic viscoelastic composites.

2.3.1 Differential Representation Under a Multiaxial
Stress State

In case of isotropic linear viscoelastic materials under the multiaxial states of stress
and strain, it is convenient to separate volumetric effect from the shape change effect.
Similar to elasticity, such separation is possible only in case of material isotropy (see
Sect. 1.4.8).

Direct extension of linear isotropic viscoelastic constitutive equations (2.36) and
(2.37) to the multiaxial states takes the form

P1si j (t) = Q1ei j (t)
P2σkk (t) = Q2εkk (t)

(2.46)

where P1,Q1,P2, and Q2 are the linear differential operators applicable to the sepa-
rable shape change and the volume change effects. In the explicit format, equations
(2.46) can be rewritten as

(
p′
0 + p′

1
∂

∂t
+ p′

2
∂2

∂t2
+ · · · + p′

a
∂a

∂ta

)
si j (t) =

(
q ′
0 + q ′

1
∂

∂t
+ q ′

2
∂2

∂t2
+ · · · + q ′

b
∂b

∂tb

)
ei j (t)

(
p′′
0 + p′′

1
∂

∂t
+ p′′

2
∂2

∂t2
+ · · · + p′′

a
∂a

∂ta

)
σkk (t) =

(
q ′′
0 + q ′′

1
∂

∂t
+ q ′′

2
∂2

∂t2
+ · · · + q ′′

b
∂b

∂tb

)
εkk (t)

(2.47)

For the purpose of further consideration, it is convenient to transform differential
equations (2.47) expressed in terms of physical time t , f (t) to the equivalent alge-
braic equations expressed in terms of transformed variables s, f̂ (s) according to the
Laplace integral transform

L { f (t)} = f̂ (s) =
∞∫

0

e−st f (t) dt (2.48)

http://dx.doi.org/10.1007/978-3-319-17160-9_1
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The use of above transformation allows to replace the real initial differential prob-
lem of the linear viscoelastic material (differential equation and appropriate initial
conditions) by the equivalent elastic algebraic equation of a fictitious elastic material.

In the next step, when the fictitious algebraic problem is solved in elementary way,
application of the inverse Laplace transform allows to return to the original viscoelas-
tic problem. Described procedure leads to the solution faster than the straightforward
integration of a differential equation due to the Laplace transform pairs known from
literature.

Basic properties of the Laplace transform commonly used in theory of viscoelas-
ticity can be found among others in, e.g., Nowacki [8], Pipkin [9], Findley et al. [4].
Exemplary Laplace transforms for selected elementary functions f (t) are shown in
Table2.2.

By use of the Laplace transformation equations of transformed isotropic linear
viscoelasticity (2.46) can be expressed in terms of the transformed variable s as
follows

P̂1̂si j (s) = Q̂1êi j (s)

P̂2σ̂kk (s) = Q̂2ε̂kk (s)
(2.49)

Table 2.2 Laplace transforms of frequently used functions

f (t) f̂ (s) f (t) f̂ (s)

ḟ (t) s f̂ (s) − f (0)
t∫
0

f (ξ)dξ
f̂ (s)

s

1
1

s
a

a

s

H(t)
1

s
H(t − a)

e−as

s

δ(t) = Ḣ(t) 1 δ(t − a) e−as

t
1

s2
tn n!

sn+1

e−at 1

s + a
tne−at n!

(s + a)n+1

e−at − e−bt b − a

(s + a)(s + b)
ae−at − be−bt (a − b)s

(s + a)(s + b)

1 − e−at a

s(s + a)

t

a
− 1

a2 (1 − e−at )
1

s2(s + a)
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or (
p′
0 + p′

1s + p′
2s2 + · · · + p′

asa
)

ŝi j (s) =(
q ′
0 + q ′

1s + q ′
2s2 + · · · + q ′

bsb
)

êi j (s)(
p′′
0 + p′′

1s + p′′
2s2 + · · · + p′′

a sa
)
σ̂kk (s) =(

q ′′
0 + q ′′

1 s + q ′′
2 s2 + · · · + q ′′

b sb
)
ε̂kk (s)

(2.50)

Based on the analogy between Eq. (2.49) that describe transformed viscoelastic prob-
lem and linear isotropic elastic equations

si j = 2Gei j , σkk = 3Kεkk (2.51)

it is possible to findout thegeneralized modules of viscoelasticityGve(t) andKve(t) as

Gve (t) = Q1

2P1
Kve (t) = Q2

3P2
(2.52)

which are time-dependent functions of t . Additionally, if the definitions of Young’s
modulus E and Poisson’s ratio ν known from the elasticity are used

E = 9KG

3K + G
, ν = 3K − 2G

6K + 2G
(2.53)

substitution of (2.52) to (2.53) furnishes the generalized Young’s modulus Eve(t)
commonly called relaxation modulus and generalized Poisson’s ratio νve(t) of
isotropic linear viscoelasticity that can be expressed in terms of time-dependent
operators (2.46)

Eve (t) = 3Q1
P1

Q2
P2

Q1
P1

+ 2Q2
P2

= 3Q1Q2

P2Q1 + 2P1Q2

νve (t) =
Q2
P2

− Q1
P1

2Q2
P2

+ Q1
P1

= P1Q2 − P2Q1

P2Q1 + 2P1Q2

(2.54)

By contrast to elasticity, the abovemodules are time-dependent differential operators
but not material constants.

The deviatoric P1,Q1 and the volumetric P2,Q2 differential operators and the
corresponding transformed operators P̂1, Q̂1 and P̂2, Q̂2 for selected isotropic lin-
ear viscoelastic models are given in Table2.3. When the additional assumption of
hydrostatic pressure independence of the elastic response is used it is necessary to
consequently apply P2 = 1,Q2 = 3K . Note that the above Eqs. (2.52) and (2.54)
refer to isotropic linear viscoelastic material forwhich number of independent gener-
alized modules equals 2, namely Gve(t) and Kve(t) or equivalently Eve(t) and νve(t).
In particular case of isotropic elasticity, the above creep modules reduce to two
constants Gve(t) = G and Kve(t) = K or equivalently Eve(t) = E and νve(t) = ν.
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2.3.2 Integral Representation Under a Multiaxial Stress State

Asmentioned above, in case of isotropic viscoelasticmaterials number of thematerial
time functions is equal to two. Hence, it is possible to separate effects of shape
change from the volume change. In such a way, we arrive at the integral form of
the constitutive equations of isotropic linear viscoelastic material that generalize the
analogous uniaxial equation (2.43) for multiaxial states

si j (t) = 2
t∫
0
Gve (t − ξ)

∂ei j (ξ)

∂ξ
dξ

σkk (t) = 3
t∫
0
Kve (t − ξ)

∂εkk (ξ)

∂ξ
dξ

(2.55)

In a particular case, if the volume change is pure elastic, Eq. (2.55) take the simplified
form

si j (t) = 2
t∫
0
Gve (t − ξ)

∂ei j (ξ)

∂ξ
dξ

σkk = 3Kεkk

(2.56)

2.4 Elastic-Viscoelastic Correspondence Principle
for the Case of Isotropic Materials

Consider at the beginning, a particular case of isotropic linear viscoelastic behavior
for which separation of the volume change from the shape change holds in a similar
fashion as in case of isotropic elastic behavior, see Sect. 1.4.8. Remember however
that in a more general case of the anisotropic behavior, linear elastic, and linear
viscoelastic, this separation is not possible, see Sect. 1.8.

Analogy between the transformed equations of linear isotropic viscoelastic mate-
rials (2.49) and conventional equations of isotropic elasticity (2.51) leads to the
searching of the solutions of viscoelasticity on basis of a priori known coupled
elastic problems. This analogy is known as the elastic-viscoelastic correspondence
principle, see Findley et al. [4].

Let us summarize a complete set of equations of linear isotropic viscoelasticity,
see Skrzypek [13]

• the equilibrium equations

∂σi j (x, t)

∂xi
+ b j (t) = 0 (2.57)

• the constitutive equations formed either in the format of differential operator
representation (2.46)

http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_1
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P1si j (x, t) = Q1ei j (x, t)
P2σkk (x, t) = Q2εkk (x, t)

(2.58)

or in the integral representation (2.55)

si j (x, t) = 2
t∫
0
Gev (t − ξ) ėi j (x, ξ) dξ

σkk (x, t) = 3
t∫
0
Kev (t − ξ) ε̇kk (x, ξ) dξ

(2.59)

• the linearized geometric equations

εi j (x, t) = 1

2

[
∂ui (x, t)

∂x j
+ ∂u j (x, t)

∂xi

]
(2.60)

• the boundary conditions under assumption that boundary between domains of
force ΓP and displacement ΓU remain unchanged

Pi (x, t) = σi j (x, t) n j na ΓP

Ui (x, t) = ui (x, t) na ΓU
(2.61)

For simplicity independence of the viscoelastic modules, Gve, Kve from the spatial
coordinates holds. In other words, material homogeneity is assumed. In a particular
case of composite materials although that material is inhomogeneous at microlevel
a homogenization technique allows to reduce such problem to homogeneous at the
RUC level of the representative unit cell, see Chap. 3.

When the Laplace transformation of the above set of Eqs. (2.57)–(2.61) is done
we arrive at the fictitious coupled elastic problem

∂σ̂i j (x, s)

∂xi
+ b̂ j (x, s) = 0

ŝi j (x, s) = 2sĜêi j (x, s) = Q̂1

P̂1
êi j (x, s)

σ̂kk (x, s) = 3sK̂ε̂kk (s) = Q̂2

P̂2
ε̂kk (x, s)

ε̂i j (x, s) = 1

2

[
∂ûi (x, s)

∂x j
+ ∂û j (x, s)

∂xi

]

P̂i (x, s) = σ̂ j i (x, s) n j at ΓP

Ûi (x, s) = ûi (x, s) at ΓU

(2.62)

in which the body forces b̂ j (x, s), external forces P̂i (x, s), displacements Ûi (x, s)
as well as fictitious elastic constants Ĝ (s) and K̂ (s) are functions of the transformed
variable s.

http://dx.doi.org/10.1007/978-3-319-17160-9_3
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Finally, the analogy between viscoelastic and coupled elastic problems can be
formulated. Namely if a solution of coupled fictitious elastic problem is known (2.62)
σ̂i j (x, s) and ûi (x, s), the solution of corresponding linear viscoelastic problem
(2.57)–(2.61) can be obtained on the way of the inverse Laplace transformations
σi j (x, t) and ui (x, t). Simultaneously, following relations must hold

Ĝve = Q̂1 (s)

2sP̂1 (s)
K̂ve = Q̂2 (s)

3sP̂2 (s)
(2.63)

The correspondence principle can be applied only to the boundary problems where
the interface between the boundaryΓP (where the external forces are prescribed) and
the boundary ΓU (where the surface displacements are given) is independent of time,
see Findley et al. [4]. The above limitation does not hold in case of some material
forming processes, for instance rolling, where the interface between boundaries ΓP

and ΓU varies with time.
An example of elastic-viscoelastic correspondence principle applied to multiaxial

stress and strain states the thick walled tube made of the isotropic standard material
subject to internal pressure p(t) = pH(t) applied instantaneously at t = 0 is
considered after Findley et al. [4]. Taking advantage of the correspondence principle
and recalling Lamé’s solution for coupled elastic problem

ue = pa2

b2 − a2

1 + ν

E

(
b2

r
+ 1 − ν

1 + ν
r

)
(2.64)

substitution of (2.54) for E, ν in (2.64) gives

1 + ν

E
−→ P̂1

Q̂1

1 + ν

1 − ν
−→ 2̂P2Q̂1 + P̂1Q̂2

3̂P1Q̂2

(2.65)

In this way, a fictitious coupled elastic problem in term of s

û(s) = p̂(s)a2

b2 − a2

P̂1
Q̂1

(
b2

r
+ 2̂P2Q̂1 + P̂1Q̂2

3̂P1Q̂2
r

)
(2.66)

is find out. Applying transformed operators P̂1, P̂2, Q̂1, and Q̂2 of standard model
(see Table2.3) under additional assumption that shape change creep deformation is
accompanied by the elastic hydrostatic deformation P̂2 = 1, Q̂2 = 3K , we find a
solution of the fictitious coupled elastic problem

û(s) = pa2

b2 − a2

⎛
⎝ A

E ′
1

η′
+ B

s

⎞
⎠ (2.67)
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where A and B are functions of radial coordinate r exclusively

A = − 1

E ′

(
b2

r
+ r

3

)
, B = E ′

1 + E ′

E ′
1E ′

(
b2

r
+ r

3

)
+ 2r

9K
(2.68)

Finally, the solution of the real linear viscoelastic problem is achieved by use of the
inverse Laplace transform of (2.67) in the following format

u(t) = pa2

b2 − a2

{
1

E ′

(
b2

r
+ r

3

)
+ 2r

9K
+ 1

E ′
1

(
b2

r
+ r

3

)

×
[
1 − exp

(
− E ′

1

η′ t

)]} (2.69)

2.5 Integral Representation of the Linear Viscoelastic
Equations of Anisotropic Materials

The elastic-viscoelastic correspondence principle applied for isotropic material pre-
sented in previous Sect. 2.4, was based on mathematically convenient separation of
the volumetric and the shape change effects from total viscoelastic deformation.
However, in case of any class of material anisotropy such separation does not occur.
Hence for sake of generality, we change formulation of the correspondence principle
to the uniform fashion that does not employ the above separation. For convenience,
the vector-matrix notation will be used.

In a general case of anisotropic linear viscoelastic material, the integral form of
constitutive equations is furnished as (see Shu and Onat [12])

εi j (t) =
t∫

0

veJi jkl (t − ξ) σ̇kl (ξ) dξ (2.70)

or

σi j (t) =
t∫

0

veEi jkl(t − ξ)ε̇kl(ξ)dξ (2.71)

where veJi jkl(t − ξ) defines the fourth-rank tensor of creep functions; whereas,
veEi jkl(t − ξ) is the fourth-rank tensor of relaxation functions which characterize
viscoelastic properties of anisotropic material. Assuming the symmetry conditions:
veJi jkl =ve Jkli j =ve J jikl =ve Ji jlk , or veEi jkl =ve Ekli j =ve E jikl =ve Ei jlk , both
tensors of viscoelastic anisotropy have 21 independent functions. Both constitutive
tensor functions veJi jkl or veEi jkl depend on current time t (integration limit).
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When the vector-matrix notation is used, the general constitutive equation of
anisotropic linear viscoelastic material defined byEqs. (2.70) and (2.71) takes equiv-
alent integral form

{ε(t)} =
t∫

0

[veJ(t − ξ)] ∂

∂ξ
{σ(ξ)} dξ (2.72)

or

{σ(t)} =
t∫

0

[veE(t − ξ)] ∂

∂ξ
{ε(ξ)} dξ (2.73)

When nonabbreviated notation is used introducing matrix of creep compliance func-
tions ve Ji j (t − ξ), we arrive at the following constitutive integral equations of
anisotropic linear material

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx (t)
εyy(t)
εzz(t)
γyz(t)
γzx (t)
γxy(t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
t∫

0

⎡
⎢⎢⎢⎢⎢⎢⎣

veJ11 veJ12 veJ13 veJ14 veJ15 veJ16
veJ21 veJ22 veJ23 veJ24 veJ25 veJ26
veJ31 veJ32 veJ33 veJ34 veJ35 veJ36
veJ41 veJ42 veJ43 veJ44 veJ45 veJ46
veJ51 veJ52 veJ53 veJ54 veJ55 veJ56
veJ61 veJ62 veJ63 veJ64 veJ65 veJ66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ̇xx (ξ)
σ̇yy(ξ)
σ̇zz(ξ)
τ̇yz(ξ)
τ̇zx (ξ)
τ̇xy(ξ)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

dξ (2.74)

where [ve J ]i j = [J (t − ξ)]i j is the creep compliance matrix. For Eq. (2.73) the
inverse relation holds
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx (t)
σyy(t)
σzz(t)
τyz(t)
τzx (t)
τxy(t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
t∫

0

⎡
⎢⎢⎢⎢⎢⎢⎣

veE11
veE12

veE13
veE14

veE15
veE16

veE21
veE22

veE23
veE24

veE25
veE26

veE31
veE32

veE33
veE34

veE35
veE36

veE41
veE42

veE43
veE44

veE45
veE46

veE51
veE52

veE53
veE54

veE55
veE56

veE61
veE62

veE63
veE64

veE65
veE66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε̇xx (ξ)
ε̇yy(ξ)
ε̇zz(ξ)
γ̇yz(ξ)
γ̇zx (ξ)
γ̇xy(ξ)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

dξ (2.75)

In particular case of orthotropic linear viscoelastic material, Eqs. (2.74) and (2.75)
reduce to narrower forms

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11(t)
ε22(t)
ε33(t)
γ23(t)
γ31(t)
γ12(t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
t∫

0

⎡
⎢⎢⎢⎢⎢⎢⎣

veJ11 veJ12 veJ13
veJ21 veJ22 veJ23
veJ31 veJ32 veJ33

veJ44
veJ55

veJ66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ̇11(ξ)
σ̇22(ξ)
σ̇33(ξ)
τ̇23(ξ)
τ̇31(ξ)
τ̇12(ξ)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

dξ (2.76)
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or
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11(t)
σ22(t)
σ33(t)
τ23(t)
τ31(t)
τ12(t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
t∫

0

⎡
⎢⎢⎢⎢⎢⎢⎣

veE11
veE12

veE13
veE21

veE22
veE23

veE31
veE32

veE33
veE44

veE55
veE66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε̇11(ξ)
ε̇22(ξ)
ε̇33(ξ)
γ̇23(ξ)
γ̇31(ξ)
γ̇12(ξ)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

dξ (2.77)

being extension of equations of orthotropic linear elasticity (1.103). Note that both
stresses and strains are functions of time veσi j =ve σi j (t), veεi j =ve εi j (t), in
similar fashion as elements of creep compliance veJi j =ve Ji j (t − ξ) and relaxation
veEi j =ve Ei j (t − ξ) matrices.

Applying the Laplace transform to Eqs. (2.74) and (2.75), we arrive at the asso-
ciated fictitious elastic constitutive equations in the transformed domain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε̂xx (s)
ε̂yy(s)
ε̂zz(s)
γ̂yz(s)
γ̂zx (s)
γ̂xy(s)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= s

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ĵ11 Ĵ12 Ĵ13 Ĵ14 Ĵ15 Ĵ16
Ĵ21 Ĵ22 Ĵ23 Ĵ24 Ĵ25 Ĵ26
Ĵ31 Ĵ32 Ĵ33 Ĵ34 Ĵ35 Ĵ36
Ĵ41 Ĵ42 Ĵ43 Ĵ44 Ĵ45 Ĵ46
Ĵ51 Ĵ52 Ĵ53 Ĵ54 Ĵ55 Ĵ56
Ĵ61 Ĵ62 Ĵ63 Ĵ64 Ĵ65 Ĵ66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ̂xx (s)
σ̂yy(s)
σ̂zz(s)
τ̂yz(s)
τ̂zx (s)
τ̂xy(s)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.78)

or ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ̂xx (s)
σ̂yy(s)
σ̂zz(s)
τ̂yz(s)
τ̂zx (s)
τ̂xy(s)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= s

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ê11 Ê12 Ê13 Ê14 Ê15 Ê16

Ê21 Ê22 Ê23 Ê24 Ê25 Ê26

Ê31 Ê32 Ê33 Ê34 Ê35 Ê36

Ê41 Ê42 Ê43 Ê44 Ê45 Ê46

Ê51 Ê52 Ê53 Ê54 Ê55 Ê56

Ê61 Ê62 Ê63 Ê64 Ê65 Ê66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε̂xx (s)
ε̂yy(s)
ε̂zz(s)
γ̂yz(s)
γ̂zx (s)
γ̂xy(s)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.79)

2.6 Application of the Anisotropic Correspondence
Principle to the Case of Orthotropic Composite
Materials

For a purpose of engineering application, for instance to some composite materials in
which at least one of phases exhibits viscoelastic behavior, it is sufficient to assume
the narrower case of orthotropic linear viscoelastic equations (2.76) and (2.77).
When the Laplace transformation is applied to the integral constitutive equations
of the orthotropic linear viscoelastic material (2.76) and (2.77), we arrive at the
associated fictitious orthotropic elastic equations in terms of s

http://dx.doi.org/10.1007/978-3-319-17160-9_1
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{σ̂(s)} = s [̂E(s)] {̂ε(s)} (2.80)

or
{̂ε(s)} = s [̂J(s)] {σ̂(s)} (2.81)

When the vector-matrix notation is applied the corresponding formulas can bewritten
in an expanded fashion

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ̂11(s)
σ̂22(s)
σ̂33(s)
τ̂23(s)
τ̂31(s)
τ̂12(s)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= s

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ê11 Ê12 Ê13 0 0 0
Ê21 Ê22 Ê23 0 0 0
Ê31 Ê32 Ê33 0 0 0

0 0 0 Ê44 0 0
0 0 0 0 Ê55 0
0 0 0 0 0 Ê66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε̂11(s)
ε̂22(s)
ε̂33(s)
γ̂23(s)
γ̂31(s)
γ̂12(s)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.82)

or ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε̂11(s)
ε̂22(s)
ε̂33(s)
γ̂23(s)
γ̂31(s)
γ̂12(s)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= s

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ĵ11 Ĵ12 Ĵ13 0 0 0
Ĵ21 Ĵ22 Ĵ23 0 0 0
Ĵ31 Ĵ32 Ĵ33 0 0 0

0 0 0 Ĵ44 0 0
0 0 0 0 Ĵ55 0
0 0 0 0 0 Ĵ66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ̂11(s)
σ̂22(s)
σ̂33(s)
τ̂23(s)
τ̂31(s)
τ̂12(s)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.83)

The above equations generalize constitutive equations of isotropic viscoelastic mate-
rial (2.62)2,3 to the case ofmaterial orthotropy, where Êi j = Êi j (s) and Ĵi j = Ĵi j (s)
stand for the orthotropic relaxation function matrix and the creep compliance matrix,
respectively. Solution of the problem of viscoelastic orthotropy can be obtained on
the way of the Laplace inverse transform applied to the transformed variables σ̂i j (s),
ε̂i j (s), which are retransformed to physical variables σi j (t), εi j (t).

It should be emphasized that in case of anisotropic linear viscoelastic materials,
similar to anisotropic elastic materials, it is not possible to separate the constitutive
equations into the volumetric change and the shape change uncoupled equations since
anisotropy results in full coupling between the volume and the shape viscoelastic
deformation.

In case of compositematerials, the properties ofwhich exhibit the linear viscoelas-
tic features, a generalization of commonly used homogenization techniques (see
Chap.3) to viscoelastic work-regime can be proposed (cf. Haasemann and Ulbricht
[5]). The frequently applied concept of the representative unit cell (RUC) origi-
nally developed for elastic composites can also be adapted to nonelastic behavior of
composites (matrix and/or fiber). To this end, the class of linear viscoelastic mate-
rial occurs to be very convenient when use of the correspondence principle which
enables to transform the real viscoelastic (time-dependent) problem to a fictitious
elastic (time-independent) problem in the domain of new variable s (see Table2.4).

http://dx.doi.org/10.1007/978-3-319-17160-9_3
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Constitutive equation of viscoelastic material can be formulated twice: at the
level of subcell (βγ) where components are described by different viscoelastic equa-
tions (matrix, fibers, particles) and at the level of RUC where different properties of
material are homogenized in a particular way to yield mean or effective viscoelastic
response.

The above described stages of description are briefly presented as follows: at level
of subcell the local constitutive equations of linear viscoelasticity hold

veε
(βγ)
i j (t) =

t∫

0

ve J (βγ)
i jkl (t − ξ)veσ̇

(βγ)
kl (ξ)dξ (2.84)

or

veσ
(βγ)
i j (t) =

t∫

0

veE (βγ)
i jkl (t − ξ)veε̇

(βγ)
kl (ξ)dξ (2.85)

where the local variables, microstress, and microstrain are combined by local con-
stitutive time-dependent fourth-rank tensors (the creep compliance tensor or the
relaxation tensor) for the homogeneous constituent material. In a formal fashion
when a homogenization inside the RUC is used, we arrive at

veεi j (t) =
t∫

0

ve J i jkl(t − ξ)veσ̇kl(ξ)dξ (2.86)

or

veσi j (t) =
t∫

0

veEi jkl(t − ξ)veε̇kl(ξ)dξ (2.87)

Mean or effective fourth-rank tensors of creep compliance ve J i jkl or relaxation
veEi jkl are defined at the level of RUC in terms of the corresponding local tensors
ve J

(βγ)

i jkl or veE
(βγ)

i jkl at the level of subcell by the use of a homogenization procedure
in an analogous way as for the elastic composite (3.58). Homogenization of the vis-
coelastic properties of the composite material is not a trivial problem and is seldom
met in literature, cf. e.g., Haasemann and Ulbricht [5].

Application of correspondence principle occurs to be very useful since it makes
possible to convert time-dependent heterogeneous viscoelastic problem to associated
time-independent elastic problem for which homogenization tools can directly be
applied. In particular when elastic-viscoelastic analogy is applied for anisotropic
composites at the level of RUC, the application of the Laplace transform allows to
reduce integral equation of real material (2.86) or (2.87) to coupled set of equations
of a fictitious elastic problem in space of the transformed variable s

http://dx.doi.org/10.1007/978-3-319-17160-9_3
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êεi j (s) = s Ê
−1

i jkl(s)
eσ̂kl(s) (2.88)

or
eσ̂i j (s) = s Ê i jkl(s)

êεkl(s) (2.89)

Finally, solution of the anisotropic linear viscoelastic problem can be obtained by the
use of inverse Laplace transformation from the transformed domain êεi j (s),e σ̂i j (s)
to the physical domain veεi j (t),ve σi j (t). When absolute notation is used we get (see
Haasemann and Ulbricht [5])

veσ(t) = ve
E(t) : veε(t = 0) +

t∫
0

ve
E(t − ξ) : ve ε̇(ξ)dξ

= ve
E(t) : ve ε(t = 0) + [veE : ve ε̇](t)

(2.90)

Recall definition of the Laplace transform of the function f (t) (t > 0) into the
function of transformed variable f̂ (s)

L { f (t)} = f̂ (s)
def=

∞∫

0

f (t)e−stdt (2.91)

and definition of the convolution of two functions

f (t)
def=

t∫

0

f1(t − ξ) f2(ξ)dξ ≡ f1(t) ∗ f2(t) (2.92)

Applying the Laplace transform (2.91) to the convolution integral (2.92), we arrive
at the convolution theorem (see Findley et al. [4])

L
⎧⎨
⎩

t∫

0

f1(t − ξ) f2(ξ)dξ

⎫⎬
⎭ = L { f1(t) ∗ f2(t)} = f̂1(s) f̂2(s) (2.93)

Taking next the Laplace transform of the integral form of constitutive equation of
the anisotropic linear viscoelasticity (2.90), we arrive at the equivalent transformed
algebraic equation of anisotropic linear elasticity according to scheme

veσ(t) =ve
E(t) :ve ε(t = 0) +ve

E(t) :ve ε̇(t) L−→ σ̂(s) = sÊ(s) : ε̂(s) (2.94)

defined by function of the transformed variable s. The transformed matrix of

anisotropic fictitious elasticity sÊ(s) is built at the level of RUC of considered
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composite. The above matrix is obtained by the homogenization of the transformed

isotropic local matrices sÊ
(βγ)

(s) at the level of composite microstructure (subcells).
The procedure described above is sketched by the following scheme shown in

Table2.4. The homogenization procedures for the anisotropic elastic composites are
well recognized (for details see next chapter). By contrast, there is no unique and
direct homogenization procedure to yield the effective creep compliance ve J (βγ)

i jkl (t)

and relaxation veE (βγ)
i jkl (t) tensors (e.g., Haasemann and Ulbricht [5]). Hence to over-

come this deficiency, the suggested scheme is as follows: first apply theLaplace trans-
form at the level of subcell in order to eliminate physical time (left path in Table2.4),
second use a homogenization method in order to reach the RUC level for fictitious
elastic RUC of composite material and finally apply the inverse Laplace transform
to arrive at the physical viscoelastic RUC level (right back path in Table2.4).

Usually for sake of simplicity of further applications, the transversely isotropic

effective relaxation matrix sÊ(s) at the level of RUC is sufficient, whereas at the
microlevel (subcell) the isotropic matrices for the constituents (f) fiber and (m)

composite matrix sÊ
(f)

(s) and sÊ
(m)

(s) are usually accepted (see also (2.82)).
Elastic-viscoelastic correspondence principle as applied to orthotropic viscoelastic

Table 2.4 Elastic-viscoelastic homogenization method based on the representative unit cell (RUC)
applied to the associated elastic material by correspondence principle

ε(βγ) =
t

0

ve
J
(βγ) σ̇(βγ) dξ linear viscoelastic {ε} =

t

0

ve
J σ̇ dξ

=============⇒
σ(βγ) =

t

0

ve
E

(βγ) ε̇(βγ) dξ homogenization ? {σ} =
t

0

ve
E ε̇ dξ

⇓ ⇑
L L−1

⇓ ⇑
ε(βγ) = s J

(βγ) σ(βγ) associated elastic ε = s J σ

=============⇒
σ(βγ) = s E

(βγ) ε(βγ) homogenization σ = s E ε
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Fig. 2.5 Beam model and RUC of unidirectional composite according to Haasemann and
Ulbricht [5]

Table 2.5 Viscoelastic
properties of fiber and matrix
material following
Haasemann and
Ulbricht [5]

Fiber Matrix

Relaxation
function

70 + 200 e−0.1t/s 3 + 15 e−t/s

Poisson’s ratio 0.2 0.35

and viscoplastic materials is applied by Haasemann and Ulbricht [5]. In case of uni-
directionally reinforced composite considered by Haasemann and Ulbricht [5] (see
Fig. 2.5), both fiber andmatrix materials were described as isotropic linear viscoelas-
tic (see Table2.5); whereas at macroscale, the sane composite material obeyed the
transverse isotropy symmetry. The Laplace–Carson transform

LC { f (t)} = f̂C (s) = s

∞∫

0

e−st f (t) dt (2.95)

was used in order to transform equations of transversely isotropic linear viscoelastic
material in t domain into corresponding equations of fictitious linear elastic mate-
rial in domain of transformed variable s, in which conventional homogenization
techniques of elastic composites were applicable (for details see Chap. 3).
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Chapter 3
Mechanics of Anisotropic
Composite Materials

Artur W. Ganczarski, S. Hernik and Jacek J. Skrzypek

Abstract Mechanics of composite materials was in the last decade one of the most
rapidly explored engineering area, basically due to huge progress in composite fabri-
cation and use. The main problem referred in this chapter is how to correctly predict
averaged effective properties by implementation of numerous homogenization tech-
niques. Useful classification of composites with respect to the format of effective
stiffness matrix, based on the analogy between the crystal lattice symmetry and
respective configuration of reinforcement in the RUC, is given. Extended section is
focused on conventionally used Hill’s theorem on upper and lower bounds by Voigt
and Reuss’ isotropic estimation for approximate determination of stiffness and com-
pliancematrices of anisotropic composite. Consistent application of the Hill theorem
to the elements of elastic stiffness or compliance matrices (but not to engineering
anisotropy constants) enable to explain some peculiarities of the Poisson ratio dia-
grams, met in respective bibliography (e.g., Aboudi et al., Micromechanics of Com-
posite Materials, 2013; Sun and Vaidya, Compos. Sci. Technol. 56:171–179, 1996;
Gan et al., Int. J. Solids Struct. 37:5097–5122, 2000). The new effective proposal
to achieve approximation of the mechanical modules of unidirectionally reinforced
composites by the use of hybrid-type rule of weighted average between the Voigt
and Reuss upper and lower estimates is proposed. Capability of this averaged inter-
polation was checked based on selected findings by Gan et al. (Int. J. Solids Struct.
37:5097–5122, 2000) for Boron/Al composite, which show good convergence and
enable to treat weighting coefficients as universal ones over the full Vf range.
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3.1 State of the Art

Essential progress observed in manufacturing processes and application of compos-
ite materials results in necessity to develop methodology of determination of the
effective properties mechanical, thermal, and others. Among the variety of papers
dealing with modeling of effective mechanical properties of composites and their
experimental verification, the following group of papers in which a coupling between
the topology of fibrous reinforcement (or particle) reinforcement and material sym-
metry of constitutive model describing composite can be distinguished, for instance:
Sun and Vaidya [30], Gan et al. [9], Liu et al. [19], Würkner et al. [37], Selvadurai
and Nikopour [28] and others.

Aforementioned papers deal with the modeling of unidirectionally reinforced
composites treated as homogeneous orthotropic solids characterized by some effec-
tive modules that describe average material properties of the composite. Assuming
the periodic fiber arrangement inside the matrix usually two types of Representative
Unit Cells (RUC) that exhibit either the tetragonal symmetry (square array) or the
hexagonal symmetry (hexagonal array) are considered.

In the significant paper by Sun and Vaidya [30] two composite systems: Boron/Al
and Graphite/Epoxy of the respective fixed volume Vf fraction equal to 0.47 and
0.6 are analyzed. Authors find essential scatter in analytical results obtained for two
kinds of composites in comparison with earlier data from the literature, namely:
Hashin and Rosen [10], Whitney and Riley [35], Chamis [6], Sun and Chen [29],
Sun and Zhou [31], Kenaga et al. [15]. In particular, the large scatter is referred to the
effective Young modulus, the effective Kirchhoff modulus, and the effective Poisson
ratio in the plane of transverse isotropy. The obtained material constants, in general,
do not confirm the theorem on upper and lower bounds based on the classical Voigt
and Reuss rules. Especially difficult is to explain the estimated magnitude of the in-
plane Poisson ratio exceeding range of two composite components based on either
the isotropic characteristic of components in Boron/Al composite or the orthotropic
characteristic of components in Graphite/Epoxy composite.

More systematic analysis of the influence of homogenization methods on esti-
mated effective properties of composites is due to Gan et al. [9]. The authors com-
pare the new Strain-Compatible Method of Cells (SCMC)with other homogenization
methods such as Generalized Method of Cells (GMC) Paley and Aboudi [25] and
micromechanical analysis using FEM. For numerical simulation, authors used the
unidirectionally reinforced Boron/Al composite assuming two types of the repre-
sentative unit cells based either on a random topology of parallel fibers or on the
hexagonal array for full spectrum of the volume fraction Vf ∈< 0, 1 >. The homog-
enization results are also compared with the classical approximate calculations based
on Voigt/Reuss mixture rules, Voigt [34], Reuss [27]. The performed analysis con-
firms applicability of the upper/lower bounds for majority of equivalent material
constants except for the in-plane Poisson ratio. However the authors do not pre-
cisely distinguish between the tetragonal or the hexagonal symmetry when modeling
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Representative Unit Cell (RUC) such that all six modules of orthotropy are treated
as independent in spite of clear hexagonal symmetry in fibers topology.

Liu et al. [19] analyze possibility for the Poisson ratio positioned beyond the
Voigt/Reuss estimates. Moreover: “It was found that the effective Young modulus
in both transverse and longitudinal direction can exceed not only the approximate
Voigt estimation, but also the stiffness of the stiffer constituent phase”. The authors
recommend precautions when applying Voigt/Reuss estimates in cases when one of
the components is made of incompressible material.

In the recently published paper by Würkner et al. [37] the effective elastic mod-
ules of the composite formed of isotropic Epoxy matrix and transversely isotropic
Graphite fibers are examined for reasonable wide range of volume fraction Vf ∈<

0.1 ÷ 0.6 > see also comments in Sect. 3.5.5 of this chapter. The rhombic array of
fibers is used for simulations characterized by different topology angles of RUC.
Following cases are considered: γ = 60◦ (hexagonal array), 60◦ < γ < 90◦ (rhom-
bic array) and γ = 90◦ (tetragonal array). The estimated effective modules show
satisfactory coincidence with numerical results given by Jiang et al. [14].

The more general approach to modeling of composites reinforced by unidirec-
tional fibers is recently presented by Selvadurai and Nikopour [28]. Authors con-
sidered the random parallel identical Carbon fibers distribution in the Epoxy matrix
of a composite. In the light of the numerical analysis performed, it is found that
in spite of random fibers distribution it is possible to determine a minimal Repre-
sentative Area Element—RAE (>65 fibers number) that guarantees the property of
transversely isotropic symmetry of hexagonal type (5 independent constants in the
elasticity matrix, see Fig. 3.1).

Extensive state-of-the-art review of the micromechanics-based analysis of com-
posite materials, enriched by numerous actual results, both in the field of homog-
enization techniques and its experimental validation for real long-fiber reinforced
composites, are found in recently published excellentmonograph byAboudi et al. [1].

3.2 Analogy Between the Elastic Matrices
Symmetry at the Level of Crystal Lattice Unit
Cell and the Composite Representative Element

A useful analogy between the crystal lattice symmetry at the level of single crystal
lattice or crystal grains and the relevant microstructure of composite materials of
identical symmetry groups that characterize effective elastic matrices (stiffness or
compliance) at the macrolevel is sketched in Fig. 3.1.

Equations of linear elasticity of crystal and composite materials are written
in (3.1)

{σ}(cr) = [c] {ε}(cr) and {σ} = [E] {ε} (3.1)
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(a)

(b)

(c)

(d)

Fig. 3.1 Classification of selected composites with respect to the format of compliance matrix
[E−1]: a anisotropic fiber arrangement, b rhombic fiber arrangement, c orthotropic fiber arrange-
ment, d square fiber arrangement, e hexagonal fiber arrangement, f regular particle arrangement, g
random particle arrangement, after Tjong andMa [33], Martin-Herrero and Germain [21], Nye [23]
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(e)

(f)

(g)

Fig. 3.1 (continued)

where relevant stiffness matrices at the crystal and composite level possessing iden-
tical symmetry properties are denoted with [s] and [c] whereas {σ}(cr), {ε}(cr), and
{σ}, {ε} stand for stress and strain vectors at the microlevel and the effective stress
and strain averaged over the representative element (RVE or RUC) (see Gan et al.
[9], Selvadurai and Nikopour [28], etc.). The respective compliance matrices used
in Eq. (3.1) can be rewritten in the equivalent fashion

{ε}(cr) = [s] {σ}(cr) and {ε} = [E−1] {σ} (3.2)

where the effective compliance matrix is represented as
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[E−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
−1
11 E

−1
12 E

−1
13 E

−1
14 E

−1
15 E

−1
16

E
−1
21 E

−1
22 E

−1
23 E

−1
24 E

−1
25 E

−1
26

E
−1
31 E

−1
32 E

−1
33 E

−1
34 E

−1
35 E

−1
36

E
−1
41 E

−1
42 E

−1
43 E

−1
44 E

−1
45 E

−1
46

E
−1
51 E

−1
52 E

−1
53 E

−1
54 E

−1
55 E

−1
56

E
−1
61 E

−1
62 E

−1
63 E

−1
64 E

−1
65 E

−1
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

The stiffness and compliance matrices at the crystal level in Eqs. (3.1) and (3.2) are
denoted by [c] and [s] in accordance with the notation used in crystallography as
shown in Table3.2.

Compliance matrices are more convenient for further application since they have,
generally, simpler representation when compared to the respective stiffness matrices,
both expressed in terms of the engineering elasticity constants (Young modules Eii ,
Kirchhoff modules Gi j , Poisson ratios νi j , Chencov modules μi j (kl) and Rabinovich
modules ηi( jk) as shown in Table3.1). In a more general case of fully anisotropic
composite material, for instance when composite material is at the microlevel rein-
forced with Carbon nanotubes of irregular arrangement, the effective continuum of
averaged properties is fully anisotropic and characterized by 21 engineering modules

where the effective compliance matrix of the composite [E−1] expressed in terms of
engineering anisotropy constants is furnished as follows:

[E−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η23(1)
E11

η31(1)
E11

η12(1)
E11

− ν12
E22

1
E22

− ν32
E22

η23(2)
E22

η31(2)
E22

η12(2)
E22

− ν13
E33

− ν23
E33

1
E33

η23(3)
E33

η31(3)
E33

η12(3)
E33

η(1)23
G23

η(2)23
G23

η(3)23
G23

1
G23

μ31(23)
G23

μ12(23)
G23

η(1)31
G31

η(2)31
G31

η(3)31
G31

μ(23)31
G31

1
G31

μ12(31)
G31

η(1)12
G12

η(2)12
G12

η(3)12
G12

μ(23)12
G12

μ(31)12
G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

In Table3.1 engineering anisotropy constants are ordered into five groups:

• Eii—axial elasticity modules (three generalized Young modules)
• Gi j—shear modules at three anisotropy planes (three generalized Kirchhoff
modules)

• νi j—transverse strain coefficients (three generalized Poisson ratios)
• μi j (kl)—Chencov modules (three Chencov modules combining shear in different
anisotropy planes)

• ηi( jk)—Rabinovich modules (nine Rabinovich modules combining shear and
normal strain effects).

It is worth to mention that the symmetry of stress and strain tensors results in appro-
priate symmetry of the compliance (stiffness) matrix, Lekhnitskii [16].
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Table 3.1 Types of engineering modules used in representation of the compliance matrix (3.4)

Engineering modules Coupling effect Considered
axes or planes
(coupling)

Number of
components

Stress
component

Strain
component

E11, E22, E33 Axial Axial Same axes
1 → 1, etc.

3

G12, G32, G31 Shear Shear Same planes
12 → 12, etc.

3

ν21, ν31, ν32 Axial Axial Transverse
directions
1 → 2, etc.

3

μ31(23),μ12(23),μ12(31) Shear Shear Different
planes
13 → 23, etc.

3

η23(1), . . . , η12(3) Shear Axial Normal to
23 → 1, etc.

9

νi j
E j j

= ν j i
Eii

−→ νi j Eii = ν j i E j j

ηi j (k)

Ekk
= η(k)i j

Gi j
−→ ηi j (k)Gi j = η(k)i j Ekk

μi j (ki)
Gki

= μ(ki)i j
G ji

−→ μi j (ki)G ji = μ(ki)i j Gki

(3.5)

A convenient analogy between the crystal lattice symmetry, the effective matrix
and respective configuration/orientation of fibers or particles in exemplary unit cells
of composites is shown in Fig. 3.1. Before we start to discuss items a–g in Fig. 3.1,
a comment should be done that an analogy between the exemplary representative
composite microstructure and the conventional unit cell of a crystal lattice is built
based on the identical stiffness matrix format and symmetry properties at the level
of crystal unit representative cells (lattice) and the level of composite representative
unit cell (fibers/particles geometry, arrangement, etc.), but not on different physical
features.

Such analogy occurs to be helpful in proper description of symmetry groups and
classes of the elastic matrices and proposing their experimental-based identification.

In a general case of anisotropy Eq. (3.4), the respective triclinic crystal lattice
symmetry ensures fully populated stiffness matrices at both levels considered (crystal
lattice vs. microstructure) for instance due to the totally anisotropic Carbon/Carbon
composite (see Fig. 3.1a Martin-Herrero and Germain [21]).

Composites formed by stacking layers (lamina) at different fiber orientation are
called laminates, the effective properties of which vary with orientation, thick-
ness, and stacking sequence of layers. The effective properties of a unidirectional
lamina are classified as orthotropic with different properties in the material direc-
tions (cf. Herakovich and Aboudi [12]). In general, the effective properties of such
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multicomponent systems correspond to averaged orthotropic continuum described
by nine orthotropy modules E11, E22, E33, ν21, ν32, ν31, G12, G23, G31, if elastic
range is considered. The corresponding crystal lattice symmetry is known as the
orthorhombic lattice characterized by three different cell edges a �= b �= c and
identical angles α = β = γ = 90◦, Fig. 3.1c.

Unidirectionally reinforced composites with the regular parallel fibers arrange-
ment correspond to the averaged transversely isotropic continuum at the macrolevel.
However, depending on frequently used periodic fiber arrangements, two of them
are specially interesting: tetragonal (square) fiber array and hexagonal fiber array,
as shown in Fig. 3.1d, e, respectively. Corresponding two crystal lattice cells are also
presented that exhibit equivalence between the in-plane fiber array over the compos-
ite RUC and in-plane atoms in the Crystal Unit Cell CUC arrangements. Note that in
case of tetragonal transverse isotropy, the number of independent modules is equal
to six, whereas in case of hexagonal transverse isotropy this number is reduced to
five.

Consider for a moment a more general case called the monoclinic or oblique sym-
metry. At the level of composite RUC it corresponds to the rhombic fiber array as
shown in Fig. 3.1b. In this case, periodicity is dependent not only on the distance
between layers but also on the angle of slope of the RUC walls 60◦ < γ < 90◦.
The corresponding crystal lattice symmetry is known asmonoclinic lattice symmetry.
This case can be recognized as an intermediate between the triclinic lattice (Fig. 3.1a)
and the orthorhombic lattice (Fig. 3.1c). Consequently, the equivalent stiffnessmatrix
describing monoclinic anisotropy is enriched with four nonzeroth independent ele-

ments E
−1
16 , E

−1
26 , E

−1
36 , and E

−1
45 , such that total number of independent modules of

the compliancematrix is equal to 13 = 9+4. Presence of these additional elements is
a characteristic feature for Rabinovich constants η(i) jk and Chencov constants μi j (kl)

responsible for anisotropy (which are not present in orthotropy).
Consider further more detailed two particular fiber arrangements of the mono-

clinic symmetry (Fig. 3.1b) which easily can be recognized in two fiber arrays of the
tetragonal or the hexagonal symmetry appearing in transversely isotropic long-fiber-
reinforced composites. In both cases, a = b holds but two particular magnitudes of
the slope angle a rhombic array of γ are admitted: γ = 90◦ or γ = 60◦ (Fig. 3.2).
In the first case when γ = 90◦, rhombic fiber array reduces to the square fiber array
(at the composite level) and the equivalent representative crystal lattice cell exhibits
architecture of tetragonal symmetry, as previously shown in Fig. 3.1d. In the second
case when γ = 60◦, any arbitrary rhombic array reduces to another hexagonal fiber
array (at the composite level) with the equivalent crystal lattice cell architecture of
hexagonal symmetry, see Fig. 3.1d. In both cases considered in the compliancematrix[
E

−1
]
of Eq. (3.4) four elements describing the Rabinovich and the Chencov effects

E
−1
16 = E

−1
26 = E

−1
36 = E

−1
45 = 0 disappear such that only nine elements are present

in the orthotropic Hooke law Fig. 3.1e. However, in case of transverse isotropy, the
number of independent modules reduces to either six (square array, γ = 90◦) or
five (hexagonal array, γ = 60◦) since in the last case the in-plane modulus equals

E
−1
66 = (E

−1
11 − E

−1
12 )/2 and should be considered as dependent.
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Fig. 3.2 Square or
hexagonal fiber arrays as
particular cases of rhombic
fiber array

Finally, for the narrower case of the tetragonal lattice namely a = b = c and
α = β = γ = 90◦ the particular cubic crystal lattice is recovered (regular lattice).
The stiffness or compliance matrices are here characterized by three independent
constants: E−1

11 = E−1
22 = E−1

33 , E−1
12 = E−1

13 = E−1
23 , E−1

44 = E−1
55 = E−1

66 see
Fig. 3.1f. Such cubic symmetry case is sometimes expected in certain regular particle
arrangement, as discussed by Desmorat and Marull [7] and Banks-Sills et al. [3].

To make this classification complete, the particle-reinforced composites of irreg-
ular particle shape and their topology should be admitted. In such a case, at the
macrolevel, the properties of isotropy of composite inside RUC can be admitted,
where two independent elastic constants (effective) can satisfactorily be estimated
from theVoigt/Reuss rules basedon theparticle volume fractionVf only, seeFig. 3.1g.

In schematic representation of the elastic matrices of crystal lattice and composite
microstructure, the visualizationofmatrix elementswas adopted afterNye [23]where
• depicts independent modules, ◦ dependent modules, whereas •−• or ◦−◦ pairs of
identical modules, etc. (see Chap.2).

As it was aforementioned, a similarity between the symmetry classes of crystals
at the crystal lattice level and composite microstructure at the macrolevel has sub-
sidiary meaning only. In fact, the crystal symmetry implies format and symmetry of
the elastic crystal matrices: stiffness [ci j ] or compliance [si j ] being 2nd rank matrix
representation of 4th rank crystal elasticity tensors ci jkl or si jkl . Passing from the

http://dx.doi.org/10.1007/978-3-319-17160-9_3_2


96 A.W. Ganczarski et al.

Table 3.2 Equations of elasticity at the crystal level and macrolevel

Notation Crystal level Macrolevel

Tensor σ
(cr)
i j = ci jklε

(cr)
kl σi j = Ei jklεkl

ε(cr)
i j = si jklσ

(cr)
kl εi j = E

−1
i jklσkl

Matrix-vector σ
(cr)
i = ci j ε

(cr)
j σ j = Ei j ε j

ε
(cr)
i = si j σ

(cr)
j εi = E

−1
i j σ j

atomic level (crystal lattice) to the macrolevel (composite RUC), we arrive at the

correspondence to the equivalent composite matrices Ei j or E
−1
i j built as equivalent

representation matrices (averaged in procedure of homogenization) of the composite

effective elasticity tensors Ei jkl or E
−1
i jkl , see Table3.2. It is necessary to distinguish

stress and strain at the atomic crystal lattice level σ
(cr)
i j and ε

(cr)
i j from analogous

variables measured at the level of RUC: macrostress and macrostrain σi j and εi j .
Note that in crystallography, components of tensors ci jkl and si jkl are traditionally
called the stiffness coefficients and the compliance coefficients. On the other hand,
when passing to the macrolevel of analysis, the effective tensor components of com-

posite Ei jkl and E
−1
i jkl are named stiffness and compliance constants. Mention that

there does not exist any direct correspondence between elastic crystal coefficients
and the effective elastic constants of composite material at the macrolevel, c.f. Nye
[23]. Remember also that during the fabrication process of composite, the resid-
ual thermal stresses different in matrix and fibers material have to be built-in into
enriched equations of elasticity. Assuming for simplicity that during the fabrication
process strains have elastic nature only, the application of conventional equations
of thermoelasticity is justified. However, during the final cooling down process of
the composite and also in the fabrication phase, some thermoplastic microstructure
change in the material can be observed. In such cases, the thermoelastic analysis may
occur incorrect (cf. e.g., Herakovich and Aboudi [12]).

3.3 Effective Elastic Matrix Characterization of Composites
with Various Symmetries

3.3.1 Triclinic Anisotropic Long-Fiber-Reinforced Composite
(Anisotropic Fiber Array, Fig. 3.1a)

Elasticity equation of anisotropic composite material (at the macroscale) written in
an arbitrary material frame can be furnished in a following fashion, cf. Eq. (3.4)
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η23(1)
E11

η31(1)
E11

η12(1)
E11

− ν12
E22

1
E22

− ν32
E22

η23(2)
E22

η31(2)
E22

η12(2)
E22

− ν13
E33

− ν23
E33

1
E33

η23(3)
E33

η31(3)
E33

η12(3)
E33

η(1)23
G23

η(2)23
G23

η(3)23
G23

1
G23

μ31(23)
G23

μ12(23)
G23

η(1)31
G31

η(2)31
G31

η(3)31
G31

μ(23)31
G31

1
G31

μ12(31)
G31

η(1)12
G12

η(2)12
G12

η(3)12
G12

μ(23)12
G12

μ(31)12
G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ23
τ31
τ 12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.6)

Taking into account the symmetry conditions of the effective compliance matrix

E
−1
i j = E

−1
j i , see Eq. (3.5), in order to completely determine fully populated 6 × 6

matrix of elasticity total number of required elements is equal to n = (1+6)6
2 = 21.

However, following the reasoning of Lekhnitskii [16] and others, the maximal num-

ber of different from zero but independent matrix elements E
−1
i j equals 18 (see

Table3.1). It follows from requirement that both effective compliance E
−1
i j and stiff-

ness Ei j matrices have to obey transformation rule by three Euler angles. In such
general case of anisotropy, that in crystallography corresponds to triclinic lattice sym-
metry, it is impossible to reduce to zero any matrix elements via some transformation
by a rotation of the reference frame with any angles.

3.3.2 Monoclinic or Oblique Anisotropic Long-Fiber
Composite (Rhombic Fiber Array, Fig. 3.1b)

Composite systems of the rhombic-type fiber architecture represent the particular
case of generally anisotropic composite geometry in such manner as the monoclinic
crystal lattice symmetry is the particular case of general triclinic symmetry at the crys-
tal lattice level. In such rhombic-type fiber array composites, the axis parallel to the
fibers direction can be distinguished (3) being perpendicular to the transverse plane
(1, 2). Corresponding equation of elasticity built on the base of oblique anisotropy
compliance matrix takes the following format

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

η12(1)
E11

− ν12
E22

1
E22

− ν32
E22

η12(2)
E22

− ν13
E33

− ν23
E33

1
E33

η12(3)
E33

1
G23

μ31(23)
G23

μ(23)31
G31

1
G31

η(1)12
G12

η(2)12
G12

η(3)12
G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ23
τ31
τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.7)

By contrast to generally anisotropic composite matrix Eq. (3.6), in the case of com-
posite of oblique anisotropy property number of nonzeroth independent material
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structural modules equals 13. Among them: three Young modules E11, E22, E33;
threeKirchhoff modules G23, G31, G12; threePoisson ratios ν21, ν31, ν32; oneChen-
cov modulus μ31(23); and three Rabinovich modules η12(1), η12(2), η12(3) are present
in Eq. (3.7) instead of 21 (18 irreducible) shown in Eq.3.6. On the other hand, appear-
ance of someChencovμ31(23) andRabinovichη12(k) coefficients allows to distinguish
formats of the compliance matrices in case of the rhombic fiber array in which nei-
ther Rabinovoch nor Chencov coefficients are present, when the material orthotropy
frame coincides with the effective stress/strain frame.

3.3.3 Orthotropic Composite (Lamina with Perpendicular
Fiber Arrangement, Fig. 3.1c)

The narrower case of frequently used composites built of a number of layers which
are long-fiber reinforced in an alternate perpendicular layer after layer fashion are
called the orthotropic multi-laminate composites, commonly also named lamina. In
corresponding elasticity matrices, compliance or stiffness, Rabinovich η12(k) and
Chencov μ31(23) coefficients (present in previously discussed Eq.3.7) disappear in
Eq. (3.8) such that the number of independent modules of the effective elastic compli-

ance E
−1
i j or stiffness matrix Ei j is reduced to 9 = 13−4, namely: 3 Young modules

E11, E22, E33; 3 Kirchhoff modules G23, G31, G12; 3 Poisson ratios ν21, ν31, ν32.
These equivalent anisotropy constants of composite have to be either measured in
appropriate 9 tests or estimated by the use of a chosen homogenization method
for assumed perpendicular fiber arrangements (see for instance Gan et al. [9] for
Boron/Al composite)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν31
E11

− ν12
E22

1
E22

− ν32
E22

− ν13
E33

− ν23
E33

1
E33

1
G23

1
G31

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ23
τ31
τ 12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.8)

Transformation of the relation {ε} = [E−1
] {σ} to {σ} = [E] {ε} is not a trivial one

in case of the elastic orthotropy. It can be done in a numerical fashion by finding
the stiffness matrix [E] which is inverse to the compliance matrix

[
E

−1
]
. Elements

of the stiffness matrix [E] can be explicitly expressed in terms of nine engineering
constants of orthotropic material determined E11, E22, E33, G23, G13, G12, ν21, ν31
and ν32 as follows (see Ochoa and Reddy [24], Tamma and Avila [32])
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
σ23
σ31
σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E1111 E1122 E1133
E2211 E2222 E2233
E3311 E3322 E3333

E2323
E1313

E1212

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.9)

where subsequent elements of the stiffness matrix [E] are given by equations

E1111 = 1−ν23ν32
Δ

E11 E1122 = ν12+ν13ν32
Δ

E22

E1133 = ν13+ν12ν23
Δ

E33 E2222 = 1−ν13ν31
Δ

E22

E2233 = ν23+ν21ν13
Δ

E33 E3333 = 1−ν12ν21
Δ

E33

E2323 = G23 E1313 = G13 E1212 = G12

(3.10)

whereas symbol Δ denotes

Δ = 1 − ν12ν21 − ν13ν31 − ν23ν32 − ν12ν23ν31 − ν21ν13ν32 (3.11)

Note that full orthotropic symmetry and population of both matrices stiffness (3.9)
and compliance (3.8) is saved and refers to appropriate combinations of engineering
constants but not to engineering constants separately, for instance

E1122 = ν21 + ν13ν32

Δ
E22 = ν12 + ν31ν23

Δ
E11 = E2211 etc. (3.12)

Hence only nine orthotropy modules are independent.

3.3.4 Unidirectional Long-Fiber Composite—Transversely
Isotropic Tetragonal Type (Square Fiber Array, Fig. 3.1d)

Particular case of orthotropic composite is transversely isotropic symmetry unidi-
rectional long-fiber-reinforced system in which fibers are built-in with the regular
tetragonal manner (square fiber array, Fig. 3.1d). The effective elasticity matrix of
such composite is described with six independent constants: E11, E33, ν21, ν32, G23
and G12 as shown in Eq. (3.13). At the level of RUC, tetragonal symmetry is observed
(4 in-plane axes)
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν21
E11

− ν12
E22

1
E22

− ν32
E22

− ν12
E22

− ν23
E22

1
E22

1
G23

1
G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ23
τ31
τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.13)

3.3.5 Unidirectional Long-Fiber Composite—Transversely
Isotropic Hexagonal Type (Hexagonal Fiber Array
Fig. 3.1e)

In the another case of unidirectionally reinforced composites, when in the system
fibers are row after row shifted by the half-distance, at the level of RUC the hexag-
onal symmetry property holds (six symmetry axes). Hence, only five from among
mechanical constants are independent, since G23 = E22

2(1+ν23)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E11

− ν21
E11

− ν12
E22

1
E22

− ν32
E22

− ν12
E22

− ν23
E22

1
E22

2(1+ν23)
E22

1
G12

1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ23
τ31
τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.14)

The two types of transversely isotropic composites dependent on the fiber arrange-
ment of either tetragonal or hexagonal symmetry are not always consistently exam-
ined which may lead to some erroneous conclusions (cf. Sun and Vaidya [30]).

3.3.6 Regular Particle-Reinforced Composite—Cubic
Symmetry (Regular Particles Arrangement, Fig. 3.1f)

It is commonly assumed that the composites reinforced with a randomly distributed
particles of irregular size and shape can be treated at the level of RVE as the isotropic
continuum. However, in case of some regular particle reinforcement by repeating
identical shape and size particles, the equivalent composite continuum exhibits the
cubic symmetry (Fig. 3.1f). Among the crystal materials of cubic (regular) sym-
metry long list can be mentioned: Pyrites (cubic), Fluor Spar, Rock-salt, Potassium
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Chloride (cf. Love [20]) or Tantalum,Aluminum,Gold, Copper,Germanium,α–iron,
Magnesium Oxide (Magnesia), and Spinel (MgAl2O4) (cf. Berryman [5]). All cubic
symmetry materials are characterized by three independent compliance modules:

E
−1
11 , E

−1
12 and E

−1
44 where E

−1
44 �= (E

−1
11 − E

−1
12 )/2 or equivalently G �= E

2(1+ν)
. In

a similar way, the composite reinforced with three-directional mutually perpendicu-
lar short-fiber of the cubic symmetry is described by three independent engineering
constants E , ν, and G

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E − ν

E − ν
E

− ν
E

1
E − ν

E

− ν
E − ν

E
1
E

1
G

1
G

1
G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ23
τ31
τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.15)

3.3.7 Isotropic Composite (Random Particle Arrangement,
Fig. 3.1g)

Irregular particle-reinforced composite in which the distribution shape and orien-
tation of particles are fully disordered (chaotic) can be described at the level of the
repeating RVE by the effective elasticity matrix (stiffness or compliance) character-

ized by two independent modules: E
−1
11 , E

−1
12 (E

−1
44 = (E

−1
11 − E

−1
12 )/2 or equiva-

lently G = E
2(1+ν)

). In the isotropic composite with irregular particle reinforcement,
no characteristic material frame can be distinguished inside RVE (infinite number of
symmetry axes)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E − ν

E − ν
E

− ν
E

1
E − ν

E

− ν
E − ν

E
1
E

2(1+ν)
E

2(1+ν)
E

2(1+ν)
E

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ 23
τ 31
τ 12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.16)

Moregeneral approach todescribe particle-reinforced composites inwhich size/shape
and topology of particles are orderedwith the specific symmetriesmay lead to various
symmetry classes of elastic matrices (cf. Banks-Sills et al. [3]).
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3.4 Bounds for Effective Elastic Properties
of Unidirectionally (Long Fiber) Reinforced
Composites of Tetragonal or Hexagonal Symmetry

3.4.1 Nature of Homogenization Problem in Modeling
of Heterogeneous Composites—Voigt and Reuss’
Concept

Composite materials described in Sect. 3.3 have to be considered as two- or multi-
component systems at the microlevel (microcomposites) or the nanolevel (nanocom-
posites). Composite materials are in essence nonhomogeneous or in fact heteroge-
neous materials due to different properties of the system constituents (components)
commonly recognized as the matrix (most frequently metallic, ceramic or polymer)
and the reinforcing fibers or particles (for instance long fibers made of ceramic
or metallic materials and others) although the constituent materials are essentially
homogeneous. At microscale, on boundaries between the components of different
materials a jump of mechanical, thermal, and other properties arise. Averaging meth-
ods inside the representative element (RVE) or the representative cell (RUC) used for
analysis of multicomponent composite materials known as homogenization methods
are based on the assumption that it is possible to determine approximate values of
the effective properties of the equivalent homogeneous composite (heterogeneous
in fact) as well as uniform macrostress and macrostrain (nonuniform in fact at the
microlevel), cf. Fig. 3.3. It is necessary to accept existence of the repeating Rep-
resentative Volume Element—RVE (cf. e.g., Sun and Vaidya [30], Gan et al. [9],
Würkner et al. [37], Bayat and Aghdam [4]), or the Representative Unit Cell—RUC

(a) (b)

Fig. 3.3 Representative volume element RVE: a heterogeneous material at microscale, b homoge-
neous material at macroscale
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(cf. e.g., Li and Wongsto [18], Li [17], Wongsto and Li [36], Pidaparti and May
[26], Banks-Sills et al. [3], Herakovich and Aboudi [12]) which are subsequently
divided into the subcells, Fig. 3.5. The RVE size or the RUC size and geometry have
to be sufficiently large in order to properly catch an essence of composite system
properties and behavior at the macroscale. Simultaneously, they have to be suffi-
ciently small but repeatedly noticeable to assure that the representation of a uniform
deformation field described by the displacement u and the gradient ∇u such that
the averaged (effective) strain ε = 1

2 (∇Tu + ∇u) is justified (cf. Gan et al. [9]).
Note that component material at the microlevel (or nanolevel) is usually isotropic;
however, a multiphase composite can be either isotropic (for majority of particular
composites) or anisotropic (for instance in case of fibrous composites reinforcedwith
directionally oriented fiber beam).

The differences between the RVE (Representative Volume Element) and RUC
(Repeating Unit Cell) concept are discussed in details by Drago and Pindera [8]. The
authors claim that the concept of RVE is addressed to the statistically homogeneous
material at an appropriate scale. Moreover it is assumed that the strain and stress
are uniform throughout the RVE. On the other hand Drago and Pindera assume the
periodicity in the material, both in strain and stress fields. However most researchers
assume that the RUC is the periodic RVE and use its interchangeably [1, 30].

Traditionally it is assumed that the particle-reinforced composites in a disor-
dered manner (e.g., with dispersed micro or nanoparticles as well as short micro or
nanowires) show isotropic symmetry after homogenization (at the level of RVE).
However, the above reasoning has to be accepted with necessary care. If repeatable
shape and regular orientation of reinforcing particles are ensured throughout the
matrix volume, in spite of the isotropic properties of both phases—matrix and rein-
forcement it may happen that after homogenization the averaged material modules at
the macroscale (composite level) exhibit other than isotropic symmetry properties.
Such problem was analyzed by Banks-Sills et al. [3] with respect to the Glass-Epoxy
composite, by the use for simulation particles of various but regular geometries:
spherical, cylindrical, cubic and rectangular parallelepiped. To be more precise the
following unusual remark can be cited: “An interesting surprise for rotated particles
was the existence of unusual material constants which cause normal deformations to
produce orthogonal shear stresses and vice versa effect of Rabinovich’s coefficients
and shear deformations to produce orthogonal shear stresses and vice versa effect of
Chencov’s coefficients”, cf. Banks-Sills et al. [3].

Only in the specific case if reinforcing particles are repeatedly spherical and
do not exhibit same characteristic spatial distribution the assumption about isotropic
symmetry at themacroscale (RVE-level) is reasonable to accept. In such specific case
the classical mixture rules can be applied in order to achieve averaging methods: the
Voigt [34] or theReuss estimates [27]. In the simplest case of two isotropic constituent
phase materials, Voigt and Reuss’ rules of mixture are simply based on the volume
fraction of matrix V1 and reinforcement V2
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V p = p1c1 + p2c2 Voigt’s rule
1
R p

= c1
p1

+ c2
p2

Reuss’ rule
(3.17)

Symbols p1 and p2 stand for elastic constants of constituent materials, matrix and
reinforcement (particles), for instance Young modules E1 and E2 and Kirchhoff
modules G1 and G2 whereas V p and R p denote the corresponding effective modules
E and G averaged at the RVE level. Symbols c1 and c2 stand for volume fraction
of both phases (Vf and 1 − Vf ) with irregular particles distribution throughout the
RVE ignoring effect of local concentration density, size and shape of particles and
their orientation and mutual interaction, see Fig. 3.3a. After homogenization, the
averaged (effective) stress σ and τ are met in RVE instead of different microstresses
in constituent materials: matrix σm and reinforcement σr (see Fig. 3.3b).

The mixture rules Voigt and Reuss’ (3.17) lead to different estimates of averaged
material constants of homogenized isotropic continuum E and G. In case of Voigt
estimate compatibility of strains in both phase materials is assumed, whereas in
case of Reuss’ estimate compatibility of stresses is postulated. The first approach
leads to discontinuity of stress at the boundary between constituents whereas the
second approach causes strain discontinuity. In other words, the Voigt approximation
can be treated as equivalent to kinematically admissible approach in contrast to the
Reuss approximation which is statically admissible. In fact at the microlevel of
heterogeneous composite both stress and strain continuity hold such that the Voigt
and the Reuss approximations can serve as upper and lower estimates for the effective
stiffness matrix elements of anisotropic composite systems (cf. Herakovich [11], Gan
et al. [9]). In the impressive monograph “Micromechanics of composite materials,”
Aboudi et al. [1] analyze the effective engineering constants of the Glass/Epoxy
fibrous composite E11, E22 = E33, ν12 = ν13, ν23, G12 = G13, G23 as functions of
fiber volume fraction Vf . This findings generally confirm the upper and lower bounds
by Voigt and Reuss’ isotropic estimates except for the transverse Poisson ratio ν23
for which an excess of the bounds is observed.

In order to simply explain the essence of Voigt and Reuss’ estimates, consider ele-
mentary one-dimensional two-component mechanical systems sketched in Fig. 3.4
representing: (a) Voigt, (b) Reuss’ and (c) the effective homogeneous elements.

In case of Voigt scheme, Fig. 3.4a, two bars of A1 and A2 cross-sectional areas
that represent matrix and reinforcement (particle) of the same length l are jointed in
parallel (l = l1 = l2 and A = A1+ A2). Loading force F is separated betweenmatrix
and reinforcement F = F1 + F2 whereas identical elongation of both constituents
is equal to the averaged elongation of substituting homogeneous system, Fig. 3.4c:
Δl = Δl1 = Δl2. Hence, when the Hooke law is applied to schemes a) and c) we
arrive at distribution of force between matrix and reinforcement

F1 = E1A1

E(A1 + A2)
F F2 = E2A2

E(A1 + A2)
F (3.18)
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(a) (b) (c)

Fig. 3.4 Uniaxial mechanical models for mixture rules application in composites: a Voigt rule,
b Reuss’ rule, c effective homogeneous material

Finally, introducing definitions of volume fractions V1 = A1/A and V2 = A2/A the
Voigt-based effective Young modulus VE is furnished

E = E1V1 + E2V2 = VE (3.19)

In case ofReuss’ scheme, Fig. 3.4b, two bars of different lengths l1 and l2 and A1 =
A2 = A representing matrix and reinforcement materials are joined in series and
loaded by identical force F = F1 = F2 whereas averaged elongation of substitutive
system Fig. 3.4c is the sum of component elongations Δl = Δl1 +Δl2. Again, when
Hooke law is applied to schemes (b) and (c) the following must hold

Fl

E A
= Fl1

E1A
+ Fl2

E2A
(3.20)

Finally applying definitions of volume fractions V1 = l1/l and V2 = l2/l we arrive
at the Reuss-based effective Young modulus RE in the format

1

E
= V1

E1
+ V2

E2
= 1

RE
(3.21)

In order to make further considerations easier we introduce original notation used
by Hill in [13]. In this way equations describing the uniaxial Voigt and Reuss’ models
can be rewritten in the new following formats. In case of Voigt model the identity
of strains in both phases Vε = ε1 = ε2 holds. Hence the following set of equations
describe the uniaxial Voigt model
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Vσ = Vc1σ1 + Vc2σ2
Vσ = VE Vε
VE Vε = Vc1E1ε1 + Vc2E2ε2
VE = Vc1E1 + Vc2E2

(3.22)

where fractional concentrations by volume of the phases in the Voigt model (see
Fig. 3.4a) are defined as Vc1 = A1/A and Vc2 = A2/A; (Vc1 + Vc2 = 1).

In the analogous way in case of uniaxial Reuss’ model the identity of stresses in
both phases Rσ = σ1 = σ2 holds, hence the basic set of equations is

Rε = Rc1ε1 + Rc2ε2

Rε =
Rε
RE

Rσ
RE

= Rc1
σ1

E1
+ Vc2

σ2

E2
1

RE
=

Rc1
E1

+
Rc2
E2

(3.23)

where fractional concentrations by volume of the phases in the Reuss model (see
Fig. 3.4b) are defined as Rc1 = l1/l and Rc2 = l2/l; (Rc1 + Rc2 = 1).

In fact both pairs Vc1, Vc2 and Rc1, Rc2 can be interpreted as common volume
fraction of both phases Vf and 1 − Vf in the uniaxial models of the same material,
hence it must hold

c1 = Vc1 = Rc1 = Vf c2 = Vc2 = Rc2 = 1 − Vf (3.24)

Note that the Poisson effect is ignored in aforementioned considerations.

3.4.2 General 3D Formulation of Voigt and Reuss’
Homogenization Estimates

On the RVE level, that represents heterogeneous material, the definitions of either
the averaged stress or the averaged strain tensors can be written down

σ = 1

VRVE

∫

VRVE

σdV (3.25)

or

ε = 1

VRVE

∫

VRVE

εdV (3.26)

where VRVE denotes a volume of the chosen RVE, see Aboudi et al. [1].
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Average values of stress and strain σ and ε in RVE are given in terms of σ1,σ2
and ε1, ε2 in the phases by the following relations

σ = c1σ1 + c2σ2 ε = c1ε1 + c2ε2 (3.27)

Since the elastic material is assumed for both phases the obvious relations must hold
at any point in the phases

σ1 = E1 : ε1 and σ2 = E2 : ε2 (3.28)

and
ε1 = E

−1
1 : σ1 and ε2 = E

−1
2 : σ2 (3.29)

if the inverse format is used.
Substitution of (3.28) and (3.29) into (3.27) with the assumption that phases

are uniform and isotropic (σ1,2 = σ1,2, ε1,2 = ε1,2) the analogous relations hold
between the average quantities

σ = c1E1 : ε1 + c2E2 : ε2 ε = c1E
−1
1 : σ1 + c2E

−1
2 : σ2 (3.30)

where consistently ε1 and ε2, as well as σ1 and σ2, stand for uniform strain and
uniform stress fields in each of the phases in RVE, respectively.

A distribution of the two-phase materials in the RVE is obviously not necessarily
random, but must be structurally representative distribution for composite material
at the macrolevel. In the light of above remark a unique relationship between the
average strains in the phases ε1, ε2 upon the average overall strain in RVE ε can be
furnished by the use of strain concentration tensors A1 and A2

ε1 = A1 : ε ε2 = A2 : ε (3.31)

where the obvious condition holds c1A1 + c2A2 = Iwith I being the unit tensor. By
combining Eq. (3.31) with Eq. (3.30) we arrive at

σ = (c1E1 : A1 + c2E2 : A2) : ε = E : ε (3.32)

where E stands for the effective stiffness tensor of the overall composite.
Equivalently reverse unique relationships between the average stresses in the

phases σ1,σ2 upon the average stress in RVE σ

σ1 = B1 : σ σ2 = B2 : σ (3.33)

must hold if the stress concentration tensors B1 and B2 which satisfy the relation
c1B1 + c2B2 = I, are introduced. Again combining Eq. (3.33) with the second of
Eq. (3.30) we arrive at
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ε = (c1E
−1
1 : B1 + c2E

−1
2 : B2) : σ = E

−1 : σ (3.34)

where E
−1

is the effective compliance tensor of the composite.
The first homogenization rule was introduced by Voigt (1889) [34] as average

constants of polycrystals.Assuming the strain concentration is constantA1 = A2 = I

and strain is uniform ε1 = ε2 = ε, it follows:

E = c1E1 + c2E2 (3.35)

Equation (3.35) provides the effective stiffness matrix elements of the composite in
terms of the volume-averaged stiffness of individual phases.

By contrast, Reuss (1929) [27] assumed that constituents of the composite are
subjected to a uniform stress equal to the average stress in RVE B1 = B2 = I in
Eq. (3.33) and effective compliance is given by a rule of mixture as follows:

E
−1 = c1E

−1
1 + c2E

−1
2 (3.36)

Note that in fact neither the Voigt nor the Reuss assumption is correct. The implied
stress due to Voigt causes tractions at phase boundaries not satisfying equilibrium
σ1 �= σ2. On the other hand the implied strain due to Reuss’ causes discontinuity
of strain at the interface between matrix and particle ε1 �= ε2.

3.4.3 Theorem of Lower and Upper Bounds by Voigt
and Reuss’ Estimation

Hill theorem, which is called the theorem of lower and upper bounds, allows to
connect a constitutive description at two scales: micro level at the point level and the
meso level, where the representative volume element RVE is defined. After Auriault
et al. [2], it is assumed that:

• the global variables are the volume means of the local stress and strains, and that
the conservation and constitutive equations have the same structure at microscopic
and mesoscales,

• the assumption of energetic consistency, known as the Hill principle, which
imposes equality on the energy contained within the medium, whether it is
expressed in local variables or using variables defined at mesoscale.

According to the second assumption, the equivalence of energy at micro and RVE
level leads to the following formula:

∫

V

σ : εdV =
∫

V

σ : εdV = V σ : ε (3.37)
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where V = VRVE is used for brevity. Hence, when the Hooke law is applied, both
at micro level σ = E : ε and mesoscale σ = E : ε, the previous equation can be
rewritten as ∫

V

ε : E : εdV = V ε : E : ε (3.38)

According to the Hill–Mandel relation and Eq. (3.37) the following equality holds:

σ : ε =
⎛
⎝ 1

V

∫

V

σdV

⎞
⎠ :
⎛
⎝ 1

V

∫

V

εdV

⎞
⎠ = 1

V

∫

V

σ : εdV = (σ : ε) (3.39)

Let us consider theRepresentativeVolumeElement bounded by surface S inwhich
uniform strain field ε = const accompanies linear displacement field u = ε·x, hence
the external work can be rewritten down as follows:

Lz = 1

2

∫

S

t · udS = 1

2

∫

S

t · ε · xdS = 1

2
ε ·
∫

S

t · xdS (3.40)

Applying the traction boundary condition in following form t = σ · n, where n
stands for a normal vector to the surface, and the Gauss theorem of divergence, the
Eq. (3.40) can be rewritten as follows:

Lz = 1

2
ε ·
∫

V

div (σ · x) dV = 1

2
ε ·
∫

V

[div (σ) · x + σ · div(x)] dV (3.41)

The uniform stress accompanying the uniform strain leads to div(σ) = 0 hence the
external work (3.41) reduces to

Lz = 1

2
ε ·
∫

V

σdV = 1

2
σ : ε = 1

2
(σ : ε) (3.42)

when the Hill–Mandel relation is applied. Applying assumption, that the constitutive
relations at both scales are the same:

σ = E : ε, σ = E : ε (3.43)

the Eq. (3.42) can be rewritten as follows:

σ : ε = (σ : ε) = 1

V

∫

V

ε : E : εdV = ε : E : ε (3.44)
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Let us defined a new fictitious stress field σ̂, where the Hooke law can be defined
as:

σ̂ = E : ε (3.45)

The real, effective fields (e.g., stressσ and strain ε)must fulfil the theorem of minimal
potential energy, hence the energy based on a fictitious stress field σ̂ must be greater
than effective one, so the following inequality is true:

(σ : ε) = 1

V

∫

V

σ : εdV ≤ 1

V

∫

V

σ̂ : εdV (3.46)

Input of the Eq. (3.44) to the left-hand side of above inequality and the definition of
fictitious stress (3.45) on the right-hand side, yields the inequality:

1

V

∫

V

ε : E : εdV = ε : E : ε ≤
∫

V

ε : E : εdV = ε : ε :
⎛
⎝ 1

V

∫

V

EdV

⎞
⎠ (3.47)

After some rearrangements the inequality (3.47) can be rewritten as follows:

E ≤ 1

V

∫

V

EdV (3.48)

Inequality (3.48) means that the effective stiffness tensor on RVE level is the lower
bound of mean constitutive tensor on micro level, where the mean operation is cal-
culated over the volume of Representative Volume Element.

Consider the two-phase continuum, where the total volume of RVE is a sum of
two volumes V = V1 ∪ V2. Next, it is assumed that for the both phases constitutive
law is Hooke equation, where the material behavior is defined by the tensors E1 and
E2. Hence it is possible to change the continuous formulation described by Eq. (3.48)
to the discrete form as follows, compare (3.32):

E ≤ c1E1 + c2E2 = V
E (3.49)

where c1 = V1/V , c2 = V2/V and c1 + c2 = 1. The right-hand side of above
equation is well-known relation called Voigt estimation, which means that Voigt
formula is a lower bound of the effective stiffness matrix components.

On the other hand it is assumed that across entire boundary S the uniformboundary
conditions t = σ · n hold, where σ is a uniform stress in the representative volume
RVE. In this case the work of external forces is as follows
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Lz = 1

2

∫

S

t · udS = 1

2

∫

S

σ · n · udS (3.50)

Consider the theorem of divergence:

Lz = 1

2
σ :
∫

V

1

2

(
∇u + ∇T u

)
dV = 1

2
σ :
∫

V

εdV = 1

2
σ : ε (3.51)

According to Eq. (3.44) and substituting Hooke law ε = E
−1 : σ the work of

internal forces can be evaluated as follows:

∫

V

σ : εdV = V σ : ε = V σ : E−1 : σ (3.52)

Consider now a new fictitious strain field ε̂ = E
−1 : σ defined in an analogous

fashion as fictitious stress (3.45). On the base of theorem of minimum of potential
energy, the inequality as follows must be true:

∫

V

σ : εdV = V σ : ε ≤
∫

V

σ : ε̂dV (3.53)

According to Hooke law applied to the term of right-hand side in above equation and
taking into account uniform stress σ, it can be evaluated, compare (3.47):

E
−1 ≤ 1

V

∫

V

E
−1dV (3.54)

Consider a similar continuum like previous one, where the whole volume of RVE
is a sum of two volumes V = V1 ∪ V2. Next, it is assumed that for the both phases
constitutive law is Hooke equation, where the material behavior is defined by the
tensors E1 and E2. Therefore it is possible to change the continuous formulation
described by Eq. (3.54) to discrete form as follows, compare (3.49):

E
−1 ≤ c1E

−1
1 + c2E

−1
2 = R

E
−1

(3.55)

where c1 = V1/V , c2 = V2/V and c1 + c2 = 1. The right-hand side of above
equation is well-known relation called Reuss’ estimation, which means that Reuss’
formula is a lower bound of the effective compliance matrix components, or equiva-
lently the upper bound of the elements of the effective stiffness matrix, because the

product E : E−1
is equal identity tensor I.
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3.5 Micromechanics-Based Homogenization Methods

3.5.1 Effective Elastic Stiffness Matrices
of Unidirectional Composites

It is incorrect to directly apply theVoigt and theReuss rules to anisotropic composites
since these simple isotropic mixture rules are based on volume fraction of matrix and
reinforcement materials Vm and Vr, but not on true constituents geometry and topol-
ogy. Hence, Voigt and Reuss’ approximations are insufficient for correct estimation
of the effectivemodules of stiffness or compliancematrices of true composite system,
for instance with long-fiber-reinforced composite architecture of various symmetry.
Temporarymicromechanics-based homogenization models take into account not only
the volume fraction of constituents, but also their configuration, geometry and other
factors such as built-in residual stresses due to fabrication methods. Among them the
following homogenization methods are frequently used: the method of Concentric
Cylinder Assembly (CCA), Hashin and Rosen [10], the Mori–Tanaka Method (MT),
Mori and Tanaka [22], the Generalized Method of Cells (GMC), Paley and Aboudi
[25] or Strain Compatible Method of Cells (SCMC), Gan et al. [9]. Not going deeply
in details, all micromechanics based homogenization methods assume existence of
periodically repeating Representative Volume Element (RVE) or Representative Unit
Cell (RUC) the size and geometry of which must capture the essence of the true
composite behavior on the macroscale, and which can be mapped into a point of a
homogeneous continuum characterized by the displacement field u and the gradi-
ent ∇u. Two common GMC and SCMC assumptions are: displacements continuity
inside the cell and across the subcell boundaries, and constant strain within the sub-
cells ε(βγ), Fig. 3.5. However, by contrast to SCMC method the GMC method does
not account for coupling between the transverse shear stresses and the transverse
normal stresses, cf. Gan et al. [9]. However, both microstresses and microstrains
averaged at the RUC level σ and ε are periodical and repeatable at the macroscale
(cf. Sun and Vaidya [30]).

Exemplary 2D cross-section of the square representative unit cell hl of unidirec-
tionally long-fiber-reinforced composite with RUC domain lh divided into subcells
built of different material h(k)

β l(k)
γ , where k = m and k = r stand for matrix and

reinforcing fiber, is presented in Fig. 3.5. At the subcell level hβlγ the local elastic-
ity equation holds combining local variables in the subcell, microstrain ε(βγ) and
microstress σ(βγ)

σ
(βγ)
i j = E (βγ)

i jkl ε
(βγ)
kl (3.56)

where E (βγ)
i jkl denotes local stiffness tensor in subcell (βγ), different for the matrix

material E (m)
i jkl and the reinforcingfibermaterial E (r)

i jkl . Effective strainεi j and effective
stress σi j averaged inside RUC are defined by approximate equations
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Fig. 3.5 2D (x2, x3 plane)
dicretization of the RUC
cross-section in
unidirectional composite of
fiber direction coincident
with x1 direction with size
h × l divided into subcells
h(m)

β l(m)
γ (matrix) and h(r)

β l(r)γ

(single fiber) of circular
shape approximated by
sufficiently dense square
subcells

εi j = 1
hl

Nβ∑
β=1

Nγ∑
γ=1

hβlγε
(βγ)
i j

σi j = 1
hl

Nβ∑
β=1

Nγ∑
γ=1

hβlγσ
(βγ)
i j

(3.57)

When the inverse formulas for local variables are taken from (3.57), namely ε
(βγ)
i j (εi j )

and σ
(βγ)
i j (σi j ), and substituted next to local equation of elasticity (3.56) at subcell

we arrive at the equation of elasticity at RUC level that combines average stress and
average strain

σi j = 1

hl

Nβ∑
β=1

Nγ∑
γ=1

hβlγ E (βγ)
i jkl A(βγ)

klmn

︸ ︷︷ ︸
Ei jmn

εmn (3.58)

where Aklmn is so called tensorial concentration operator the components of which
A(βγ)

klmn allow to separate properties of constitutive material matrix and reinforcement
(fiber). If the new definition Ei jmn over RUC for averaged stiffness tensor is intro-
duced (cf. Eq.3.58) the averaged elasticity equation in RUC is furnished

σi j = Ei jmnεmn (3.59)

Note that in the averaged elasticity equation (3.59) Eklmn stands for effective stiffness
tensor of composite expressed in terms of the local elasticity tensors in subcellsE(βγ)

and the concentration tensor A(βγ)
klmn represented by thematrix of concentration factors
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Table 3.3 Local and averaged elasticity equations

Notation Subcell level (βγ) RUC level

Index σ
βγ
i j = E βγ

i jklε
βγ
kl σi j = Ei jklεkl

ε
βγ
i j = E−1βγ

i jkl σ
βγ
kl εi j = E

−1
i jklσkl

Vector/matrix {σ(βγ)} = [E(βγ)]{ε(βγ)} {σ} = [E]{ε}
{ε(βγ)} = [E(βγ)]−1{σ(βγ)} {ε} = [E−1]{σ}

defining distribution of constituentmaterials (subcell level) over the RUC (composite
level).

If the vector/matrix notation is used and the homogenized stiffness matrix is
defined in RUC both Eqs. (3.56) and (3.59) can be rewritten in format shown in
Table3.3.

3.5.2 Effective Stiffness Matrices of Unidirectional
Composites Characterized by Regular Fiber
Configuration—Square Array Versus Hexagonal Array

Final format of the effective elastic stiffness matrix of composite E depends not
only on the selected homogenization method (for instance Reuss’, Voigt, GMC,
SCMC etc.) but also on a choice of the Representative Unit Cell RUC. In fact a
proper choice of RUC geometry should follow true fiber topology in the considered
composite. Two basic regular fiber arrays repeating (periodic) at the macroscale
of the unidirectional composite are of particular interest: the square array and the
hexagonal array (Fig. 3.6). The rhombic array (Fig. 3.2) is not commonly used in
practice, and it will not be considered here.

In case of tetragonal symmetry (square array) fibers are arranged in parallel rows
and series being equally spaced by distance a in the matrix material of composite
(Fig. 3.6a). Such fiber configuration in unidirectional composite is used by Tamma
and Avila [32], Würkner et al. [37] and others. By contrast, in case of hexagonal
symmetry (hexagonal array) fibers are distributed in position of parallel rows equally
spaced with distance a but neighboring rows are shifted each to the other with dis-
tance a/2 (Fig. 3.6b). Hexagonal symmetry fiber topology is used for example by
Herakovich and Aboudi [12], Sun and Vaidya [30] and other authors. Configuration
of fibers in composite at the macroscale is a starting point for appropriate selection
of the Representative Unit Cell (RUC) geometry for numerical simulation employed
by the use of homogenization methods in order to find the effective properties of a
composite.

When either the tetragonal or the hexagonal symmetry fiber configurations are
employed various Representative Unit Cells can be defined (cf. Sun and Vaidya [30]
and others).
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(a) (b)

Fig. 3.6 Twoconfigurations offibers in unidirectionally reinforced transversely isotropic composite
(macroscale): a tetragonal symmetry, b hexagonal symmetry

(a) (b) (c)

Fig. 3.7 Representative Unit Cells (RUCs) of tetragonal symmetry (square fiber array): a various
choices of repeating RUCs at the macrolevel, b three shape geometires and fiber dispositions in
RUCs, c three sub-RUCs and fiber geometry with additional symmetry used

In case of the fibers topology that exhibits tetragonal symmetry (square fiber
arrays, Fig. 3.7a) three different representative unit cells are used (see Fig. 3.7b, c).
Due to the transverse isotropy property, in fact the 2D analysis is sufficient whereas
the choice of one of the three cells presented in Fig. 3.7c for numerical simulation is
insignificant.

On the other hand if the fibers topology is governed by the hexagonal symme-
try (hexagonal arrays), Fig. 3.8a, the other two Representative Unit Cells can be
established as shown in Fig. 3.8b. Note that the RUCs of the tetragonal symmetry
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Fig. 3.8 Representative Unit Cells RUCs of hexagonal symmetry: a various choices of repeating
RUCs at themacrolevel, b two different geometries of repeating RUCs—square and rectangular and
corresponding fibers configuration, c shape and fibers disposition in two sub-RUCs with additional
symmetry used

(Fig. 3.7b) have 4 axes of geometrical symmetry whereas the RUCs of the hexagonal
symmetry (Fig. 3.8b) inscribed into the 2a × 2a square or the a × 2a rectangle have
only 2 axes of geometrical symmetry, in spite of that the hexagonal has 6 own sym-
metry axes. A choice of subcells (Fig. 3.7c and Fig. 3.8c) used for homogenization
is in fact arbitrary and does not influence final numerical results, but proper distinc-
tion between the tetragonal and the hexagonal RUCs (Fig. 3.7 vs. Fig. 3.8) should
follow the true fibers arrangement during composite fabrication in order to properly
estimate mechanical characteristics of the composite which meet the experimental
findings (see Sect. 3.5.3).

3.5.3 Sun and Vaidya Findings for Boron/Al Composite

Inwhat follows let us inspect some results presented in Sun andVaidya [30] for trans-
versely isotropic Boron/Aluminum composite by the use of FEM micromechanics-
based homogenization models when compared to other methods, c.f. Hashin and
Rosen [10], Chamis [6] for various fibers topology (square array vs. hexagonal
array) and some experimental evidence. The isotropic material properties of both
constituents: Boron fiber and Aluminum matrix used by the authors are recalled in
Table3.4.

Key to distinct elastic response of the transversely isotropic (unidirectional) com-
posite of either the tetragonal or the hexagonal symmetry is a number of indepen-
dent material constants. In general case of the composite that exhibits plane isotropy
property of tetragonal type, the averaged composite material is characterized by six
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Table 3.4 Material properties of isotropic constituents of the unidirectional Boron fibers reinforce-
ment in the Aluminum matrix, after Sun and Vaidya [30]

Constituent material E (GPa) ν

Boron fiber 379.3 0.1

Aluminum matrix 68.3 0.3

independent constants: E11, E33, ν21, ν32, G23, andG12. By contrast, in case of plane
isotropy of hexagonal type the number of independent material constants is reduced
to five since the shear modulus in the isotropy plane G23 is coupled with the trans-
verse Young modulus E22 and corresponding Poisson ratio ν23 by the relationship
which holds for isotropic media

G23 = E22

2(1 + ν23)
(3.60)

Let us examine the data given in Table3.5 based on Sun and Vaidya [30] in the light
of above constraint. It is visible that in case of micromechanics-based FEM model
with the hexagonal array used by Sun and Vaidya [30] as well as its simulations by
Hashin and Rosen [10] the transversely isotropic hexagonal symmetry roughly holds
Eq. (3.60). However, when the RUC of tetragonal symmetry (square array) is used
by Sun and Vaidya [30] or Chamis [6] composite exhibits the tetragonal symmetry
property.

Note also that in literature a big scatter of both the material properties of the con-
stituents of the same type (Boron/Al) and results based on different homogenization
methods are met.

Table 3.5 Comparison of selected elastic material modules for the Boron/Al composite, obtained
in various numerical experiments by different authors for the same Boron/Al composite material
(Vf = 0.47), after Sun and Vaidya [30]

Material
constants
of composite
Boron/Al
(Vf = 0.47)

FEM Sun and Vaidya [30] Numerical simulations

Square array Hexagonal array Chamis [6] Hashin and
Rosen [10]

E11 (GPa) 215 215 214 215

E22 = E33 (GPa) 144 136.5 156 139.1

G23 (GPa) 45.9 52.5 43.6 54.6

G12 = G13 (GPa) 57.2 54.0 62.6 53.9

ν32 0.29 0.34 0.31 0.31

ν21 = ν31 0.19 0.19 0.20 0.195
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3.5.4 Interpretation of the Theorem of Lower and Upper
Bounds in the Light of Gan et al. [9] and Aboudi
et al. [1] Findings for Boron/Al Composite

Sun and Vaidya findings presented in Sect. 3.5.3 are limited to the selected volume
fraction (Vf = 0.47). For further analysis it is convenient to discuss Gan et al. [9]
findings concerning the similarBoron/Al long-fiber compositeTable3.6, but obtained
for a complete volume fraction spectrum Vf ∈ [0, 1].

Note large discrepancy between the input data used for numerical experiments by
Sun and Vaidya [30] (Table3.4) and that used by Gan et al. [9] (Table3.6). In numer-
ical experiments based on homogenization methods FEM, GMC and SCMS (see
Sect. 3.5.1) Gan et al. [9] compared various round Boron fiber arrangements in the
RUC: unidirectional random (disordered) disposition, the single fiber centered in the
square cell and the hexagonal symmetry array, but applying the general orthotropy
symmetry group (9 material constants explored), see Fig. 3.1. Results obtained from
numerical experiments FEM, GMC and SCMC (Table3.7) closely resemble data
governed by the transverse symmetry group, but in case of GMC method a higher
divergence is met. Further distinction between the tetragonal or the hexagonal sym-
metry group can be done by checking the condition (3.60). An analysis performed in
Table3.8 leads to the conclusion that the considered composite exhibits the tetragonal
symmetry class when GMC and SCMC homogenization methods are involved since
the condition (3.60) does not hold. By contrast, when the micromechanics-based
FEM was implemented the results obtained satisfy the requirement of the hexagonal
symmetry class (condition (3.60) is satisfied) where only 5 material constants are
essentially independent (see Fig. 3.1 and Eq.3.13 vs. 3.14).

Examine closer the selected Gan et al. [9] findings from numerical experiments
based on the regular hexagonal fibers packing in the Boron/Al composite by the use
of SCMChomogenizationmethod, comparedwith theVoigt and Reussmodels relied
upon the volume fractions of the phases only. Inspection of these results obtained
in numerical experiment for long-fiber-reinforced composite characterized by trans-
versely isotropic tetragonal or hexagonal symmetry performed in light of the Hill
theorem on lower and upper bounds by Voigt and Reuss isotropic estimates will be
subject of further considerations.

Chronologically, Voigt (1889) and Reuss (1929) had proposed estimates for engi-
neering constants E and G in polycrystals a long time before Hill proved famous
theorem on lower and upper bounds for the averaged stiffness matrix [E] or the com-

Table 3.6 Material properties of constituents of the unidirectional Boron/Al composite, after Gan
et al. [9]

Constituent material E (GPa) ν

Boron fiber 413.7 0.2

Aluminum matrix 55.16 0.3
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Table 3.7 Approximation of material constants by orthotropic numerical experiment for unidirec-
tional long-fiber Boron/Al composite with random fibers arrangement in-plane transverse to fibers
beam direction and 30 × 30 number od subcells in the RVE, after Gan et al. [9]

Material constants of
Boron composite/Al
(Vf = 0.5)

Homogenization methods (random arrangement of fibers)

FEM GMC SCMC

E11 (GPa) 234.7 234.7 234.7

E22 (GPa) 138.5 117.9 131.0

E33 (GPa) 137.3 113.1 128.6

G23 (GPa) 54.78 37.78 57.70

G21 (GPa) 60.48 42.94 58.51

G31 (GPa) 60.99 40.53 58.77

ν21 0.2361 0.2446 0.2387

ν31 0.2369 0.2492 0.2405

ν32 0.3078 0.3289 0.3182

Table 3.8 Comparison of the shear modules in the transverse plane obtained from the experiment
by Gan et al. [9] for random unidirectional fibers dispersion in RVE (orthotropy) of Boron/Al
composite with the expected magnitude under the hexagonal-type transverse isotropy constraint
(3.60)

FEM GMC SCMC

G23 (GPa) 54.78 37.78 57.70

G23 = E22
2(1+ν32)

52.7 43.45 49.23

% of divergence −3.9 13.0 −17.2

pliance matrix [E−1] addressed to heterogeneous media (see Hill [13]). Recently,
scientists involved in the composite mechanics field and development of reliable
homogenization methods, commonly employ the Hill theorem originated for multi-
phase media, to estimate numerically the effective stiffness or compliance matrices
for composite materials. Very often they need to find the engineering constants which
are conventional input data for existing FEM-based codes addressed to anisotropic
composites. As a consequence, magnitudes of the Young modules E11, E22, E33 and

the Kirchhoff modules G12, G23, G31 counted from [E] or [E−1] lay inside the Voigt
and the Reuss estimates. Contrary, themagnitudes of Poisson ratios ν12, ν23, ν31, that
may exceed both estimates, even though the Hill theorem on lower and upper bounds

holds for all elements of averaged stiffness [E] or compliance [E−1] matrices. Such
peculiarity occurs although the theorem on Voigt and Reuss estimates is fulfilled, if

consistently applied to all elements of elastic matrices [E] or [E−1], but not to the
engineering constants evaluated from the appropriate formulas. Note that the engi-
neering constants are measured from experiments. Such peculiarity can be observed
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for instance in results for theBoron/Al composites presented byGan et al. [9] Fig. 3.9,
as well as the another Glass/Epoxy composites by Aboudi et al. [1], see Fig. 3.10.

Presented in the Fig. 3.9 Voigt and Reuss’ bounds are obtained in two different
ways. First, the “loose” bounds are obtained by extracting the averaged Poisson
ratios from the appropriate stiffness matrix element, which will be discussed further.
Second, the “tight” bounds are obtained in the way of straightforward use of Voigt
and Reuss’ mixture rules to Poisson ratios of both phases. It is evident that the
exemplary results by Gan et al. [9] obtained by application of SCMCmethod exceed
both “loose” as well as “tight” systems of bounds. Similar behavior is typical also for
another Glass/Epoxy composite system discussed by Aboudi et al. [1], see Fig. 3.10.
The Voigt and the Reuss bounds used here are enriched by other “loose” bounds
of Concentric Cylindrical Assemblage model (CCA+, CCA−) which turn out to be
much broader. Although such a broad bound systems are admitted, the Poisson ratios

Fig. 3.9 Peculiarity
of the Poisson ratio ν23
diagrams for the long-fiber
Boron/Al system, after Gan
et al. [9]

Fig. 3.10 Peculiarity of the
Poisson ratio ν23 diagrams
for the long-fiber
Glass/Epoxy composite,
system after Aboudi et al. [1]
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ν23 obtained by use of the Mori–Tanaka method (MT), the Micromechanics-based
Method of Cells (MMC) and the Self Consistent Scheme (SCS) exceed these bounds.

Note that in both cases the “loose” Voigt and Reuss bounds are shown by two
curved diagrams versus Vf in Figs. 3.9 and 3.10, although the Voigt estimate is in
fact linear (from definition). It can be understood when the mixture rules, Voigt and
Reuss’, are consistently applied to the stiffness modulus of E r/m

11 both phases, matrix
and fiber reinforcement

Em/r
11

def= Em/r(1 − νm/r)

(1 + νm/r)(1 − 2νm/r)
(3.61)

namely
VE11 = Em

11(1 − Vr) + E r
11Vr

1
RE11

= (1 − Vr)

Em
11

+ Vr

E r
11

(3.62)

Bars in Eq. (3.62) over the symbol refer to the composite as a whole, superscripts
V and R refer to the Voigt and Reuss’ estimates whereas symbols m/r refer to the
constituents (matrix and fiber reinforcement). Symbols V/RE11 are given by the
following formulas

VE11 =
VE(1 − Vν)

(1 + Vν)(1 − 2 Vν)

RE11 =
RE(1 − Rν)

(1 + Rν)(1 − 2 Rν)

(3.63)

Solution of the above equation system (3.63) for the magnitudes of averaged Poisson
ratio ν with the Young modules VE , RE averaged straightforwardly by the use of
appropriate mixture rules for Voigt and Reuss’ estimates

VE(Vf) = Em(1 − Vf) + E rVf
1

RE(Vf)
= 1 − Vf

Em + Vf

E r
(3.64)

yields the following formula for the “loose” Poisson ratio bounds

V/Rν =

√√√√
(
1 −

V/RE11

V/RE

)2
− 8

(
1 −

V/RE11

V/RE

)
V/RE11

V/RE
+ 1 −

V/RE11

V/RE

4
V/RE11

V/RE

(3.65)

Alternatively, applying the Voigt or the Reuss mixture rules directly to the Poisson
ratios of both phases, matrix νm and fiber νr other two “tight” Poisson ratio bounds
are found
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Vν = νm(1 − Vf) + νrVf
1
Rν

= 1 − Vf

νm
+ Vf

νr
(3.66)

where the “tight” Voigt bound preserves linearity.
Concluding, both “loose” bounding diagrams in Figs. 3.9 and 3.10 exhibit non-

linear property since the magnitudes of Poisson ratios were obtained in an artificial
paths: either by extracting them from Eq. (3.63) or by straightforward application of
themixture rules to engineering Poisson ratios for which linear “tight” Voigt estimate
is saved (3.66).

Finally, when the Hill theorem of lower and upper bounds is consistently applied
to the elements of elastic stiffness or compliance matrices then and only then all
effective matrix elements of a composite considered lay inside the lower and upper
bounds or atmost at one of the bounds. In fact, if the results byGan et al. [9], originally
presented in terms of the engineering anisotropic constants E11, E22, G23, G12, ν12
and ν23 are consistently transformed to the space of elements of compliance matrix

E
−1
11 , E

−1
33 , E

−1
12 , E

−1
23 , E

−1
44 , E

−1
55 , the results obtained by use of the SCMC method

follow the Hill theorem upper and lower bounds as shown in Fig. 3.11.

3.5.5 Approximation of Mechanical Modules of Long-Fiber
Unidirectionally Reinforced Composites by the Use
of a Hybrid Rule Between Voigt and Reuss Estimates

Mention at the beginning that classical mixture rules by Voigt (3.171) and Reuss
(3.172) apply a random dispersion of composite constituents over RVE. It is obvious
that theVoigt and theReuss estimates converge at appropriatemagnitudes ofmodules
of matrix and reinforcement for volume fraction Vf = 0 or Vf = 1, respectively. This
question should be carefully considered in light of fabrication procedure. Namely,
assuming identical fibers of circular cross-section regularly packed over the RUC
either according to square or hexagonal arrayswe arrive at twodifferentmaximal fiber
packing limits Vfmax, see Fig. 3.12. It is seen thatmaximal fiber packing for the square
array V sq

fmax
∼= 78.5% is much lower than analogous maximal fiber packing for the

hexagonal array V hex
fmax

∼= 90.7%.Evenhighermaximalfiber packing canbe achieved
by using fibers of either various diameters or noncircular cross-section (square cross-
section fibers or honey-comb cross-section fibers joined by thinmatrix layers).Hence,
the homogenization results according toVoigt or Reuss for surroundings Vf ∼= 1 have
only theoretical sense. Analogous objections can be formulated to homogenization
results for surroundings Vf ∼= 0 where there is difficult to talk about a composite.

Consider now in detail results by Gan et al. [9]. In what follows in order to for-
mulate a weighted homogenization rule based on a tensorial interpolation between
lower and upper bounds it will bemore convenient to consistently formulate theVoigt
and Reuss estimates in application to stiffness or compliance matrix components but
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.11 Interpretation of the Gan et al. [9] results in the space of elements of effective compliance

matrix [E−1] obtained on the base of diagrams of engineering constants of the Boron/Al composite
in light of theorem of upper and lower bounds by the Voigt and Reuss estimates
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(a)

(b)

Fig. 3.12 Illustration of maximal fiber packing for identical fibers of circular cross-section in case
of: a square array, b hexagonal array

not to the engineering constants (what is commonly done). The weighted homog-
enization rule allows to formulate the approximate method to estimate elements of
effective elasticitymatrices (stiffness or compliance) by the use of the values of lower
and upper bounds and performing interpolation between them with the use of new
tensor-like rule of mixture (a hybrid formulation). In this way it will be possible to
build diagrams for all orthotropic matrix components [E−1] in the full range of vol-
ume fraction Vf ∈ [0, 1] assuming coincidence with known experimentally obtained
matrix [expE−1] for one arbitrarily chosen volume fraction V 0

f . Additionally, coin-
cidence with known matrices of pure constituents: Vf = 0 for matrix material and
Vf = 1 for fiber material must hold.

Let us rewrite the scalar Voigt and Reuss formulas (3.17) into matrix Voigt and
Reuss formulas, respectively to stiffness or compliance matrices

V[E] = c1[rE] + c2[mE] (3.67)

or
R[E−1] = c1[rE−1] + c2[mE−1] (3.68)

where common fractional concentrations by volume of the phases according Voigt
and Reuss’ rules c1 = Vf and c2 = 1 − Vf as previously shown for uniaxial models
(3.24), see Aboudi et al. [1]. This simplification means that orientation of reinforce-
ment is ignored, such that fractional concentrations depend on volume fraction Vf
only. Symbols [r/mE] and [r/mE−1] stand for elements of stiffness or compliance
matrices for reinforcing fiber or matrix, respectively. As a matter of fact c1 and c2
must account for both volume fraction and reinforcement orientation, therefore for
determination of them advanced homogenization schemes are required (e.g., FEM,
GMC, SCMC, CCM and others).
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In what follows a simple rule of weighted average between, the Voigt and the
Reuss upper and lower estimates is proposed. Such approach is based on tensorial
interpolation between upper and lower estimates which enables to avoid application
of numerous cumbersome homogenization methods, for instance micromechanics-
based FEM, GMC, SCMC, CCM etc.

To this end, we define weighting vector αk built of weighting coefficients for
subsequent elements of stiffness or compliance matrices. For brevity we confine
ourselves to the compliance matrix only. Hence, the proposed hybrid or weighting
homogenization rule takes the following format

E
−1

11 (Vf) = αV
1 E

−1
11 (Vf) + (1 − α1)

RE
−1
11 (Vf)

E
−1

22 (Vf) = αV
2 E

−1
22 (Vf) + (1 − α2)

RE
−1
22 (Vf)

E
−1

33 (Vf) = αV
3 E

−1
33 (Vf) + (1 − α3)

RE
−1
33 (Vf)

E
−1

23 (Vf) = αV
4 E

−1
23 (Vf) + (1 − α4)

RE
−1
23 (Vf)

E
−1

13 (Vf) = αV
5 E

−1
13 (Vf) + (1 − α5)

RE
−1
13 (Vf)

E
−1

12 (Vf) = αV
6 E

−1
12 (Vf) + (1 − α6)

RE
−1
12 (Vf)

E
−1

44 (Vf) = αV
7 E

−1
44 (Vf) + (1 − α7)

RE
−1
44 (Vf)

E
−1

55 (Vf) = αV
8 E

−1
55 (Vf) + (1 − α8)

RE
−1
55 (Vf)

E
−1

66 (Vf) = αV
9 E

−1
66 (Vf) + (1 − α9)

RE
−1
66 (Vf)

(3.69)

Additionally, independence of theweighting coefficientsαk of the volume fraction Vf
over the whole range of Vf ∈ [0, 1] is assumed. This assumption refers to definition
of convex set of two vectors. If the magnitudes of stiffness or compliance elements
are known at certain point Vf = V 0

f

[E−1
(V 0

f )] = [expE−1(V 0
f )] (3.70)

then it is possible to determine unknown vector of weighting coefficients αk for the
compliance. Applying these coefficients over the whole range of volume fraction
Vf ∈ [0, 1] the sought elements of compliance matrix can be determined.

3.5.6 Capability of the Proposed Hybrid-Type Rule Versus
Experimental Evidence in Light of Fiber Array
Symmetry: Tetragonal or Hexagonal

The weighting average homogenization rules defined in the previous Sect. 3.5.5 by
Eqs. (3.69) are rather simple and effective ones that allow to easily predict unknown
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Table 3.9 Values of weight coefficients according to compliance matrix components for Voigt and
Reuss’ homogenization and SCMC [9]

[E−1] Interpolation points αk

[VE−1] × 10−2 (GPa−1) [RE−1] × 10−2 (GPa−1) [SCMC
E

−1] × 10−2 (GPa−1)

E−1
11 1.01 0.42 0.909 0.833

E−1
22 1.01 0.42 0.909 0.833

E−1
33 1.01 0.42 0.463 0.075

E−1
23 −0.29 −0.09 −0.116 0.142

E−1
13 −0.29 −0.09 −0.116 0.142

E−1
12 −0.29 −0.09 −0.300 1.050

E−1
44 2.59 1.01 2.130 0.707

E−1
55 2.59 1.01 2.268 0.794

E−1
66 2.59 1.01 2.130 0.707

constitutive modules of the composite system over the whole range of the volume
fraction Vf ∈ [0, 1] providing that they are known for one V 0

f . Efficiency of this
method is tested by the use of the results of numerical simulation by SCMS homog-
enization method [9]. To this end nine weighting coefficients αk for the orthotropic
Boron/Al composite are calculated by interpolation between Voigt and Reuss’ esti-
mates shown in Fig. 3.13.Magnitudes of theweighting coefficientsαk are established
at the point V 0

f = 0.513 by comparison with the homogenization results SCMC by
Gan et al. [9]. Obviously the weighting homogenization rulemust give correct results
at the end points Vf = 0 and Vf = 1. Calculated weighting coefficients and set of
predictions V

E
−1, RE−1, SCMC

E
−1 for nine elements of compliance matrix are pre-

sented in Table3.9. The results of the weighting homogenization rule are verified
with the results given by Gan et al. [9] based on SCMC method, that fully confirm
the assumption that weighting coefficients αk can be treated as universal ones for
the composite tested over the full range of volume fraction as shown by curves of
weight rule • versus SCMC homogenization �.

3.5.7 Interpretation of Results Obtained by Weighting
Homogenization in Terms of Engineering Constants

Nevertheless the formulated in previous subsection “hybrid” mixture rules based on
weighting interpolation between Voigt and Reuss’ estimates have to be formulated
in the space of elements of elasticity matrix (compliance or stiffness), where Hill
theorem of lower and upper estimates by Voigt and Reuss holds, it is usually neces-
sary to express the results in terms of engineering orthotropy constants. The reason
for such representation results from usually applied homogenization techniques to
engineering constants, but not to elasticity elements. This system of engineering
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Fig. 3.13 Comparison of SCMC [9], Voigt, Reuss and proposed hybrid rule according to compli-
ance matrix coefficients
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constants is dominant in the subject literature, see Aboudi et al. [1], Gan et al. [9],
Sun and Vaidya [30], and others.

To this end the engineering constants have to be extracted either from the com-
pliance

E11 = 1/E
−1

11 E22 = 1/E
−1

22 E33 = 1/E
−1

11

G44 = 1/E
−1

44 G55 = 1/E
−1

55 G66 = 1/E
−1

66

ν12 = −E
−1

12 /E
−1

11 ν13 = −E
−1

13 /E
−1

11 ν23 = −E
−1

23 /E
−1

22

(3.71)

or the stiffness

E11 = 2E12E13E23 + E11E22E33 − E33E
2

12 − E11E
2

23 − E22E
2

13

E22E33 − E
2

23

E22 = 2E12E13E23 + E11E22E33 − E33E
2

12 − E11E
2

23 − E22E
2

13

E11E33 − E
2

13

E33 = 2E12E13E23 + E11E22E33 − E33E
2

12 − E11E
2

23 − E22E
2

13

E11E22 − E
2

12

G44 = E44 G55 = E55 G66 = E66

ν12 = E12E33 − E13E23

E22E33 − E
2

23

ν13 = E13E22 − E12E23

E22E33 − E
2

23

ν23 = E23E11 − E13E12

E11E33 − E
2

13

(3.72)

matrices.
In what follows the conversion of results shown in the previous section given

in the elasticity modules space, to the system of engineering orthotropic constants
is done preserving previously used assumption of the transversely isotropic hexag-
onal symmetry. The comparison of engineering orthotropic constants is presented
in Fig. 3.14. The figure contains only four plots, because the transversely isotropic
hexagonal symmetry assumption has been proven and Poisson’s ratios are not dis-
cussed. Young and Kirchhoff modules obtained from proposed weighting rule (3.69)
coincide with the Gan et al. [9] results.



3 Mechanics of Anisotropic Composite Materials 129

Volume fraction Vf

E
33
[G

P
a]

x
10

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4
Voigt
Reuss
Weight rule
SCMC

Volume fraction Vf

G
23
[G

P
a]

x
10

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.6

0.8

1

1.2

1.4

1.6 Voigt
Reuss
Weight rule
SCMC

Volume fraction Vf

G
12
[G

P
a]

x
10

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.6

0.8

1

1.2

1.4

1.6
Voigt
Reuss
Weight rule
SCMC

Volume fraction Vf

E
11
[G

P
a]

x
10

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

Voigt
Reuss
Weight rule
SCMC

Fig. 3.14 Comparisonof SCMC[9],Voigt,Reuss’ andproposedhybrid estimates in the engineering
orthotropic constants domain
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Chapter 4
General Concept of Limit
Surfaces—Convexity and Normality
Rules, Material Stability

Artur W. Ganczarski and Jacek J. Skrzypek

Abstract General nature of yield or failure criteria terminating elastic range of
isotropic or anisotropic materials is summarized. As shown, the hydrostatic pressure
sensitivity of anisotropic materials can be captured either by first stress and sec-
ond common deviatoric invariant direct use (Tsai–Wu), or by the second common
stress invariant in an indirect fashion (von Mises). Tension/compression asymmetry
in anisotropic materials is accounted for either by presence of first common invari-
ant (only translation, Tsai–Wu) or third common invariant (distortion, Kowalsky).
Comparison of two ways to capture anisotropic response, more rigorous explicit
common invariants formulations or implicit approaches based on extension of tradi-
tional isotropic criteria in terms of transformed invariants (Barlat, Khan) capable of
capturing a complete distortion, is shown. Convexity requirement of limit surfaces is
discussed and compared for two material behaviors by the use of Drucker’s material
stability postulate extended to multi-dissipative response or Sylvester’s stability con-
dition based on positive definiteness of the tangent stiffness or compliance matrices
of hyperelastic material. Generalized Drucker’s postulate based on elastic–plastic
stiffness matrix is also shown.
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4.1 Termination of the Elastic Range in Cases of Isotropic
or Anisotropic Materials

General classification of anisotropic initial yield/failure criteria requires clear dis-
tinction between two approaches met in subject literature. First approach, developed
by Sayir, Goldenblat and Kopnov, Spencer, Boehler, Tsai and Wu, Życzkowski, Voyi-
adjis, and others, is directly based on a concept of common invariants of stress and
structural anisotropy tensors. Second mixed-type approach, developed by Barlat,
Khan, Cazacu, Kyriakides, Yoon to mention only some, is based on the extension
of classical isotropic yield criteria to anisotropy, by application of linear transfor-
mation of Cauchy’s stress. Approach based on common invariants concept, although
more rigorous from invariant theory point of view, is for practical reasons usually
limited to first and second common invariants, such that distortion effect is hard
to handle. Mixed-type approach, although less formalized in viewpoint of the the-
ory of common invariants, occurs to be very useful for practical description of the
materials that exhibit strong limit surface distortion. In other words, in the common
invariants-based approach the existence of first common invariant is necessary to
describe strength differential effect. On the other hand, in the mixed-type approach,
strength differential effect is captured by a modified third invariant. It is clear that
second invariant (either common or modified stress invariant) has to be present in
both formulations.

General tensorially polynomial anisotropic plastic flow or failure criterion is
based on a consistent concept of common invariants of the stress tensor σ and of
the structural tensors of plastic or failure anisotropy ĪI, e.g., Πi jσi j , Πi jklσi jσkl ,

Πi jklmnσi jσklσmn , etc. Structural tensors of plastic/failure anisotropy Π
p/f
i j second

rank, Πp/f
i jkl fourth-rank and Π

p/f
i jklmn sixth rank, different for plasticity (p) or failure (f)

initiations, are satisfactory to describe basic transformation modes of limit surfaces
due to plastic or damage hardening processes, namely: isotropic change of size
of limit surface, its translation and rotation, as well as distortion due to a curvature
change (cf. Sayir [28], Kowalsky et al. [20]). The basic postulates of material stability
either in a Drucker’s sense for ductile materials (cf. Drucker [8]), or the positive
definiteness of the Hessian matrix [tanE]mnεmεn > 0 in a Sylvester’s sense for brittle
materials (cf. Kuna-Ciskał and Skrzypek [21]), imply restriction, which allow the
plastic yield or failure initiation surfaces to be always closed and convex surfaces in
the stress space.

Traditionally in case of ductile materials (e.g., majority of metals, alloys, inter-
metallics), second rank tensors Πi j of plastic anisotropy are usually neglected, since
the hydrostatic stress does not influence yield initiation criterion (Cazacu and Bar-
lat [4]). Additionally, tension or compression asymmetry is negligible (kt ≈ kc).
On the other hand, in case of brittle materials (e.g., concrete, ceramic materials,
rocks, composite materials, etc.), where initiation of failure or damage manifests
mostly or prior to other dissipative phenomena such that first stress invariant plays
important role, tension or compression asymmetry is essential (kt �= kc). Hence, the
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first (linear) common invariant Πi jσi j cannot be omitted (e.g., Tsai–Wu criterion
[32]). Moreover, the third (cubic) invariant Πi jklmnσi jσklσmn , which describes limit
surface distortion, can play an essential role if consecutive hardening phenomena
due to advanced plasticity and damage or other microstructure changes occur (e.g.,
Kowalsky et al. [20]). However, when only initiation of plastic or failure mechanisms
is considered, also this term is consequently omitted.

There exists a wide class of advanced engineering materials (e.g., Mg-Th,
Mg-Li, Ti-Ni superalloys, etc.) that exhibit strength differential effect but do not
exhibit hydrostatic pressure sensitivity. The initial yield criteria describing such
materials have to comprise second and third invariants, either of stress tensor J2, J3
(Raniecki and Mróz [27]), or common invariants J 0

2 , J 0
3 (Barlat et al. [2], Cazacu and

Barlat [4], Plunkett et al. [26]). Symbols J 0
2 , J 0

3 denote generalizations to orthotropy
of classical stress invariants J2 and J3, in the orthotropic Drucker-based yield condi-
tion, by the use of a linear transformation L of the Cauchy stress tensor S = L : σ.

Recently, a generalized form of anisotropic yield/fracture criteria was proposed
by Khan and Liu [17] and Khan et al. [18]. These criteria are capable of capturing
different types of limit surfaces (quadratic Hill-type, nonquadratic Tresca or max-
imum shear stress type and intermediate type loci). They are based on equi-biaxial
tension loading condition, and include tension or compression asymmetry ratio of
fracture, and are successfully verified for wide class of materials (e.g., Ti–6Al–4V
alloy).

Classical orthotropic Hill criterion [13], despite obvious advantages and wide
technical applications, is limited however by some constraints of applicability. These
constraints are described in detail in Chaps. 5 and 6. However for the purpose of the
present preliminary introduction, they will be pointed out briefly.

First limitation of applicability range of the classical Hill criterion is established
through the inequality bounding magnitudes of the engineering orthotropy constants
kx , ky , and kz , in order to avoid ellipticity loss of the limit surface in the stress space
(e.g., Ottosen and Ristinmaa [25], Ganczarski and Skrzypek [11]). Such limit bounds
put upon the orthotropy limits usually hold in case if the degree of material orthotropy
is moderate. For example, if the material ensures the transverse isotropy symmetry,
it is shown that the orthotropy degree bounded by the inequality kmax/kmin < 2
guarantees ellipticity of the limit surface to be saved. However, if the orthotropy
bound is violated, the Hill criterion becomes useless, when the degeneration of the
cylindrical (elliptic) surface into two concave hyperbolic cylinders occurs, what is
inadmissible in the light of Drucker’s or Sylvester’s stability postulates. In a case of
high orthotropy degree (observed for majority of the long fiber reinforced composites,
for instance, Boron/Al, SiC/Ti, Glass/ Epoxy, Graphite/Epoxy, etc., e.g., Herakovich
and Aboudi [12], Sun and Vaidya [31], and others), the concept other than Hill
is proposed. This new approach suggests formulation of limit criterion based on
the nine-parameter von Mises condition, but enhanced by the Hu–Marin-type biax-
ial orthotropic loading conditions (Hu and Marin [14], Skrzypek and Ganczarski
[30]). It will be demonstrated that, even in a case of arbitrarily strong orthotropy
(for instance, kmax/kmin ≈ 9, in case if brass Ł62 is tested) the property of ellipticity
is saved.

http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_6
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Second limitation of applicability range of the Hill criterion arises when transverse
isotropy property is considered. It will be shown that, if reduction of Hill criterion
to the transverse isotropy symmetry is performed, the four-parameter form that sat-
isfies the tetragonal symmetry class is furnished (e.g., Voyiadjis and Thiagarajan
[33], Sun and Vaidya [31]). This type of symmetry is of particular importance in
case of unidirectional fiber reinforced composites. In such a case moduli, kx , ky ,
kz , and kxy are considered as independent (z orthotropy axis), which makes impos-
sible to reduce the classical Hill criterion to the isotropic von Mises condition in
the plane of transverse isotropy. To avoid this irreducibility, new Hu–Marin-based
transversely isotropic criterion exhibiting hexagonal symmetry class is proposed
instead of the deviatoric transversely isotropic Hill criterion exhibiting tetragonal
symmetry. It enables to achieve coincidence with the isotropic von Mises condition
in the transverse isotropy plane, preserving cylindricity regardless of the magnitude
of orthotropy degree.

Finally, it will be demonstrated that, for some composite materials it is nec-
essary to further modify the three-parameter Hu–Marin-type criterion to the new
four-parameter intermediate type criterion between the classical Hill and hexagonal
Hu–Marin’s concepts, taking advantage of the bulge test, that differs essentially from
both the Hu–Marin hexagonal type criterion and the isotropic von Mises criterion
in the isotropy plane. Bulge tests have been performed and described by Jackson
et al. [16] with equipment used by Lankford et al. [22]. This new criterion is capa-
ble of properly describing the SiC/Ti long fiber reinforced composite examined by
Herakovich and Aboudi [12].

4.2 Survey of Pressure Sensitive or Insensitive Yield Criteria

Invariant description of any limit surface (initial yield or failure) has to be performed
by the use of irreducible set of invariants being arguments of a scalar function defining
limit surface. For isotropic materials, equation of limit surface is a scalar function
of three stress invariants (cf. Iyer [15], etc.)

f

[
tr(σ),

1

2
tr(s · s),

1

3
tr(s · s · s)

]
(4.1)

For anisotropic materials equation of limit surface is a scalar function of common
stress and structural anisotropy tensor invariants (cf. Sayir [28], etc.)

f [σ :
〈2〉
ĪI, σ :

〈4〉
ĪI: σ, σ :

〈6〉
ĪI: σ : σ, . . .] (4.2)

where only even ranks of anisotropy tensors are taken into account.
In some cases of anisotropic alloys exhibiting tension/compression asymmetry, it

is convenient to consider a scalar function of selected (mixed) stress invariants and
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common invariants (cf. Khan and Liu [17], etc.)

f

[
tr(σ),

1

2
tr(s · s),

1

3
tr(s · s · s); . . . , σ :

〈4〉
ĪI: σ, . . .

]
(4.3)

The following effects are of particular importance when describing features of
the limit surfaces:

• hydrostatic pressure dependence
• tension/compression asymmetry
• anisotropic behavior

In order to properly capture all features considered, the limit criteria have to include
the second stress invariant (either J2σ or J2s) in case of isotropy or the second

common invariant (either σ :
〈4〉
ĪI: σ or s :

〈4〉
ĪI : s) in case of anisotropy. This is a

direct consequence of the necessity to include total or pure shear elastic energy.
The presence of the first and the third invariants (the stress invariants J1σ, J3s or

the common invariants σ :
〈2〉
ĪI,σ :

〈6〉
ĪI: σ : σ) is necessary to capture dependence on

hydrostatic pressure and tension/compression asymmetry.
In general, materials can be classified into two groups: hydrostatic pressure depen-

dent and hydrostatic pressure independent materials, alternatively called pressure
sensitive and pressure insensitive materials. Traditionally, ductile materials (major-
ity of metals) can be considered as hydrostatic pressure independent. On the other
hand, brittle materials (rocks, ceramics, etc.) should be treated as hydrostatic pres-
sure dependent ones. Hydrostatic pressure dependence of isotropic or anisotropic
limit criteria can be captured in the two different manners:

• direct dependence on the hydrostatic pressure through both first and second invari-
ants:

– the first stress invariant plus the second deviatoric invariant

f

[
tr(σ),

1

2
tr(s)

]
isotropy (4.4)

– the first common invariant plus the second common deviatoric invariant

f

[
σ :

〈2〉
ĪI, s :

〈4〉
ĪI: s

]
anisotropy (4.5)
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• indirect dependence on the hydrostatic pressure through the second invariants with
the first invariants ignored

– the second stress invariant

f

[
1

2
tr(σ · σ)

]
(σ = s + σh1) isotropy (4.6)

– the second common stress invariant

f

(
σ :

〈4〉
ĪI: σ

)
(σ = s + σh1) anisotropy (4.7)

There exists a broad class of engineering materials which do not exhibit any depen-
dence on the hydrostatic pressure, neither direct nor indirect. This means that in
case of the isotropic hydrostatic pressure independent materials, the corresponding
limit surfaces have to include the second deviatoric invariant exclusively. In case of
anisotropy, limit surfaces can include the second common deviatoric invariant and
additionally the first common deviatoric invariant. However in all cases considered,
equation of limit surface has to include the second stress or the second common
invariants which results from the quadratic form of energy representation. Exem-
plary equations of limit surfaces that found confirmation in engineering materials
are presented in Table 4.1 according to aforementioned classification.

Table 4.1 shows comparison between the pairs of appropriate isotropic and
anisotropic criteria that correspond to the direct dependence on hydrostatic pres-
sure (Drucker–Prager criterion vs. Tsai–Wu criterion), the indirect dependence on
hydrostatic pressure (Beltrami criterion vs. von Mises criterion) and independence
of the hydrostatic pressure (Huber–von Mises criterion vs. Hill criterion). The oldest
criterion based on total elastic energy formulated by Beltrami in 1885 is invoked in
this table although it has no experimental evidence.

Tension/compression asymmetry, also called strength differential effect is included
in a natural way in limit criteria for anisotropic materials. In case of limit criteria for
isotropic materials, this effect manifests through the presence of first stress invariant
(J1σ) and/or the third stress invariant (J3s), as shown in Fig. 4.1. Note that in case
of the first stress invariant dependent surface compressive and tensile meridians are
in identical distance from the center of limit curve, but axis of the limit surface is

Table 4.1 Hydrostatic pressure dependence of initial yield/failure criteria

Dependence on σh

Direct Indirect Lack of dependence

Isotropy Drucker–Prager
αJ1σ + √

J2s = k
Beltrami√

3J2σ = k
Huber–von Mises√

3J2s = k

Anisotropy Tsai–Wu

σ :
〈2〉
ĪI +s :

〈4〉
ĪI

H: s = 1

von Mises

σ :
〈4〉
ĪI : σ = 1

Hill

s :
〈4〉
ĪI

H: s = 1
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(a) (b)

Fig. 4.1 Tension/compression asymmetry caused by a First stress invariant—low carbon steel
18G2A subjected to monotonic plastic offsets ◦ − εoff = 1 × 10−5, � − εoff = 5 × 10−5 after
Kowalewski and Śliwowski [19], b third stress invariant—TiNi alloy after Raniecki and Mróz [27]

shifted (Fig. 4.1a). In other case, when limit surface is third stress invariant dependent
function, compressive and tensile meridians are not in identical distance from the
center of limit curve but the axis of the limit surface remains at the position of
hydrostatic axis (Fig. 4.1b).

It was aforementioned that the limit criteria have to include appropriate sec-
ond invariants. However, limit surfaces based on the second invariants exclu-
sively (stress invariants or common invariants) are capable to capturing neither ten-
sion/compression asymmetry nor shape change due to distortion. By contrast, the
limit criteria based on the second and the third invariants (stress invariants or com-
mon invariants) are capable of capture both tension/compression asymmetry and
distortion. Table 4.2 shows comparison between the pairs of selected isotropic and
anisotropic criteria that correspond to the lack of tension/compression asymmetry
and distortion (Huber–von Mises’ criterion vs. Hill criterion), tension/compression
asymmetry with distortion ruled out (Drucker–Prager criterion vs. Tsai–Wu crite-
rion) and tension/compression asymmetry with distortion accounted for (Drucker cri-
terion vs. Kowalsky et al. criterion). To illustrate classification described in Table 4.2
a comparison between asymmetry without distortion and asymmetry with distortion
accounted for is presented in Fig. 4.2. In the case of isotropy Fig. 4.2a the Drucker
criterion is compared with the Drucker–Prager criterion. In case of Drucker–Prager

Table 4.2 Effect of first and third invariants on tension/compression asymmetry and distortion of
limit surfaces

Lack of asymmetry
and distortion

Asymmetry without
distortion

Asymmetry and
distortion

Isotropy Huber–von Mises√
3J2s = k

Drucker–Prager
αJ1σ + √

J2s = k
Drucker
J 3

2s − cJ 2
3s = k6

Anisotropy Hill

s :
〈4〉
ĪI

H: s = 1

Tsai–Wu

σ :
〈2〉
ĪI +s :

〈4〉
ĪI

H: s = 1

Kowalsky et al.

s :
〈4〉
ĪI : s+s :

〈6〉
ĪI : s : s = 1
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(a) (b)

Fig. 4.2 Comparision of tension/compression asymmetry and distortion of limit curves in case
of: a isotropy (Drucker–Prager criterion vs. Drucker criterion), b anisotropy (Tsai–Wu citerion vs.
Kowalsky et al. criterion)

criterion based on the first and the second stress invariants tension/compression
asymmetry appears independently from shape distortion. By contrast when the
Drucker criterion is used, both effects are coupled through the third invariant so
they appear simultaneously. In the case of anisotropy Fig. 4.2b the Tsai–Wu crite-
rion is compared with the Kowalsky et al. criterion. The Tsai–Wu criterion accounts
for tension/compression asymmetry without distortion (only translation through the
first common invariant accounted for). By contrast when the Kowalsky et al. the six
order criterion is used, the tension/compression asymmetry and shape distortion are
coupled in an anisotropic fashion through the third common invariant.

In general, a material anisotropy can be captured by use of the two approaches. In
the first, mathematically consistent approach called the explicit anisotropy approach
the system of stress invariants J1σ, J2s, J3s is substituted by the corresponding system

of common invariants σ :
〈2〉
ĪI, s :

〈4〉
ĪI : s, s :

〈6〉
ĪI: s : s according to the Goldenblat,

Kopnov, and Sayir concept when formulating anisotropic limit criteria. In the other,
currently dynamically developed approach called the implicit anisotropy approach by
Barlat and Khan either the second J2s and the third J3s stress invariants are substituted
by the corresponding transformed deviatoric invariants J 0

2s, J 0
3s or the stress deviator

is transformed by use of the two independent 4-rank transformation tensors Σ =〈4〉
C : s

and Σ ′ =
〈4〉
C

′: s and next they are inserted to one of well know isotropic criteria,
either Drucker or Hosford, respectively. These linear transformations correspond to
mapping of the deviatoric Cauchy stress tensor σ to other two deviatoric stresses
Σ,Σ ′ referring to the material anisotropy (orthotropy) frame.

The implicit approach is able to capture the full material orthotropy with distortion

effect included by use of two 4th rank orthotropic transformation tensors
〈4〉
C ,

〈4〉
C

′
containing 2 × 9 = 18 independent material constants by contrast to the explicit
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common invariant based approach which requires in case of material orthotropy 4-

rank tensor
〈4〉
ĪI and 6-rank tensor

〈6〉
ĪI containing 9 + 56 = 65 material constants.

Although the explicit approach is more mathematically rigorous than the implicit
one, simultaneously it is much more cumbersome and open to misunderstandings.
Both approaches, the explicit and the implicit, are alternative ones and obviously
they lead to different approximations.

Comparison of the explicit and the implicit approaches to capture anisotropy is
schematically presented for selected criteria in Table 4.3. A major difficulty for the
limit yield/failure description is caused by the coupling between anisotropy and
strong tension/compression asymmetry as discussed by Khan et al. [18]. Such sig-
nificant coupling can lead to a complete distortion of the limit surface (possible
lack of any axis of symmetry) as it is presented in Fig. 4.3 based on Luo et al. [23]
experimental findings for AZ31B Mg alloy fitted by Plunkett et al. [26].

Table 4.3 Explicit or implicit anisotropy of limit surfaces

Explicit Implicit

Isotropy Huber–von Mises

s :〈4〉
I : s = k2

Raniecki–Mróz
J 3/2

2s − cJ3s = k3
Cazacu et al. [5]

3∑
i=1

(|si | − k̂si )
a = 2ka

Anisotropy Hill

s :
〈4〉
ĪI

H: s = 1

Cazacu and Barlat
(J 0

2 )3/2 − cJ 0
3 = k3

where J 0
2 , J 0

3
transformed
common invariants

Plunkett et al.
3∑

i=1
(|Σi | − k̂Σi )

a+
3∑

i=1
(|Σ ′

i | − k̂′Σ ′
i )

a = 2ka

where

Σ =〈4〉
C : s, Σ ′ =

〈4〉
C

′: s

Fig. 4.3 Fitting of Luo et al.
[23] experimental data for
AZ31B Mg alloy by the use
of the implicit anisotropic
yield criterion by Cazacu and
Barlat [4]
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4.3 Drucker’s Postulate for Stability of Ductile
Materials—Requirements for Convexity
and Normality of the Yield Surface

Let us confime first to only one situation when termination of the elastic range is
caused by the initiation of plastic flow mechanism. When formulating equations of
the initial yield surface and its further rebuilding due to consecutive process of strain
growth exceeding the elastic range, it is convenient to restrict further considerations
to processes that guarantee the convexity of initial and subsequent yield surfaces as
well as the associated flow rule. This means that the plastic potential function g is
considered to be equal to the yield function f . Such simplified approach is useful for
description of majority of metals by contrast to the nonassociated flow rules (g �= f )
applicable to majority of brittle materials.

Consider first arbitrary stress cycle ABCD that consists of elastic loading AB from
the initial state inside current yield surface (σ∗

i j ) to point belonging to this surface
(σi j ), subsequent elementary loading BC corresponding to stress increment dσi j

during which the yield surface is rebuilt fi → fi+1, and final unloading CD to the
initial stress level (σ∗

i j ) as shown in Fig. 4.4. Note however that this process describes

the closed cycle only in stress space σD
i j = σ∗

i j but the final state D corresponds to

changed strain state εD
i j = εe

i j +dε
p
i j . The strain increment dε

p
i j stands for permanent

and irreversible plastic strain change connected with rebuilding of the subsequent
yield surface.

According to the Drucker postulate, work per unit volume done by stress quasi-
cycle on total deformation ABCD is nonnegative

W =
∮

ABCD

(
σi j − σ∗

i j

)
dεi j ≥ 0 (4.8)

The additional load carried by the material over a complete stress quasi-cycle is called
the external agency. In other words, when the work done by an external agency over
the stress quasi-cycle would be negative a subsequent equilibrium state would have
been reached in a spontaneous way associated with an energy dissipation. According

Fig. 4.4 Ilustration of the
closed stress quasi-cycle
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to small strain theory the additive decomposition of the total strain increment into
the reversible and irreversible terms is done dεi j = dεe

i j + dε
p
i j we arrive at

W =
∮

ABCD

(
σi j − σ∗

i j

)
dεe

i j +
∮

ABCD

(
σi j − σ∗

i j

)
dε

p
i j (4.9)

The first of above integrals is equal to zero since, according to the Hooke law εe
i j =

E−1
i jklσkl holds. Providing that the compliance tensor is constant E−1

i jkl = const we
arrive at ∮

ABCD

(
σi j − σ∗

i j

)
E−1

i jkldσkl = E−1
i jkl

∮

ABCD

(
σi j − σ∗

i j

)
dσkl

= E−1
i jkl

⎛
⎝

∮

ABCD

σi j dσkl − σ∗
i j

∮

ABCD

dσkl

⎞
⎠

= E−1
i jkl

(σi jσmn

2
− σ∗

i jσmn

)∣∣∣σ
A
kl

σD
kl=σA

kl

= 0

(4.10)

Hence, keeping in mind that plastic strain is different from zero ε
p
i j �= 0 only along

path BC the Drucker postulate (4.8) is finally expressed by inequality for the follow-
ing simple integral (not circular integral)

Wp =
∫

BC

(
σi j − σ∗

i j

)
dε

p
i j ≥ 0 (4.11)

This means that the work done by the external agency on plastic strain is nonnegative
and corresponds to rebuilding of yield surface fi −→ fi+1. Applying expansion of
Wp in the Taylor series around the initial point σi j = σ∗

i j we arrive at

Wp = Wp
(
σi j = σ∗

i j

)
+

dWp
(
σi j = σ∗

i j

)

1! +
d2Wp

(
σi j = σ∗

i j

)

2! + · · ·
= 0 +

(
σi j − σ∗

i j

)
dε

p
i j + 1

2
dσi j dε

p
i j + · · · ≥ 0

(4.12)

When the two first nonzero terms of expansion series (4.12) are saved, we find an
inequality (

σi j − σ∗
i j

)
dε

p
i j + 1

2
dσi j dε

p
i j ≥ 0 (4.13)

which must hold for arbitrary initial stress state σ∗
i j , inside or on the current yield

surface. Therefore, the inequality (4.13) that expresses the condition of stability of
elastic–plastic material in Drucker’s sense can be finally furnished in the form of
two following inequalities
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Fig. 4.5 Interpretation of Drucker’s postulate consequences: a convexity, b normality

(σi j − σ∗
i j )dε

p
i j ≥ 0 and dσi j dε

p
i j ≥ 0 (4.14)

The above inequalities must simultaneously hold which in mathematical sense cor-
responds to nonnegative value of the first and the second energy differential Wp in
the neighborhood of the initial point σi j = σ∗

i j .
Conditions (4.14) can be interpreted in a geometric way regarding convexity of a

yield surface and normality of vector of plastic strain increment.
The first of inequalities (4.14) can interpreted as nonnegative value of the scalar

product of two vectors (σ − σ∗) and dεp. Hence, the angle ψ between these two
vectors in the stress space σi j has to be either acute or right angle ψ ≤ π/2 (Fig. 4.5a).
This condition holds for each vectorσ∗ which is located on or within the yield surface.
This implies that the yield surface must be convex surface in the stress space f . It is
called in literature the convexity postulate of yield surface f .

The second of inequalities (4.14) can be interpreted as the scalar product of two
vectors dσ and dεp which must also be nonnegative for arbitrarily chosen stress
increment dσ (Fig. 4.5b). This requirement must hold for arbitrary vectors dσ con-
nected with transition of fi surface into fi+1 surface (Fig. 4.5b) which belong to
the half-space tangent to i th surface, hence the only one possible vector dεp which
always ensures condition (4.14) must be normal to this surface f , n = n f

dεp = λn = λ
∂ f

∂σ
= λgrad f (4.15)

Symbol λ is the scalar multiplier the magnitude of which ensures that the new point
at the stress trajectory belongs to the new yield surface f . The condition (4.15)
determines direction of the plastic strain increment dεp consistent with the gradient
n = ∂ f/∂σ = λgrad f which is normal to the yield surface. This requirement is
equivalent to the so-called flow rule associated with the yield surface.

Drucker’s postulate of stability (4.14) assumes that both convexity and normality
rules must hold. In case when the normality does not hold, it is possible to choose
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Fig. 4.6 Illustration of a case when Drucker’s stability postulate is not satisfied: a convexity of
the surface f saved but normality of dεp does not hold, b lack of convexity of the surface f but
normality of dεp saved

Fig. 4.7 Graphical
interpretation of
nonassociated flow rule

σ∗ �= σ that the angle between vectors (σ − σ∗) and dεp is greater than π/2 such
that the scalar product of these two vectors is negative. This means that in this case
Drucker’s postulate is not satisfied (Fig. 4.6a). By contrast when the convexity of a
yield surface is violated it is possible to choose σ∗ such that the scalar product is
negative (σ − σ∗)dεp < 0 (Fig. 4.6b). Both above negative examples (Fig. 4.6a, b)
are an indirect proof that violation even one of normality or convexity conditions
means violation of Drucker’s postulate as a whole.

Approach based on the associated plastic flow rule is applicable for majority of
metals but acceptance of this rule is not necessary in case of nonmetallic materials
(soils, rocks, some composites). In such case, the so-called nonassociated flow rule
is applicable. For nonassociated flow rule the direction of plastic strain increment is
determined from the gradient to other surface g which does not coincide with the
yield surface f , g(σ) �= f (σ): n = ng �= n f (Fig. 4.7). As consequence, in case of
nonassociated flow rule we arrive at

dεp = λ
∂g

∂σ
= λgradg (4.16)

instead of (4.15). For such materials Drucker’s stability postulate does not obey.
In classical formulation of Drucker’s material stability postulate [8, 9], the single

dissipation process connected with plastic flow is considered. However, when multi-
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dissipative material processes are present an extension of the classical normality
rule can be done. When weak-coupling concept between the dissipative processes
is applied Simo and Yu [29], in which two different dissipation surfaces plastic fp
and damage fd are defined, further extension of the normality rule to the so-called
generalized normality rule is successfully implemented in a series of papers deal-
ing with coupled plasticity and damage dissipation processes, e.g., Murakami [24].
Implementation of the Murakami model to ABAQUS FEM code is done by Bielski
et al. [3]. Further extension to multiple-coupled dissipative phenomena connected
with plastic flow, damage growth and phase change is due to Egner [10]. A compari-
son between existing evolution rules proposed by Abu Al-Rub and Voyiadjis [1] and
Chaboche [6] with recently developed formulations has been done. More advanced
discussion on multi-dissipative response description can be found in further chapters.

4.4 Stability Postulate for Elastic Materials—Positive
Definiteness of the Tangent Stiffness Matrix

Following Chen and Han [7], we consider the stability criterion of hyperelastic
material for which all deformations are reversible such that stability requires the
work done by the external agency in a cycle to be zero. For an elastic material, both
the stress state and the strain state in (4.8) return back to σ∗

i j and ε∗
i j as shown in

Fig. 4.8. Over such a cycle the Drucker stability postulate becomes an equality

∮ (
σi j − σ∗

i j

)
dεi j = 0 (4.17)

since no permanent strain over such cycle occurs. Note that the above equality holds
for the elastic material by contrast to previously formulated Drucker’s inequality
formulated for elastic–plastic material (4.8). Choosing next the initial state to be

(a) (b)

Fig. 4.8 Illustration of normality of: a stress vector σi j to normal hypersurface of constant strain
energy per unit volume W = const, b strain vector εi j to normal hypersurface of constant comple-
mentary energy C = const
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stress and strain free, we reduce (4.8) to

∮
σi j dεi j = 0 (4.18)

which must hold irrespectively to the path. In other words, the integrand in (4.18) is
the exact differential such that the elastic strain energy per unit volume W serves as
the potential function for stress

W (
εi j
) =

∫
σi j dεi j and σi j = ∂W

∂εi j
(4.19)

In an analogous way, we may prove that the complementary energy per unit volume
C serves as the potential function for strain

C (σi j
) =

∫
εi j dσi j and εi j = ∂C

∂σi j
(4.20)

Note however that in general case of inelastic material, the strain energy W may
depend not only on the current strain state W(εi j ) but also on the strain history
W(εi j , f (εi j )), e.g., as a result of irreversible microstructure change due to plastic
flow or microdamage growth. Similarly in such general case, the complementary
energy per unit volume C may depend not only on current stress state C(σi j ) but also
on stress history C(σi j , f (σi j )). This means that neither W nor C can be directly
chosen as potential functions for stress and strain, respectively.

The strain energy per unit volume W(εi j ) and the complementary energy per unit
volume C(σi j ) are being interpreted as hypersurfaces of constant value energy in six-
dimensional spaces of strain εi j and stress σi j respectively. Assuming independence
of both considered energies of loading histories in respective spaces, the derivatives
of both scalar functions ∂W/∂εi j and ∂C/∂σi j with respect to their arguments are
being interpreted as the gradients of corresponding hypersurfaces, which are the
vectors normal oriented outward to these hypersurfaces (Fig. 4.8).

Thus stress increment σ̇i j can be furnished in terms of strain increment ε̇i j as
follows

σ̇i j = ∂σi j

∂εkl
ε̇kl = ∂2W

∂εi j∂εkl
ε̇kl (4.21)

where definition of the potential function for stress (4.192) is involved.
The following definitions of material stability are further explored (see Chen and

Han [7]):

• The work done by the added stress increment on the strain increment is positive
and the following inequality is called stability in small

σ̇i j ε̇i j > 0 (4.22)
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• The work done over the cycle by application and removal of stress increment on
strain increment is nonnegative and the following inequality is called stability on
cycle ∮

σ̇i j ε̇i j ≥ 0 (4.23)

For numerical applications in order to find stability criterion for hyperelastic mate-
rials, the first inequality (4.22) occurs the effective tool to this end (Fig. 4.9).

Substitution of (4.21) for σ̇i j into (4.22) leads to the following stability condition

∂2W
∂εi j∂εkl

ε̇i j ε̇kl > 0 (4.24)

The above inequality written in nonabbreviated form reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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> 0

(4.25)

The Voigt notation used above allows to represent the fourth-rank elasticity tensor
by its representation matrix identified as the tangent stiffness matrix

[tanE]mn =
[

∂2W
∂εm∂εn

]
(4.26)

The above reasoning dealing with the incremental formulation of constitutive
equation based on quadratic form for strain energy W can easily be converted into

Fig. 4.9 Illustration of
material stability loss in case
of hiper elastic material
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dual formulation when incremental form of constitutive equation based on the com-
plementary energy is used alternatively. The strain increment ε̇i j expressed in terms
of the stress increment σ̇i j takes the following form

ε̇i j = ∂2C
∂σi j∂σkl

σ̇kl (4.27)

which substituted to the condition of stability in small (4.22), leads to inequality

∂2C
∂σi j∂σkl

σ̇i j σ̇kl > 0 (4.28)

The above inequality written in nonabbreviated form reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̇xx

σ̇yy

σ̇zz

τ̇xy

τ̇yz

τ̇zx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

⎡
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∂σ2

xx

∂2C
∂σxx ∂σyy

∂2C
∂σxx ∂σzz

∂2C
∂σxx ∂τxy

∂2C
∂σxx ∂τyz

∂2C
∂σxx ∂τzx

∂2C
∂σ2

yy

∂2C
∂σyy∂σzz

∂2C
∂σyy∂τxy

∂2C
∂σyy∂τyz

∂2C
∂σyy∂τzx

∂2C
∂σ2

zz

∂2C
∂σzz∂τxy

∂2C
∂σzz∂τyz

∂2C
∂σzz∂τzx

∂2C
∂τ2

xy

∂2C
∂τxy∂τyz

∂2C
∂τxy∂τzx

∂2C
∂τ2

yz

∂2C
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∂2C
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zx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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σ̇xx

σ̇yy
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τ̇yz
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> 0

(4.29)

The above representation matrix can be identified as the tangent compliance matrix

[tanE
−1]mn =

[
∂2C

∂σm∂σn

]
(4.30)

Summing up conditions (4.24–4.25) and (4.28–4.29) state that both surfaces of
constant strain energy W = const and complementary energy C = const determined
in the strain space W(εi j ) or the stress space C(σi j ), respectively, are convex. These
are so-called convexity postulates for surfaces of constant strain energy W(εi j ) or
complementary energy C(σi j ) which can be proved in a following way.

4.5 Convexity of Surfaces of Constant Strain Energy
or Complementary Energy

In what follows the convexity of surfaces of constant strain energy W = const and
constant complementary energy C = const will be proved (convexity requirement).
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Consider two strain states of linear or nonlinear elasticity ε
(1)
i j and ε

(2)
i j . The

strain energy values corresponding to these strains can be denoted as W(ε
(1)
i j ) and

W(ε
(2)
i j ). The corresponding increment of elastic strain energy W(ε

(1)
i j ) − W(ε

(2)
i j )

can be expanded in Taylor’s series around the state ε(1)
i j

W(ε(2)
i j ) − W(ε(1)

i j ) = ∂W
∂εmn

∣∣∣∣
ε
(1)
i j

(
ε(2)

i j − ε(1)
i j

)

+ 1

2

∂2W
∂εmn∂εkl

∣∣∣∣
ε
(1)
i j

(
ε
(2)
i j − ε

(1)
i j

) (
ε
(2)
kl − ε

(1)
kl

)
+ · · ·

(4.31)

Limiting ourselves to the first two terms only we arrive at

W(ε(2)
i j ) − W(ε(1)

i j ) = ∂W
∂εmn

∣∣∣∣
ε
(1)
i j

(
ε(2)

i j − ε(1)
i j

)

+ 1

2

∂2W
∂εmn∂εkl

∣∣∣∣
ε
(1)
i j

(
ε
(2)
i j − ε

(1)
i j

) (
ε
(2)
kl − ε

(1)
kl

) (4.32)

The second term on the right hand side is positive taking into account (4.24) hence
neglecting it we arrive at the following inequality

W(ε
(2)
i j ) − W(ε

(1)
i j ) >

∂W
∂εi j

∣∣∣∣
ε
(1)
i j

(
ε
(2)
i j − ε

(1)
i j

)
(4.33)

or in an equivalent format

W(ε
(2)
i j ) − W(ε

(1)
i j )(

ε
(2)
i j − ε

(1)
i j

) >
∂W
∂εmn

∣∣∣∣
ε
(1)
i j

(4.34)

Geometric interpretation of the inequality (4.34) is the following: the left hand side
represents the hyperplane secant passing through points ε

(1)
i j and ε

(2)
i j , whereas the

right hand side presents the hyperplane tangent at point ε
(1)
i j to the surface W(εi j ) =

const. For the sake of simplicity, consider first the unidimensional case when the strain

energy is a function of one independent variable W(ε) inequality (4.34) reads as

W(ε(2)) − W(ε(1))(
ε(2) − ε(1)

) >
∂W
∂ε

∣∣∣∣
ε(1)

(4.35)

It is shown in Fig. 4.10 that the strain energy W(ε) being a quadratic function of
strain ε exhibits property that the slope of the secant is always greater than slope of
the tangent both passing through the initial point. In other words, the tangent always
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Fig. 4.10 Illustration of
convexity of strain energy
function W(ε) when it
depends on only one
independent variable ε

Fig. 4.11 Illustration of lack
of convexity for cubic
function

x

f (x)

“slides” at outside of the energy function curve W(ε) never crossing it by contrast to
the other case of a cubic function for which above condition is not satisfied Fig. 4.11.

A case of energy function of two strain arguments is illustrated in Fig. 4.12. Note
that it is possible to define convexity of a function f (x) on the basis of positive
definiteness of its second derivative, see Fig. 4.13.

Generalization of above conclusion for function of many arguments, for instance
the strain energy W(εi j ), condition of convexity is equivalent to positive definiteness

Fig. 4.12 Illustration of convexity or concavity of surface
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Fig. 4.13 Illustration of
convexity or concavity of a
function on the basis of sign
of its second derivative

of the Hessian Hi j being (6 × 6) matrix of fourth-rank tensor components Hi jkl =
∂2W/∂εi j∂εkl (4.24)

Hi j =
[

∂2W
∂εi∂ε j

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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3

∂2W
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∂γ5∂γ6
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6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.36)

what is a proof for convexity of the surface W(εi j ). In analogous way, it is possible
to prove convexity of surface C(σi j ).

Summarizing fulfillment of the stability postulate for elastic material guarantees
following properties of elastic deformation:

• Strain energy W(εi j ) and complementary energy C(σi j ) exist and are positive
definite.

• Stress σi j and strain εi j are normal to respective surfacesW = const or C = const.
• Surfaces W = const and C = const are convex in respective spaces of εi j or σi j .
• Positive definiteness of tangent stiffness matrix [tanE] and compliance matrix

[tanE
−1] guarantees unique inverse of constitutive equations which means that

for any constitutive relation of type σi j = F(εi j ) based on function W there
always exists its unique inverse εi j = F−1(σi j ).
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4.6 Discussion: Criterion of Positive Definiteness
of the Tangent Stiffness Matrix in Sylvester’s
Sense Versus Stability in Drucker’s Sense

In Sects. 4.3 and 4.4 different versions of stability postulate for elastic–plastic or
hyperelastic materials are presented which are similar to each other by common
analysis of elementary work done on closed stress cycle. In both cases, detailed
analysis of the work term leads to formulation of normality rule and convexity of
respective surface (see Table 4.4). This is however the end of similarities between both
stability postulates. Namely, one of the essential differences between both stability
postulates is that Drucker’s postulate saves sense in case of elastic–plastic defor-
mation only. From the mathematical point of view, Drucker’s postulate is weaker
constraint than the Sylvester stability postulate of hyperelastic material. As a matter
of fact, requirement of nonnegative elementary work of plastic strain according to
Drucker’s postulate for elastic–plastic material

dσi j dε
p
i j ≥ 0 (4.37)

can be satisfied even for a case when only one scalar product, for instance dσx dε
p
x

is positive and dominant over the others

Table 4.4 Schematic formulation of the Drucker stability criterion for hyperelastic material versus
the Sylvester conditions for minors of the Hessian matrix: total versus incremental formulations of
constitutive equations

Definitions Constitutive relations

Stress potential definition σi j = ∂W
∂εi j

Total form of constitutive equation σi j =sec Ei jklεkl

Incremental form of constitutive equation σ̇i j = ∂2W
∂εi j ∂εkl

ε̇kl

Tangent stiffness tensor tan Ei jkl
def= ∂ 2W

∂εi j ∂εkl

Drucker’s stability postulate in small σ̇i j ε̇i j > 0

positive definiteness of quadratic form
(stability criterion)

∂ 2W
∂εi j ∂εkl

ε̇kl > 0

Hessian matrix [Hi j ] def=
[

∂ 2W
∂εi ∂ε j

]

Sylvester’s stability condition det[Hi j ]k > 0

(all minors k × k of matrix [H]) (k = 1, 2, . . . , n)
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dσx dε
p
x − |dσydε

p
y | − |dσzdε

p
z | − |dτzx dγ

p
zx | − |dτxydγ

p
xy |

−|dτyzdγ
p
yz | ≥ 0

(4.38)

By contrast stability postulate for hyperelastic material is stronger constraint
because it requires positive definiteness of the quadratic form (4.24) which in Voigt’s
notation is as follows

[tanE]mn ε̇m ε̇n > 0 (4.39)

According to the Sylvester criterion, necessary and sufficient condition for positive
definiteness of the quadratic form (4.39) is as follows:

det[tanE]k > 0 k = 1, 2, . . . , 6 (4.40)

for arbitrary arguments ε̇n and ε̇m where [tanE]k denote minors (sub-matrices of
dimensions k × k) of the tangent stiffness matrix [tan

E] and symbol det[ ] stands for
determinant. Hence, the Sylvester criterion (4.40) performs in nonabbreviated form
system of six inequalities (for sub-determinants) which together guarantee stability
of hyperelastic material

tan E11 > 0

det

[
tan E11 tan E12

tan E22

]
> 0

det

⎡
⎣ tan E11 tan E12 tan E13

tan E22 tan E23

tan E33

⎤
⎦ > 0

...

det

⎡
⎢⎢⎢⎢⎢⎢⎣

tan E11 tan E12 tan E13 tan E14 tan E15 tan E16

tan E22 tan E23 tan E24 tan E25 tan E26

tan E33 tan E34 tan E35 tan E36

tan E44 tan E45 tan E46

tan E55 tan E56

tan E66

⎤
⎥⎥⎥⎥⎥⎥⎦

> 0

(4.41)

Finally it is worth to notice that the essential difference between Drucker’s stability
postulate (4.37) formulated for elastic–plastic material and the Sylvester’s stability
postulate for hyperelastic material based on positive definiteness of tangent stiffness
matrix (4.40) vanishes when the constitutive law in an incremental form based on
tangent stiffness matrix (4.15) is used as follows

dε
p
i j = λ

∂ f

∂σi j
= ep

tanE
−1
i jkldσkl (4.42)



4 General Concept of Limit Surfaces—Convexity and Normality Rules … 155

After introducing (4.42) into criterion of nonnegative plastic work (4.37), we arrive
at generalized stability Drucker’s postulate based on criterion of positive semi-
definiteness1 of elastic–plastic stiffness matrix

ep
tanE

−1
i jkldσi j dσkl ≥ 0 (4.43)

Generalized Drucker’s postulate formulated in such a way (4.42) is however stronger
condition than conventional Drucker’s postulate (4.37), and it takes form analogous
to Sylvester’s criterion (4.41) in which sub-determinants of tangent elastic stiffness
matrix [tanE] have been formally substituted by sub-determinants of tangent elastic–
plastic stiffness matrix [ep

tanE] (see Kuna-Ciskał and Skrzypek [21]).

ep
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[ ep
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tan E12
ep
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tan E13

ep
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ep
tan E23
ep
tan E33

⎤
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...

det

⎡
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ep
tan E11

ep
tan E12

ep
tan E13

ep
tan E14

ep
tan E15

ep
tan E16

ep
tan E22

ep
tan E23

ep
tan E24

ep
tan E25

ep
tan E26

ep
tan E33

ep
tan E34

ep
tan E35

ep
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ep
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ep
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ep
tan E46
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tan E55

ep
tan E56
ep
tan E66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0

(4.44)

Sylvester’s stability criterion in the format analogous to (4.41) or (4.44) was imple-
mented as failure criterion in other elastic-damage material to predict secondary
link-type or wing-type secondary crack initiation and subsequent growth stages
in the plane-stress concrete specimen with a pre-load crack, subject to tension or
compression (cf. Kuna-Ciskał and Skrzypek [21]). Note however that in numeri-
cal simulation of crack-growth response in elastic-damage material, the localized
strain-damage field is met at the crack tip. Consequently, local formulation of
the constitutive equations is no longer sufficient to assure convergence and avoid
mesh-dependence, such that more advanced nonlocal material model has to be used
(cf. Skrzypek et al. [30]) in such case.

1Inequality in a weak form with respect to accounting for possible perfectly plastic deformation.
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Chapter 5
Termination of Elastic Range of Pressure
Insensitive Materials—Isotropic
and Anisotropic Initial Yield Criteria

Artur W. Ganczarski and Jacek J. Skrzypek

Abstract In this chapter basic features of isotropic versus anisotropic initial yield
criteria are discussed. Two ways to account for anisotropy are presented: the explicit
and implicit formulations. The explicit description of anisotropy is rigorously based
on well-established theory of common invariants (Sayir, Goldenblat–Kopnov, von
Mises, Hill). The implicit approach involves linear transformation tensor of the
Cauchy stress that accounts for anisotropy to enhance the known isotropic criteria to
be able to capture anisotropy, hydrostatic pressure insensitivity, and asymmetry of
the yield surface (Barlat, Plunckett, Cazacu, Khan). The advantages and differences
of both formulations are critically presented. Possible convexity loss of the classical
Hill’48 yield surface in the case of strong orthotropy is examined and highlighted in
contrast to unconditionally stable von Mises–Hu–Marin’s criterion. Various transi-
tions from the orthotropic yield criteria to the transversely isotropic ones are carefully
distinguished in the light of irreducibility or reducibility to the isotropic Huber–von
Mises criterion in the transverse isotropy plane and appropriate symmetry class of
tetragonal symmetry (classical Hill’s formulation) or hexagonal symmetry (hexag-
onal Hill’s or von Mises–Hu–Marin’s). The new hybrid formulation applicable for
some engineering materials based on additional bulge test is also proposed.

Keywords Pressure insensitive criteria ·vonMises anisotropic criterion ·Convexity
loss for strong orthotropy · Degeneration of Hill’s surface to isotropic von Mises ·
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5.1 Isotropic Initial Yield Criteria of Pressure Insensitive
Materials

In case of isotropic materials limit criteria for elastic range are independent of refer-
ence frame. For this reason the isotropic initial yield criteria can be written down in
the reduced frame of simple stress tensor invariants f (Jiσ,Πi ) = 0 instead of the
stress tensor components frame f (σij,Πi ) = 0. By contrast, in case of anisotropic
materials the stress components frame has to be applied and the common both stress
and structural tensor invariants should be used (see Table5.2). Such a simplifica-
tion means reduction of the six-dimensional stress space to the three-dimensional
space spanned by arbitrary set of three stress invariants (Jiσ; i = 1, 2, 3). Sym-
bol Πi denotes scalar material constants defining termination of the elastic behavior
through the yield initiation in a form ofmicro-slips in ductile materialΠi = kpi (yield
stresses) or through the local microcracks in brittle materialΠi = kdi (failure limits).

The number of independent material constants Πi depends on the number of
parameters in the equation of limit surface (yield or failure initiation) which have
to be identified from independent strength tests: e.g., the uniaxial tension (kt), the
uniaxial compression (kc), and the pure shear (ks). In the simplest case, when con-
ditions of initial yielding or failure are identical for tension and compression and
simultaneously the shear is not independent constant the number of material con-
stants reduces to one parameter kt = kc = k which corresponds to yield or failure
initiation, whereas ks = k√

3
. Such a limitation is true for majority of ductile mate-

rials (metals and metallic alloys). However, in case of brittle materials that exhibit
different limit stress points for tension and compression (both yield and failure), the
limit surface is to be characterized by at least two independent constants kt �= kc and
such property is called strength differential effect.

Assuming narrower case of the experimentally confirmed for majority of metals
independence of yield initiation from hydrostatic pressure J1σ , we arrive at the limit
surface equation being function of the second and the third stress deviator invariants

f (J2s, J3s; ki ) = 0 (5.1)

Such a narrower class of materials is called hydrostatic pressure insensitive isotropic
materials.

The above condition depends on both the second and the third stress deviator
invariants J2s, J3s but it is independent of the first stress invariant J1σ . It simply
means that the cylindrical limit surface possesses the axis equally inclined to the
principal stress axes (σ1,σ2,σ3) called the hydrostatic axis (Fig. 5.1).

For purpose of further geometric illustration of considered surfaces it is convenient
to apply the Haigh–Westergaard coordinates [21, 63] ξ, ρ, and θ which represent,
respectively: distance along the hydrostatic axis measured from the origin to the
current stress point (effect of J1σ), distance in the deviatoric plane measured from
the hydrostatic axis and the stress point considered (effect of J2s), and the polar
coordinate of the stress point in the deviatoric plane (effect of J3s) (Fig. 5.1). Hence
the following definitions of the Haigh–Westergaard coordinates hold
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Fig. 5.1 Cylindrical yield surface in the Haigh–Westergaard coordinates

ξ = J1σ√
3
, ρ = √

2J2s, cos (3θ) = 3
√
3

2

J3s

(J2s)3/2
for 0 ≤ θ ≤ π

3
(5.2)

Roughly speaking, dependence on the first coordinate ξ stands for noncylindricity,
the second one ρ comprises size and the third one θ describes asymmetry of the yield
surface.

For further consideration it is also convenient to use a concept of the generating
curve of limit surface conventionally called the meridian. Meridians of the limit
surface either yield or failure are curves being intersections of the surface by planes
of θ = const containing the hydrostatic axis. In case of rotationally symmetric limit
surfaces allmeridians are identical. In a particular case of cylindrical surface all cross
sections by planes ξ = const (deviatoric planes) are identical and hence meridians
are straight lines.

In more general case of cylindrical but nonrotationally symmetric surface, which
depends on either the third invariant J3s or alternatively the third coordinate θ, three
of all meridians are of the particular importance (Fig. 5.2)

1

3 2

C

C

T TS
S

Fig. 5.2 Cross section of the cylindrical limit surface in deviatoric plane ξ = const; points T, S,
and C correspond to the tensile kt , the shear ks, and the compressive kc yield points, kt �= kc
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1. Tensile meridian T (θ = 0◦)
2. Shear meridian S (θ = 30◦)
3. Compressive meridian C (θ = 60◦)

Hence the equation of nonrotationally symmetric cylindrical surface (5.1) can be
written as

f (ρ, θ; ki ) = 0 (5.3)

where the independence of the position at the hydrostatic axis ξ is obvious.
Note that in a general caseEq. (5.3) represents cylindrical surface, the cross section

of which is not necessarily circular ρ(θ). This property is called the strength differ-
ential effect or the tension and compression asymmetry kt �= kc. Summarizing, for
isotropic materials considered the 60◦ symmetry property must be fulfilled which
means that the curve in the deviatoric plane is completely described by the form for
the sector 0 ≤ θ ≤ π

3 and this form is repeated in the remaining sectors (Fig. 5.2),
for details see Chen and Han [9], Ottosen and Ristinmaa [47]. In case of majority
of metals yield point stresses for compression and tension do not differ kt = kc = k
which means that no strength differential effect exists. In other words in the Haigh–
Westergaard space arbitrary cross section of a cylindrical yield surface done by any
deviatoric plane has to pass through six skeletal points: Ti (θ = 0◦, 120◦, 240◦)
and Ci (θ = 60◦, 180◦, 300◦) at constant distance from the origin equal to

√
2
3k.

Simultaneously, each of sectorial curve has to pass through three points correspond-
ing to pure shear Si (θ = 30◦, 150◦, 270◦), seeOttosen andRistinmaa [47], (Fig. 5.3).

In the simple case of majority of metals and steels the additional assumption
of independence of the cross section from the angle θ or alternatively from the

3

1 1

1

1

2

2

2

3

3

3

2

k

k

k

k

k

k

T
S

C

T

S

C

T

C

S
C=T

S

Fig. 5.3 The 60◦ symmetry property of the yield surface (5.3) in the deviatoric plane
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third invariant J3s can be done. In such a case limit surface is the cylindrical and
rotationally symmetric simultaneously as follows:

f (ρ; k) = √
3J2s − k =

√
3

2
sijsij − k =

√
3

2
ρ − k = 0 (5.4)

In such a waywe arrive at the limit case of the unit shear strain energy-based classical
isotropic von Mises criterion occasionally called the Huber–von Mises criterion
anticipated by Huber [31], extended by vonMises [43] and interpreted physically by
Hencky [22], cf. Ottosen and Ristinmaa [47]. When the engineering notation is used
the isotropic von Mises criterion takes the explicitly deviatoric form

(
σy − σz

)2 + (σz − σx )
2 + (

σx − σy
)2 + 6

(
τ2yz + τ2zx + τ2xy

)
= 2k2 (5.5)

or
σ2
1 − σ1σ2 + σ2

2 − σ2σ3 + σ2
3 − σ1σ3 = k2 (5.6)

if principal stresses are used.
In a more general case when the yield criterion depends on both the second and

the third Haigh–Westergaard coordinates f (ρ, θ) or alternatively on both the second
and the third deviatoric stress invariants f (J2s, J3s) we met the historically earlier
cylindrical criterion proposed by Tresca [60]

f (ρ, θ; k) = √
2ρ sin

(
θ − π

3

)
− k = 0 0 ≤ θ ≤ π

3
(5.7)

When the principal stresses are used the classical form of the Tresca criterion

f (σ1,σ2,σ3; k) = max (|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) − k = 0 (5.8)

clearly corresponds to the hypothesis of maximum shear stress. The Tresca criterion
can also by presented in terms of the second and the third stress deviator invariants
(1.15), cf. Reuss [49]

f (J2s, J3s) = 4J 3
2s − 27J 2

3s − 9k2 J 2
2s + 6k4 J2s − k6 = 0 (5.9)

The Tresca initial yield surface is cylindrical but not rotationally symmetric built
on the regular hexagon and the hydrostatic axis Fig. 5.4. It is clear that the Tresca
yield surface represents a regular prism inscribed into the Huber–von Mises circular
cylinder and possessing six joint meridians seen here as six skeletal points T1, T2, T3
and C1, C2, C3 (Fig. 5.4). The Tresca initial yield surface exhibits the 60◦ symmetry
property.

The Tresca limit surface suffers from the existence of edges (tension T1, T2, T3
and compression C1, C2, C3 meridians) in which the normality rule does not hold
Fig. 5.5. In order to avoid this deficiency theHosford andBackhofen [27] andHosford
[28, 29] limit surface can be introduced

http://dx.doi.org/10.1007/978-3-319-17160-9_1
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Fig. 5.4 Cylindrical initial
yield criteria in the
deviatoric plane

Fig. 5.5 Nonuniqueness of
plastic strain increment
direction in case of skeletal
points for Tresca yield
surface
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|σ1 − σ2|m + |σ2 − σ3|m + |σ3 − σ1|m = 2km (5.10)

The discussed criterion is commonly called the Hosford criterion (1964) although it
was earlier suggested by Hershey [24] and Davies [11]. The exponent m used in the
Hosford criterion is an additional material constant that should be chosen according
to experimental evidence. The range of this constant exhibits certain limitations and
particular cases. It can theoretically change in range 1 ≤ m < ∞, cf. Cazacu and
Barlat [7]. In the cases 1 < m < 2 or 4 < m < ∞ the initial yield curves are located
between the Tresca and the Huber–von Mises loci, whereas for m = 1 and m → ∞
or for m = 2 and m = 4 the Tresca or the Huber–von Mises yield loci are recovered,
respectively. If 2 < m < 4 the yield curve slightly exceeds the Huber–von Mises
loci as shown in Fig. 5.6. If 0 < m < 1 is chosen a concave yield curve is met,
which is inadmissible from the Drucker stability postulate point of view. According
to Hershey, magnitudes m = 6 and m = 8 well fit experimental findings.

Concluding, the Tresca initial yield criterion is the inner bound for all limit curves
of the isotropic materials without the strength differential effect. Note however that
there exists wide class of materials which exhibits the strength differential effect
hence the Tresca does not have to be treated as the inner bound nevertheless the
convexity condition resulting from the Drucker postulate is not violated, see Cazacu
and Barlat [7].
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Fig. 5.6 The second Haigh–Westergaard coordinate ρ versus exponent m in Hosford’s criterion
(5.10)

It is also possible to derive the outer bound for all limit curves of the isotropic
materials without the strength differential effect which does not violate convexity
according to Drucker’s postulate. To this end the criterion of maximal deviatoric
stress proposed by Schmidt [53], Ishlinsky [32], and Hill [26] can be used

f (σ1,σ2,σ3; k) = max [|σ1 − σh|, |σ2 − σh|, |σ3 − σh|] − 2

3
k = 0 (5.11)

The above equationwhen rigorously expressed in theHaigh–Westergaard space takes
the alternative form

f (ρ, θ; k) = max

[∣∣∣∣
√

2
3ρ cos θ

∣∣∣∣ ,
∣∣∣∣
√

2
3ρ cos

(
θ + 2π

3

)∣∣∣∣ ,
∣∣∣∣
√

2
3ρ cos

(
θ − 2π

3

)∣∣∣∣
]

− 2
3k = 0

(5.12)

In this space the outer bound represents a regular prism circumscribed onto the
Huber–von Mises circular cylinder and possessing six joint meridians seen here as
six skeletal points T1, T2, T3 and C1, C2, C3 (Fig. 5.4). By contrast to Tresca’s inner
bound now six meridians do not coincide with the outer bound prism edges but lie
in the middle of walls (Fig. 5.4).

Summarizing the above considerations, the postulate of inner and outer bounds
of limit surfaces of initial yield in isotropic and tension/compression materials (no
strength differential effect included) by Tresca (inner bound) and the criterion of
maximal deviatoric stress (outer bound) define the admissible range for all cylindrical
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Fig. 5.7 Experimental
findings for thin-walled
tubes made of steel (◦),
copper (•), and nickel (�),
after Lode [40]

Fig. 5.8 Yield surfaces
exhibiting strength
differential effect
kt/kc = 0.75, 1.0
(Huber–von Mises), 1.25;
described by (5.13), after
Cazacu and Barlat [7]

limit surfaces for the class of metals and steels. It directly results from both the 60◦
symmetry property in the Haigh–Westergaard space as well as the Drucker convexity
assumption. Hence, all initial yield surfaces of real tension/compression asymmetry
insensitive materials have to include tensile T1, T2, T3 and compressive C1, C2,

C3 meridians being straight lines equidistant form the hydrostatic axis
√

2
3k. For

instance, the Lode [40] experimental findings for thin-walled tubes made of steel,
copper, and nickel confirm suitability of the Huber–vonMises and the Tresca criteria
for prediction of yield initiation in case of ductile materials under the plane stress
state (σ3 = 0), see Fig. 5.7. Limit surface dependent on the second and the third stress
invariants with the strength differential effect accounted for, was used by Raniecki
and Mróz [48] when applied to initial yield or phase change surfaces in NiTi shape
memory alloys

f (J2s, J3s) = (J2s)
3n/2 − c (J3s)

n − k3n = 0 (5.13)

Raniecki and Mróz’s criterion (5.13) includes three material constants c, k, n and
it is an extension of the Cazacu and Barlat [7] criterion for n = 1 for describing
asymmetry in yielding initiation in pressure insensitive isotropic materials, Fig. 5.8

f (J2s, J3s) = (J2s)
3/2 − cJ3s − k3 = 0 (5.14)
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On the other hand, substituting n = 2 to Eq. (5.13) we arrive at Drucker’s
criterion [12]

f (J2s, J3s) = (J2s)
3 − c (J3s)

2 − k6 = 0 (5.15)

5.2 Von Mises Anisotropic Criterion

In a general case of material anisotropy, extension of the isotropic yield initiation
criteria (Table5.3) to the anisotropic yield/failure behavior (Table5.4), by the use
of common invariants of the stress tensor and of the structural tensors of plastic
anisotropy (cf. Hill [25], Sayir [52], Betten [5], Życzkowski [65]), can be shown in
a general fashion

f
(
Π,Πijσij,Πijklσijσkl,Πijklmnσijσklσmn, . . .

) = 0 (5.16)

where Einstein’s summation convention holds.
In such a case, initiation of plastic flow or failure is governed by the structural ten-

sors of material anisotropy of even-ranks:
<0>
ĪI = Π,

<2>
ĪI = Πij,

<4>
ĪI = Πijkl,

<6>
ĪI =

Πijklmn, . . ., etc., instead of the scalar constants ki as it is known for isotropic mate-
rials. Equation (5.16) owns a general representation, but its practical identification
is limited by a large number of required material tests and, additionally, because the
components of the structural tensors are temperature dependent, which makes iden-
tification much more complicated (cf., e.g., Herakovich and Aboudi [23], Tamma
and Avila [59]). Hence, a general form (5.16) is usually more specified and limited
for engineering needs.

In a particular case when a general tensorially polynomial form of Eq. (5.16)
is assumed (cf. Sayir [52], Kowalsky et al. [37], Życzkowski [65], Ganczarski and
Skrzypek [18]) the polynomial anisotropic yield criterion is furnished

(Πijσij)
α + (Πijklσijσkl)

β + (Πijklmnσijσklσmn)
γ + · · · − 1 = 0 (5.17)

where, if the Voigt notation is used the structural anisotropy tensors take correspond-
ing matrix forms

[<2>
ĪI ] =

⎡
⎣

π11 π12 π13
π22 π23

π33

⎤
⎦ (5.18)
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and

[<4>
ĪI ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 Π14 Π15 Π16
Π22 Π23 Π24 Π25 Π26

Π33 Π34 Π35 Π36

Π44 Π45 Π46
Π55 Π56

Π66

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.19)

The even-rank structural anisotropy tensors Πij,Πijkl,Πijklmn, . . . , in Eq. (5.17) are
normalized by the common constant Π and α,β, γ . . ., etc., are arbitrary exponents
of a polynomial representation. In a narrower case if α = 1,β = 1/2, γ = 1/3,
and limiting an infinite form (5.17) to the equation that contains only three common
invariants, we arrive at the narrower form known as the Goldenblat and Kopnov
criterion [19]

Πijσij + (Πijklσijσkl)
1/2 + (Πijklmnσijσklσmn)

1/3 − 1 = 0 (5.20)

which satisfies the dimensional homogeneity of three polynomial components.
Equation (5.20), when limited only to three common invariants of the stress tensor

σ and structural anisotropy tensors of even orders: 2nd Πij, 4th Πijkl, and 6th Πijklmn

is not the most general one, in the meaning of the representation theorems, which
determine the most general irreducible representation of the scalar and tensor func-
tions that satisfy the invariance with respect to change of coordinates and material
symmetry properties (cf., e.g., Spencer [56], Rymarz [51], Rogers [50]). However,
2nd, 4th, and 6th order structural anisotropy tensors, which are used in (5.20) or
in case if α = 1,β = 1, γ = 1 and the deviatoric stress representation used by
Kowalsky et al. [37]

h(1)
ij sij + h(2)

ijklsijskl + h(3)
ijklmnsijsklsmn − h(0) = 0 (5.21)

are found satisfactory for describing fundamental transformation modes of limit sur-
faces caused by plastic or failure processes, namely: isotropic change of size, kine-
matic translation and rotation, as well as surface distortion (cf. Betten [5], Kowalsky
et al. [37]).

In what follows, we shall reduce class of the limit surface from the general ten-
sorially polynomial representation to the forms independent of both the first Πijσij

and the third Πijklmnσijσklσmn common invariants, but preserving the most general
representation for the second common invariant, according to von Mises [43, 44].
In such a case the 4th rank tensor of material anisotropy Πijkl is, in general, defined
by 21 anisotropy modules (but 18 of them independent), since the anisotropy 6 × 6
matrix [ĪI]ij (5.19) can completely be populated. Further reduction of the number
of modules to 15 will be achieved, when the insensitivity of general von Mises
quadratic form with respect to the change of hydrostatic stress will be assumed. In
such a way the general tensorial von Mises criterion will be reduced to the devia-
toric von Mises form defined by 15 anisotropy modules. A choice of 15 anisotropy
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modules considered as independent is, in general, not unique (cf. Szczepiński [58],
Ganczarski and Skrzypek [17]). However, the 15-parameter deviatoric von Mises cri-
terion is sensitive to the change of sign of shear stresses, which may be considered as
questionable (cf., e.g., Malinin and Rżysko [42]). Simplest way to avoid a doubtful
physical explanation for existence of terms linear for shear stresses τij, a reduction
of the 15-parameter von Mises equation to the 9-parameter orthotropic von Mises
criterion can be done. This form does not satisfy the deviatoric property, but when
the constraints of independence of the hydrostatic stress is consistently applied, it
is easily reduced to the deviatoric form, known as orthotropic Hill’s criterion, with
only 6 independent moduli of orthotropy (cf. Hill [25]).

Limiting ourselves to plastic yield initiation in ductile materials, a consecutive
reductionof thegeneral tensorially polynomial anisotropic criterion (5.20) to the form
dependent only on the 4th rank common invariantσijΠijklσkl holds, as it was proposed
in the von Mises criterion for anisotropic yield initiation (item D8 in Table6.3) (cf.
von Mises [43, 44]).

σijΠijklσkl − 1 = 0 (5.22)

When themore convenientVoigt’s vector–matrix notation is used, the formequivalent
to (5.22) is obtained

{σ}T [<4>
ĪI ] {σ} − 1 = 0 (5.23)

where only one fourth-rank tensor of plastic anisotropy ĪI is saved.
Anisotropic von Mises criterion (5.22) or (5.23), being an initial yield criterion of

anisotropic material is an extension of the isotropic Huber–von Mises criterion (5.4).
This is more clear when the Huber–von Mises condition is rewritten in a following
fashion

σijΠ
HMH
ijkl σkl − 1 = 0 (5.24)

where ΠHMH
ijkl stands for the isotropic fourth-rank structural tensor whose represen-

tation matrix is

[ĪIHMH] = 1

k2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
2 − 1

2 0 0 0

1 − 1
2 0 0 0

1 0 0 0
3 0 0

3 0

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.25)

Note however that condition (5.24) comprises stress tensor components σij but not
stress deviator components sij as commonly used. However, Eq. (5.24) takes analo-
gous form when stress deviator components sij are used, namely

sijΠ
HMH
ijkl skl − 1 = 0 (5.26)

http://dx.doi.org/10.1007/978-3-319-17160-9_6
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since when decomposition of the stress tensor into the deviatoric and the hydrostatic
part is done σij = sij + 1

3σkkδij we arrive at

sijΠ
HMH
ijkl skl +

(
2sij + 1

3
σmmδij

)(
ΠHMH

ijkl δkl

)1
3
σnn − 1 = 0 (5.27)

However, the underlined term in (5.27) is identically equal to zero since the following
holds

ΠHMH
11 + ΠHMH

12 + ΠHMH
13 = 1 − 1

2 − 1
2 = 0

ΠHMH
21 + ΠHMH

22 + ΠHMH
23 = − 1

2 + 1 − 1
2 = 0

ΠHMH
31 + ΠHMH

32 + ΠHMH
33 = − 1

2 − 1
2 + 1 = 0

(5.28)

when the Voigt notation for the Huber–von Mises matrix is used.
The structural 4th rank tensor of plastic anisotropy in Eq. (5.22) must be symmet-

ric: Πijkl = Πklij = Πjikl = Πijlk , if stress tensor symmetry is assumed. Hence, in
case if none other symmetry properties are implied, the von Mises plastic anisotropy
tensor is defined by 21 modules. However, due to its invariance of the tensorial trans-
formation rule, number of independent anisotropy modules is reduced to 18. Finally,
the general anisotropic von Mises criterion can be furnished as

Πxxxxσ
2
x + Πyyyyσ

2
y + Πzzzzσ

2
z +

2Πxxyyσxσy + 2Πyyzzσyσz + 2Πzzxxσzσx+
4Πxxyzσxτyz + 4Πxxzxσxτzx + 4Πxxxyσxτxy+
4Πyyyzσyτyz + 4Πyyzxσyτzx + 4Πyyxyσyτxy+
4Πzzyzσzτyz + 4Πzzzxσzτzx + 4Πzzxyσzτxy+
8Πxyyzτxyτyz + 8Πyzzxτyzτzx + 8Πzxxyτzxτxy+
4Πyzyzτ

2
yz + 4Πzxzxτ

2
zx + 4Πxyxyτ

2
xy = 1

(5.29)

where Πijkl denote 21 components of the von Mises plastic anisotropy tensor.
The von Mises 6 × 6 matrix of plastic anisotropy, being symmetric and fully

populated matrix representation of the 4th rank anisotropy tensor Πijkl shown in
(5.22), is furnished as follows:

(5.30)
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if engineering vectorial representation of the stress tensor {σ} is chosen as

{σ} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.31)

When the matrix coordinates Πij (5.30) are consistently defined by the tensorial
coordinates Πijkl

Π11 = Πxxxx Π22 = Πyyyy Π33 = Πzzzz

Π12 = Πxxyy Π13 = Πxxzz Π23 = Πyyzz

Π14 = 2Πxxyz Π15 = 2Πxxzx Π16 = 2Πxxxy . . .

Π44 = 4Πyzyz Π55 = 4Πzxzx Π66 = 4Πxyxy

Π45 = 4Πyzzx Π46 = 4Πxyyz Π56 = 4Πzxxy

(5.32)

we arrive at the general anisotropic von Mises equation equivalent to (5.29)

Π11σ
2
x + Π22σ

2
y + Π33σ

2
z +

2(Π12σxσy + Π23σyσz + Π31σzσx +
Π14σxτyz + Π15σxτzx + Π16σxτxy +
Π24σyτyz + Π25σyτzx + Π26σyτxy +
Π34σzτyz + Π35σzτzx + Π36σzτxy +
Π45τyzτzx + Π46τxyτyz + Π56τzxτxy)+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.33)

Representation of the anisotropic von Mises condition (5.23) in deviatoric form is
not trivial. The vonMises equation in the vector–matrix notation depends on both the
deviatoric s and the hydrostatic part σh1, when stress decomposition σ = s + σh1
is applied, namely

{s}T [<4>
ĪI ] {s} +

(
2 {s}T + σh {1}T

)(
[<4>
ĪI ] {1} σh

)
− 1 = 0 (5.34)

The tensorial von Mises equation (5.34) can further be reduced to the deviatoric form
independent of the hydrostatic pressure as follows:

{s}T [devĪI] {s} − 1 = 0 (5.35)

only if the constraint

[<4>
ĪI ] {1} = 0 (5.36)
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is consistently applied. The constraint (5.36) guarantees the deviatoric von Mises
equation (5.35) to be represented in the reduced six-dimensional stress space by a
cylindrical surface defined by 15 independent anisotropy modules, when six con-
straints are satisfied

Π11 + Π12 + Π13 = 0
Π12 + Π22 + Π23 = 0
Π13 + Π23 + Π33 = 0
Π14 + Π24 + Π34 = 0
Π15 + Π25 + Π35 = 0
Π16 + Π26 + Π36 = 0

(5.37)

However, the final matrix representation (5.30) with (5.37) employed depends on a
choice of independent elements. Two of such representations are of special impor-
tance.

In the first case, the elements of matrix (5.30) considered as independent are:
Π12,Π13, Π23;Π15,Π16,Π24,Π26,Π34,Π35 and Π44,Π55,Π66;Π45,Π46, Π56,
such that the following first representation for the deviatoric von Mises matrix is
furnished

(5.38)
if constraints (5.37) are applied as follows

Π11 = −Π12 − Π13, Π14 = −Π24 − Π34
Π22 = −Π12 − Π23, Π25 = −Π15 − Π35
Π33 = −Π13 − Π23, Π36 = −Π16 − Π26

(5.39)

In the second case, the elements ofmatrix (5.30) chosen as independent are:Π11,Π22,
Π33;Π15,Π16,Π24,Π26,Π34,Π35 and Π44,Π55,Π66;Π45,Π46,Π56, hence we
arrive at the second representation of the deviatoric von Mises matrix as follows:
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(5.40)
if, instead of (5.39), other substitution is used

Π12 = 1
2 (Π33 − Π11 − Π22)

Π13 = 1
2 (Π22 − Π11 − Π33)

Π23 = 1
2 (Π11 − Π22 − Π33)

Π14 = −Π24 − Π34

Π25 = −Π15 − Π35

Π36 = −Π16 − Π26

(5.41)

A choice of 15 elements in the vonMises matrix (5.30) considered as independent
is not a unique procedure and can result in the different deviatoric vonMises equation
forms. In particular, when a more convenient representation (5.38) is substituted for
[devĪI] in (5.35) we arrive at the following von Mises equation expressed in the
deviatoric stress space

−Π12
(
sx − sy

)2 − Π13 (sx − sz)
2 − Π23

(
sy − sz

)2 +
2
{
τyz

[
Π24

(
sy − sx

) + Π34 (sz − sx )
]+

τzx
[
Π15

(
sx − sy

) + Π35
(
sz − sy

)]+
τxy

[
Π16 (sx − sz) + Π26

(
sy − sz

)]+
Π45τyzτzx + Π46τxyτyz + Π56τzxτxy

}+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.42)

It is visible that above equation owns the clear deviatoric structure hence, when the
tensorial stress space is used instead of the deviatoric one, the analogous equivalent
to (5.42) representation of the deviatoric von Mises equation is also true in terms of
stress components (cf. Szczepiński [58])
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−Π12
(
σx − σy

)2 − Π13 (σx − σz)
2 − Π23

(
σy − σz

)2 +
2
{
τyz

[
Π24

(
σy − σx

) + Π34 (σz − σx )
]+

τzx
[
Π15

(
σx − σy

) + Π35
(
σz − σy

)]+
τxy

[
Π16 (σx − σz) + Π26

(
σy − σz

)]+
Π45τyzτzx + Π46τxyτyz + Π56τzxτxy

}+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.43)

Note, that Eqs. (5.42) or (5.43) are defined by 15 elements Πij. However, the under-
lined terms are sensitive to change of sign of shear stresses, e.g., τyz(σy − σx ) etc.,
which is physically questionable and, finally, such terms are consequently omitted in
some cases (cf., e.g., Malinin and Rżysko [42]). Nevertheless, the full representation
(5.43) might occur useful when the von Mises–Tsai–Wu extension to the brittle-like
material is sought for (cf. Tsai and Wu [61]).

5.3 Orthotropic Initial Yield Criteria—The von Mises
Orthotropic Criterion, the Hill Deviatoric Criterion

General form of the 21-parameter anisotropic von Mises criterion (5.33) involves
nonematerial symmetry property. In a particular case if plastic orthotropy is assumed
for the initial yield criterion (5.23), when represented in principal orthotropy axes,
the 9-parameter orthotropic von Mises matrix (5.30) takes the form

(5.44)

In such a case the general anisotropic von Mises equation (5.33) is reduced to the
narrower 9-parameter orthotropic von Mises criterion

Π11σ
2
x + Π22σ

2
y + Π33σ

2
z +

2(Π12σxσy + Π23σyσz + Π31σzσx )+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.45)

When the Voigt notation is used, the 9-parameter orthotropic von Mises criterion
takes the form

{σ}T [ort ĪI] {σ} − 1 = 0 (5.46)
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that involves definition (5.44). Note that equation (5.46) belongs to the class of
hydrostatic pressure sensitive criteria (cf. item D8 in Table6.3 Khan et al. [35, 36]).

In order to achieve pressure insensitive orthotropic criterion we apply a procedure
described in Sect. 5.2. If we decompose again the stress tensor into deviatoric and
volumetric parts σ = s +σh1 in the orthotropic von Mises equation (5.46) we arrive
at the equation analogous to (5.34)

{s}T [ort ĪI] {s} +
(
2 {s}T + σh {1}T

)
([ort ĪI] {1} σh) − 1 = 0 (5.47)

Assuming further hydrostatic pressure insensitive form the following holds

[ort ĪI] {1} = 0 (5.48)

which leads to three constraints instead of six in general case of vonMises anisotropic
Eq. (5.37)

Π11 + Π12 + Π13 = 0
Π12 + Π22 + Π23 = 0
Π13 + Π23 + Π33 = 0

(5.49)

In this way the orthotropic von Mises criterion (5.46) reduces to the pressure insen-
sitive criterion called Hill’s criterion [25, 26] that contains six independent modules

{s}T [ĪIH] {s} − 1 = 0 (5.50)

Hill’s matrix [ĪIH] appearing in Eq. (5.50) contains six independent modules. A
choice of the three independentmodules form six involved in Eq. (5.49) is not unique.
In what follows two of them are discussed (see two aforementioned forms (5.38) and
(5.40)).

In this way we arrive at the following Hill’s matrices

(5.51)

http://dx.doi.org/10.1007/978-3-319-17160-9_6
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or

(5.52)

When the engineering notation is used, corresponding representations of the Hill’s
criterion are

−
[
Π23

(
σy − σz

)2 + Π13 (σz − σx )
2 + Π12

(
σx − σy

)2]+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.53)

or
Π11σ

2
x + Π22σ

2
y + Π33σ

2
z + (Π33 − Π11 − Π22)σxσy +

(Π22 − Π11 − Π33) σxσz + (Π11 − Π22 − Π33)σyσz +
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy = 1

(5.54)

Both representations (5.53) or (5.54) describe the sameHill’s limit surface, but apply-
ing two different choices of six independent elements of the Hill matrices (5.51)
or (5.52). In order to calibrate Hill’s criterion in the form (5.53) or (5.54) three

Fig. 5.9 Six tests for Hill’s
criterion calibration
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tests of uniaxial tension σx = kx ,σy = ky,σz = kz and three tests of pure shear
τxy = kxy, τyz = kyz, τzx = kzx, in directions and planes of material orthotropy
(Fig. 5.9), must be performed. These tests allow to express six modules of material
orthotropy in Eqs. (5.53) and (5.54) in terms of 3 independent plastic tension lim-
its kx , ky, kz (in directions of orthotropy), and 3 independent plastic shear limits
kyz, kzx, kxy (in planes of material orthotropy). Hence,

−Π23 = 1

2

(
1

k2y
+ 1

k2z
− 1

k2x

)
, Π44 = 1

k2yz

−Π13 = 1

2

(
1

k2z
+ 1

k2x
− 1

k2y

)
, Π55 = 1

k2zx

−Π12 = 1

2

(
1

k2x
+ 1

k2y
− 1

k2z

)
, Π66 = 1

k2xy

(5.55)

such that orthotropic Hill’s criteria equivalent to (5.53) or (5.54) can be furnished
in terms of plastic anisotropy limits as follows:

1

2

(
1

k2y
+ 1

k2z
− 1

k2x

) (
σy − σz

)2 + 1

2

(
1

k2z
+ 1

k2x
− 1

k2y

)
(σz − σx )

2 +

1

2

(
1

k2x
+ 1

k2y
− 1

k2z

) (
σx − σy

)2 +
(

τyz

kyz

)2

+
(

τzx

kzx

)2

+
(

τxy

kxy

)2

= 1

(5.56)

or (
σx

kx

)2

+
(

σy

ky

)2

+
(

σz

kz

)2

−
(

1

k2x
+ 1

k2y
− 1

k2z

)
σxσy −

(
1

k2y
+ 1

k2z
− 1

k2x

)
σyσz −

(
1

k2z
+ 1

k2x
− 1

k2y

)
σzσx +

(
τyz

kyz

)2

+
(

τzx

kzx

)2

+
(

τxy

kxy

)2

= 1

(5.57)

Note that under a particular plane stress condition, e.g., in the x, y plane, when
σz = τzx = τyz = 0, both formulas (5.56) and (5.57) reduce to the 4-parameter
orthotropic Hill’s condition

σ2
x

k2x
+ σ2

y

k2y
−

(
1

k2x
+ 1

k2y
− 1

k2z

)
σxσy + τ2xy

k2xy
= 1 (5.58)
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where initiation of plastic flow in the x, y plane is controlled not only by the in-plane
limits kx , ky , and kxy, but also by the out-of-plane limit kz , which may finally lead to
inadmissible loss of convexity by the yield surface. This will be discussed in detail
in the next section.

Note that in case when Π23 = Π13 = Π12 = −1/2k2 and Π44 = Π55 = Π66 =
3/k2 the orthotropic Hill criterion (5.53) reduces to the isotropic Huber–von Mises
criterion

(
σy − σz

)2 + (σz − σx )
2 + (

σx − σy
)2 + 6

(
τ2yz + τ2zx + τ2xy

)
= 2k2 (5.59)

The Hill criterion (5.53) is formulated in the space of principal material directions
of orthotropy which in general do not coincide with directions of principal stresses.
In the particular case when the coaxiality holds σx = σ1, σy = σ2, σz = σ3,
τxy = τyz = τzx = 0 we arrive at simplified

− Π23 (σ2 − σ3)
2 − Π13 (σ3 − σ1)

2 − Π12 (σ1 − σ2)
2 = 1 (5.60)

or when calibration (5.55) is used the explicit form of (5.60) is finally furnished

1

2

(
1

k22
+ 1

k23
− 1

k21

)
(σ2 − σ3)

2 +

1

2

(
1

k23
+ 1

k21
− 1

k22

)
(σ3 − σ1)

2 +

1

2

(
1

k21
+ 1

k22
− 1

k23

)
(σ1 − σ2)

2 = 1

(5.61)

Hill’s condition (5.61) represents cylindrical elliptic surface whose axis coincides
with the hydrostatic axis. Nevertheless in some cases, the limit surface looses closed
form for high othotropy degree which may occur when one of following expressions
1
k22

+ 1
k23

− 1
k21

elsewhere 1
k23

+ 1
k21

− 1
k22

or 1
k21

+ 1
k22

− 1
k23

changes the sign. Such

behavior is not admissible and a way how to overcome it will be presented in the next
section.

It is convenient to express Hill’s limit surface by use of the Haigh–Westergaard
coordinates (cf. Ganczarski and Lenczowski [15])

⎧⎨
⎩

σ1
σ2
σ3

⎫⎬
⎭ = ξ√

3

⎧⎨
⎩
1
1
1

⎫⎬
⎭ +

√
2

3
ρ(θ)

⎧⎨
⎩
cos θ

cos(θ − 2π
3 )

cos(θ + 2π
3 )

⎫⎬
⎭ (5.62)
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Fig. 5.10 Comparison of the
Huber–von Mises and the
Hill criteria in deviatoric
plane applying the
Haigh–Westergaard
coordinates ρ(θ) (k1 = k,
k2 = 0.8k, k3 = 1.5k)

to finally obtain Hill’s criterion in form ρ(θ)

ρ(θ) =

⎡
⎢⎢⎣

2(
1
k22

+ 1
k23

− 1
k21

)
sin2

(
θ + π

3

) +
(

1
k23

+ 1
k21

− 1
k22

)
sin2

(
θ − π

3

)

+
(

1
k21

+ 1
k22

− 1
k23

)
sin2 θ

⎤
⎥⎥⎦

1/2 (5.63)

Note that in case if k1 = k2 = k3 = k the Huber–von Mises circular cylinder is
recovered Fig. 5.10

ρ =
√
2

3
k = const (5.64)

5.4 Hill’s Criterion Versus Hu–Marin’s Concept
in Case of Strong Orthotropy

Classical orthotropicHill’s criterion [25], despite obvious advantages andwide tech-
nical applications, is limited however by some constraints of applicability, which are
discussed in the present section following [18].

First limitation of applicability range of the classical Hill criterion is established
through the inequality bounding the magnitudes of the engineering orthotropy con-
stants k1, k2, and k3 in order to avoid ellipticity loss of the limit surface in the stress
space when the coordinate axes are aligned with the material axes of orthotropy (see,
e.g., Ottosen and Ristinmaa [47], Ganczarski and Skrzypek [17, 18]). Such limit
bounds put upon the orthotropy limits usually hold in case if the degree of material
orthotropy is moderate. For example, if the material ensures the transverse isotropy
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symmetry, it is shown that the orthotropy degree bounded by the inequality kmax
kmin

< 2
guarantees ellipticity of the limit surface to be saved. However, if the orthotropy
bound is violated, the Hill criterion becomes useless when a possible degeneration
of the elliptic cylindrical surface into two concave hyperbolic cylinders occurs, what
is inadmissible in the light of Drucker’s or Sylvester’s stability postulates.

To illustrate this restriction, we consider two types of true materials for which
the classical Hill criterion occurs to be: either useful, if material orthotropy degree
is not very high such that the ellipticity property of the limit surface is preserved, or
useless if the orthotropy degree is as high as the described limit surface no longer
holds the ellipticity requirement.Otherwords, a physically inadmissible degeneration
of the single convex and simply connected elliptical limit surface into two concave
hyperbolic surfaces occurs.

The following inequality bounds the range of applicability for Hill’s criterion
(cf., e.g., Ottosen and Ristinmaa [47])

2

k21k22
+ 2

k22k23
+ 2

k23k21
>

1

k41
+ 1

k42
+ 1

k43
(5.65)

For simplicity, a coincidence of the principal stress axes with the material orthotropy
axes is assumed in (5.65). In the narrower case of transverse isotropy k1 = k2,
condition (5.65) reduces to the simple form

1

k23

(
4

k21
− 1

k23

)
> 0 (5.66)

Substitution of the dimensionless parameter R = 2( k3
k1

)2 − 1, after Hosford and
Backhofen [27], leads to the simplified restriction

R > −0.5 (5.67)

If the above inequalities (5.65)–(5.67) do not hold, elliptic cross sections of the limit
surface degenerate into two hyperbolic branches and the lack of convexity occurs.
To illustrate this limitation, the yield curves in two planes: the transverse isotropy
(σ1,σ2) and the orthotropy plane (σ1,σ3) for various R–values, are sketched in
Fig. 5.11a, b, respectively. It is observed that when R starting from R = 3 approaches
the limit R = −0.5, the curves change from closed ellipses to two parallel lines,
whereas for R < −0.5 concave hyperbolas appear.

As example of orthotropic engineeringmaterial for which classical Hill’s criterion
can correctly predict the limit surface, consider first the OTCz Titanium Alloy, the
mechanical orthotropic properties of which are given in Table5.1 (cf. Malinin and
Rżysko [42]). Note that, for the OTCz Titanium Alloy, yield limits in the plane of
weak orthotropy 1,2 differ not so much, but the 3 axis is the dominant orthotropy
axis. As a consequence, in the plane of weak orthotropy 1,2 Hill’s ellipse is slightly
rotated towards 2–axis (α12 ≈ 45◦), in contrast to the plane of strong orthotropy
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(a) (b)

Fig. 5.11 Degeneration of theHill’s limit surfacewith themagnitude of theHosford andBackhofen
parameter R: a transverse isotropy plane, b orthotropy plane (after Ganczarski and Skrzypek [18])

Table 5.1 Mechanical properties of orthotropic OTCz Titanium Alloy after Malinin and Rżysko
[42]

Yield limits k1 [MPa] k2 [MPa] k3 [MPa]

490 520 800

1,3, where the rotation of the Hill ellipse is significant (α13 ≈ 71◦), as shown in
Fig. 5.12a, b, respectively.

In a case of high orthotropy degree (observed for majority of the long fiber rein-
forced composites, for instance: Boron/Al, SiC/Ti, Glass/Epoxy, Graphite/Epoxy,
etc., e.g., Herakovich and Aboudi [23], Sun and Vaidya [57], and others), the con-
cept other than Hill’s is proposed. This new approach suggests formulation of limit
criterion based on the 9-parameter von Mises condition, but enhanced by the Hu–
Marin type biaxial orthotropic loading conditions (cf. Hu and Marin [30], Skrzypek
and Ganczarski [54]). It will be demonstrated that, even in a case of arbitrarily strong
orthotropy (for instance, kmax/kmin ≈ 9, in case if brass Ł62 is tested) the property
of ellipticity is saved.

In general case of strong orthotropy, when the ellipticity condition (5.65) does
not hold, the deviatoric Hill criterion (5.56) or (5.57) becomes useless. Hence, in
order to describe physically admissible closed and convex limit surface, the more
general 9-parameter orthotropic von Mises equation (5.44) has to be recalled. In a
narrower case of the principal stress axes coinciding with the material orthotropy
axes the Eq. (5.45) reads as

Π11σ
2
1 + Π22σ

2
2 + Π33σ

2
3 + 2(Π12σ1σ2 + Π23σ2σ3 + Π31σ3σ1) = 1 (5.68)

The condition (5.68) is defined by six material parameters only, because τ23 ≡ τ31 ≡
τ12 ≡ 0, hence its calibration requires six conditions:
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(a)

(b)

Fig. 5.12 Hill’s deviatoric initial yield conditions versus Huber–von Mises’ isotropic approxima-
tion for the OTCz Titanum Alloy (cf. Table5.1): a the plane of “weak” orthotropy (σ1,σ2), b the
plane of “strong” orthotropy (σ1,σ3) (after Ganczarski and Skrzypek [18])



5 Termination of Elastic Range of Pressure Insensitive Materials … 183

Fig. 5.13 Graphical
illustration of biaxial loading
conditions (5.70)

three tests of uniaxial tension along the orthotropy axes

σ1 = k1 σ2 = 0 σ3 = 0 −→ Π11 = 1/k21
σ2 = k2 σ1 = 0 σ3 = 0 −→ Π22 = 1/k22
σ3 = k3 σ1 = 0 σ2 = 0 −→ Π33 = 1/k23

(5.69)

and three orthotropic biaxial tension loading conditions (ki , k j ) cf. Fig. 5.13

σ1 = k1 σ2 = k2 σ3 = 0 −→ Π12 = −1/2k1k2
σ1 = k1 σ3 = k3 σ2 = 0 −→ Π13 = −1/2k1k3
σ2 = k2 σ3 = k3 σ1 = 0 −→ Π23 = −1/2k2k3

(5.70)

The similar equibiaxial tension loading conditions are used, e.g., by Khan and
Liu [35].

Calibration of the orthotropic von Mises criterion (5.68), performed with condi-
tions (5.69) and (5.70) used, leads to the three-axial extension of the Hu–Marin type
criterion (cf. Ganczarski and Skrzypek [16], Skrzypek and Ganczarski [54])

(
σ1

k1

)2

− σ1σ2

k1k2
+

(
σ2

k2

)2

− σ2σ3

k2k3
+

(
σ3

k3

)2

− σ1σ3

k1k3
= 1 (5.71)

The enhanced Mises–Hu–Marin type criterion (5.71) is free from Hill’s deficiency
even in case of arbitrarily strong orthotropy degree, since it never violates theDrucker
stability postulate, which is not guaranteed by Hill-type equations. The Hu–Marin-
type Eq. (5.71) can easily be presented in the “pseudo-deviatoric” format

(
σ1

k1
− σ2

k2

)2

+
(

σ2

k2
− σ3

k3

)2

+
(

σ3

k3
− σ1

k1

)2

= 2 (5.72)

Three orthotropy limit yield points k1, k2 and k3 establish the proportional stress/
strength axis of cylindrical Hu–Marin’s surface. Note that this proportional stress/
strength axis, which determines a position of the limit surface axis in the prin-
cipal stress space, is different from the hydrostatic axis, but the condition of
equal ratios σi/ki = α holds at all points belonging to this axis. The extended
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von Mises–Hu–Marin type criteria (5.71–5.72) are always “unconditionally stable”
criteria, that remain convex even for very strong orthotropy, by contrast to the clas-
sical Hill condition in which the possible loss of convexity can be met in the case of
highly orthotropic materials. However, the fully deviatoric format of the Hill criteria
(5.50–5.56) is lost in theHu–Marin type format (5.72) where the hydrostatic pressure
insensitivity is relaxed.

In the particular case of plane stress state σ3 = 0 the three-parameter enhanced
von Mises–Hu–Marin equation (5.71) is reduced to the two-parameter one, as pro-
posed by Hu–Marin [30]

(
σ1

k1

)2

− σ1σ2

k1k2
+

(
σ2

k2

)2

= 1 (5.73)

Comparison of the 2-parameter Hu–Marin plane stress equation (5.73) with the
simplified 4-parameter plane stress Hill’s equation (5.58) written for principal stress
axes, leads to the 3-parameter form

(
σ1

k1

)2

−
(

1

k21
+ 1

k22
− 1

k23

)
σ1σ2 +

(
σ2

k2

)2

= 1 (5.74)

which becomes identical to the vonMises–Hu–Marin equation (5.73) only if follow-
ing constraint holds

1

k23
= 1

k21
+ 1

k22
− 1

k1k2
(5.75)

which is usually not true.
In order to illustrate a suitability of the von Mises–Hu–Marin orthotropic

Eq. (5.71), when compared to certain limitations of the Hill deviatoric Eq. (5.58),
two engineering materials characterized by different degrees of orthotropy: OTCz
Titanium Alloy (“weak” orthotropy) and Ł62 brass (“strong” orthotropy) are studied.
The results are presented in Fig. 5.14a, b on the planes σ1,σ3 and σ1, σ2, respec-
tively. In case of “weak” orthotropy both Hill’s and Hu–Marin’s ellipses differ not so
much, and both concepts are recommended (Fig. 5.14a). However, in case of “strong”
orthotropy, when the inequality (5.65) is not satisfied, following the Hill concept two
concave hyperbolic cylinders are formed by opening of the elliptic cylinder towards
the proportional stress/strength axis (Fig. 5.14b). On the other hand, the Hu–Marin
type surface saves the ellipticity property regardless of the magnitude of orthotropy
degree considered. In other words the Hu–Marin surface is “unconditionally stable”
which remains convex for very strong orthotropy. It is possible due to three additional
constraints (5.70) satisfied for the pairs of orthotropy yield limits (k1, k2), (k2, k3),
and (k3, k1). But, it should be pointed out that the Hu–Marin cylindrical surface
does not satisfy the condition of deviatoricity, hence this condition in fact should be
classified as a specific representative of the hydrostatic pressure sensitive class of
materials where the independence of the hydrostatic stress constraint is relaxed.
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(a)

(b)

Fig. 5.14 Comparison of the Hill and the Hu–Marin plastic yield criteria for two orthotropic
materials of different orthotropy degrees: a “weak” orthotropy in case of OTCz titanium alloy
(k1 = 490MPa, k2 = 520MPa, k3 = 800MPa), b “strong” orthotropy in case of Ł62 brass
(k1 = 105MPa, k2 = 120MPa, k3 = 950MPa) (after Ganczarski and Skrzypek [18])

The aforementioned possible loss of the convexity of classical Hill’s criterion
[25] (5.56) in case of highly orthotropic materials is even more pronounced when
the orthotropic generalization of the isotropicHosford criterion [27] (5.10) for higher
(even) exponents is done
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−Π23|σy − σz |m − Π13|σz − σx |m − Π12|σx − σy |m
+Π44|τyz|m + Π55|τzx|m + Π66|τxy|m = 1

(5.76)

Six generalized orthotropy modules Π23, . . . ,Π66 can be expressed in terms of six
yield point stresses kx , . . . , kxy in analogous fashion as previously discussed manner
of calibration for Hill’s criterion (5.55), namely

−Π23 = 1

2

(
1

|ky |m + 1

|kz|m − 1

|kx |m
)

, Π44 = 1

|kyz|m

−Π13 = 1

2

(
1

|kz |m + 1

|kx |m − 1

|ky |m
)

, Π55 = 1

|kzx|m

−Π12 = 1

2

(
1

|kx |m + 1

|ky |m − 1

|kz|m
)

, Π66 = 1

|kxy|m

(5.77)

Note however that in this extended case (different from m = 2 and m = 4 when the
orthotropic Hill is recovered) dimension of the orthotropy modules Π23, . . . ,Π66
depends on the value of power m and it is equal to MPa−m .

Although the yield criterion defined by Eq. (5.76) with the calibration (5.77) used
has been mathematically verified and its convexity has been proven in case of the
planar anisotropy in the principal stress space if and only ifm ≥ 1 and the orthotropy
modulesΠ23, . . . ,Π66 are positive constant coefficients (seeBarlat andLian [2], also
Chu [10]), in case of the general orthogonal anisotropy in the six-dimensional stress
space convexity is not obvious.

Themore general case, when axes ofmaterial orthotropy are different from axes of
principal stresses, was considered by Ganczarski and Lenczowski [15]. It was shown
that, although the limit surface is closed and convex in space of principal material
orthotropy frame, it occurs that lack of convexity is met when transformation to the
space of principal stress frame is done in terms of three angles defining the mutual
configuration of these two frames. This type of convexity loss was examined for
the brass sheet Ł22 the six orthotropic yield points of which are given in Table5.2
after Malinin and Rżysko [42] who gave three-axial yield point stresses whereas
three shear yield point stresses were estimated in [15] using simplified formulas

kij =
√

kij
3 for m = 2 and kij =

√
kij

2 for m = 6, 8. For simplicity the evolution of the
generalized orthotropic Hosford yield condition (m = 8) with respect to only one of
the Euler angles ϑ was considered. It represents a prism of the semi-hexagonal cross
section with oval corners as presented in Fig. 5.15. The loss of convexity is observed
for 18◦ ≥ ϑ ≥ 26◦.

Table 5.2 Yield point stresses for brass Ł22 after Malinin and Rżysko [42]

m kx [MPa] ky [MPa] kz [MPa] kzy [MPa] kzx [MPa] kxy [MPa]

2 120 105 950 182 194 64.8

6 or 8 120 105 950 157 168 56.1
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Fig. 5.15 Evolution of the
generalized orthotropic
Hosford yield condition
(m = 8) versus the Euler
angle ϑ = 18◦, 20◦, 22◦,
24◦, and 26◦ for brass Ł22,
after Ganczarski and
Lenczowski [15]

It should be pointed out that the limit criteria considered throughout this section
do not exhibit the strength differential effect such that they cannot be recommended
as failure criteria for brittle materials where this effect is essential.

5.5 Transversely Isotropic Case—Hill-Type Tetragonal
Symmetry Versus Hu–Marin-Type Hexagonal
Symmetry Criteria

The second limitation of applicability range of classical Hill’s criterion arises when
the transverse isotropy property is considered. In this section it will be shown that,
if reduction of Hill’s criterion to the transverse isotropy symmetry is performed, the
4-parameter form that satisfies the tetragonal symmetry class is furnished (cf., e.g.,
Voyiadjis and Thiagarajan [62], Sun and Vaidya [57]). This type of symmetry is of
particular importance in case of unidirectional fiber reinforced composites. In such
a case moduli: kx , ky , kz , and kxy are considered as independent (z is the orthotropy
axis), which makes impossible to reduce classical Hill’s criterion to the isotropic von
Mises condition in the plane of transverse isotropy.

To avoid this irreducibility to isotropic von Mises, the newHu–Marin-based trans-
versely isotropic criterion exhibiting hexagonal symmetry is proposed instead of
deviatoric transversely isotropic Hill’s criterion exhibiting tetragonal symmetry. It
enables to achieve reducibility to the isotropic von Mises condition in the transverse
isotropy plane, preserving cylindricity regardless of the magnitude of orthotropy
degree.

Finally, it will be demonstrated that, for some composite materials it is necessary
to further modify the 3-parameter Hu–Marin-type criterion to the new 4-parameter
intermediate-type criterion between classical Hill’s and hexagonal Hu–Marin’s
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concepts, taking advantage of the bulge test. This new hybrid-type criterion differs
essentially from both the Hu–Marin hexagonal type criterion and the isotropic von
Mises criterion in the isotropy plane. Bulge tests have been performed and described,
e.g., by Jackson et al. [33] with equipment used by Lankford et al. [39]. This new
criterion is capable of properly describing the SiC/Ti long fiber reinforced composite
examined by Herakovich and Aboudi [23].

Classical Hill’s equation (5.53–5.54), which is expressed in terms of six indepen-
dent plastic yield limits kx , ky, kz, kyz, kzx , and kxy, (5.56) is often too general for
engineering applications. Orthotropic structural materials usually exhibit the trans-
versely isotropic symmetry, basically due to either fabrication process or microstruc-
ture texture, as often observed in many long parallel fiber reinforced composites. In
particular, if in elastic range the transversely isotropic symmetry group holds, it is
expected that, also for the plastic yield initiation criterion such a narrower symmetry
is true.

In what follows, a distinction between two symmetry classes of the transverse
isotropy–tetragonal or hexagonal type has to be done. Such distinction is known,
e.g., from definitions of Representative Unit Cell used in homogenization methods
for composite materials (cf., e.g., Berryman [4], Sun and Vaidya [57], etc.).

Assume that the z-axis is the orthotropy axis, whereas x, y is the transverse
isotropy plane. When applying Eq. (5.54) with calibrations (5.56) or (5.57) and addi-
tionally assuming kx = ky �= kz , kzx = kzy �= kxy, the number of independent limits
in transversely isotropic Hill’s equation reduces to four for instance: two axial yield
limits kx and kz , and two shear yield limits kzx and kxy (Fig. 5.16).

In this way the following is furnished

−Π13 = −Π23 = 1

2k2z
, Π44 = Π55 = 1

k2zx

−Π12 = 1

k2x
− 1

2k2z
, Π66 = 1

2k2xy

(5.78)

Fig. 5.16 Four independent
tests for transversely
isotropic Hill’s criterion
calibration
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Substitution of (5.78) into (5.51) and (5.52) yields to transversely isotropic Hill’s
matrices

(5.79)
or

(5.80)

The transversely isotropic 4-parameter Hill criteria corresponding to orthotropic
Hill’s criteria (5.56) and (5.57) take the following representations

(
σy − σz

)2 + (σz − σx )
2

2k2z
+

(
1

k2x
− 1

2k2z

) (
σx − σy

)2 + τ2yz + τ2zx

k2zx
+ τ2xy

k2xy
= 1

(5.81)
or equivalently

σ2
x + σ2

y

k2x
+ σ2

z

k2z
−

(
2

k2x
− 1

k2z

)
σxσy − σyσz + σzσx

k2z
+ τ2yz + τ2zx

k2zx
+ τ2xy

k2xy
= 1 (5.82)

Both forms involve four plastic limits kx , kz, kzx , and kxy, considered as indepen-
dent parameters. Underlined factor in (5.82) includes not only kx but also kz . The
explicitly deviatoric form (5.81) exhibits the similar feature. The plastic state in the
transverse isotropy plane x, y is controlled not only by the tensile yield limit in
this plane kx , but also by the out-of-plane tensile yield limit kz . Concluding, trans-
versely isotropic Hill’s criteria (5.81) or (5.82) have to be classified as the tetragonal



190 A.W. Ganczarski and J.J. Skrzypek

symmetry format (see Table1.4). The assumption of tetragonal symmetry of the cri-
teria (5.81–5.82) was also considered by Voyiadjis and Thiagarajan [62] in case of
directionally reinforced metal matrix composites (Boron–Aluminum). Broader dis-
cussion that relates to distinction between the tetragonal versus hexagonal symmetry
in the yield/failure criteria will be presented in Sect. 6.5, where additional constraint
for case if Π66 = −2(Π13 + 2Π12) is assumed, such that Π66 has to be considered
as dependent plastic modulus. To this end, if aforementioned constraint postulated
by Chen and Han [9] is applied, the equality holds

Π66 = 4

k2x
− 1

k2z
(5.83)

instead of (5.784) and transversely isotropic 3-parameter Hill’s criteria correspond-
ing to (5.81) and (5.82) in following format

(
σy − σz

)2 + (σz − σx )
2

2k2z
+

(
1

k2x
− 1

2k2z

) (
σx − σy

)2 +
τ2yz + τ2zx

k2zx
+

(
4

k2x
− 1

k2z

)
τ2xy = 1

(5.84)

or equivalently

σ2
x + σ2

y

k2x
+ σ2

z

k2z
−

(
2

k2x
− 1

k2z

)
σxσy − σyσz + σzσx

k2z
+

τ2yz + τ2zx

k2zx
+

(
4

k2x
− 1

k2z

)
τ2xy = 1

(5.85)

can be written down.
In the particular case of plane stress state in the transverse isotropy plane (x, y)

σx ,σy, τxy �= 0 Eqs. (5.81) or (5.82) reduce to (5.58) with additional condition
kx = ky

σ2
x + σ2

y

k2x
−

(
2

k2x
− 1

k2z

)
σxσy + τ2xy

k2xy
= 1 (5.86)

The above form simply means that commonly used “transversely isotropic Hill’s
criterion” does not coincide in the “transverse isotropy plane” with the isotropic
Huber–von Mises equation

σ2
x + σ2

y

k2x
− σxσy

k2x
+ 3

τ2xy

k2xy
= 1 (5.87)

In other words, when the new transversely isotropic yield criterion, that is free
from inconsistencies between (5.86) and (5.87) is sought for, the material parameter

http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_6
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preceding term σxσy must be equal to Π33 − 2Π11 = 1/k2x and not depend on kz

and, simultaneously, the material parameter Π66 = 3/k2x must depend on kx only.
In order to derive the transversely isotropic yield criterion reducible to coinci-

dence with the Huber–vonMises criterion in the isotropy plane, the new transversely
isotropic hexagonal Hu–Marin equation will be postulated. To obtain this criterion,
the general orthotropic von Mises equation (5.45), which is not deviatoric, can be
calibrated analogously to that presented in (5.69) and (5.70). Namely, when the con-
straints of transverse isotropy are imposed, we invoke:
the two tensile tests in the x- and the orthotropy z-axes and the shear test in the
orthotropy zx-plane

σx = kx , σy = σz = τxy = τyz = τzx = 0 −→ Π11 = Π22 = 1/k2x
σz = kz, σx = σy = τxy = τyz = τzx = 0 −→ Π33 = 1/k2z
τzx = kzx, σx = σy = σz = τxy = τyz = 0 −→ Π44 = Π55 = 1/k2zx

(5.88)

and the three biaxial conditions for coincidence of appropriate pairs of yield limits

σx = kx ,σy = kx , σz = τxy = τyz = τzx = 0 −→ Π12 = −1/2k2x
σx = kx ,σz = kz, σy = τxy = τyz = τzx = 0 −→ Π13 = −1/2kx kz

σx = kx , τxy = kx/
√
3, σy = σz = τyz = τzx = 0 −→ Π66 = 3/k2x

(5.89)

Introduction of (5.88) and (5.89) into orthotropic von Mises’ criterion (5.45) leads
to transversely isotropic 3-parameter hexagonal Hu–Marin’s criterion as follows:

σ2
x + σ2

y

k2x
− σxσy

k2x
+ σ2

z

k2z
− σyσz + σzσx

kzkx
+ τ2yz + τ2zx

k2zx
+ 3

τ2xy

k2x
= 1 (5.90)

or

(
σx − σy

kx

)2

+
(

σy

kx
− σz

kz

)2

+
(

σz

kz
− σx

kx

)2

+ 3
τ2yz + τ2zx

k2zx
+ 6

τ2xy

k2x
= 2 (5.91)

Note, that the above conditions correspond to generalized Hu–Marin’s equations
(5.71) or (5.72)with k1 = k2,but enhancedby the additional shear terms and referring
to optional directions x, y, z. Equations (5.90) or (5.91) reduce to the Huber–von
Mises equation (5.87) in case of plane stress state in the transverse isotropy plane
(x, y), which means that this new criterion can finally be recognized as transversely
isotropic hexagonal symmetry von Mises–Hu–Marin’s based criterion.

Transversely isotropic conditions—tetragonal Hill’s (5.71) or (5.72) and hexag-
onal Hu–Marin’s (5.90) or (5.91), are examined for given orthotropy degrees
R = 2( kz

kx
)2 − 1 = 2,kxy/kx = 0.8, k(xy)/kx = 0.9, and kzx/kx = 0.8, for fol-

lowing stress states: biaxial normal stresses (σx ,σy) and combined normal with
shear stresses (σx , τxy) in the transverse isotropy plane (see Fig. 5.17a, b), as well as
biaxial normal stresses (σx ,σz) and combined normal with shear stresses (σx , τzx)
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in the orthotropy plane (see Fig. 5.18a, b). It is worth to mention that transversely
isotropic Hill’s condition of tetragonal symmetry (5.81) or (5.82) comprises four
independent plastic yield limits: kx , kz , kzx , and kxy, because shear yield limit in
isotropy plane kxy is considered as independent.

Contrarily, transversely isotropic enhancedHu–Marin-type condition, the symme-
try class of which is hexagonal, is defined by three independent yield limits only: kx ,
kz , and kzx, since in-plane shear yield limit kxy must agree with the Huber–vonMises
criterion in the isotropy plane kxy = kx√

3
. Hence, representation of the transversely

isotropic hexagonal symmetry Hu–Marin-type constitutive matrix of plasticity is as
follows:

(5.92)

The general case of transversely isotropic 4-parameter tetragonal symmetry Hu–
Marin-type yield criterion that preserves convexity but lost property of reducibility
to the isotropic von Mises condition in the plane of transverse isotropy is considered
by Voyiadjis and Thiagarajan [62]. The corresponding matrix of plasticity used by
authors results from the general orthotropic matrix when four independent plastic
onset limits are k1, k2 = k3, k4 = k5, and k6 (if original notation is saved 1 denotes
fiber direction)

(5.93)
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(a)

(b)

Fig. 5.17 Comparison of transversely isotropic criteria in the transverse isotropy planes: Hill’s
tetragonal (5.82), Hu–Marin’s hexagonal (5.90) and Huber–von Mises’ for given magnitudes of
orthotropy ratios: R = 2, kzx/kx = 0.8, k(xy)/kx = 0.9 in case of 2D states of stress: a biaxial
normal stresses (σx ,σy) and b combined normal with shear stresses (σx , τxy) (after Ganczarski and
Skrzypek [18])
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(a)

(b)

Fig. 5.18 Comparison of transversely isotropic criteria in the orthotropy plane: Hill’s tetragonal
(5.82), Hu–Marin’s hexagonal (5.90), and Huber–von Mises for given magnitudes of orthotropy
ratios: R = 2, kzx/kx = 0.8, k(xy)/kx = 0.9, in case of 2D states of stress: a biaxial normal stresses
(σx ,σz) and b combined normal with shear stresses (σx , τzx) (after Ganczarski and Skrzypek [18])
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Introducing for k1, k2, k4, and k6 the following substitution 2
9k21 = 1

k2z
, 2
9k22 = 1

k2x
2
3 (k1k2 + k24) = 1

k2zx
, 2
3 (k

2
2 + k26) = 1

k2xy
we end up with format of the Voyiadjis and

Thiagarajan condition analogous to (5.92) however 4-parameter, where not only kx ,
kz , and kzx but additionally kxy are considered as independent (see doubly underlined
terms in (5.90) and (5.94))

σ2
x + σ2

y

k2x
− σxσy

k2x
+ σ2

z

k2z
− σyσz + σzσx

kzkx
+ τ2yz + τ2zx

k2zx
+ τ2xy

k2xy
= 1 (5.94)

Such criterion is irreducible to the isotropic von Mises type in the plane of isotropy,
but it fits the experimental data for Boron–Aluminum composite tubular specimen
having unidirectional lamina (Dvorak et al. [14] and Nigam et al. [45]).

Both transversely isotropic criteria: Hill-type of tetragonal symmetry (5.81) as
well as Hu–Marin-type of hexagonal symmetry (5.90) describe cylindrical surfaces
in space of principal stresses. However, Hill’s type limit surface represents elliptical
cylinder, the axis ofwhich coincideswith the hydrostatic axis, in contrast to enhanced
Hu–Marin-type limit surface that represents elliptic cylinder, the axis of which forms
a proportional stress/strength axis, different from the hydrostatic axis. It means that
enhanced Hu–Marin’s condition does not satisfy the deviatoricity property, which is
a price for property of reducibility to the Huber–von Mises condition in the isotropy
plane, with cylindricity ensured regardless of the magnitude of orthotropy degree.

A choice of appropriate transversely isotropic limit criterion, of either the tetrag-
onal symmetry (5.81) or the hexagonal symmetry (5.90), depends on coincidence
with experimental findings for real material. This may often lead to one of the two
above considered symmetry classes, but sometimes material limit response is dif-
ferent even from both of them. Note that the shape of limit curves in the trans-
verse isotropy plane is the key to appropriate classification of real transversely
isotropicmaterial as exhibiting tetragonal symmetry or hexagonal ormixed symmetry
properties.

5.6 Hybrid Formulation of Enhanced Hu–Marin-Type
Condition

In what follows a description of new limit criterion of the hybrid symmetry property
between the tetragonal (5.81) or (5.82) and the hexagonal (5.90) or (5.91) symme-
try classes, is proposed. The Hu–Marin type equation of pure hexagonal symmetry
property (5.90) or (5.91) comprises three independent material constants kx , kz , and
kzx. However, real engineering materials of hybrid-type nature are frequently charac-
terized by four independent material constants determined from four tests: two limits
in uniaxial tensions kx and kz , shear limit in orthotropy plane kzx (5.69) and addi-
tionally, in the biaxial tension test (bulge test) k(xy) instead of the first of condition



196 A.W. Ganczarski and J.J. Skrzypek

(a) (b)

(c) (d)

Fig. 5.19 Fitting of the initial yield surface of unidirectional SiC/Ti composite according to
Herakovich and Aboudi findings [23] (symbol �) by the use of transversely isotropic Hu–Marin’s
hybrid-type criterion (5.90): a, b transverse isotropy plane (σx ,σy), c orthotropy plane (σx ,σz), d
orthotropy shear plane (σx , τzx) (after Ganczarski and Skrzypek [18])

(5.701), namely

σx = σy = k(xy) σz = τxy = τyz = τzx = 0 −→ Π12 = − 1
2k2

(xy)
(5.95)

The above condition leads to the hybrid formulation of enhanced Hu–Marin’s con-
dition

σ2
x + σ2

y

k2x
− σxσy

k2(xy)

+ σ2
z

k2z
− σyσz + σzσx

kzkx
+ τ2yz + τ2zx

k2zx
+ 3

τ2xy

k2x
= 1 (5.96)

Equation (5.96) differs from the hexagonal form of Hu–Marin’s condition (5.90) in
the underlined term, where the fourth independent material constant k(xy) is taken
from the bulge test (5.95), additionally to conditions (5.892,3). The hybrid formula-
tion of 4-parameter transversely isotropic Hu–Marin’s condition (5.96) has matrix
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representation as follows:

(5.97)

It is illustrated in Fig. 5.19a–d for the SiC/Ti long fiber reinforced composite by the
use of thick solid line.

The hybrid-type enhanced Hu–Marin criterion is capable of capturing behavior
of some long fiber reinforced composite materials, that in the transverse isotropy
plane exhibit limit response different from both the Hill and the Huber–von Mises
materials (cf., e.g., Herakovich and Aboudi [23]).

5.7 Comparison of Four Selected Transversely Isotropic
Yield Criteria

Transition from the orthotropic yield criterion (von Mises or Hill) to the transverse
isotropy is connected with the reduction of independent plastic modules (von Mises
9 → 6, Hill 6 → 4). These independent modules have to be identified by the use of
appropriate number of tests and constraints. At present section the detailed discussion
of the four selected yield criteria from Sect. 5.5 is performed. To this end we invoke
following selected yield criteria, two of them based on the Hill origin and the other
two based on the von Mises origin
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(5.98)
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The above criteria have been derived in terms of different combinations of engineer-
ing modules based on appropriate identification procedures. All four criteria under
consideration involve three common tests:

σx = kx σz = kz τzx = kzx (5.99)

Additional conditions necessary for full identification take different forms.
In case of the classical Hill criterion (5.981) the additional fourth condition holds:

τxy = kxy (5.100)

Aforementioned Hill’s criterion contains four independent parameters and can be
classified as tetragonal symmetry form (see Table1.4d).

The second formulation (5.982) is also based on Hill’s criterion however the
additional constraint is imposed on the Π66 modulus (see Chen and Han [9])

Π66 = −2(Π13 + 2Π12) = 4

k2x
− 1

k2z
(5.101)

such that number of independent parameters is reduced to three kx , kz , and kzx as a
consequence thisHill’s criterion exhibits property of hexagonal symmetry. However,
it is irreducible to the Huber–von Mises criterion in transverse isotropy plane.

The third formulation (5.983) inherits the von Mises format hence, if reduction
to transverse isotropy is performed, it requires identification of six plastic modules
in terms of three independent plastic limits kx , kz , and kzx. Therefore, except from
three common conditions (5.99) the following additional three must be formulated

σx = σy = kx σx = σy = kx ∧ σz = kz τxy = kx/
√
3 (5.102)

In other words, two biaxial conditions in planes (xy) and (xz) hold and additional
condition imposed on Π66 exhibits Huber–von Mises reducibility property

http://dx.doi.org/10.1007/978-3-319-17160-9_1
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Π66 = 3

k2x
(5.103)

The fourth formulation (5.984) is of specific nature, namely it is based on the von
Mises–Hu–Marin criterion and requires the following three additional conditions

σx = σy = k(xy) σx = σy = kx ∧ σz = kz τxy = kx/
√
3 (5.104)

Hence, (5.1041) essentially differs from (5.1021) since it involves the new indepen-
dent constant k(xy) established from the bulge test in the transverse isotropy plane
(see Jackson et al. [33]).

In conclusion it is clear that only the classical Hill condition is of tetragonal
symmetry whereas all three other proposals discussed above have to be classified
as hexagonal symmetry types even though the reasons of reduction of independent
parameters (4 or 3) are of different nature.

5.8 Implicit Formulation of Pressure Insensitive Anisotropic
Initial Yield Criteria—Barlat’s and Khan’s Concepts

In this section another approach (implicit formulation) is discussed based on a series
of papers developed by Barlat, Planckett, Cazacu, and Khan to mention some names
only. The implicit formulation involves the linear transformation of the Cauchy stress
tensor σ to the transformed stress Σ = L : σ by the use of transformation tensor L
responsible for orthotropy. Such linear transformation concept of the stress tensor
was first introduced by Sobotka [55] and Boehler and Sawczuk [6]

σ̂ij = Aijklσkl (5.105)

where Aijkl stands for a certain dimensionless tensor of anisotropy that satisfies
general symmetry conditions Aijkl = Ajikl = Aijlk = Aklij and the well-known
isotropic yield conditions to hold for anisotropic materials as well if σij are replaced
by σ̂ij. This approach is not directly based on the theory of common invariants in the
sense of Sayir, Goldenblat, Kopnov, Spencer, Boehler, Betten etc. formalism (explicit
formulation). According to this implicit approach an extension of isotropic initial
yield/failure criteria is performed to account for the tension/compression asymmetry
property and tomaterial anisotropy frame (usually orthotropy) by applying the linear
transformation to the stress tensor and inserting this transformed stress tensor into
the originally isotropic yield/failure criteria.

In the paper by Cazacu et al. [8] authors consider both the isotropic yield criterion
for description of asymmetric yielding
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f (J2s, J3s) = (|s1| − k̂s1)a + (|s2| − k̂s2)a + (|s3| − k̂s3)a = 2ka
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)
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(5.106)

where si , i = 1, . . . , 3 are the principal values of the stress deviator and f gives
the size of the yield locus (isotropic hardening), as well as its extension to include
orthotropyby theuseof linear transformation of the Cauchy stressdeviatorΣ = C : s
through

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13
C12 C22 C23
C13 C23 C33

C44
C55

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.107)

which lead to following anisotropic equation

(|Σ1| − k̂Σ1)
a + (|Σ2| − k̂Σ2)

a + (|Σ3| − k̂Σ3)
a = 2ka (5.108)

Authors proved convexity of the isotropic yield form (5.106) as well as pressure
insensitivity of its orthotropic form (5.108) obtained through the linear transformation
to the transformed stress frame. However, the question of convexity of the orthotropic
form (5.108) remains open in the light of discussion performed for Hill’s (Fig. 5.11)
and Hosford’s (Fig. 5.15) extensions in case of a highly orthotropic materials.

The proposed yield function appears to be suitable for description of the strong
asymmetry and anisotropy observed in textured Mg-Th andMg-Li binary alloy sheets
and for titanium 4Al-1/4O2, see Cazacu et al. [8]. The orthotropic yield criterion
proposed by Cazacu et al. [8] was also investigated in a series of multiaxial loading
experiments on Ti-6Al-4V titanium alloy by Khan et al. [34].

Extension of Drucker’s isotropic yield criterion (5.15) to anisotropy by use of
common invariants J 0

2 and J 0
3 is due to Cazacu and Barlat [7], and investigated by

Yoshida et al. [64]
(J 0

2 )3/2 − cJ 0
3 − k3 = 0 (5.109)

The constant c in the Eq. (5.109) accounts for the tension/compression asymmetry
defined as

c = 3
√
3(k3t − k3c )

2(k3t + k3c )
(5.110)
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and belongs to two ranges

c ∈
⎧⎨
⎩

(
0, 3

√
3

2

)
for kt > kc > 0(

− 3
√
3

2 , 0
)

for 0 < kt < kc
(5.111)

The second and third common invariants of orthotropy are defined as

J 0
2 = 1

6

[
a1(σx − σy)

2 + a2(σy − σz)
2 + a3(σz − σx )

2
]

+ a4τ2xy + a5τ2xz + a6τ2zy

J 0
3 = 1

27

{
(b1 + b2)σ3

x + (b3 + b4)σ3
y + [2(b1 + b4) − b2 − b3]σ3

z

}

+ 2b11τxyτyzτzx + 1
9

{
2(b1 + b2)σxσyσz − (b1σy + b2σz)σ

2
x

− (b3σz + b2σx )σ
2
y − [(b1 − b2 + b4)σx + (b1 + b3 + b4)σy]σ2

z

}

− 1
3

{
τ2yz[(b6 + b7)σx − b6σy − b7σz]

− τ2zx[2b9σy − b8σz − (2b9 − b8)σx ]
− τ2xy[2b10σz − b5σy − (2b10 − b5)σx ]

}

(5.112)

The discussed anisotropic criterion was successfully verified for texturedmagnesium
Mg-Th and Mg-Li alloy sheets. Authors proved convexity of the enhanced isotropic

yield criterion only for c(kt/kc) belonging to the range [− 3
√
3

2 ,− 3
√
3

2 ]. In case of the
anisotropic form of Cazacu and Barlat’s criterion (5.109) the general proof of con-
vexity for the wide class of highly tension/compression asymmetric and anisotropic
materials may not be possible.

More complete representation of J 0
2 and J 0

3 common invariants as well as the
extended model (5.109) verification for high-purity α-titanium is done by Nixon
et al. [46].

Korkolis and Kyriakides [38] applied anisotropic extension of Hosford’s isotropic
criterion (5.10) in terms of principal stress deviator s1, s2 in case of plane stress state

|s1 − s2|n + |2s1 + s2|n + |s1 + 2s2|n = 2kn (5.113)

Folowing Barlat et al. [3] they introduced anisotropy by use of a concept of two linear
transformations S′ = L

′ : s and S′′ = L
′′ : s where L′ and L

′′ are transformation
tensors introducing anisotropy

|S′
1 − S′

2|n + |2S′′
1 + S′′

2 |n + |S′′
1 + 2S′′

2 |n = 2kn (5.114)
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Experimental validation of (5.114) is due to Korkolis and Kyriakides [38] applied to
Al-6260-T4 as well as due to Dunand et al. [13], Luo et al. [41] applied to AA6260-T6
alloys under classical tensile and butterfly shear tests.

Comparison of two different approaches: explicit formulation based on common
invariants and implicit formulation composed as extension of isotropic criteria to
anisotropy and tension/compression asymmetry leads to the following characteristic
features.

The implicit formulation is very advantageous and fruitful in order to build
numerical models able to capture experimental evidence for broad class of inno-
vative metallic materials (mainly metal-based alloys) that simultaneously exhibit
tension/compression asymmetry, anisotropy, and hydrostatic pressure insensitivity.
Apart from these advantages some open questions may be highlighted. Among them
theremight bementioned not obvious physical interpretation for the extended criteria
based on known isotropic forms enhanced through strength differential sensitivity
and orthotropic linear transformation of stress. The general proof of convexity is
rather cumbersome and not attached in a complete and convinced form. Although
the isotropic equations are undestandable, have physical interpretations, and satisfy
convexity requirements the transposition of these equations to the transformed stress
frame may lead to the loss of convexity.

By contrast use of the explicit approach based on well-established theory of com-
mon invariants is more rigorous and so leads to more clear physical interpretation
(energy) and convexity of quadratic or poly-quadratic forms.However, this consistent
approach leads to major difficulties when numerical implementation and experimen-
tal validation are considered. Additional difficulties arise when implementing the
explicit approach to more general cases if the material orthotropy frame does not
coincide with the principal stress frame. Such more general problem was discussed
by Ganczarski and Lenczowski [15] in case of Hill’s and orthotropic Hosford’s cri-
teria. In such a case it is necessary to transform tensor of structural orthotropy to the
frame of principal stress resulting in a possible loss of convexity and even degener-
ation of an initially closed surface into twofold surface (nonclosed).

5.9 Brief Survey of Commonly Used Pressure Insensitive
Isotropic and Anisotropic Initial Yield Criteria

In this section a brief survey of the selected commonly used pressure insensitive
initial yield criteria is presented. The survey is focused on following two aspects:

• isotropic versus anisotropic formulation,
• direct versus indirect dependence on the stress invariants or the common invariants.

Special attention is paid for invariant representation of invoked limit criteria. Cho-
sen isotropic yield criteria are collected in Table5.3. All cited criteria depend on
the second deviatoric invariant and additionally they may depend on the third devi-
atoric invariant. Criteria A1, A2, and A3 are written down in the format directly
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Table 5.3 Survey of pressure insensitive isotropic yield criteria

A. Author(s) Limit criterion

A1 Raniecki and Mróz [48] Eq. (5.13) (J2s)
3n/2 − c(J3s)

n = k3n

A2 Cazacu and Barlat [7] Eq. (5.14) (J2s)
3/2 − cJ3s = k3

A3 Drucker [12] Eq. (5.15) (J2s)
3 − c(J3s)

2 = k6

A4 Huber [31], von Mises [43] Eq. (5.4) 3J2s = k2

A5 Tresca [60], Guest [20] Eq. (5.8) Reuss
[49] Eq. (5.9)

max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) = k
4J 3

2s − 27J 2
3s − 9k2 J 2

2s + 6k4 J2s = k6

|σ1 − σ2| + |σ2 − σ3| + |σ3 − σ1| = 2k

A6 Schmidt [53], Ishlinsky [32] and Hill
[26] Eq. (5.11)

max(|σ1 − σh|, |σ2 − σh|, |σ3 − σh|) = 2
3 k

A7 Hershey [24], Davies [11] and Hosford
[29] Eq. (5.10)

|σ1 − σ2|m + |σ2 − σ3|m + |σ3 − σ1|m = 2km

A8 Cazacu et al. [8] Eq. (5.106) (|s1|−k̂s1)a +(|s2|−k̂s2)a +(|s3|−k̂s3)a = 2ka

dependent on both invariants. The existence of the third invariant being argument of
different power functions enables to capture various asymmetry of the initial yield
curve in the deviatoric plane. The particular case of aforementioned Drucker-like
criteria when c = 0 is the classical Huber–von Mises criterion A4 in which influ-
ence of the third stress invariant is ignored. Another classical Tresca’s criterion A5
is written down in the three equivalent formats: the form suggested by Tresca [60]
and experimentally validated by Guest [20], explicitly invariant Reuss’ form and
the Cazacu and Barlat [7] form being a particular case of Hosford’s criterion A7
when m = 1. The Tresca criterion represents the regular hexagonal prism in the
Haigh–Westergaard space inscribed into the Huber–von Mises circular cylinder (see
Fig. 5.4). The maximal deviatoric stress-based criterion A6 formulated by Schmidt
[53], Ishlinsky [32], and Hill [25] also represents the regular hexagonal prism in
the Haigh–Westergaard space, however circumscribed onto the Huber–von Mises
circular cylinder (see Fig. 5.4). The Tresca and Schmidt–Ishlinsky–Hill criteria are
useful as the inner and outer bounds for all isotropic third stress invariant insensitive
criteria, however the existence of corners on initial yield surfaces is physically ques-
tionable because the uniqueness of plastic strain increment is lost (see Fig. 5.5). The
direct generalization of the Tresca criterion A5 by the use of power form that elim-
inates corners is due to Hershey [24], Davies [11], and Hosford [27]. The exponent
m that ensures convexity has to be taken from the range 1 ≤ m < ∞, see Fig. 5.6.
The Tresca-like criteria A5, A6, and A7 do not account for the tension/compression
asymmetry effect. Another original criterion proposed by Cazacu et al. [8] A8 is
relevant to the Drucker criterion A3 in such a sense that it is a homogeneous func-
tion of degree a in stresses, the cross section of which represents a “triangle” with
rounded corners, see Cazacu et al. [8]. The strength differential effect is included and
controlled by a parameter k̂( kt

kc
). The existence of absolute values in the criterion

proposed results from a reversible shear mechanisms such as slip, since yielding
depends only on the magnitude but not direction of the shear stress, yield criterion
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f (s) = f (−s). Other yield criteria accounting for different representations of the
second and the third invariants due to Sayir that exhibit discrete 120◦-symmetry are
discussed by Altenbach et al. [1].

Chosen anisotropic yield criteria are collected in Table5.4. In the item B1 two
examples of implementation of implicit anisotropic extension of the isotropicDrucker
yield criterion (dependent on the second and the third deviatoric stress invariants)
referring to works by Cazacu and Barlat [7] and Nixon et al. [46] are presented. The
original notation used by the authors is given in Table5.3. By contrast to original
notation in item B1 of Table5.4 the criterion is rewritten in a frame of transformed
stress Σ = L : σ instead of the Cauchy stress frame σ. Due to this concept the
second J 0

2 and the third J 0
3 transformed invariants are expressed in terms of only

one fourth-rank transformation tensor L instead of the second-rank s : <4>

devĪI : s and

the third-rank common invariants s : <6>

devĪI : s : s necessary to be implementedwhen
the Goldenblat–Kopnov explicit formulation would be used. The discussed implicit
formulation shows essential reduction of the number of material constants that have
to be identified in order to capture experimental data (see discussion in Sect. 5.2).
Note that the transformation tensor L exhibits format of the Hill orthotropy matrix
however it is dimensionless. When comparing items B2 and B3 corresponding to the
deviatoric von Mises criterion (5.43) written in the form suggested by Szczepiński
[58] and to the Hill criterion (5.53) [25, 26] different population of corresponding
plastic matrices is applied. In case of Hill’s format the terms which are sensitive to

Table 5.4 Survey of pressure insensitive anisotropic yield criteria

B. Author(s) Limit criterion

B1 Cazacu and Barlat [7] and Nixon et al.
[46] Eq. (5.109)

{ 1
2 tr [(L : σ) · (L : σ)]

}3/2
−c 1

3 tr [(L : σ) · (L : σ) · (L : σ)] = k3

B2 Szczepiński [58] Eq. (5.43) s :
<4>

dev ĪI: s = 1

B3 Hill [25, 26] Eq. (5.53) s :
<4>

ĪI
H: s = 1

B4 Voyiadjis and Thiagarajan [62] Eq. (5.94) σ :
<4>

tris ĪI
VT: σ = 1

B5 Skrzypek and Ganczarski [18, 54]
Eq. (5.90)

σ :
<4>

tris ĪI
HM: σ = 1

B6 Ganczarski and Skrzypek [18] Eq. (5.96) σ :
<4>
hybr
tris ĪI: σ = 1

B7 Cazacu et al. [8] and Khan et al. [34]
Eq. (5.108)

(|Σ1| − k̂Σ1)
a + (|Σ2| − k̂Σ2)

a +
(|Σ3| − k̂Σ3)

a = 2ka

B8 Ganczarski and Lenczowski [15]
Eq. (5.76)

a1|σy − σz |m + a2|σz − σx |m +
a3|σx − σy |m + a4|τyz|m +
a5|τzx|m + a6|τxy|m = 1

B9 Korkolis and Kyriakides [38] Eq. (5.114) |S′
1 − S′

2|n + |2S′′
1 + S′′

2 |n
+ |S′′

1 + 2S′′
2 |n = 2kn
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change of sign of shear stresses, for instance τyz(sy −sz), . . . , τyzτzx, . . . are omitted.
It is equivalent to the reduction of a number of independent plastic modules from 15
to 6.

Items B4, B5, and B6 refer to the transversely isotropic criteria of initial
yield/failure in unidirectionally reinforced Boron–Aluminum fibrous composites.
Voyiadjis and Thiagarajan [62] used generally transversely isotropic tetragonal sym-
metry form of the yield criterion. However the experimental data used for calibration
based on Dvorak et al. [14] and Nigam et al. [45] were limited to narrower case in
which only plane stress state in the orthotropy plane was considered without distinc-
tion between the tetragonal and hexagonal symmetries. All three formulas B4, B5,
and B6 describe cylindrical limit surfaces in stress space, the axis of which does not
coincide with the hydrostatic axis.

The key difference between the Voyiadjis and Thiagarajan formulation B4 and
the Skrzypek and Ganczarski approach B5 both related to the transversely isotropic
materials, lies in the format of doubly underlined terms in Eqs. (5.94) and (5.90),
respectively. Namely when Eq. (5.94) is used the fourth constant kxy is indepen-
dent and determined from experiment, whereas in Eq. (5.90) the fourth constant is
dependent and equals to kxy = kx√

3
. In other words, the Voyiadjis and Thiagarajan

criterion (5.94) is irreducible to the Huber–von Mises criterion in the transverse
isotropy plane, whereas the Skrzypek and Ganczarski criterion is reducible. This
means that the Voyiadjis and Thiagarajan criterion possesses tetragonal symmetry
whereas the Skrzypek and Ganczarski criterion exhibits hexagonal symmetry.

The full reducibility requirement in Eq. (5.90) may occur too restrictive when
some composite materials are experimentally tested. In such a case the hybrid for-
mulation (5.96) is proposed where k(xy) taken from the bulge test in the transverse
isotropy plane is independent leading to 4-parameter tetragonal format (kx , kz , kzx,
and k(xy)). The considered criteria B4, B5, and B6 are in fact secondary pressure
sensitive, however this sensitivity property is inquired due to preserved cylindricity.
The property of cylindricity is predominant and justifies the appearance of criteria
B4, B5, and B6 in this section.

To describe both the asymmetry between tension and compression and the
anisotropy observed in hexagonal closed packed metal sheets, Cazacu et al. [8]
and Khan et al. [34] proposed extension of isotropic criterion (5.106) to the case
of orthotropy represented by item B7. It consists in application of fourth-order lin-
ear transformation operator on the Cauchy stress tensor expressed by its principal
values. The proposed anisotropic criterion was successively applied to the descrip-
tion of the anisotropy and asymmetry of the yield loci of textured polycrystalline
magnesium and binary Mg–Th, Mg–Li alloys and α titanium.

Orthotropic generalization of the Hosford criterion (item A7) in which principal
axes of material orthotropy do not coincide with principal stress axes was proposed
byGanczarski and Lenczowski [15] in the form of itemB8. Next the convexity check
of the yield conditionwas performed in case of the brass sheet of Russian commercial
symbol Ł22, that is material of strong orthotropy slightly different from transverse
isotropy.
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The last criterion (item B9) is another anisotropic generalization of Hosford’s
isotropic criterion (item A7) done by Korkolis and Kyriakides [38] and addressed to
Al-6260-T4 tubes inflated under combined internal pressure and axial load.
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Chapter 6
Termination of Elastic Range of Pressure
Sensitive Materials—Isotropic
and Anisotropic Initial Yield/Failure Criteria

Jacek J. Skrzypek and Artur W. Ganczarski

Abstract Yield/failure initiation criteria discussed in this chapter account for the
three following effects: the hydrostatic pressure dependence, tension/compression
asymmetry, and isotropic or anisotropicmaterial response. For isotropicmaterials, the
criteria accounting for pressure/compression asymmetry (strength differential effect)
must include all three stress invariants (Iyer, Gao, Yoon, Coulomb–Mohr criteria). In
a narrower case,when only pressure sensitivity is accounted for, rotationally symmet-
ric surfaces independent of the third invariant are considered and broadly discussed
(Burzyński, Drucker–Prager criteria). For anisotropic materials, the explicit formu-
lation based on either all three common invariants (Goldenblat–Kopnov, Kowalsky)
or the first and second common invariants (von Mises–Tsai–Wu) is addressed, espe-
cially in case of transverse isotropy when the difference between tetragonal and
hexagonal symmetries is highlighted. A mixed way to formulate pressure sensitive
tension/compression asymmetric initial failure criteria capable of describing fully
distorted limit surfaces, which are based on all stress invariants and also the sec-
ond common invariant (Khan, Liu) alone, are received and particularly addressed to
orthotropic materials where fourth-order linear transformation tensors are used to
achieve extension of the isotropic criterion.
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6.1 Nature of Yield/Failure Initiation in Pressure Sensitive
Materials

Initial yield conditions discussed in Chap.5 are applicable for ductile materials in
which it is justified to ignore both the tension/compression asymmetry and the hydro-
static pressure sensitivity. In a majority of metallic polycrystalline materials, termi-
nation of the elastic range corresponds to initiation of plastic microslips. In case of
brittle materials, such as the majority of ceramic materials, rocks, concrete, ceramic
matrix composites CMC, columnar ice, etc., material failure is initiated not by the
plastic slips but microcracks (damage), which by way of evolution and aggregation
processes may lead to initiation and formation of macrocracks (failure).

The general anisotropic form of failure initiation criterion in brittle materials may
be assumed in the analogous form as that used as an initial yield criterion proposed
by Goldenblat and Kopnov [16] and others in Eq. (5.16), namely

f d = f d
(
Πi ,Πi jσi j ,Πi jklσi jσkl ,Πi jklmnσi jσklσmn, . . .

) = 0 (6.1)

Symbols Πi ,Πi j ,Πi jkl ,Πi jklmn, . . . stand for the material constants Πi and the
structural tensors of material anisotropy. It is commonly assumed that damage is not
associatedwith plastic slip evolution.However, recently developed theories introduce
a distinction between elastic damage and plastic damage evolution, see Abu Al-Rub
and Voyiadjis [1], Egner [10].

Assuming by analogy to Eq. (5.17) the tensorially polynomial format of the crite-
rion (6.1), the general anisotropic Goldenblat–Kopnov criterion of failure initiation
is furnished as

(
Πi jσi j

)α + (
Πi jklσi jσkl

)β + (
Πi jklmnσi jσklσmn

)γ + · · · − 1 = 0 (6.2)

Although the general format of failure initiation criterion (6.2) is analogous to
the previously introduced criterion of yield initiation (5.17), further reduction of
this equation to be applicable for brittle materials has to be performed applying
different assumptions from that used for ductile materials. Plastic yield initiation
in metallic polycrystalline materials is traditionally characterized by the following
features (compare Chap.5):

• Yield initiation is usually hydrostatic pressure insensitive (independent of the first
common invariant).

• The criterion of yield initiation exhibits symmetry with respect to tension and
compression (no strength differential effect).

• Initial yield surface has to be convex (Drucker’s postulate).

On the other hand, failure initiation in some metallic or nonmetallic materials is
commonly described including the more complex behavior:

• Failure initiation is hydrostatic pressure sensitive.

http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
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• The criterion of failure initiation exhibits asymmetry with respect to tension and
compression (also called strength differential effect), since for the majority of
brittle materials strength resistance for compression is frequently much higher
than for tension (essential strength differential effect).

• Initial failure surface has to be convex (positive definiteness of tangent stiffness
matrix in Sylvester’s sense).

The above-mentioned “sharp” distinction between ductile and brittle materials
is often not exactly justified, especially when more advanced structural material
behaviors are considered. Numerous experimental findings referred to novel mate-
rials suggest another classification with respect to distinct mechanical responses,
among which three are of particular importance:

• Hydrostatic pressure sensitivity.
• Tension versus compression asymmetry.
• Material anisotropy.

The above features are briefly discussed in Sect. 4.2. In light of experimental obser-
vation of metal alloys, distinction between plastic mechanism and brittle mechanism
at failure initiation may not be true and justified.

Indeed, a majority of pressure insensitive metallic materials show rather plastic
yield initiation mechanism of either isotropic nature (NiTi shape memory alloys,
Raniecki and Mróz [31]; Mg, Mg–Th or Mg–Li alloys, Cazacu and Barlat [5]; 4Al–
1
4O2 Titanium alloy, Cazacu et al. [6]) or anisotropic nature (Al 6061–T6511 alloy,
Cazacu and Barlat [5]; Ti–6Al-4V Titanium alloy, Khan et al. [19]; Al 6260–T4
alloy, Korkolis and Kyriakides [22]).

However, some experimental evidence for pressure sensitive metallic alloys show
combined plastic/fracture mechanism with pronounced tension/compression asym-
metry effect of either isotropic nature Nickel-base Inconel 718, Iyer [17], Pȩcherski
et al. [29]; 5083 Aluminum alloy, Gao et al. [15]; or anisotropic response (Ti–6Al–4V
Titanium alloy, Khan et al. [21], Khan and Liu [20]; AA2008–T4 Aluminum alloy;
AZ31 Magnesium alloy, Yoon et al. [39]).

Nevertheless, it should be pointed out that in all described cases of physically
different coupled mechanisms, the limit surface of yield and/or failure initiation
must definitely satisfy the convexity requirement in the sense of either Drucker’s or
Sylvester’s material stability postulates.

Criteria of yield initiation in polycrystalline materials are discussed in Sect. 5.1.
These materials commonly called ductile (majority of metals, steels, alloys, etc.) do
not exhibit strong sensitivity of limit surface to hydrostatic pressure. It was shown
that in such a case limit surfaces are independent of the first stress invariant (J1σ)

or equivalently of the first Haigh–Westergaard coordinate (ξ). Initial yield surfaces
are therefore represented by cylindrical surfaces whose axis is the hydrostatic axis.
Hence, it is not possible to distinguish limit states of failure initiation at tension kt
and compression kc, because kt = kc must hold.

There exists a broad class of isotropic materials for which the above limita-
tion does not obey (concrete, rocks, soils, cast iron, particle reinforced composites).

http://dx.doi.org/10.1007/978-3-319-17160-9_4
http://dx.doi.org/10.1007/978-3-319-17160-9_5
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Therefore, it is necessary to include the first stress invariant J1σ or the first Haigh–
Westergaard coordinate ξ in the criterion of failure initiation. Limit surfaces rep-
resented in the space of principal stress lose the cylindrical form, which allows to
distinguish failure strength at tension and compression kt �= kc commonly called
strength differential effect. This is the direct consequence of the first stress invariant
existence that changes the size of the limit surface cross-section along the hydrostatic
axis.

In this section we confine our considerations to the isotropic limit surfaces asso-
ciated with microslip systems in plastic metals. In the general case of yield initiation
in isotropic materials the equation of limit surface in terms of three basic stress
invariants J1σ, J2σ, J3σ takes the form

f (J1σ, J2σ, J3σ; ki ) = 0 (6.3)

where definitions (1.12) are applied. This equation describes the general class of
isotropic hydrostatic pressure sensitive materials, see items C1–C5 in Table6.2.

In the narrower case of failure of isotropic materials the equation of limit surface
is commonly written in terms of the following three invariants: the first stress tensor
invariant J1σ , the second, and the third stress deviator invariants J2s and J3s

f (J1σ, J2s, J3s; ki ) = 0 (6.4)

or alternatively in terms of the three Haigh–Westergaard coordinates (5.2)

f (ξ, ρ, θ; ki ) = 0 (6.5)

The advantage of Eq. (6.4) is that it separates the hydrostatic stress J1σ from the influ-
ence of deviatoric stresses expressed by J2s and J3s . On the other hand Eq. (6.5) has
a geometrical interpretation showing dependence of the limit surface cross-section
on the position at the hydrostatic axis ξ. Such surface is no longer cylindrical, hence
it naturally exhibits tension/compression asymmetry. All limit surfaces belonging to
the class considered exhibit certain sectorial symmetry with respect to hydrostatic
axis (see discussion in Chap.5), however, only in a particular case of independence
of the third invariant J3s (or θ) it is fully rotational symmetry.

6.2 Isotropic Initial Yield/Failure Criteria Accounting
for Pressure Sensitivity and Strength Differential Effect

As discussed in Sect. 6.1, there exists a wide class of materials, metallic and
nonmetallic, in which both a hydrostatic pressure dependence and the strength dif-
ferential effect are pronounced and have to be incorporated into the threshold criteria
describing onset of yield or fracture as well as phase change. In case of isotropic

http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5


6 Termination of Elastic Range of Pressure Sensitive Materials … 213

materials such criteria have to be expressed in terms of all three invariants J1σ, J2σ ,
and J3σ (6.3) or J1σ, J2s , and J3s (6.4).

The Ottosen and Ristinmaa [28] mixed format separates the influence of hydro-
static pressure J1σ from the deviatoric stress represented by J2s and cos 3θ

f (J1σ, J2s, cos 3θ; ki ) = 0 (6.6)

where

cos (3θ) = 3
√
3

2

J3s

(J2s)3/2
J2s = 1

2
si j s ji J3s = 1

3
si j s jkski (6.7)

The invariants J1σ, J2s , and cos 3θ have clear interpretation: J1σ tells about the hydro-
static pressure sensitivity (noncylindrical limit surface), J2s represents the distance
of the point at the deviatoric limit curve (the magnitude of the deviatoric stress), and
cos 3θ informs about influence of the direction of deviatoric stress (nonrotationally
symmetric limit surfaces asymmetry in so-called strength differential materials), cf.
Ottosen and Ristinmaa [28]. Applying consistently system of the first stress invariant
and the second and the third stress deviator invariants, Eq. (6.6) can also be written
as (6.4).

The general form of the power threshold function applicable to advanced metals
having not only three threshold parameters a, b, and c but also including two inde-
pendent powers p and r in the yield/failure criterion for isotropic materials can be
furnished as follows:

(
a J 2p

1σ + bJ p
2s + cJ 2p/3

3s

)1/r − 1 = 0 (6.8)

It will be shown below that a majority of criteria met in the literature to predict onset
of yield, failure, or even phase transformation (Iyer [17], Pȩcherski et al. [29], Gao
et al. [15], Iyer and Lissenden [18], Brünig et al. [3], Raniecki and Mróz [31]) can
be captured as specific cases of this general format (6.8).

Assuming r = p in Eq. (6.8) the Iyer [17] yield/failure onset criterion in isotropic
materials is recovered as

(
a J 2p

1σ + bJ p
2s + cJ 2p/3

3s

)1/p − 1 = 0 (6.9)

Equation (6.9) is successfully used to describe the Nickel-base alloy Inconel 718 at
elevated temperature 650 ◦C, e.g., by Iyer and Lissenden [18]. If r = p = 1 the
specific format used by Iyer and Lissenden [18], Pȩcherski et al. [29] is obtained as

a J 2
1σ + bJ2s + cJ 2/3

3s − 1 = 0 (6.10)

Equation of this type that represents asymmetric either paraboloidal or ellipsoidal
surface was calibrated for Inconel 718 by Pȩcherski et al. [29]. Note that the Huber–
von Mises f (J2s), the Drucker–Prager f (J1σ, J2s), and the Drucker f (J2s, J3s)
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yield functions can be obtained as special cases. Assuming another combination of
powers p/r = 1/2 and r = 6 we arrive at the Gao et al. [15] yield function

c1
(

a1 J 6
1σ + 27J 3

2s + b1 J 2
3s

)1/6 − k = 0 (6.11)

calibrated and verified for the 5083 Aluminum alloy. The constant c1 can be found
by introducing the uniaxial condition onto Eq. (6.11)

c1 =
(

a1 + 4

729
b1 + 1

)−1/6

(6.12)

Another special case of Eq. (6.8) when p/r = 1/2 and r = 1 was considered by
Brünig et al. [3]

a J1σ +√
J2s + b 3

√
J3s = c (6.13)

who confirmed its applicability for failure initiation in Aluminum alloys and high-
strength steels. Equation of this type represents asymmetric cone and is capable of
capturing yield onset in the high-strength 4310 and 4330 steels.

Direct extension of the Cazacu and Barlat [5] asymmetric yield function (5.14)
to pressure sensitive materials is due to Yoon et al. [39]

a[bJ1σ + (J 3/2
2s − cJ3s)

1/3] − 1 = 0 (6.14)

From among three material constants a, b, and c in (6.14) only two are independent
since the third a has to capture uniaxial tensile test, namely

a = 1

b +
(

1
3
√
3

− c
27

)1/3 (6.15)

Additionally, the convexity of the proposed yield function is satisfied if c ∈
[−3

√
3

4 , 3
√
3

4 ]. This isotropic equation is also extended to material anisotropy in order
to properly describe various metals of AA 2008-T4, high-purity α-Titanium, and
AZ31 Magnesium alloy.

The aforementioned criteria (6.8)–(6.14) that include the effect of all three invari-
ants are essentially applicable to advanced metals and metal alloys. However, there
exists a broad class of conventional nonmetallic materials (concrete, soils, ceramics,
etc.) that account for both hydrostatic pressure sensitivity and strength differential
effect. The useful criterion for description of soils, later generalized for description
of concrete by Mohr [27] in 1900, was originally proposed by Coulomb [8] in 1776.
As shown later, this criterion can be considered as extension of both the Tresca con-
dition and the Drucker–Prager criterion. The original form proposed by Coulomb is
well known in the literature dealing with soil mechanics, namely

http://dx.doi.org/10.1007/978-3-319-17160-9_5
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|τ | = c − σ tan φ (6.16)

Two material constants c and φ stand for cohesion and the angle of internal friction,
respectively. According to Mohr’s circles concept, Eq. (6.16) means that failure of
material occurs if the radius of the largest principal circle is tangent to an envelope
formed by two straight lines inclined by angle 2φ as shown in Fig. 6.1a. In the special
case of frictionless material φ = 0 criterion (6.16) reduces to the Tresca criterion
when the cohesion is identical to the yield stress under pure shear c = ks.

Equation (6.16) defining traditional format of Coulomb–Mohr criterion can be
rewritten in terms of principal stresses. Assuming order of the principal stresses
σ1 ≥ σ2 ≥ σ3 and considering arbitrary stresses τ and σ as shown in Fig. 6.1b

τ = r cosφ = 1

2
(σ1 − σ3) cosφ

σ = 1

2
(σ1 + σ3) + r sin φ = 1

2
(σ1 + σ3) + 1

2
(σ1 − σ3) sin φ

(6.17)

we arrive at

1

2
(σ1 − σ3) cosφ = c −

[
1

2
(σ1 + σ3) + σ1 − σ3

2
sin φ

]
tan φ (6.18)

The above equation can also be written in the abbreviated form

σ1
1 + sin φ

2c cosφ
− σ3

1 − sin φ

2c cosφ
= 1 (6.19)

When the different failure strengths for compression kc and tension kt , kc > kt are
defined as follows:

kc = 2c cosφ

1 − sin φ
kt = 2c cosφ

1 + sin φ
(6.20)

(a) (b)

Fig. 6.1 Coulomb–Mohr failure criterion in-plane σ − τ : a graphical representation as failure
envelope, b Mohr’s transformation of arbitrary state of stress to the principal state of stress
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Fig. 6.2 Failure loci of
Coulomb–Mohr criterion in
plane σ2 = 0 for several
values of ratio m = kc/kt

the extension of Tresca’s format is recovered from Eq. (6.19)

mσ1 − σ3 = kc (6.21)

where m stands for the compressive to tensile strengths ratio m = kc/kt . The
Coulomb–Mohr equation in the above format (6.21) in the plane stress state assuming
intermediate stress σ2 = 0, with the convention σ1 > σ2 > σ3 used, can graphically
be represented by deformed irregular hexagons following the magnitude ratio m ≥ 1
in Eq. (6.21), as shown in Fig. 6.2. In case of kc = kt (m = 1) the classical Tresca
condition is recovered, however, when Coulomb–Mohr equation is considered for
kc > kt (m > 1) a reduction of the admissible field in quarters I, II, and IV is observed
whereas the quarter III remains unchanged.

When using the mixed invariant system (J1σ, J2s, θ) the implicit invariant format
of the Coulomb–Mohr criterion (6.21) is reached as

f (J1σ, J2s, θ; c,φ) = 1

3
J1σ sin φ + √

J2s sin
(
θ + π

3

)

+
√

J2s

3
cos

(
θ + π

3

)
sin φ − c cosφ = 0

(6.22)

where cos(3θ) = 3
√
3

2
J3s

(J2s )3/2
, and 0 ≤ θ ≤ π/3.

Alternatively, in terms of theHaigh–Westergaard coordinates ξ, ρ, θ the following
explicit format of Coulomb–Mohr criterion is furnished as

f (ξ, ρ, θ; c,φ) = √
2ξ sin φ + √

3ρ sin
(
θ + π

3

)

+ ρ cos
(
θ + π

3

)
sin φ − √

6c cosφ = 0
(6.23)

where a new relationship between c, kc, and φ holds as

c = kc
1 − sin φ

cosφ
(6.24)
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Fig. 6.3 Cross-sections of
Coulomb–Mohr failure
surface in: a plane ξ − ρ,
b deviatoric plane

1

t0

t0

c0

c0

2 3

CC

CC

T
T

TT

(a) (b)

In the Haigh–Westergaard space the Coulomb–Mohr criterion represents irregu-
lar hexagonal pyramid the tensile T and the compressive C meridians whose straight
lines are unequally inclined to the ξ axis (Fig. 6.3a)

ρt0 = 2
√
6c cosφ

3 + sin φ
=

√
6kc(1 − sin φ)

3 + sin φ

ρc0 = 2
√
6c cosφ

3 − sin φ
=

√
6kc(1 − sin φ)

3 − sin φ

(6.25)

In the deviatoric plane the Coulomb–Mohr surface cross-section has the form of
irregular hexagon shown in Fig. 6.3b.

Fig. 6.4 Experimental verification ofCoulomb–Mohr failure criterion in the ξ−ρ plane for concrete
specimens, according to (�, ◦) Richart et al. [32], (�) Kupfer et al. [25], (•) Balmer [2]



218 J.J. Skrzypek and A.W. Ganczarski

The Coulomb–Mohr criterion is widely used for concrete. The experimental find-
ings by Richart et al. [32], Kupfer et al. [25] and Balmer [2] show applicability
of the Coulomb–Mohr failure criterion of concrete Fig. 6.4. Note however that the
admissible tensile field bounded by meridians T and C for ξ > 0 reduces nearly to
zeroth since the tensile strength kt is almost equal to zero for the considered class of
materials.

6.3 Isotropic Rotationally Symmetric Initial Failure
Surfaces—Hydrostatic Pressure σh and J2s Sensitivity
but J3s Insensitivity: Burzyński and Drucker–Prager
Criteria

Let us limit a geometrical symmetry of considered isotropic limit surfaces to the case
of complete rotational symmetry with respect to the hydrostatic axis characterized
by the condition σ1 = σ2 = σ3. The rotationally symmetric isotropic surfaces have
to be dependent neither on the third deviatoric stress invariant J3s nor on the third
Haigh–Westergaard coordinate θ, equivalently.

Examine a universal form of the three-parameter isotropic rotationally symmet-
ric initial yield/failure surface originally introduced by Burzyński [4] (item C6 in
Table6.3) as follows:

Aσ2
eq + Bσ2

h + Cσh − 1 = 0 (6.26)

where A, B, and C are the material constants, while σeq and σh are equivalent and
hydrostatic stresses, respectively. The Burzyński criterion (6.26) can also be written
in the equivalent invariant fashion in terms of the first stress invariant J1σ and the
second deviatoric stress J2s invariant

A3J2s + B

(
J1σ
3

)2

+ C

(
J1σ
3

)
− 1 = 0 (6.27)

Alternatively, in the Haigh–Westergaard space the Burzyński criterion takes the form

A
3

2
ρ2 + B

(
ξ√
3

)2

+ C
ξ√
3

− 1 = 0 (6.28)

Three constants in the Burzyński criterion A, B, and C are determined based on
three tests: the uniaxial tension (kt), uniaxial compression (kc), and simple shear
(ks). These calibrations lead to the three-parameter Burzyński criterion general form

ktkc
3k2s

σ2
eq +

(
9 − 3ktkc

k2s

)
σ2
h + 3 (kc − kt) σh − ktkc = 0 (6.29)
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Fig. 6.5 Different types of Burzyński’s rotationally symmetric yield/failure surface versus mutual
relationships between kt, kc, and ks or magnitude of parameter B in Eq. (6.29)

Such formulation, although frequently forgotten, presumes not only tension/
compression asymmetry kt �= kc but also the third shear limit point ks considered as
independent. Equation (6.29) represents different types of Burzyński’s rotationally
symmetric surface depending on mutual relationships between kt, kc, and ks. How-
ever, all of them are independent of the third Haigh–Westergaard coordinate θ or the
third deviatoric stress invariant J3s , alternatively. In case the shear yield/failure point

stress ks is greater than
√

ktkc
3 Eq. (6.29) represents rotationally symmetric ellipsoid,

if the shear yield point stress is equal to
√

ktkc
3 it represents rotationally symmetric

paraboloid, whereas if the shear yield point stress is less than
√

ktkc
3 it represents

twofold rotationally symmetric hyperboloid. If ks reaches its lower admissible bound
2ktkc√
3(kt+kc)

the hyperboloid transforms to the Drucker–Prager cone. Shear yield stress

points less than 2ktkc√
3(kt+kc)

are inadmissible in sense of Drucker’s postulate since in

such case Eq. (6.29) represents onefold concave hyperboloid (Fig. 6.5):

• ks >

√
ktkc
3 ellipsoid

• ks =
√

ktkc
3 paraboloid

• ks <

√
ktkc
3 twofold hyperboloid

• ks = 2ktkc√
3(kt+kc)

Drucker–Prager cone

• ks < 2ktkc√
3(kt+kc)

onefold concave hyperboloid

In case of a twofold hyperboloid only one fold that includes stress origin has physical
sense.
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Fig. 6.6 Cross-sections of Burzyński’s yield surface: elliptic, parabolic and straight-line at the
Haigh–Westergaard plane ξ − ρ in case of material characterized by ratio kc/kt = 10

In nonmetallic materials (for instance concrete) the ratio kc/kt may be much
higher than one reaching the magnitude of 10. Then volume bounded by Burzyński’s
surface: ellipsoid, paraboloid or cone is basically limited to the compression zone,
only slightly entering into the tensile zone (ξ > 0) as sketched in Fig. 6.6. The three-
parameter rotationally symmetric format of Burzyński’s criterion (6.29) guarantees
that the appropriate ellipsoid includes exactly three meridians of uniaxial tension
T(kt), uniaxial compression C(kc), and the simple shear S(ks). It is a consequence
of the fact that the three constants kt , kc, and ks are independent. Contrarily, two-
parameter Burzyński’s approximations, paraboloidal or conical include only two of
the three meridians, tensile T(kt) and compressive C(kc), which means that the shear
point stress ks is treated as dependent ks(kt, kc).

The two-parameter rotationally symmetric paraboloidal approximation of

Burzyński’s surface (ks =
√

ktkc
3 ) can be written as follows:

σ2
eq + 3 (kc − kt) σh − ktkc = 0 (6.30)

or
3J2s + (kc − kt) J1σ − ktkc = 0 (6.31)
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or
3

2
ρ2 + (kc − kt)

√
3ξ − ktkc = 0 (6.32)

It is experimentally verified for metallic alloys; for instance, material constants for
Inconel 718 (Ni-base like alloy including Cr) cited by Pȩcherski et al. [29] are
following:

kt = 779 MPa, kc = 878 MPa, ks = 473 MPa (6.33)

Note that yield/failure stress points fulfil the condition ks =
√

ktkc
3 which means that

Burzyński’s paraboloid is guaranteed.
In the other particular case if

ks = 2ktkc√
3(kt + kc)

(6.34)

the two-parameter conical approximation of Burzyński’s surface is furnished

σeq + 3
kc − kt
kt + kc

σh − 2
ktkc

kt + kc
= 0 (6.35)

or √
3J2s + kc − kt

kt + kc
J1σ − 2

ktkc
kt + kc

= 0 (6.36)

or

ρ + kc − kt
kt + kc

√
2ξ − 2

√
2

3

ktkc
kt + kc

= 0 (6.37)

The above condition can be reduced to theDrucker–Prager condition commonlymet
in literature. Note however that in the light of above discussion, the Drucker–Prager
condition can be considered as the limit case of the applicability range of Burzyński’s
criterion. Behind this limit when ks < 2ktkc√

3(kt+kc)
, the conical surface deforms into

the concave onefold hyperboloid which is inadmissible following Drucker’s stability
postulate.

Finally, in order to explicitly show reduction of Burzyński’s conical criterion
(6.35–6.37) to Drucker–Prager’s condition [9] the following new parameters are
defined

α = 1√
3

kc − kt
kt + kc

, k = 2√
3

ktkc
kt + kc

(6.38)

When the Drucker–Prager notation is used, we end up with the format explicitly
written down in terms of the first stress invariant and the second deviatoric stress
invariant (item C7 in Table6.3), cf. (6.36)

f (J1σ, J2s; k) = αJ1σ +√
J2s − k = 0 (6.39)
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(a) (b)

Fig. 6.7 Drucker–Prager’s yield/failure surface in: a principal stress space, b Haigh–Westergaard’s
coordinates

Analogously, when the Haigh–Westergaard coordinates are employed we arrive at
the form

f (ξ, ρ; k) = α
√
3ξ + ρ√

2
− k = 0 (6.40)

The Drucker–Prager condition (6.39–6.40) describes conical circular surface the
axis of which is the hydrostatic axis (equally inclined to principal stress axes σ1,σ2
and σ3) as shown in Fig. 6.7. Cross-sections of the Drucker–Prager cone are subject
to isotropic contraction under hydrostatic tension (σh > 0) contrary to isotropic
extension under hydrostatic compression (σh < 0). In the particular case α = 0,
the Drucker–Prager cone transforms to the Huber–vonMises cylinder. Note however
that the Drucker–Prager cone is bounded by inequality 0 ≤ ξ < k√

3α
at the tensile

side of the hydrostatic axis whereas it is not possible to reach failure −∞ < ξ ≤ 0
on the compressive side of the hydrostatic axis. The Drucker–Prager criterion is used
in the description of variety of metallic engineering materials such as Aluminium,
steel AISI 4330, Fe-based, Ti-based alloys etc. for which hydrostatic pressure effect
has to be included.

When (6.39)–(6.40) format of Drucker–Prager’s criterion is used, we arrive at the
expanded equation

α (σ1 + σ2 + σ3) +
√

σ2
1 − σ1σ2 + σ2

2 − σ2σ3 + σ2
3 − σ3σ1

3
− k = 0 (6.41)

In a particular case of the plane stress state σ3 = 0, the above equation yields the
following one

α (σ1 + σ2) +
√

σ2
1 − σ1σ2 + σ2

2

3
− k = 0 (6.42)



6 Termination of Elastic Range of Pressure Sensitive Materials … 223

Fig. 6.8 Exemplary
cross-section of
Drucker–Prager’s limit
surface by plane σ3 = 0

Equation (6.42) represents an off-center ellipse in the σ1,σ2 plane (Fig. 6.8), the
major axis of which is inclined at 45◦ to σ1,σ2 axes and which intersects stress axes
at different ordinates kt and kc

kt =
√
3k

1 + √
3α

, kc =
√
3k

1 − √
3α

(6.43)

that stand for the uniaxial tensile and uniaxial compressive yield/failure onset points
kc > kt , hence the strength differential effect is captured.

6.4 Anisotropic Yield/Failure Criteria for Hydrostatic
Pressure Sensitive Materials—von Mises–Tsai–Wu
Type Criteria (Explicit Formulation)

Based on the discussion performed in Sect. 6.1, the conclusion can be drawn that the
linear term Πi jσi j in the Goldenblat–Kopnov criterion (6.2) plays an essential role
and cannot be omitted (α �= 0) when the pressure sensitive materials are considered.

As a rule it is convenient to reduce the general Goldenblat–Kopnov criterion
(6.2) to the narrower format which exhibits dimensional homogeneity assuming
α = 1,β = 1/2, γ = 1/3 as follows:

Πi jσi j + (
Πi jklσi jσkl

)1/2 + (
Πi jklmnσi jσklσmn

)1/3 − 1 = 0 (6.44)

Limiting ourselves to the linear and the quadratic terms in the Eq. (6.44), in other
words neglecting the third common invariant responsible for a distortion, we arrive
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at the particular sub-case of the Goldenblat–Kopnov criterion, cf. Życzkowski [41]

Πi jσi j +√
Πi jklσi jσkl − 1 = 0 (6.45)

which, on the other hand, can be treated as an extension of isotropic Drucker–Prager’s
failure criterion (6.39) to the case of anisotropy. Note however that due to material
isotropy, the Drucker–Prager criterion contains only stress invariants J1σ and J2s ,
whereas in Eq. (6.45) to describe anisotropy the common invariants of stress and the
structural anisotropy tensorsΠi j andΠi jkl must be used (cf. Chap.5). By contrast to
the cases of the Huber–von Mises and the Hill yield conditions which represent the
circular and the elliptic cylinders, respectively (Fig. 6.10), in the considered case of
the Drucker–Prager criterion and its anisotropic generalization (6.45), the respective
failure surfaces can be recognized as the circular and the elliptic cones, respectively.

Another special sub-case of the Goldenblat–Kopnov criterion (6.2) is obtained
if α = 1,β = 1 and consecutive limitation of this format to the linear and the
quadratic terms hold such that at the anisotropic extension of Burzyński’s paraboloid
(6.30–6.32) is met, cf. Ganczarski and Lenczowski [11]

Πi jσi j + Πi jklσi jσkl − 1 = 0 (6.46)

Note that the quadratic term Πi jklσi jσkl in Eq. (6.45) appears under square root
whereas in Eq. (6.46) does not; hence, the condition (6.45) can be interpreted as a
noncircular cone whereas the condition (6.46) as a noncircular paraboloid. Compare
also the relevant discussion referring to the isotropic subcases of Burzyński’s the
circular cone (6.37) and the circular paraboloid (6.32) discussed in Sect. 6.3.

Structural tensors of the second Πi j and fourth Πi jkl orders appearing in
Eqs. (6.45)–(6.46) stand for two independent yield/failure anisotropy tensors the
identification of which has to be performed on the basis of respective yield/failure
tests in analogous way as that discussed in Chap.5. However, in the present case,
two anisotropy tensors have to be calibrated; hence, the appropriate number of tests
increases such that the difference between the tension and the compression uniaxial
tests can be captured. By substituting for convenience Voigt’s vector-matrix notation,
both the above tensors can be represented as follows:

(6.47)
or

(6.48)

http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
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and

(6.49)

where yield/failure loci are determined by two yield/failure characteristic matrices
[π] of the dimension (3×3) and [ĪI] of the dimension (6×6). Hence in the considered
case of general anisotropy, the number of modules defining yield/failure initiation is
equal to 27 = 6 + 21.

The condition of yield/failure initiation in anisotropic materials (6.46) takes in
Voigt’s notation the equivalent format

{π} {σ} + {σ}T [ĪI] {σ} − 1 = 0 (6.50)

where

{σ} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.51)

being an extension of anisotropic von Mises’ criterion of plastic materials (5.23),
however enriched by the additional term. Among the general anisotropy number of
modules 27, only 24 = 6+ 18 are truly independent. However, in practical applica-
tion, this number of 24materialmodules can further be reduced by assuming a certain
symmetry group. For instance, in case of orthotropy, a hypothesis that anisotropy
exhibited in the elastic range is inherited also by the limit criterion (initiation of
yield/failure), may be formulated, as shown in Table1.4.

In what follows an extension of anisotropic von Mises’ criterion, (5.22) enhanced
by linear terms (6.46) is considered. Assume the deviatoric form of von Mises crite-
rion (5.43) but enhanced by including the linear terms

−Π12
(
σx − σy

)2 − Π13 (σx − σz)
2 − Π23

(
σy − σz

)2 +
2
{
τyz
[
Π24

(
σy − σx

)+ Π34 (σz − σx )
]+

τzx
[
Π15

(
σx − σy

)+ Π35
(
σz − σy

)]+
τxy

[
Π16 (σx − σz) + Π26

(
σy − σz

)]+
Π45τyzτzx + Π46τxyτyz + Π56τzxτxy

}+

(6.52)

http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
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Π44τ
2
yz + Π55τ

2
zx + Π66τ

2
xy+

π11σx + π22σy + π33σz + π12τxy + π13τzx + π23τyz = 1

Note that this form is strictly pressure insensitive only in the quadratic terms but it
is pressure sensitive as far as the linear terms are concerned. In order to obtain the
form of Eq. (6.52), fully pressure insensitive the following additional constraint has
to be satisfied

π11 + π22 + π33 = 0 (6.53)

The condition (6.53) can be understood in one of the three following ways:

π11 = −(π22 + π33) or π22 = −(π11 + π33) or π33 = −(π11 + π22) (6.54)

For instance, substituting the first of conditions (6.54) in the Eq. (6.52), we arrive
at the first of three deviatoric forms of the von Mises–Tsai–Wu criterion, which is
hydrostatic pressure insensitive

−Π12
(
σx − σy

)2 − Π13 (σx − σz)
2 − Π23

(
σy − σz

)2 +
2
{
τyz
[
Π24

(
σy − σx

)+ Π34 (σz − σx )
]+

τzx
[
Π15

(
σx − σy

)+ Π35
(
σz − σy

)]+
τxy

[
Π16 (σx − σz) + Π26

(
σy − σz

)]+
Π45τyzτzx + Π46τxyτyz + Π56τzxτxy

}+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy+

π22
(
σy − σx

)+ π33 (σz − σx ) + π12τxy + π13τzx + π23τyz = 1

(6.55)

The form analogous to (6.55) was considered by Szczepiński [34] where the first
of constraints (6.54)1 was chosen when calibrating anisotropic modules Π12,Π13,

Π23, . . . , Π66 (15 modules) and π22,π33, . . . ,π23 (5 modules).
Experimental verification of Eq. (6.55) was done by Kowalewski and Śliwowski

[23] where the low carbon steel 18G2A specimens were used. In this experiment,
the cross-sections of limit surface (6.55) in the plane σx , τxy

− (Π12 + Π13)σ2
x + 2Π16τxyσx +Π66τ

2
xy − (π22 + π33)σx +π12τxy = 1 (6.56)

was considered. The Eq. (6.56) represents ellipse the center of which is shifted from
the origin (σx , τxy), the axes are rotated with longer to shorter axes ratio slightly
different from that in isotropic material (Huber–von Mises’ criterion), Fig. 6.9.

Limiting further considerations to orthotropic materials, both the characteristic
matrices [ortπ] and [ort ĪI] (6.49) and (6.50) take following forms valid for principal
directions of orthotropy
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Fig. 6.9 Experimental
verification of Eq. (6.56) in
case of low carbon steel
18G2A specimen subjected
to monotonic prestrain
◦ − εoff = 1 × 10−5,
�− εoff = 5 × 10−5, after
Kowalewski and Śliwowski
[23]

(6.57)

The second rank matrix [ortπ] is of the dimension 3 × 3 whereas the fourth rank
matrix [ort ĪI] dimension is 6×6. The matrix [ortπ] has diagonal form and the matrix
[ort ĪI] is of the identical symmetry as the von Mises plastic orthotropy matrix (5.44).
Both matrices (6.57) are defined by 12 = 3 + 9 modules.

Therefore the condition of yield/failure initiation for anisotropic materials (6.50)
takes a form typical for the rotationally symmetric group

{ortπ} {σ} + {σ}T [ort ĪI] {σ} − 1 = 0 (6.58)

being an extension of the von Mises orthotropic yield condition (5.46) for pressure
sensitive materials. The von Mises orthotropic yield/failure initiation criterion (6.58)
can be written down in the following extended form

Π11σ
2
x + Π22σ

2
y + Π33σ

2
z +

2(Π12σxσy + Π23σyσz + Π31σzσx )+
Π44τ

2
yz + Π55τ

2
zx + Π66τ

2
xy+

π11σx + π22σy + π33σz − 1 = 0

(6.59)

Note that above equation represents fully tensorial form of the orthotropic
yield/failure criterion contrary to the deviatoric form which is characteristic for

http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
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the Hill yield criterion. This means that 12 = 3 + 9 material modules defining
yield/failure material characteristic tensors ortπ and ort ĪI are required for its identi-
fication. The first term in Eq. (6.58) refers to the strength differential effect whereas
the second one represents a von Mises-type surface the axis of which generally does
not coincide with the hydrostatic axis.

Consider now reduction of criterion (6.58) to a narrower form known in the
literature as the Tsai–Wu orthotropic criterion of failure. The Tsai–Wu criterion is
characterized simultaneously by strength differential effect and pressure insensitivity
of [ort ĪI] in Eq. (6.57) such that [ort ĪI] −→ [ĪITW] (see (6.52))

{
πTW

}
{σ} + {s}T

[
ĪI

TW
]
{s} − 1 = 0 (6.60)

where

{σ} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

{s} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx − σh
σy − σh
σz − σh

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.61)

This leads to the following representation of both characteristic matrices

(6.62)

(6.63)

In what above the Nye graphics is adopted in order to distinguish the independent
from dependent ◦ 4th-rank matrix elements.
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Equation (6.60) and ĪI
TW representation (6.63) reflect “hybrid notation” in the

following sense: the first term represents the linear common invariant of the stress
tensor σ and the structural tensor πTW (analogy to the pressure sensitivity in case of
isotropic material) whereas the second term represents quadratic common invariant
of the stress deviator s and the structural tensor ĪITW (defining shape and orientation
of surface in the stress space). The criterion (6.60) takes therefore explicit form of
9–parameter Tsai–Wu’s criterion [36]

−
[
Π23

(
σy − σz

)2 + Π13 (σz − σx )
2 + Π12

(
σx − σy

)2]+ Π44τ
2
yz +

Π55τ
2
zx + Π66τ

2
xy + π11σx + π22σy + π33σz − 1 = 0

(6.64)

As a matter of fact, any addition of a hydrostatic pressure to all normal stresses
σx → σx ±σh does not change the magnitude of quadratic terms in condition (6.64)
but simultaneously causes the linear terms still dependent on σh. Hence, finally the
Tsai–Wu criterion in the format given by (6.64) remains the pressure sensitive one
through the linear terms.

6.5 Transversely Isotropic Case Tsai–Wu Type Tetragonal
Versus Hexagonal Symmetry Criteria

Similar to Sect. 5.5, a reduction of 9–parameter yield/failure orthotropic Tsai–Wu’s
criterion (6.64) to narrower case of the transverse isotropy requires precise distinction
between the tetragonal and hexagonal symmetry classes. Assuming after Chen and
Han [7] plane of transverse isotropy xy, the 4th-rank orthotropy matrix [ĪITW] (6.63)
reduces to the transversely isotropic format [trisĪITW] analogously to the transversely
isotropic Hill criterion (5.79) or (5.80) possessing only four independent material
constants whereas the 2nd-rank transversely isotropic matrix [trisπTW] reduces to a
form possessing only two independent material constants. Finally, assuming Π23 =
Π13, Π44 = Π55, π11 = π22 in (6.62) and (6.63) instead of the 9–parameter form
(6.64), we arrive at two 6–parameter forms of the transversely isotropic yield/failure
criterion of tetragonal symmetry that directly refer to formulations (5.79) or (5.80),
namely

(6.65)

http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
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and

(6.66)
or alternatively

(6.67)
and

(6.68)

In case of transversely isotropic symmetries of both the 2nd-rank and the 4th-rank
anisotropic matrices defining yield/failure onset, the pairs or stand for
identical matrix elements considered as independent or dependent pairs, respectively.
In casewhen non abbreviated notation is used, the 6–parameter transversely isotropic
Tsai–Wu yield/failure criterion of tetragonal symmetry takes the following form
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−Π13

[(
σy − σz

)2 + (σz − σx )
2
]

− Π12
(
σx − σy

)2 + Π44

(
τ2yz + τ2zx

)

+Π66τ
2
xy + π11

(
σx + σy

)+ π33σz − 1 = 0
(6.69)

or alternatively

Π11

(
σ2

x + σ2
y

)
+ Π33σ

2
z + (Π33 − 2Π11) σxσy − Π33

(
σxσz + σyσz

)

+Π44

(
τ2yz + τ2zx

)
+ Π66τ

2
xy + π11

(
σx + σy

)+ π33σz − 1 = 0
(6.70)

The above transversely isotropic limit equations are expressed in terms of sixmaterial
anisotropy modules: Π12,Π13,Π44,Π66,π11,π33 or Π11,Π33,Π44, Π66,π11,π33
if corresponding matrix representations (6.65)–(6.66) or (6.67)–(6.68) are imple-
mented.

However, the number of independent modules can further be reduced to five, since
the sixth diagonal modulus Π66 has to satisfy the relationships (cf. Chen and Han
[7], Ganczarski and Skrzypek [12])

Π66 = −2(Π13 + 2Π12) or Π66 = 4Π11 − Π33 (6.71)

if the corresponding formats (6.66) or (6.68) are used. The conditions (6.71) satisfy
the reducibility of the criteria (6.66) or (6.68) to the forms invariant with respect to
two equivalent stress states τxy = σ and σx = σ,σy = −σ in the transverse isotropy
plane.

Taking above conditions into account, equations (6.69) and (6.70) contain onlyfive
independent material coefficients referring to appropriate tensile and compressive
strengths ktx , kcx , ktz, kcz and shear strength kzx . Hence, in order to calibrate them,
the following tests have to be performed if, for instance, the format (6.69) is used:

σx = ktx , σy = . . . = τzx = 0 −→ (−Π13 − Π12) k2tx + π11ktx = 1

σx = −kcx , σy = . . . = τzx = 0 −→ (−Π13 − Π12) k2cx − π11kcx = 1

σz = ktz, σx = . . . = τzx = 0 −→ −2Π13k2tz + π33ktz = 1

σz = −kcz, σx = . . . = τzx = 0 −→ −2Π13k2cz − π33kcz = 1

τzx = kzx , σx = . . . = τyz = 0 −→ Π44k2zx = 1

(6.72)

Solution of Eq. (6.72) with respect to Π13,Π12,Π44,π11 and π33 takes the form

−Π13 = 1

2ktzkcz
, −Π12 = 1

ktx kcx
− 1

2ktzkcz
, Π44 = 1

2k2zx

π11 = 1

ktx
− 1

kcx
, π33 = 1

ktz
− 1

kcz
,

(6.73)
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Magnitude of material modulus Π66, referring to shear strength in the plane of
transverse isotropy is not independent but given by Eq. (6.71), hence

Π66 = 4

ktx kcx
− 1

ktzkcz
(6.74)

Note that both formats inEq. (6.71) lead to the same calibration forΠ66 (6.74).Hence,
after substitution of Eqs. (6.73)–(6.74) to Eq. (6.69) one can get the final form of the
hexagonal transversely isotropic Tsai–Wu criterion in terms of five independent
constants ktx , kcx , ktz, kcz and kzx

σ2
x + σ2

y

ktx kcx
+ σ2

z

ktzkcz
−
(

2

ktx kcx
− 1

ktzkcz

)
σxσy − σyσz + σxσz

ktzkcz

+ τ2yz + τ2zx

k2zx
+
(

4

ktx kcx
− 1

ktzkcz

)
τ2xy

+
(

1

ktx
− 1

kcx

) (
σx + σy

)+
(

1

ktz
− 1

kcz

)
σz = 1

(6.75)

Inspection of the transversely isotropic format of the Tsai–Wu criterion (6.75) reveals
that underlined coefficient preceding τxy differs in format from the analogous term
in the transversely isotropic Hill criterion (5.82) since independent shear limit in the
transverse isotropy plane kxy is used. Obviously, the transition from the Tsai–Wu
criterion (6.75) to the Hill criterion (5.82) requires to ignore the tension/compression
asymmetry effect ktx = kcx and ktz = kcz which leads simultaneously to vanishing
of linear terms. In other words, in this case, the Tsai–Wu transversely isotropic
criterion reducible to the Hill criterion becomes pressure insensitive, by contrast to
the Eq. (6.75) in which pressure sensitivity ktx �= kcx and ktz �= kcz plays essential
role.

It is seen that material coefficients in the xy-plane of transverse isotropy that
precede the terms σxσy and τ2xy are not fully independent since they contain not only
the in-plane tensile and compressive limits ktx , kcx but also the out-of-plane tensile
and compressive limits ktz and kcz . Consequently, Eq. (6.75) can be classified as the
hexagonal transversely isotropic Tsai–Wu criterion of initial yield/failure.

Applicability range of the Tsai–Wu orthotropic criterion (6.75) to properly
describe initiationof failure in someengineeringmaterials that exhibithigh orthotropy
degree, is bounded by a possible ellipticity loss of the limit surface, see Ganczarski
and Adamski [14]. In other words, a physically inadmissible degeneration of a sin-
gle convex and simply connected elliptic limit surface into two concave hyperbolic
surfaces occurs.

http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
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The following inequality bounds the range of applicability of the transversely
isotropic Tsai–Wu criterion to ensure convexity

1

ktzkcz

(
4

ktx kcx
− 1

ktzkcz

)
> 0 (6.76)

which can easily be recognized as an extension of the relevant bounding inequality for
Hill’s criterion (5.66). Substitution of the dimensionless parameter R = 2( ktzkcz

ktx kcx
)−1,

(extension of the Hosford and Backhofen parameter), leads to the simplified restric-
tion

R > −0.5 (6.77)

If the above inequalities (6.76)–(6.77) do not hold, elliptic cross-sections of the limit
surface degenerate to two hyperbolic branches and the lack of convexity occurs. To
illustrate this limitation, the yield curves in two planes:
the transverse isotropy plane (σx ,σy)

σ2
x − 2R

1 + R
σxσy + σ2

y + (kcx − ktx )
(
σx + σy

) = ktx kcx (6.78)

and the orthotropy plane (σx ,σz)

σ2
x − 2

1 + R
σxσz + 2

1 + R
σ2

z + (kcx − ktx )σx + ktzkczσz = ktx kcx (6.79)

for various R-values, are sketched in Fig. 6.10a, b, respectively. It is observed that
when R, starting from R = 3, approaches the limit R = −0.5, the limit curves
change from closed ellipses to two parallel lines, whereas for R < −0.5, concave
hyperbolas appear.

Except the hexagonal transversely isotropic Tsai–Wu criterion Eq. (6.75), one can
introduce the other hexagonal transversely isotropic Tsai–Wu failure criterion, see
Ganczarski and Adamski [14]. In order to do this, let us consider the more general
transverse isotropic von Mises–Tsai–Wu criterion of the format

Π11

(
σ2

x + σ2
y

)
+ Π33σ

2
z + 2Π12σxσy + 2Π13

(
σx + σy

)
σz

+Π44

(
τ2yz + τ2zx

)
+ Π66τ

2
xy + π11

(
σx + σy

)+ π33σz = 1
(6.80)

Equation (6.80) contains 8 = 6+2 independent modules and it is straightforward
simplification of the orthotropic von Mises–Tsai–Wu criterion (6.59) by introducing
obvious symmetry conditions Π11 = Π22,Π23 = Π31,Π44 = Π55 and π11 = π22.
For calibration of it following tests are to be performed:
six uniaxial tension/compression and shear conditions

http://dx.doi.org/10.1007/978-3-319-17160-9_5
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Fig. 6.10 Degeneration of the Tsai–Wu limit surfacewith themagnitude of the generalizedHosford
and Backhofen parameter R: a transverse isotropy plane, b orthotropy plane, after Ganczarski and
Adamski [14]
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σx = ktx , σy = . . . = τzx = 0 −→ Π11k2tx + π11ktx = 1

σx = −kcx , σy = . . . = τzx = 0 −→ Π11k2cx − π11kcx = 1

σz = ktz, σx = . . . = τzx = 0 −→ Π33k2tz + π33ktz = 1

σz = −kcz, σx = . . . = τzx = 0 −→ Π33k2cz − π33kcz = 1
τzx = kzx , σx = . . . = τyz = 0 −→ Π44k2zx = 1

τxy = √
ktx kcx/3, σx = . . . = τyz = 0 −→ Π66ktx kcx/3 = 1

(6.81)

and two biaxial conditions that allows to capture magnitudes of Π12 and Π13

σx = σy = k(xy) = −(kcx − ktx ) ∓ √
Δ1,σz = . . . = τyz = 0

−→ 2k2(xy)

ktx kcx
− 2Π12k2(xy) + kcx − ktx

ktx kcx
k(xy) = 1

σx = σz = k(xz) = −1

2

[
(kcx − ktx ) + (kcz − ktz)

ktx kcx

ktzkcz
± √

Δ2

]
,

σy = . . . = τyz = 0 −→ k2(xz)

ktx kcx
+ k2(xz)

ktzkcz
− 2Π13k2(xz)

+
(

1

ktx
− 1

kcx

)
k(xz) +

(
1

ktz
− 1

kcz

)
k(xz) = 1

(6.82)

Symbols Δ1 and Δ2 used for brevity denote: Δ1 = (kcx − ktx )2 + ktx kcx and

Δ2 = [(kcx − ktx ) + (kcz − ktz)
ktx kcx
ktzkcz

]2 + 4ktx kcx . Solution of Eqs. (6.81–6.82) with

respect to Π11,Π12,Π13,Π33,Π44, Π66,π11 and π33 yields

Π11 = 1/ktx kcx Π12 = −1/2ktx kcx Π13 = −1/2ktzkcz

Π33 = 1/ktzkcz Π44 = 1/k2zx , Π66 = 3/ktx kcx

π11 = 1/ktx − 1/kcx π33 = 1/ktz − 1/kcz

(6.83)

which finally leads to the new hexagonal transversely isotropic von Mises–Tsai–Wu
failure criterion also in terms of five independent constants ktx , kcx , ktz , kcz and kzx ,
but different from (6.75)

σ2
x + σ2

y

ktx kcx
+ σ2

z

ktzkcz
− σxσy

ktx kcx
− σyσz + σxσz

ktzkcz
+ τ2yz + τ2zx

k2zx

+ 3

ktx kcx
τ2xy +

(
1

ktx
− 1

kcx

) (
σx + σy

)+
(

1

ktz
− 1

kcz

)
σz = 1

(6.84)

Note that the coefficients preceding σxσy and τ2xy , underlined terms in (6.84) are
always positive by contrast to analogous terms in (6.75) that can change sign. These
prevent elliptic form of failure curves from loss of ellipticity and reduce Eq. (6.84)
to the “shifted” Huber–von Mises ellipse from the origin of coordinate system in
case of transverse isotropy plane. In other words, this new hexagonal format of
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(a)

(b)

(c)

Fig. 6.11 Comparison of transversely isotropic Tsai–Wu’s initial failure criteria of hexagonal and
new hexagonal types for columnar ice: a plane of transverse isotropy (σx ,σy), b plane of orthotropy
(σx ,σz), c shear plane (σx , τxy), after Ganczarski and Adamski [14]
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Table 6.1 Experimental data
for columnar ice after
Ralston [30]

Tensile strength Compressive strength

ktx 1.01MPa kcx 7.11MPa

ktz 1.21MPa kcz 13.5MPa

Tsai–Wu’s failure criterion is unconditionally stable and preserves reducibility to
isotropic Huber–von Mises ellipse but shifted in the isotropy plane.

Both the Tsai–Wu transversely isotropic initial failure criteria, hexagonal
Eq. (6.75), and new hexagonal type Eq. (6.84) are compared for columnar ice, the
experimental data of which was established by Ralston [30] in Table6.1 in plane
of transverse isotropy (σx ,σy), shear plane (σx , τxy), and in plane of orthotropy
(σx ,σz), see Fig. 6.11. Subsequent cross-sections of the limit surface are ellipses
that exhibit strong oblateness in case of tetragonal symmetry; the centers of which
are shifted outside the origin of coordinate system toward the quarter referring to
compressive stresses. In case of cross-section by plane of transverse isotropy (see
Fig. 6.11a), the symmetry axis has obviously inclination equal 45◦ to the axes of coor-
dinate system; in other words, it overlaps projection of hydrostatic axis at the trans-
verse isotropy plane (σx ,σy), contrary to the cross-section by plane of orthotropy (see
Fig. 6.11b) the main semi-axis of ellipse is inclined by 71.1◦. It has to be emphasized
that in case of columnar ice compressive strength along othotropy axis, kcz is over 10
times greater than tensile strength ktz ; whereas, analogous ratio kcx/ktx is approxi-
mately equal to 7 in case of transverse isotropy plane. Moreover, ratio of semi-axes
for Tsai–Wu tetragonal ellipse in (σx ,σy) plane essentially exceeds analogous ratio
for Huber–von Mises ellipse, contrary to the case of Tsai–Wu hexagonal ellipse. It is
also worth to emphasize that although the hexagonal transversely isotropic Tsai–Wu
failure criterion Eq. (6.75) and the new hexagonal transversely isotropic Tsai–Wu
failure criterion Eq. (6.84) contain the same number of five independent strengths
ktx , kcx , ktz, kcz , and kzx , only criterion (6.84) is free from convexity loss and simul-
taneously truly transversely isotropic in sense of hexagonal class of symmetry.

6.6 Implicit Formulation of Pressure Sensitive Anisotropic
Initial Failure Criteria—Khan’s Concept

In the Sect. 5.7, representative papers based on the implicit approach to anisotropic
yield criteria not accounting for pressure sensitivity were discussed. In what follows
selected examples of implementation of the implicit approach to the broader class
accounting for anisotropy, tension/compression asymmetry, and pressure sensitivity
are thoroughly considered.

Khan and Liu [20] applied the following extension of the nine-parameter
orthotropic von Mises criterion (5.45) to describe the ductile fracture of the Ti-6Al-
4V alloy accounting for hydrostatic pressure sensitivity, anisotropy, and significant
tension/compression asymmetry effect

http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
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√
exp[C(ζ + 1)] (Fσ2

1 + Gσ2
2 + Hσ2

3 + Lσ1σ2 + Mσ2σ3 + Nσ1σ3

+ Pσ2
12 + Qσ2

13 + Rσ2
23

) = exp

(
c1

I1√
3

) (6.85)

Both the hydrostatic pressure dependence I1 and the tension/compression asymme-
try J3 are included in an implicit fashion as arguments of two exponential func-
tions appearing as multipliers at the right- and the left-hand sides of orthotropic von
Mises’ equation. According to authors, interpretation of the main advantage of such
formulation is that the anisotropy and tension/compression asymmetry are uncou-
pled into separate multiplicative terms which allow the anisotropic parameters and
tension/compression asymmetry coefficient to be determined independently. The fol-
lowing definitions hold F, G, H, L , M, N , P, Q, and R are anisotropic parameters;
C is the tension/compression asymmetry coefficient, ζ denotes the Lode parameter
ζ = cos 3θ = 27

2
J3

(
√
3J2)3

, where θ is the Lode angle, I1 is the first stress invari-

ant, whereas J2 and J3 are the second and the third invariants of deviatoric stress
tensor. Although the general form of limit criterion (6.85) accounts for all three fea-
tures, anisotropy, tension/compression asymmetry, and hydrostatic pressure depen-
dence, in fact its calibration performed by authors leads the form capturing only the
tension/compression asymmetry and hydrostatic pressure dependence. As a conse-
quence, the limit curve of Al2024-T351 alloy exhibits only one axis of symmetry
which means that this corresponds to the case of partly distorted limit surface. By
the use of above formula, authors succeeded with fitting experimental data in rolling
direction (RD), transverse to rolling direction (TD), and the thickness direction (ND)
Fig. 6.12. However, hydrostatic pressure dependence introduced by the use of right-
hand side exponential function leads to loss of convexity of the fracture surface along
the meridian direction in the Haigh–Westergaard space as it was shown by Khan and
Liu [20]. The convexity loss discussed in this case is significant only from theoreti-
cal point of view, because in such a case Drucker postulate is violated. However, for
the data cited by authors the concave meridian effect is very small such that it can
probably be ignored from engineering point of view for the considered material data.
Nevertheless, in spite of possible convexity loss along meridian no convexity loss
along circumference is observed; although there exists second exponential function
dependent on J2 and J3 being a multiplier of the Hill form on the left-hand side of
Eq. (6.85).

In another paper by Khan et al. [21], the direct hydrostatic pressure dependence
(through I1) is dropped; however, both significant anisotropy (fully anisotropic cali-
bration of all material constants F, G, . . . , R) and tension/ compression asymmetry
are saved

exp[−C(ζ + 1)] (Fσ2
1 + Gσ2

2 + Hσ2
3 + Lσ1σ2 + Mσ2σ3 + Nσ1σ3

+ Pσ2
12 + Qσ2

13 + Rσ2
23

) = 1
(6.86)

Although the general form of limit criterion (6.86) accounts for nine independent
anisotropy parameters, in example considered by authors in [21], due to calibration
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(a) (b)

Fig. 6.12 Correlation of the 0.2% yield loci of Ti-6Al-4V alloy (◦—experimental data points,
�—points calculated from ND experimental data) with the yield function proposed by Khan
et al. [21] (solid line) and Huber–von Mises criterion (dashed line): a comparison in RD-TD plane,
b projection on deviatoric plane

the material constant G is determined from the equi-biaxial compression test; so it
depends on three compression limits like in case of Hill criterion. Under assumption
of plane stress state, it reduces to four-parameter orthotropic Hill condition (5.58).
Fitting of experimental data for Ti-6Al-4V alloy at different strain rates and tempera-
tures shows excellent coincidence between the experimental findings and simulation.
By contrast to the previous formulation (6.85), the symmetry of the limit curve is
lost completely (nonaxis of symmetry exists) as shown in Fig. 6.12.

Orthotropic yield criterion proposed by Yoon et al. [39] being anisotropic exten-
sion of the isotropic criterion (6.14)

Ĩ1 +
(

J ′3/2
2 − J ′′

3

)1/3 = 1 (6.87)

where
Ĩ1 = hxσxx + hyσyy + hzσzz

J ′
2 = 1

2 s′ : s′
J ′′
3 = det(s′′)

(6.88)

The stress tensors s′ and s′′ (6.88) are transformed from the stress tensor σ to the
transformed space by two fourth-order linear transformation tensors L′ and L

′′ as
follows s′ = L

′ : σ and s′′ = L
′′ : σ with

http://dx.doi.org/10.1007/978-3-319-17160-9_5
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Fig. 6.13 Comparison of the
yield surface of AZ31
Magnesium alloy:
◦—experimental data points,
�—yield function proposed
by Yoon et al. [39] (unit
MPa)

L
(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(C (i)
2 + C (i)

3 )/3 −C (i)
3 /3 −C (i)

2 /3
−C (i)

3 /3 (C (i)
3 + C (i)

1 )/3 −C (i)
1 /3

−C (i)
1 /3 −C (i)

1 /3 (C (i)
1 + C (i)

2 )/3
C (i)
4

C (i)
5

C (i)
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.89)

where superscript (i) = ′ or ′′.
This highly extended yield criterion is capable of capturing all three features:

anisotropy, tension/compression asymmetry and hydrostatic pressure sensitivity of
variousmetals likeAA 2008-T4, high-purityα-Titanium, andAZ31 Magnesium alloy.
Excellent fitting of proposed yield criterion and experimental data of AZ31 is shown
in Fig. 6.13. This sufficiently general form can unconditionally be recommended as
very effective and specially addressed to model totally distorted response of cold-
rolled metals.

6.7 Review of Isotropic and Explicit or Implicit Anisotropic
Initial Failure Criteria

In this section, a brief review of the selected pressure sensitive initial yield/
failure criteria is demonstrated. Contrary to the survey given in Sect. 5.9, in the
case considered here, the review of pressure sensitive criteria has to account for
three characteristic properties:

• the first stress J1σ or the first common Πi jσi j invariants have to be present in the
yield/failure criterion,

http://dx.doi.org/10.1007/978-3-319-17160-9_5
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• isotropic versus anisotropic formulation,
• direct versus indirect dependence on the stress invariants or the common invariants.

In case of isotropic pressure sensitive criteria, the attention is paid to invariant
representation of invoked criteria. Selected isotropic yield/failure criteria are col-
lected in Table6.2. All cited criteria depend on both the first stress invariant and
the second deviatoric invariant but additionally they may also depend on the third
deviatoric invariant. Criteria C1 Iyer [17], Gao et al. [15] and C3 Iyer and Lissenden
[18], Pȩcherski et al. [29] are special cases of the general criterion C4 Eq. (6.8),
see Sect. 6.2. Criterion C2 by Yoon et al. [39] has slightly different format and
cannot be derived form the general criterion C4 as a particular case but it can be
considered as the extension of the Cazacu and Barlat [5] pressure insensitive yield
criterion A2 in Table5.3 to the case of hydrostatic pressure sensitivity. Chronologi-
cally first yield/failure Coulomb–Mohr’s criterion C5 has been presented in the three
equivalent formats: the original Coulomb format (6.16), the Mohr format (6.18)
explicitly expressed in terms of principal stresses, and the mixed invariant format

(6.22) in which definition cos(3θ) = 3
√
3

2
J3s

(J2s )3/2
holds and explicit dependence

on the third stress deviator invariant is visible, see Chen and Han [7]. All above
criteria C1–C5 represent in the High–Westergaard space asymmetric yield/failure
surfaces hence tensile and compressive meridians stay in different distance from
hydrostatic axes. Next criterion C6 originated by Burzyński [4] represents in the
High-Westergaard space rotationally symmetric surface of various shapes: ellip-
soidal, paraboloidal, hyperboloidal, or conical, see Fig. 6.5. Hypothetically possible
onefold hyperboloidal surface has to be excluded on the base of Drucker’s convex-

Table 6.2 Review of pressure sensitive isotropic yield/failure criteria

C Author(s) Stress invariants

C1 Iyer [17], Gao et al. [15] Eq. (6.9)
(

a J 2p
1σ + bJ p

2s + cJ 2p/3
3s

)1/p = 1

C2 Yoon et al. [39] Eq. (6.14) a[bJ1σ + (J 3/2
2s − cJ3s)

1/3] = 1

C3 Iyer and Lissenden [18], Pȩcherski
et al. [29] Eq. (6.10)

a J 2
1σ + bJ2s + cJ 2/3

3s = 1

C4 Extension of C1 and C3 formats,
Eq. (6.8)

(
a J 2p

1σ + bJ p
2s + cJ 2p/3

3s

)1/r − 1 = 0

C5 Coulomb [8], Mohr [27] Eq. (6.16)
principal stress format Eq. (6.18)
mixed invariant format Eq. (6.22)

|τ | = c − σ tan φ 1
2 (σ1 − σ3) cosφ =

c − [ 1
2 (σ1 + σ3) + σ1−σ3

2 sin φ
]
tan φ

1
3 J1σ sin φ + √

J2s sin
(
θ + π

3

) +√
1
3 J2s cos

(
θ + π

3

)
sin φ − c cosφ = 0

C6 Burzyński [4] Eq. (6.27) A3J2s + B
(

J1σ
3

)2 + C
(

J1σ
3

)
= 1

C7 Drucker and Prager [9] Eq. (6.39) αJ1σ + √
J2s = k

http://dx.doi.org/10.1007/978-3-319-17160-9_5
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ity postulate. The limit format of the Burzyński criterion which satisfies Drucker’s
convexity postulate is the Drucker–Prager [9] criterion C7 that represents the con-
ical surface. Note that both Burzyński’s and Drucker–Prager’s criteria degenerate
to Huber–von Mises’ cylindrical surface in case when dependence on hydrostatic
pressure is neglected.

Selected pressure sensitive anisotropic yield/failure criteria are written in
Table6.3. Most of the criteria presented in this table, namely items D1–D13, deal
with explicit formulation of the anisotropic yield/failure criteria being consistently
formulated in the frame of common stress and structural tensors Πi jσi j , Πi jklσi jσkl

and Πi jklmnσi jσklσmn . On the other hand, the last two items D14 and D15 comprise

Table 6.3 Review of pressure sensitive anisotropic yield/failure criteria

D Author(s) Common invaritants

D1 Goldenblat and Kopnov [16], Sayir [33]
Eq. (6.2)

(Πi j σi j )
α + (

Πi jklσi j σkl
)β

+ (Πi jklmnσi j σklσmn
)γ + . . . = 1

D2 Życzkowski [40] Eq. (6.44) Πi j σi j + (
Πi jklσi j σkl

)1/2
+ (Πi jklmnσi j σklσmn

)1/3 = 1

D3 Kowalsky et al. [24] Eq. (5.21) h(0) + h(1)
i j si j + si j h

(2)
i jkl skl

+si j skl h
(3)
i jklmnsmn = 0

D4 Życzkowski [41] Eq. (6.44) Πi j σi j +√
Πi jklσi j σkl = 1

D5 Ganczarski and Lenczowski [11],
Ganczarski and Skrzypek [13] Eq. (6.46)

Πi j σi j + Πi jklσi j σkl = 1

D6 Ganczarski and Skrzypek [13] Eq. (6.52) Πi j σi j + Πi jkl si j skl = 1

D7 Orthotropic von Mises–Tsai–Wu Eq. (6.58) ortΠi j σi j + ortΠi jklσi j σkl = 1

D8 von Mises [37, 38] Πi jklσi j σkl = 1

D9 Khan et al. [21] ortΠi jklσi j σkl = 1

D10 Theocaris [35], Liu et al. [26] ortΠi j σi j +
√

ΠH
i jkl si j skl = 1

D11 Tsai and Wu [36] Eq. (6.64) ortΠi j σi j + ΠH
i jkl si j skl = 1

D12 Tetragonal transversely isotropic Tsai–Wu
Eq. (6.75)

trisΠ
TW
i j σi j + tet

trisΠ
TW
i jkl si j skl = 1 (6 matrial

constants)

D13 Hexagonal transversely isotropic Tsai–Wu,
Ganczarski and Adamski [14] Eq. (6.84)

trisΠ
TW
i j σi j + hex

trisΠ
TW
i jkl si j skl = 1 (5

material constants)

D14 Khan and Liu [20] Eq. (6.85), Khan et al.
[21] Eq. (6.86)

√
exp[C(ζ + 1)]ortΠi jklσi j σkl

= exp(c1
I1
3 )

exp[−C(ζ + 1)]ortΠi jklσi j σkl = 1

D15 Yoon et al. [39] Eq. (6.87) Ĩ1 + (J ′3/2
2 − J ′′

3 )1/3 = 1

http://dx.doi.org/10.1007/978-3-319-17160-9_5


6 Termination of Elastic Range of Pressure Sensitive Materials … 243

exemplary anisotropic yield/failure criteria based on implicit formulation where
anisotropy is introduced by linear transformation imposed on the stress tensor, and
next generalization of the known pressure sensitive isotropic criteria are done by
replacing stresses or stress invariants by transformed ones. All aforementioned crite-
ria include first and second common or transformed invariants by definition (presence
of the first invariant is necessary in order to account for hydrostatic pressure sensitiv-
ity and the second invariant ensures energy based interpretation of the limit criterion),
whereas appearance of the third common or transformed invariant is optional.

The most general form D1 originated by Goldenblat and Kopnov [16], Sayir [33]
is written in a polynomial format where the exponents α,β, γ, . . . are arbitrary con-
stants and number of terms is arbitrarily chosen, but usually limited to the first three
terms. Two particular cases of the criterion D1 are of special interest. Assuming
α = 1,β = 1/2, γ = 1/3 the homogeneity of the polynomial function on the
left-hand side is assured, e.g., Życzkowski [40] D2. On the other hand, the criterion
D3 used by Kowalsky et al. [24] does not satisfy homogeneity requirement where
α = β = γ = 1 holds. In the criteria D1–D2, all three common invariants are saved;
hence, the total number of independent material constants corresponding to the first
Πi jσi j the second Πi jklσi jσkl and the third Πi jklmnσi jσklσmn common invariants is
equal to 6+21+56 = 83. Both criteria D1–D2 are formulated in the space of stress
tensor components. However, when the majority of metallic materials is considered
the stress deviator space is more adequate to formulate limit criteria. Criterion D3
described in this space, having reduced total number of independent material con-
stants, was proposed by Kowalsky et al. [24]. Engineering application of the full
format including all three common invariants is very complicated because it requires
identification of large number of modules of the third common invariant (up to 56
in general case). The third common invariant is responsible for distortion of limit
surface hence in all cases where distortion is not very significant it is reasonable to
neglect the third common invariant. ItemsD4–D13 take advantage of aforementioned
simplification, what means that only first two common invariants are saved, which
drastically reduces number of independent material constants down to 6+ 21 = 27.
Both items D4 and D5 are consequently written in the stress space. However, item
D4 represents the conical-type limit surface, being anisotropic generalization of
the isotropic Drucker–Prager cone; whereas, item D5 represents paraboloidal-type
limit surface, being anisotropic generalization of isotropic rotationally symmetric
Burzyński’s paraboloid. Of course due to anisotropy, both discussed criteria do not
satisfy the rotational symmetry property. In some cases, it is justified to use devia-
toric format of the second common invariant only that leads to some reduction of
number of independent material constants 6 + 15 = 21. The representative of such
limit criterion is item D6. If fully deviatoric format of both the first and the sec-
ond common invariants is used, we arrive at the hydrostatic pressure independent
criterion considered by Szczepiński [34] (6.55) that has 5 + 15 = 20 independent
material constants. This criterion does not appear in Table6.3 since it is pressure
independent; however, its simplified form that has not the first deviatoric common
invariant (5.43) was discussed in Sect. 5.2. The essential difference between both
criteria (5.43) and (6.55) is that Eq. (5.43) represents limit surface that axis coin-

http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
http://dx.doi.org/10.1007/978-3-319-17160-9_5
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cides with the hydrostatic axis whereas Eq. (6.55) represents limit surface that axis
is shifted from the hydrostatic axis. The appropriate limit surfaces degenerate to not
rotationally symmetric cylinders.

Criterion D7 may be considered as an extension of the orthotropic von Mises
criterion (5.45) by use of the first common invariant described 3+9 = 12 independent
material constants. Criteria presented in items D8 and D9 do not contain the first
common invariant and they are written down in the stress space. This means that both
discussed criteria are pressure sensitive ones. The general von Mises criterion D8 is
described by 21 independent material constants whereas the criterion D9, suggested
by Khan et al. [21] contains only 9 independent material constants since it describes
material orthotropy. Next two items, namely D10 and D11, can be considered as
narrower formats of items D4 and D5. Both criteria are determined by 3 + 6 = 9
independent material constants. This reduction is furnished by simultaneous use of
two substitutions: first, substitution ofHill’s structural tensor (6 independentmaterial
constants), instead ofMises’ tensor (21 independent material constants); and second,
substitution of stress deviator by stress tensor in the second common invariant.

Criteria D12 andD13 describe yield/failure surfaces in case of transverse isotropy
of tetragonal Eq. (6.69) and new hexagonal Eq. (6.84) symmetry however they differ
each from the other in this sense that format Eq. (6.69) is described by 2 + 4 = 6
independentmaterial constants by contrast to the format Eq. (6.84) inwhich 2+3 = 5
independentmaterial constants is present. In such away the narrower hexagonal form
assures its reducibility to the shifted Huber–von Mises type ellipse in the plane of
transverse isotropy.

CriteriaD14 andD15 belong to separate type of limit criteria in that sense that they
are neither the common invariant-based explicit equations nor linear transformation-
based implicit generalization of chosen isotropic criteria. These original mixed con-
cepts are difficult to be classified in sense of either implicit or explicit approaches
because involved simultaneously all three invariants. In D14 criterion suggested by
Khan and Liu [20], Khan et al. [21], the second common invariant Πort

i jklσi jσkl and
all stress invariants I1, J2, J3 are involved. In D15 criterion proposed by Yoon et al.
[39], the first common invariant Πi jσi j together with the second and the third trans-
formed invariants J ′

2, J ′
3 are used. The format with J ′

2, J ′
3 turns out to be anisotropic

extension of Drucker’s criterion which appears in power 1/3 due to assure dimension
homogeneity with the first common invariant Ĩ1.
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Chapter 7
Classification of Constitutive Equations
for Dissipative Materials—General Review

H. Egner and W. Egner

Abstract In the present chapter the general features of thermodynamically based
constitutive modeling are described. In such approach a basic hypothesis is that the
state of a material is entirely determined by certain values of some independent vari-
ables, called variables of state. This type of constitutive modeling is particularly well
adapted to the formulation of constitutive equations for deformable solids with sev-
eral dissipative phenomena. A common three-stage procedure in the definition of a
constitutive model is discussed: (1) choice of the state variables, (2) definition of the
state potential from which the state relations (between strain-like variables and their
dual conjugated forces) are derived, and (3) choice of the dissipation potential from
which the rate equations of state variables are derived. The classification of consti-
tutive equations is then presented for elastic-damage, elastic-plastic, thermo-elastic-
(visco)plastic, and elastic-plastic-damagematerials.Damage-induced anisotropy and
unilateral damage effect are accounted. When plasticity is considered, an alterna-
tive multiscale approach, based on polycrystalline calculations for the description
of yielding anisotropy and its evolution with accumulated deformation, is also dis-
cussed. As an example of thermoplastic coupling, the fatigue behavior of martensitic
hot work tool steel in nonisothermal conditions is analyzed. In this example two
cases are compared: (1) partial coupling, when changing temperature is accounted
only in changing material parameters, and (2) full coupling, when additional terms
proportional to temperature rate are added in the kinetic equations of thermodynamic
conjugate forces. Numerical simulations are performed, which indicate the signifi-
cant influence of temperature rate on the response of constitutive model when cyclic
thermomechanical loading is considered.
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Keywords Constitutive modeling ·Dissipative material · Thermoplastic coupling ·
Damage-induced anisotropy

7.1 Coupled Dissipative Phenomena

We consider a specific portion of the physical universe, called a system. A system
is closed, which means that there is no exchange of matter between it and its sur-
roundings. To describe the state of a system we need a set of macroscopic quantities,
which are characteristics of a system, and which can be scalars, vectors, or tensors
(matrices), such as temperature or a strain tensor. Such quantities are called state
variables, and functions of state variables are state functions. State functions depend
only on the state of the system and not on the manner in which this state is achieved.
A system subjected to loading undergoes the process of deformation. If both the sys-
tem and its surroundings can be brought back to their initial conditions, the process
of deformation is called reversible. If the restoration of a system to its initial condi-
tions requires changing of the conditions of its surroundings, the process is called
irreversible. For reversible processes, the material after unloading returns to its ini-
tial state, and its characteristics do not change. In the case of irreversible process
the material after unloading does not return to its initial state, but to some residual
state, characterized by residual strains and stresses, and changed material properties.
Irreversible phenomena are accompanied by the dissipation of energy introduced to
the material in the course of deformation. For this reason they are called dissipative
phenomena. In particular, among reversible phenomena we may indicate linear or
nonlinear elasticity, while plasticity, creep, and/or damage are irreversible and lead
to various rearrangements of a material microstructure. Elastic response is indepen-
dent of the load history, so that the response for loading and unloading follows the
same path (path independent). In accordance, the stresses are uniquely given by the
strains through the constitutive relation.

Reversible deformation is limited when irreversible rearrangements of a material
microstructure are initiated. Most often the material degradation connected with slip
rearrangements of crystallographic planes through dislocation motion is observed
(ductile materials) and/or the development of microcracks and microvoids takes
place (brittle materials). Such behavior may be illustrated on the example of uniaxial
loading/unloading for three typical groups of engineering materials: (visco)plastic
(or ductile—most of metals), brittle (some CMC-type composites, ceramic mate-
rials, concrete, rocks) and mixed (visco)plastic/brittle (most of MMC composites,
cast iron). Figure7.1a illustrates the response of ductile (visco)plastic material. After
reaching threshold stress kvp the initially linear stress–strain diagram becomes non-
linear due to the development of (visco)plastic strains. On the basis of experimental
observations it can be assumed that during this hardening process the elastic modulus
remains unchanged, Evp = Ee. The areasWe,Wvp, andWsvp in Fig. 7.1a illustrate,
respectively: the elastic strain energy that can be retrieved during unloading, the dis-
sipated energy (mainly in the form of heat), and the energy used for rearrangements
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(a)

(b)

(c)

Fig. 7.1 Different dissipative phenomena observed during uniaxial loading/unloading: a
(visco)plasticity; b damage; c plasticity with damage, after Ganczarski and Skrzypek [32]

of material microstructure (stored energy). Stress level kvp∞ is an asymptotic value,
to which the stress tends when the viscoplastic strain tends to infinity, εvp → ∞
(asymptotic hardening).

Brittle materials exhibit quite different behavior. After reaching threshold value
kd the initiations of microcracks and/or microvoids are observed. Further increase of
the load causes the development of microdamage, and finally leads to brittle fracture
when fracture strain εf is reached (see Fig. 7.1b). Microdamage development causes
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material degradation (damage softening) observed on macroscale as a progressive
drop of elastic modulus, Ed < Ee. The areas We,Wed,W id, and Wsd illustrate,
respectively, the elastic strain energy, reversible part of the energy related to partial
closure of microcracks during unloading, the energy dissipated by damage, and the
energy used for microstructural rearrangements (stored energy).

In amore complex case,when thematerial exhibits both ductile and brittle features
(for example, spheroidal graphite cast iron) three ranges of the deformation process
can be distinguished (seeFig. 7.1c): elastic (σ < kd), elastic-damage (kd < σ < kvp),
and mixed (visco)plastic-damage range (kvp < σ) (for the case when kd < kvp).
Respective areas: We,Wed,W id,Wsd, and Wsvpd correspond to the elastic strain
energy, reversible part of the energy related to partial closure of microcracks during
unloading, the energy dissipated by damage, the energy stored by damage hardening,
and the energy stored by simultaneous development of microdamage and plastic
strains. The elastic range in such complex case is limited by a surface which is a
common part of two other surfaces, related to plastic slip initiation, f vp, and damage
initiation, f d. During coupled process of damage and (visco)plastic dissipation,
plastic strains, as well as damage development, influence both plastic and damage
surfaces (cf. Egner [26]).

7.2 General Features of Thermodynamically Based
Constitutive Modeling of Coupled Dissipative
Phenomena

7.2.1 Basic Assumptions

The motions of the thermodynamic system obey the fundamental laws of continuum
mechanics expressed in the local form:

• conservation of mass
ρ̇ + ρνi |i = 0 (7.1)

• conservation of linear momentum

σij| j + ρbi = ρv̇i (7.2)

• conservation of angular momentum

σij = σji (7.3)

• the first law of thermodynamics

ρu̇ − ε̇ijσij − r + qi |i = 0 (7.4)
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• the second law of thermodynamics

ρṡ − r

T
+
(qi

T

)
|i

≥ 0 (7.5)

The following notation is used: ρ is the mass density per unit volume; vi is the
material velocity; σij is the stress tensor; bi is the body force density per unit mass;
u is the internal energy per unit mass; εij is the strain tensor; r is the distributed
heat source per unit volume; qi is the outward heat flux; s stands for the internal
entropy production per unit mass; T is the absolute temperature. Depending on the
scale, different approaches may be used in order to describe an overall structural
response of a dissipative structure on the macroscale. In general, micromechani-
cal models relate the macroproperties and the macroresponse of a structure to its
microstructure. In such approach the rearrangements of microstructure are discrete
and stochastic phenomena induced by a number of weakly or strongly interacting
microchanges that influence the overall structural response. The micromechanical
models have the advantage of being able to sustain heterogeneous structural details
on the microscale and mesoscale, and to allow a micromechanical formulation of the
evolution equations based on the accurate microchange growth processes involved
(cf. Chaboche et al. [17]; Boudifa et al. [11], Aboudi [1]).

Continuum Mechanics approach discussed in the present chapter provides the
constitutive modeling in the framework of thermodynamics of irreversible processes
with internal state variables. This approach is basedon a concept of the effective quasi-
continuum (see Fig. 7.2c). The material heterogeneity (on the micro and mesoscale)
is smeared out over the Representative Volume Element (RVE) of the piecewise
discontinuous material. The true state of a material within RVE, represented by the
topology, size, orientation, and number of microchanges, is mapped to a material
point of the effective quasi-continuum. The true distribution of microchanges within
the RVE, and the correlation between them are measured by the change of the effec-
tive constitutive properties. The microstructural rearrangements are defined by the
set of state variables of the scalar, vectorial, or tensorial nature (cf. Murakami and
Ohno [54]; Litewka [49]; Chaboche [18]; Skrzypek and Ganczarski [69]; Skrzypek
et al. [70]; Ganczarski et al. [30]). The constitutive tensors for the dissipative mate-
rial are defined by the use of even-rank effect tensors (damage effect tensor, phase
transformation effect tensor, etc.) that map thermodynamic forces from the physical
(discontinuous) to the fictitious (pseudocontinuous) configurations, see Fig. 7.2.

7.2.2 State Potential and State Equations

In constitutive modeling, the well-known formalism of thermodynamics of irre-
versible processes with internal state variables, and the local state method are often
adopted. In this approach a central hypothesis is that the state of a material is entirely
determined by certain values of some independent variables, called variables of



252 H. Egner and W. Egner

(a) (b)

(c)

Fig. 7.2 a Virgin (initial), b physical (changed), and c equivalent pseudo-unchanged continuum;
the equivalence principles are used in order to smear out the true microchanges distribution over
the RVE to yield the effective constitutive modules for dissipative material

state (see Chap.1). This type of approach is particularly well suitable to the for-
mulation of constitutive equations for deformable solids with several dissipative
phenomena. The constitutive behavior is defined by the specification of two poten-
tials: an energy (state) potential and a dissipation potential. A state potential is a
closed, convex, and scalar-valued function of the overall state variables. Usually,
Helmholtz’s free energy density is adopted, decomposed into elastic (ρψe), plastic
(ρψp), damage (ρψd), phase change (ρψph), etc. terms (cf. Lemaitre and Chaboche
[48], Abu Al-Rub and Voyiadjis [3]):

ρψ =
n∑

k=1

ρψk = ρψe + ρψp + ρψd + ρψph + · · · (7.6)

By eliminating all the reversible processes from theClausius–Duhem inequality (7.5)
the following state equations which express the thermodynamic forces conjugated
to the observable state variables (see Chap.1) are obtained:

http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_1


7 Classification of Constitutive Equations … 253

σij = ∂(ρψ)

∂εeij
= ∂(ρψ)

∂εepq

∣∣∣∣∣
ε∗

ij=const

+ ∂(ρψ)

∂ε∗
kl

∂ε∗
kl

∂εeij

s = −∂ψ

∂T

(7.7)

The second term in (7.71) introduces the fourth-order tensor D(ε)
ijkl = ∂ε∗

kl
∂εe

ij
which

accounts for the unilateral damage effect. The definition of tensor ε∗
ij is given by

Eq. (1.58) in Chap.1 of this book. In addition, the pairs of forces conjugated to other
microstructural or hidden state variables are postulated in a similar form to (7.71)
and (7.72) (cf. Chaboche [18]):

− Y k = ∂(ρψ)

∂V k
, Hk = ∂(ρψ)

∂hk
(7.8)

In the above equations Y k stand for thermodynamic forces conjugated to microstruc-
tural state variables V k Eq. (1.54), whereas hardening forces Hk are conjugated to
hidden state variables hk . In particular, when hardening variables (1.56) are used,

thermodynamic forces Hk =
{

Rk, Xk
ij, Lk

ijkl, Gk
ijklmn

}
, conjugate of

corresponding internal variables hk (1.56) are defined for each dissipation mech-
anism (k = p, d, ph, . . .) (see Table7.1):

Rk = ∂(ρψ)

∂rk
, Xk

ij = ∂(ρψ)

∂αk
ij

, Lk
ijpq = ∂(ρψ)

∂lk
ijpq

, Gk
ijpqrs = ∂(ρψ)

∂gk
ijpqrs

(7.9)

If we now define the thermodynamic conjugate force vector J and the flux vector
Ṗ as:

J =
[
σij,

T|i
T

;−Y k, Hk
]

, Ṗ =
[
ε̇I

ij,−qi ;−V̇ k,−ḣk
]T

(7.10)

then the dissipation inequality (7.5) can be expressed as the scalar product of J and
Ṗ as follows (Krajcinovic [44]; Ottosen and Ristinmaa [60]):

� = J · Ṗ ≥ 0 (7.11)

where � is the dissipation function,

� = σij ε̇
I
ij + Y k V̇ k − Hkḣk

︸ ︷︷ ︸
�mech

− qi T|i/T︸ ︷︷ ︸
�T

(7.12)

that can be fartherly decomposed into mechanical �mech and thermal �T terms.
The state relations (7.7)–(7.9) are deduced from the fundamentalClausius–Duhem

inequality. The kinetic equations of force-like variables are then obtained by taking

http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_1
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Table 7.1 State variables and corresponding thermodynamic conjugate forces for the general
thermo-elastic-plastic-damage two phase material

Phenomenon State variables Conjugate forces

Mechanical variables Observable state variables: εij , T σij , s

Plastic flow εeij (or ε
p
ij) σij (or −σij)

Plastic hardening rp (isotropic) Rp

α
p
ij (kinematic) Xp

ij

lpijkl (anisotropic) Lp
ijkl

g
p
ijklmn (distortional) Gp

ijkl

Damage V d
ij = Dij −Y d

ij

Damage hardening rd (isotropic) Rd

αd
ij (kinematic) Xd

ij

ldijkl (anisotropic) Ld
ijkl

gdijklmn (distortional) Gd
ijkl

Phase transformation V ph
ij = ξij −Y d

ij

Phase transformation hardening rph (isotropic) Rph

α
ph
ij (kinematic) Xph

ij

lphijkl (anisotropic) Lph
ijkl

g
ph
ijklmn (distortional) Gph

ijkl

time derivatives. Various coupling terms appear in the kinetic equations, that are nec-
essary for proper description of a material behavior, especially when cyclic loading
is considered [27, 28].

7.2.3 Dissipation Potential and Rate Equations

Dissipation Potential

Once the force-like variables are known from the state relations, it remains to define
the flux variables so that the volumic dissipation � (7.12) is always nonnegative. In
order to define the evolution equations to dissipative phenomena, the existence of
several dissipation potentials Fk may be assumed, corresponding to eachmicrostruc-
tural rearrangement (due to plastic flow p, damage growth d, phase change ph etc.),
and defined independently but partly coupled (weak dissipation coupling, Chaboche
[18]). Dissipation potentials are assumed in the form of positive, convex, closed, and
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scalar-valued functions of force-like variables, with the associated state variables
able to serve as parameters.

Dissipation functions in general can be expressed in the following nonassociated
form:

Fk = f k + gk
iso(Rk) + gk

kin(Xk
ij) + gk

aniso(Lk
ijpq) + gk

dist(G
k
ijpqrs) (7.13)

where gk
iso, g

k
kin, g

k
aniso, and gk

dist are functions corresponding to recovery effects of par-
tial progressive return to the original microstructure (Kuo and Lin [45]; Mirzakhani
et al. [52]). Only the first two terms, related to isotropic and kinematic effects, are
used in the majority of existing models. Usually, the recovery functions are defined
as quadratic functions of thermodynamic forces conjugated to hardening variables,
Rk, Xk

ij, Lk
ijpq, Gk

ijpqrs.

Loading Functions

In Eq. (7.13) f k stands for a loading surface related to the kth dissipative phenom-
enon. A first classical approach to the definition of the loading/failure criteria, usually
in relation to the phenomenon of plastic flow, is based on a concept of common invari-
ants of the stress and structural anisotropy tensors (see Chap. 4). Loading functions
f k , described by relevant thermodynamic forces which are tensors of different order,
can be listed in a polynomial hierarchy with increasing complexity and hardening
properties, see Kowalsky et al. [43]. For example, the plastic yield function f p of
third degree with distortional hardening is given by

f p =
√
3

2
sefij L p

ijkls
ef
kl + sefij sefkl Gp

ijklmnsefmn − (Rp
0 + Rp) = 0 (7.14)

where sefij = σef
ij − 1

3σ
ef
kkδij and σef

ij = σij − Xp
ij. Other loading functions of third

degree (damage, phase transformation, etc.) may be defined as

f d =
√

Y def
ij Ld

ijklY
def
kl + Y def

ij Y def
kl Gd

ijklmnY def
mn − (Rd

0 + Rd) = 0

f ph =
√

Y phef
ij Lph

ijklY
phef
kl + Y phef

ij Y phef
kl Gph

ijklmnY phef
mn − (Rph

0 + Rph) = 0
(7.15)

where Y def
ij = Y d

ij − Xd
ij and Y phef

ij = Y ph
ij − Xph

ij . Investigations by Streilein [71]

have shown that such polynomial yield functions, including hardening tensors up to
the sixth order are best covering the experimental data. To account for the unilateral
damage effect, the damage loading function f d may be expressed in terms of the
modified damage-conjugated thermodynamic force Y def∗

ij (see Challamel et al. [22]):

f d =
√

Y def∗
ij Ld

ijklY
def∗
kl + Y def∗

ij Y def∗
kl Gd

ijklmnY def∗
mn − (Rd

0 + Rd) = 0 (7.16)

http://dx.doi.org/10.1007/978-3-319-17160-9_4
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where (see Eq. (1.58))

Y def∗
ij =

3∑
I=1

κ(Y def
kl )n(Y )

i I n(Y )
j I n(Y )

I k n(Y )
I l Y def

kl = B(Y )
ijkl Y def

kl (7.17)

Second approach, developed recently for example by Barlat et al. [4–6], Cazacu
and Barlat [14], Plunkett et al. [65], Yoon et al. [78] is of mixed type: classical
isotropic yield criteria were extended to anisotropy by the application of linear trans-
formation of the stress tensor. The proposed anisotropic yield function represents
with great accuracy both the tension/compression anisotropy and the strength differ-
ential effect.

A new yield criterion to describe the anisotropic yield behavior and tension/
compression asymmetry was also proposed by Khan et al. [42], and Khan and Liu
[41]. Both effects were uncoupled into multiplicative terms, which allowed to deter-
mine the anisotropic coefficients and tension/compression asymmetry parameters
independently. Additionally, by introducing a shape-dependent term different types
of yield surfaces can be predicted: quadratic—Hill type, non quadratic—Tresca
type, or intermediate.

Rate Equations

A constitutive model that fulfills the Clausius–Duhem inequality, fulfills all for-
mal requirements. However, this does not guarantee that the model provides a good
approximation of the real material behavior. If the internal state variables (1.57) cho-
sen in modeling are not identified with underlying physical mechanisms, responsible
for dissipation, the theory may be physically empty. There are various approaches
for establishment of the rate laws, so that the dissipation inequality is fulfilled:

• Direct approach. On the basis of experimental observations some evolution laws
for the components of flux vector Ṗ Eq. (7.10) are postulated. Then a posteriori
check is performed that the dissipation inequality (7.11) is fulfilled, and this must
be done for each material model.

• Onsager’s approach. Rate laws are established on the basis of the Onsager recip-
rocal relations (cf. Onsager [58, 59]):

ṖΘ = TΘY JY (7.18)

where coefficients TΘY create symmetric and positive definite coefficient matrix.
Insertion of (7.18) into (7.11) always provides:

� = J · Ṗ = JΘ TΘY JY ≥ 0 (7.19)

• Potential approach. The existenceof adissipation potential F(JΘ, ZK ) is assumed,
which is a closed, convex, and scalar-valued function of the thermodynamic forces
JΘ , and some other possible variables ZK . If function F fulfills the condition
F(JΘ, ZK ) − F(0, ZK ) ≥ 0, then the evolution laws:

http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_1
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ṖΘ = λ̇
∂F

∂ JΘ

λ̇ ≥ 0 (7.20)

fulfill the dissipation inequality (7.11). This approach was pioneered by Halphen
and Nguyen [36] and is known in literature as a generalized normality rule.

• Postulate of maximum dissipation (cf. Ziegler [84]). According to this postulate,
from all admissible fluxes these are taken which maximize the mechanical dis-
sipation �mech (7.12) under the constraint that f k ≤ 0 (7.13). This problem is a
Lagrange minimization problem with a constraint in terms of inequality:

L = − �mech +λ̇k f k = −σij ε̇
I
ij − Y k V̇ k + Hkḣk + λ̇k f k (7.21)

Necessary conditions of extremum lead to the following rate laws:

ε̇Iij =
n∑

k=1
λ̇k ∂ f k

∂σij
= λ̇p ∂ f p

∂σij︸ ︷︷ ︸
ε̇
p
ij

+ λ̇d ∂ f d

∂σij︸ ︷︷ ︸
ε̇dij

+ λ̇ph ∂ f ph

∂σij︸ ︷︷ ︸
ε̇
ph
ij

+ · · ·

V̇ k =
n∑

i=1
λ̇i ∂ f i

∂Y k
= λ̇p ∂ f p

∂Y k︸ ︷︷ ︸
V̇ pk

+ λ̇d ∂ f d

∂Y k︸ ︷︷ ︸
V̇ dk

+ λ̇ph ∂ f ph

∂Y k︸ ︷︷ ︸
V̇ phk

+ · · ·

−ḣk =
n∑

i=1
λ̇i ∂ f i

∂Hk
= −

⎛
⎜⎜⎝λ̇p ∂ f p

∂Hk︸ ︷︷ ︸
ḣpk

+ λ̇d ∂ f d

∂Hk︸ ︷︷ ︸
ḣdk

+ λ̇ph ∂ f ph

∂Hk︸ ︷︷ ︸
ḣphk

+ · · ·

⎞
⎟⎟⎠

(7.22)

where λ̇k are nonnegative consistency multipliers and k is a number of a dissipative
phenomenon, like plastic flow, damage growth, phased change, etc., taking place
in the material. The postulate of maximum dissipation leads to associated theories,
since the loading criterion f k is associated with the potential function.

Both potential approach and approach based on the postulate of maximum dis-
sipation may be generalized into the following evolution rules (cf. Chaboche [18],
Egner [26]).

ε̇Iij =
n∑

k=1
λ̇k ∂Fk

∂σij
= λ̇p ∂Fp

∂σij
+ λ̇d ∂Fd

∂σij
+ λ̇ph ∂Fph

∂σij
+ · · ·

V̇ k =
n∑

i=1
λ̇i ∂Fi

∂Y k
= λ̇p ∂Fp

∂Y k︸ ︷︷ ︸
V̇ pk

+ λ̇d ∂Fd

∂Y k︸ ︷︷ ︸
V̇ dk

+ λ̇ph ∂Fph

∂Y k︸ ︷︷ ︸
V̇ phk

+ · · ·

−ḣk =
n∑

i=1
λ̇i ∂Fi

∂Hk
= −

⎛
⎜⎜⎝λ̇p ∂Fp

∂Hk︸ ︷︷ ︸
ḣ pk

+ λ̇d ∂Fd

∂Hk︸ ︷︷ ︸
ḣdk

+ λ̇ph ∂F ph

∂Hk︸ ︷︷ ︸
ḣphk

+ · · ·

⎞
⎟⎟⎠

(7.23)
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For rate-independent problems the consistency multipliers may be calculated from
the consistency conditions:

ḟ k = 0, =⇒

⎧⎪⎪⎨
⎪⎪⎩

ḟ p = 0
ḟ d = 0
ḟ ph = 0
. . .

(7.24)

The parameters λ̇k are assumed to obey the classicalKuhn–Tucker loading/unloading
conditions:

f k ≤ 0 and ḟ k

⎧⎨
⎩

< 0 and λ̇k = 0 =⇒ passive loading
= 0 and λ̇k = 0 =⇒ neutral loading
= 0 and λ̇k > 0 =⇒ active loading

(7.25)

Note that if the damage loading function is expressed in terms of the modified ther-
modynamic force Y def∗

ij , see Eqs. (7.16) and (7.17), then another fourth-rank tensor,

D(Y )
ijkl = ∂Y def∗

kl /∂Y def
ij , which accounts for different damage evolution under tension

and compression, appears in expression (7.232) written for k = d:

V̇ d
ij = Ḋij =

n∑
m=1

λ̇m ∂Fm

∂Y d
ij

=
n∑

m=1

λ̇m ∂Fm

∂Y def∗
kl

∂Y def∗
kl

∂Y d
ij

(7.26)

The kinetic laws for thermodynamic conjugate forces (Rk, Xk
ij, Lk

ijkl, Gk
ijklmn, . . .) are

obtained by taking time derivatives of the state laws (7.8) and (7.9). By the use of

tensorial forces Lk
ijkl and Gk

ijklmn conjugated to hardening variables lk
ijkl and gk

ijklmn a
significantly better agreement with experimental data may be obtained, as proved by
Streilein [71]. The kinetic laws for the overstress model by Chaboche and Rousselier
[21], extended to rotational and distortional hardening up to the sixth order, were
given byKowalsky et al. [43]. The deviation between the experimental and numerical
results decreased from 11.8% for the original model to 5.1% for the model extended
to rotational and distortional hardening, see Fig. 7.3.

When the classical approach based on the normality rule is used, the rate of a
given state variable is derived from one dissipation function, related to dissipative
phenomenon represented by this variable. On the other hand, if another approach,
based on the postulate of maximum dissipation (cf. for example, Abu Al-Rub and
Voyiadjis [3]) is applied, coupling between dissipation phenomena is possible to rep-
resent in evolution equations, however only associated theories are then described,
since the kinetic laws result from side conditions of a minimization Lagrange prob-
lem, which are imposed on the loading functions and not dissipation functions. Note
that Eq. (7.23) describe both coupling between dissipation phenomena (so that all
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Fig. 7.3 Hysteresis loops
and yield surfaces
for the uniaxial tensile test,
after Kowalsky et al. [43]
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dissipation functions may appear in each kinetic law) and nonassociated rules. Con-
sequently, the inelastic strain rate consists not only of the plastic strain rate, but also of
strain rates related to other dissipative phenomena. As well, the rates of microstruc-
tural state variables, V̇ k include terms resulting from coupling of kth dissipative
phenomenon with other dissipative phenomena. At the same time the description
of nonassociated theories is possible. Therefore, the evolution rules (7.23) may be
considered as the generalization of classical normality rules and approaches based on
the postulate of maximum dissipation: for associated theories, when the considered
dissipation function is equal to the loading function, Fk = f k , or for nonassoci-
ated theories in which the recovery terms are independent of thermodynamic forces
associated with the microstructural rearrangements, Eq. (7.23) become equivalent
to the approaches based on the principle of maximum dissipation (cf. for example
Abu Al-Rub and Voyiadjis [3]). On the other hand, if coupling between individual
dissipation potentials is neglected, Eq. (7.23) reduce to the classical normality rule
(cf. for example Ganczarski and Skrzypek [31]). The comparison between kinetic
equation (7.23) presented in Egner [26] and approaches presented in AbuAl-Rub and
Voyiadjis [3] and in Chaboche [18] for elastic-plastic-damage material is presented
in Table7.2.
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7.3 Elastic-Damage Material

Linear elastic material behavior is based on the assumption that the elastic stiffness
(or compliance) tensor is constant through the entire service time. In general, this
assumption is not true, because of the appearance of several irreversible mechanical
phenomena, e.g. plasticity and damage, etc. which all affect the elasticity tensors.
Roughly speaking, due to these material degradation phenomena, a drop in stiffness
and an increase in compliance is observed, such that the initially linear behavior
becomes nonlinear. Neglecting, at this point, the plastic dissipation mechanism, we
confine ourselves to the influence of the damage dissipation mechanism on the prop-
erties of nonlinear elastic-damage material. If the damage process is active, addi-
tional damage-induced strains, reversible εedij and irreversible εidij , are observed, see

Eq. (1.38): εij = εeij +εedij +εidij . In other words, nucleation of microcracks and micro-
cavities, growth, and coalescence, as well as decohesion, grain boundary cracks, etc.,
are the source of nonlinearity. It may be described by the effective stress concept or,
more generally, the effective variables concept [24]. According to this formalism,
the effective (damage influenced) stress σ̃ij is obtained from the Cauchy stress σij

through the linear tensorial transformation, by the use of the fourth-rank damage
effect tensor Mijkl(Dpq), the elements of which depend on the current components
of the second-rank damage tensor Dpq. Hence, the following linear tensorial trans-
formation rule holds:

σ̃ij = Mijklσkl (7.27)

Matrix representation of the damage effect tensor is complicated and not unique, as
shown by Chen and Chow [23], see Chap.1. Summing up, when the effect of damage
growth is taken into account, the initially linear elasticity equations become nonlinear
following the stiffness deterioration (and compliance increase) due to damage:

σij = Mipjq Epqrs Mrkslε
e
kl (7.28)

Usually, the initial damage threshold is observed, the exceeding of which matches
the active damage growth. Below the damage threshold processes are purely elastic,
but on reverse loading the additional effect of damage hardening may occur. In spite
of mechanical properties damage also influences thermal expansion and thermal
conductivity. In order to derive the damage affected thermal expansion tensor [29]
application of the stress equivalence principle gives:

[α̃] =
⎡
⎣

α1(1 − D1)

α2(1 − D2)

α3(1 − D3)

⎤
⎦ (7.29)

In an analogousway, postulating the entropy equivalence principle onemay introduce
a damage affected thermal conductivity tensor [69]:

http://dx.doi.org/10.1007/978-3-319-17160-9_1
http://dx.doi.org/10.1007/978-3-319-17160-9_1
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[̃λ] =
⎡
⎣

λ1(1 − D1)

λ2(1 − D2)

λ3(1 − D3)

⎤
⎦ (7.30)

7.4 Elastic-Plastic Material

A second basic dissipative mechanical phenomenon that causes a loss of material
linearity is material degradation connected with plasticity. In the case of the plas-
ticity dissipation mechanism (as observed in the majority of ductile metals) the
irreversible plastic strain ε

p
ij in a loaded/unloaded specimen remains in the stress-

free state. Assumption of the class of symmetry of material in the elastic range
(orthotropy, transverse isotropy, isotropy) is the key point for proper definition of the
yield criterion. If material is isotropic in the elastic range, it deforms approximately
isotropically also at the initial phase of plastic flow. In the case of deep plastic defor-
mation, however, a specifically ordered material texture is formed during fabrication
process, such asmetal forming, rolling, deep drawing, plastic penetration, etc. On the
other hand, materials that are anisotropic in the elastic range, either virgin or dam-
age acquired (e.g. long fiber reinforced composites, thin ceramic layers deposited
by different techniques, bones, etc.) retain anisotropy also in the plastic range. The
most general criterion of the transition of anisotropic material from the elastic to the
elastic-plastic range, based on the von Mises concept, is known as the von Mises
criterion:

σijΠijklσkl = 1 (7.31)

The von Mises anisotropy tensor Πijkl is characterized by 21 independent moduli,
see broader discussion in Chap.5. However, this criterion is difficult to practical
applications due to expensive material tests. In the case of isotropy, the Huber–von
Mises isotropic yield condition is often applied:

σHMH
eq = 1√

2

[(
σx − σy

)2 + (
σy − σz

)2 + (σz − σx )
2 +

6
(
τ2xy + τ2yz + τ2zx

)]1/2 = k
(7.32)

7.4.1 Classical Isotropic Plastic Hardening

In the case of J2-type mixed isotropic/kinematic hardening model of the isotropic
material, the hardening effect can be decomposed into the isotropic growth of the
diameter of the plastic dissipation surface and a rigid movement of the surface center,
cf. Fig. 7.4. Corresponding equations for the J2-type isotropic, kinematic, or mixed
plasticity hardening functions, also called loading functions, are:

http://dx.doi.org/10.1007/978-3-319-17160-9_5
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f piso =
√
3

2
sijsij − k (T ) − Rp (p) = 0

f pkin =
√
3

2
(sij − X ′p

ij )(sij − X ′p
ij ) − k (T ) = 0

f pmix =
√
3

2
(sij − X ′p

ij )(sij − X ′p
ij ) − k (T ) − Rp (p) = 0

(7.33)

In the above equations, the scalar variable Rp(p) represents the isotropic term, or
drag stress, the tensorial variable Xp

ij(ε
p
kl, p) is the translation tensor, or the back stress

tensor. The scalar variable p(ε
p
ij) is the accumulated plastic strain, dp =

√
2
3dε

p
ijdε

p
ij,

function k(T ) is the initial temperature-dependent yield point stress, whereas X ′p
ij

stands for the deviator of Xp
ij. Isotropic and kinematic plastic hardening functions,

Xp
ij(ε

p
kl, p) and Rp(p) are, in general, given by the nonlinear relationships. When

the Armstrong–Frederick mixed hardening model is used, the following nonlinear
evolution rules can be applied:

f pA−F = J2(σij − Xp
ij) − k (T ) − Rp (p) = 0

J2(σij − Xp
ij) =

√
3

2
(sij − X ′p

ij )(sij − X ′p
ij )

dRp = bp(Rp∞ − Rp)dp

dXp
ij = 2

3
Cp(p)dεpij − γp(p)Xp

ijdp

(7.34)

Parameters Cp(p) and γp(p) are known scalar functions of the cumulative plastic
strain. For the uniaxial stress state both the drag stress Rp(εp) and the back stress
Xp(εp) are described by the scalar functions, namely:

Fig. 7.4 Illustration of the Armstrong–Frederick nonlinear isotropic/kinematic hardening, after
Ganczarski et al. [30]
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f pA−F = |σ − Xp| − k (T ) − Rp (εp) = 0

dRp = bp(R p∞ − Rp) |dεp|
dXp = 2

3
Cp(εp)dεp − γp(εp)Xp |dεp|

(7.35)

For some applications, Chaboche and Rousselier [21] proposed multi-kinematic
hardening model:

f p = J2(σij − Xp
ij) − k (T ) = 0

Xp
ij =

3∑
n=1

Xpn
ij

dXpn
ij = 2

3
Cpn(p)dεpij − γpn(p)Xpn

ij dp

(7.36)

Note that all aforementioned mixed, isotropic/kinematic J2-type plastic hardening
models assume that plastic surfaces follow the isotropy condition. This means that
subsequent yield surfaces are similar to one another, and no distortion effects are
considered. In general, this is not true, as shown, for example, in experiments by
Phillips and Tang [61].

7.4.2 Homogeneous Yield Function-Based Anisotropic
Hardening

Asymmetric Yielding

An alternative to kinematic hardening in classical plasticity is the asymmetric yield-
ingmodel, presented byBarlat et al. [6]. The approach is based on homogeneous yield
functions/plastic potentials, combining a stable, isotropic, or anisotropic hardening-
type component f (sij) and a fluctuation component fh(sij):

f pB = {[
f (sij)

]q + [
fh(sij)

]q} 1
q − k̄(ε̄)

= {[ f (sij)]q + |p1|q |̂hs
ijsij − |̂hs

ijsij||q

+ |p2|q |̂hs
ijsij + |̂hs

ijsij||q ] 1
q − k̄(ε̄) = 0

(7.37)

where p1, p2, q are coefficients, while k̄ and ε̄ denote equivalent stress and strain,
respectively. Stable function f (sij)may be isotropic or anisotropic, homogeneous of
an arbitrary degree, symmetric with respect to the origin, or capturing the strength
differential effect. The dimensionless tensor ĥ

s
, of the components:

ĥs
ij = hs

ij√
8
3hs

klh
s
kl

(7.38)

is a structural tensor called the microstructure deviator. As an example, if ĥ
s
corre-

sponds to uniaxial tension, it is represented in its matrix form by
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[
ĥ
s
]

=
⎡
⎣

1
2 0 0
0 − 1

4 0
0 0 − 1

4

⎤
⎦ (7.39)

Note that in the particular case of p1 = p2 = 0 the yield function f pB reduces to
the traditional isotropic or anisotropic yield function f pB = f (sij) = k̄(ε). If only
p2 = 0 expression (7.37) becomes:

f pB =
{[

f (sij)
]q + |p1|q |̂hs

i j sij − |̂hs
ijsij||q

} 1
q − k̄(ε̄) = 0 (7.40)

Therefore, different yield stress values are obtained depending on the sign of loading.
For example, if a uniaxial tension is considered, then the stress deviator is:

[st] = kt

⎡
⎣

2
3 0 0
0 − 1

3 0
0 0 − 1

3

⎤
⎦ , ĥs

ijsij = 1

2
kt (7.41)

and (7.40) becomes
f pB = kt − k̄(ε̄) = 0 (7.42)

On the other hand, the uniaxial compression gives:

[sc] = kc

⎡
⎣

− 2
3 0 0
0 1

3 0
0 0 1

3

⎤
⎦ , ĥs

ijsij = −1

2
kc (7.43)

leading to

f pB = kc[1 + (p1)
q ] 1

q − k̄(ε̄) = 0 (7.44)

From(7.42) and (7.44) the ratio of compression to tensionyield stress canbeobtained:

kc
kt

= [1 + (p1)
q ]− 1

q (7.45)

A yield surface example in the π- plane for q = 2 and p1 = 4/3 (then kc/kt = 3/5)
is shown in Fig. 7.5a.

Evolution of the Yield Surface: Forward Loading
In Barlat et al. [6] the flow stress is a function of the plastic work:

kc
kt

= kc
k̄

= g1(ε̄) (7.46)

and it is assumed that this stress decreases according to:
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Fig. 7.5 a Isotropic,
asymmetric, and truncated
yield loci in π—plane with
p1 = 4/3, p2 = 0, and
corresponding
microstructure deviator ĥs

ij; b
Isotropic and asymmetric
yield loci after stress reversal
(with p1 �= 0 and p2 �= 0)
(after Barlat et al. [6])
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dg1
dε̄

= c2

(
c3

k̄0
k̄

− g1

)
(7.47)

In Eq. (7.47) k̄ = k̄(ε̄) represents the reference stress–strain curve, and k̄0 = k̄
(ε̄ = 0). From (7.47) and (7.44) the evolution of coefficient p1 is obtained as:

p1 = [
(g1)

−q − 1
] 1

q (7.48)

The relationship (7.48) allows to describe the progressive flattening of the yield
surface on the opposite side of the loading direction, without affecting the shape of
the yield surface at locations near the current loading state.
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Table 7.3 Exemplary set of parameters for homogeneous yield function-based anisotropic hard-
ening model

a Coefficient of the stable yield function of Hershey [38] type:

f (sij) = { 12 (|s1 − s2|a + |s2 − s3|a + |s1 − s3|a)} 1
a − k̄(ε̄) = 0

C , n Coefficients of the classical hardening curve (Swift [72] behavior is assumed)
k̄(ε̄) = C(ε0 + ε̄)n

q Parameter affecting the flatness of the back of the yield surface with respect to
the loading direction

c1, c2, c3 Parameters affecting the new flow stress and hardening rate after unloading
and reloading

c Parameter associated to the rotation rate of the microstructure history deviator

c4, c5 Additional parameters controlling the flow stress rate if permanent softening
is considered

Evolution of the Yield Surface: Reverse Loading

If the stress is reversed, the new yield stress in compression, kc, is different from the
flow stress in tension just before unloading (kt), as can be concluded from (7.45) and
(7.48). It means that the Barlat model is capable of capturing the Bauschinger effect.
As observed experimentally, the flow stress under compression increases rapidly,
and approximately recovers the tensile flow stress (from (7.46) it follows then that
g1(ε̄) → 1). A simple evolution for g1 proposed in [6] is:

dg1
dε̄

= c1
1 − g1

g1
(7.49)

Similar to p1, the parameter p2 can be expressed as a function of the variable g2(ε̄) =
kc/k̄, so that p2 starts to increase for reverse loading in the same way as p1 increased
for forward loading. This allows the yield surface to be distorted in two opposite
directions (Fig. 7.1b). If the flow stress after reversal does not recover the level of the
monotonic curve (permanent softening), two additional coefficients, c4 and c5 and
two additional state functions, g3 and g4 may be introduced to capture the effect (see
Tables7.3 and 7.4).

General Deformation Paths

When loading changes direction, the rotation of the microstructure history deviator

ĥs
ij takes place. As long as ĥs

ijsij remains positive (forward loading), tensor ĥs
ij rotates

towards the direction of the current stress tensor, according to ([6]):

dĥs
ij

dε̄
= c

[
ŝij − 8

3
ĥs

ij (̂sklĥ
s
kl)

]
(7.50)

where ŝij is the normalized stress deviator, in the same manner as (7.38).
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Table 7.4 Summary of hardening equations for homogeneous yield function-based anisotropic
hardening model

Loading case Hardening equations

Forward loading: ĥs
ijsij ≥ 0

dg1
dε̄

= c2

(
c3

k̄0
k̄

− g1

)
,
dg2
dε̄

= c1
g3 − g2

g2

dg4

dε̄
= c5(c4 − g4),

dĥs
ij

dε̄
= c

[
ŝij − 8

3
ĥs

ij(ŝkl ĥs
kl)

]

Reverse loading: ĥs
ijsij < 0

dg1
dε̄

= c1
g4 − g1

g1
,
dg2
dε̄

= c2

(
c3

k̄0
k̄

− g2

)

dg3
dε̄

= c5(c4 − g3),
dĥs

ij

dε̄
= c

[
−̂sij + 8

3
ĥs

ij (̂skl ĥs
kl)

]

When ĥs
ijsij < 0 (reverse loading), the tensor ĥs

ij rotates towards the direction
opposite to the current stress tensor:

dĥs
ij

dε̄
= c

[
−̂sij + 8

3
ĥs

ij (̂sklĥ
s
kl)

]
(7.51)

The approach presented above is capable of describing the Bauschinger effect, as
well as asymmetric yielding and anisotropic hardening. The formulation is effective
for the modeling of a number of materials, including low carbon, dual phase and
ferritic stainless steel sheet samples (for more details see [6]).

7.5 Remarks on Implicit Multiscale Formulations
of Hardening Descriptions

7.5.1 General Multiscale Procedure Based on Polycrystalline
Calculations

When only plasticity is concerned as an irreversible phenomenon, the classical
isotropic hardening models, reflecting the proportional expansion of the surface,
are suitable for simulation of sheet forming operations of cubic metals (both fcc
and bcc) [62]. Kinematic hardening, accounting for pure translation of the ini-
tial yield surface, is necessary to model more accurately the smooth elastic-plastic
transition under reverse loading. For this purpose various nonlinear kinematic hard-
ening models and multi-surface models have been developed. However, in many
cases the evolution of the material texture influences so significantly the material
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properties even for the simplest monotonic loading paths, that traditional hardening
laws cannot accurately model these phenomena.

The anisotropic initial yield criteria are extensively discussed in Chap.5 of the
present book. They involve a number of coefficients required for proper description
of various anisotropic effects. The determination of analytic laws of variation for
the anisotropy coefficients requires a large amount of data. For this reason a gen-
eral multiscale procedure based on polycrystalline calculations for the description
of yielding anisotropy and its evolution with accumulated deformation has been pro-
posed by Plunkett et al. [62] and Plunkett and Cazacu [64]. The approach consists
in determination of the flow stress in various stress directions either by experimen-
tal measurements or polycrystalline calculations, next an interpolation technique is
used to construct subsequent yield surfaces. The crystal plasticity model allows for
describing the deformation of a material by crystallographic slip. It also accounts for
the reorientation of the crystal lattice. The initial texture, needed as an input of the
polycrystal model, is obtained from the experiment, while the final texture is given
by the grain reorientations associated with shears in the active deformation systems
(slip and/or twinning) in the grains. When a viscoplastic self-consistent (VPSC)
model is used (cf. [46]) to simulate the interaction of a grain with the surroundings,
each grain is treated as an ellipsoidal inclusion embedded in a uniformmatrix having
unknown properties to be determined. The information about the evolution of the
yield loci is then generated in numerical tests.

The procedure consists of the following steps: (I) fitting the parameters of a
polycrystal model to reproduce themechanical response of thematerial along a given
deformation path; (II) probing numerically the pre-strained polycrystal along various
directions in order to quantify the induced anisotropy; (III) determining coefficients
of the macroscopic yield surface on the basis of the yield stresses calculated from
polycrystal model (this procedure is repeated for various pre-strain levels); (IV)
obtaining the macroscopic yield surfaces corresponding to any pre-strain level, using
an interpolation technique (see Fig. 7.6).

The above implicit multiscale procedure was successfully used to model the
mechanical response of hexagonal closed packed metals (high purity Zirconium,
Magnesium alloys, Titanium, etc.) [55, 62, 63, 78] and Aluminum alloy sheets
[76, 77]. Two examples of this approach applied to simulations of behavior of dif-
ferent materials are briefly presented below.

7.5.2 Cube-Textured Aluminum Alloy Sheets

Two Aluminum alloy sheets, 1050-O (strongly cube textured) and 6022-T4 (mildly
cube textured) were investigated by Yoon et al. [76]. The constitutive model included
the Yld2004-18p yield function (cf. [65]):

http://dx.doi.org/10.1007/978-3-319-17160-9_5
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Fig. 7.6 Theoretical yield surface evolution for a zirconium clock-rolled plate during in-plane com-
pression for various levels of pre-strain. Solid lines yield surfaces corresponding to fixed pre-strain
levels, determined using the VPSC model (symbols). Dashed lines yield surfaces for intermediate
pre-strain levels obtained by linear interpolation (after [63])

f p(Σij) = ∣∣S̃′
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∣∣a = 4k̄a

(7.52)

where S̃′
1, S̃′

2, S̃′
3 and S̃′′

1 , S̃′′
2 , S̃′′

3 are principal components of the linearly transformed
stress tensors:

S̃′
ij = L ′

ijklσkl and S̃′′
ij = L ′′

ijklσkl (7.53)

The Swift or the Voce isotropic strain hardening laws were used to model the strain
hardening behavior of Aluminum alloy 1050-O and 6022-T, respectively, in uniax-
ial tension. The yield surfaces for both sheet samples are shown in Fig. 7.7. The
overall results for mildly cube-textured material confirmed that the uniaxial flow
curves in different directions did not exhibit the same stress level due to plastic
anisotropy. However, the strain hardening rates were similar. For this case the yield
function associated with the isotropic hardening rule is able to reflect the uniaxial
anisotropic behavior sufficiently well. For strongly cube-textured sheet sample the
uniaxial stress–strain curves are clearly different in different directions. The sim-
ple shear hardening curves in the investigated directions appeared to be drastically
different. In this case crystal plasticity, which accounts for crystallographic texture
evolution, allowed to fully explain the behavior of 1050-O.

Similar investigations are presented in [5] for 6111-T4 and 2090-T3 Aluminum
alloy sheet samples, and in [77] for AA2090-T3 Aluminum alloy sheet sample, sub-
jected to deep drawing process. They demonstrated that the anisotropic properties of
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(a) (b)

Fig. 7.7 Yield surfaces for: a 1050-O and b 6022-T4 sheet samples (after [76])

sheet materials subjected to uniaxial tension were described very accurately. Also,
the predicted and experimental cup height profiles with six ears were shown to be in
excellent agreement.

7.5.3 Hexagonal Close-Packed Metals

Hexagonal Close-Packed metals (HCP) exhibit a deformation behavior which is
quite different from cubic crystalline structure materials. As a consequence, rolled
or extruded products of these materials show a strong anisotropy and compression–
tension asymmetry (strength differential effect). Recently, the anisotropic behavior
of hexagonal close-packed metals was investigated by Plunkett et al. [62, 63], Yoon
et al. [78], Cazacu et al. [15], and Nixon et al. [55], among others. In all these
papers yielding is described using a criterion which can capture both anisotropy and
strength differential effect. The expressions for the evolution lawswere derived using
the above-mentioned multiscale procedure (experimental investigations of uniaxial
stress–strain curves and crystallographic texture, crystal plasticity-based calcula-
tions, and macroscopic scale interpolation techniques). The comparison between
simulated and experimental results validated that the proposed methodology can
provide good predictability of anisotropic behavior and strength differential effect
of the considered materials (see Fig. 7.8).
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with experimental results (after [78])

7.6 Thermoplastic Coupling

7.6.1 Introduction

When the elastic-plastic material is loaded so that not only inelastic strains develop,
but also the temperature is changed, then thermoelasticity and thermoplasticity are
encountered. The experimental results (Bednarek and Kamocka [7]) proved that not
only the temperature itself but also the heating rate makes a significant impact on
parameters that determine carrying capacity at elevated temperatures, and that heat-
ing rate should be accounted for in the strength analysis of structures exposed to high
temperatures. Increasing the heating rate results in decreasing the slip along grain
boundaries and leads to the creation of local empty spaces, which decrease the cross-
section area and give reasons for more brittle cracking than in the case of a long-time
low heating rate. The low heating rate creates a significant grain deformation within
the pearlite-and-ferrite areas, accompanied by the ductile damage, while the high
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heating rate causes small grain deformation accompanied by the brittle damage (see
Fig. 7.9). The need for the additional term, proportional to the temperature rate in the
evolution equation for the back stress was already considered by Prager [66]. It was
introduced in the description of hardening behavior under thermomechanical loading
also by Ohno [56], McDowell [50], or by Chaboche [19] in the unified viscoplastic
constitutive equations using the Armstrong–Frederic format. A thermomechanical
development of plasticity presented in Lagrangian form with the use of rate-type
constitutive equations in a strain-temperature space setting was included in Casey
[13]. A formulation of elastic-plastic theory for rate-independent materials, based
on the use of thermodynamic potentials with thermal effects included, is attributed
to Houlsby and Puzrin [39]. They applied the four energy functions commonly used
in thermodynamics to provide descriptions depending on which combinations of
stress, strain, temperature, and entropy are taken as independent variables. A sys-
tematic presentation is made of 16 possible ways of formulating constitutive behav-
ior within this framework. A general framework for rate-independent, small-strain,
thermoinelastic material behavior is presented also in the paper by Benallal and
Bigoni [8], which includes thermoplasticity as a particular case. Strain localization
and the development of material instabilities are investigated to highlight the roles
of thermal effects and thermomechanical couplings. Thermodynamic laws based on
consistent Eulerian formulation of finite elastoplasticity with thermal effects were
presented by Xiao et al. [75]. In Chaboche [16] the argument is made for the neces-
sity of temperature rate terms in the context of hardening rules. The temperature
rate terms of the back stresses are also considered by Yu et al. [79] in a thermo-
viscoplastic constitutive model derived by the authors. A thermodynamic framework
for constitutive modeling of time- and rate-dependent materials (viscoelastic,
viscoplastic, viscodamage, and microdamage healing) was derived by Abu Al-Rub
and Darabi [2]. The emphasis in their paper was placed on the decomposition of ther-
modynamic conjugate forces into energetic and dissipative components. It was shown
that such decomposition is necessary for accurate estimation of the rate of energy
dissipation. Thermomechanical couplingwas also considered bySaanouni [67], sum-
marizing the currentmost effectivemethods formodeling, simulating, and optimizing
metal forming processes. Ganczarski and Skrzypek [31] and Ganczarski et al. [30]
take into account the temperature dependence of all material functions that charac-
terize plasticity and damage components, which results in extended thermoplastic-
damage equations, with the additional temperature rate terms in all evolution equa-
tions of thermodynamic conjugate forces. More general case of the nonassociated
plasticity and nonassociated damage, when not only temperature softening but also
damage softening is taken into account is due to Egner [25, 26] and Egner and
Egner [28]. In Egner and Egner [27] the influence of temperature rate is investigated
quantitatively on the example of thermomechanic low cycle fatigue of AISI L6 steel.
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(a) (b)

Fig. 7.9 S235JRG2 steel microstructure after mechanical tests: a 50C/min heating rate; b
500C/min heating rate, after Bednarek and Kamocka [7]

7.6.2 Example of Thermoplastic Coupling: Tempered
Martensitic Hot Work Tool Steel Subjected
to Cyclic Thermomechanical Loading

Low Cycle Fatigue of AISI L6 Steel

To investigate the influence of temperature rate on the response of the constitutive
model of thermo-elastic-(visco)plastic material, the tempered martensitic hot work
tool steel, widely used in the forging industry will be considered. The isothermal
low cycle fatigue behavior of this steel is well described in the literature (cf. Zhang
et al. [83], Velay et al. [74], Zhang et al. [80]). The steel undergoes cyclic softening,
regardless of the testing temperature (see Fig. 7.10). During the initial few hundred
cycles (for accumulated plastic strain less than one) rapid softening is observed, fol-
lowed by a slow, quasilinear softening till rupture (cf. Mebarki et al. [51], Bernhart
et al. [9]). The first stage is generally explained by the rapid change of disloca-
tion density inherited from the quench treatment, while the second is related to the
formation of dislocation substructure and carbide coarsening under the action of
time, temperature, and cyclic load (cf. Gibbons and Dunn [33], Zhang et al. [81],
Golański and Mroziński [34, 35]). The considered steel is not stable during fatigue
(see Fig. 7.11). For test temperatures lower than tempering temperature (left part of
Fig. 7.11, see Table7.5) the maximum stress decreases linearly with the difference
between both temperatures for each level of hardness with nearly the same slope.
Above the tempering temperature the maximum stress decreases more violently (the
slope changes) because of the interaction of temperature and stabilization of steel.
This is related to the thermal aging effect and indicates that the microstructure can
be modified by the thermal cycle when the steel is subjected to temperatures equal
to or higher than the tempering temperatures.

Equations of 2M1C Constitutive Model

Basic Assumptions

The material behavior is described by the use of 2M1C constitutive model, derived
by Cailletaud and Saï [12] and extended by Velay et al. [74]. This RVE-based model
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Fig. 7.10 Cyclic softening with a constant strain range (Δε/2 = ±0.8%), after Velay et al. [74]

Fig. 7.11 Maximum stress versus difference between test temperature and tempering temperature
(after [81])

Table 7.5 Quenching and tempering conditions of fatigue samplesmade of 55NiCrMoV7 hot work
tool steel (after [82])

Tempering temperature (◦C) 350 460 560 600

Tempering time (h) 2 2 2 2

Hardness (HRC) 50 45.5 42 35
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involves the following set of state variables for the description of the current state of
thermo-elastic-viscoplastic material:

{Vα} =
{
εeij, T, r (1), r (2),α(1)

ij ,α(2)
ij

}
(7.54)

where elastic strain εeij and absolute temperature T serve as observable variables and

four internal variables: kinematic and isotropic plastic hardening variables α
(1)
ij , α(2)

ij

and r (1), r (2) are introduced.
The model is based on the assumption of small strains. Total strain is decomposed

into an elastic, inelastic, and thermal components:

εij = εeij + εIij + εTij (7.55)

The inelastic strain is farther decomposed into twodifferent strainmechanisms induc-
ing the cyclic softening of the tempered martensitic steels, namely the decrease of the
dislocation density inherited from the quench treatment, and the carbide coarsening:

εIij = A1(T )ε
(1)
ij + A2(T )ε

(2)
ij (7.56)

where A1(T ) and A2(T ) are temperature-dependent proportionality factors.

Equations of State

The state equations result from the assumed form of the state potential, which is here
the Helmholtz free energy, decomposed into thermoelastic (ρψte) and thermoplastic
(ρψtp) terms, after [74]:

ρψ(Vst) = ρψte(εij − εIij, T ) + ρψtp(T, r (k),α(k)
ij ), k = 1, 2 (7.57)

where

ρψte = ρh(T ) + 1

2
(εij − εIij)Eijkl(T )(εkl − εI

kl)

−βij(T )(εij − εIij)(T − T0), βij(T ) = Eijkl(T )αT
kl(T )

ρψtp = 1

3
[C11(T )α

(1)
ij α

(1)
ij + 2C12(T )α

(1)
ij α

(2)
ij + C22(T )α

(2)
ij α

(2)
ij ]

+ 1

2
[b1(T )Q1(T )r (1)2 + b2(T )Q2(T )r (2)2]

(7.58)

In Eq. (7.58) αT
ij(T ) is the thermal expansion tensor; h(T ) is a function of

temperature; C11(T ), C12(T ), C22(T ), b1(T ), b2(T ), Q1(T ), Q2(T ) are material
parameters, which in general may be temperature dependent. Symbol T0 stands
for the reference temperature at which no thermal strains exists. All coefficients
appearing in the considered model are summarized in Table7.6. In Eq. (7.58) partial
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Table 7.6 2M1C model coefficients

Young modulus and yield stress E0(T ), R0(T )

Viscous coefficients K (T ), n(T )

Parameters of kinematic part C11(T ), C12(T ), C22(T )

Localisation coefficients of strain mechanisms A1(T ), A2(T )

Static recovery terms M1(T ), M2(T ), m1(T ), m2(T )

Parameters of isotropic part Q1∞(T ), Q2(T ), b1(T ), b2(T )

Table 7.7 State equations of the 2M1C constitutive model (after [74])

State variable Conjugated force

εeij (elastic strain) σij = ∂(ρψ)

∂εeij
= Eijkl(T )εekl

T (temperature) s = − ∂ψ

∂T

α
(1)
ij (kinematic hardening) X (1)

ij = ∂(ρψ)

∂α
(1)
ij

= 2

3
[C11(T )α

(1)
ij +C12(T )α

(2)
ij ]

α
(2)
ij (kinematic hardening) X (2)

ij = ∂(ρψ)

∂α
(2)
ij

= 2

3
[C22(T )α

(2)
ij +C12(T )α

(1)
ij ]

r (1) (isotropic hardening) R(1) = ∂(ρψ)

∂r (1)
= b1(T )Q1(T )r (1)

r (1) (isotropic hardening) R(2) = ∂(ρψ)

∂r (2)
= b2(T )Q2(T )r (2)

kinematic–kinematic state coupling is introduced, while no coupling is considered
for the isotropic hardening effects, cf. Blaj and Cailletaud [10]. The state equa-
tions for 2M1Cmodel are given in Table7.7. Isotropic hardening force R(1) (the fifth
equation presented in Table7.7) corresponds to the strong softening during the initial
several hundred cycles until the accumulated plastic strain does not exceed unity (see
Fig. 7.10). Experimental observations (cf. Zhang et al. [83]) confirm the softening
dependence on the initial plastic strain level (so-called strain range memorization
effect, cf. Chaboche [16]). Therefore, the additional internal variables need to be
introduced, see Table7.9.

Evolution of Strain-Like Variables

Potential of dissipation F , after Velay et al. [74], is assumed not equal to plas-
tic yield surface (nonassociated thermo-viscoplasticity). This allows us to obtain
nonlinear plastic hardening rules, which give a more realistic description of the
material response:

F = Fvp( f p) + g(X (k)
ij ) (7.59)
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with

Fvp = K (T )

n(T ) + 1

〈
f p

K (T )

〉n(T )+1

(7.60)

and

g =
2∑

k=1

Mk(T )

mk(T ) + 1

〈
J (X (k)

ij )

Mk(T )

〉mk (T )+1

, J (X (k)
ij ) =

√
3

2
X ′(k)

ij X ′(k)
ij

X ′(k)
ij = X (k)

ij − 1
3 (X (k)

nn )δij

(7.61)

where K (T ) and n(T ) are viscous coefficients, and M1(T ), M2(T ), m1(T ), m2(T )

are static recovery terms (see Table7.6). Symbol f p = 0 is the J -type plastic yield
surface:

f p =
√

J (σ
(1)
ij − X (1)

ij )2 + J (σ
(2)
ij − X (2)

ij )2−(R0(T )+ R(1) + R(2)) = 0 (7.62)

where J (σij) = √
3J2s (see Eq. (1.15) Chap.1).

On the basis of the generalized normality rule (cf. Chaboche [18]) the rate of
inelastic strains is given by the following relations:

ε̇(1)
ij = λ̇

∂ f p

∂σ
(1)
ij

= 3

2

〈
f p

K (T )

〉n(T ) s(1)
ij − X (1)

ij√
J (σ

(1)
ij − X (1)

ij )2 + J (σ
(2)
ij − X (2)

ij )2
= λ̇n(1)

ij

ε̇
(2)
ij = λ̇

∂ f p

∂σ
(2)
ij

= 3

2

〈
f p

K (T )

〉n(T ) s(2)
ij − X (2)

ij√
J (σ

(1)
ij − X (1)

ij )2 + J (σ
(2)
ij − X (2)

ij )2
= λ̇n(2)

ij

(7.63)

In the present formulation, which is based on the model derived by Cailletaud
and Saï [12] and extended by Velay et al. [74], the model response depends on two
mechanisms (2M) while only one criterion (1C) characterizing the elastic domain
is defined. The equations of evolution resulting from the assumed potential (7.59),
derived in [74], are summarized in Table7.8. Experimental tests have shown that the
asymptotic value Q of the isotropic hardening variable r may depend of the plastic
strain range (cf. Chaboche [16], Jiang and Zhang [40], Saï [68]). The strain memory
effect can be incorporated into all isotropic hardening variables used. For the sake of
simplicity, the strain memory effect was here introduced into the first variable, r (1)

only, after [73, 74]. In [74] the plastic strain range memorization effect is introduced
through the asymptotic value Q1, which is subjected to change when the inelastic
strain exceeds a certain threshold f ∗ introduced in the plastic strain space. For this
reason two additional internal state variables have been defined: the radius p∗ and
the center ε∗

ij of the memory surface f ∗ (see Table7.9).

http://dx.doi.org/10.1007/978-3-319-17160-9_1
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Table 7.8 Evolution equations of internal state variables

State variable Evolution law

α
(1)
ij (kinematic hardening) α̇

(1)
ij = ε̇

(1)
ij − 3

2
X (1)

ij

J (X (1)
ij )

〈
J (X (1)

ij )

M1

〉m1

α
(2)
ij (kinematic hardening) α̇

(2)
ij = ε̇

(2)
ij − 3

2
X (2)

ij

J (X (2)
ij )

〈
J (X (2)

ij )

M2

〉m2

r (1) (isotropic hardening) λ̇
(
1 − R(1)

Q1

)
= ṙ (1)

r (1) (isotropic hardening) λ̇
(
1 − R(2)

Q2

)
= ṙ (2)

Table 7.9 Memory effect of the strain range

Parameter of isotropic hardening part
related to initial rapid softening

Q1 = Q1∞(T )[1 − exp(−2μp∗)]

Memory surface f ∗ = 2
3 J (εI

ij − ε∗
ij) − p∗

Evolution of additional internal state
variable memorizing prior maximum
plastic strain range

ṗ∗ = ηH( f ∗) < nijn∗
ij > ṗ

Evolution of additional internal state
variable memorizing prior maximum
plastic strain range

ε̇∗
ij =

√
3
2 (1 − η)H( f ∗) < nkln∗

kl > ṗn∗
ij

Unit normal to the memory surface
f ∗ = 0

n∗
ij = ∂ f ∗

∂εI
ij
/

∣∣∣∣
∣∣∣∣ ∂ f ∗

∂εI
ij

∣∣∣∣
∣∣∣∣ =

√
3
2

ε′I
ij −ε′∗

ij

J (εI
ij−ε∗

ij)

ε′I
ij = εI

ij − 1
3 (ε′I

kk)δij

ε′∗
ij = ε∗

ij − 1
3 (ε∗

kk)δij

Unit normal to the yield surface
f p = 0

nij = ∂ f p

∂σij
/

∣∣∣
∣∣∣ ∂ f p

∂σij

∣∣∣
∣∣∣

Evolution of Stress-Like Variables: Effects of Temperature Rate

The influence of temperature rates is often disregarded in kinetic equations. The need
for such terms was discussed in many papers, for example by Moreno and Jordan
[53],Hartman [37],Ohno et al. [57],Ohno [56], Lee andKrempl [47], Chaboche [16],
Ganczarski and Skrzypek [31], Egner [26], Egner and Egner [27, 28]. To investigate
the problem qualitatively and quantitatively the evolution equations for thermody-
namic conjugate forces, extended with terms proportional to temperature rate were
derived in Egner and Egner [28] accounting for full coupling with temperature (see
Table7.10).
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Table 7.10 Evolution laws for thermodynamic conjugate forces

Partial coupling Full coupling with temperature

σ̇ij = Eijkl(T )(ε̇kl − ε̇Ikl) +
[

∂Eijkl(T )

∂T
(εkl − εIkl) − ∂βij(T )

∂T
(T − T0)

− βij(T )
]

Ṫ

Ẋ (1)
ij = 2

3
[C11(T )α̇(1)

ij + C12(T )α̇(2)
ij ] + 2

3

[
∂C11(T )

∂T
α(1)

ij + ∂C12(T )

∂T
α(2)

ij

]
Ṫ

Ẋ (2)
ij = 2

3
[C22(T )α̇

(2)
ij + C12(T )α̇

(1)
ij ] + 2

3

[
∂C22(T )

∂T
α

(2)
ij + ∂C12(T )

∂T
α

(1)
ij

]
Ṫ

Ṙ(1) = b1(T )[Q1(T )ṙ (1) + Q̇1(T )r (1)] +
[

∂b1(T )

∂T
Q1∞(T ) + b1(T )

∂Q1∞(T )

∂T

]
×

[1 − exp(−2μp∗)]r (1)Ṫ

Ṙ(2) = b2(T )Q2(T )ṙ (2) +
[

∂b2(T )

∂T
Q2(T ) + b2(T )

∂Q2(T )

∂T

]
r (2)Ṫ

Heat Balance Equation

In the case of thermo-elastic-viscoplastic material, for which the number of state
variables is reduced to the set {Vα} given by relation (7.54), the general coupled heat
equation takes the following form:

ρcTε Ṫ = −qi,i + ρrext + ρT
∂2ψ

∂εij∂T
(ε̇ij − ε̇Iij) + ρ

∂ψ

∂εij
ε̇Iij

+
(

σij − ρ
∂ψ

∂εij

)
ε̇ij − ρ

(
∂ψ

∂r (1)
− T

∂2ψ

∂T ∂r (1)

)
ṙ (1)

− ρ

(
∂ψ

∂r (2)
− T

∂2ψ

∂T ∂r (2)

)
ṙ (2) − ρ

(
∂ψ

∂α(1)
ij

− T
∂2ψ

∂T ∂α(1)
ij

)
α̇(1)

ij

− ρ

(
∂ψ

∂α
(2)
ij

− T
∂2ψ

∂T ∂α
(2)
ij

)
α̇

(2)
ij

(7.64)

which is nonlinear and fully coupled to mechanical problem. In the above equation
rext is the specific external heat gained by the body (e.g. through radiation), and heat
flux qi is given by the Fourier law:

qi = −λijT| j (7.65)

By the use of state equations presented in Table7.7 and law (7.65), the equation of
heat balance (7.64) can be transformed to the following form (cf. Abu Al-Rub and
Darabi [2], Saanouni [67], Ottosen and Ristinmaa [60], Egner [26]):
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ρcTε Ṫ = (λijT| j )|i + ρrext + �mech

+ T

[
∂R(1)

∂T
ṙ (1) + ∂R(2)

∂T
ṙ (2) + ∂X (1)

ij

∂T
α̇(1)

ij + ∂X (2)
ij

∂T
α̇(2)

ij − Pij(ε̇ij − ε̇Iij)

]

︸ ︷︷ ︸
thermomechanical coupling term

(7.66)
where �mech is the mechanical dissipation:

�mech = σij ε̇
I
ij − R(1)ṙ (1) − R(2)ṙ (2) − X (1)

ij α̇
(1)
ij − X (2)

ij α̇
(2)
ij (7.67)

and tensor Pij is introduced in the form:

Pij = −∂Eijkl

∂T
(εkl − εIkl) + ∂βij

∂T
(T − T0) + βij (7.68)

Material Data

The model coefficients, summarized in Table7.6, were identified by Velay et al.
[74] for martensitic hot work tool steel AISI L6 in different test temperatures,
below tempering temperature of the steel. The results of experimental identi-
fications are presented in Table7.11. To illustrate the variation with tempera-
ture of model parameters the chosen functions are plotted in Fig. 7.12. Following

Table 7.11 55NiCrMoV7 parameters (after [74])

20 ◦C 300 ◦C 400 ◦C 500 ◦C
E (MPa) 206,580 188,940 176,580 156,935

R0 (MPa) 790 525 455 410

K (MPa) 130 165 195 268

n 19.5 18 17 15

C11 450,480 406,585 378,675 195,655

C22 124,980 91,520 41,965 13,215

C12 −149,925 −126,100 −84,843 −40,500

A1 0.78 0.74 0.66 0.65

A2 0.4 0.436 0.46 0.48

M1 795 760 740 705

m1 22 20 18 10.5

M2 890 850 800 700

m2 11.75 9.5 7 4.3

Q1∞ −295 −80 −68 −100

b1 11 7 6 5.5

Q2 −75 −75 −75 −75

b1 0.2 0.2 0.2 0.2
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Fig. 7.12 The variation with temperature of chosen model parameters

Zhang et al. [83], the memory parameter μ is taken equal to 420 for all the tempera-
ture levels. Additionally, if only symmetrical strain controlled tests are considered,
η equals 0.5 (instantaneous memorization); in the other cases, η equals 0.1 for pro-
gressive memorization (Chaboche [20]).

Numerical Results

Several anisothermal fatigue tests were subjected to numerical analysis, according
to the strain and temperature controlling presented in Fig. 7.13.

Two cases are compared in each example: (1) temperature rate terms in kinetic
equations presented in Table7.10 (third column) are disregarded, and the influence
of temperature changes is accounted for only by changing material characteristics
according to the second column of Table7.10 (case 1); (2) all temperature rate terms
are included according to the second and third columns of Table7.10 (case 2).
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(a)

(b) (c)

Fig. 7.13 Anisothermal fatigue tests: total strain and temperature changes. a Test I; b test II; c
test III

The stress–strain loops for all the tests are presented in Fig. 7.14. Qualitatively
different results are obtained: without temperature rate terms the response exhibits
unreasonable shift of hysteresis loops along the stress axis, while including additional
temperature rate-dependent terms allows to preserve stable behavior. Such effect was
already indicated by Chaboche [16], and is expected to be even more significant for
materials exhibiting cyclic hardening (here the shift of stress–strain loops in test I
and test III is mitigated by cyclic softening material effect).

The quantitative difference between both cases, which represents the influence
of temperature rate on the response of the considered constitutive model, can be
estimated from curves in Fig. 7.15 showing the evolution of maximal stress versus
cumulated plastic strain. When full coupling with temperature is accounted, the
numerical simulations of test I and III confirm cyclic softening behavior throughout
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(a)

(b) (c)

Fig. 7.14 Hysteresis loops for a test I; b test II; c test III

all the fatigue tests. If the influence of temperature rate is neglected, and change
of temperature during the tests is accounted only in changing material parameters
(partial coupling, case 1), the numerical simulations exhibit cyclic hardening of the
material, which is in contradiction with the experimental observations (at least for
isothermal conditions, see Fig. 7.10). The maximum observed difference between
the values of maximum stress on cycle is here even as large as 30%, and is observed
during the first stage of fatigue test (rapid softening). The results presented here
indicate that coupling between temperature and dissipative phenomena taking place
in the material may have a significant influence on the response of a constitutive
model. Disregarding the rate of temperature in the evolution of thermodynamic forces
related to hardening effects may lead to erroneous results, especially when solving
high temperature problems, such as fire conditions or thermal shock.
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(a)

(b)

(c)

Fig. 7.15 Evolution of maximal stress on cycle versus accumulated plastic strain: a test I; b test
II; c test III
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7.7 Nonlinear Damage-Plasticity Models

The general elastic-plastic-damage constitutive law, derived by the use of the irre-
versible thermodynamics formalism, is based on the concept of the state poten-
tial and the dissipation potentials. The state potential relates the set of internal
state variables Vα = {Dij;α

p
ij, rp,αd

ij, rd} to the set of thermodynamic forces

Jα = {−Y d
ij ; Xp

ij, Rp, Xd
ij, Rd}. The pairs (α

p
ij, Xp

ij) and (rp, Rp) refer, respectively,
to plastic kinematic hardening (movement of the yield surface), and plastic isotropic

hardening (dimension of the yield surface). Similarly, the pairs (αd
ij, Xd

ij) and (rd, Rd)

refer to damage kinematic hardening (movement of the damage surface), and dam-
age isotropic hardening (dimension of the damage surface). The additional pair
(Dij,−Y d

ij ) refers to anisotropic damage variable and elastic strain energy density
release rate as the thermodynamic force conjugated to damage variable. Usually, the
Helmholtz free energy density ψ is adopted as the state potential, where apart from
the damage influenced elastic term ρψe two additional terms stand for the plastic
hardening ρψp and damage hardening ρψd (see Eq. (7.6)):

ρψ = ρψe(εeij, Dij) + ρψp(α
p
ij, rp) + ρψd(αd

ij, rd) (7.69)

The specific free energy may be for example assumed in the following nonlinear
form [3]:

ρψ = 1

2
εeij Eijklε

e
kl + 1

3
Cpα

p
ijα

p
ij + Rp∞

[
rp + 1

bp
exp(−bprp)

]

+ 1

2
Cdαd

ijα
d
ij + Rd∞

[
rd + 1

bd
exp(−bdrd)

] (7.70)

Hence, the state equations are (see Eqs. (7.7) and (7.8)):

σij = ∂(ρψ)

∂εeij
= Eijkl(Dpq)ε

e
kl

Xp
ij = ∂(ρψ)

∂α
p
ij

= 2

3
Cpα

p
ij

Rp = ∂(ρψ)

∂rp
= Rp∞[1 − exp(−bprp)]

Xd
ij = ∂(ρψ)

∂αd
ij

= Cdαd
ij

Rd = ∂(ρψ)

∂rd
= Rd∞[1 − exp(−bdrd)]

Y d
ij = −∂(ρψ)

∂Dij

(7.71)



7 Classification of Constitutive Equations … 287

In general, each of the twodissipationmechanisms, plasticity and damage, can appear
independently, hence two dissipation surfaces, for plasticity Fp and for damage Fd,
may be defined, for example in a following way:

Fp = f p + 3

4

γp

Cp X̃p
ij X̃p

ij

f p =
√
3

2
( s̃ij − X̃ ′p

ij )( s̃ij − X̃ ′p
ij ) − (Rp

0 + R̃p)

(7.72)

and

Fd = f d + 1

2

γd

Cd Xd
ij Xd

ij

f d =
√

(Y d
ij − Xd

ij)(Y
d
ij − Xd

ij) − (Rd
0 + Rd)

(7.73)

where symbols Rp
0 and Rd

0 denote the initial sizes of the yield and damage surfaces.
In what is presented above, the loading functions f p and f d stand for the yield
function and damage function, respectively. Loading functions may or may not be
equal to the dissipation potential functions Fp and Fd. The cases when f p �= Fp

and/or f d �= Fd refer to the nonassociated plasticity and/or nonassociated damage.
In other words, two potential functions Fp and Fd serve to define so-called the
generalized normality rules, for plasticity and damage, as follows (see Eq. (7.20)):

ε̇
p
ij = λ̇p ∂Fp

∂σij
, Ḋij = λ̇d ∂Fd

∂Y d
ij

(7.74)

Two loading functions, f p and f d, serve to determine two dissipation multipliers, λ̇p

and λ̇d. The multipliers define magnitudes of plastic and damage increments, satisfy-
ing current dissipation functions (loading functions) f pn+1 and f dn+1 (the consistency
conditions), as shown in Fig. 7.16. In the case of the associated rules, both potential
functions are equal to the dissipation functions, Fp = f p and Fd = f d, so that the
same surfaces are used for the normality rules and the consistency conditions, hence:

Fig. 7.16 Loading surfaces,
after Ganczarski et al. [30]
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ε̇
p
ij = λ̇p ∂ f p

∂σij
, Ḋij = λ̇d ∂ f d

∂Y d
ij

(7.75)

and ḟ p = 0, ḟ d = 0. Note also that both dissipation surfaces, plasticity and dam-
age, can undergo mixed hardening rules (7.722), (7.732). Though both mechanisms
(plastic slip and/or microcrack growth) can exist separately, the subsequent loading
functions f p and f d can be changed on loading steps not only due to plastic strains,
but also due to prior damage evolution (if any). This effect is hidden in the symbol
tilde (̃ ) placed over the symbols that refer to the damage effective variables, as
follows:

σ̃ij = Mijklσkl, X̃p
ij = Mijkl X

p
kl, R̃p = Rp

1 −√
Dij Dij

(7.76)

Symbols Mijkl(Dpq) stand for the components of the fourth-order damage effect
tensor. Chosen representations of this tensor, based on various hypotheses, are given
in Sect. 1.2.3.

By the use of the generalized normality rule we arrive at the following equations
for plasticity and damage:

ε̇
p
ij = λ̇p ∂Fp

∂σij
= 3

2
λ̇p ( s̃kl − X̃ ′p

kl )Mkilj√
3

2
( s̃pq − X̃ ′p

pq)( s̃pq − X̃ ′p
pq)

Ḋij = λ̇d ∂Fd

∂Y d
ij

= λ̇d
Y d

ij − Xd
ij√

(Y d
rs − Xd

rs)(Y
d
rs − Xd

rs)

α̇
p
ij = −λ̇p ∂Fp

∂Xp
ij

= −3

2
λ̇pMijkl

⎡
⎢⎢⎣− s̃kl − X̃ ′p

kl√
3

2
( s̃pq − X̃ ′p

pq)( s̃pq − X̃ ′p
pq)

+ γp

Cp X̃ ′p
kl

⎤
⎥⎥⎦

ṙp = −λ̇p ∂Fp

∂Rp = λ̇p

1 −√
Dij Dij

(7.77)

α̇d
ij = −λ̇d ∂Fd

∂Xd
ij

= −3

2
λ̇d

⎡
⎣− Y d

kl − Xd
kl√

(Y d
pq − Xd

pq)(Y
d
pq − Xd

pq)
+ γd

Cd Xd
kl

⎤
⎦

ṙd = −λ̇d ∂Fd

∂Rd = λ̇d

http://dx.doi.org/10.1007/978-3-319-17160-9_1
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The thermodynamic force rates Xp
ij, Rp, and Xd

ij, Rd conjugate of hardening variables

α
p
ij, rp, and αd

ij, rd are as follows:

Ẋp
ij = 2

3
Cpε̇

p
ij − γpMikjl Mpkql X

p
pq(1 −√

Dij Dij)ṙp

Ṙp = bp(Rp∞ − Rp)ṙp

Ẋd
ij =

[
Cd Y d

ij −Xd
ij√

(Y d
pq−Xd

pq)(Y d
pq−Xd

pq)
− γdXd

ij

]
ṙd

Ṙd = bd(Rd∞ − Rd)ṙd

(7.78)

In what is given above, the plasticity/damage couplings are introduced by the fourth-
rank damage effect tensor Mijkl(Dpq) and the damage equivalent

√
Dij Dij. In the case

of nondamage plasticity, the classical Armstrong–Frederick formulas for nonlinear
plasticity are recovered (see Eq. (7.34)) whereas both formulas for Ẋd

ij and Ṙd vanish.
This also means that the Armstrong and Frederick law may be considered as the
intrinsically nonassociated plasticity rule, when the thermodynamic potential-based
formulation is used. In order to derive the evolution equations for coupled plasticity
(7.751) and damage (7.752) the postulate of maximum mechanical dissipation may
also be used. The nonnegative dissipation function is defined in the form:

� = σij ε̇
p
ij − Xp

ijα̇
p
ij − Rpṙp − Xd

ijα̇
d
ij − Rdṙ d + Y d

ij Ḋij ≥ 0 (7.79)

The dissipation function is subjected to two constraints, f p = 0 and f d = 0. Hence,
introducing two Lagrange multipliers λ̇p and λ̇d and maximizing the new functional:

�̄ = σij ε̇
p
ij − Xp

ijα̇
p
ij − Rpṙp − Xd

ijα̇
d
ij − Rdṙd + Y d

ij Ḋij

−λ̇p f p − λ̇d f d −→ max
(7.80)

we arrive at the evolution equations for plasticity (7.751) and damage (7.752) if the
implicit formulas for f p and f d are used. For more details, see [3, 26].

The dissipation multipliers λ̇p and λ̇d obey the following loading/unloading con-
ditions:

f p ≤ 0 and

⎧⎨
⎩

ḟ p < 0 and λ̇p = 0 passive plastic
ḟ p = 0 and λ̇p = 0 neutral plastic
ḟ p = 0 and λ̇p > 0 active plastic

f d ≤ 0 and

⎧⎨
⎩

ḟ d < 0 and λ̇d = 0 passive damage
ḟ d = 0 and λ̇d = 0 neutral damage
ḟ d = 0 and λ̇d > 0 active damage

(7.81)
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Both dissipation multipliers are obtained from two consistency conditions (cf. [3]):

ḟ p = ∂ f p

∂σij
σ̇ij + ∂ f p

∂Xp
ij

Ẋ p
ij + ∂ f p

∂Rp Ṙp + ∂ f p

∂Dij
Ḋij = 0

ḟ d = ∂ f d

∂σij
σ̇ij + ∂ f d

∂Xd
ij

Ẋd
ij + ∂ f d

∂Rd Ṙd + ∂ f d

∂Dij
Ḋij = 0

(7.82)

7.7.1 Conclusions

The description of inelastic behavior of engineering materials requires the mathe-
matical formulations for yield functions, flow rules, and hardening laws, appropriate
for the class of materials under consideration, and obeying the mechanical and phys-
ical principles. A separate aspect of modeling concerns identifying the constitutive
parameters. So far, the influence of damage on most of material characteristics is
usually not accounted for in the models due to the existing gap between the formu-
lated constitutive equations and the possibilities to identify the material parameters.
However, fast development of computational possibilities allows to simulate numer-
ically even very complex problems. In addition, with the increased attention paid to
many innovative materials of complex microstructure, and a deeper understanding
of the physical meaning of material characteristics, together with the development
of advanced experimental techniques which allow for the determination of structural
features such as size and volume fractions of microstructural inhomogeneities in a
variety of materials, the identification becomes much more well founded.
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4-rank transformation tensor, 140
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state variable, 255
Asymmetric

yield/failure surfaces, 241
yielding, 199, 268

Asymmetry
with distortion, 139
without distortion, 139
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crystal lattice level, 96
level, 96

Average
overall strain in RVE, 107
strain in phases, 107
stress in phase, 107
stress in RVE, 107, 108

Averaged
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stress, 106
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strain invariant, 43
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Beltrami’s criterion, 138
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condition, 191
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tension loading condition, 183

Biological tissue, 35
Body force, 75
Boltzmann’s superposition principle, 68
Boron fiber, 116
Boron/Al composite, 38, 88, 120, 195
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Boundary condition, 75
Brittle

ductile behavior, 36

fracture, 249
material, 134, 137, 160, 210, 248, 249

Built-in residual stress, 112
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Bulk modulus, 34
Burgers’ model, 63

constitutive equation, 63
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Burzyński’s
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surface conical approximation, 221
surface paraboloidal approximation, 220

C
Carbide coarsening, 276
Carbon
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Cauchy’s
formulation, 53
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Cazacu–Barlat’s criterion, 166, 201
Ceramic

material, 102, 210
matrix, 102
Matrix Composite, 210

Ceramics, 15, 35
Change of size, 168
Chencov

constant, 94
modulus, 92

Chencov modulus, 92, 98
Chencov’s

coefficient, 51
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Classical Hill’s
hexagonal symmetry type, 199
tetragonal symmetry type, 199

Classification of
anisotropic elastic materials, 21
damage variables, 15

Clausius–Duhem’s inequality, 253, 256
Closure of microcracks, 250

energy, 250
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Columnar
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strain vector, 6, 25
stress vector, 2, 25
vector of strain, 11
vector of stress, 11

Combination of invariants, 44
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Combined plastic/fracture mechanism, 211
Common Invariant

of two second-order tensors, 23
Common invariant, 44, 48, 167, 199, 255

of orthotropy, 201
of strain and structural tensors, 49
of two different-order tensors, 24

Common invariants of stress and structural
tensors, 134

Common strain and structural tensor invari-
ant, 25

Comparison of explicit and implicit formu-
lations, 202

Complementary energy, 38–40, 46
increment, 41
per unit volume, 39, 147
positive definiteness, 10

Compliance
coefficients, 96
matrix, 12, 28–30, 42, 98

Compliance matrix, 119
Composite, 35

effective elasticity tensor, 96
material, 75, 79, 188
RUC, 94

Composite RUC, 96
Compression

failure strength, 215
tension asymmetry, 271

Compressive meridian, 162, 217
Concave

hyperbolic cylinder, 135
meridian effect, 238
yield curve, 164

Concentric Cylinder Assembly, 112
Concentric Cylindrical Assemblage model,

120
Concrete, 15, 35, 210, 214, 218, 220
Condition of positive definiteness of the

Hessian, 152
Conical rotationally symmetric surface, 241
Constitutive

elasticity matrix, 25
equation, 49, 74, 80
equation of linear orthotropic material,
48

integral equation of anisotropic linear
material, 78

model, 88
relation, 53

Continuum mechanics, 250
Convexity, 211

of the orthotropic form, 200

of yield surface, 142, 144
postulate, 149
postulate of yield surface, 144
rule, 144

Convolution theorem, 82
Coulomb–Mohr’s

criterion, 215
criterion explicit format, 216
criterion implicit invariant format, 216
failure criterion, 218

Coupled
elastic problems, 74
fictitious elastic problem, 76
plasticity and damage dissipation
processe, 146

Coupling
of volume and shape viscoelastic
deformation, 80

of volumetric and shear response, 50
Crack closure

/opening effect, 14
effect, 14, 46

Creep, 248
anisotropy, 58
compliance, 81
compliance function, 66
compliance tensor, 81
fatigue damage, 58
function, 69

Crystal
elasticity tensors, 95
lattice, 96
lattice symmetry, 25, 89
plasticity model, 269
plasticity-based calculations, 271
symmetry, 95
unit cell, 36, 94

Crystal lattice symmetry, 94
Crystallographic texture evolution, 270
Cubic

crystal lattice, 95
function, 151
lattice, 32
symmetry, 32, 100

Cyclic softening of tempered martensitic
steel, 276

Cylindrical
initial yield surface, 163
limit surface, 163
surface, 161
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D
Damage, 9, 248

acquired anisotropy, 23
acquired orthotropy, 13
affected thermal conductivity tensor, 261
affected thermal expansion tensor, 261
anisotropy, 19
deactivation, 14
dissipation surface, 287
effect matrix, 16
effect tensor, 14, 16, 36, 251, 261, 288
effective compliance matrix, 17
effective stiffness matrix, 17
effective stress tensor, 16
effective variable, 288
eight-order tensor, 13
evolution, 47
fourth-order tensor, 13
function, 287
growth, 39, 44, 45, 48, 146
hardening, 286
hardening process, 134
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parameter, 16
softening, 273
strain, 9
tensor, 14
threshold, 261

Decomposition of
strain tensor, 51
stress tensor, 51

Deflection of beam made of linear
viscoelastic material, 66

Dependence on
hydrostatic pressure, 137
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Deviatoric
differential operator, 72
plane, 160, 162
space, 36
stress space, 173
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187

von Mises’ criterion, 169
von Mises’ equation, 173
von Mises–Tsai–Wu’s criterion, 226

Differential operator representation, 74
Dilatation, 51, 52
Dirac’s function, 67
Direct

approach, 256
dependence on hydrostatic pressure, 137

Directional distribution of
damage, 22
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Displacements, 75
Dissipated energy, 248
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function, 255
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of energy, 248
potential, 254, 256, 286
potential function, 287

Dissipative phenomenon, 8, 248
Distortion, 139, 168

effect, 134
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Distortional hardening, 255
Drucker’s

condition of stability, 143
convexity assumption, 166
convexity postulate, 242
criterion, 140, 167
isotropic yield criterion extension, 200
like criterion, 203
postulate, 142, 153
postulate of material stability, 134
postulate of stability, 144
stability postulate, 135, 164, 180, 211,
221

stability postulate for elastic–plastic
material, 154

Drucker–Prager’s
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cone, 219
criterion, 138–140, 242

Dual phase ferritic stainless steel, 268
Ductile material, 134, 137, 160

E
Effective

compliance matrix, 91, 97
compliance tensor of composite, 108
elastic compliance matrix, 98
elastic stiffness matrix, 98
elastic stiffness matrix of composite, 114
elastic-damage secant stiffness matrix,
45

fourth-rank tensors, 81
matrix elements of composite, 122
mechanical property, 88
quasi-continuum, 251
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stiffness matrix, 97, 104
stiffness matrix of composite, 108
stiffness tensor on RVE, 110
stress, 5
thermalproperty, 88
variable, 16

Effective elastic stiffness, 112
Elastic

(reversible) strain, 8
brittle material, 35
compliance matrix, 25, 28, 122
compliance matrix symmetry, 26
compliance tensor, 42
constitutive law, 43
damage evolution, 210
damage material complementary energy,
43

damage material strain energy, 43
damaged material, 47
engineering modulus, 27
isotropic material, 46
range, 35
response, 38
stiffness matrix, 122
strain energy, 43, 147, 248, 250
strain energy equivalence, 16
strain energy in terms of structural ten-
sors, 24

strain energy increment, 40
strain energy per unit volume, 42
volume change, 74

Elastic-viscoelastic correspondence princi-
ple, 74, 77, 83

Elasticity
constitutive matrix, 36
matrix, 36
tensor degeneration, 36

Elastic-plastic
damage constitutive law, 286
damage material, 259
deformation, 153
material, 153
stiffness matrix, 155

Ellipsoidal
inclusion, 269
rotationally symmetric surface, 241

Ellipticity loss, 179
of the limit surface, 135, 232

Energetic consistency, 108
Energy

dissipated by damage, 250
for rearrangements of microstructure,
249

stored by damage hardening, 250
Engineering

anisotropic constants, 122
constant of orthotropic material, 98
defining elements of

modulus, 28
material constants, 26
orthotropy constant, 126
tensor stress invariant, 5

Enhanced
isotropic yield criterion, 201
Mises–Hu–Marin’s-type criterion, 183

Epoxy matrix, 89
Equation of

isotropic elasticity, 74
linear elasticity of compositematerial, 89
linear elasticity of crystal, 89
linear isotropic viscoelastic materials, 74
linear isotropic viscoelasticity, 74
transformed isotropic linear
viscoelasticity, 71

Equi-biaxial tension condition, 135
Equilibrium equation, 74
Equivalence of energy, 108
Equivalent

composite matrices, 96
elastic material, 71

Esidual strain existence, 42
Evolution law, 256
Explicit

anisotropy approach, 140
formulation, 242

Extended thermo-plastic-damage equations,
273

Extension of
anisotropic von Mises’ criterion, 225
isotropic Drucker–Prager’s failure
criterion to anisotropy, 224

Tresca’s, 216
External force, 75

F
Fabric tensor, 22
Fabrication process, 38, 40
Failure, 35

initiation limit surfac, 211
FEM-micromechanics-based

homogenization, 116
Fiber thermal property, 40
Fibrous reinforcement, 88
Fictitious

coupled elastic problem, 75, 76
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elastic (time-independent) problem, 80
elastic constant, 75
elastic material, 71
elastic problem, 81
elastic RUC of composite, 83
linear elastic material, 84
orthotropic elastic equation, 79
pseudo-undamaged configuration, 16
strain, 111
stress, 110

Finite
deformation range, 53
strain definition, 53

First
common invariant, 134
deviatoric von Mises’ matrix, 172
Haigh–Westergaard coordinate, 212
stress invariant, 212
stress tensor invariant, 212

Flux vector, 253
Four-parameter Burgers model, 63
Fourth-order

linear transformation tensor, 239
tensor, 9
tensor matrix representation, 9

Fourth-rank
compliance tensor, 9
damage tensor, 15, 19
damage tensor matrix representation, 19
elasticity tensor, 9
stiffness tensor, 9, 41
tensor of creep functions, 77
tensor of relaxation functions, 77

Fracture surface loss of convexity, 238
Free energy function per unit mass, 44
Frictionless material, 215
Full anisotropy, 50
Function of

three stress invariants, 136
transformed variable, 75

G
General

constitutive equation of anisotropic lin-
ear viscoelastic material, 78

coupled heat equation, 280
orthotropy symmetry group, 118
von Mises criterion, 168

Generalization of
classical stress invariants, 135
Hosford’s criterion, 206

Generalized

force, 67
Fourier series, 22
Hooke’s law, 9–11
Hooke’s modulus, 30
Kirchhoff’s modulus, 27, 30, 51
method of cells, 88
modules of viscoelasticity, 72
normality rule, 146, 257, 278, 287, 288
Poisson’s coefficient, 27
Poisson’s ratio, 30, 72
stability Drucker’s postulate, 155
Young’s modulus, 27, 51, 72

Generalized Method of Cells, 112
Generic

invariant of stress deviator, 4
strain invariant, 43
strain tensor invariant, 7
stress invariant, 4

Gibbs’
complementary energy, 46
potential function, 46, 47
state potential, 47

Glass-Epoxy composite, 103, 120
Global variable, 108
GMC homogenization method, 118
Goldenblat–Kopnov’s

criterion, 168, 223
explicit formulation, 204
polynomial format, 243

Grain reorientations, 269
Graphite

/Epoxy composite, 38, 88
fiber, 89

Green’s
formulation, 53
strain tensor, 54

Growth of dissipative process, 35

H
Haigh–Westergaard’s

co-ordinate, 160, 178, 212, 216, 222
space, 217

Hardening
force, 253
state variable, 13

Heating rate, 272
Helmholtz’s

free energy density, 286
free energy per unit mass, 44
potential function, 47
state potential, 47

Hershey–Davies’ criterion, 164
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Heterogeneous
composite, 104
material, 102

Hexagonal
array, 88
class, 36
closed packed metals, 269
fiber array, 94
Hooke’s Transverse Isotropy, 31
Hu–Marin’s condition, 191
symmetry, 31, 38, 88, 187, 195, 205
symmetry array, 118
symmetry class, 32, 118, 136, 229
symmetry group, 37
symmetry Hill’s criterion, 198
transversely isotropic symmetry, 89
transversely isotropic Tsai–Wu’s crite-
rion, 232

transversely isotropic von Mises–Tsai–
Wu failure criterion, 235

Hexagonal array, 89, 114, 115, 122
Hexagonal fiber array, 94
Hexagonal symmetry, 94, 100, 114–116
Hidden state variable, 253
High orthotropy degree, 181, 232
High strength concrete, 47
High–Westergaard’s

space, 241
High-strength steel, 214
Hill theorem on lower bound by Reuss’ es-

timate, 118
Hill theorem on upper bound by Voigt esti-

mate, 118
Hill’s

criterion, 135, 138, 139, 175, 176
criterion constraint, 179
criterion convexity loss, 185
criterion range of applicability, 180
matrix, 175
structural tensor, 244
tetragonal symmetry form, 198
theorem, 108
theorem of lower and upper bounds, 122
type of tetragonal symmetry transversely
isotropic criterin, 195

yield criterion, 228
Hill–Mandel relation, 109
Homogeneity at RUC level, 75
Homogeneous constituent material, 81
Homogenization, 83

method, 102
of transformed isotropic local matrices,
83

procedure, 81
tool, 81

Honey-comb fibers, 122
Hooke’s

law of isotropic material, 33
matrix, 37

Hosford’s criterion, 164, 203
Hot work tool steel AISI L6, 281
Hu–Marin’s

based transversely isotropic criterion,
136, 187

type of hexagonal symmetry isotropic
criterin, 195

Huber–von Mises’
circular cylinder, 179
criterion, 138, 139, 163, 203
ellipse, 244
isotropic yield condition, 262
surface, 242

Hybrid
formulation, 124, 205
homogenization rule, 125
mixture rule, 126
symmetry property, 195

Hydrostatic axis, 183
Hydrostatic pressure

axis, 160
independence, 72
independent criterion, 243
insensitive isotropic materials, 160
insensitivity, 202
sensitive criterion, 175
sensitivity, 135, 211, 213, 214, 240, 241

Hyper-
elastic material, 153, 154
elasticity, 53
elasticity tensor, 53

Hyperboloidal rotationally symmetric
surface, 241

Hypo-
elastic material, 54
elasticity, 53
elasticity tensor, 53

I
Identical stiffness matrix format, 93
Implicit

anisotropic extension of Drucker’s yield
criterion, 204

anisotropy approach, 140
approach, 199
approach to anisotropy, 236
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formulation, 243
multiscale procedure, 269

Inconel 718, 213, 221
Incremental form of constitutive equation,

149
Independent material constant, 243
Indirect dependence on hydrostatic pressure,

138
Inelastic

(irreversible) strain, 8
material, 147
strain, 278

Initial
configuration, 16
creep function, 69
failure, 136
relaxation function, 69
yield, 136
yield surface, 142

Initiation of
dissipative process, 35
plastic flow mechanism, 142
plasticity, 36

Inner bound, 203
Instantaneous

elastic strain, 66
memorization, 282

Integral
constitutive equation of anisotropic
linear viscoelasticity, 82

constitutive equations of the orthotropic
linear viscoelastic material, 79

form, 78
form of constitutive equation, 77
form of constitutive equations of
isotropic linear viscoelastic material,
74

form of uniaxial creep strain, 69
form of uniaxial stress relaxation, 69
representation, 75

Interaction creep and plasticity, 58
Intermediate

between Hill and Hu–Marin concepts,
136

type loci type limit surface, 135
yield surface, 256

Internal
(hidden) variable, 13
pressure, 76
state variable, 251, 286

Inverse
Laplace’s transform, 61, 71, 77, 83
Laplace’s transformation, 76, 82

Irreducibility
of elasticity equations, 51
to isotropic von Mises, 187

Irreducible
set of invariants, 136
tensor base, 22

Irregular
arrangement, 92
hexagonal pyramid, 217
particle-reinforced composite, 101
particles distribution, 104

Irreversible
phenomenon, 39
process, 248
strain, 9
term, 143

Isotropic
change of size of limit surface, 134
compliance matrix, 33
composite, 101
elastic Hooke’s material, 43
Hooke’s law, 33, 43
Hooke’s material, 33
Huber–von Mises’ criterion, 169, 178
Huber–von Mises’ equation, 190
linear visco-elastic behavior, 74
linear visco-elastic material, 70
linear visco-elasticity, 72
linear viscoelastic material, 72
material, 38, 41, 43, 136, 211
plastic hardening, 264
pressure sensitive criteria, 241
standard material, 76
stiffness matrix, 34
von Mises’ condition, 136
von Mises’ criterion, 163
yield criterion, 202

Isotropy, 35, 70
of composite, 95

K
Kinematic plastic hardening, 264
Kirchhoff modulus, 98
Kirchhoff’s modulus, 34, 92
Kowalsky’s criterion, 140
Kuhn–Tucker’s loading/unloading

condition, 258

L
Lagrange’s stress tensor, 54
Lamé’s

constant, 43
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solution, 76
Laminate, 93
Laplace’s

integral transform, 70
inverse transform, 80
transform, 79, 83
transform method, 61
transform pairs, 71
transformation, 75, 79

Law of
phase change, 51
volume shape, 51

Level of
composite microstructure, 83
RUC, 81
subcell, 81, 83

Limit
criterion, 35
surface asymmetry, 213

Linear
common invariant, 229
differential operator, 68, 70
elastic material, 41
elasticity, 150, 248
elasticity equation, 9
hereditary model, 69
isotropic viscoelastic constitutive
equations, 70

orthotropic elasticity, 50
orthotropic material, 49
transformation concept, 199
transformation of Cauchy’s stress, 134
transformation of stress tensor, 256
transformation of the Cauchy stress
tensor, 135

transformation operator, 205
visco-elastic material, 65, 68, 71, 80
visco-elastic problem, 76
visco-elasticity, 70, 81

Linearized geometric equation, 75
Linearly transformed stress tensor, 270
Loading

history, 40
surface distortion, 13
surface isotropic expansion, 13
surface rotation, 13
surface translatoric displacement, 13
unloading cycle, 38

Local
constitutive equations, 81
constitutive time-dependent fourth-rank
tensor, 81

elasticity equation, 112

state method, 251
stiffness tensor in subcell, 112
tensor, 81
variable, 81

Long fiber reinforced composite, 35, 40, 94,
96, 135

material, 197
Long fiber reinforced composite

architecture, 112
Loose bound, 120
Loss of convexity, 186
Low

carbon steel 18G2A, 226
cycle fatigue, 273

Lower
bound, 88
bound of effective compliance matrix,
111

bound of effective stiffness matrix, 110
bound of mean constitutive tensor, 110
estimate, 104

M
Macrolevel, 96, 107
Macroscopic yield surface, 269
Macrostrain, 96
Macrostress, 96
Magnesium

alloy, 269
Mg-Th sheet, 201

Manufacturing process of composite
materials, 88

Martensitic change, 39
Material

anisotropy, 77, 211
anisotropy frame, 199
damage, 35
failure, 210
homogeneity, 75
isotropy, 70
microstructure, 12
microstructure change, 39
microstructure rearrangement, 248
orthotropy, 52, 80
orthotropy plane, 30
symmetry, 35, 88
symmetry change, 36
texture, 35

Matrix, 103
representation, 19
thermal property, 40
vector notation, 8
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Maximal
deviatoric stress criterion, 203
fiber packing limit, 122

Maximum shear stress type limit surface,
135

Maxwell’s model, 58
creep compliance function, 59
equation, 59
stress relaxation, 64

Mean
fourth-rank tensors, 81
strain, 6
stress, 5

Memory surface, 278
Meridian of

limit surface, 161
simple shear, 220
uniaxial compression, 220
uniaxial tension, 220

Meso level, 108
Metallic

material, 102
matrix, 102

Mg-Li alloy, 205
sheet, 201

Mg-Th alloy
sheet, 205

Micro level, 108
Microcrack, 210
Microlevel

homogenization technique, 75
Micromechanical

analysis, 88
model, 251

Micromechanics-based
FEM, 118
homogenization model, 112
Method of Cells, 121

Microstrain, 81, 112
Microstress, 81, 104, 112
Microstructural

rearrangements, 8
state variable, 13, 253

Microstructure deviator, 264
Mixed

invariant system, 216
plastic hardening, 264
symmetry, 195

Modification of loading surface, 13
Modified third invariant, 134
Monoclinic

crystal lattice symmetry, 97
Hooke’s anisotropy, 29

lattice symmetry, 94
or oblique symmetry, 29
space lattice cell, 29
symmetry, 29, 94

Mori–Tanaka method, 112, 121
Multi-dissipative processes, 146
Multiaxial

deformation state, 41
loading, 39
state, 70, 74

Multicomponent composite material, 102
Multiple-coupled dissipative phenomenon,

146
Multiscale procedure, 269
Murakami–Ohno’s tensor, 13

N
Nano-composite, 33
Ni-based alloy, 221
Nickel-based

Inconel 718, 211
single crystal superalloy, 32

NiTi shape memory alloy, 166
Non-associated

damage, 273, 287
flow rule, 142, 145
plasticity, 273, 287
rule, 259
thermo-viscoplasticity, 277

Non-homogeneous differential equation, 59
Non-linear

creep phenomenon, 58
elastic material, 40
elasticity, 150, 248
hereditary model, 69
plastic hardening rules, 277
viscoelastic materials, 68

Non-metallic material, 214, 220
Non-quadratic

yield surface, 256
Non-quadratic Tresca’s type limit surface,

135
Non-rotationally symmetric initial yield

surface, 163
Non-rotationally symmetric surface, 161
Nonassociated

damage, 273
plasticity, 273

Nonconventional creep model, 58
Nonelastic range, 35
Normality

of plastic strain increment, 144
rule, 144, 258
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O
Objective derivative of stress tensor, 54
Oblique

anisotropy compliance matrix, 97
anisotropy property, 97
symmetry, 94

Observable variable, 13
Onsager’s approach, 256
Onset of

fracture, 212
phase change, 212
yield, 212

Operator format, 67
Orthorhombic, 94

Hooke’s orthotropy, 30
lattice, 30, 31, 94
symmetry group, 37

Orthotropic
Hooke’s law, 94
Boron/Al composite, 126
creep compliance matrix, 80
damage, 15, 19
elastic material, 50
Hill’s condition, 239
Hill’s criterion, 135, 177, 189
Hosford’s criterion, 185
Hosford’s yield condition, 186
hyperelastic material, 48
linear visco-elastic material, 78
linear viscoelastic equations, 79
material, 48
matrix component, 124
multi-laminate composite, 98
relaxation function matrix, 80
stiffness matrix, 49
symmetry group, 36
viscoelastic material, 83
von Mises’ criterion, 174, 175, 191
von Mises’ equation, 181, 191
von Mises’ matrix, 174

Orthotropy, 35, 225
modulus, 94, 186
plane, 192
symmetry, 30

Orthotropy modulus, 99
OTCz Titanium alloy, 38, 180, 184
Outer bound, 203

limit curve, 165
Overstrain columnar vector, 42
Overstress columnar vector, 42

P
Paraboloidal rotationally symmetric surface,

241
Particle

reinforced composites, 103
reinforcement, 88

Particulate composite, 33
Partly distorted limit surface, 238
Periodic fiber arrangement, 88
Perpendicular fiber arrangement, 98
Phase

change, 35, 146
transformation, 9, 36, 39
transformation effect tensor, 251
transformation scalar variable, 13

Physical configuration, 16
Planar anisotropy, 186
Plane stress

condition, 177
state, 35, 184, 191, 216, 222
stiffness matrix, 35

Plastic
anisotropy, 35
damage evolution, 210
flow, 9, 146
hardening, 286
hardening process, 134
potential function, 142
shear l imits, 177
slip initiation, 250
tension limit, 177
yield, 35, 36
yielding, 35, 39

Plasticity, 248
dissipation surface, 287
matrix, 36

Poisson’s ratio, 34, 92, 98
averaged by mixture rule, 121

Polycrystal model, 269
Polycrystalline

magnesium, 205
material, 33

Polymer matrix, 102
Polynomial

anisotropic yield criterion, 167
function of direction vector, 22

Positive definiteness of the quadratic form,
154

Postulate of
inner and outer bounds, 165
maximum dissipation, 257, 258

Potential
approach, 256
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function for strain, 147
function for stress, 147

Pressure
insensitive criterion, 175
insensitive isotropic material, 166
insensitive material, 137
insensitivity, 228
sensitive initial yield/failure criterion,
240

sensitive material, 137, 214
sensitive metallic alloy, 211
sensitivity, 229, 232, 236
sensitivity inquired, 205

Primary matrix, 13
Principal

invariant of strain tensor, 5
invariant of stress deviator, 4
invariant of the strain deviator, 7
material orthotropy, 186
of invariant stress tensor, 3
strain, 5
stress, 3
stress frame, 186

Progressive memorization, 282
Projection operator, 14
Property of elastic deformation, 152
Pseudo-deviatoric format, 183
Pure shear

deformation, 52
strength test, 160

Q
Quadratic

common invariant, 229
Hill’s type limit surface, 135
yield surface, 256

R
Rabinovich modulus, 92, 98
Rabinovich’s

constant, 94
modulus, 28, 30, 51, 92

Random topology of fibers, 88
Raniecki–Mróz’s criterion, 166
Rate-

independent problem, 258
type constitutive equation, 273

Rebuilding of yield surface, 143
Reference frame, 33
Regular

lattice, 32
particle reinforcement, 100

Reinforcement, 103
Reinforcing

fibers, 102
particles, 102

Relaxation, 81
function, 69
modulus, 72
tensor, 81

Relaxed hydrostatic pressure insensitivity,
184

Representation
damage effect matrix, 17
of elastic strain energy in terms of
invariants, 24

of strain tensor, 10
of stress tensor, 10

Representative
area element, 89
unit cell, 80, 88, 102, 112, 114

Representative volume element, 102, 112
Residual

state, 40
stress, 38, 40
stress existence, 42

Reuss’
bound, 120
estimate, 103, 104, 121
estimation, 111
mixture rule, 88
rule, 88
scheme, 105

Reverse tension-compression cycle, 14
Reversible

process, 248
strain, 9
term, 143

Rhombic
array, 89, 94
fiber architecture, 97
fiber array, 94, 97, 98

Rhombohedral cell lattice, 29
Rock, 210

like material, 15
Rotation, 168

of limit surface, 134
Rotationally symmetric

ellipsoid, 219
hyperboloid, 219
initial yield/failure surface, 218
limit surface, 161, 163
paraboloid, 219

RUC of
hexagonal symmetry, 116



Index 307

tetragonal symmetry, 115
Rule of mixture, 103

S
Scalar

damage variable, 15
function of common invariants, 136, 137
function of pair of tensorial arguments,
48

function of stress invariants, 136
function of tensorial argument, 44

Schmidt–Ishlinsky–Hill’s criterion of
maximal deviatoric stress, 165

SCMC homogenization method, 118
SCMS homogenization method, 126
Secant hyper-plane, 150
Second

common deviatoric invariant, 138
common invariant, 134, 138
deviatoric invariant, 138
deviatoric von Mises’ matrix, 172
order phase change tensor, 13
order tensor, 2
Piola–Kirchhoff’s stress tensor, 54
rank damage tensor, 15, 261
stress deviator invariant, 212
stress invariant, 138

Secondary inclusion, 13
Self Consistent Scheme, 121
Separation of volume change from shape

change, 74
Shape

change, 34, 70, 74
change effect, 70
distortion, 140

Shear
limit point, 219
meridian, 162
modulus, 92
test, 191

SiC/Ti
long fiber reinforced composite, 197
unidirectional lamina, 38

Single
fiber in the square cell array, 118
strain invariant, 25

Skew-symmetric spin tensor, 54
Skrzypek–Ganczarski’s criterion, 205
Soil, 214

mechanics, 214
Space lattice, 36
Spheroidal graphite cast iron, 36, 47

Square
array, 88, 114, 122
fiber array, 94, 99, 115
fibers, 122

Stability
criterion of hyper-elastic material, 146,
148

in small, 147
on cycle, 148
postulate, 153

Stacking layers composite, 93
Standard model

creep compliance function, 62
stress relaxation, 64

State
equation, 47, 49, 252
functions, 248
potential, 38, 44, 252, 286
potential of elasticity, 44
variable, 12, 13, 248, 251

Stiffness
coefficient, 96
deterioration due to damage, 261
matrix, 12, 50, 98
matrix symmetry, 21, 25
metrix, 42
modulus of phase, 121

Stored energy, 250
Strain

axiator, 6, 34
compatible method of cells, 88, 112
concentration tensor, 107
damage space, 23
decomposition, 59
deviator, 6, 34
energy, 38, 39, 43, 48
energy function, 48
energy of damaged material, 44
energy per unit volume, 38, 147
energy positive definiteness, 10
equivalence, 16
first basic invariant, 43
memory effect, 278
potential, 47
potential function, 40
rate decomposition, 59
second basic invariant, 43
space, 47
tensor, 5
tensor decomposition, 34
third basic invariant, 43

Strength differential
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effect, 134, 135, 138, 160, 162, 166, 203,
212, 214, 223, 228, 264, 271

materials, 213
Stress

/strength axis, 183
axiator, 2, 34
cycle, 142
damage space, 23
deviator, 2, 34
deviator coordinates, 36
equivalence, 16
increment, 147
potential, 47
potential function, 39
quasi-cycle, 142
tensor, 2
tensor decomposition, 34
tensor representation matrix, 8
transformation, 3

Stress concentration tensor, 107
Strong

anisotropy, 271
limit surface distortion, 134

Structural
anisotropy matrix, 167
anisotropy tensor, 167
change, 36
symmetry frame, 30
tensor, 24, 48, 264
tensor of material anisotropy, 167, 210
tensor of plastic or failure anisotropy, 134

Structurally representative distribution, 107
Sub-determinants of tangent elastic-plastic

stiffness matrix, 155
Superalloy, 135
Surface of constant

complementary energy, 149
strain energy, 149

Sylvester’s
criterion, 154
postulate of material stability, 134
stability postulate, 135, 180, 211
stability postulate for hyper-elastic ma-
terial, 153, 154

Symmetry
class, 93
classes, 25
group, 25, 93

T
Tangent

elastic stiffness matrix, 155

hyper-plane, 150
stiffness matrix, 148

Temperature
rate term, 273
softening, 273

Tensile
meridian, 162, 217
test, 191

Tension
/compression asymmetry, 136, 138–140,
199, 200, 202, 211, 212, 219, 236, 238,
240, 256

/compression asymmetrywith distortion,
139

and compression asymmetry, 134, 162,
205

failure strength, 215
Tensor

base, 22
like rule of mixture, 124
of viscoelastic anisotropy, 77
product, 49
representative secant matrix, 53

Tensorial
interpolation between upper and lower
estimates, 125

space, 36
Tensorially polynomial anisotropic

criterion, 134
Tetragonal

array, 89
class, 36
fiber array, 94, 99
format, 205
Hill’s condition, 191
Hooke’s Transverse Isotropy, 31
lattice, 31
symmetry, 31, 38, 88, 94, 114–117, 187,
195, 205

symmetry class, 32, 118, 136, 187, 229
symmetry format, 190
symmetry group, 37
symmetry matrix, 31
symmetry transversely isotropic
Tsai–Wu’s yield/failure criterion, 230

symmetry transversely isotropic
yield/failure criterion, 229

Textured
Mg-Li alloy sheet, 200
Mg-Th alloy sheet, 200

Theorem of
lower and upper bounds, 108
minimal potential energy, 110
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Theory of invariant representation, 50
Thermal strain, 8
Thermo-elastic

(visco)plastic material, 274
Helmholtz’s free energy, 276
plastic-damage, 13
plastic-damage material, 9
viscoplastic material, 274, 280

Thermo-plasticHelmholtz’s free energy, 276
Thermodynamic

conjugate force vector, 253
force, 253, 286

Thermodynamics of irreversible processes,
251

Thermoelasticity, 272
Thermoinelastic material behavior, 273
Thermomechanical coupling, 273
Thermoplasticity, 272
Thick walled tube, 76
Third

common invariant, 243
stress deviator invariant, 212
stress invariant dependent limit surface,
139

Three parameter
Burzyński’s criterion, 218
standard model, 62

Threshold, 278
stress, 248

Ti-6Al-4V
alloy, 239
Titanium alloy, 200, 211

Tight bound, 120
Time-dependent, 69

differential operators, 72
heterogeneous viscoelastic problem, 81
stiffness operator, 68

Time-independent elastic problem, 81
Titanium

4Al-1/4O2, 200
Alloy, 38

Total formulation of constitutive equation,
45

Totally distorted response, 240
Trace of tensor product, 49
Transformation

mode, 168
of the Cauchy stress, 200
tensor, 204

Transformed
deviatoric invariant, 140
equation of anisotropic linear elasticity,
82

invariant, 204
matrix of anisotropic fictitious elasticity
at the level of RUC, 82

operator, 72
operators of standard model, 76
variable, 61, 71

Translation, 168
of limit surface, 134

Transverse
isotropy, 20, 35, 88, 180, 197, 229
isotropy hexagonal type, 188
isotropy of hexagonal symmetry, 20, 244
isotropy of tetragonal symmetry, 20, 244
isotropy plane, 188, 191
isotropy symmetry, 135, 180, 187
isotropy tetragonal type, 188
Poisson’s ratio, 32
strain coefficient, 92
Young’s modulus, 32

Transversely isotropic
Boron/Aluminum composite, 116
compliance matrix, 20
criterion, 38, 205
effective relaxation matrix, 83
hexagoanl symmetry Hu–Marin-type
matrix, 192

hexagonal Hu–Marin’s criterion, 191
hexagonal Hu–Marin’s equation, 191
hexagonal Hu–Marin’s matrix, 36
hexagonal symmetry, 117, 118, 128
Hill’s criterion, 189, 190, 232
Hill’s matrix, 189
Hu–Marin’s matrix, 196
linear visco-elastic material, 84
materials, 32
symmetry, 99
symmetry group, 36
tetragonal Hill’s matrix, 36
tetragonal symmetry, 118, 205
tetragonal symmetry Hu–Marin-type
matrix, 192

Tresca’s
condition, 216
criterion, 163, 203
inner bound limit curve, 164

Triclinic
crystal lattice symmetry, 93
Hooke’s anisotropy, 25
lattice, 94
lattice symmetry, 97
symmetry, 25, 97
symmetry group, 37
symmetry lattice cell, 28
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Trigonal
/rhombohedral Hooke’s Anisotropy, 29
symmetry, 30

True fibers arrangement, 116
Tsai–Wu’s

criterion, 138–140, 229
orthotropic criterion of failure, 228

Two
parameter Burzyński’s approximation,
220

tensorial arguments scalar function, 46

U
Unconditionally stable

criterion, 184
Hu–Marin’s surface, 184

Uniaxial
compression strength test, 160
loading, 39
tension, 183
tension strength test, 160
Voigt’s model, 105

Uniaxial Reuss’
model, 105, 106

Unidirectional
composite, 112
fiber reinforced composite, 187
random disposition, 118

Unidirectionally
long fiber reinforced composite, 112
reinforced composite, 88, 94, 100

Uniform strain, 108
Uniform stress, 108
Unilateral

damage, 14
response, 14

Unit tensor, 107
Upper

bound, 88
bound of effective stiffness matrix, 111
estimate, 104

V
Vector

damage variable, 15
matrix notation, 11, 42, 77, 78, 80, 114
matrix Voigt’s notation, 10
of weighting coefficient, 125

Virgin
elastic isotropic material, 47
material anisotropy, 22
state, 46

Viscoelastic
(time-dependent) problem, 80
axial elongation, 66
behavior, 79
curvature, 66
RUC level, 83

(visco)plastic
/brittle material, 248
damage range, 250
material, 248

Viscoplastic material, 84
Viscosity parameter, 63
Voigt’s

bound, 120
estimate, 103, 104, 121
estimation, 110
mixture rule, 88
notation, 42, 174
rule, 88
scheme, 104

Voigt–Kelvin’s
creep compliance function, 60
integral representation, 61
model, 59

Volume
averaged stiffness, 108
change, 34, 51, 70, 74
fraction, 104, 122
fraction of the phase, 13
of RVE, 106

Volumetric
differential operator, 72
effect, 70

Von Mises’
anisotropy tensor, 262
criterion, 36, 138
criterion for anisotropic yield initiation,
169

deviatoric form, 171
matrix, 37
matrix of plastic anisotropy, 170
orthotropic yield/failure criterion, 227
plastic orthotropy matrix, 227

Voyiadjis–Thiagarajan’s condition, 195
Voyiadjis–Thiagarajan’s criterion, 205

W
Weak dissipation coupling, 254
Weighted

average between upper and lower
estimates, 125

homogenization rule, 122
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Weighting
average homogenization rule, 125
homogenization rule, 125
interpolation, 126

Wood, 35
Work of external force, 110

Y
Yield

/failure Coulomb–Mohr’s criterion, 241
/failure characteristic matrix, 225
/failure initiation in anisotropic material,
225

/failure onset criterion, 213
function, 142, 287
initiation limit surfac, 211
or failure initiation, 160

Yielding
anisotropy, 269
initiation asymmetry, 166

Young’s modulus, 34, 63, 92, 98
averaged by mixture rule, 121

Z
Zirconium alloy, 269
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